1
|
Chen H, Zhao W, Xiao Y, Gao Q, Yang X, Pang K, Huang B, Liang X. Association between dietary niacin intake and the odds of gallstones in US adults: A cross-sectional study in NHANES 2017-2020. Prev Med Rep 2025; 53:103057. [PMID: 40264748 PMCID: PMC12013329 DOI: 10.1016/j.pmedr.2025.103057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/24/2025] Open
Abstract
Objective To investigate the association between dietary niacin intake and the risk of gallstones in American adults using data from the National Health and Nutrition Examination Survey (NHANES) from 2017 to 2020. Methods This cross-sectional study analyzed data from 8191 participants aged 18 years and older. Dietary niacin intake was assessed using two 24-h dietary recalls. The presence of gallstones was identified through a questionnaire. Logistic regression models were used to estimate odds ratios (ORs) and 95 % confidence intervals (CIs) for gallstones across quartiles of niacin intake, adjusting for demographic and health-related covariates. Results Participants with higher niacin intake showed a significantly lower risk of gallstones. After adjusting for a wide range of covariates, individuals in the highest quartile of niacin intake had a 49 % reduced risk of gallstones compared to those in the lowest quartile (OR = 0.51, 95 % CI: 0.34, 0.76). Conclusion Higher dietary niacin intake is associated with a reduced risk of gallstones in US adults. These findings suggest that increasing niacin intake could be a viable strategy for the prevention of gallstones. Future longitudinal studies are needed to confirm these results and explore the underlying mechanisms.
Collapse
Affiliation(s)
- Huadi Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Wenting Zhao
- Development Planning Department, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Yi Xiao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Qiaoping Gao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Xiaoqu Yang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Kangfeng Pang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Baoyi Huang
- Department of Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Xiaolu Liang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| |
Collapse
|
2
|
Park HJ, Yang SG, Shin JH, Yoon SB, Kim JS, Koo DB. Nicotinamide mononucleotide biosynthesis and the F-actin cytoskeleton regulate spindle assembly and oocyte maturation quality in post-ovulatory aged porcine oocytes. Cell Commun Signal 2025; 23:186. [PMID: 40247324 PMCID: PMC12007313 DOI: 10.1186/s12964-025-02200-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/11/2025] [Indexed: 04/19/2025] Open
Abstract
BACKGROUND Post-ovulatory aging (POA) is associated with reduced fertilization rates and poor embryo quality both in vivo and in vitro. However, the relationship between nicotinamide adenine dinucleotide (NAD+) and the filamentous actin (F-actin) cytoskeleton in POA-induced oocytes remains unknown. Here, we investigated the mechanisms by which the NAD+ salvage pathways function in poor oocyte maturation upon POA through the F-actin cytoskeleton. METHODS Porcine oocytes were aged by extending in vitro maturation (IVM) for an additional 24 h to create a POA model. F-actin and adducin 1 (ADD1)-related spindle assembly were analyzed using immunofluorescence, western blotting, and RNA sequencing to identify key gene categories in the POA and IVM groups. To assess NAD+ function in restoring oocyte maturation, nicotinamide mononucleotide (NMN) was added and the maturation efficiency was evaluated. Expression of spindle assembly factors, F-actin cytoskeleton factors, aging markers, and NAD+-related genes was analyzed via quantitative polymerase chain reaction, immunofluorescence, and western blotting. RESULTS We revealed unique interactions between the F-actin/ADD1-related cytoskeleton and aging factors (clusterin (CLU) and FAM111 trypsin-like peptidase A (FAM111A)) in poor-quality oocytes. POA oocytes were established with an extension of 24 h based on 44 h of IVM. They exhibited actin collapses and abnormal cortical F-actin, ADD1, and acetyl(Ac)-α-tubulin protein levels, which resulted in defective spindle assembly. RNA sequencing analysis was performed to identify differentially expressed genes involved in the oocyte viability response to aging, the cytoskeleton, and NAD metabolic processes using IVM and/or POA oocytes. This showed that NAD-binding genes were differentially expressed after POA induction, eight of which were downregulated compared with IVM oocytes. Importantly, activation of NAD+ pathways upon addition of NMN to the medium at 24 h after IVM rescued the maturation capability of POA oocytes with perturbations of spindle assembly and cortical F-actin. CONCLUSION F-actin polymerization through NAD+ generated from NMN is an essential factor in determining oocyte quality. This effect is mediated by microtubules related to spindle assembly in POA oocytes.
Collapse
Affiliation(s)
- Hyo-Jin Park
- Department of Biotechnology, College of Engineering, Daegu University, 201 Daegudae-Ro, Jillyang, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
- DU Center for Infertility, Daegu University, 201 Daegudae-Ro, Jillyang, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Seul-Gi Yang
- DU Center for Infertility, Daegu University, 201 Daegudae-Ro, Jillyang, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
- Department of Companion Animal Industry, College of Natural and Life Sciences, Daegu University, 201 Daegudae-Ro, Jillyang, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Ji-Hyun Shin
- Department of Biotechnology, College of Engineering, Daegu University, 201 Daegudae-Ro, Jillyang, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
- DU Center for Infertility, Daegu University, 201 Daegudae-Ro, Jillyang, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Seung-Bin Yoon
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 351-33, Neongme-Gil, Ibam-Myeon, Jeongeup-Si, Jeollabuk-Do, 56216, Republic of Korea
| | - Ji-Su Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), 351-33, Neongme-Gil, Ibam-Myeon, Jeongeup-Si, Jeollabuk-Do, 56216, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Deog-Bon Koo
- Department of Biotechnology, College of Engineering, Daegu University, 201 Daegudae-Ro, Jillyang, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
- DU Center for Infertility, Daegu University, 201 Daegudae-Ro, Jillyang, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
- Department of Companion Animal Industry, College of Natural and Life Sciences, Daegu University, 201 Daegudae-Ro, Jillyang, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
3
|
Alqudah MAY, Yaseen MM, Alzoubi KH, Al-Husein BA, Bardaweel SK, Abuhelwa AY, Semreen AM, Zenati RA, El-Awady R, Shara M, Bustanji Y, Soares NC, Abu-Gharbieh E, Ramadan WS, Semreen MH. Metabolomic Analysis, Antiproliferative, Anti-Migratory, and Anti-Invasive Potential of Amlodipine in Lung Cancer Cells. Drug Des Devel Ther 2025; 19:1215-1229. [PMID: 39991087 PMCID: PMC11847429 DOI: 10.2147/dddt.s484561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 02/06/2025] [Indexed: 02/25/2025] Open
Abstract
Background and Objective Lung cancer stands as the leading cause of cancer-related fatalities worldwide. While chemotherapy remains a crucial treatment option for managing lung cancer in both early-stage and advanced cases, it is accompanied by significant drawbacks, including severe side effects and the development of chemoresistance. Overcoming chemoresistance represents a considerable challenge in lung cancer treatment. Amlodipine cytotoxicity was previously demonstrated and could make lung cancer cells more susceptible to chemotherapies. This research aims to examine the metabolomics changes that may occur due to amlodipine's anticancer effects on non-small cell lung cancer (NSCLC) cells. Methods Amlodipine's effects on A549 and H1299 NSCLC were evaluated using a colorimetric MTT assay, a scratch wound-healing assay and Matrigel invasion chambers to measure cell viability, cell migration and cell invasion. Ultra-high-performance liquid chromatography-electrospray ionization quadrupole time-of-flight mass spectrometry (UHPLC-ESI-QTOF-MS) was used for the untargeted metabolomics investigation. Results Our study revealed that amlodipine significantly reduced proliferation of cancer cells in a dose-dependent fashion with IC50 values of 23 and 25.66 µM in A549 and H1299 cells, respectively. Furthermore, amlodipine reduced the invasiveness and migration of cancer cells. Metabolomics analysis revealed distinct metabolites to be significantly dysregulated (Citramalic acid, L-Proline, dGMP, L-Glutamic acid, Niacinamide, and L-Acetylcarnitine) in amlodipine-treated cells. Conclusion The present study illustrates the anticancer effects of amlodipine on lung cancer proliferation, migration, and invasion in vitro and enhance our understanding of how amlodipine exerts its anticancer potential by casting light on these mechanisms.
Collapse
Affiliation(s)
- Mohammad A Y Alqudah
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mahmoud M Yaseen
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Belal A Al-Husein
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, the University of Jordan, Amman, Jordan
| | - Ahmad Y Abuhelwa
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates
| | - Ahlam M Semreen
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Ruba A Zenati
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Raafat El-Awady
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohd Shara
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates
| | - Yasser Bustanji
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, the University of Jordan, Amman, Jordan
| | - Nelson C Soares
- Department of Medicinal Chemistry, University of Sharjah, Sharjah, United Arab Emirates
- Center for Applied and Translational Genomics (CATG), Mohammed Bin Rashid University Medicine and Health Sciences (MBRU), Dubai Health, Dubai, United Arab Emirates
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai, United Arab Emirates
| | - Eman Abu-Gharbieh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Clinical Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Biopharmaceutics and Clinical Pharmacy, the University of Jordan, Amman, Jordan
| | - Wafaa S Ramadan
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad H Semreen
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
4
|
Ufomadu P, Gill BJ, Orengo I, Rosen T, Shimizu I. The Efficacy of Complementary and Alternative Medicines in Medical Dermatology: A Comprehensive Review. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2025; 18:E61-E79. [PMID: 40078857 PMCID: PMC11896621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Background In recent years, there has been a widespread patient use of complementary and alternative medicines (CAMs) for dermatological application, despite few RCT-level studies on these supplements. This creates a barrier for dermatologists and others in counseling patients who may be using or might be tempted to use these CAM agents. This review investigates various CAM modalities used by patients for medical dermatology, exploring their efficacy and toxicity profiles. Methods A comprehensive review was performed on the effectiveness of several CAMs utilized in medical dermatology by patients. A literature search was conducted using PubMed, Embase, Google Scholar, Web of Science, and Cochrane. Results Most CAM modalities had statistically insignificant results, and for agents that had significant results in efficacy, these studies were questionable with flawed designs and methodologies. Conclusion These CAM supplements have promising potential in dermatologic use and are deserving of further investigation in well-crafted RCT-level studies. A more practical focus in future studies should involve a comparison of CAM agents to conventional therapies either alone or in an integrative fashion. This would accurately represent how these agents will be used clinically by actual patients and will be more helpful to clinicians. In the meantime, dermatologists should be aware of bias in published studies demonstrating the effectiveness of certain CAM modalities, and their corresponding toxicity. By doing so, physicians act as a valuable resource to patients who would like to explore various CAM products, better guiding patient interactions and treatment with improved patient outcomes.
Collapse
Affiliation(s)
- Promise Ufomadu
- Mr. Ufomadu and Drs. Gill, Orengo, Rosen, and Shmizu are with the School of Medicine at Baylor College of Medicine in Houston, Texas
| | - Bartley Joseph Gill
- Mr. Ufomadu and Drs. Gill, Orengo, Rosen, and Shmizu are with the School of Medicine at Baylor College of Medicine in Houston, Texas
- Dr. Gill is also with the Department of Dermatology at Baylor College of Medicine in Houston, Texas, and Memorial Hermann Health Systems in Houston, Texas
| | - Ida Orengo
- Mr. Ufomadu and Drs. Gill, Orengo, Rosen, and Shmizu are with the School of Medicine at Baylor College of Medicine in Houston, Texas
- Drs. Orengo, Rosen, and Shimizu are also with the Department of Dermatology at Baylor College of Medicine in Houston, Texas
| | - Theodore Rosen
- Mr. Ufomadu and Drs. Gill, Orengo, Rosen, and Shmizu are with the School of Medicine at Baylor College of Medicine in Houston, Texas
- Drs. Orengo, Rosen, and Shimizu are also with the Department of Dermatology at Baylor College of Medicine in Houston, Texas
| | - Ikue Shimizu
- Mr. Ufomadu and Drs. Gill, Orengo, Rosen, and Shmizu are with the School of Medicine at Baylor College of Medicine in Houston, Texas
- Drs. Orengo, Rosen, and Shimizu are also with the Department of Dermatology at Baylor College of Medicine in Houston, Texas
| |
Collapse
|
5
|
Lan T, Cai M, Wang S, Lu Y, Tang Z, Tang Q, Gao J, Xu Y, Peng X, Sun Z. Effects of adding niacinamide to diets with normal and low protein levels on the immunity, antioxidant, and intestinal microbiota in growing-finishing pigs. J Nutr Biochem 2025; 136:109809. [PMID: 39549857 DOI: 10.1016/j.jnutbio.2024.109809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/03/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
This study aimed to investigate the effects of nicotinamide (NAM) applied to diets with different crude protein levels on immune function, antioxidant capacity, and intestinal flora in growing-finishing pigs. Forty barrows (37.0±1.0 kg) were randomly allocated to one of four dietary treatments (n=10 per group). The diets in the two phases consisted of a basal diet with 30 mg/kg NAM, a basal diet with 360 mg/kg NAM, a low-protein diet with 30 mg/kg NAM, and a low-protein diet with 360 mg/kg NAM. The results showed that dietary addition of 360 mg/kg NAM decreased IL-12, malondialdehyde, IgG and IgM contents in the plasma and increased total superoxide dismutase activity and total antioxidant capacity in the colonic mucosa (P < .05). Supplementing the diet with 360 mg/kg NAM increased mRNA expression of the nucleotide-binding oligomerization domain containing 2 and nuclear factor erythroid 2-related factor 2 and protein expression of nuclear factor kappa-B and toll-like receptor 4 in the colonic mucosa (P < .05). The concentrations of acetic acid and butyric acid in the colonic contents and the abundance of Actinobacteriota in the colon at the phylum level were significantly decreased by feeding low-protein diets (P < .05). Additionally, the addition of 360 mg/kg NAM to diets increased (P < .05) the Sobs, Ace, and Chao indices of colonic microorganisms in pigs. Overall, the rational use of NAM can improve inflammatory status, enhance antioxidant capacity and intestinal barrier function, and increase colonic microbial diversity in growing-finishing pigs.
Collapse
Affiliation(s)
- Tianyi Lan
- Center for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Meiya Cai
- Center for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Sishen Wang
- Center for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yingying Lu
- Center for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Zhiru Tang
- Center for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Qingsong Tang
- Center for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Jingchun Gao
- Center for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yetong Xu
- Center for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Xie Peng
- Center for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Zhihong Sun
- Center for Bio-feed and Molecular Nutrition, College of Animal Science and Technology, Southwest University, Chongqing, China.
| |
Collapse
|
6
|
Chen M, Yuan L, Chen B, Chang H, Luo J, Zhang H, Chen Z, Kong J, Yi Y, Bai M, Dong M, Zhou H, Jiang H. SLC29A1 and SLC29A2 are human nicotinamide cell membrane transporters. Nat Commun 2025; 16:1181. [PMID: 39885119 PMCID: PMC11782521 DOI: 10.1038/s41467-025-56402-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/16/2025] [Indexed: 02/01/2025] Open
Abstract
Nicotinamide (NAM), a main precursor of NAD+, is essential for cellular fuel respiration, energy production, and other cellular processes. Transporters for other precursors of NAD+ such as nicotinic acid and nicotinamide mononucleotide (NMN) have been identified, but the cellular transporter of nicotinamide has not been elucidated. Here, we demonstrate that equilibrative nucleoside transporter 1 and 2 (ENT1 and 2, encoded by SLC29A1 and 2) drive cellular nicotinamide uptake and establish nicotinamide metabolism homeostasis. In addition, ENT1/2 exhibits a strong capacity to change the cellular metabolite composition and the transcript, especially those related to nicotinamide. We further observe that ENT1/2 regulates cellular respiration and senescence, contributing by altering the NAD+ pool level and mitochondrial status. Changes to cellular respiration, mitochondrial status and senescence by ENT1/2 knockdown are reversed by NMN supplementation. Together, ENT1 and ENT2 act as both cellular nicotinamide-level keepers and nicotinamide biological regulators through their NAM transport functions.
Collapse
Affiliation(s)
- Mingyang Chen
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Luexiang Yuan
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| | - Binxin Chen
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, China
| | - Hui Chang
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorders, Institute of Genetics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jun Luo
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, China
| | - Hengbin Zhang
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| | - Zhongjian Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, China
| | - Jiao Kong
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| | - Yaodong Yi
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| | - Mengru Bai
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Westlake University, Hangzhou, China
| | - Minlei Dong
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China
| | - Hui Zhou
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
| | - Huidi Jiang
- College of Pharmaceutical Sciences, National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
| |
Collapse
|
7
|
Vo HVT, Kim N, Lee HJ. Vitamin Bs as Potent Anticancer Agents through MMP-2/9 Regulation. FRONT BIOSCI-LANDMRK 2025; 30:24072. [PMID: 39862072 DOI: 10.31083/fbl24072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/17/2024] [Accepted: 08/28/2024] [Indexed: 01/27/2025]
Abstract
In recent years, the role of coenzymes, particularly those from the vitamin B group in modulating the activity of metalloenzymes has garnered significant attention in cancer treatment strategies. Metalloenzymes play pivotal roles in various cellular processes, including DNA repair, cell signaling, and metabolism, making them promising targets for cancer therapy. This review explores the complex interplay between coenzymes, specifically vitamin Bs, and metalloenzymes in cancer pathogenesis and treatment. Vitamins are an indispensable part of daily life, essential for optimal health and well-being. Beyond their recognized roles as essential nutrients, vitamins have increasingly garnered attention for their multifaceted functions within the machinery of cellular processes. In particular, vitamin Bs have emerged as a pivotal regulator within this intricate network, exerting profound effects on the functionality of metalloenzymes. Their ability to modulate metalloenzymes involved in crucial cellular pathways implicated in cancer progression presents a compelling avenue for therapeutic intervention. Key findings indicate that vitamin Bs can influence the activity and expression of metalloenzymes, thereby affecting processes such as DNA repair and cell signaling, which are critical in cancer development and progression. Understanding the mechanisms by which these coenzymes regulate metalloenzymes holds great promise for developing novel anticancer strategies. This review summarizes current knowledge on the interactions between vitamin Bs and metalloenzymes, highlighting their potential as anticancer agents and paving the way for innovative, cell-targeted cancer treatments.
Collapse
Affiliation(s)
- Ha Vy Thi Vo
- Department of Chemistry Education, Kongju National University, 32588 Gongju, Chungcheongnam-do, Republic of Korea
| | - Namdoo Kim
- Department of Chemistry, Kongju National University, 32588 Gongju, Chungcheongnam-do, Republic of Korea
| | - Hyuck Jin Lee
- Department of Chemistry Education, Kongju National University, 32588 Gongju, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
8
|
Zhang YJ, Wang XX, Zeng LJ, Ka-Yam LAM, Dai QY, Chen Y, Chen J, Guo Y, Cai Z. Rewiring the nexus between urban traffic pollution-derived polycyclic aromatic hydrocarbon exposure and DNA injury via urinary metabolomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125188. [PMID: 39486674 DOI: 10.1016/j.envpol.2024.125188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Urban road traffic environmental stress impacts outdoor population health, with oxidative damage serving as an early indicator of xenobiotic exposure. Polycyclic aromatic hydrocarbons (PAHs) as priority carcinogens pose significant public health burden, yet knowledge remains limited regarding the endogenous metabolic alternations associated with oxidative DNA injury. This cross-sectional study focused on the cohort consisting of 109 sanitation workers ("traffic exposure group") and 112 demographics-matched common residents ("controls") in South China. The goal was to elucidate the occurrence of internal exposure to nine hydroxyl PAHs, and the interrelations with oxidative DNA damage (indicated by 8-hydroxy-2'-deoxyguanosine, 8-OHdG) by linear mixed-effect regression model. T-test and orthogonal partial least squares discriminant analysis were used to determine differential metabolites in non-targeted metabolomics. Results revealed outdoor workers suffered from the heavier PAH exposure burden and exhibited a stronger dose-dependent correlation with 8-OHdG, evidenced by the higher regression coefficient (0.244, 95% CI: 0.154-0.334) than controls (0.203, 95% CI: 0.079-0.328). In total 42 differential endogenous metabolites witnessed significant expression under traffic emission scenario, mainly implicated in phenylalanine, tyrosine and tryptophan biosynthesis. The down-expressed uric acid was the unique metabolite that inversely correlated with the increased intake of ∑8PAH especially in cases. Partially attributed to the traffic-derived PAHs, the dysregulated amino acid, nicotinamide, purine, and steroid hormones metabolic pathways encompassing 11 metabolites were determined as underlying biomarkers in mediating DNA damage. Notably, our findings proposed uric acid may act as a potential antioxidant, as evidenced by the negative correlation with 8-OHdG. The study illustrates outcomes of metabolomics can collaboratively indicate DNA oxidative damage caused by PAHs linked to urban traffic exposure, which holds significant implications for future toxicological research.
Collapse
Affiliation(s)
- Ying-Jie Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Xiao-Xiao Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Li-Juan Zeng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - L A M Ka-Yam
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Qing-Yuan Dai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Yi Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Jian Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China.
| |
Collapse
|
9
|
Torres-Moral T, Tell-Martí G, Bague J, Rosés-Gibert P, Calbet-Llopart N, Mateu J, Pérez-Anker J, Potrony M, Alejo B, Iglesias P, Espinosa N, Orte Cano C, Cinotti E, Del Marmol V, Fontaine M, Miyamoto M, Monnier J, Perrot JL, Rubegni P, Tognetti L, Suppa M, Demessant-Flavigny AL, Le Floc'h C, Prieto L, Malvehy J, Puig S. Evaluation of the Biological Effect of a Nicotinamide-Containing Broad-Spectrum Sunscreen on Photodamaged Skin. Dermatol Ther (Heidelb) 2024; 14:3321-3336. [PMID: 39509031 PMCID: PMC11604901 DOI: 10.1007/s13555-024-01298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
INTRODUCTION UVA-UVB increases skin matrix metalloproteinases and breaks down extracellular proteins and fibrillar type 1 collagen, leading to photodamage. Topical application of nicotinamide prevents UV-induced immunosuppression. Several studies have demonstrated the importance of protection against UV. This study aims to determine the biological effect of a high broad-spectrum UVB-UVA sunscreen containing nicotinamide and panthenol (SSNP) on photodamaged skin using linear confocal optical coherence tomography (LC-OCT), immunohistochemistry, and RNA profiling. METHODS Two areas of severely photodamaged forearm skin (L01 and L02) and one less sun-damaged (naturally protected) area on the inner part of the forearm (L03) were identified in 14 subjects. These areas were imaged using LC-OCT and L01 and L03 were biopsied at baseline. After 4 weeks of treatment with SSNP, L02 was reimaged using LC-OCT, and biopsied. Histology, immunostaining with p21, p53, PCNA, and CPD, and RNA sequencing were performed in all samples. RESULTS LC-OCT analysis showed that epidermis thickness and the number of keratinocytes is higher in the sun-exposed areas than in the non-exposed areas. Comparing before and after treatment, even though there is a trend towards normalization, the differences were not statistically significant. The expression of p21, PCNA, p53, and CPD increased in severely photodamaged skin compared to less-damaged skin. When comparing before and after treatment, only p21 showed a trend to decrease expression. RNA sequencing analysis identified 1552 significant genes correlating with the progression from non-visibly photodamaged skin to post-treatment and pre-treatment samples; in the analysis comparing pre- and post-treatment samples, 5429 genes were found to be significantly associated. A total of 1115 genes are common in these two analyses. Additionally, nine significant genes from the first analysis and eight from the second are related to collagen. Six of these collagen genes are common in the two analyses. MAPK and cGMP-PKG signalling pathways are upregulated in the progression to photodamage analysis. In the pre- and post-treatment analysis, 32 pathways are downregulated after treatment, the most statistically significant being the ErbB, Hippo, NOD-like receptor, TNF, and NF-kB signalling pathways. CONCLUSION This study demonstrates the role of SSNP in collagen generation, highlights the relevance of the cGMP-PKG and MAPK signalling pathways in photodamage, and shows the ability of SSNP to downregulate pathways activated by UV exposure. Additionally, it deepens our understanding of the effect of SSNP on immune-related pathways.
Collapse
Affiliation(s)
- Teresa Torres-Moral
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
- Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Villarroel 170, 08036, Barcelona, Spain
| | - Gemma Tell-Martí
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
- Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Villarroel 170, 08036, Barcelona, Spain
| | - Jaume Bague
- Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Villarroel 170, 08036, Barcelona, Spain
| | - Pau Rosés-Gibert
- Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Villarroel 170, 08036, Barcelona, Spain
| | - Neus Calbet-Llopart
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
- Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Villarroel 170, 08036, Barcelona, Spain
| | - Judit Mateu
- Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Villarroel 170, 08036, Barcelona, Spain
| | - Javiera Pérez-Anker
- Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Villarroel 170, 08036, Barcelona, Spain
- Universitat de Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - Míriam Potrony
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
- Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, IDIBAPS, Barcelona, Spain
| | - Beatriz Alejo
- Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Villarroel 170, 08036, Barcelona, Spain
| | - Pablo Iglesias
- Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Villarroel 170, 08036, Barcelona, Spain
| | - Natalia Espinosa
- Biochemistry and Molecular Genetics Department, Hospital Clínic de Barcelona, IDIBAPS, Barcelona, Spain
| | - Carmen Orte Cano
- Dermatology Department, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Elisa Cinotti
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Véronique Del Marmol
- Dermatology Department, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Margot Fontaine
- Dermatology Department, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Makiko Miyamoto
- Dermatology Department, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
| | - Jilliana Monnier
- Dermatology and Skin Cancers Department, La Timone Hospital, AP-HM, Aix-Marseille University, Marseille, France
| | - Jean Luc Perrot
- Melanoma Unit, University Hospital of Saint-Etienne, Saint-Etienne, France
| | - Pietro Rubegni
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Linda Tognetti
- Dermatology Unit, Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Mariano Suppa
- Dermatology Department, Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium
- Dermatology Department, Institut Jules Bordet, Universite Libre de Bruxelles, Brussels, Belgium
| | | | | | - Leonor Prieto
- Scientific Direction, Laboratoire Dermatologique La Roche-Posay, L'Oréal Cosmética Activa, Madrid, Spain
| | - Josep Malvehy
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Instituto de Salud Carlos III, Barcelona, Spain
- Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Villarroel 170, 08036, Barcelona, Spain
- Universitat de Barcelona, Villarroel 170, 08036, Barcelona, Spain
| | - Susana Puig
- Centro de Investigación Biomédica en Red de Enfermedades Raras, CIBERER, Instituto de Salud Carlos III, Barcelona, Spain.
- Dermatology Department, Hospital Clínic de Barcelona, IDIBAPS, Villarroel 170, 08036, Barcelona, Spain.
- Universitat de Barcelona, Villarroel 170, 08036, Barcelona, Spain.
| |
Collapse
|
10
|
Belardi R, Pacifici F, Cosio T, Lambiase S, Shumak RG, Artosi F, Rivieccio A, Cavalloro D, Dellambra E, Bianchi L, Della-Morte D, Campione E. Role of Nicotinamide in the Pathogenesis of Actinic Keratosis: Implications for NAD +/SIRT1 Pathway. Biomolecules 2024; 14:1512. [PMID: 39766219 PMCID: PMC11673244 DOI: 10.3390/biom14121512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Actinic keratosis (AK) is a precursor to invasive squamous cell carcinoma, making early diagnosis and treatment essential to prevent progression. Among available therapeutic options, nicotinamide (NAM) has shown potential in reducing AK progression. NAM is a precursor of nicotinamide adenine dinucleotide (NAD+), which activates sirtuin (SIRT)1, a protein with anti-cancer properties. Although the role of SIRT1 in AK is still debated, no data currently exist on the systemic modulation of this protein in AK. Therefore, this study aims to evaluate whether NAM, by increasing serum NAD+ levels, may promote SIRT1 activation in peripheral blood mononuclear cells (PBMCs) in AK patients. Thirty patients were enrolled and treated with NAM for 24 months. Hematological, biochemical, and skin condition assessments were conducted, alongside the measurement of SIRT1 and NAD+ levels. A decrease in basophils, monocytes, total cholesterol, and blood glucose levels was observed in the study group, along with a reduction in AK lesions. Notably, NAM treatment significantly enhanced serum NAD+ levels, and nuclear SIRT1 activity in PBMCs. In conclusion, NAM administration significantly reduced AK progression in a NAD+/SIRT1-dependent manner, supporting its role as a chemopreventive agent in AK management.
Collapse
Affiliation(s)
- Riccardo Belardi
- Clinical Laboratory Medicine Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (F.P.)
| | - Francesca Pacifici
- Clinical Laboratory Medicine Unit, Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (F.P.)
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (IC-LOC), University of Rome Tor Vergata, 00133 Rome, Italy
| | - Terenzio Cosio
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (T.C.); (S.L.); (R.G.S.); (F.A.); (A.R.); (D.C.); (L.B.)
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Sara Lambiase
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (T.C.); (S.L.); (R.G.S.); (F.A.); (A.R.); (D.C.); (L.B.)
| | - Ruslana Gaeta Shumak
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (T.C.); (S.L.); (R.G.S.); (F.A.); (A.R.); (D.C.); (L.B.)
| | - Fabio Artosi
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (T.C.); (S.L.); (R.G.S.); (F.A.); (A.R.); (D.C.); (L.B.)
| | - Antonia Rivieccio
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (T.C.); (S.L.); (R.G.S.); (F.A.); (A.R.); (D.C.); (L.B.)
| | - Danilo Cavalloro
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (T.C.); (S.L.); (R.G.S.); (F.A.); (A.R.); (D.C.); (L.B.)
| | - Elena Dellambra
- Laboratory of Tissue Engineering, Istituto Dermopatico dell’Immacolata, IRCCS, Via dei Monti di Creta, 104, 00167 Rome, Italy;
| | - Luca Bianchi
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (T.C.); (S.L.); (R.G.S.); (F.A.); (A.R.); (D.C.); (L.B.)
| | - David Della-Morte
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
- Interdisciplinary Center for Advanced Studies on Lab-on-Chip and Organ-on-Chip Applications (IC-LOC), University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Neurology, Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Elena Campione
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (T.C.); (S.L.); (R.G.S.); (F.A.); (A.R.); (D.C.); (L.B.)
| |
Collapse
|
11
|
Miyamoto K, Sujino T, Kanai T. The tryptophan metabolic pathway of the microbiome and host cells in health and disease. Int Immunol 2024; 36:601-616. [PMID: 38869080 PMCID: PMC11562643 DOI: 10.1093/intimm/dxae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024] Open
Abstract
The intricate and dynamic tryptophan (Trp) metabolic pathway in both the microbiome and host cells highlights its profound implications for health and disease. This pathway involves complex interactions between host cellular and bacteria processes, producing bioactive compounds such as 5-hydroxytryptamine (5-HT) and kynurenine derivatives. Immune responses to Trp metabolites through specific receptors have been explored, highlighting the role of the aryl hydrocarbon receptor in inflammation modulation. Dysregulation of this pathway is implicated in various diseases, such as Alzheimer's and Parkinson's diseases, mood disorders, neuronal diseases, autoimmune diseases such as multiple sclerosis (MS), and cancer. In this article, we describe the impact of the 5-HT, Trp, indole, and Trp metabolites on health and disease. Furthermore, we review the impact of microbiome-derived Trp metabolites that affect immune responses and contribute to maintaining homeostasis, especially in an experimental autoimmune encephalitis model of MS.
Collapse
Affiliation(s)
- Kentaro Miyamoto
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
- Miyarisan Pharmaceutical Co., Research Laboratory, Tokyo, Japan
| | - Tomohisa Sujino
- Center for Diagnostic and Therapeutic Endoscopy, Keio University School of Medicine, Tokyo, Japan
- Keio Global Research Institute, Keio University, Tokyo, Japan
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
12
|
Yeap CSY, Nguyen NHA, Busche T, Wibberg D, Riha J, Kruse O, Cernik M, Blifernez-Klassen O, Sevcu A. Transcriptomic analysis and cellular responses to nanoscale zero-valent iron in green microalga Raphidocelis subcapitata. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117194. [PMID: 39454359 DOI: 10.1016/j.ecoenv.2024.117194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Nanoscale zero valent iron (nZVI) is used to remediate aquifers polluted by organochlorines or heavy metals and was also suggested to eliminate harmful algal blooms. nZVI can therefore affect microorganisms in the vicinity of the application area, including microalgae. However, studies on early transcriptomic effects of microalgae after exposure to nZVI are rare. Here, we described the early physiological and transcriptomic response of the freshwater ecological indicator green microalga, Raphidocelis subcapitata ATCC 22662, to 100 mg/L of reactive nZVI and non-reactive nano-magnetite (nFe3O4). The combined effect of shading and the release of total iron from nZVI posed a short-term inhibition effect leading to 15 % of deformed cells and cytosol leakage, while cells viability increased after 24 h. nZVI triggered a more pronounced transcriptomic response with (7380 differentially expressed genes [DEGs]) compared to nFe3O4 (4601 DEGs) after 1 h. nZVI, but not nFe3O4 increased the expression of genes function in DNA repair and replication, while deactivated carbohydrate-energy metabolisms, mitochondria signaling, and transmembrane ion transport. This study highlights an early fate assessment of algal cells under nZVI and nFe3O4 exposure using next-generation risk assessment methods and will serve as valuable information for safe and sustainable application of nZVI in water remediation.
Collapse
Affiliation(s)
- Cheryl S Y Yeap
- Institute for Nanomaterials Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 1409/7, Liberec 46117, Czech Republic; Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, Bielefeld 33615, Germany; Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Nhung H A Nguyen
- Institute for Nanomaterials Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 1409/7, Liberec 46117, Czech Republic
| | - Tobias Busche
- Microbial Genomics and Biotechnology, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, Bielefeld 33615, Germany; Medical School East Westphalia-Lippe, Bielefeld University, Universitätsstraße 27, Bielefeld 33615, Germany
| | - Daniel Wibberg
- Genome Research of Industrial Microorganisms, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, Bielefeld 33615, Germany; Institute of Bio, and Geosciences - Computational Metagenomics (IBG-5), Forschungszentrum Jülich GmbH - Branch Office Bielefeld University, Universitätsstraße 25, Bielefeld 33615, Germany
| | - Jakub Riha
- Institute for Nanomaterials Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 1409/7, Liberec 46117, Czech Republic
| | - Olaf Kruse
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, Bielefeld 33615, Germany
| | - Miroslav Cernik
- Institute for Nanomaterials Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 1409/7, Liberec 46117, Czech Republic
| | - Olga Blifernez-Klassen
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstraße 27, Bielefeld 33615, Germany.
| | - Alena Sevcu
- Institute for Nanomaterials Advanced Technologies and Innovation, Technical University of Liberec, Bendlova 1409/7, Liberec 46117, Czech Republic; Faculty of Science, Humanities and Education, Technical University of Liberec, Studentská 2, Liberec 46117, Czech Republic.
| |
Collapse
|
13
|
Song J, Park C, Cabanting FEB, Jun YW. Therapeutic upregulation of DNA repair pathways: strategies and small molecule activators. RSC Med Chem 2024; 15:d4md00673a. [PMID: 39430950 PMCID: PMC11487406 DOI: 10.1039/d4md00673a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024] Open
Abstract
DNA repair activity diminishes with age and genetic mutations, leading to a significantly increased risk of cancer and other diseases. Upregulating the DNA repair system has emerged as a potential strategy to mitigate disease susceptibility while minimizing cytotoxic side effects. However, enhancing DNA repair activity presents significant challenges due to the inherent inefficiency in activator screening processes. Additionally, pinpointing a critical target that can effectively upregulate overall repair processes is complicated as the available information is somewhat sporadic. In this review, we discuss potential therapeutic targets for upregulating DNA repair pathways, along with the chemical structures and properties of reported small-molecule activators. We also elaborate on the diverse mechanisms by which these targets modulate repair activity, highlighting the critical need for a comprehensive understanding to guide the development of more effective therapeutic strategies.
Collapse
Affiliation(s)
- Juhyung Song
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea 43131
| | - Cheoljun Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea 43131
| | - Francis E B Cabanting
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea 43131
| | - Yong Woong Jun
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon Republic of Korea 43131
| |
Collapse
|
14
|
McGee KC, Sullivan J, Hazeldine J, Schmunk LJ, Martin-Herranz DE, Jackson T, Lord JM. A combination nutritional supplement reduces DNA methylation age only in older adults with a raised epigenetic age. GeroScience 2024; 46:4333-4347. [PMID: 38528176 PMCID: PMC11336001 DOI: 10.1007/s11357-024-01138-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/13/2024] [Indexed: 03/27/2024] Open
Abstract
An increase in systemic inflammation (inflammaging) is one of the hallmarks of aging. Epigenetic (DNA methylation) clocks can quantify the degree of biological aging and this can be reversed by lifestyle and pharmacological intervention. We aimed to investigate whether a multi-component nutritional supplement could reduce systemic inflammation and epigenetic age in healthy older adults.We recruited 80 healthy older participants (mean age ± SD: 71.85 ± 6.23; males = 31, females = 49). Blood and saliva were obtained pre and post a 12-week course of a multi-component supplement, containing: Vitamin B3, Vitamin C, Vitamin D, Omega 3 fish oils, Resveratrol, Olive fruit phenols and Astaxanthin. Plasma GDF-15 and C-reactive protein (CRP) concentrations were quantified as markers of biological aging and inflammation respectively. DNA methylation was assessed in whole blood and saliva and used to derive epigenetic age using various clock algorithms.No difference between the epigenetic and chronological ages of participants was observed pre- and post-treatment by the blood-based Horvath or Hannum clocks, or the saliva-based InflammAge clock. However, in those with epigenetic age acceleration of ≥ 2 years at baseline, a significant reduction in epigenetic age (p = 0.015) and epigenetic age acceleration (p = 0.0058) was observed post-treatment using the saliva-based InflammAge clock. No differences were observed pre- and post-treatment in plasma GDF-15 and CRP, though participants with CRP indicative of an elevated cardiovascular disease risk (hsCRP ≥ 3µg/ml), had a reduction in CRP post-supplementation (p = 0.0195).Our data suggest a possible benefit of combined nutritional supplementation in individuals with an accelerated epigenetic age and inflammaging.
Collapse
Affiliation(s)
- Kirsty C McGee
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Jack Sullivan
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Jon Hazeldine
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | | | | | - Thomas Jackson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedcial Research Centre, University Hopsital Birmingham and University of Birmingham, Birmingham, UK
| | - Janet M Lord
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.
- NIHR Birmingham Biomedcial Research Centre, University Hopsital Birmingham and University of Birmingham, Birmingham, UK.
| |
Collapse
|
15
|
Mochel JP, Ward JL, Blondel T, Kundu D, Merodio MM, Zemirline C, Guillot E, Giebelhaus RT, de la Mata P, Iennarella-Servantez CA, Blong A, Nam SL, Harynuk JJ, Suchodolski J, Tvarijonaviciute A, Cerón JJ, Bourgois-Mochel A, Zannad F, Sattar N, Allenspach K. Preclinical modeling of metabolic syndrome to study the pleiotropic effects of novel antidiabetic therapy independent of obesity. Sci Rep 2024; 14:20665. [PMID: 39237601 PMCID: PMC11377553 DOI: 10.1038/s41598-024-71202-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
Cardiovascular-kidney-metabolic health reflects the interactions between metabolic risk factors, chronic kidney disease, and the cardiovascular system. A growing body of literature suggests that metabolic syndrome (MetS) in individuals of normal weight is associated with a high prevalence of cardiovascular diseases and an increased mortality. The aim of this study was to establish a non-invasive preclinical model of MetS in support of future research focusing on the effects of novel antidiabetic therapies beyond glucose reduction, independent of obesity. Eighteen healthy adult Beagle dogs were fed an isocaloric Western diet (WD) for ten weeks. Biospecimens were collected at baseline (BAS1) and after ten weeks of WD feeding (BAS2) for measurement of blood pressure (BP), serum chemistry, lipoprotein profiling, blood glucose, glucagon, insulin secretion, NT-proBNP, angiotensins, oxidative stress biomarkers, serum, urine, and fecal metabolomics. Differences between BAS1 and BAS2 were analyzed using non-parametric Wilcoxon signed-rank testing. The isocaloric WD model induced significant variations in several markers of MetS, including elevated BP, increased glucose concentrations, and reduced HDL-cholesterol. It also caused an increase in circulating NT-proBNP levels, a decrease in serum bicarbonate, and significant changes in general metabolism, lipids, and biogenic amines. Short-term, isocaloric feeding with a WD in dogs replicated key biological features of MetS while also causing low-grade metabolic acidosis and elevating natriuretic peptides. These findings support the use of the WD canine model for studying the metabolic effects of new antidiabetic therapies independent of obesity.
Collapse
Affiliation(s)
- Jonathan P Mochel
- Precision One Health Initiative, Department of Pathology, University of Georgia College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA.
- SMART Pharmacology, Iowa State University, Ames, IA, 50011-1250, USA.
| | - Jessica L Ward
- Veterinary Clinical Sciences, Iowa State University, Ames, IA, 50011-1250, USA
| | | | - Debosmita Kundu
- SMART Pharmacology, Iowa State University, Ames, IA, 50011-1250, USA
| | - Maria M Merodio
- Veterinary Clinical Sciences, Iowa State University, Ames, IA, 50011-1250, USA
| | | | | | - Ryland T Giebelhaus
- The Metabolomics Innovation Centre, Department of Chemistry, University of Alberta, T6G 2G2, Edmonton, Canada
| | - Paulina de la Mata
- The Metabolomics Innovation Centre, Department of Chemistry, University of Alberta, T6G 2G2, Edmonton, Canada
| | | | - April Blong
- Veterinary Clinical Sciences, Iowa State University, Ames, IA, 50011-1250, USA
| | - Seo Lin Nam
- The Metabolomics Innovation Centre, Department of Chemistry, University of Alberta, T6G 2G2, Edmonton, Canada
| | - James J Harynuk
- The Metabolomics Innovation Centre, Department of Chemistry, University of Alberta, T6G 2G2, Edmonton, Canada
| | - Jan Suchodolski
- Gastrointestinal Laboratory, Texas A&M University, College Station, TX, 77845, USA
| | - Asta Tvarijonaviciute
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, Espinardo, 30100, Murcia, Spain
| | - José Joaquín Cerón
- Interdisciplinary Laboratory of Clinical Analysis (Interlab-UMU), Veterinary School, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus de Espinardo s/n, Espinardo, 30100, Murcia, Spain
| | - Agnes Bourgois-Mochel
- Precision One Health Initiative, Department of Pathology, University of Georgia College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
- SMART Pharmacology, Iowa State University, Ames, IA, 50011-1250, USA
| | - Faiez Zannad
- Université de Lorraine, Centre d'Investigations Cliniques Plurithématique 1433 and Inserm U1116, CHRU Nancy, FCRIN INI-CRCT, 54000, Nancy, France
| | - Naveed Sattar
- School of Cardiovascular and Metabolic Health, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Karin Allenspach
- Precision One Health Initiative, Department of Pathology, University of Georgia College of Veterinary Medicine, 501 D.W. Brooks Drive, Athens, GA, 30602, USA
- SMART Pharmacology, Iowa State University, Ames, IA, 50011-1250, USA
| |
Collapse
|
16
|
Ziklo N, Bibi M, Sinai L, Salama P. Niacinamide Antimicrobial Efficacy and Its Mode of Action via Microbial Cell Cycle Arrest. Microorganisms 2024; 12:1581. [PMID: 39203423 PMCID: PMC11356291 DOI: 10.3390/microorganisms12081581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
Niacinamide is a versatile compound widely used in the personal care industry for its ample skin benefits. As a precursor to nicotinamide adenine dinucleotide (NAD+), essential for ATP production and a substrate for poly-ADP-ribose polymerase-1 (PARP-1), studies have highlighted its roles in DNA repair, cellular stress mechanisms, and anti-aging benefits. Niacinamide was also studied for its antimicrobial activity, particularly in the context of host-infection via host immune response, yet its direct antimicrobial activity and the mechanisms of action remain unclear. Its multifunctionality makes it an appealing bioactive molecule for skincare products as well as a potential preservative solution. This study explores niacinamide's antimicrobial mode of action against four common cosmetic pathogens. Our findings indicate that niacinamide is causing microbial cell cycle arrest; while cells were found to increase their volume and length under treatment to prepare for cell division, complete separation into two daughter cells was prevented. Fluorescence microscopy revealed expanded chromatin, alongside a decreased RNA expression of the DNA-binding protein gene, dps. Finally, niacinamide was found to directly interact with DNA, hindering successful amplification. These unprecedented findings allowed us to add a newly rationalized preservative facete to the wide range of niacinamide multi-functionality.
Collapse
Affiliation(s)
| | | | | | - Paul Salama
- Innovation Department, Sharon Personal Care Ltd., Eli Horovitz St. 4, Rehovot 7608810, Israel; (N.Z.); (M.B.); (L.S.)
| |
Collapse
|
17
|
Thamrongwatwongsa J, Chusrisom J, Katemala K, Tantasirin S, Jumnongjit P, Nateerom P, Sonjaroon W, Tongkok P, Pichaiyotinkul P, Paemanee A, T-Thienprasert NP, Phonphoem W. Determination of flavonoid content in Grammatophyllum speciosum and in vitro evaluation of their anti-skin cancer and antibacterial activities. Heliyon 2024; 10:e33330. [PMID: 39050422 PMCID: PMC11266999 DOI: 10.1016/j.heliyon.2024.e33330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 04/30/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Grammatophyllum speciosum Blume, a plant of significant pharmacological and cultural importance in its native regions, has been the subject of traditional medicinal use. This study, however, delves deeper into the unique attributes of G. speciosum aerial part and root extracts, particularly their phytochemical content, antioxidant potential, antibacterial activity, and anticancer properties against human skin cancer cells. The results unveiled a promising aspect-higher flavonoid and phenolic compound levels in the aerial part compared to the root extracts. Both aerial part and root extracts demonstrated significant antioxidant activities, as evidenced by their ability to scavenge DPPH radicals and reduce ferric ions in the FRAP assay. Moreover, the ethanolic extract derived from G. speciosum aerial parts showed promising antibacterial activity against both gram-positive and gram-negative bacteria, hinting at its potential therapeutic efficacy. Notably, this extract also demonstrates a capacity to impede the viability of human skin cancer cells (A375). Collectively, these results demonstrated the potential applications of the G. speciosum aerial part extracts. Further investigation is imperative to elucidate the intricate molecular mechanisms underpinning these diverse effects, thereby contributing to a deeper understanding of the pharmacological potential of G. speciosum and its prospective applications in medicine and beyond.
Collapse
Affiliation(s)
| | - Jittraporn Chusrisom
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Bangkok, Thailand
| | - Kittiphat Katemala
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Siranat Tantasirin
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Proudphat Jumnongjit
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Pascha Nateerom
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Weerasin Sonjaroon
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Bangkok, Thailand
| | - Pattama Tongkok
- Kasetsart Agricultural and Agro-Industrial Product Improvement Institute, Kasetsart University, Bangkok, Thailand
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok, Thailand
| | - Panutchaya Pichaiyotinkul
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Atchara Paemanee
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathum Thani, Thailand
| | | | - Wannarat Phonphoem
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
18
|
Hartmann D, Valenzuela F. Sunproofing from within: A deep dive into oral photoprotection strategies in dermatology. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12985. [PMID: 38845468 DOI: 10.1111/phpp.12985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/18/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
BACKGROUND Photoprotection is the first measure in the prevention and treatment of the deleterious effects that sunlight can cause on the skin. It is well known that prolonged exposure to solar radiation leads to acute and chronic complications, such as erythema, accelerated skin aging, proinflammatory and procarcinogenic effects, and eye damage, among others. METHODS A better understanding of the molecules that can protect against ultraviolet radiation and their effects will lead to improvements in skin health. RESULTS Most of these effects of the sunlight are modulated by oxidative stress and proinflammatory mechanisms, therefore, the supplementation of substances that can regulate and neutralize reactive oxygen species would be beneficial for skin protection. Current evidence indicates that systemic photoprotection should be used as an adjunctive measure to topical photoprotection. CONCLUSION Oral photoprotectors are a promising option in improving protection against damage induced by UVR, as they contain active ingredients that increase the antioxidant effects of the body, complementing other photoprotection measures. We present a review of oral photoprotectors and their effects.
Collapse
Affiliation(s)
- Dan Hartmann
- Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
- Centro Internacional de Estudios Clínicos (CIEC), Probity Medical Research, Santiago, Chile
| | - Fernando Valenzuela
- Centro Internacional de Estudios Clínicos (CIEC), Probity Medical Research, Santiago, Chile
- Department of Dermatology, Universidad de Chile, Santiago, Chile
- Department of Dermatology, Clínica Universidad de los Andes, Chile, Santiago, Chile
| |
Collapse
|
19
|
Arslan AK, Yagin FH, Algarni A, AL-Hashem F, Ardigò LP. Combining the Strengths of the Explainable Boosting Machine and Metabolomics Approaches for Biomarker Discovery in Acute Myocardial Infarction. Diagnostics (Basel) 2024; 14:1353. [PMID: 39001243 PMCID: PMC11240568 DOI: 10.3390/diagnostics14131353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Acute Myocardial Infarction (AMI), a common disease that can have serious consequences, occurs when myocardial blood flow stops due to occlusion of the coronary artery. Early and accurate prediction of AMI is critical for rapid prognosis and improved patient outcomes. Metabolomics, the study of small molecules within biological systems, is an effective tool used to discover biomarkers associated with many diseases. This study intended to construct a predictive model for AMI utilizing metabolomics data and an explainable machine learning approach called Explainable Boosting Machines (EBM). The EBM model was trained on a dataset of 102 prognostic metabolites gathered from 99 individuals, including 34 healthy controls and 65 AMI patients. After a comprehensive data preprocessing, 21 metabolites were determined as the candidate predictors to predict AMI. The EBM model displayed satisfactory performance in predicting AMI, with various classification performance metrics. The model's predictions were based on the combined effects of individual metabolites and their interactions. In this context, the results obtained in two different EBM modeling, including both only individual metabolite features and their interaction effects, were discussed. The most important predictors included creatinine, nicotinamide, and isocitrate. These metabolites are involved in different biological activities, such as energy metabolism, DNA repair, and cellular signaling. The results demonstrate the potential of the combination of metabolomics and the EBM model in constructing reliable and interpretable prediction outputs for AMI. The discussed metabolite biomarkers may assist in early diagnosis, risk assessment, and personalized treatment methods for AMI patients. This study successfully developed a pipeline incorporating extensive data preprocessing and the EBM model to identify potential metabolite biomarkers for predicting AMI. The EBM model, with its ability to incorporate interaction terms, demonstrated satisfactory classification performance and revealed significant metabolite interactions that could be valuable in assessing AMI risk. However, the results obtained from this study should be validated with studies to be carried out in larger and well-defined samples.
Collapse
Affiliation(s)
- Ahmet Kadir Arslan
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya 44280, Türkiye;
| | - Fatma Hilal Yagin
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya 44280, Türkiye;
| | - Abdulmohsen Algarni
- Department of Computer Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Fahaid AL-Hashem
- Department of Physiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Luca Paolo Ardigò
- Department of Teacher Education, NLA University College, 0166 Oslo, Norway
| |
Collapse
|
20
|
Patel V, Casimiro S, Abreu C, Barroso T, de Sousa RT, Torres S, Ribeiro LA, Nogueira-Costa G, Pais HL, Pinto C, Costa L, Costa L. DNA damage targeted therapy for advanced breast cancer. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2024; 5:678-698. [PMID: 38966174 PMCID: PMC11220312 DOI: 10.37349/etat.2024.00241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/04/2024] [Indexed: 07/06/2024] Open
Abstract
Breast cancer (BC) is the most prevalent malignancy affecting women worldwide, including Portugal. While the majority of BC cases are sporadic, hereditary forms account for 5-10% of cases. The most common inherited mutations associated with BC are germline mutations in the BReast CAncer (BRCA) 1/2 gene (gBRCA1/2). They are found in approximately 5-6% of BC patients and are inherited in an autosomal dominant manner, primarily affecting younger women. Pathogenic variants within BRCA1/2 genes elevate the risk of both breast and ovarian cancers and give rise to distinct clinical phenotypes. BRCA proteins play a key role in maintaining genome integrity by facilitating the repair of double-strand breaks through the homologous recombination (HR) pathway. Therefore, any mutation that impairs the function of BRCA proteins can result in the accumulation of DNA damage, genomic instability, and potentially contribute to cancer development and progression. Testing for gBRCA1/2 status is relevant for treatment planning, as it can provide insights into the likely response to therapy involving platinum-based chemotherapy and poly[adenosine diphosphate (ADP)-ribose] polymerase inhibitors (PARPi). The aim of this review was to investigate the impact of HR deficiency in BC, focusing on BRCA mutations and their impact on the modulation of responses to platinum and PARPi therapy, and to share the experience of Unidade Local de Saúde Santa Maria in the management of metastatic BC patients with DNA damage targeted therapy, including those with the Portuguese c.156_157insAlu BRCA2 founder mutation.
Collapse
Affiliation(s)
- Vanessa Patel
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | - Sandra Casimiro
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Catarina Abreu
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | - Tiago Barroso
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | | | - Sofia Torres
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | - Leonor Abreu Ribeiro
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | | | - Helena Luna Pais
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | - Conceição Pinto
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | - Leila Costa
- Pharmacy Department, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
| | - Luís Costa
- Oncology Division, Unidade Local de Saúde Santa Maria, 1649-028 Lisboa, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina de Lisboa, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| |
Collapse
|
21
|
Golubnitschaja O, Kapinova A, Sargheini N, Bojkova B, Kapalla M, Heinrich L, Gkika E, Kubatka P. Mini-encyclopedia of mitochondria-relevant nutraceuticals protecting health in primary and secondary care-clinically relevant 3PM innovation. EPMA J 2024; 15:163-205. [PMID: 38841620 PMCID: PMC11148002 DOI: 10.1007/s13167-024-00358-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 06/07/2024]
Abstract
Despite their subordination in humans, to a great extent, mitochondria maintain their independent status but tightly cooperate with the "host" on protecting the joint life quality and minimizing health risks. Under oxidative stress conditions, healthy mitochondria promptly increase mitophagy level to remove damaged "fellows" rejuvenating the mitochondrial population and sending fragments of mtDNA as SOS signals to all systems in the human body. As long as metabolic pathways are under systemic control and well-concerted together, adaptive mechanisms become triggered increasing systemic protection, activating antioxidant defense and repair machinery. Contextually, all attributes of mitochondrial patho-/physiology are instrumental for predictive medical approach and cost-effective treatments tailored to individualized patient profiles in primary (to protect vulnerable individuals again the health-to-disease transition) and secondary (to protect affected individuals again disease progression) care. Nutraceuticals are naturally occurring bioactive compounds demonstrating health-promoting, illness-preventing, and other health-related benefits. Keeping in mind health-promoting properties of nutraceuticals along with their great therapeutic potential and safety profile, there is a permanently growing demand on the application of mitochondria-relevant nutraceuticals. Application of nutraceuticals is beneficial only if meeting needs at individual level. Therefore, health risk assessment and creation of individualized patient profiles are of pivotal importance followed by adapted nutraceutical sets meeting individual needs. Based on the scientific evidence available for mitochondria-relevant nutraceuticals, this article presents examples of frequent medical conditions, which require protective measures targeted on mitochondria as a holistic approach following advanced concepts of predictive, preventive, and personalized medicine (PPPM/3PM) in primary and secondary care.
Collapse
Affiliation(s)
- Olga Golubnitschaja
- Predictive, Preventive and Personalised (3P) Medicine, Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Andrea Kapinova
- Biomedical Centre Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Nafiseh Sargheini
- Max Planck Institute for Plant Breeding Research, Carl-Von-Linne-Weg 10, 50829 Cologne, Germany
| | - Bianka Bojkova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University in Košice, 040 01 Košice, Slovakia
| | - Marko Kapalla
- Negentropic Systems, Ružomberok, Slovakia
- PPPM Centre, s.r.o., Ruzomberok, Slovakia
| | - Luisa Heinrich
- Institute of General Medicine, University of Leipzig, Leipzig, Germany
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, 53127 Bonn, Germany
| | - Peter Kubatka
- Department of Histology and Embryology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
22
|
Altay O, Yang H, Yildirim S, Bayram C, Bolat I, Oner S, Tozlu OO, Arslan ME, Hacimuftuoglu A, Shoaie S, Zhang C, Borén J, Uhlén M, Turkez H, Mardinoglu A. Combined Metabolic Activators with Different NAD+ Precursors Improve Metabolic Functions in the Animal Models of Neurodegenerative Diseases. Biomedicines 2024; 12:927. [PMID: 38672280 PMCID: PMC11048203 DOI: 10.3390/biomedicines12040927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction and metabolic abnormalities are acknowledged as significant factors in the onset of neurodegenerative disorders such as Parkinson's disease (PD) and Alzheimer's disease (AD). Our research has demonstrated that the use of combined metabolic activators (CMA) may alleviate metabolic dysfunctions and stimulate mitochondrial metabolism. Therefore, the use of CMA could potentially be an effective therapeutic strategy to slow down or halt the progression of PD and AD. CMAs include substances such as the glutathione precursors (L-serine and N-acetyl cysteine), the NAD+ precursor (nicotinamide riboside), and L-carnitine tartrate. METHODS Here, we tested the effect of two different formulations, including CMA1 (nicotinamide riboside, L-serine, N-acetyl cysteine, L-carnitine tartrate), and CMA2 (nicotinamide, L-serine, N-acetyl cysteine, L-carnitine tartrate), as well as their individual components, on the animal models of AD and PD. We assessed the brain and liver tissues for pathological changes and immunohistochemical markers. Additionally, in the case of PD, we performed behavioral tests and measured responses to apomorphine-induced rotations. FINDINGS Histological analysis showed that the administration of both CMA1 and CMA2 formulations led to improvements in hyperemia, degeneration, and necrosis in neurons for both AD and PD models. Moreover, the administration of CMA2 showed a superior effect compared to CMA1. This was further corroborated by immunohistochemical data, which indicated a reduction in immunoreactivity in the neurons. Additionally, notable metabolic enhancements in liver tissues were observed using both formulations. In PD rat models, the administration of both formulations positively influenced the behavioral functions of the animals. INTERPRETATION Our findings suggest that the administration of both CMA1 and CMA2 markedly enhanced metabolic and behavioral outcomes, aligning with neuro-histological observations. These findings underscore the promise of CMA2 administration as an effective therapeutic strategy for enhancing metabolic parameters and cognitive function in AD and PD patients.
Collapse
Affiliation(s)
- Ozlem Altay
- Science for Life Laboratory, KTH—Royal Institute of Technology, 171 65 Stockholm, Sweden; (O.A.); (H.Y.); (C.Z.); (M.U.)
| | - Hong Yang
- Science for Life Laboratory, KTH—Royal Institute of Technology, 171 65 Stockholm, Sweden; (O.A.); (H.Y.); (C.Z.); (M.U.)
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum 25240, Turkey; (S.Y.); (I.B.)
| | - Cemil Bayram
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Atatürk University, Erzurum 25240, Turkey;
| | - Ismail Bolat
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum 25240, Turkey; (S.Y.); (I.B.)
| | - Sena Oner
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum 25240, Turkey; (S.O.); (O.O.T.); (M.E.A.)
| | - Ozlem Ozdemir Tozlu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum 25240, Turkey; (S.O.); (O.O.T.); (M.E.A.)
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum 25240, Turkey; (S.O.); (O.O.T.); (M.E.A.)
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey;
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK;
| | - Cheng Zhang
- Science for Life Laboratory, KTH—Royal Institute of Technology, 171 65 Stockholm, Sweden; (O.A.); (H.Y.); (C.Z.); (M.U.)
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, University of Gothenburg, 413 45 Gothenburg, Sweden;
| | - Mathias Uhlén
- Science for Life Laboratory, KTH—Royal Institute of Technology, 171 65 Stockholm, Sweden; (O.A.); (H.Y.); (C.Z.); (M.U.)
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey;
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH—Royal Institute of Technology, 171 65 Stockholm, Sweden; (O.A.); (H.Y.); (C.Z.); (M.U.)
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK;
| |
Collapse
|
23
|
Marques C, Hadjab F, Porcello A, Lourenço K, Scaletta C, Abdel-Sayed P, Hirt-Burri N, Applegate LA, Laurent A. Mechanistic Insights into the Multiple Functions of Niacinamide: Therapeutic Implications and Cosmeceutical Applications in Functional Skincare Products. Antioxidants (Basel) 2024; 13:425. [PMID: 38671873 PMCID: PMC11047333 DOI: 10.3390/antiox13040425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Niacinamide (or nicotinamide) is a small-molecule hydrosoluble vitamin with essential metabolic functions in mammalian cells. Niacinamide has become a key functional ingredient in diverse skincare products and cosmetics. This vitamin plays a pivotal role in NAD+ synthesis, notably contributing to redox reactions and energy production in cutaneous cells. Via diversified biochemical mechanisms, niacinamide is also known to influence human DNA repair and cellular stress responses. Based on decades of safe use in cosmetics, niacinamide recently gained widespread popularity as an active ingredient which aligns with the "Kligman standards" in skincare. From a therapeutic standpoint, the intrinsic properties of niacinamide may be applied to managing acne vulgaris, melasma, and psoriasis. From a cosmeceutical standpoint, niacinamide has been widely leveraged as a multipurpose antiaging ingredient. Therein, it was shown to significantly reduce cutaneous oxidative stress, inflammation, and pigmentation. Overall, through multimodal mechanisms, niacinamide may be considered to partially prevent and/or reverse several biophysical changes associated with skin aging. The present narrative review provides multifactorial insights into the mechanisms of niacinamide's therapeutic and cosmeceutical functions. The ingredient's evolving role in skincare was critically appraised, with a strong focus on the biochemical mechanisms at play. Finally, novel indications and potential applications of niacinamide in dermal fillers and alternative injectable formulations were prospectively explored.
Collapse
Affiliation(s)
- Cíntia Marques
- Development Department, LOUNA REGENERATIVE SA, CH-1207 Geneva, Switzerland; (C.M.); (A.P.); (K.L.)
| | - Farid Hadjab
- Development Department, Albomed GmbH, D-90592 Schwarzenbruck, Germany;
| | - Alexandre Porcello
- Development Department, LOUNA REGENERATIVE SA, CH-1207 Geneva, Switzerland; (C.M.); (A.P.); (K.L.)
| | - Kelly Lourenço
- Development Department, LOUNA REGENERATIVE SA, CH-1207 Geneva, Switzerland; (C.M.); (A.P.); (K.L.)
| | - Corinne Scaletta
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.)
| | - Philippe Abdel-Sayed
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.)
- STI School of Engineering, Federal Polytechnic School of Lausanne, CH-1015 Lausanne, Switzerland
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.)
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.)
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, CH-8057 Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou 215123, China
| | - Alexis Laurent
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, CH-1066 Epalinges, Switzerland; (C.S.); (P.A.-S.); (N.H.-B.)
- Manufacturing Department, LAM Biotechnologies SA, CH-1066 Epalinges, Switzerland
- Manufacturing Department, TEC-PHARMA SA, CH-1038 Bercher, Switzerland
| |
Collapse
|
24
|
Ye B, Pei Y, Wang L, Meng D, Zhang Y, Zou S, Li H, Liu J, Xie Z, Tian C, Jiang Y, Qiao Y, Gao X, Zhang Y, Ma N. NAD + supplementation prevents STING-induced senescence in CD8 + T cells by improving mitochondrial homeostasis. J Cell Biochem 2024; 125:e30522. [PMID: 38224175 DOI: 10.1002/jcb.30522] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/01/2023] [Accepted: 12/27/2023] [Indexed: 01/16/2024]
Abstract
Understanding the connection between senescence phenotypes and mitochondrial dysfunction is crucial in aging and premature aging diseases. Loss of mitochondrial function leads to a decline in T cell function, which plays a significant role in this process. However, more research is required to determine if improving mitochondrial homeostasis alleviates senescence phenotypes. Our research has shown an association between NAD+ and senescent T cells through the cGAS-STING pathway, which can lead to an inflammatory phenotype. Further research is needed to fully understand the role of NAD+ in T-cell aging and how it can be utilized to improve mitochondrial homeostasis and alleviate senescence phenotypes. We demonstrate here that mitochondrial dysfunction and cellular senescence with a senescence-associated secretory phenotype (SASP) occur in senescent T cells and tumor-bearing mice. Senescence is mediated by a stimulator of interferon genes (STING) and involves ectopic cytoplasmic DNA. We further show that boosting intracellular NAD+ levels with nicotinamide mononucleotide (NMN) prevents senescence and SASP by promoting mitophagy. NMN treatment also suppresses senescence and neuroinflammation and improves the survival cycle of mice. Encouraging mitophagy may be a useful strategy to prevent CD8+ T cells from senescence due to mitochondrial dysfunction. Additionally, supplementing with NMN to increase NAD+ levels could enhance survival rates in mice while also reducing senescence and inflammation, and enhancing mitophagy as a potential therapeutic intervention.
Collapse
Affiliation(s)
- Bin Ye
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
- Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
- Translational Medicine Center of Northern China, Harbin Medical University, Harbin, China
- Medical Science Institute of Heilongjiang Province, Harbin, China
| | - Yingting Pei
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
- Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
- Translational Medicine Center of Northern China, Harbin Medical University, Harbin, China
- Medical Science Institute of Heilongjiang Province, Harbin, China
| | - Lujing Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
- Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
- Translational Medicine Center of Northern China, Harbin Medical University, Harbin, China
- Medical Science Institute of Heilongjiang Province, Harbin, China
| | - Dehao Meng
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
- Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
- Translational Medicine Center of Northern China, Harbin Medical University, Harbin, China
- Medical Science Institute of Heilongjiang Province, Harbin, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
- Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
- Translational Medicine Center of Northern China, Harbin Medical University, Harbin, China
- Medical Science Institute of Heilongjiang Province, Harbin, China
| | - Shuang Zou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
- Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
- Translational Medicine Center of Northern China, Harbin Medical University, Harbin, China
- Medical Science Institute of Heilongjiang Province, Harbin, China
| | - Henian Li
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
- Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
- Translational Medicine Center of Northern China, Harbin Medical University, Harbin, China
- Medical Science Institute of Heilongjiang Province, Harbin, China
| | - Jinying Liu
- Department of laboratory diagnosis, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziying Xie
- Department of laboratory diagnosis, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Changhong Tian
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
- Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
- Translational Medicine Center of Northern China, Harbin Medical University, Harbin, China
- Medical Science Institute of Heilongjiang Province, Harbin, China
| | - Yuqi Jiang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
- Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
- Translational Medicine Center of Northern China, Harbin Medical University, Harbin, China
- Medical Science Institute of Heilongjiang Province, Harbin, China
| | - Yu Qiao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
- Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
- Translational Medicine Center of Northern China, Harbin Medical University, Harbin, China
- Medical Science Institute of Heilongjiang Province, Harbin, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
- Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
- Translational Medicine Center of Northern China, Harbin Medical University, Harbin, China
- Medical Science Institute of Heilongjiang Province, Harbin, China
| | - Yanfen Zhang
- Department of laboratory diagnosis, Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ning Ma
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
- Key Laboratory of Cardiovascular Medicine Research (Harbin Medical University), Ministry of Education, Harbin, China
- Translational Medicine Center of Northern China, Harbin Medical University, Harbin, China
- Medical Science Institute of Heilongjiang Province, Harbin, China
| |
Collapse
|
25
|
Jabbari P, Yazdanpanah O, Benjamin DJ, Rezazadeh Kalebasty A. Supplement Use and Increased Risks of Cancer: Unveiling the Other Side of the Coin. Cancers (Basel) 2024; 16:880. [PMID: 38473246 PMCID: PMC10930792 DOI: 10.3390/cancers16050880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
There is a rising trend in the consumption of dietary supplements, especially among adults, with the purpose of improving health. While marketing campaigns tout the potential health benefits of using dietary supplements, it is critical to evaluate the potential harmful effects associated with these supplements as well. The majority of the scarce research on the potential harmful effects of vitamins focuses on the acute or chronic toxicities associated with the use of dietary supplements. Quality research is still required to further investigate the risks of long-term use of dietary supplements, especially the risk of developing cancers. The present review concentrates on studies that have investigated the association between the risk of developing cancers and associated mortality with the risk of dietary supplements. Such an association has been reported for several vitamins, minerals, and other dietary supplements. Even though several of these studies come with their own shortcomings and critics, they must draw attention to further investigate long-term adverse effects of dietary supplements and advise consumers and healthcare providers to ponder the extensive use of dietary supplements.
Collapse
Affiliation(s)
- Parnian Jabbari
- Department of Cell, Molecular and Systems Biology, University of California, Riverside, CA 92521, USA;
| | - Omid Yazdanpanah
- Division of Hematology and Oncology, Department of Medicine, University of California Irvine Medical Center, Orange, CA 92868, USA;
| | | | - Arash Rezazadeh Kalebasty
- Division of Hematology and Oncology, Department of Medicine, University of California Irvine Medical Center, Orange, CA 92868, USA;
| |
Collapse
|
26
|
He X, Barnett LM, Jeon J, Zhang Q, Alqahtani S, Black M, Shannahan J, Wright C. Real-Time Exposure to 3D-Printing Emissions Elicits Metabolic and Pro-Inflammatory Responses in Human Airway Epithelial Cells. TOXICS 2024; 12:67. [PMID: 38251022 PMCID: PMC10818734 DOI: 10.3390/toxics12010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
Three-dimensional (3D) printer usage in household and school settings has raised health concerns regarding chemical and particle emission exposures during operation. Although the composition of 3D printer emissions varies depending on printer settings and materials, little is known about the impact that emissions from different filament types may have on respiratory health and underlying cellular mechanisms. In this study, we used an in vitro exposure chamber system to deliver emissions from two popular 3D-printing filament types, acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA), directly to human small airway epithelial cells (SAEC) cultured in an air-liquid interface during 3D printer operation. Using a scanning mobility particle sizer (SMPS) and an optical particle sizer (OPS), we monitored 3D printer particulate matter (PM) emissions in terms of their particle size distribution, concentrations, and calculated deposited doses. Elemental composition of ABS and PLA emissions was assessed using scanning electron microscopy coupled with energy dispersive X-ray spectroscopy (SEM-EDX). Finally, we compared the effects of emission exposure on cell viability, inflammation, and metabolism in SAEC. Our results reveal that, although ABS filaments emitted a higher total concentration of particles and PLA filaments emitted a higher concentration of smaller particles, SAEC were exposed to similar deposited doses of particles for each filament type. Conversely, ABS and PLA emissions had distinct elemental compositions, which were likely responsible for differential effects on SAEC viability, oxidative stress, release of inflammatory mediators, and changes in cellular metabolism. Specifically, while ABS- and PLA-emitted particles both reduced cellular viability and total glutathione levels in SAEC, ABS emissions had a significantly greater effect on glutathione relative to PLA emissions. Additionally, pro-inflammatory cytokines including IL-1β, MMP-9, and RANTES were significantly increased due to ABS emissions exposure. While IL-6 and IL-8 were stimulated in both exposure scenarios, VEGF was exclusively increased due to PLA emissions exposures. Notably, ABS emissions induced metabolic perturbation on amino acids and energy metabolism, as well as redox-regulated pathways including arginine, methionine, cysteine, and vitamin B3 metabolism, whereas PLA emissions exposures caused fatty acid and carnitine dysregulation. Taken together, these results advance our mechanistic understanding of 3D-printer-emissions-induced respiratory toxicity and highlight the role that filament emission properties may play in mediating different respiratory outcomes.
Collapse
Affiliation(s)
- Xiaojia He
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| | - Lillie Marie Barnett
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| | - Jennifer Jeon
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| | - Qian Zhang
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| | - Saeed Alqahtani
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.A.); (J.S.)
- Advanced Diagnostic and Therapeutics Technologies Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 12354, Saudi Arabia
| | - Marilyn Black
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| | - Jonathan Shannahan
- School of Health Sciences, Purdue University, West Lafayette, IN 47907, USA; (S.A.); (J.S.)
| | - Christa Wright
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA; (X.H.); (L.M.B.); (J.J.); (Q.Z.); (M.B.)
| |
Collapse
|
27
|
Huang K, Li Z, Zhong D, Yang Y, Yan X, Feng T, Wang X, Zhang L, Shen X, Chen M, Luo X, Cui K, Huang J, Rehman SU, Jiang Y, Shi D, Pauciullo A, Tang X, Liu Q, Li H. A Circular RNA Generated from Nebulin (NEB) Gene Splicing Promotes Skeletal Muscle Myogenesis in Cattle as Detected by a Multi-Omics Approach. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2300702. [PMID: 38036415 PMCID: PMC10797441 DOI: 10.1002/advs.202300702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 10/16/2023] [Indexed: 12/02/2023]
Abstract
Cattle and the draught force provided by its skeletal muscle have been integral to agro-ecosystems of agricultural civilization for millennia. However, relatively little is known about the cattle muscle functional genomics (including protein coding genes, non-coding RNA, etc.). Circular RNAs (circRNAs), as a new class of non-coding RNAs, can be effectively translated into detectable peptides, which enlightened us on the importance of circRNAs in cattle muscle physiology function. Here, RNA-seq, Ribosome profiling (Ribo-seq), and peptidome data are integrated from cattle skeletal muscle, and detected five encoded peptides from circRNAs. It is further identified and functionally characterize a 907-amino acids muscle-specific peptide that is named circNEB-peptide because derived by the splicing of Nebulin (NEB) gene. This peptide localizes to the nucleus and cytoplasm and directly interacts with SKP1 and TPM1, key factors regulating physiological activities of myoblasts, via ubiquitination and myoblast fusion, respectively. The circNEB-peptide is found to promote myoblasts proliferation and differentiation in vitro, and induce muscle regeneration in vivo. These findings suggest circNEB-peptide is an important regulator of skeletal muscle regeneration and underscore the possibility that more encoding polypeptides derived by RNAs currently annotated as non-coding exist.
Collapse
Affiliation(s)
- Kongwei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and EngineeringFoshan UniversityFoshan528225China
- School of Biology and Biological EngineeringSouth China University of TechnologyGuangzhou510641China
| | - Zhipeng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Dandan Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Yufeng Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Xiuying Yan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Tong Feng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Xiaobo Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Liyin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Xinyue Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Mengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Xier Luo
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and EngineeringFoshan UniversityFoshan528225China
| | - Kuiqing Cui
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and EngineeringFoshan UniversityFoshan528225China
| | - Jieping Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Saif Ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and TechnologyNorthwest A&F UniversityYangling712100China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| | - Alfredo Pauciullo
- Department of Agricultural, Forest and Food SciencesUniversity of TorinoGrugliasco (TO)10095Italy
| | - Xiangfang Tang
- State Key Laboratory of Animal Nutrition and Feeding,Institute of Animal SciencesChinese Academy of Agricultural SciencesBeijing100193China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and EngineeringFoshan UniversityFoshan528225China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐Bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and TechnologyGuangxi UniversityNanning530005China
| |
Collapse
|
28
|
Tosti G, Pepe F, Gnagnarella P, Silvestri F, Gaeta A, Queirolo P, Gandini S. The Role of Nicotinamide as Chemo-Preventive Agent in NMSCs: A Systematic Review and Meta-Analysis. Nutrients 2023; 16:100. [PMID: 38201930 PMCID: PMC10780437 DOI: 10.3390/nu16010100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/12/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Nicotinamide is the active form of vitamin B3 (niacin) obtained through endogenous synthesis, mainly through tryptophan metabolism and dietary supplements, fish, meats, grains, and dairy products. It participates in cellular energy metabolism and modulates multiple cellular survival and death pathways. Nicotinamide has been widely studied as a safe chemopreventive agent that reduces actinic keratosis (AKs) and non-melanoma skin cancers (NMSC). METHODS We used the Medline, EMBASE, PubMed, and Cochrane databases to search the concepts "nicotinamide", "chemoprevention", and "skin cancer" up to August 2023. Three independent authors screened titles and abstracts for intervention and study design before searching full texts for eligibility criteria. The primary outcome was the impact of oral nicotinamide on the incidence of NMSC in high-risk patients. We also conducted a systematic search to identify relevant epidemiological studies published evaluating dietary niacin intake and the risk of NMSC. RESULTS Two hundred and twenty-five studies were reviewed, and four met the inclusion criteria. There was no association between NAM consumption and risk for squamous cell carcinoma (SCC) (rate ratio (RR) 0.81, 95% CI 0.48-1.37; I2 = 0%), basal cell carcinoma (BCC) (RR 0.88, 95% CI 0.50-1.55; I2 = 63%), and NMSC (RR 0.82, 95% CI 0.61-1.12; I2 = 63%). Adverse events were rare and acceptable, allowing optimal compliance of patients to the treatment. We found only one article evaluating the association between niacin dietary intake and NMSC risk, supporting a potential beneficial role of niacin intake concerning SCC but not BCC or melanoma. CONCLUSIONS The present meta-analysis shows, by pooling immunocompetent and immunosuppressed patients, that there is insufficient evidence that oral nicotinamide therapy significantly reduces the number of keratinocyte cancers.
Collapse
Affiliation(s)
- Giulio Tosti
- Dermato-Oncology Unit, European Institute of Oncology IRCCS, 20141 Milan, Italy; (G.T.); (F.P.); (F.S.)
| | - Francesca Pepe
- Dermato-Oncology Unit, European Institute of Oncology IRCCS, 20141 Milan, Italy; (G.T.); (F.P.); (F.S.)
| | - Patrizia Gnagnarella
- Division of Epidemiology and Biostatistics, European Institute of Oncology IRCCS, 20141 Milan, Italy
| | - Flavia Silvestri
- Dermato-Oncology Unit, European Institute of Oncology IRCCS, 20141 Milan, Italy; (G.T.); (F.P.); (F.S.)
| | - Aurora Gaeta
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy; (A.G.); (S.G.)
- Department of Statistics and Quantitative Methods, University of Milan-Bicocca 8, 20126 Milan, Italy
| | - Paola Queirolo
- Division of Medical Oncology for Melanoma, Sarcoma, and Rare Tumors, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Sara Gandini
- Molecular and Pharmaco-Epidemiology Unit, Department of Experimental Oncology, European Institute of Oncology IRCCS, 20139 Milan, Italy; (A.G.); (S.G.)
| |
Collapse
|
29
|
Zarei SA, Shahriari-Khalaji M, Andolina IM, Behzadi G. Antinociceptive effects of vitamin B-complex: A behavioral and histochemical study in rats. IBRO Neurosci Rep 2023; 15:270-280. [PMID: 37860709 PMCID: PMC10582472 DOI: 10.1016/j.ibneur.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 10/21/2023] Open
Abstract
B-vitamins have been evaluated as a useful adjuvant therapy to treat pain. In spite of clinical and experimental evidence indicating the analgesic effect of B-vitamins, few studies have investigated their effect on aspects of the inflammatory pain response. In the present study, we investigated the analgesic effect of chronic application of B-complex vitamins (Neurobion) using an inflammatory experimental pain model in rats. Nociceptive behavioral responses were evaluated in male Wistar rats after plantar injection of formalin, comparing the treatment group (TG) with Neurobion pretreatment to the control group (CG) without the pretreatment. In addition, neuronal activity in the central pain pathway was evaluated using c-Fos immunohistochemical reactivity and NADPH-d histochemistry. A highly significant reduction of painful behaviors such as licking and flinching were observed in TG, especially during the secondary phase of the formalin test compared to CG. Results suggest that long-term pre-treatment using Neurobion can have a beneficial effect in reducing the chronic phase of pain. In addition, we observed a downregulation of c-Fos and NADPH-d in dorsal spinal neurons, suggesting that the antinociceptive effect induced by Neurobion could be due to a suppression of nociceptive transmission at the spinal level, particularly in the afferent regions of the dorsal spinal horn, which these neurons utilizing nitric oxide at least as one of their pain neurotransmitters.
Collapse
Affiliation(s)
- Shahab A. Zarei
- Center for Excellence in Brain Science and Intelligence Technology (Institute of Neuroscience), Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, China
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Shahriari-Khalaji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Ian Max Andolina
- Center for Excellence in Brain Science and Intelligence Technology (Institute of Neuroscience), Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, China
| | - Gila Behzadi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Hosseini MS, Hadadzadeh H, Mirahmadi-Zare SZ, Farrokhpour H, Aboutalebi F, Morshedi D. A curcumin-nicotinoyl derivative and its transition metal complexes: synthesis, characterization, and in silico and in vitro biological behaviors. Dalton Trans 2023; 52:14477-14490. [PMID: 37779393 DOI: 10.1039/d3dt01351k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Curcumin-nicotinoyl (Cur-Nic) was synthesized by the chemical modification of the curcumin structure, characterized, and used as a ligand for the synthesis of copper(II) and zinc(II) complexes. The biological activities of Cur-Nic and its metal complexes were predicted using the PASS and Swiss Target Prediction online software, respectively, and docking studies with tyrosine-protein kinase SRC were performed using the PyRx software to predict their anticancer activities. The toxicity effects of the complexes on a human breast cancer cell line (MCF-7) compared to a healthy breast cell line (MCF-10A) were investigated by the MTS assay. Although the metal complexes maintained the least toxicity against normal cells, the results indicated that compared to curcumin and Cur-Nic, the cytotoxicity toward cancer cells increased due to the complexation process. Moreover, the antibacterial evaluation of the compounds against a Gram-positive bacterium (MRSA) and a Gram-negative bacterium (E. coli) indicated that the Cu(II) complex and Cur-Nic were the best, respectively. Also, the Zn(II) complex was the most stable compound, and the Cu(II) complex was the best ROS scavenger based on the in vitro evaluation.
Collapse
Affiliation(s)
- Marziyeh-Sadat Hosseini
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, 8159358686, Isfahan, Iran.
| | - Hassan Hadadzadeh
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Seyede Zohreh Mirahmadi-Zare
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, 8159358686, Isfahan, Iran.
| | - Hossein Farrokhpour
- Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| | - Fatemeh Aboutalebi
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, 8159358686, Isfahan, Iran.
| | - Dina Morshedi
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| |
Collapse
|
31
|
Zhou C, Li J, Guo C, Zhou Z, Yang Z, Zhang Y, Jiang J, Cai Y, Zhou J, Xia M, Ming Y. Alterations in gut microbiome and metabolite profile of patients with Schistosoma japonicum infection. Parasit Vectors 2023; 16:346. [PMID: 37798771 PMCID: PMC10552355 DOI: 10.1186/s13071-023-05970-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/14/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Schistosoma infection is a significant public health issue, affecting over 200 million individuals and threatening 700 million people worldwide. The species prevalent in China is Schistosoma japonicum. Recent studies showed that both gut microbiota and metabolome are closely related to schistosomiasis caused by S. japonicum, but clinical study is limited and the underlying mechanism is largely unclear. This study aimed to explore alterations as well as function of gut microbiota and metabolite profile in the patients with S. japonicum infection. METHODS This study included 20 patients diagnosed with chronic schistosomiasis caused by S. japonicum, eight patients with advanced schistosomiasis caused by S. japonicum and 13 healthy volunteers. The fresh feces of these participators, clinical examination results and basic information were collected. 16S ribosomal RNA gene sequencing was used to investigate gut microbiota, while ultraperformance liquid chromatography-mass spectrometry (UHPLC-MS) was applied to explore the metabolome of patients in different stages of schistosomiasis. RESULTS The study found that gut microbiota and metabolites were altered in patients with different stages of S. japonicum infection. Compared with healthy control group, the gut microbial diversity in patients with chronic S. japonicum infection was decreased significantly. However, the diversity of gut microbiota in patients with chronic schistosomiasis was similar to that in patients with advanced schistosomiasis. Compared with uninfected people, patients with schistosomiasis showed decreased Firmicutes and increased Proteobacteria. As disease progressed, Firmicutes was further reduced in patients with advanced S. japonicum infection, while Proteobacteria was further increased. In addition, the most altered metabolites in patients with S. japonicum infection were lipids and lipid-like molecules as well as organo-heterocyclic compounds, correlated with the clinical manifestations and disease progress of schistosomiasis caused by S. japonicum. CONCLUSIONS This study suggested that the gut microbiota and metabolome altered in patients in different stages of schistosomiasis, which was correlated with progression of schistosomiasis caused by S. japonicum. This inter-omics analysis may shed light on a better understanding of the mechanisms of the progression of S. japonicum infection and contribute to identifying new potential targets for the diagnosis and prognosis of S. japonicum infection. However, a large sample size of validation in clinic is needed, and further study is required to investigate the underlying mechanism.
Collapse
Affiliation(s)
- Chen Zhou
- Transplantation Center, Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junhui Li
- Transplantation Center, Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chen Guo
- Transplantation Center, Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhaoqin Zhou
- Transplantation Center, Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhen Yang
- Transplantation Center, Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Zhang
- Transplantation Center, Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Jiang
- Transplantation Center, Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Cai
- Schistosomiasis Control Institute of Hunan Province, Yueyang, Hunan, China
| | - Jie Zhou
- Schistosomiasis Control Institute of Hunan Province, Yueyang, Hunan, China
| | - Meng Xia
- Schistosomiasis Control Institute of Hunan Province, Yueyang, Hunan, China
| | - Yingzi Ming
- Transplantation Center, Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
32
|
Ma W, Fu Y, Zhu S, Xia D, Zhai S, Xiao D, Zhu Y, Dione M, Ben L, Yang L, Wang W. Ochratoxin A induces abnormal tryptophan metabolism in the intestine and liver to activate AMPK signaling pathway. J Anim Sci Biotechnol 2023; 14:125. [PMID: 37684661 PMCID: PMC10486098 DOI: 10.1186/s40104-023-00912-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/02/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Ochratoxin A (OTA) is a mycotoxin widely present in raw food and feed materials and is mainly produced by Aspergillus ochraceus and Penicillium verrucosum. Our previous study showed that OTA principally induces liver inflammation by causing intestinal flora disorder, especially Bacteroides plebeius (B. plebeius) overgrowth. However, whether OTA or B. plebeius alteration leads to abnormal tryptophan-related metabolism in the intestine and liver is largely unknown. This study aimed to elucidate the metabolic changes in the intestine and liver induced by OTA and the tryptophan-related metabolic pathway in the liver. MATERIALS AND METHODS A total of 30 healthy 1-day-old male Cherry Valley ducks were randomly divided into 2 groups. The control group was given 0.1 mol/L NaHCO3 solution, and the OTA group was given 235 μg/kg body weight OTA for 14 consecutive days. Tryptophan metabolites were determined by intestinal chyme metabolomics and liver tryptophan-targeted metabolomics. AMPK-related signaling pathway factors were analyzed by Western blotting and mRNA expression. RESULTS Metabolomic analysis of the intestinal chyme showed that OTA treatment resulted in a decrease in intestinal nicotinuric acid levels, the downstream product of tryptophan metabolism, which were significantly negatively correlated with B. plebeius abundance. In contrast, OTA induced a significant increase in indole-3-acetamide levels, which were positively correlated with B. plebeius abundance. Simultaneously, OTA decreased the levels of ATP, NAD+ and dipeptidase in the liver. Liver tryptophan metabolomics analysis showed that OTA inhibited the kynurenine metabolic pathway and reduced the levels of kynurenine, anthranilic acid and nicotinic acid. Moreover, OTA increased the phosphorylation of AMPK protein and decreased the phosphorylation of mTOR protein. CONCLUSION OTA decreased the level of nicotinuric acid in the intestinal tract, which was negatively correlated with B. plebeius abundance. The abnormal metabolism of tryptophan led to a deficiency of NAD+ and ATP in the liver, which in turn activated the AMPK signaling pathway. Our results provide new insights into the toxic mechanism of OTA, and tryptophan metabolism might be a target for prevention and treatment.
Collapse
Affiliation(s)
- Weiqing Ma
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Yang Fu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Shanshan Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Daiyang Xia
- School of Marine Sciences, Sun Yat-Sen University, and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082 China
| | - Shuangshuang Zhai
- College of Animal Science, YangtzeUniversity, Jingzhou, 434025 China
| | - Deqin Xiao
- College of Mathematics and Informatics, South China Agricultural University, Guangzhou, 510642 China
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | | | - Lukuyu Ben
- Int Livestock Res Inst, Nairobi, 00100 Kenya
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
33
|
Yoo JW, Bae HJ, Jeon MJ, Jeong TY, Lee YM. Metabolomic analysis of combined exposure to microplastics and methylmercury in the brackish water flea Diaphanosoma celebensis. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:6807-6822. [PMID: 36445536 DOI: 10.1007/s10653-022-01435-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Owing to their widespread distribution and high bioaccumulation, microplastics (MPs) and mercury (Hg) are considered major threats to the ocean. MP interacts with Hg because of its high adsorption properties. However, their toxicological interactions with marine organisms, especially combined effects at the molecular level, are poorly understood. This study investigated the single and combined effects of MP and Hg on the metabolic profile of the brackish water flea Diaphanosoma celebensis. A total of 238 metabolites were significantly affected by MP, Hg, or MP + Hg. Metabolite perturbation patterns showed that toxicity of Hg and MP + Hg was similar and that of MP was not significant. Among the 223 metabolites affected by Hg, profiles of 32 unannotated metabolites were significantly different from those of MP + Hg, and combined effects of MP + Hg decreased the effect of Hg on 25 of these metabolites. Only 11 annotated metabolites were significantly affected by Hg or MP + Hg and were related to carbohydrate, lipid, vitamin, and ecdysteroid metabolism. Ten metabolites were decreased by Hg and MP + Hg and were not significantly different between the exposure groups. Enrichment analysis showed that galactose, starch, and sucrose metabolism were the most affected pathways. These findings suggest that MP has negligible toxic effect, and Hg can induce energy depletion, membrane damage, and disruption of growth, development, and reproduction. Although the impact of MP was negligible, the combined effects of MP + Hg could be metabolite specific. This study provides better understanding of the combined effects of MP and Hg on marine organisms.
Collapse
Affiliation(s)
- Je-Won Yoo
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul, 03016, Republic of Korea
| | - Hyeon-Jeong Bae
- Department of Environmental Science, Hankuk University of Foreign Studies, 81 Oedae-Ro, Mohyeon-Eup, Cheoin-Gu, Yongin-Si, 17035, Republic of Korea
| | - Min Jeong Jeon
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul, 03016, Republic of Korea
| | - Tae-Yong Jeong
- Department of Environmental Science, Hankuk University of Foreign Studies, 81 Oedae-Ro, Mohyeon-Eup, Cheoin-Gu, Yongin-Si, 17035, Republic of Korea.
| | - Young-Mi Lee
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul, 03016, Republic of Korea.
| |
Collapse
|
34
|
Hyeraci M, Papanikolau ES, Grimaldi M, Ricci F, Pallotta S, Monetta R, Minafò YA, Di Lella G, Galdo G, Abeni D, Fania L, Dellambra E. Systemic Photoprotection in Melanoma and Non-Melanoma Skin Cancer. Biomolecules 2023; 13:1067. [PMID: 37509103 PMCID: PMC10377635 DOI: 10.3390/biom13071067] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Non-melanoma skin cancers (NMSCs), which include basal cell carcinoma (BCC), squamous cell carcinoma (SCC), and actinic keratosis (AK), are the most common cancer diseases in the Caucasian race. If diagnosed late and improperly treated, BCC and SCC can become locally advanced and metastasize. Malignant melanoma (MM) is less frequent but more lethal than NMSC. Given the individual and social burdens of skin cancers, performing an adequate prevention is needed. Ultraviolet (UV) ray exposure is one of the main risk factors for skin cancer. Thus, the first-choice prevention strategy is represented by photoprotection that can be both topical and systemic. The latter consists of the oral administration of molecules which protect human skin against the damaging effects of UV rays, acting through antioxidant, anti-inflammatory, or immunomodulator mechanisms. Although several compounds are commonly used for photoprotection, only a few molecules have demonstrated their effectiveness in clinical trials and have been included in international guidelines for NMSC prevention (i.e., nicotinamide and retinoids). Moreover, none of them have been demonstrated as able to prevent MM. Clinical and preclinical data regarding the most common compounds used for systemic photoprotection are reported in this review, with a focus on the main mechanisms involved in their photoprotective properties.
Collapse
Affiliation(s)
- Mariafrancesca Hyeraci
- IDI-IRCCS, Dermatological Research Hospital, Via dei Monti di Creta 104, 00167 Rome, Italy
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131Padua, Italy
| | | | - Marta Grimaldi
- Department of Medical and Surgical Sciences, Division of Dermatology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Francesco Ricci
- IDI-IRCCS, Dermatological Research Hospital, Via dei Monti di Creta 104, 00167 Rome, Italy
| | - Sabatino Pallotta
- IDI-IRCCS, Dermatological Research Hospital, Via dei Monti di Creta 104, 00167 Rome, Italy
| | - Rosanna Monetta
- IDI-IRCCS, Dermatological Research Hospital, Via dei Monti di Creta 104, 00167 Rome, Italy
| | - Ylenia Aura Minafò
- IDI-IRCCS, Dermatological Research Hospital, Via dei Monti di Creta 104, 00167 Rome, Italy
| | - Giovanni Di Lella
- IDI-IRCCS, Dermatological Research Hospital, Via dei Monti di Creta 104, 00167 Rome, Italy
| | - Giovanna Galdo
- Dermatology Unit, AORN San Giuseppe Moscati, 83100 Avellino, Italy
| | - Damiano Abeni
- IDI-IRCCS, Dermatological Research Hospital, Via dei Monti di Creta 104, 00167 Rome, Italy
| | - Luca Fania
- IDI-IRCCS, Dermatological Research Hospital, Via dei Monti di Creta 104, 00167 Rome, Italy
| | - Elena Dellambra
- IDI-IRCCS, Dermatological Research Hospital, Via dei Monti di Creta 104, 00167 Rome, Italy
| |
Collapse
|
35
|
Montali I, Ceccatelli Berti C, Morselli M, Acerbi G, Barili V, Pedrazzi G, Montanini B, Boni C, Alfieri A, Pesci M, Loglio A, Degasperi E, Borghi M, Perbellini R, Penna A, Laccabue D, Rossi M, Vecchi A, Tiezzi C, Reverberi V, Boarini C, Abbati G, Massari M, Lampertico P, Missale G, Ferrari C, Fisicaro P. Deregulated intracellular pathways define novel molecular targets for HBV-specific CD8 T cell reconstitution in chronic hepatitis B. J Hepatol 2023; 79:50-60. [PMID: 36893853 DOI: 10.1016/j.jhep.2023.02.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/11/2023]
Abstract
BACKGROUND & AIMS In chronic HBV infection, elevated reactive oxygen species levels derived from dysfunctional mitochondria can cause increased protein oxidation and DNA damage in exhausted virus-specific CD8 T cells. The aim of this study was to understand how these defects are mechanistically interconnected to further elucidate T cell exhaustion pathogenesis and, doing so, to devise novel T cell-based therapies. METHODS DNA damage and repair mechanisms, including parylation, CD38 expression, and telomere length were studied in HBV-specific CD8 T cells from chronic HBV patients. Correction of intracellular signalling alterations and improvement of antiviral T cell functions by the NAD precursor nicotinamide mononucleotide and by CD38 inhibition was assessed. RESULTS Elevated DNA damage was associated with defective DNA repair processes, including NAD-dependent parylation, in HBV-specific CD8 cells of chronic HBV patients. NAD depletion was indicated by the overexpression of CD38, the major NAD consumer, and by the significant improvement of DNA repair mechanisms, and mitochondrial and proteostasis functions by NAD supplementation, which could also improve the HBV-specific antiviral CD8 T cell function. CONCLUSIONS Our study delineates a model of CD8 T cell exhaustion whereby multiple interconnected intracellular defects, including telomere shortening, are causally related to NAD depletion suggesting similarities between T cell exhaustion and cell senescence. Correction of these deregulated intracellular functions by NAD supplementation can also restore antiviral CD8 T cell activity and thus represents a promising potential therapeutic strategy for chronic HBV infection. IMPACT AND IMPLICATIONS Correction of HBV-specific CD8 T cell dysfunction is believed to represent a rational strategy to cure chronic HBV infection, which however requires a deep understanding of HBV immune pathogenesis to identify the most important targets for functional T cell reconstitution strategies. This study identifies a central role played by NAD depletion in the intracellular vicious circle that maintains CD8 T cell exhaustion, showing that its replenishment can correct impaired intracellular mechanisms and reconstitute efficient antiviral CD8 T cell function, with implications for the design of novel immune anti-HBV therapies. As these intracellular defects are likely shared with other chronic virus infections where CD8 exhaustion can affect virus clearance, these results can likely also be of pathogenetic relevance for other infection models.
Collapse
Affiliation(s)
- Ilaria Montali
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | | | - Marco Morselli
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Greta Acerbi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Valeria Barili
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giuseppe Pedrazzi
- Department of Neuroscience - Biophysics and Medical Physics Unit, University of Parma, Parma, Italy
| | - Barbara Montanini
- Laboratory of Biochemistry and Molecular Biology, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Arianna Alfieri
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Marco Pesci
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Alessandro Loglio
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, Milan, Italy
| | - Elisabetta Degasperi
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, Milan, Italy
| | - Marta Borghi
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, Milan, Italy
| | - Riccardo Perbellini
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, Milan, Italy
| | - Amalia Penna
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Diletta Laccabue
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marzia Rossi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Camilla Tiezzi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Valentina Reverberi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Chiara Boarini
- Division of Internal Medicine 2 and Center for Hemochromatosis, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Abbati
- Division of Internal Medicine 2 and Center for Hemochromatosis, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Massari
- Unit of Infectious Diseases, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Pietro Lampertico
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Division of Gastroenterology and Hepatology, Milan, Italy; CRC "A. M. and A. Migliavacca" Center for Liver Disease, Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Gabriele Missale
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Carlo Ferrari
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| | - Paola Fisicaro
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| |
Collapse
|
36
|
Zhou X, Ming R, Guo M, Jiao H, Cui H, Hu D, Lu P. Characterization of imidacloprid-induced hepatotoxicity and its mechanisms based on a metabolomic approach in Xenopus laevis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161794. [PMID: 36707007 DOI: 10.1016/j.scitotenv.2023.161794] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
The toxic effects of imidacloprid are attracting increased concern because of its widespread use in agriculture and its persistence in the aquatic environment. Imidacloprid bioaccumulates and triggers various morphological and behavioral responses in amphibians, but the toxic effects and mechanism of imidacloprid in amphibians remain uncertain. In this study, the acute toxicity and chronic effects of imidacloprid on Xenopus laevis were studied. Acute toxicity for 96 h revealed that imidacloprid had an LC50 value of 74.18 mg/L. After exposure for 28 d under 1/10 and 1/100 LC50, liver samples from X. laevis were employed for biochemical analyses, pathological studies, and nontargeted metabolomics to systematically assess the toxic effects and mechanisms of imidacloprid. The results showed that oxidative stress and hepatic tissue morphology changes were observed in treated X. laevis liver. Twelve metabolites involved in metabolic pathway were altered between the control and high exposure groups and twenty-one metabolites were altered between the control and low exposure group. Eight metabolic pathways exposed to high levels and nine metabolic pathways exposed to low level of imidacloprid were disturbed. These pathways were primarily related to amino acid metabolism, lipid metabolism, and nucleotide metabolism. Our research provides essential information to evaluate the potential toxicity of imidacloprid to nontarget aquatic organisms.
Collapse
Affiliation(s)
- Xia Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Renyue Ming
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Meiting Guo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hui Jiao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Honghao Cui
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Deyu Hu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ping Lu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
37
|
Nouh AH, Elshahid AR, Kadah AS, Zeyada YA. Topical niacinamide (Nicotinamide) treatment for discoid lupus erythematosus (DLE): A prospective pilot study. J Cosmet Dermatol 2023; 22:1647-1657. [PMID: 36683259 DOI: 10.1111/jocd.15628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/24/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023]
Abstract
BACKGROUND Cutaneous lupus erythematosus is an umbrella term for a group of autoimmune connective tissue disorders affecting the skin. Discoid lupus erythematosus (DLE) is the chronic condition and most common form of cutaneous lupus erythematosus. AIMS Current therapies of DLE are challenging and not completely satisfactory, highly expensive, off-label, or poorly available (like antimalarials due to COVID-19 outbreaks). Nicotinamide, also called niacinamide, is a water-soluble form of vitamin B3 (niacin). Its multiple effects let us think that nicotinamide could be a therapy for lupus-associated skin lesions. METHODS We performed a prospective randomized double-blind clinical trial on 60 subjects diagnosed with Discoid lupus erythematosus using topical Nicotinamide 2% and 4% preparations in form of cream and gel on skin and scalp lesions. Control group was included using only cream/gel base as placebo control. RESULTS Obtained data showed that topical Nicotinamide can be used for the treatment of DLE as adjuvant to other treatment regimens with good cosmetic results and minimal side effects. Topical 4% Nicotinamide is superior to 2% preparation in response but associated with a higher incidence of irritation. CONCLUSION Topical Nicotinamide can be used for the treatment of DLE as an adjuvant to other treatment regimens with good cosmetic results and minimal side effects. Further trials with long-term therapy, follow-up period, and bigger sample sizes are required.
Collapse
Affiliation(s)
- Ahmed H Nouh
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine of Al-Azhar University, Cairo, Egypt
| | - Ahmed R Elshahid
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine of Al-Azhar University, Cairo, Egypt
| | - Ahmed S Kadah
- Dermatology and Venereology at Al-Hussein University Hospital of Al-Azhar University, Cairo, Egypt
| | - Youssef A Zeyada
- Department of Dermatology, Venereology and Andrology, Faculty of Medicine of Al-Azhar University, Cairo, Egypt
| |
Collapse
|
38
|
Li Y, Lian D, Wang J, Zhao Y, Li Y, Liu G, Wu S, Deng S, Du X, Lian Z. MDM2 antagonists promote CRISPR/Cas9-mediated precise genome editing in sheep primary cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:309-323. [PMID: 36726409 PMCID: PMC9883270 DOI: 10.1016/j.omtn.2022.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/31/2022] [Indexed: 01/04/2023]
Abstract
CRISPR-Cas9-mediated genome editing in sheep is of great use in both agricultural and biomedical applications. While targeted gene knockout by CRISPR-Cas9 through non-homologous end joining (NHEJ) has worked efficiently, the knockin efficiency via homology-directed repair (HDR) remains lower, which severely hampers the application of precise genome editing in sheep. Here, in sheep fetal fibroblasts (SFFs), we optimized several key parameters that affect HDR, including homology arm (HA) length and the amount of double-stranded DNA (dsDNA) repair template; we also observed synchronization of SFFs in G2/M phase could increase HDR efficiency. Besides, we identified three potent small molecules, RITA, Nutlin3, and CTX1, inhibitors of p53-MDM2 interaction, that caused activation of the p53 pathway, resulting in distinct G2/M cell-cycle arrest in response to DNA damage and improved CRISPR-Cas9-mediated HDR efficiency by 1.43- to 4.28-fold in SFFs. Furthermore, we demonstrated that genetic knockout of p53 could inhibit HDR in SFFs by suppressing the expression of several key factors involved in the HDR pathway, such as BRCA1 and RAD51. Overall, this study offers an optimized strategy for the usage of dsDNA repair template, more importantly, the application of MDM2 antagonists provides a simple and efficient strategy to promote CRISPR/Cas9-mediated precise genome editing in sheep primary cells.
Collapse
Affiliation(s)
- Yan Li
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China,State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China,Laboratory Animal Center of the Academy of Military Medical Sciences, Beijing 100071, China,These authors contributed equally
| | - Di Lian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China,These authors contributed equally
| | - Jiahao Wang
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China,Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing 100871, China,These authors contributed equally
| | - Yue Zhao
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yao Li
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guoshi Liu
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Sen Wu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shoulong Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China,Corresponding author: Shoulong Deng, NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, 5 Panjiayuannanli, Chaoyang District, Beijing 100021, China.
| | - Xuguang Du
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China,Corresponding author: Xuguang Du, State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | - Zhengxing Lian
- Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China,Corresponding author: Zhengxing Lian, Beijing Key Laboratory for Animal Genetic Improvement, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 2 Mingyuanxilu, Haidian District, Beijing 100193, China. .
| |
Collapse
|
39
|
Ying H, Gao L, Liao N, Xu X, Yu W, Hong W. Association between niacin and mortality among patients with cancer in the NHANES retrospective cohort. BMC Cancer 2022; 22:1173. [PMCID: PMC9661743 DOI: 10.1186/s12885-022-10265-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background
The vitamin niacin is used as a lipid-regulating supplement, but it is unknown whether niacin has a positive influence on cancer prognosis. In this study, we examine the relationship between niacin intake and mortality among patients with cancer.
Methods
Our study utilized all available continuous data from the National Health and Nutrition Examination Survey (NHANES) from 1999 to 2014. Multivariable Cox regression models were applied in order to investigate dietary niacin intake’s association with mortality. We compared the survival probability between groups of low and high niacin intake by plotting Kaplan-Meier curves. An analysis of subgroups was used to investigate heterogeneity sources.
Results
A total of 3504 participants were included in the cohort, with 1054 deaths. One thousand eight hundred forty-seven participants (52.3%) were female, 2548 participants (73.4%) were white, and the mean age (SE) was 65.38 years (0.32). According to multivariate logistic regression analysis, niacin intake was negatively associated with mortality outcomes in patients with cancer, with P values below 0.05 in all models. In subgroup analyses based on sex, age, and BMI, the association persisted. The Kaplan-Meier curves indicate that high niacin intake groups have better survival rates than low intake groups. Niacin supplementation improved cancer mortality but not all-cause mortality.
Conclusion
According to our study, higher dietary niacin intake was associated with lower mortality in cancer patients. Niacin supplements improved cancer survival rates, but not all causes of mortality.
Collapse
|
40
|
Chedere A, Mishra M, Kulkarni O, Sriraman S, Chandra N. Personalized quantitative models of NAD metabolism in hepatocellular carcinoma identify a subgroup with poor prognosis. Front Oncol 2022; 12:954512. [PMID: 36249025 PMCID: PMC9565660 DOI: 10.3389/fonc.2022.954512] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer cells are known to undergo metabolic adaptation to cater to their enhanced energy demand. Nicotinamide adenine dinucleotide (NAD) is an essential metabolite regulating many cellular processes within the cell. The enzymes required for NAD synthesis, starting from the base precursor - tryptophan, are expressed in the liver and the kidney, while all other tissues convert NAD from intermediate precursors. The liver, being an active metabolic organ, is a primary contributor to NAD biosynthesis. Inhibition of key enzymes in the NAD biosynthetic pathways is proposed as a strategy for designing anti-cancer drugs. On the other hand, NAD supplementation has also been reported to be beneficial in cancer in some cases. As metabolic adaptation that occurs in cancer cells can lead to perturbations to the pathways, it is important to understand the exact nature of the perturbation in each individual patient. To investigate this, we use a mathematical modelling approach integrated with transcriptomes of patient samples from the TCGA-LIHC cohort. Quantitative profiling of the NAD biosynthesis pathway helps us understand the NAD biosynthetic status and changes in the controlling steps of the pathway. Our results indicate that NAD biosynthesis is heterogeneous among liver cancer patients, and that Nicotinate phosphoribosyl transferase (NAPRT) levels are indicative of the NAD biosynthetic status. Further, we find that reduced NAPRT levels combined with reduced Nicotinamide phosphoribosyl transferase (NAMPT) levels contribute to poor prognosis. Identification of the precise subgroup who may benefit from NAD supplementation in subgroup with low levels of NAPRT and NAMPT could be explored to improve patient outcome.
Collapse
Affiliation(s)
- Adithya Chedere
- Department of Biochemistry, Biological Science Division, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Madhulika Mishra
- Department of Biochemistry, Biological Science Division, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Omkar Kulkarni
- Department of Biochemistry, Biological Science Division, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Shrisruti Sriraman
- IISc Mathematics Initiative, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Nagasuma Chandra
- Department of Biochemistry, Biological Science Division, Indian Institute of Science, Bengaluru, Karnataka, India
- IISc Mathematics Initiative, Indian Institute of Science, Bengaluru, Karnataka, India
- *Correspondence: Nagasuma Chandra,
| |
Collapse
|
41
|
Hofer SJ, Kroemer G, Kepp O. Autophagy-inducing nutritional interventions in experimental and clinical oncology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 373:125-158. [PMID: 36283765 DOI: 10.1016/bs.ircmb.2022.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Numerous pro-autophagic dietary interventions are being investigated for their potential cancer-preventive or therapeutic effects. This applies to different fasting regimens, methionine restriction and ketogenic diets. In addition, the supplementation of specific micronutrients such as nicotinamide (vitamin B3) or spermidine induces autophagy. In humans, leanness, plant-based diets (that may lead to partial methionine restriction) and high dietary uptake of spermidine are associated with a low incidence of cancers. Moreover, clinical trials have demonstrated the capacity of nicotinamide to prevent non-melanoma skin carcinogenesis. Multiple interventional trials are evaluating the capacity of autophagy-inducing regimens to improve the outcome of chemotherapy and immunotherapy. Here, we discuss the mechanistic underpinnings of autophagy induction by nutritional interventions, as well as the mechanisms through which autophagy induction in malignant or immune cells improves anticancer immunosurveillance.
Collapse
Affiliation(s)
- Sebastian J Hofer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Paris, France; Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Paris, France; Institut du Cancer Paris Carpem, Department of Biology, APHP, Hôpital Européen Georges Pompidou, Paris, France.
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France; Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris Cité, Sorbonne Université, Inserm U1138, Paris, France.
| |
Collapse
|
42
|
Alachkar A. Aromatic patterns: Tryptophan aromaticity as a catalyst for the emergence of life and rise of consciousness. Phys Life Rev 2022; 42:93-114. [PMID: 35905538 DOI: 10.1016/j.plrev.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/28/2022]
Abstract
Sunlight held the key to the origin of life on Earth. The earliest life forms, cyanobacteria, captured the sunlight to generate energy through photosynthesis. Life on Earth evolved in accordance with the circadian rhythms tied to sensitivity to sunlight patterns. A unique feature of cyanobacterial photosynthetic proteins and circadian rhythms' molecules, and later of nearly all photon-sensing molecules throughout evolution, is that the aromatic amino acid tryptophan (Trp) resides at the center of light-harvesting active sites. In this perspective, I review the literature and integrate evidence from different scientific fields to explore the role Trp plays in photon-sensing capabilities of living organisms through its resonance delocalization of π-electrons. The observations presented here are the product of apparently unrelated phenomena throughout evolution, but nevertheless share consistent patterns of photon-sensing by Trp-containing and Trp-derived molecules. I posit the unique capacity to transfer electrons during photosynthesis in the earliest life forms is conferred to Trp due to its aromaticity. I propose this ability evolved to assume more complex functions, serving as a host for mechanisms underlying mental aptitudes - a concept which provides a theoretical basis for defining the neural correlates of consciousness. The argument made here is that Trp aromaticity may have allowed for the inception of the mechanistic building blocks used to fabricate complexity in higher forms of life. More specifically, Trp aromatic non-locality may have acted as a catalyst for the emergence of consciousness by instigating long-range synchronization and stabilizing the large-scale coherence of neural networks, which mediate functional brain activity. The concepts proposed in this perspective provide a conceptual foundation that invites further interdisciplinary dialogue aimed at examining and defining the role of aromaticity (beyond Trp) in the emergence of life and consciousness.
Collapse
Affiliation(s)
- Amal Alachkar
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA; UC Irvine Center for the Neurobiology of Learning and Memory, University of California-Irvine, Irvine, CA 92697, USA; Institute for Genomics and Bioinformatics, School of Information and Computer Sciences, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
43
|
Regent F, Batz Z, Kelley RA, Gieser L, Swaroop A, Chen HY, Li T. Nicotinamide Promotes Formation of Retinal Organoids From Human Pluripotent Stem Cells via Enhanced Neural Cell Fate Commitment. Front Cell Neurosci 2022; 16:878351. [PMID: 35783089 PMCID: PMC9247291 DOI: 10.3389/fncel.2022.878351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Retinal organoids (ROs) derived from human pluripotent stem cells (hPSCs) recapitulate key features of retinogenesis and provide a promising platform to study retinal development and disease in a human context. Although multiple protocols are currently in use, hPSCs exhibit tremendous variability in differentiation efficiency, with some cell lines consistently yielding few or even no ROs, limiting their utility in research. We report here that early nicotinamide (NAM) treatment significantly improves RO yield across 8 hPSC lines from different donors, including some that would otherwise fail to generate a meaningful number of ROs. NAM treatment promotes neural commitment of hPSCs at the expense of non-neural ectodermal cell fate, which in turn increases eye field progenitor generation. Further analysis suggests that this effect is partially mediated through inhibition of BMP signaling. Our data encourage a broader use of human ROs for disease modeling applications that require the use of multiple patient-specific cell lines.
Collapse
|
44
|
Drapela S, Ilter D, Gomes AP. Metabolic reprogramming: a bridge between aging and tumorigenesis. Mol Oncol 2022; 16:3295-3318. [PMID: 35666002 PMCID: PMC9490145 DOI: 10.1002/1878-0261.13261] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/07/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Abstract
Aging is the most robust risk factor for cancer development, with more than 60% of cancers occurring in those aged 60 and above. However, how aging and tumorigenesis are intertwined is poorly understood and a matter of significant debate. Metabolic changes are hallmarks of both aging and tumorigenesis. The deleterious consequences of aging include dysfunctional cellular processes, the build‐up of metabolic byproducts and waste molecules in circulation and within tissues, and stiffer connective tissues that impede blood flow and oxygenation. Collectively, these age‐driven changes lead to metabolic reprogramming in different cell types of a given tissue that significantly affects their cellular functions. Here, we put forward the idea that metabolic changes that happen during aging help create a favorable environment for tumorigenesis. We review parallels in metabolic changes that happen during aging and how these changes function both as adaptive mechanisms that enable the development of malignant phenotypes in a cell‐autonomous manner and as mechanisms that suppress immune surveillance, collectively creating the perfect environment for cancers to thrive. Hence, antiaging therapeutic strategies that target the metabolic reprogramming that occurs as we age might provide new opportunities to prevent cancer initiation and/or improve responses to standard‐of‐care anticancer therapies.
Collapse
Affiliation(s)
- Stanislav Drapela
- Department of Molecular Oncology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| | - Didem Ilter
- Department of Molecular Oncology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| | - Ana P Gomes
- Department of Molecular Oncology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL, USA
| |
Collapse
|
45
|
Najeeb S, Suresh S, Raga SS, Binumon TM, Panicker SP. Regulation of ROS in Skin Stem Cells for Cancer Therapeutics. HANDBOOK OF OXIDATIVE STRESS IN CANCER: THERAPEUTIC ASPECTS 2022:2427-2450. [DOI: 10.1007/978-981-16-5422-0_220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
46
|
Effect of maternal dietary niacin intake on congenital anomalies: a systematic review and meta-analysis. Eur J Nutr 2021; 61:1133-1142. [PMID: 34748060 DOI: 10.1007/s00394-021-02731-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/27/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE The significance of niacin in embryonic development has clinical implications in the counseling of pregnant women and may be used to inform nutrition recommendations. This study, therefore, aims to review the associations between maternal periconceptional niacin intake and congenital anomalies. METHODS A systematic search of Ovid MEDLINE, ClinicalTrials.gov, AMED, CENTRAL, Emcare, EMBASE, Maternity & Infant Care and Google Scholar was conducted between inception and 30 September 2020. Medical subject heading terms included "nicotinic acids" and related metabolites, "congenital anomalies" and specific types of congenital anomalies. Included studies reported the association between maternal niacin intake and congenital anomalies in their offspring and reported the measure of association. Studies involved solely the women with co-morbidities, animal, in vitro and qualitative studies were excluded. The risk of bias of included studies was assessed using the Newcastle-Ottawa Scale (NOS). A random effects-restricted maximum likelihood model was used to obtain summary estimates, and multivariable meta-regression model was used to adjust study-level covariates. RESULTS Of 21,908 retrieved citations, 14 case-control studies including 35,743 women met the inclusion criteria. Ten studies were conducted in the U.S, three in Netherlands and one in South Africa. The meta-analysis showed that expectant mothers with an insufficient niacin intake were significantly more likely to have babies with congenital abnormalities (odds ratio 1.13, 95% confidence interval 1.02-1.24) compared to mothers with adequate niacin intake. A similar association between niacin deficiency and congenital anomalies was observed (OR 1.15, 95% CI 1.03-1.26) when sensitivity analysis was conducted by quality of the included studies. Meta-regression showed neither statistically significant impact of study size (p = 0.859) nor time of niacin assessment (p = 0.127). The overall quality of evidence used is high-thirteen studies achieved a rating of six or seven stars out of a possible nine based on the NOS. CONCLUSION Inadequate maternal niacin intake is associated with an increased risk of congenital anomalies in the offspring. These findings may have implications in dietary counseling and use of niacin supplementation during pregnancy.
Collapse
|
47
|
Tan CYR, Tan CL, Chin T, Morenc M, Ho CY, Rovito HA, Quek LS, Soon AL, Lim JSY, Dreesen O, Oblong JE, Bellanger S. Nicotinamide Prevents UVB- and Oxidative Stress-Induced Photoaging in Human Primary Keratinocytes. J Invest Dermatol 2021; 142:1670-1681.e12. [PMID: 34740582 DOI: 10.1016/j.jid.2021.10.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022]
Abstract
Nicotinamide (NAM), a NAD+ precursor, is known for its benefits to skin health. Under standard culture conditions, NAM delays the differentiation and enhances the proliferation of human primary keratinocytes (HPKs), leading to the maintenance of stem cells. Here, we investigated the effects of NAM on photoaging in 2D HPK cultures and 3D organotypic epidermal models. In both models, we found that UVB irradiation and hydrogen peroxide induced HPK premature terminal differentiation and senescence. In 3D organotypics, the phenotype was characterized by a thickening of the granular layer expressing filaggrin and loricrin, but thinning of the epidermis overall. NAM limited premature differentiation and ameliorated senescence, as evidenced by the maintenance of lamin B1 levels in both models, with decreased lipofuscin staining and reduced IL-6/IL-8 secretion in 3D models, compared to UVB-only controls. In addition, DNA damage observed after irradiation was accompanied by a decline in energy metabolism, while both effects were partially prevented by NAM. Our data thus highlight the protective effects of NAM against photoaging and oxidative stress in the human epidermis, and pinpoint DNA repair and energy metabolism as crucial underlying mechanisms.
Collapse
Affiliation(s)
- Christina Yan Ru Tan
- Stemness, Differentiation, and Aging in the Human Epidermis, A*STAR Skin Research Labs, Singapore
| | - Chye Ling Tan
- Stemness, Differentiation, and Aging in the Human Epidermis, A*STAR Skin Research Labs, Singapore
| | - Toby Chin
- Stemness, Differentiation, and Aging in the Human Epidermis, A*STAR Skin Research Labs, Singapore
| | - Malgorzata Morenc
- Stemness, Differentiation, and Aging in the Human Epidermis, A*STAR Skin Research Labs, Singapore
| | - Chin Yee Ho
- Cell Aging, A*STAR Skin Research Labs, Singapore
| | - Holly A Rovito
- Beauty Technology Division, The Procter & Gamble Company, Cincinnati, OH, USA
| | - Ling Shih Quek
- Stemness, Differentiation, and Aging in the Human Epidermis, A*STAR Skin Research Labs, Singapore
| | - Ai Ling Soon
- Cell Aging, A*STAR Skin Research Labs, Singapore
| | | | | | | | - Sophie Bellanger
- Stemness, Differentiation, and Aging in the Human Epidermis, A*STAR Skin Research Labs, Singapore.
| |
Collapse
|
48
|
Turck D, Bohn T, Castenmiller J, De Henauw S, Hirsch‐Ernst KI, Maciuk A, Mangelsdorf I, McArdle HJ, Naska A, Pelaez C, Pentieva K, Siani A, Thies F, Tsabouri S, Vinceti M, Cubadda F, Frenzel T, Heinonen M, Prieto Maradona M, Marchelli R, Neuhäuser‐Berthold M, Poulsen M, Schlatter JR, van Loveren H, Albert O, de Sesmaisons Lecarré A, Knutsen HK. Extension of use of nicotinamide riboside chloride as a novel food pursuant to Regulation (EU) 2015/2283. EFSA J 2021; 19:e06843. [PMID: 34804232 PMCID: PMC8586847 DOI: 10.2903/j.efsa.2021.6843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Following a request from the European Commission, the EFSA Panel on Nutrition, Novel Foods and Food Allergens (NDA) was asked to deliver an opinion on the safety of an extension of use of the novel food (NF) nicotinamide riboside chloride (NRC) pursuant to Regulation (EU) 2015/2283. The assessment addresses the use of NRC in 'meal replacement products' and 'nutritional drink mixes' at levels up to 300 mg/day for the general population, and in food for special medical purposes (FSMP) and total diet replacement for weight control (TDRWC) (as per Regulation (EU) No 609/2013) at levels up to 500 mg/day in adults. Benchmark dose modelling was carried out on data from the 90-day oral toxicity studies in rats relevant to the safety assessment. Considering the lack of tolerable upper intake level (UL) for nicotinamide in infants and the narrow margin of exposure between the estimated intake in infants and the lower confidence bound of the benchmark doses (BMDL 05) estimated by the models, the Panel concludes that the safety of the NF has not been established for use in 'meal replacement products' and 'nutritional drink mixes' under the proposed conditions of use. For FSMP and TDRWC, the proposed maximum use level corresponds to an intake of 210 mg nicotinamide per day, which is below the current UL for nicotinamide of 900 mg/day for adults. The Panel considers that the NF is as safe as pure nicotinamide for use in FSMP and TDRWC. The Panel, however, notes experimental data which indicate several pathways by which intakes of nicotinamide (or its precursors), at levels that are substantially higher than the physiological requirement, might cause adverse effects. The Panel considers that further investigations are required and that a re-evaluation of the UL for nicotinamide may be warranted.
Collapse
|
49
|
Vilaplana-Lopera N, Besh M, Moon EJ. Targeting Hypoxia: Revival of Old Remedies. Biomolecules 2021; 11:1604. [PMID: 34827602 PMCID: PMC8615589 DOI: 10.3390/biom11111604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022] Open
Abstract
Tumour hypoxia is significantly correlated with patient survival and treatment outcomes. At the molecular level, hypoxia is a major driving factor for tumour progression and aggressiveness. Despite the accumulative scientific and clinical efforts to target hypoxia, there is still a need to find specific treatments for tumour hypoxia. In this review, we discuss a variety of approaches to alter the low oxygen tumour microenvironment or hypoxia pathways including carbogen breathing, hyperthermia, hypoxia-activated prodrugs, tumour metabolism and hypoxia-inducible factor (HIF) inhibitors. The recent advances in technology and biological understanding reveal the importance of revisiting old therapeutic regimens and repurposing their uses clinically.
Collapse
Affiliation(s)
| | | | - Eui Jung Moon
- Department of Oncology, MRC Oxford Institute for Radiation Oncology, University of Oxford, Headington OX3 7DQ, UK; (N.V.-L.); (M.B.)
| |
Collapse
|
50
|
Dobler D, Schmidts T, Merzhäuser M, Schlupp P, Runkel F. Salicylate-Based Ionic Liquids as Innovative Ingredients in Dermal Formulations. J Pharm Sci 2021; 111:1414-1420. [PMID: 34563532 DOI: 10.1016/j.xphs.2021.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022]
Abstract
The identification and characterization of novel compounds with improved functionality and safety is of great importance. Ionic liquids are potential candidates for use in dermal formulation as multifunctional components with a large variability potential. The behavior of Ionic Liquids (ILs) in aqueous solutions has an impact on their functionality in the formulation as well as on their biological activity. Therefore, the solutions of selected ILs containing salicylate anions were investigated in the present work. The alkyl chain length of the cation determined most of the studied parameters. Thus, the surface activity, the antimicrobial activity, and cytotoxicity were directly proportional to the chain length. The salicylate anion did not affect the surface activity significantly, but had an important influence on the biological activity, especially for ILs with short chain lengths. It was found that the antimicrobial activity of benzalkonium-based ILs was mainly dependent on the cation, and the minimal inhibitory concentration (MIC) values were three order of magnitude lower than those of salicylic acid. Nevertheless, the slightly lower MIC values of benzalkonium salicylate, compared to benzalkonium chloride, might indicate a synergistic effect resulting from different modes of action of the two ions. N-hexyl nicotinamide salicylate also showed a higher antimicrobial activity than salicylic acid and, at the same time, a very good skin tolerance at concentrations up to 5% w/w. Based on our investigations N-hexyl nicotinamide salicylate was identified as potential emulsifiers / co-emulsifiers with antimicrobial properties for dermal formulations.
Collapse
Affiliation(s)
- Dorota Dobler
- Technische Hochschule Mittelhessen - University of Applied Sciences, Institute of Bioprocess Engineering and Pharmaceutical Technology, Wiesenstr. 14, 35390 Giessen, Germany.
| | - Thomas Schmidts
- Technische Hochschule Mittelhessen - University of Applied Sciences, Institute of Bioprocess Engineering and Pharmaceutical Technology, Wiesenstr. 14, 35390 Giessen, Germany; Novigo GmbH & Co. KG - Anwenderzentrum Technische Hochschule, Ringallee 34, 35390 Giessen, Germany
| | - Michael Merzhäuser
- Novigo GmbH & Co. KG - Anwenderzentrum Technische Hochschule, Ringallee 34, 35390 Giessen, Germany
| | - Peggy Schlupp
- Technische Hochschule Mittelhessen - University of Applied Sciences, Institute of Bioprocess Engineering and Pharmaceutical Technology, Wiesenstr. 14, 35390 Giessen, Germany
| | - Frank Runkel
- Technische Hochschule Mittelhessen - University of Applied Sciences, Institute of Bioprocess Engineering and Pharmaceutical Technology, Wiesenstr. 14, 35390 Giessen, Germany; Faculty of Biology and Chemistry, Justus Liebig University, Ludwigstraße 23, 35390 Giessen, Germany.
| |
Collapse
|