1
|
Li C, Fan C, Lu S, Qiu Q, Gao X, Yan X, Wang S, Zhao B, Liu X, Song Y, Deng Y. Targeting Ibrutinib to Tumor-Infiltrating T Cells with a Sialic Acid Conjugate-Modified Phospholipid Complex for Improved Tumor Immunotherapy. Mol Pharm 2023; 20:438-450. [PMID: 36382950 DOI: 10.1021/acs.molpharmaceut.2c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Immune checkpoint blockade (ICB) treatment for the clinical therapy of numerous malignancies has attracted widespread attention in recent years. Despite being a promising treatment option, developing complementary strategies to enhance the proportion of patients benefiting from ICB therapy remains a formidable challenge because of the complexity of the tumor microenvironment. Ibrutinib (IBR), a covalent inhibitor of Bruton's tyrosine kinase (BTK), has been approved as a clinical therapy for numerous B-cell malignancies. IBR also irreversibly inhibits interleukin-2 inducible T cell kinase (ITK), an essential enzyme in Th2-polarized T cells that participates in tumor immunosuppression. Ablation of ITK by IBR can elicit Th1-dominant antitumor immune responses and potentially enhance the efficacy of ICB therapy in solid tumors. However, its poor solubility and rapid clearance in vivo restrict T cell targetability and tumor accumulation by IBR. A sialic acid derivative-modified nanocomplex (SA-GA-OCT@PC) has been reported to improve the efficacy of IBR-mediated combination immunotherapy in solid tumors. In vitro and in vivo experiments showed that SA-GA-OCT@PC effectively accumulated in tumor-infiltrating T cells mediated by Siglec-E and induced Th1-dominant antitumor immune responses. SA-GA-OCT@PC-mediated combination therapy with PD-L1 blockade agents dramatically suppressed tumor growth and inhibited tumor relapse in B16F10 melanoma mouse models. Overall, the combination of the SA-modified nanocomplex platform and PD-L1 blockade offers a treatment opportunity for IBR in solid tumors, providing novel insights for tumor immunotherapy.
Collapse
Affiliation(s)
- Cong Li
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China.,School of Pharmaceutical Science, Liaoning University, Shenyang110036, China
| | - Chuizhong Fan
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Shuang Lu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Qiujun Qiu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Xin Gao
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Xinyang Yan
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Shuo Wang
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Bing Zhao
- Faculty of Foreign Language, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Xinrong Liu
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Yanzhi Song
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| | - Yihui Deng
- College of Pharmacy, Shenyang Pharmaceutical University, Shenyang110016, China
| |
Collapse
|
2
|
Lechner KS, Neurath MF, Weigmann B. Role of the IL-2 inducible tyrosine kinase ITK and its inhibitors in disease pathogenesis. J Mol Med (Berl) 2020; 98:1385-1395. [PMID: 32808093 PMCID: PMC7524833 DOI: 10.1007/s00109-020-01958-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/10/2020] [Accepted: 08/04/2020] [Indexed: 01/18/2023]
Abstract
ITK (IL-2-inducible tyrosine kinase) belongs to the Tec family kinases and is mainly expressed in T cells. It is involved in TCR signalling events driving processes like T cell development as well as Th2, Th9 and Th17 responses thereby controlling the expression of pro-inflammatory cytokines. Studies have shown that ITK is involved in the pathogenesis of autoimmune diseases as well as in carcinogenesis. The loss of ITK or its activity either by mutation or by the use of inhibitors led to a beneficial outcome in experimental models of asthma, inflammatory bowel disease and multiple sclerosis among others. In humans, biallelic mutations in the ITK gene locus result in a monogenetic disorder leading to T cell dysfunction; in consequence, mainly EBV infections can lead to severe immune dysregulation evident by lymphoproliferation, lymphoma and hemophagocytic lymphohistiocytosis. Furthermore, patients who suffer from angioimmunoblastic T cell lymphoma have been found to express significantly more ITK. These findings put ITK in the strong focus as a target for drug development.
Collapse
Affiliation(s)
- Kristina S Lechner
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, Hartmannstr.14, 91052, Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, Hartmannstr.14, 91052, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054, Erlangen, Germany
- Ludwig Demling Endoscopy Center of Excellence, Ulmenweg 18, 91054, Erlangen, Germany
| | - Benno Weigmann
- Department of Medicine 1, Kussmaul Campus for Medical Research, University of Erlangen-Nürnberg, Hartmannstr.14, 91052, Erlangen, Germany.
- Medical Immunology Campus Erlangen, Medical Clinic 1, Friedrich-Alexander University Erlangen-Nürnberg, 91052, Erlangen, Germany.
| |
Collapse
|
3
|
Tong DL, Kempsell KE, Szakmany T, Ball G. Development of a Bioinformatics Framework for Identification and Validation of Genomic Biomarkers and Key Immunopathology Processes and Controllers in Infectious and Non-infectious Severe Inflammatory Response Syndrome. Front Immunol 2020; 11:380. [PMID: 32318053 PMCID: PMC7147506 DOI: 10.3389/fimmu.2020.00380] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Sepsis is defined as dysregulated host response caused by systemic infection, leading to organ failure. It is a life-threatening condition, often requiring admission to an intensive care unit (ICU). The causative agents and processes involved are multifactorial but are characterized by an overarching inflammatory response, sharing elements in common with severe inflammatory response syndrome (SIRS) of non-infectious origin. Sepsis presents with a range of pathophysiological and genetic features which make clinical differentiation from SIRS very challenging. This may reflect a poor understanding of the key gene inter-activities and/or pathway associations underlying these disease processes. Improved understanding is critical for early differential recognition of sepsis and SIRS and to improve patient management and clinical outcomes. Judicious selection of gene biomarkers suitable for development of diagnostic tests/testing could make differentiation of sepsis and SIRS feasible. Here we describe a methodologic framework for the identification and validation of biomarkers in SIRS, sepsis and septic shock patients, using a 2-tier gene screening, artificial neural network (ANN) data mining technique, using previously published gene expression datasets. Eight key hub markers have been identified which may delineate distinct, core disease processes and which show potential for informing underlying immunological and pathological processes and thus patient stratification and treatment. These do not show sufficient fold change differences between the different disease states to be useful as primary diagnostic biomarkers, but are instrumental in identifying candidate pathways and other associated biomarkers for further exploration.
Collapse
Affiliation(s)
- Dong Ling Tong
- Artificial Intelligence Laboratory, Faculty of Engineering and Computing, First City University College, Petaling Jaya, Malaysia.,School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Karen E Kempsell
- Public Health England, National Infection Service, Porton Down, Salisbury, United Kingdom
| | - Tamas Szakmany
- Department of Anaesthesia Intensive Care and Pain Medicine, Division of Population Medicine, Cardiff University, Cardiff, United Kingdom
| | - Graham Ball
- School of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom
| |
Collapse
|
4
|
Huang L, Ye K, McGee MC, Nidetz NF, Elmore JP, Limper CB, Southard TL, Russell DG, August A, Huang W. Interleukin-2-Inducible T-Cell Kinase Deficiency Impairs Early Pulmonary Protection Against Mycobacterium tuberculosis Infection. Front Immunol 2020; 10:3103. [PMID: 32038633 PMCID: PMC6993117 DOI: 10.3389/fimmu.2019.03103] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/19/2019] [Indexed: 11/13/2022] Open
Abstract
Interleukin-2 (IL-2) inducible T-cell kinase (ITK) is a non-receptor tyrosine kinase highly expressed in T-cell lineages and regulates multiple aspects of T-cell development and function, mainly through its function downstream of the T-cell receptor. Itk deficiency can lead to CD4 lymphopenia and Epstein-Bar virus (EBV)-associated lymphoproliferation and recurrent pulmonary infections in humans. However, the role of the ITK signaling pathway in pulmonary responses in active tuberculosis due to Mtb infection is not known. We show here that human lungs with active tuberculosis exhibit altered T-cell receptor/ITK signaling and that Itk deficiency impaired early protection against Mtb in mice, accompanied by defective development of IL-17A-producing γδ T cells in the lungs. These findings have important implications of human genetics associated with susceptibility to Mtb due to altered immune responses and molecular signals modulating host immunity that controls Mtb activity. Enhancing ITK signaling pathways may be an alternative strategy to target Mtb infection, especially in cases with highly virulent strains in which IL-17A plays an essential protective role.
Collapse
Affiliation(s)
- Lu Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Kaixiong Ye
- Department of Genetics, University of Georgia, Athens, GA, United States.,Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| | - Michael C McGee
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Natalie F Nidetz
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Jessica P Elmore
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Candice B Limper
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Teresa L Southard
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Avery August
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Weishan Huang
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States.,Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
5
|
A negative role for the interleukin-2-inducible T-cell kinase (ITK) in human Foxp3+ TREG differentiation. PLoS One 2019; 14:e0215963. [PMID: 31022269 PMCID: PMC6483201 DOI: 10.1371/journal.pone.0215963] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 04/11/2019] [Indexed: 01/13/2023] Open
Abstract
The Tec kinases ITK (interleukin-2-inducible T-cell kinase) and RLK (resting lymphocyte kinase) are critical components of the proximal TCR/CD3 signal transduction machinery, and data in mice suggest that ITK negatively modulates regulatory T cell (TREG) differentiation. However, whether Tec kinases modulate TREG development and/or function in human T cells remains unknown. Using a novel self-delivery siRNA platform (sdRNA), we found that ITK knockdown in human primary naïve peripheral blood CD4 T cells increased Foxp3+ expression under both TREG and T helper priming conditions. TREG differentiated under ITK knockdown conditions exhibited enhanced expression of the co-inhibitory receptor PD-1 and were suppressive in a T cell proliferation assay. ITK knockdown decreased IL-17A production in T cells primed under Th17 conditions and promoted Th1 differentiation. Lastly, a dual ITK/RLK Tec kinase inhibitor did not induce Foxp3 in CD4 T cells, but conversely abrogated Foxp3 expression induced by ITK knockdown. Our data suggest that targeting ITK in human T cells may be an effective approach to boost TREG in the context of autoimmune diseases, but concomitant inhibition of other Tec family kinases may negate this effect.
Collapse
|
6
|
Eken A, Cansever M, Somekh I, Mizoguchi Y, Zietara N, Okus FZ, Erdem S, Canatan H, Akyol S, Ozcan A, Karakukcu M, Hollizeck S, Rohlfs M, Unal E, Klein C, Patiroglu T. Genetic Deficiency and Biochemical Inhibition of ITK Affect Human Th17, Treg, and Innate Lymphoid Cells. J Clin Immunol 2019; 39:391-400. [DOI: 10.1007/s10875-019-00632-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/14/2019] [Indexed: 10/27/2022]
|
7
|
Wanelik KM, Begon M, Birtles RJ, Bradley JE, Friberg IM, Jackson JA, Taylor CH, Thomason AG, Turner AK, Paterson S. A candidate tolerance gene identified in a natural population of field voles (Microtus agrestis). Mol Ecol 2018; 27:1044-1052. [PMID: 29290094 DOI: 10.1111/mec.14476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/24/2017] [Accepted: 11/30/2017] [Indexed: 01/27/2023]
Abstract
The animal immune response has hitherto been viewed primarily in the context of resistance only. However, individuals can also employ a tolerance strategy to maintain good health in the face of ongoing infection. To shed light on the genetic and physiological basis of tolerance, we use a natural population of field voles, Microtus agrestis, to search for an association between the expression of the transcription factor Gata3, previously identified as a marker of tolerance in this system, and polymorphism in 84 immune and nonimmune genes. Our results show clear evidence for an association between Gata3 expression and polymorphism in the Fcer1a gene, with the explanatory power of this polymorphism being comparable to that of other nongenetic variables previously identified as important predictors of Gata3 expression. We also uncover the possible mechanism behind this association using an existing protein-protein interaction network for the mouse model rodent, Mus musculus, which we validate using our own expression network for M. agrestis. Our results suggest that the polymorphism in question may be working at the transcriptional level, leading to changes in the expression of the Th2-related genes, Tyrosine-protein kinase BTK and Tyrosine-protein kinase TXK, and hence potentially altering the strength of the Th2 response, of which Gata3 is a mediator. We believe our work has implications for both treatment and control of infectious disease.
Collapse
Affiliation(s)
- Klara M Wanelik
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Michael Begon
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Richard J Birtles
- School of Environment and Life Sciences, University of Salford, Salford, UK
| | | | - Ida M Friberg
- School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Joseph A Jackson
- School of Environment and Life Sciences, University of Salford, Salford, UK
| | | | - Anna G Thomason
- School of Environment and Life Sciences, University of Salford, Salford, UK
| | - Andrew K Turner
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Steve Paterson
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
8
|
Aw A, Brown JR. Current Status of Bruton's Tyrosine Kinase Inhibitor Development and Use in B-Cell Malignancies. Drugs Aging 2017; 34:509-527. [PMID: 28536906 DOI: 10.1007/s40266-017-0468-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The B-cell receptor (BCR) pathway plays an important role in the survival, proliferation and trafficking of cancer cells in a variety of B-cell malignancies. Recently, a number of agents have been developed to target various components of the BCR pathway. One such target is Bruton's tyrosine kinase (BTK), a Tec family kinase member found near the cell membrane that is involved in upstream BCR signaling. The biological function of BTK in several B-cell lymphoid malignancies has led to the development of the oral BTK inhibitor ibrutinib. In chronic lymphocytic leukemia (CLL), ibrutinib has demonstrated durable clinical responses in relapsed/refractory (R/R) patients, including those with the high-risk del(17p) cytogenetic abnormality. These findings have paved the way for trials evaluating ibrutinib in previously untreated CLL patients, and also in combination with chemoimmunotherapy or other novel agents. Durable clinical responses have also been demonstrated in mantle cell lymphoma (MCL) and Waldenström's macroglobulinemia (WM) patients treated with ibrutinib. Ibrutinib is generally well tolerated, although current follow-up remains short and patients of advanced age are more likely to discontinue treatment for toxicity. Treatment-specific side effects such as bleeding and atrial fibrillation may, at least partly, be related to off-target inhibition of non-BTK kinases. Studies evaluating other potential indications for BTK inhibition are ongoing, including in post-allogeneic hematopoietic stem cell transplant patients for whom ibrutinib may be effective in modulating graft-versus-host disease. Combination trials of ibrutinib with venetoclax, a Bcl-2 inhibitor, are underway and are supported by sound preclinical rationale. Several next-generation BTK inhibitors are under development with the goal of decreasing treatment-related toxicity and resistance.
Collapse
Affiliation(s)
- Andrew Aw
- Division of Hematology, Department of Medicine, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Jennifer R Brown
- CLL Center and Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, 450 Brookline Avenue, Boston, MA, 02215, USA.
| |
Collapse
|
9
|
Teku GN, Vihinen M. Simulation of the dynamics of primary immunodeficiencies in CD4+ T-cells. PLoS One 2017; 12:e0176500. [PMID: 28448599 PMCID: PMC5407609 DOI: 10.1371/journal.pone.0176500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/11/2017] [Indexed: 01/05/2023] Open
Abstract
Primary immunodeficiencies (PIDs) form a large and heterogeneous group of mainly rare disorders that affect the immune system. T-cell deficiencies account for about one-tenth of PIDs, most of them being monogenic. Apart from genetic and clinical information, lots of other data are available for PID proteins and genes, including functions and interactions. Thus, it is possible to perform systems biology studies on the effects of PIDs on T-cell physiology and response. To achieve this, we reconstructed a T-cell network model based on literature mining and TPPIN, a previously published core T-cell network, and performed semi-quantitative dynamic network simulations on both normal and T-cell PID failure modes. The results for several loss-of-function PID simulations correspond to results of previously reported molecular studies. The simulations for TCR PTPRC, LCK, ZAP70 and ITK indicate profound changes to numerous proteins in the network. Significant effects were observed also in the BCL10, CARD11, MALT1, NEMO, IKKB and MAP3K14 simulations. No major effects were observed for PIDs that are caused by constitutively active proteins. The T-cell model facilitates the understanding of the underlying dynamics of PID disease processes. The approach confirms previous knowledge about T-cell signaling network and indicates several new important proteins that may be of interest when developing novel diagnosis and therapies to treat immunological defects.
Collapse
Affiliation(s)
- Gabriel N. Teku
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Mauno Vihinen
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
10
|
Kapnick SM, Stinchcombe JC, Griffiths GM, Schwartzberg PL. Inducible T Cell Kinase Regulates the Acquisition of Cytolytic Capacity and Degranulation in CD8 + CTLs. THE JOURNAL OF IMMUNOLOGY 2017; 198:2699-2711. [PMID: 28213500 DOI: 10.4049/jimmunol.1601202] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 01/19/2017] [Indexed: 12/22/2022]
Abstract
Patients with mutations in inducible T cell kinase (ITK) are susceptible to viral infections, particularly EBV, suggesting that these patients have defective function of CD8+ CTLs. In this study, we evaluated the effects of ITK deficiency on cytolysis in murine CTLs deficient in ITK, and both human and murine cells treated with an ITK inhibitor. We find that ITK deficiency leads to a global defect in the cytolysis of multiple targets. The absence of ITK both affected CTL expansion and delayed the expression of cytolytic effectors during activation. Furthermore, absence of ITK led to a previously unappreciated intrinsic defect in degranulation. Nonetheless, these defects could be overcome by early or prolonged exposure to IL-2, or by addition of IL-12 to cultures, revealing that cytokine signaling could restore the acquisition of effector function in ITK-deficient CD8+ T cells. Our results provide new insight into the effect of ITK and suboptimal TCR signaling on CD8+ T cell function, and how these may contribute to phenotypes associated with ITK deficiency.
Collapse
Affiliation(s)
- Senta M Kapnick
- National Human Genome Research Institute, Bethesda, MD 20892; and
| | - Jane C Stinchcombe
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Gillian M Griffiths
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | | |
Collapse
|
11
|
Proserpio V, Piccolo A, Haim-Vilmovsky L, Kar G, Lönnberg T, Svensson V, Pramanik J, Natarajan KN, Zhai W, Zhang X, Donati G, Kayikci M, Kotar J, McKenzie ANJ, Montandon R, Billker O, Woodhouse S, Cicuta P, Nicodemi M, Teichmann SA. Single-cell analysis of CD4+ T-cell differentiation reveals three major cell states and progressive acceleration of proliferation. Genome Biol 2016; 17:103. [PMID: 27176874 PMCID: PMC4866375 DOI: 10.1186/s13059-016-0957-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 04/15/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Differentiation of lymphocytes is frequently accompanied by cell cycle changes, interplay that is of central importance for immunity but is still incompletely understood. Here, we interrogate and quantitatively model how proliferation is linked to differentiation in CD4+ T cells. RESULTS We perform ex vivo single-cell RNA-sequencing of CD4+ T cells during a mouse model of infection that elicits a type 2 immune response and infer that the differentiated, cytokine-producing cells cycle faster than early activated precursor cells. To dissect this phenomenon quantitatively, we determine expression profiles across consecutive generations of differentiated and undifferentiated cells during Th2 polarization in vitro. We predict three discrete cell states, which we verify by single-cell quantitative PCR. Based on these three states, we extract rates of death, division and differentiation with a branching state Markov model to describe the cell population dynamics. From this multi-scale modelling, we infer a significant acceleration in proliferation from the intermediate activated cell state to the mature cytokine-secreting effector state. We confirm this acceleration both by live imaging of single Th2 cells and in an ex vivo Th1 malaria model by single-cell RNA-sequencing. CONCLUSION The link between cytokine secretion and proliferation rate holds both in Th1 and Th2 cells in vivo and in vitro, indicating that this is likely a general phenomenon in adaptive immunity.
Collapse
Affiliation(s)
- Valentina Proserpio
- EMBL, European Bioinformatics Institute (EBI), Hinxton, CB10 1SD, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Andrea Piccolo
- Department of Physics, University of Naples Federico II, CNR-Spin, Istituto Nazionale di Fisica Nucleare (INFN), Napoli, Italy
| | - Liora Haim-Vilmovsky
- EMBL, European Bioinformatics Institute (EBI), Hinxton, CB10 1SD, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Gozde Kar
- EMBL, European Bioinformatics Institute (EBI), Hinxton, CB10 1SD, UK
| | - Tapio Lönnberg
- EMBL, European Bioinformatics Institute (EBI), Hinxton, CB10 1SD, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | | | - Jhuma Pramanik
- EMBL, European Bioinformatics Institute (EBI), Hinxton, CB10 1SD, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Kedar Nath Natarajan
- EMBL, European Bioinformatics Institute (EBI), Hinxton, CB10 1SD, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Weichao Zhai
- Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge, CB3 0HE, UK
| | - Xiuwei Zhang
- EMBL, European Bioinformatics Institute (EBI), Hinxton, CB10 1SD, UK
| | - Giacomo Donati
- Centre for Stem Cells and Regenerative Medicine, Kings College London, London, SE1 9RT, UK
| | - Melis Kayikci
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Jurij Kotar
- Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge, CB3 0HE, UK
| | | | - Ruddy Montandon
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Oliver Billker
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Steven Woodhouse
- Department of Haematology, Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Pietro Cicuta
- Cavendish Laboratory, University of Cambridge, Madingley Road, Cambridge, CB3 0HE, UK
| | - Mario Nicodemi
- Department of Physics, University of Naples Federico II, CNR-Spin, Istituto Nazionale di Fisica Nucleare (INFN), Napoli, Italy.
| | - Sarah A Teichmann
- EMBL, European Bioinformatics Institute (EBI), Hinxton, CB10 1SD, UK.
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, UK.
| |
Collapse
|
12
|
Sun Y, Peng I, Webster JD, Suto E, Lesch J, Wu X, Senger K, Francis G, Barrett K, Collier JL, Burch JD, Zhou M, Chen Y, Chan C, Eastham-Anderson J, Ngu H, Li O, Staton T, Havnar C, Jaochico A, Jackman J, Jeet S, Riol-Blanco L, Wu LC, Choy DF, Arron JR, McKenzie BS, Ghilardi N, Ismaili MHA, Pei Z, DeVoss J, Austin CD, Lee WP, Zarrin AA. Inhibition of the kinase ITK in a mouse model of asthma reduces cell death and fails to inhibit the inflammatory response. Sci Signal 2015; 8:ra122. [PMID: 26628680 DOI: 10.1126/scisignal.aab0949] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Interleukin-2 (IL-2)-inducible T cell kinase (ITK) mediates T cell receptor (TCR) signaling primarily to stimulate the production of cytokines, such as IL-4, IL-5, and IL-13, from T helper 2 (TH2) cells. Compared to wild-type mice, ITK knockout mice are resistant to asthma and exhibit reduced lung inflammation and decreased amounts of TH2-type cytokines in the bronchoalveolar lavage fluid. We found that a small-molecule selective inhibitor of ITK blocked TCR-mediated signaling in cultured TH2 cells, including the tyrosine phosphorylation of phospholipase C-γ1 (PLC-γ1) and the secretion of IL-2 and TH2-type cytokines. Unexpectedly, inhibition of the kinase activity of ITK during or after antigen rechallenge in an ovalbumin-induced mouse model of asthma failed to reduce airway hyperresponsiveness and inflammation. Rather, in mice, pharmacological inhibition of ITK resulted in T cell hyperplasia and the increased production of TH2-type cytokines. Thus, our studies predict that inhibition of the kinase activity of ITK may not be therapeutic in patients with asthma.
Collapse
Affiliation(s)
- Yonglian Sun
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Ivan Peng
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Joshua D Webster
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Eric Suto
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Justin Lesch
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Xiumin Wu
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Kate Senger
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - George Francis
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Kathy Barrett
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Jenna L Collier
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Jason D Burch
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, CA 94080, USA
| | - Meijuan Zhou
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Yuan Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Connie Chan
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| | | | - Hai Ngu
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Olga Li
- Department of Biomarker Development, Genentech Inc., South San Francisco, CA 94080, USA
| | - Tracy Staton
- Department of Biomarker Development, Genentech Inc., South San Francisco, CA 94080, USA
| | - Charles Havnar
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Allan Jaochico
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, CA 94080, USA
| | - Janet Jackman
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Surinder Jeet
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Lorena Riol-Blanco
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Lawren C Wu
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - David F Choy
- Department of Immunology, Tissue Growth, and Repair Diagnostics Discovery, Genentech Inc., South San Francisco, CA 94080, USA
| | - Joseph R Arron
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Brent S McKenzie
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Nico Ghilardi
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | | | - Zhonghua Pei
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, CA 94080, USA
| | - Jason DeVoss
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Cary D Austin
- Department of Pathology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Wyne P Lee
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA
| | - Ali A Zarrin
- Department of Immunology, Genentech Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
13
|
Berglöf A, Hamasy A, Meinke S, Palma M, Krstic A, Månsson R, Kimby E, Österborg A, Smith CIE. Targets for Ibrutinib Beyond B Cell Malignancies. Scand J Immunol 2015; 82:208-17. [PMID: 26111359 PMCID: PMC5347933 DOI: 10.1111/sji.12333] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 06/18/2015] [Indexed: 01/05/2023]
Abstract
Ibrutinib (Imbruvica™) is an irreversible, potent inhibitor of Bruton's tyrosine kinase (BTK). Over the last few years, ibrutinib has developed from a promising drug candidate to being approved by FDA for the treatment of three B cell malignancies, a truly remarkable feat. Few, if any medicines are monospecific and ibrutinib is no exception; already during ibrutinib's initial characterization, it was found that it could bind also to other kinases. In this review, we discuss the implications of such interactions, which go beyond the selective effect on BTK in B cell malignancies. In certain cases, the outcome of ibrutinib treatment likely results from the combined inhibition of BTK and other kinases, causing additive or synergistic, effects. Conversely, there are also examples when the clinical outcome seems unrelated to inhibition of BTK. Thus, more specifically, adverse effects such as enhanced bleeding or arrhythmias could potentially be explained by different interactions. We also predict that during long‐term treatment bone homoeostasis might be affected due to the inhibition of osteoclasts. Moreover, the binding of ibrutinib to molecular targets other than BTK or effects on cells other than B cell‐derived malignancies could be beneficial and result in new indications for clinical applications.
Collapse
Affiliation(s)
- A Berglöf
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - A Hamasy
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - S Meinke
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, and Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - M Palma
- Department of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden.,Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - A Krstic
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - R Månsson
- Center for Hematology and Regenerative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - E Kimby
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - A Österborg
- Department of Hematology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - C I E Smith
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
14
|
Cho HS, Shin HM, Haberstock-Debic H, Xing Y, Owens TD, Funk JO, Hill RJ, Bradshaw JM, Berg LJ. A Small Molecule Inhibitor of ITK and RLK Impairs Th1 Differentiation and Prevents Colitis Disease Progression. THE JOURNAL OF IMMUNOLOGY 2015; 195:4822-31. [PMID: 26466958 DOI: 10.4049/jimmunol.1501828] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/21/2015] [Indexed: 12/29/2022]
Abstract
In T cells, the Tec kinases IL-2-inducible T cell kinase (ITK) and resting lymphocyte kinase (RLK) are activated by TCR stimulation and are required for optimal downstream signaling. Studies of CD4(+) T cells from Itk(-/-) and Itk(-/-)Rlk(-/-) mice have indicated differential roles of ITK and RLK in Th1, Th2, and Th17 differentiation and cytokine production. However, these findings are confounded by the complex T cell developmental defects in these mice. In this study, we examine the consequences of ITK and RLK inhibition using a highly selective and potent small molecule covalent inhibitor PRN694. In vitro Th polarization experiments indicate that PRN694 is a potent inhibitor of Th1 and Th17 differentiation and cytokine production. Using a T cell adoptive transfer model of colitis, we find that in vivo administration of PRN694 markedly reduces disease progression, T cell infiltration into the intestinal lamina propria, and IFN-γ production by colitogenic CD4(+) T cells. Consistent with these findings, Th1 and Th17 cells differentiated in the presence of PRN694 show reduced P-selectin binding and impaired migration to CXCL11 and CCL20, respectively. Taken together, these data indicate that ITK plus RLK inhibition may have therapeutic potential in Th1-mediated inflammatory diseases.
Collapse
Affiliation(s)
- Hyoung-Soo Cho
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605; and
| | - Hyun Mu Shin
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605; and
| | | | - Yan Xing
- Principia Biopharma, South San Francisco, CA 94080
| | | | | | | | | | - Leslie J Berg
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605; and
| |
Collapse
|
15
|
Kokhaei P, Jadidi-Niaragh F, Sotoodeh Jahromi A, Osterborg A, Mellstedt H, Hojjat-Farsangi M. Ibrutinib-A double-edge sword in cancer and autoimmune disorders. J Drug Target 2015; 24:373-85. [DOI: 10.3109/1061186x.2015.1086357] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Parviz Kokhaei
- Cancer Research Center and Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran,
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden,
| | - Farhad Jadidi-Niaragh
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,
| | | | - Anders Osterborg
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden,
- Departments of Hematology and Oncology, Karolinska University Hospital Solna, Stockholm, Sweden, and
| | - Håkan Mellstedt
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden,
- Departments of Hematology and Oncology, Karolinska University Hospital Solna, Stockholm, Sweden, and
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, Immune and Gene therapy Lab, Cancer Center Karolinska (CCK), Karolinska University Hospital Solna and Karolinska Institute, Stockholm, Sweden,
- Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
16
|
Kannan A, Lee Y, Qi Q, Huang W, Jeong AR, Ohnigian S, August A. Allele-sensitive mutant, Itkas, reveals that Itk kinase activity is required for Th1, Th2, Th17, and iNKT-cell cytokine production. Eur J Immunol 2015; 45:2276-85. [PMID: 25989458 DOI: 10.1002/eji.201445087] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 03/27/2015] [Accepted: 05/15/2015] [Indexed: 12/31/2022]
Abstract
Itk(-/-) mice exhibit defects in the activation, development, and function of CD4(+) and CD8(+) T cells and iNKT cells. These and other defects in these mice make it difficult to uncouple the developmental versus functional requirement of Itk signaling. Here, we report an allele-sensitive mutant of Itk (Itkas) whose catalytic activity can be selectively inhibited by analogs of the PP1 kinase inhibitor. We show that Itkas behaves like WT Itk in the absence of the inhibitor and can rescue the development of Itk(-/-) T cells in mice. Using mice carrying Itkas, we show using its inhibitor that Itk activity is required not only for Th2, Th17, and iNKT-cell cytokine production, but also surprisingly, for Th1 cytokine production. This work has important implications for understanding the role of Itk signaling in the development versus function of iNKT cells, Th1, Th2, and Th17 cells.
Collapse
Affiliation(s)
- Arun Kannan
- Center for Infection and Pathobiology, Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - YongChan Lee
- Center for Infection and Pathobiology, Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Qian Qi
- Center for Infection and Pathobiology, Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Weishan Huang
- Center for Infection and Pathobiology, Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Ah-Reum Jeong
- Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Sarah Ohnigian
- Center for Infection and Pathobiology, Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| | - Avery August
- Center for Infection and Pathobiology, Department of Microbiology and Immunology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
17
|
Abstract
Here we demonstrate that interleukin-2-inducible T-cell kinase (Itk) signaling in cluster of differentiation 4-positive (CD4(+)) T cells promotes experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS). We show that Itk(-/-) mice exhibit reduced disease severity, and transfer of Itk(-/-) CD4(+) T cells into T cell-deficient recipients results in lower disease severity. We observed a significant reduction of CD4(+) T cells in the CNS of Itk(-/-) mice or recipients of Itk(-/-) CD4(+) T cells during EAE, which is consistent with attenuated disease. Itk(-/-) CD4(+) T cells exhibit defective response to myelin antigen stimulation attributable to displacement of filamentous actin from the CD4(+) coreceptor. This results in inadequate transmigration of Itk(-/-) CD4(+) T cells into the CNS and across brain endothelial barriers in vitro. Finally, Itk(-/-) CD4(+) T cells show significant reduction in production of T-helper 1 (Th1) and Th17 cytokines and exhibit skewed T effector/T regulatory cell ratios. These results indicate that signaling by Itk promotes autoimmunity and CNS inflammation, suggesting that it may be a viable target for treatment of MS.
Collapse
|
18
|
Ibrutinib enhances the antitumor immune response induced by intratumoral injection of a TLR9 ligand in mouse lymphoma. Blood 2015; 125:2079-86. [PMID: 25662332 DOI: 10.1182/blood-2014-08-593137] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have designed a novel therapeutic approach for lymphoma that combines targeted kinase inhibition with in situ vaccination. Intratumoral injection of an unmethylated cytosine guanine dinucleotide (CpG)-enriched oligodeoxynucleotide, an agonist for the toll-like receptor 9 (TLR9), induces the activation of natural killer cells, macrophages, and antigen presenting cells that control tumor growth at the local site. Ibrutinib, an irreversible inhibitor of Bruton's tyrosine kinase, a key enzyme in the signaling pathway downstream of B-cell receptor, is an effective treatment against many types of B-cell lymphomas. The combination of intratumoral injection of CpG with systemic treatment by ibrutinib resulted in eradication of the tumors not only in the injected site, but also at distant sites. Surprisingly, this combinatorial antitumor effect required an intact T-cell immune system since it did not occur in nude, severe combined immunodeficiency, or T-cell depleted mice. Moreover, T cells from animals treated with intratumoral CpG and ibrutinib prevented the outgrowth of newly injected tumors. This result suggests that ibrutinib can induce immunogenic cell death of lymphoma cells and that concomitant stimulation of antigen-presenting cells in the tumor microenvironment by toll-like receptor ligands can lead to a powerful systemic antitumor immune response.
Collapse
|
19
|
Dubovsky JA, Flynn R, Du J, Harrington BK, Zhong Y, Kaffenberger B, Yang C, Towns WH, Lehman A, Johnson AJ, Muthusamy N, Devine SM, Jaglowski S, Serody JS, Murphy WJ, Munn DH, Luznik L, Hill GR, Wong HK, MacDonald KKP, Maillard I, Koreth J, Elias L, Cutler C, Soiffer RJ, Antin JH, Ritz J, Panoskaltsis-Mortari A, Byrd JC, Blazar BR. Ibrutinib treatment ameliorates murine chronic graft-versus-host disease. J Clin Invest 2014; 124:4867-76. [PMID: 25271622 DOI: 10.1172/jci75328] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 08/21/2014] [Indexed: 11/17/2022] Open
Abstract
Chronic graft-versus-host disease (cGVHD) is a life-threatening impediment to allogeneic hematopoietic stem cell transplantation, and current therapies do not completely prevent and/or treat cGVHD. CD4+ T cells and B cells mediate cGVHD; therefore, targeting these populations may inhibit cGVHD pathogenesis. Ibrutinib is an FDA-approved irreversible inhibitor of Bruton's tyrosine kinase (BTK) and IL-2 inducible T cell kinase (ITK) that targets Th2 cells and B cells and produces durable remissions in B cell malignancies with minimal toxicity. Here, we evaluated whether ibrutinib could reverse established cGVHD in 2 complementary murine models, a model interrogating T cell-driven sclerodermatous cGVHD and an alloantibody-driven multiorgan system cGVHD model that induces bronchiolar obliterans (BO). In the T cell-mediated sclerodermatous cGVHD model, ibrutinib treatment delayed progression, improved survival, and ameliorated clinical and pathological manifestations. In the alloantibody-driven cGVHD model, ibrutinib treatment restored pulmonary function and reduced germinal center reactions and tissue immunoglobulin deposition. Animals lacking BTK and ITK did not develop cGVHD, indicating that these molecules are critical to cGVHD development. Furthermore, ibrutinib treatment reduced activation of T and B cells from patients with active cGVHD. Our data demonstrate that B cells and T cells drive cGVHD and suggest that ibrutinib has potential as a therapeutic agent, warranting consideration for cGVHD clinical trials.
Collapse
|
20
|
Deakin A, Duddy G, Wilson S, Harrison S, Latcham J, Fulleylove M, Fung S, Smith J, Pedrick M, McKevitt T, Felton L, Morley J, Quint D, Fattah D, Hayes B, Gough J, Solari R. Characterisation of a K390R ITK kinase dead transgenic mouse--implications for ITK as a therapeutic target. PLoS One 2014; 9:e107490. [PMID: 25250764 PMCID: PMC4174519 DOI: 10.1371/journal.pone.0107490] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/05/2014] [Indexed: 11/23/2022] Open
Abstract
Interleukin-2 inducible tyrosine kinase (ITK) is expressed in T cells and plays a critical role in signalling through the T cell receptor. Evidence, mainly from knockout mice, has suggested that ITK plays a particularly important function in Th2 cells and this has prompted significant efforts to discover ITK inhibitors for the treatment of allergic disease. However, ITK is known to have functions outside of its kinase domain and in general kinase knockouts are often not good models for the behaviour of small molecule inhibitors. Consequently we have developed a transgenic mouse where the wild type Itk allele has been replaced by a kinase dead Itk allele containing an inactivating K390R point mutation (Itk-KD mice). We have characterised the immune phenotype of these naive mice and their responses to airway inflammation. Unlike Itk knockout (Itk−/−) mice, T-cells from Itk-KD mice can polymerise actin in response to CD3 activation. The lymph nodes from Itk-KD mice showed more prominent germinal centres than wild type mice and serum antibody levels were significantly abnormal. Unlike the Itk−/−, γδ T cells in the spleens of the Itk-KD mice had an impaired ability to secrete Th2 cytokines in response to anti-CD3 stimulation whilst the expression of ICOS was not significantly different to wild type. However ICOS expression is markedly increased on αβCD3+ cells from the spleens of naïve Itk-KD compared to WT mice. The Itk-KD mice were largely protected from inflammatory symptoms in an Ovalbumin model of airway inflammation. Consequently, our studies have revealed many similarities but some differences between Itk−/−and Itk-KD transgenic mice. The abnormal antibody response and enhanced ICOS expression on CD3+ cells has implications for the consideration of ITK as a therapeutic target.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Blotting, Western
- CD3 Complex/immunology
- CD3 Complex/metabolism
- Cytokines/immunology
- Cytokines/metabolism
- Enzyme Inhibitors/immunology
- Enzyme Inhibitors/therapeutic use
- Female
- Flow Cytometry
- Immunoglobulin G/blood
- Immunoglobulin G/immunology
- Inducible T-Cell Co-Stimulator Protein/immunology
- Inducible T-Cell Co-Stimulator Protein/metabolism
- Lymphocyte Count
- Male
- Mice, Inbred BALB C
- Mice, Knockout
- Mice, Transgenic
- Ovalbumin/immunology
- Pneumonia/drug therapy
- Pneumonia/genetics
- Pneumonia/immunology
- Point Mutation
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/immunology
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Spleen/immunology
- Spleen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Th2 Cells/immunology
- Th2 Cells/metabolism
Collapse
Affiliation(s)
- Angela Deakin
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Graham Duddy
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Steve Wilson
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Steve Harrison
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Judi Latcham
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Mick Fulleylove
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Sylvia Fung
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Jason Smith
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Mike Pedrick
- Platform Technology and Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Tom McKevitt
- Platform Technology and Sciences, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Leigh Felton
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Joanne Morley
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Diana Quint
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Dilniya Fattah
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Brian Hayes
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Jade Gough
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, Herts, United Kingdom
| | - Roberto Solari
- Respiratory Therapy Area, GlaxoSmithKline, Stevenage, Herts, United Kingdom
- * E-mail:
| |
Collapse
|
21
|
Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes. Blood 2013; 122:2539-49. [PMID: 23886836 DOI: 10.1182/blood-2013-06-507947] [Citation(s) in RCA: 651] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Given its critical role in T-cell signaling, interleukin-2-inducible kinase (ITK) is an appealing therapeutic target that can contribute to the pathogenesis of certain infectious, autoimmune, and neoplastic diseases. Ablation of ITK subverts Th2 immunity, thereby potentiating Th1-based immune responses. While small-molecule ITK inhibitors have been identified, none have demonstrated clinical utility. Ibrutinib is a confirmed irreversible inhibitor of Bruton tyrosine kinase (BTK) with outstanding clinical activity and tolerability in B-cell malignancies. Significant homology between BTK and ITK alongside in silico docking studies support ibrutinib as an immunomodulatory inhibitor of both ITK and BTK. Our comprehensive molecular and phenotypic analysis confirms ITK as an irreversible T-cell target of ibrutinib. Using ibrutinib clinical trial samples along with well-characterized neoplastic (chronic lymphocytic leukemia), parasitic infection (Leishmania major), and infectious disease (Listeria monocytogenes) models, we establish ibrutinib as a clinically relevant and physiologically potent ITK inhibitor with broad therapeutic utility. This trial was registered at www.clinicaltrials.gov as #NCT01105247 and #NCT01217749.
Collapse
|
22
|
August A, Ragin MJ. Regulation of T-cell responses and disease by tec kinase Itk. Int Rev Immunol 2012; 31:155-65. [PMID: 22449075 DOI: 10.3109/08830185.2012.668981] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Itk is a member of the Tec family tyrosine kinases involved in T-cell receptor signaling. The authors review the background and most recent findings of the role of Itk T-cell activation and development of αβ T cells. They also discuss the role of Itk in development of nonconventional T cells, including CD8(+) innate memory phenotype T cells, different γδ T-cell populations, and invariant NKT cells. They close by reviewing the regulation of T helper differentiation and cytokine secretion, the immune response to infectious disease, and diseases such as allergic asthma and atopic dermatitis by Itk.
Collapse
Affiliation(s)
- Avery August
- Department of Microbiology & Immunology, Cornell University, Ithaca, New York, USA.
| | | |
Collapse
|
23
|
Boucheron N, Ellmeier W. The Role of Tec Family Kinases in the Regulation of T-helper-cell Differentiation. Int Rev Immunol 2012; 31:133-54. [DOI: 10.3109/08830185.2012.664798] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
24
|
Qi Q, Huang W, Bai Y, Balmus G, Weiss RS, August A. A unique role for ITK in survival of invariant NKT cells associated with the p53-dependent pathway in mice. THE JOURNAL OF IMMUNOLOGY 2012; 188:3611-9. [PMID: 22403441 DOI: 10.4049/jimmunol.1102475] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Invariant NKT (iNKT) cells play important roles in the immune response. ITK and TXK/RLK are Tec family kinases that are expressed in iNKT cells; the expression level of ITK is ∼7-fold higher than that of TXK. Itk(-/-) mice have reduced iNKT cell frequency and numbers, with defects in development and cytokine secretion that are exacerbated in Itk/Txk double-knockout mice. In contrast, there is no iNKT cell defect in Txk(-/-) mice. To determine whether ITK and TXK play distinct roles in iNKT cell development and function, we examined mice that overexpress TXK in T cells at levels similar to Itk. Overexpression of TXK rescues the maturation and cytokine secretion of Itk(-/-) iNKT cells, as well as altered expression of transcription factors T-bet, eomesodermin, and PLZF. In contrast, the increased apoptosis observed in Itk(-/-) splenic iNKT cells is not affected by TXK overexpression, likely due to the lack of effect on the elevated expression of p53 regulated proapoptotic pathways Fas, Bax, and Bad in those cells. Supporting this idea, p53(-/-) and Bax(-/-) mice have increased splenic iNKT cells. Our results suggest that TXK plays an overlapping role with ITK in iNKT cell development and function but that ITK also has a unique function in the survival of iNKT cells, likely via a p53-dependent pathway.
Collapse
Affiliation(s)
- Qian Qi
- Center for Molecular Immunology and Infectious Disease, The Pennsylvania State University, University Park, PA 16801, USA
| | | | | | | | | | | |
Collapse
|
25
|
Loss-of-function mutations within the IL-2 inducible kinase ITK in patients with EBV-associated lymphoproliferative diseases. Leukemia 2012; 26:963-71. [PMID: 22289921 DOI: 10.1038/leu.2011.371] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The purpose of this study was the appraisal of the clinical and functional consequences of germline mutations within the gene for the IL-2 inducible T-cell kinase, ITK. Among patients with Epstein-Barr virus-driven lymphoproliferative disorders (EBV-LPD), negative for mutations in SH2D1A and XIAP (n=46), we identified two patients with R29H or D500T,F501L,M503X mutations, respectively. Human wild-type (wt) ITK, but none of the mutants, was able to rescue defective calcium flux in murine Itk(-/-) T cells. Pulse-chase experiments showed that ITK mutations lead to varying reductions of protein half-life from 25 to 69% as compared with wt ITK (107 min). The pleckstrin homology domain of wt ITK binds most prominently to phosphatidylinositol monophosphates (PI(3)P, PI(4)P, PI(5)P) and to lesser extend to its double or triple phosphorylated derivates (PIP2, PIP3), interactions which were dramatically reduced in the patient with the ITK(R29H) mutant. ITK mutations are distributed over the entire protein and include missense, nonsense and indel mutations, reminiscent of the situation in its sister kinase in B cells, Bruton's tyrosine kinase.
Collapse
|
26
|
Kannan Y, Wilson MS. TEC and MAPK Kinase Signalling Pathways in T helper (T H) cell Development, T H2 Differentiation and Allergic Asthma. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2012; Suppl 12:11. [PMID: 24116341 PMCID: PMC3792371 DOI: 10.4172/2155-9899.s12-011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Significant advances in our understanding of the signalling events during T cell development and differentiation have been made in the past few decades. It is clear that ligation of the T cell receptor (TCR) triggers a series of proximal signalling cascades regulated by an array of protein kinases. These orchestrated and highly regulated series of events, with differential requirements of particular kinases, highlight the disparities between αβ+CD4+ T cells. Throughout this review we summarise both new and old studies, highlighting the role of Tec and MAPK in T cell development and differentiation with particular focus on T helper 2 (TH2) cells. Finally, as the allergy epidemic continues, we feature the role played by TH2 cells in the development of allergy and provide a brief update on promising kinase inhibitors that have been tested in vitro, in pre-clinical disease models in vivo and into clinical studies.
Collapse
Affiliation(s)
- Yashaswini Kannan
- Division of Molecular Immunology, National Institute for Medical Research, MRC, London, NW7 1AA, UK
| | - Mark S. Wilson
- Division of Molecular Immunology, National Institute for Medical Research, MRC, London, NW7 1AA, UK
| |
Collapse
|
27
|
Gomez-Rodriguez J, Kraus ZJ, Schwartzberg PL. Tec family kinases Itk and Rlk / Txk in T lymphocytes: cross-regulation of cytokine production and T-cell fates. FEBS J 2011; 278:1980-9. [PMID: 21362139 PMCID: PMC3117960 DOI: 10.1111/j.1742-4658.2011.08072.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Developing thymocytes and T cells express the Tec kinases Itk, Rlk/Txk and Tec, which are critical modulators of T-cell receptor signaling, required for full activation of phospholipase Cγ, and downstream Ca(2+) and ERK-mediated signaling pathways. Over the last 10 years, data have implicated the Tec family kinases Itk and Rlk/Txk as important regulators of cytokine production by CD4(+) effector T-cell populations. Emerging data now suggest that the Tec family kinases not only influence cytokine-producing T-cell populations in the periphery, but also regulate the development of distinct innate-type cytokine-producing T-cell populations in the thymus. Together, these results suggest that the Tec family kinases play critical roles in helping shape immune responses via their effects on the differentiation and function of distinct cytokine-producing, effector T-cell populations.
Collapse
Affiliation(s)
- Julio Gomez-Rodriguez
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Zachary J. Kraus
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| | - Pamela L. Schwartzberg
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
28
|
Qi Q, Xia M, Bai Y, Yu S, Cantorna M, August A. Interleukin-2-inducible T cell kinase (Itk) network edge dependence for the maturation of iNKT cell. J Biol Chem 2010; 286:138-46. [PMID: 21036902 DOI: 10.1074/jbc.m110.148205] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a unique subset of innate T lymphocytes that are selected by CD1d. They have diverse immune regulatory functions via the rapid production of interferon-γ (IFN-γ) and interleukin-4 (IL-4). In the absence of signaling nodes Itk and Txk, Tec family non-receptor tyrosine kinases, mice exhibit a significant block in iNKT cell development. We now show here that although the Itk node is required for iNKT cell maturation, the kinase domain edge of Itk is not required for continued maturation iNKT cells in the thymus compared with Itk-null mice. This rescue is dependent on the expression of the Txk node. Furthermore, this kinase domain independent edge rescue correlates with the increased expression of the transcription factors T-bet, the IL-2/IL-15 receptor β chain CD122, and suppression of eomesodermin expression. By contrast, α-galactosyl ceramide induced cytokine secretion is dependent on the kinase domain edge of Itk. These findings indicate that the Itk node uses a kinase domain independent edge, a scaffolding function, in the signaling pathway leading to the maturation of iNKT cells. Furthermore, the findings indicate that phosphorylation of substrates by the Itk node is only partially required for maturation of iNKT cells, while functional activation of iNKT cells is dependent on the kinase domain/activity edge of Itk.
Collapse
Affiliation(s)
- Qian Qi
- Center for Molecular Immunology & Infectious Disease and Department of Veterinary & Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | |
Collapse
|
29
|
Sahu N, Morales JL, Fowell D, August A. Modeling susceptibility versus resistance in allergic airway disease reveals regulation by Tec kinase Itk. PLoS One 2010; 5:e11348. [PMID: 20596543 PMCID: PMC2893210 DOI: 10.1371/journal.pone.0011348] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 05/18/2010] [Indexed: 01/26/2023] Open
Abstract
Murine models of allergic asthma have been used to understand the mechanisms of development and pathology in this disease. In addition, knockout mice have contributed significantly to our understanding of the roles of specific molecules and cytokines in these models. However, results can vary significantly depending on the mouse strain used in the model, and in particularly in understanding the effect of specific knockouts. For example, it can be equivocal as to whether specific gene knockouts affect the susceptibility of the mice to developing the disease, or lead to resistance. Here we used a house dust mite model of allergic airway inflammation to examine the response of two strains of mice (C57BL/6 and BALB/c) which differ in their responses in allergic airway inflammation. We demonstrate an algorithm that can facilitate the understanding of the behavior of these models with regards to susceptibility (to allergic airway inflammation) (S(aai)) or resistance (R(aai)) in this model. We verify that both C57BL/6 and BALB/c develop disease, but BALB/c mice have higher S(aai) for development. We then use this approach to show that the absence of the Tec family kinase Itk, which regulates the production of Th2 cytokines, leads to R(aai) in the C57BL/6 background, but decreases S(aai) on the BALB/c background. We suggest that the use of such approaches could clarify the behavior of various knockout mice in modeling allergic asthma.
Collapse
Affiliation(s)
- Nisebita Sahu
- Center for Molecular Immunology and Infectious Disease and Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Biochemistry & Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - J. Luis Morales
- Center for Molecular Immunology and Infectious Disease and Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Deborah Fowell
- Department of Microbiology & Immunology, University of Rochester School of Medicine & Dentistry, Rochester, New York, United States of America
| | - Avery August
- Center for Molecular Immunology and Infectious Disease and Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
30
|
Andreotti AH, Schwartzberg PL, Joseph RE, Berg LJ. T-cell signaling regulated by the Tec family kinase, Itk. Cold Spring Harb Perspect Biol 2010; 2:a002287. [PMID: 20519342 DOI: 10.1101/cshperspect.a002287] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The Tec family tyrosine kinases regulate lymphocyte development, activation, and differentiation. In T cells, the predominant Tec kinase is Itk, which functions downstream of the T-cell receptor to regulate phospholipase C-gamma. This review highlights recent advances in our understanding of Itk kinase structure and enzymatic regulation, focusing on Itk protein domain interactions and mechanisms of substrate recognition. We also discuss the role of Itk in the development of conventional versus innate T-cell lineages, including both alphabeta and gammadelta T-cell subsets. Finally, we describe the complex role of Itk signaling in effector T-cell differentiation and the regulation of cytokine gene expression. Together, these data implicate Itk as an important modulator of T-cell signaling and function.
Collapse
Affiliation(s)
- Amy H Andreotti
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA.
| | | | | | | |
Collapse
|
31
|
Abstract
CD4 T cells play critical roles in mediating adaptive immunity to a variety of pathogens. They are also involved in autoimmunity, asthma, and allergic responses as well as in tumor immunity. During TCR activation in a particular cytokine milieu, naive CD4 T cells may differentiate into one of several lineages of T helper (Th) cells, including Th1, Th2, Th17, and iTreg, as defined by their pattern of cytokine production and function. In this review, we summarize the discovery, functions, and relationships among Th cells; the cytokine and signaling requirements for their development; the networks of transcription factors involved in their differentiation; the epigenetic regulation of their key cytokines and transcription factors; and human diseases involving defective CD4 T cell differentiation.
Collapse
Affiliation(s)
- Jinfang Zhu
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1892
| | - Hidehiro Yamane
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1892
| | - William E. Paul
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1892
| |
Collapse
|
32
|
Fowell DJ. Signals for the execution of Th2 effector function. Cytokine 2009; 46:1-6. [PMID: 19237299 PMCID: PMC2955979 DOI: 10.1016/j.cyto.2008.12.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 12/10/2008] [Accepted: 12/29/2008] [Indexed: 11/16/2022]
Abstract
Appropriate control of infection depends on the generation of lymphocytes armed with a particular array of cytokine and chemokine effector molecules. The differentiation of naïve T cells into functionally distinct effector subsets is regulated by signals from the T cell receptor (TCR) and cytokine receptors. Using gene knock-out approaches, the initiation of discrete effector programs appears differentially sensitive to the loss of individual TCR signaling components; likely due to differences in the transcription factors needed to activate individual cytokine genes. Less well understood however, are the signal requirements for the execution of effector function. With a focus on Th2 cells and the kinase ITK, we review recent observations that point to differences between the signals needed for the initiation and implementation of cytokine programs in CD4+ T cells. Indeed, Th2 effector cells signal differently from both their naïve counterparts and from Th1 effectors suggesting they may transduce activation signals differently or may be selectively receptive to different activation signals. Potential regulation points for effector function lie at the level of transcription and translation of cytokine genes. We also discuss how provision of these execution signals may be spatially segregated in vivo occurring at tissue sites of inflammation and subject to modulation by the pathogen itself.
Collapse
Affiliation(s)
- Deborah J Fowell
- David H. Smith Center for Vaccine Biology and Immunology, Aab Institute of Biomedical Sciences, Department of Microbiology and Immunology, University of Rochester, 601 Elmwood Avenue, Box 609, Rochester, NY 14642, USA.
| |
Collapse
|
33
|
Readinger JA, Mueller KL, Venegas AM, Horai R, Schwartzberg PL. Tec kinases regulate T-lymphocyte development and function: new insights into the roles of Itk and Rlk/Txk. Immunol Rev 2009; 228:93-114. [PMID: 19290923 PMCID: PMC2673963 DOI: 10.1111/j.1600-065x.2008.00757.x] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Tec (tyrosine kinase expressed in hepatocellular carcinoma) family of non-receptor tyrosine kinases consists of five members: Tec, Bruton's tyrosine kinase (Btk), inducible T-cell kinase (Itk), resting lymphocyte kinase (Rlk/Txk), and bone marrow-expressed kinase (Bmx/Etk). Although their functions are probably best understood in antigen receptor signaling, where they participate in the phosphorylation and regulation of phospholipase C-gamma (PLC-gamma), it is now appreciated that these kinases contribute to signaling from many receptors and that they participate in multiple downstream pathways, including regulation of the actin cytoskeleton. In T cells, three Tec kinases are expressed, Itk, Rlk/Txk, and Tec. Itk is expressed at highest amounts and plays the major role in regulating signaling from the T-cell receptor. Recent studies provide evidence that these kinases contribute to multiple aspects of T-cell biology and have unique roles in T-cell development that have revealed new insight into the regulation of conventional and innate T-cell development. We review new findings on the Tec kinases with a focus on their roles in T-cell development and mature T-cell differentiation.
Collapse
Affiliation(s)
- Julie A Readinger
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
34
|
Abstract
Interleukin-2-inducible T cell kinase (ITK) is a non-receptor tyrosine kinase expressed in T cells, NKT cells and mast cells which plays a crucial role in regulating the T cell receptor (TCR), CD28, CD2, chemokine receptor CXCR4, and FcepsilonR-mediated signaling pathways. In T cells, ITK is an important mediator for actin reorganization, activation of PLCgamma, mobilization of calcium, and activation of the NFAT transcription factor. ITK plays an important role in the secretion of IL-2, but more critically, also has a pivotal role in the secretion of Th2 cytokines, IL-4, IL-5 and IL-13. As such, ITK has been shown to regulate the development of effective Th2 response during allergic asthma as well as infections of parasitic worms. This ability of ITK to regulate Th2 responses, along with its pattern of expression, has led to the proposal that it would represent an excellent target for Th2-mediated inflammation. We discuss here the possibilities and pitfalls of targeting ITK for inflammatory disorders.
Collapse
Affiliation(s)
- Nisebita Sahu
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology & Infectious Disease, The Pennsylvania State University, University Park, PA 16802, USA.
| | | |
Collapse
|