1
|
Yang S, Williams SJ, Courtney M, Burchill L. Warfare under the waves: a review of bacteria-derived algaecidal natural products. Nat Prod Rep 2025; 42:681-719. [PMID: 39749862 DOI: 10.1039/d4np00038b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Covering: 1960s to 2024Harmful algal blooms pose a major threat to aquatic ecosystems and can impact human health. The frequency and intensity of these blooms has increased over recent decades, driven primarily by climate change and an increase in nutrient runoff. Algal blooms often produce toxins that contaminate water sources, disrupt fisheries, and harm human health. These blooms may also result in oxygen-deprived environments leading to mass fish deaths that threaten the survival of other aquatic life. In freshwater and estuarine ecosystems, traditional chemical strategies to mitigate algal blooms include the use of herbicides, metal salts, or oxidants. Though effective, these agents are non-selective, toxic to other species, and cause loss of biodiversity. They can persist in ecosystems, contaminating the food web and providing an impetus for cost-effective, targeted algal-control methods that protect ecosystems. In marine ecosystems, harmful algal blooms are even more challenging to treat due to the lack of scalable solutions and the challenge of dispersal of algal control agents in open ocean settings. Natural products derived from algae-bacteria interactions have led to the evolution of diverse bacteria-derived algaecidal natural products, which are highly potent, species specific and have potential for combating harmful algal blooms. They provide valuable starting points for the development of eco-friendly algae control methods. This review provides a comprehensive overview of all bacterial algaecides and their activities, categorized into two major groups: (1) algaecides produced in ecologically significant associations between bacteria and algae, and (2) algaecides with potentially coincidental activity but without an ecological role in specific bacteria-algae interactions. This review contributes to a better understanding of the chemical ecology of parasitic algal-bacterial interactions, "the warfare under the waves", and highlights the potential applications of bacteria-derived algaecides to provide solutions to harmful algal blooms.
Collapse
Affiliation(s)
- Shuxin Yang
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Spencer J Williams
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Myles Courtney
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Laura Burchill
- School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
2
|
Ichikawa K, Johnson HM, Curtis MA, Biswas N, Singh S, Khachatryan HN, Gater AE, Lin SX, Sperry J. Targeting glioma with heteroaromatic alkaloids: A review of potential therapeutics. Bioorg Med Chem 2025; 121:118051. [PMID: 39999647 DOI: 10.1016/j.bmc.2024.118051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/04/2024] [Accepted: 12/19/2024] [Indexed: 02/27/2025]
Abstract
Glioblastoma multiforme (GBM), classified as a grade IV astrocytoma, is the most aggressive and deadly form of glioma, characterized by rapid progression, extensive genetic heterogeneity, and resistance to conventional therapies. Despite advancements in surgical techniques, radiation therapy, and the frontline chemotherapeutic agent temozolomide, the prognosis for GBM patients remains poor, with a median survival of 15 months and a 5-year survival rate of approximately 7 %. The absence of effective long-term treatments underscores the urgent, unmet clinical need for novel therapeutic strategies to improve patient outcomes. Natural products, particularly alkaloids, have garnered attention as a rich source of bioactive compounds with diverse pharmacological properties. Alkaloids, a structurally diverse group of natural products, are renowned for their chemotherapeutic properties and ability to cross the blood-brain barrier (BBB), making them promising candidates for glioma therapy. This review systematically examines all reported heteroaromatic alkaloids with documented anti-glioma activities, highlighting their mechanisms of action where available. By providing a comprehensive resource, it aims to facilitate the identification and optimisation of alkaloid-based compounds for glioma-targeted drug discovery. Additionally, this review emphasizes the importance of incorporating natural products into the drug development pipeline to address the pressing challenges associated with glioma, particularly GBM treatment.
Collapse
Affiliation(s)
- Karen Ichikawa
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand; Centre for Brain Research, University of Auckland, Auckland, New Zealand; Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Hannah M Johnson
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, University of Auckland, Auckland, New Zealand; Department of Anatomy and Medical Imaging, University of Auckland, Auckland, New Zealand
| | - Nandita Biswas
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Snigdha Singh
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Hasmik N Khachatryan
- Scientific Technological Centre of Organic and Pharmaceutical Chemistry, National Academy of Science of Armenia, Yerevan 0014, Armenia
| | - Anastasia E Gater
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Simon X Lin
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand
| | - Jonathan Sperry
- School of Chemical Sciences, University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| |
Collapse
|
3
|
Dehghani MA, Meftahi GH, Khorasgani EM. Passiflora incarnate extract attenuates neuronal loss and memory impairment in stressed rats. Brain Res 2025; 1853:149520. [PMID: 40010624 DOI: 10.1016/j.brainres.2025.149520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 02/28/2025]
Abstract
The present study investigated the protective effects of hydroalcoholic Passiflora incarnate extract on memory, anxiety-like behaviors, inflammatory factors, and cell density in the brain following stress. This study randomly divided 40 adult Wistar rats into 5 groups: control, normal saline, stress, stress + Passiflora incarnata, and Passiflora incarnata groups. For 21 consecutive days, the stress group and the Passiflora incarnata + stress group were exposed to immobilizing stress for 2 h each day. The Passiflora incarnata and the stress + Passiflora incarnata groups were gavaged with Passiflora incarnata extract half an hour before stress for 21 days. One day after the last stress, the Barnes and elevated plus maze were used to measure learning, memory, and anxiety-like behavior, respectively. Additionally, the MDA (malondialdehyde), TNF-α, IL-1, and gamma-glutamyl transferase (GGT) factors in the serum, as well as the cell density in the hippocampus, amygdala, and prefrontal regions, were investigated. The results of the Barnes maze showed that immobility stress increases the number of errors and the distance traveled to reach the target hole. Administering Passiflora incarnata extract prior to stress led to fewer errors and a shorter distance covered to reach the target hole. The use of Passiflora incarnata before stress in the elevated plus maze reduced anxiety-like behaviours (less frequent entries into the open arm, reduced duration of time in the open arm) compared to the stress group. The stress group caused a significant enhance in MDA, TNF-α, and IL-1 and a decrease in GGT, while treatment with Passiflora incarnata significantly improved these factors than the stress group. The immobility stress caused a significant decrease in cell density in the hippocampus, amygdala, and prefrontal region, and treatment with Passiflora incarnata increased cell density in these areas than the stress animals. In conclusion, Passiflora incarnata improves learning and memory impairment, anxiety-like behaviors, inflammatory factors, and damage caused by stress in the hippocampus, amygdala, and prefrontal areas.
Collapse
Affiliation(s)
| | - Gholam Hossein Meftahi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Elham Moghtadaei Khorasgani
- Department of Pathobiology, Faculty of Veterinary Medicine, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
4
|
Gao H, Xu Q, Zhu J, Kuerban K, Chen B, Zhao J, Aimulajiang K, Teng L. Efficacy and mechanism of action of harmine derivative H-2-104 against Echinococcus granulosus infection in mice. BMC Vet Res 2025; 21:174. [PMID: 40091052 PMCID: PMC11912776 DOI: 10.1186/s12917-025-04642-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Cystic echinococcosis (CE) is a chronic zoonotic parasitic disease caused by the parasite Echinococcus granulosus (E. granulosus). Currently, pharmacologic treatments are limited to albendazole and mebendazole; however, these treatments are associated with significant side effects and limited therapeutic efficacy, highlighting the urgent need for the development of new drugs. Harmine (HM) has been reported to exhibit potent antiparasitic effects, although it is also accompanied by notable neurotoxicity. H-2-104, a derivative of HM obtained through structural modification of its parent nucleus, represents a promising candidate for further investigation. This study aims to assess the in vivo and in vitro efficacy of H-2-104 against E. granulosus and to elucidate the mechanism of action of H-2-104 against CE from a metabolomics perspective. METHODS In vitro pharmacodynamics experiments were conducted to assess the inhibitory activity of H-2-104 against E. granulosus protoscoleces (PSCs). Following this, a mouse model of E. granulosus infection was established to explore the inhibitory effects against E. granulosus of H-2-104 at low, medium, and high concentrations. Additionally, non-targeted metabolomic approaches were utilized to analyze the serum and liver samples from mice in the control group, model group, and H-2-104 treatment group with the aim of identifying relevant biomarkers and crucial metabolic pathways involved in the response to H-2-104 treatment. RESULTS The in vitro results demonstrated that H-2-104 exhibited significantly superior inhibitory activity against PSCs compared to harmine and albendazole. Morphological observations revealed marked alterations in the ultrastructural characteristics of PSCs treated with H-2-104. In vivo pharmacodynamic studies showed that H-2-104 at a dosage of 100 mg/kg exhibited the highest cyst inhibition rate, which was (73.60 ± 4.71)%. Metabolomics analysis revealed that 64 serum metabolites were significantly altered, primarily involving metabolic pathways such as necroptosis, linoleic acid metabolism, and phenylalanine metabolism. Additionally, 81 liver metabolites were identified with significant differences, mainly involving metabolic pathways like fructose and mannose metabolism, and glycerophospholipid metabolism. CONCLUSIONS H-2-104 exhibits significant activity both in vitro and in vivo, suggesting its potential as a promising new drug for the treatment of CE. The anti-CE effects of H-2-104 may be attributed to its regulation of multiple biological pathways, including cell apoptosis, amino acid metabolism, and glucose metabolism.
Collapse
Affiliation(s)
- Huijing Gao
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830000, China
| | - Qinwei Xu
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830000, China
| | - Jiang Zhu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830000, China
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Kadierya Kuerban
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
- Department of Abdominal Surgery, The Third People Hospital of Xinjiang Uygur Autonomous Region, Urumqi, 831399, China
| | - Bei Chen
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Jun Zhao
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Kalibixiati Aimulajiang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830000, China.
- Clinical Medicine Institute, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
| | - Liang Teng
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Medical University, Urumqi, 830000, China.
| |
Collapse
|
5
|
Hasan-Kareem N, Alijanpour S, Zarrindast MR, Khakpai F. Synergistic anxiolytic-like effect of CPPG and harmaline in non-stressed and acute restraint stress (ARS) mice. Neurosci Lett 2025; 850:138157. [PMID: 39938675 DOI: 10.1016/j.neulet.2025.138157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/05/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Many studies revealed the role of metabotropic glutamate receptors (mGluRs) and harmaline in the modulation of anxiety-related behaviors. This study aimed to determine a possible interaction between harmaline and group III mGluR on the modulation of anxiety-correlated behaviors. The left lateral ventricle of male mice was unilaterally cannulated. Acute restraint stress (ARS) was induced by movement restraint for 4 h. Anxiety-like behaviors were measured using an elevated plus maze. The results showed that induction of ARS during 4 h reduced the percentage of time spent in open arms (%OAT) and percentage of entries to open arms (%OAE) without changing locomotor activity, indicating anxiogenic-like responses. Intraperitoneal (i.p.) administration of harmaline (2 mg/kg) increased %OAT in non-stressed and ARS mice, presenting anxiolytic-like responses. Intracerebroventricular (i.c.v.) infusion of CPPG (potent group III mGlu antagonist, 70 µg/mouse) induced anxiolytic-like behavior due to the augmentation of %OAT in non-stressed and ARS mice. Co-treatment of CPPG (70 µg/mouse, i.c.v.) along with harmaline (1 mg/kg, i.p) induced an anxiolytic-like effect. I.c.v. infusion of L-AP4 (selective group III mGlu agonist) or co-administration of it along harmaline had no significant effect on anxiety-like behaviors both in non-stressed and ARS mice. When harmaline and CPPG were co-administrated, CPPG potentiated the anxiolytic-like behavior induced by harmaline in non-stressed and ARS mice. The results revealed a synergistic effect between CPPG and harmaline on the induction of anxiolytic-like effect in non-stressed and ARS mice. Our results indicated an interaction between harmaline and group III mGluR on the modulation of anxiety-like responses in non-stressed and ARS mice.
Collapse
Affiliation(s)
- Nazahnin Hasan-Kareem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Khakpai
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
6
|
Rani H, Whitcomb SJ. Integrative LC-MS and GC-MS metabolic profiling unveils dynamic changes during barley malting. Food Chem 2025; 463:141480. [PMID: 39426241 DOI: 10.1016/j.foodchem.2024.141480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/21/2024]
Abstract
Malting involves complex biochemical transformations affecting sensory and quality attributes. Despite extensive research on storage carbohydrates and proteins in malting, the lack of a detailed metabolic understanding of this process limits our ability to assess and enhance malt quality. This study employed untargeted GC-MS and LC-MS metabolite profiling across six malting timepoints to identify 4980 known metabolites, 82 % of which exhibited significant changes during the malting process. Here we identified stage-dependent metabolic shifts and dynamic chemical classes and pathways between each studied stage. These results can guide the fine-tuning of malting conditions to improve malt quality for beer production and other malt-based applications. Additionally, metabolites with antimicrobial properties were identified, underscoring the interplay between barley and microbial metabolic processes during malting. Further research into these microbial metabolites and cognate microbes may lead to novel malting assessment traits for high-quality and safe malted barley.
Collapse
Affiliation(s)
- Heena Rani
- Cereal Crops Research Unit, United States Department of Agriculture - Agricultural Research Service, Madison, WI, USA
| | - Sarah J Whitcomb
- Cereal Crops Research Unit, United States Department of Agriculture - Agricultural Research Service, Madison, WI, USA.
| |
Collapse
|
7
|
Yu L, Shen N, Ren J, Xin H, Cui Y. Resource distribution, pharmacological activity, toxicology and clinical drugs of β-Carboline alkaloids: An updated and systematic review. Fitoterapia 2025; 180:106326. [PMID: 39645053 DOI: 10.1016/j.fitote.2024.106326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
β-Carboline alkaloids are a broad class of indole alkaloids that were first isolated from Peganum harmala L., a traditional Chinese herbal remedy. β-Carboline alkaloids have been found to have many pharmacological activities, including anti-inflammatory, antioxidant, and anti-cancer properties. β-Carboline alkaloids have been studied, and nine therapeutic medications based on its structural skeleton have been utilized to treat a range of illnesses. These compounds' potent pharmacological action and high druggability have garnered a lot of interest. This review systematically summarized resource distribution, pharmacological activity, toxicology and clinical drugs of β-Carboline alkaloids. These alkaloids are mostly found in plants, particularly (Peganum harmala L.), although they are also present in food, bacteria, fungus, and animals. By inhibiting NF-κB, MAPKs, and PI3K-AKT multiple signal pathways, they demonstrate a wide range of pharmacological activities, including anti-inflammatory, oxidative, neurological, cancer, fungal, and leishmania pharmacological activity. Toxicology revealed that β-Carboline alkaloids can produce confusion, irritability, dyskinesia, nausea, vomiting, and audiovisual hallucinations in addition to stimulating the central nervous system and inhibiting metabolism. Clinical drugs based on β-Carboline alkaloids have been used for clinical treatment of arrhythmia, cerebrovascular diseases and dysfunction, hypertension, epilepsy, malaria and mydriasis diseases. It will prompt us to redefine β-Carboline alkaloids. For β-Carboline alkaloids that inspires pharmacological applications in medicine and the development of novel medications containing these alkaloids, it will be a useful resource.
Collapse
Affiliation(s)
- Lili Yu
- School of Medicine, Linyi University, Linyi 276000, Shandong, China
| | - Na Shen
- School of Medicine, Linyi University, Linyi 276000, Shandong, China
| | - Jiani Ren
- School of Medicine, Linyi University, Linyi 276000, Shandong, China
| | - Huawei Xin
- School of Medicine, Linyi University, Linyi 276000, Shandong, China.
| | - Yulei Cui
- School of Medicine, Linyi University, Linyi 276000, Shandong, China.
| |
Collapse
|
8
|
Bhutta ZA, Choi KC. Phytochemicals as Novel Therapeutics for Triple-Negative Breast Cancer: A Comprehensive Review of Current Knowledge. Phytother Res 2025; 39:364-396. [PMID: 39533509 DOI: 10.1002/ptr.8376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/10/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Triple-negative breast cancer is a characteristic subtype of breast cancer that lacks the estrogen receptor, human epidermal growth factor receptor 2, and progesterone receptor. Because of its highly diverse subtypes, increased metastasis capability, and poor prognosis, the risk of mortality for people with triple-negative breast cancers is high as compared with other cancers. Chemotherapy is currently playing a major role in treating triple-negative breast cancer patients; however, poor prognosis due to drug resistance is causing serious concern. Recent studies on several phytochemicals derived from various plants being used in Traditional Chinese Medicine, Traditional Korean Medicine, Ayurveda (Traditional Indian Medicine), and so on, have demonstrated to be a promising agent as a viable therapy against triple-negative breast cancer. Phytochemicals categorized as alkaloids, polyphenols, terpenoids, phytosterols, and organosulfur compounds have been demonstrated to reduce cancer cell proliferation and metastasis by activating various molecular pathways, thereby reducing the spread of triple-negative breast cancer. This review analyzes the molecular mechanisms by which various phytochemicals fight triple-negative breast cancer and offers a perspective on the difficulties and potential prospects for treating triple-negative breast cancer with various phytochemicals.
Collapse
Affiliation(s)
- Zeeshan Ahmad Bhutta
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
9
|
Mueller MJ, Aicher HD, Dornbierer DA, Marten L, Suay D, Meling D, Elsner C, Wicki IA, Müller J, Poetzsch SN, Caflisch L, Hempe A, Steinhart CP, Puchkov M, Kost J, Landolt HP, Seifritz E, Quednow BB, Scheidegger M. Pharmacokinetics and pharmacodynamics of an innovative psychedelic N,N-dimethyltryptamine/harmine formulation in healthy participants: a randomized controlled trial. Int J Neuropsychopharmacol 2024; 28:pyaf001. [PMID: 39774840 PMCID: PMC11770821 DOI: 10.1093/ijnp/pyaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Recent interest in the clinical use of psychedelics has highlighted plant-derived medicines like ayahuasca showing rapid-acting and sustainable therapeutic effects in various psychiatric conditions. This traditional Amazonian plant decoction contains N,N-dimethyltryptamine (DMT) and β-carboline alkaloids such as harmine. However, its use is often accompanied by distressing effects like nausea, vomiting, and intense hallucinations, possibly due to complex pharmacokinetic/pharmacodynamic (PK-PD) interactions and lack of dose standardization. METHODS This study addresses these limitations by testing a novel pharmaceutical formulation containing pure forms of DMT and harmine in a double-blind, randomized, placebo-controlled trial with 31 healthy male volunteers. We evaluated PK-PD by monitoring drug and metabolite plasma levels, subjective effects, adverse events, and cardiovascular parameters. Each participant received 3 randomized treatments: (1) 100 mg buccal harmine with 100 mg intranasal DMT, (2) 100 mg buccal harmine with intranasal placebo, and (3) full placebo, using a repeated-intermittent dosing scheme, such that 10 mg of DMT (or placebo) was administered every 15 minutes. RESULTS N,N-dimethyltryptamine produced consistent PK profiles with Cmax values of 22.1 ng/mL and acute drug effects resembling the psychological effects of ayahuasca with a duration of 2-3 hours. Likewise, buccal harmine produced sustained-release PK profiles with Cmax values of 32.5 ng/mL but lacked distinguishable subjective effects compared to placebo. All drug conditions were safe and well tolerated, indicating the formulation's suitability for clinical applications. CONCLUSIONS This study underscores the potential of a patient-oriented pharmaceutical formulation of DMT and harmine to reduce risks and improve therapeutic outcomes in treating mental health disorders. CLINICAL TRIAL REGISTRATION NUMBER Neurodynamics of prosocial emotional processing following serotonergic stimulation with N,N-dimethyltryptamine (DMT) and harmine in healthy subjects (NCT04716335) https://clinicaltrials.gov/ct2/show/NCT04716335.
Collapse
Affiliation(s)
- Michael J Mueller
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
- Department of Health Science & Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Helena D Aicher
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
- Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Dario A Dornbierer
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Laurenz Marten
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
- Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Dila Suay
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
- IMT School for Advanced Studies, Luca, Italy
| | - Daniel Meling
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
- Department of Psychosomatic Medicine and Psychotherapy, Faculty of Medicine, University Medical Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Claudius Elsner
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
| | - Ilhui A Wicki
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
| | - Jovin Müller
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
| | - Sandra N Poetzsch
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Luzia Caflisch
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
| | - Alexandra Hempe
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
- Faculty of Psychology, TU Dresden, Dresden, Germany
| | | | - Maxim Puchkov
- Institute of Pharmaceutical Technology, University of Basel, Basel, Switzerland
| | - Jonas Kost
- Institute of Pharmaceutical Technology, University of Basel, Basel, Switzerland
| | - Hans-Peter Landolt
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Boris B Quednow
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
| | - Milan Scheidegger
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Khakpai F, Golshani SP, Alijanpour S, Ebrahimi-Ghiri M, Zarrindast MR. Anxiolytic- and antidepressive-like effects of harmaline in mice are mediated via histamine H3 receptor blockade. Biochem Biophys Res Commun 2024; 736:150879. [PMID: 39467356 DOI: 10.1016/j.bbrc.2024.150879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Many neuropsychiatric disorders can be caused by neurotransmitter dysfunction. Experimental studies have demonstrated that histamine and the harmaline affect physiological processes through interaction with other neurotransmitter systems. The objective of these experiments was to investigate the involvement of the histaminergic system in the effects of harmaline on anxiety- and depressive-related effects in male NMRI mice. Behavioral tests were employed to evaluate anxiety-related symptoms (elevated plus maze; EPM), depressive-like symptoms (forced swim test; FST), and cognitive decline (step-down test). The histamine H3 receptor (H3R) agonist α-methylhistamine dihydrobromide (α-MH; 5 mg/kg, i.p.) had anxiolytic- and depressive-like effects, while the H3R antagonist thioperamide (10 mg/kg, i.p.) showed an antidepressive-like property. The subthreshold dose of α-MH resulted in an increase in the tendency of mice treated with the harmaline (2.5 mg/kg) to remain in the EPM open-arms. A subthreshold dose of thioperamide (5 mg/kg) increased the time spent in the open-arms in mice treated with harmaline (2.5 and 5 mg/kg) while a high dose of harmaline decreased the immobility time. Furthermore, two higher doses of harmaline resulted in a reduction in the number of open-arm entries. Similarly, mice administered with thioperamide and a low dose of harmaline decreased locomotor activity in the EPM. Ultimately, the combined thioperamide and harmaline did not impair memory retrieval of mice. These experiments demonstrate that the histaminergic system is implicated in the anxiety- and depressive-related effects of harmaline. The combination of thioperamide and harmaline is effective in treating anxiety and depression without having an adverse effect on memory formation.
Collapse
Affiliation(s)
- Fatemeh Khakpai
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Iran
| | - Seyed Parsa Golshani
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran
| | | | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Khakpai F. Norharmane potentiated anxiolytic- and antidepressant-like responses induced by imipramine and citalopram: an isobologram analysis. Behav Pharmacol 2024; 35:432-441. [PMID: 39361265 DOI: 10.1097/fbp.0000000000000794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
β-carboline compounds display a therapeutic property for treating depression and anxiety behaviors. Imipramine and citalopram play an important role in the modulation of anxiety and depression behaviors. We investigated the effects of norharmane, imipramine, and citalopram on anxiety- and depression-like effects and their interactions. Elevated plus maze and forced swimming test were used for the assessment of anxiety- and depression-like behaviors in male mice. The results revealed that intraperitoneal (i.p.) administration of norharmane (10 mg/kg) increased percentage of open arm time (%OAT) in the elevated plus maze test and decreased immobility time in the forced swimming test, proposing anxiolytic- and antidepressant-like effects. Injection of imipramine (5 mg/kg; i.p.) enhanced %OAT and decreased immobility time, suggesting anxiolytic- and antidepressant-like effects. Moreover, norharmane potentiated the anxiolytic- and antidepressant-like responses induced by imipramine by increasing %OAT and decreasing immobility time. The results revealed additive anxiolytic- and antidepressant-like effects between norharmane and imipramine in mice. Alone, the administration of citalopram (5 mg/kg; i.p.) enhanced %OAT and reduced immobility time, causing anxiolytic- and antidepressant-like effects. When citalopram and norharmane were coinjected, norharmane augmented the anxiolytic- and antidepressant-like effects induced by citalopram by increasing %OAT and reducing immobility time. These results indicated additive anxiolytic- and antidepressant-like effects between norharmane and antidepressant drugs such as imipramine and citalopram on the modulation of anxiety and depression processes in mice.
Collapse
Affiliation(s)
- Fatemeh Khakpai
- Department of Physiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
12
|
Tekşen Y, Gündüz MK, Berikten D, Özatik FY, Aydın HE. Peganum harmala L. seed extract attenuates anxiety and depression in rats by reducing neuroinflammation and restoring the BDNF/TrkB signaling pathway and monoamines after exposure to chronic unpredictable mild stress. Metab Brain Dis 2024; 39:1523-1541. [PMID: 39172328 DOI: 10.1007/s11011-024-01416-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Depression is a mental disorder characterised by persistent low mood, anhedonia and cognitive impairment that affects an estimated 3.8% of the world's population, including 5% of adults. Peganum harmala L. (P. harmala) is a medicinal plant and has been reported to be effective against Alzheimer's disease, Parkinson's disease and depression. The present study was aimed to evaluate the behavioral and pharmacological effects of P. harmala seed extract in rats exposed to chronic unpredictable mild stress (CUMS) in vivo and to investigate the mechanism of action. CUMS-exposed rats were treated with P. harmala extract (75 and 150 mg/kg, i.p.) for 2 weeks. HPLC analysis was used to determine the concentration of harmaline and harmine alkaloids in the extract. Heavy metal analysis in seeds was performed by ICP-MS. Our results showed that P. harmala at the dose of 150 mg/kg significantly reduced the depressive-like behaviors in CUMS-exposed rats, as evidenced by increased sucrose consumption in the sucrose preference test (SPT), decreased immobility time in the forced swim test (FST) and plasma corticosterone levels, increased the time spent in open arms in the elevated plus maze (EPM), and improved memory and learning in the passive avoidance test (PAT). In addition, P. harmala decreased monoamine oxidase-A (MAO-A) levels, and increased serotonin (5-HT), dopamine (DA), and noradrenaline (NA) levels in the brains of rats exposed to CUMS. P. harmala decreased the expression of the pro-inflammatory transcription factor nuclear factor-κB (NF-κB), and increased the antioxidant nuclear factor erythroid 2-related factor 2 (Nrf2) in rat brain. Furthermore, P. harmala improved brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) protein expression in rat brain. In conclusion, P. harmala at a dose of 150 mg/kg is more effective in preventing depressive-like behavior in CUMS-exposed rats by improving neurotransmitter levels, reducing oxidative stress, suppressing neuroinflammation and activating the BDNF/TrkB pathway, all of which are important in the pathogenesis of depression.
Collapse
Affiliation(s)
- Yasemin Tekşen
- Faculty of Medicine, Department of Pharmacology, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, Kütahya, 43000, Türkiye.
| | - Meliha Koldemir Gündüz
- Faculty of Engineering and Natural Sciences, Department of Basic Sciences of Engineering, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, Kütahya, 43000, Türkiye
| | - Derya Berikten
- Faculty of Engineering and Natural Sciences, Department of Molecular Biology and Genetics, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, 43000, Kütahya, Türkiye
| | - Fikriye Yasemin Özatik
- Faculty of Medicine, Department of Pharmacology, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, Kütahya, 43000, Türkiye
| | - Hasan Emre Aydın
- Faculty of Medicine, Department of Neurosurgery, Kütahya Health Sciences University, Evliya Çelebi Yerleşkesi, 43000, Kütahya, Türkiye
| |
Collapse
|
13
|
Cho Y, Jeong WY, Hwang S, Na S, Park H, Heo S, Park S, Lim KJ, Shin HS, Son J. Development of a simultaneous analytical method for the dietary exposure determination of β-Carboline alkaloids in foods. Food Chem 2024; 460:140546. [PMID: 39068799 DOI: 10.1016/j.foodchem.2024.140546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
As β-carboline (βC) alkaloids, posing potential health risks, are present in a wide variety of foods, determining the exposure degrees of food to these alkaloids from dietary activity is key to ensuring food safety. Here, we developed a rapid and sensitive simultaneous analytical method for six βC alkaloids in food. We optimized the buffered QuEChERS method, which includes a clean-up process through dispersive solid phase extraction, to extract the target compounds from food matrices; then, these compounds were detected via liquid chromatography-tandem mass spectrometry. We established calibration ranges for each target compound and matrix within the range of 0.05-250 μg/kg, and verified linearity (R2 ≥ 0.99) and limit of quantitation (≤1.63 μg/kg). Furthermore, we validated trueness (85.8%-118.8%) and precision (≤18.7%) at three levels within the calibration range, including the lowest and highest concentrations. Finally, we employed the developed method to determine the βC alkaloid contents in 304 samples of 41 food items and dietary exposure of six βC alkaloids resulting from daily intake. Although βC alkaloids were detected in 86.2% of the samples, exposure level to the 41 food items was insufficient to cause toxicity.
Collapse
Affiliation(s)
- Yoeseph Cho
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| | - Woo Yeon Jeong
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Sungmin Hwang
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biotechnology, Yonsei University College of Life Science and Biotechnology, Seoul 03722, Republic of Korea.
| | - Sunhwan Na
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Hana Park
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biotechnology, Yonsei University College of Life Science and Biotechnology, Seoul 03722, Republic of Korea.
| | - Soohyun Heo
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biotechnology, Yonsei University College of Life Science and Biotechnology, Seoul 03722, Republic of Korea.
| | - Saeyeon Park
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Department of Biotechnology, Yonsei University College of Life Science and Biotechnology, Seoul 03722, Republic of Korea.
| | - Kyung-Jik Lim
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University, Goyang 10326, Republic of Korea.
| | - Junghyun Son
- Doping Control Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
14
|
Benramdane H, Benariba N, Silva CFM, Catarino MD, Bartolomeu M, Fekhikher Z, Pinto DCGA. Phytochemical Profile, Antioxidant, Anti-Alzheimer, And α-Glucosidase Inhibitory Effect Of Algerian Peganum harmala Seeds Extract. Chem Biodivers 2024; 21:e202401308. [PMID: 39072993 DOI: 10.1002/cbdv.202401308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 07/30/2024]
Abstract
Peganum harmala seeds crude hydro-methanolic extract and their fractions (obtained with ethyl acetate and butan-1-ol) were analyzed and compared for their chemical profiles of alkaloids and polyphenols content. Moreover, their antioxidant, α-glucosidase, acetylcholinesterase, and butyrylcholinesterase inhibitory activities were evaluated. The butan-1-ol fraction revealed the highest total phenolic content and exhibited the highest antioxidant capacity. From the inhibitory enzyme evaluations, it should be highlighted the butan-1-ol fraction inhibitory potential of ɑ-glucosidase (the IC50=141.18±4 μg/mL), which was better than the acarbose inhibitory effect (IC50=203.41±1.07 μg/mL). The extracts' chemical profile analysis revealed several compounds, in which quercetin dimethyl ether, harmine and harmaline emerged as the major compounds. The different solvents used impacted Peganum harmala seed contents and biological responses. Statistical analysis showed a significant correlation between bioactive compounds and biological activities. Thus, Peganum harmala seeds could be a promising natural source of bioactive compounds at the crossroads of many human diseases, and its cultivation may be encouraged.
Collapse
Affiliation(s)
- Hanane Benramdane
- LAPSAB, Department of Biology, University of Abou Bekr Belkaid, Tlemcen, 13000, Algeria
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Nabila Benariba
- LAPSAB, Department of Biology, University of Abou Bekr Belkaid, Tlemcen, 13000, Algeria
| | - Carlos F M Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Marcelo D Catarino
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Maria Bartolomeu
- CESAM, Department of Biology, University of Aveiro, Aveiro, 3810-193, Portugal
| | - Zohra Fekhikher
- LAPSAB, Department of Biology, University of Abou Bekr Belkaid, Tlemcen, 13000, Algeria
| | - Diana C G A Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, 3810-193, Portugal
| |
Collapse
|
15
|
Al-Momani H, Albalawi H, Al Balawi D, Khleifat KM, Aolymat I, Hamed S, Albiss BA, Khasawneh AI, Ebbeni O, Alsheikh A, Zueter AM, Pearson JP, Ward C. Enhanced Efficacy of Some Antibiotics in the Presence of Silver Nanoparticles Against Clinical Isolate of Pseudomonas aeruginosa Recovered from Cystic Fibrosis Patients. Int J Nanomedicine 2024; 19:12461-12481. [PMID: 39611007 PMCID: PMC11602434 DOI: 10.2147/ijn.s479937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024] Open
Abstract
Introduction Given the increasing frequency of drug-resistant bacteria and the limited progress in developing new antibiotics, it is necessary to explore new methods of combating microbial infections. Nanoparticles, particularly silver nanoparticles (Ag-NPs), have shown exceptional antibacterial characteristics; however, elevated concentrations of Ag-NPs can produce noticeable levels of toxicity in mammalian cells. Aim This study examined the potential synergistic effect of combining a low dosage of Ag-NPs and anti-pseudomonas drugs against Pseudomonas aeruginosa (ATCC strain) and eleven clinical isolates from cystic fibrosis patients. Methods The Ag-NPs were chemically produced by utilizing a seed extract from Peganum Harmala and characterized via ultraviolet-visible spectroscopy and scanning electron microscopy. The broth microdilution technique was utilized to investigate the minimum inhibitory concentration (MIC) of Ag-NPs and eight antibiotics (Piperacillin, Ciprofloxacin, Levofloxacin, Meropenem, Amikacin, Ceftazidime, Gentamicin, Aztreonam). The fractional inhibitory concentration index (FICI) was determined via the checkerboard method to evaluate the synergistic effects of Ag-NPs and various antibiotics. Results The biosynthesized Ag-NPs were uniformly spherical and measured around 15 nm in size. When combined with antibiotics, Ag-NP produced statistically significant reductions in the amount of antibiotics required to completely prevent P. aeruginosa growth for all strains. The findings revealed that the MIC of Ag-NPs was 15 ug/mL for all strains which decreased substantially when administered with antibiotics at a dose of 1.875-7.5 ug/mL. The majority of Ag-NP and antibiotic combinations exhibited a synergistic or partially synergistic impact. This was particularly noticeable in combinations containing Meropenem, Ciprofloxacin, and Aztreonam (in which the FIC index was less than or equal to 0.5). Conclusion The findings revealed that combining Ag-NPs with antibiotics was more effective than using Ag-NPs or antibiotics in isolation and that combinations of Ag-NPs and antimicrobial agents displayed synergistic activity against the majority of strains assessed.
Collapse
Affiliation(s)
- Hafez Al-Momani
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Hadeel Albalawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Dua’a Al Balawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Khaled M Khleifat
- Biology Department, College of Science, Mutah University, Mutah, Karak, 61710, Jordan
| | - Iman Aolymat
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Saja Hamed
- Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Borhan Aldeen Albiss
- Nanotechnology Institute, Jordan University of Science & Technology, Irbid, 22110, Jordan
| | - Ashraf I Khasawneh
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Ola Ebbeni
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan
| | - Ayman Alsheikh
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Zarqa University, Zarqa, 13110, Jordan
| | - AbdelRahman M Zueter
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | | | - Christopher Ward
- Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle Upon Tyne, NE2 4HHUK
| |
Collapse
|
16
|
Binici Hİ, Şat İG, Yilmaz B. Comparison of antioxidant, phenolic profile, melatonin, and volatile compounds of some selected plant samples. Food Sci Nutr 2024; 12:7158-7165. [PMID: 39479601 PMCID: PMC11521718 DOI: 10.1002/fsn3.4334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 11/02/2024] Open
Abstract
It was aimed to examine the antioxidant, phenolic profile, and volatile compound contents of seven different aromatic plant samples (broccoli, yarpuz, walnut leaves, marshmallow, wild clary, harmala, and common yarrow) collected from Adilcevaz district of Bitlis province in Türkiye. Gas chromatography-mass spectrometry (GC-MS) device was used for the volatile profile of the plant varieties. The most abundant volatile compounds were generally heptacosane compound that showed anticancer and antimicrobial effects. Piperitone oxide was detected only in yarpuz samples. Phenolic content and antioxidant activity of the plant samples were found to be highly significant (p < .01). When the amounts of total flavonoids were ranked from the largest to the smallest according to plant varieties, it was determined as wild clary > walnut leaves > yarpuz > common yarrow > marshmallow > harmala > broccoli. According to both antioxidant activity methods, wild clary had the lowest IC50 (half-maximal inhibitory concentration) value, i.e. the highest antioxidant activity. The highest amount of epicatechin was determined in yarpuz (898.30 μg/g) and the lowest amount of epicatechin was determined in wild clary (86.09 μg/g). No epicatechin was detected in the other four plant samples. Among the samples, melatonin hormone was detected only in common yarrow, harmala, and broccoli and the highest value was determined in common yarrow (3996.27 ng/g). Therefore, it shows that plant samples are rich sources of phytochemicals that can play an important role in preventing the progression of many diseases related to oxidative stress in traditional medicine treatment as functional food sources.
Collapse
Affiliation(s)
- Halil İbrahim Binici
- Department of Nutrition and Dietetics, Faculty of Health Sciencesİstanbul Esenyurt UniversityİstanbulTürkiye
| | - İhsan Güngör Şat
- Department of Food Engineering, Faculty of AgricultureAtaturk UniversityErzurumTürkiye
| | - Bilal Yilmaz
- Department of Analytical Chemistry, Faculty of PharmacyAtaturk UniversityErzurumTürkiye
| |
Collapse
|
17
|
Ables JL, Israel L, Wood O, Govindarajulu U, Fremont RT, Banerjee R, Liu H, Cohen J, Wang P, Kumar K, Lu G, DeVita RJ, Garcia-Ocaña A, Murrough JW, Stewart AF. A Phase 1 single ascending dose study of pure oral harmine in healthy volunteers. J Psychopharmacol 2024; 38:911-923. [PMID: 39301926 PMCID: PMC11549898 DOI: 10.1177/02698811241273772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
BACKGROUND Harmine is a component of the hallucinogenic brew, Ayahuasca, which also contains the psychoactive compound, N, N-dimethyltryptamine. Whether pharmaceutical-grade harmine hydrochloride (HCl) has psychoactive effects, the doses at which these might occur, and the dose-response relationship to side effects and safety in humans are unknown. METHODS We conducted a Phase 1, open-label single ascending dose trial in healthy adults with normal body mass index and no prior psychiatric illness. The primary goal was to determine the maximum tolerated dose (MTD) of oral pharmaceutical-grade harmine HCl and to characterize safety and tolerability. A secondary goal was to ascertain whether any oral dose has psychoactive effects. RESULTS Thirty-four adult participants, aged 18-55 years, were screened for study eligibility. Twenty-five participants met eligibility criteria and were randomized to a single dose of 100, 200, 300, or 500 mg of harmine HCl, respectively, using a continuous reassessment method. The most common adverse events (AEs) observed were gastrointestinal and/or neurological, dose-related, and of mild to moderate severity. The MTD was determined to be between 100 and 200 mg and is weight-based, with 90% of those participants receiving >2.7 mg/kg experiencing a dose-limiting toxicity. No serious AEs of harmine HCl were identified. CONCLUSIONS Harmine HCl can be orally administered to healthy participants in doses <2.7 mg/kg with minimal or no AEs. Doses >2.7 mg/kg are associated with vomiting, drowsiness, and limited psychoactivity. This study is the first to systematically characterize the psychoactive effects of pharmaceutical quality harmine in healthy participants.
Collapse
Affiliation(s)
- Jessica L Ables
- Department of Psychiatry, Depression and Anxiety Center for Discovery and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leah Israel
- Department of Psychiatry, Depression and Anxiety Center for Discovery and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olivia Wood
- Department of Medicine, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Usha Govindarajulu
- Department of Population Health Science and Policy, Center for Biostatistics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel T Fremont
- Department of Psychiatry, Depression and Anxiety Center for Discovery and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronjon Banerjee
- Department of Psychiatry, Depression and Anxiety Center for Discovery and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hongtao Liu
- Department of Medicine, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeremy Cohen
- Department of Psychiatry, Depression and Anxiety Center for Discovery and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peng Wang
- Department of Medicine, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kunal Kumar
- Department of Pharmacological Sciences, Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Geming Lu
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - Robert J DeVita
- Department of Pharmacological Sciences, Drug Discovery Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo Garcia-Ocaña
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope Medical Center, Duarte, CA, USA
| | - James W Murrough
- Department of Psychiatry, Depression and Anxiety Center for Discovery and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- VISN 2 Mental Illness Research, Education, and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA
| | - Andrew F Stewart
- Department of Medicine, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
18
|
Egger K, Aicher HD, Cumming P, Scheidegger M. Neurobiological research on N,N-dimethyltryptamine (DMT) and its potentiation by monoamine oxidase (MAO) inhibition: from ayahuasca to synthetic combinations of DMT and MAO inhibitors. Cell Mol Life Sci 2024; 81:395. [PMID: 39254764 PMCID: PMC11387584 DOI: 10.1007/s00018-024-05353-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/19/2024] [Accepted: 07/04/2024] [Indexed: 09/11/2024]
Abstract
The potent hallucinogen N,N-dimethyltryptamine (DMT) has garnered significant interest in recent years due to its profound effects on consciousness and its therapeutic psychopotential. DMT is an integral (but not exclusive) psychoactive alkaloid in the Amazonian plant-based brew ayahuasca, in which admixture of several β-carboline monoamine oxidase A (MAO-A) inhibitors potentiate the activity of oral DMT, while possibly contributing in other respects to the complex psychopharmacology of ayahuasca. Irrespective of the route of administration, DMT alters perception, mood, and cognition, presumably through agonism at serotonin (5-HT) 1A/2A/2C receptors in brain, with additional actions at other receptor types possibly contributing to its overall psychoactive effects. Due to rapid first pass metabolism, DMT is nearly inactive orally, but co-administration with β-carbolines or synthetic MAO-A inhibitors (MAOIs) greatly increase its bioavailability and duration of action. The synergistic effects of DMT and MAOIs in ayahuasca or synthetic formulations may promote neuroplasticity, which presumably underlies their promising therapeutic efficacy in clinical trials for neuropsychiatric disorders, including depression, addiction, and post-traumatic stress disorder. Advances in neuroimaging techniques are elucidating the neural correlates of DMT-induced altered states of consciousness, revealing alterations in brain activity, functional connectivity, and network dynamics. In this comprehensive narrative review, we present a synthesis of current knowledge on the pharmacology and neuroscience of DMT, β-carbolines, and ayahuasca, which should inform future research aiming to harness their full therapeutic potential.
Collapse
Affiliation(s)
- Klemens Egger
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland.
| | - Helena D Aicher
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
- Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Paul Cumming
- Department of Nuclear Medicine, Bern University Hospital, Bern, Switzerland
- School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| | - Milan Scheidegger
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
19
|
Woodfin S, Hall S, Ramerth A, Chapple B, Fausnacht D, Moore W, Alkhalidy H, Liu D. Potential Application of Plant-Derived Compounds in Multiple Sclerosis Management. Nutrients 2024; 16:2996. [PMID: 39275311 PMCID: PMC11397714 DOI: 10.3390/nu16172996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder characterized by inflammation, demyelination, and neurodegeneration, resulting in significant disability and reduced quality of life. Current therapeutic strategies primarily target immune dysregulation, but limitations in efficacy and tolerability highlight the need for alternative treatments. Plant-derived compounds, including alkaloids, phenylpropanoids, and terpenoids, have demonstrated anti-inflammatory effects in both preclinical and clinical studies. By modulating immune responses and promoting neuroregeneration, these compounds offer potential as novel adjunctive therapies for MS. This review provides insights into the molecular and cellular basis of MS pathogenesis, emphasizing the role of inflammation in disease progression. It critically evaluates emerging evidence supporting the use of plant-derived compounds to attenuate inflammation and MS symptomology. In addition, we provide a comprehensive source of information detailing the known mechanisms of action and assessing the clinical potential of plant-derived compounds in the context of MS pathogenesis, with a focus on their anti-inflammatory and neuroprotective properties.
Collapse
Affiliation(s)
- Seth Woodfin
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Sierra Hall
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Alexis Ramerth
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Brooke Chapple
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Dane Fausnacht
- Department of Biology, School of Sciences and Agriculture, Ferrum College, Ferrum, VA 24088, USA
| | - William Moore
- Department of Biology and Chemistry, School of Health Sciences, Liberty University, Lynchburg, VA 24515, USA
| | - Hana Alkhalidy
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Dongmin Liu
- Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
20
|
Rathi A, Chaudhury A, Anjum F, Ahmad S, Haider S, Khan ZF, Taiyab A, Chakrabarty A, Islam A, Hassan MI, Haque MM. Targeting prostate cancer via therapeutic targeting of PIM-1 kinase by Naringenin and Quercetin. Int J Biol Macromol 2024; 276:133882. [PMID: 39019373 DOI: 10.1016/j.ijbiomac.2024.133882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/08/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
PIM-1 kinase belongs to the Ser/Thr kinases family, an attractive therapeutic target for prostate cancer. Here, we screened about 100 natural substances to find potential PIM-1 inhibitors. Two natural compounds, Naringenin and Quercetin, were finally selected based on their PIM-1 inhibitory potential and binding affinities. The docking score of Naringenin and Quercetin with PIM-1 is -8.4 and - 8.1 kcal/mol, respectively. Fluorescence binding studies revealed a strong affinity (Ka values, 3.1 × 104 M-1 and 4.6 × 107 M-1 for Naringenin and Quercetin, respectively) with excellent IC50 values for Naringenin and Quercetin (28.6 μM and 34.9 μM, respectively). Both compounds inhibited the growth of prostate cancer cells (LNCaP) in a dose-dependent manner, with the IC50 value of Naringenin at 17.5 μM and Quercetin at 8.88 μM. To obtain deeper insights into the PIM-1 inhibitory effect of Naringenin and Quercetin, we performed extensive molecular dynamics simulation studies, which provided insights into the binding mechanisms of PIM-1 inhibitors. Finally, Naringenin and Quercetin were suggested to serve as potent PIM-1 inhibitors, offering targeted treatments of prostate cancer. In addition, our findings may help to design novel Naringenin and Quercetin derivatives that could be effective in therapeutic targeting of prostate cancer.
Collapse
Affiliation(s)
- Aanchal Rathi
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Arunabh Chaudhury
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, PO Box 11099, 21944 Taif, Saudi Arabia
| | - Shahbaz Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shaista Haider
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, NH91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Zeba Firdos Khan
- Department of Biosciences, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Anindita Chakrabarty
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, NH91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Mohammad Mahfuzul Haque
- Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
21
|
Al-Momani H, Aolymat I, Ibrahim L, Albalawi H, Al Balawi D, Albiss BA, Almasri M, Alghweiri S. Low-dose zinc oxide nanoparticles trigger the growth and biofilm formation of Pseudomonas aeruginosa: a hormetic response. BMC Microbiol 2024; 24:290. [PMID: 39095741 PMCID: PMC11297655 DOI: 10.1186/s12866-024-03441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
INTRODUCTION Hormesis describes an inverse dose-response relationship, whereby a high dose of a toxic compound is inhibitory, and a low dose is stimulatory. This study explores the hormetic response of low concentrations of zinc oxide nanoparticles (ZnO NPs) toward Pseudomonas aeruginosa. METHOD Samples of P. aeruginosa, i.e. the reference strain, ATCC 27,853, together with six strains recovered from patients with cystic fibrosis, were exposed to ten decreasing ZnO NPs doses (0.78-400 µg/mL). The ZnO NPs were manufactured from Peganum harmala using a chemical green synthesis approach, and their properties were verified utilizing X-ray diffraction and scanning electron microscopy. A microtiter plate technique was employed to investigate the impact of ZnO NPs on the growth, biofilm formation and metabolic activity of P. aeruginosa. Real-time polymerase chain reactions were performed to determine the effect of ZnO NPs on the expression of seven biofilm-encoding genes. RESULT The ZnO NPs demonstrated concentration-dependent bactericidal and antibiofilm efficiency at concentrations of 100-400 µg/mL. However, growth was significantly stimulated at ZnO NPs concentration of 25 µg/mL (ATCC 27853, Pa 3 and Pa 4) and at 12.5 µg/mL and 6.25 µg/mL (ATCC 27853, Pa 2, Pa 4 and Pa 5). No significant positive growth was detected at dilutions < 6.25 µg/mL. similarly, biofilm formation was stimulated at concentration of 12.5 µg/mL (ATCC 27853 and Pa 1) and at 6.25 µg/mL (Pa 4). At concentration of 12.5 µg/mL, ZnO NPs upregulated the expression of LasB ( ATCC 27853, Pa 1 and Pa 4) and LasR and LasI (ATCC 27853 and Pa 1) as well as RhII expression (ATCC 27853, Pa 2 and Pa 4). CONCLUSION When exposed to low ZnO NPs concentrations, P. aeruginosa behaves in a hormetic manner, undergoing positive growth and biofilm formation. These results highlight the importance of understanding the response of P. aeruginosa following exposure to low ZnO NPs concentrations.
Collapse
Affiliation(s)
- Hafez Al-Momani
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, P.O box 330127, Zarqa, 13133, Jordan.
| | - Iman Aolymat
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O box 330127, Zarqa, 13133, Jordan
| | - Lujain Ibrahim
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Hadeel Albalawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Dua'a Al Balawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Borhan Aldeen Albiss
- Nanotechnology Institute, Jordan University of Science & Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Muna Almasri
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Sahar Alghweiri
- Medical Laboratory Department, Prince Hashem Military Hospital, Zarqa, 13133, Jordan
| |
Collapse
|
22
|
Kadyan P, Singh L. Unraveling the mechanistic interplay of mediators orchestrating the neuroprotective potential of harmine. Pharmacol Rep 2024; 76:665-678. [PMID: 38758470 DOI: 10.1007/s43440-024-00602-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/27/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
Neurodegenerative diseases (NDDs) encompass a range of conditions characterized by the specific dysfunction and continual decline of neurons, glial cells, and neural networks within the brain and spinal cord. The majority of NDDs exhibit similar underlying causes, including oxidative stress, neuroinflammation, and malfunctioning of mitochondria. Elevated levels of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), alongside decreased expression of brain-derived neurotrophic factor (BDNF) and glutamate transporter subtype 1 (GLT-1), constitute significant factors contributing to the pathogenesis of NDDs. Additionally, the dual-specificity tyrosine phosphorylation-regulated kinase 1 A (DYRK1A) gene has emerged as a significant target for the treatment of NDDs at the preclinical level. It significantly contributes to developmental brain defects, early onset neurodegeneration, neuronal loss, and dementia in Down syndrome. Moreover, an impaired ubiquitin-proteosome system (UPS) also plays a pathological role in NDDs. Malfunctioning of UPS leads to abnormal protein buildup or aggregation of α-synuclein. α-Synuclein is a highly soluble unfolded protein that accumulates in Lewy bodies and Lewy neurites in Parkinson's disease and other synucleinopathies. Recent research highlights the promising potential of natural products in combating NDDs relative to conventional therapies. Alkaloids have emerged as promising candidates in the fight against NDDs. Harmine is a tricyclic β-carboline alkaloid (harmala alkaloid) with one indole nucleus and a six-membered pyrrole ring. It is extracted from Banisteria caapi and Peganum harmala L. and exhibits diverse pharmacological properties, encompassing neuroprotective, antioxidant, anti-inflammatory, antidepressant, etc. Harmine has been reported to mediate its neuroprotective via reducing the level of inflammatory mediators, NADPH oxidase, AChE, BChE and reactive oxygen species (ROS). Whereas, it has been observed to increase the levels of BDNF, GLT-1 and anti-oxidant enzymes, along with protein kinase-A (PKA)-mediated UPS activation. This review aims to discuss the mechanistic interplay of various mediators involved in the neuroprotective effect of harmine.
Collapse
Affiliation(s)
- Pankaj Kadyan
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India
| | - Lovedeep Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| |
Collapse
|
23
|
Chua RW, Song KP, Ting ASY. Characterization and identification of antimicrobial compounds from endophytic Fusarium incarnatum isolated from Cymbidium orchids. Int Microbiol 2024; 27:977-992. [PMID: 37975992 DOI: 10.1007/s10123-023-00442-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/24/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
This study characterized and identified the antimicrobial compounds from an endophytic fungus (Fusarium incarnatum (C4)) isolated from the orchid, Cymbidium sp. Chromatographic techniques were employed to separate the bioactive compounds from the crude extracts of F. incarnatum (C4). Following bio-guided fractionation, two fractionated extracts (fractions 1 and 2) of F. incarnatum (C4) exhibited antibacterial and antifungal activities against Bacillus cereus (MIC: 0.156 mg/mL) and Ganoderma boninense (MIC: 0.3125 mg/mL), respectively. The active fractions were discovered to comprise of a variety of bioactive compounds with pharmacological importance (alkaloids, flavonoids, phenolic compounds, terpenoids, peptides and fatty acids). Liquid chromatography mass-spectrometry (LCMS) analysis detected the presence of antibacterial (kanzonol N, rifaximin, linoleic acid (d4), cannabisativine, docosanedioic acid, and stearamide) and antifungal components (3-methyl-quinolin-2-ol, prothiocarb, kanzonol N, peganine, 5Z-tridecene, and tetronasin) in fractions 1 and 2, respectively, which may have contributed to the antimicrobial effects. Findings from this study highlighted the important potential of fungal endophytes from medicinal hosts as producers of antimicrobials and antibiotics.
Collapse
Affiliation(s)
- Ru Wei Chua
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Keang Peng Song
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Adeline Su Yien Ting
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
24
|
Salimizadeh Z, Enferadi ST, Majidizadeh T, Mahjoubi F. Cytotoxicity of alkaloids isolated from Peganum harmala seeds on HCT116 human colon cancer cells. Mol Biol Rep 2024; 51:732. [PMID: 38872006 DOI: 10.1007/s11033-024-09655-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/20/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND The present study aimed to elucidate the potential anticancer activity and mechanism of P. harmala's alkaloid extract, harmine (HAR), and harmaline (HAL) in HCT-116 colorectal cancer cells. METHODS AND RESULTS P. harmala's alkaloid was extracted from harmala seeds. HCT-116 cells were treated with P. harmala's alkaloid extract, HAR and HAL. Cytotoxicity was determined by MTT assay, apoptotic activity detected via flow cytometry and acridine orange (AO)/ethidium bromide (EB) dual staining, and cell cycle distribution analyzed with flow cytometry. The mRNA expression of Bcl-2-associated X protein (Bax) and glycogen synthase kinase-3 beta (GSK3β) was measured by real-time PCR. Furthermore, the expression of Bax, Bcl-2, GSK3β and p53 proteins, were determined by western blotting. The findings indicated that, P. harmala's alkaloids extract, HAR and HAL were significantly cytotoxic toward HCT116 cells after 24 and 48 h of treatment. We showed that P. harmala's alkaloid extract induce apoptosis and cell cycle arrest at G2 phase in the HCT116 cell line. Downregulation of GSK3β and Bcl-2 and upregulation of Bax and p53 were observed. CONCLUSION The findings of this study indicate that the P. harmala's alkaloid extract has anticancer activity and may be further investigated to develop future anticancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Zahra Salimizadeh
- Department of Medical Genetic, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Sattar Tahmasebi Enferadi
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Tayebeh Majidizadeh
- Department of Medical Genetic, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Frouzandeh Mahjoubi
- Department of Medical Genetic, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| |
Collapse
|
25
|
Erdem T, Orenc A, Akcan D, Duman F, Soran-Erdem Z. Sustainable next-generation color converters from P. harmala seed extracts for solid-state lighting. RSC Adv 2024; 14:18528-18535. [PMID: 38860241 PMCID: PMC11164029 DOI: 10.1039/d4ra01150c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 05/22/2024] [Indexed: 06/12/2024] Open
Abstract
Traditional solid-state lighting heavily relies on color converters, which often have a significant environmental footprint. As an alternative, natural materials such as plant extracts could be employed if their low quantum yields (QYs) in liquid and solid states were higher. With this motivation, here, we investigate the optical properties of aqueous P. harmala extract, develop efficient color-converting solids through a cost-effective and environmentally friendly method, and integrate them with light-emitting diodes (LEDs). To achieve high-efficiency solid hosts for P. harmala-based fluorophores, we optically and structurally compare two crystalline and two cellulose-based platforms. Structural analyses reveal that sucrose crystals, cellulose-based cotton, and paper platforms enable a relatively homogeneous distribution of fluorophores compared to KCl crystals. Optical characterization demonstrates that the extracted solution and the extract-embedded paper possess QYs of 75.6% and 44.7%, respectively, whereas the QYs of the cotton, sucrose, and KCl crystals remain below 10%. We demonstrated that the paper host with the highest efficiency causes a blueshift in the P. harmala fluorescence, whereas the cotton host induces a redshift. We attribute this to the passivation of nonradiative transitions related to the structure of the hosts. Subsequently, as a proof-of-concept demonstration, we integrate the as-prepared efficient solids of P. harmala for the first time with a light-emitting diode (LED) chip to produce a color-converting LED. The resulting blue-emitting LED achieves a luminous efficiency of 21.9 lm Welect -1 with CIE color coordinates of (0.139, 0.070). These findings mark a significant step toward the utilization of plant-based fluorescent biomolecules in solid-state lighting, offering promising environmentally friendly organic color conversion solutions for future lighting applications.
Collapse
Affiliation(s)
- Talha Erdem
- Department of Electrical-Electronics Engineering, Abdullah Gül University Kayseri Turkey
| | - Ali Orenc
- Nanotechnology Research Center (ERNAM), Erciyes University Kayseri Turkey
| | - Dilber Akcan
- Bioengineering Program, Graduate School of Engineering and Science, Abdullah Gül University Kayseri Turkey
| | - Fatih Duman
- Nanotechnology Research Center (ERNAM), Erciyes University Kayseri Turkey
- Department of Biology, Erciyes University Kayseri Turkey
| | - Zeliha Soran-Erdem
- Bioengineering Program, Graduate School of Engineering and Science, Abdullah Gül University Kayseri Turkey
- Department of Engineering Sciences, Abdullah Gül University Kayseri Turkey
| |
Collapse
|
26
|
Ahmadianmoghadam MA, Nematollahi MH, Mehrabani M, Fatemi I, Rostamzadeh F, Dell'Agli M, Mehrabani M, Abolhassani M, Mehrbani M. Effect of an herbal formulation containing Peganum harmala L. and Fraxinus excelsior L. on oxidative stress, memory impairment and withdrawal syndrome induced by morphine. Int J Neurosci 2024; 134:570-583. [PMID: 36168934 DOI: 10.1080/00207454.2022.2130293] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 10/17/2022]
Abstract
Background: Traditional Persian medicine has introduced effective remedies in opioid dependence care. One of the most widely used remedies is an herbal formulation containing Peganum harmala L. and Fraxinus excelsior L. (HF). This study investigated the effects of HF to attenuate the withdrawal signs and rewarding effects in morphine-dependent rats. Methods: Forty-nine male Wistar rats were randomly divided into seven groups. The control and vehicle groups received normal saline and sodium carboxymethyl cellulose, respectively. The morphine group received morphine for one week. The single and daily dose of HF groups received morphine similar to the morphine group, and HF (1.4 and 2.8 g/kg) once a day in the daily dose group and only on the last day of the experiment in the single dose of HF group. Finally, the withdrawal signs as well biochemical tests were evaluated. The behavioral parameters were assessed by conditioned place preference (CPP), elevated plus-maze and Y-maze tests. The antioxidant activity of HF was evaluated by measurement of serum contents of malondialdehyde, stable nitric oxide metabolites and total antioxidant capacity (TAC). Moreover, the protein expression of c-fos was assessed by western blotting. Results: Daily treatment with HF significantly reduced the score of CPP behavioral test, all of the withdrawal signs, TAC and the c-fos protein level. Conclusions: The results indicated that HF might be a promising complementary treatment in reducing morphine-induced physical and psychological dependence probably through modulation of c-fos protein expression.
Collapse
Affiliation(s)
- Mohammad Ali Ahmadianmoghadam
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Traditional Medicine, Faculty of Persian Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mitra Mehrabani
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Farzaneh Rostamzadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mario Dell'Agli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Mehrnaz Mehrabani
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Moslem Abolhassani
- Department of Clinical Biochemistry, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mehrzad Mehrbani
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
27
|
Li R, Han Q, Li X, Liu X, Jiao W. Natural Product-Derived Phytochemicals for Influenza A Virus (H1N1) Prevention and Treatment. Molecules 2024; 29:2371. [PMID: 38792236 PMCID: PMC11124286 DOI: 10.3390/molecules29102371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Influenza A (H1N1) viruses are prone to antigenic mutations and are more variable than other influenza viruses. Therefore, they have caused continuous harm to human public health since the pandemic in 2009 and in recent times. Influenza A (H1N1) can be prevented and treated in various ways, such as direct inhibition of the virus and regulation of human immunity. Among antiviral drugs, the use of natural products in treating influenza has a long history, and natural medicine has been widely considered the focus of development programs for new, safe anti-influenza drugs. In this paper, we focus on influenza A (H1N1) and summarize the natural product-derived phytochemicals for influenza A virus (H1N1) prevention and treatment, including marine natural products, flavonoids, alkaloids, terpenoids and their derivatives, phenols and their derivatives, polysaccharides, and derivatives of natural products for prevention and treatment of influenza A (H1N1) virus. We further discuss the toxicity and antiviral mechanism against influenza A (H1N1) as well as the druggability of natural products. We hope that this review will facilitate the study of the role of natural products against influenza A (H1N1) activity and provide a promising alternative for further anti-influenza A drug development.
Collapse
Affiliation(s)
- Ruichen Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450003, China; (R.L.); (X.L.)
| | - Qianru Han
- Foreign Language Education Department, Zhengzhou Shuqing Medical College, Zhengzhou 450064, China;
| | - Xiaokun Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450003, China; (R.L.); (X.L.)
| | - Xinguang Liu
- Co-Construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of China, Zhengzhou 450003, China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450003, China
| | - Weijie Jiao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450003, China; (R.L.); (X.L.)
- Department of Pharmacy, Henan Province Hospital of Traditional Chinese Medicine, Zhengzhou 450046, China
| |
Collapse
|
28
|
Nandwana NK, Patel OPS, Mehra MK, Kumar A, Salvino JM. Recent Advances in Metal-Catalyzed Approaches for the Synthesis of Quinazoline Derivatives. Molecules 2024; 29:2353. [PMID: 38792215 PMCID: PMC11124210 DOI: 10.3390/molecules29102353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Quinazolines are an important class of heterocyclic compounds that have proven their significance, especially in the field of organic synthesis and medicinal chemistry because of their wide range of biological and pharmacological properties. Thus, numerous synthetic methods have been developed for the synthesis of quinazolines and their derivatives. This review article briefly outlines the new synthetic methods for compounds containing the quinazoline scaffold employing transition metal-catalyzed reactions.
Collapse
Affiliation(s)
- Nitesh K. Nandwana
- Medicinal Chemistry and Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Om P. S. Patel
- Department of Technical Education, Government Polytechnic Naraini, Banda 210001, India
| | - Manish K. Mehra
- Medicinal Chemistry and Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, India
| | - Joseph M. Salvino
- Medicinal Chemistry and Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Tabaa MME, Tabaa MME, Rashad E, Elballal MS, Elazazy O. Harmine alleviated STZ-induced rat diabetic nephropathy: A potential role via regulating AMPK/Nrf2 pathway and deactivating ataxia-telangiectasia mutated (ATM) signaling. Int Immunopharmacol 2024; 132:111954. [PMID: 38554444 DOI: 10.1016/j.intimp.2024.111954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/01/2024]
Abstract
Diabetic nephropathy (DN) is a serious kidney disorder driven by diabetes and affects people all over the world. One of the mechanisms promoting NF-κB-induced renal inflammation and injury has been theorized to be ATM signaling. On the other hand, AMPK, which can be activated by the naturally occurring alkaloid harmine (HAR), has been proposed to stop that action. As a result, the goal of this study was to evaluate the therapeutic effectiveness of HAR against streptozotocin (STZ)-induced DN in rats through AMPK-mediated inactivation of ATM pathways. Twenty male Wistar rats were grouped into 4 groups, as follow: CONT, DN, HAR (10 mg/kg), DN + HAR, where HAR was daily administered I.P. once for 2 weeks. The renal AMPK and PGC-1α expressions, as well as Sirt1 levels, were assessed. To ascertain the oxidative reactions, renal Nrf2 expression, HO-1, MDA, and TAC concentrations were measured. As parts of ATM pathways, ATM and p53 expressions, in addition to GSK-3β levels were determined. Renal expression of NEMO, TNF-α, and IL-6 levels were also estimated. Moreover, histopathological and immunohistochemical detection of Bcl-2, Bax, and caspase 3 were reported. Results indicated that HAR intake notably alleviated STZ-induced kidney damage by triggering AMPK and Sirt1, which in turn boosted PGC-1α, improved NRf2/HO-1 axis, and lowered ROS production. As a consequence, HAR blocked the ATM-triggered renal inflammation and minimized caspase-3 expression by repressing the Bax/Bcl2 ratio. Because of its ability to activate AMPK/Nrf2 axis, HAR may represent an emerging avenue for future DN therapy by blocking ATM pathways.
Collapse
Affiliation(s)
- Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City 32897, Menoufia, Egypt.
| | | | - Eman Rashad
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Mohammed Salah Elballal
- Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Ola Elazazy
- Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| |
Collapse
|
30
|
Hu Y, Yu X, Yang L, Xue G, Wei Q, Han Z, Chen H. Research progress on the antitumor effects of harmine. Front Oncol 2024; 14:1382142. [PMID: 38590646 PMCID: PMC10999596 DOI: 10.3389/fonc.2024.1382142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Harmine is a naturally occurring β-carboline alkaloid originally isolated from Peganum harmala. As a major active component, harmine exhibits a broad spectrum of pharmacological properties, particularly remarkable antitumor effects. Recent mechanistic studies have shown that harmine can inhibit cancer cell proliferation and metastasis through epithelial-to-mesenchymal transition, cell cycle regulation, angiogenesis, and the induction of tumor cell apoptosis. Furthermore, harmine reduces drug resistance when used in combination with chemotherapeutic drugs. Despite its remarkable antitumor activity, the application of harmine is limited by its poor solubility and toxic side effects, particularly neurotoxicity. Novel harmine derivatives have demonstrated strong clinical application prospects, but further validation based on drug activity, acute toxicity, and other aspects is necessary. Here, we present a review of recent research on the action mechanism of harmine in cancer treatment and the development of its derivatives, providing new insights into its potential clinical applications and strategies for mitigating its toxicity while enhancing its efficacy.
Collapse
Affiliation(s)
- Yonghua Hu
- Key Laboratory of the Digestive System Tumors of Gansu Province, Department of Tumor Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Xiaoli Yu
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Lei Yang
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Gaimei Xue
- The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China
| | - Qinglin Wei
- Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, China
| | - Zhijian Han
- Key Laboratory of the Digestive System Tumors of Gansu Province, Department of Tumor Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Hao Chen
- Key Laboratory of the Digestive System Tumors of Gansu Province, Department of Tumor Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| |
Collapse
|
31
|
Liu Q, Zuo M, Song Y, He S, Huang J, Chen Y. Bioinspired total synthesis and biological activity of Pegaharine A. PEST MANAGEMENT SCIENCE 2024; 80:1372-1381. [PMID: 37926482 DOI: 10.1002/ps.7868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/22/2023] [Accepted: 11/06/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Phytopathogens cause various diseases by parasitizing crops, reducing crop yield and resulting in substantial economic losses in agricultural production. A novel type isolated from the perennial herbaceous Peganum harmala L. seeds, β-carboline alkaloids pegaharine A (PA), has become a hot topic in developing plant-originated green pesticides owing to their significant physiological activities. RESULTS A scalable bioinspired total synthesis of PA is accomplished in the present work. The systematical biological assay study showed that PA exhibited moderate inhibitory activity against nine tested plant pathogenic fungi and showed significant inhibitory activity in vitro against the three tested plant pathogenic bacteria. Most noteworthy is the inhibitory rates of PA on Xanthomonas oryzae pv. oryzae (Xoo), X. oryzae pv. oryzicola (Xoc) and X. axonopodis pv. citri (Xac) of 93.6%, 92.1% and 86.1%, respectively, which are better than the control drug, bismerthiazol (63.4%, 61.2% and 53.7% at 100 μg mL-1 concentration). Furthermore, the EC50 value of PA against Xoo, Xoc and Xac was 52.2, 60.0 and 65.1 μg mL-1 , respectively, superior to 72.9, 64.2 and 70.1 μg mL-1 of the control drug. Moreover, the anti-Xoo mechanistic studies revealed that PA exerted its antibacterial effects by increasing the permeability of the bacterial membrane, reducing the extracellular polysaccharide content and inducing morphological changes in bacterial cells. CONCLUSION A novel β-carboline alkaloid, PA, was prepared by biomimetic total synthesis. Its significant antibacterial activity was closely related to the permeation of bacterial cell membranes, which was confirmed by anti-Xoo mechanistic studies. More importantly, the structure could be regarded as a model for developing novel bactericides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qichang Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Mei Zuo
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yi Song
- School of Pharmaceutical Sciences, and Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, China
| | - Shuzhong He
- School of Pharmaceutical Sciences, and Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, China
| | - Jian Huang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
| | - Yang Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
- School of Pharmaceutical Sciences, and Guizhou Engineering Laboratory for Synthetic Drugs, Guizhou University, Guiyang, China
| |
Collapse
|
32
|
Al-Momani H, Massadeh MI, Almasri M, Al Balawi D, Aolymat I, Hamed S, Albiss BA, Ibrahim L, Balawi HA, Al Haj Mahmoud S. Anti-Bacterial Activity of Green Synthesised Silver and Zinc Oxide Nanoparticles against Propionibacterium acnes. Pharmaceuticals (Basel) 2024; 17:255. [PMID: 38399471 PMCID: PMC10891609 DOI: 10.3390/ph17020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Propionibacterium acnes plays a critical role in the development of acne vulgaris. There has been a rise in the number of patients carrying P. acnes strains that are resistant to antibiotics. Thus, alternative anti-microbial agents are required. Zinc oxide (ZnO-NPs) and silver (Ag-NPs) nanoparticles can be used against several antibiotic-resistant bacteria. The impact of Ag-NPs and ZnO-NPs against two clinical strains of P. acnes, P1 and P2, and a reference strain, NCTC747, were investigated in this research. A chemical approach for the green synthesis of Ag-NPs and ZnO-NPs from Peganum harmala was employed. The microtiter plate method was used to examine the effects of NPs on bacterial growth, biofilm development, and biofilm eradication. A broth microdilution process was performed in order to determine minimal inhibitory (MIC) concentrations. Ag-NPs and ZnO-NPs had a spherical shape and average dimensions of 10 and 50 nm, respectively. MIC values for all P. acnes strains for Ag-NPs and ZnO-NPs were 125 µg/mL and 250 µg/mL, respectively. Ag-NP and ZnO-NP concentrations of 3.9- 62.5 µg/mL and 15-62.5 µg/mL significantly inhibited the growth and biofilm formation of all P. acnes strains, respectively. ZnO-NP concentrations of 15-62.5 μg/mL significantly inhibited the growth of NCTC747 and P2 strains. The growth of P1 was impacted by concentrations of 31.25 μg/mL and 62.5 μg/mL. Biofilm formation in the NCTC747 strain was diminished by a ZnO-NP concentration of 15 μg/mL. The clinical strains of P. acnes were only affected by ZnO-NP titres of more than 31.25 μg/mL. Established P. acne biofilm biomass was significantly reduced in all strains at a Ag-NP and ZnO-NP concentration of 62.5 µg/mL. The findings demonstrated that Ag-NPs and ZnO-NPs exert an anti-bacterial effect against P. acnes. Further research is required to determine their potential utility as a treatment option for acne.
Collapse
Affiliation(s)
- Hafez Al-Momani
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan
| | - Muhannad I. Massadeh
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13115, Jordan; (M.I.M.); (M.A.)
| | - Muna Almasri
- Department of Biology and Biotechnology, Faculty of Science, The Hashemite University, Zarqa 13115, Jordan; (M.I.M.); (M.A.)
| | - Dua’a Al Balawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Iman Aolymat
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa 13133, Jordan;
| | - Saja Hamed
- Department of Pharmaceutical & Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa 13133, Jordan;
| | - Borhan Aldeen Albiss
- Nanotechnology Institute, Jordan University of Science & Technology, Irbid 22110, Jordan;
| | - Lugain Ibrahim
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Hadeel Al Balawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Sameer Al Haj Mahmoud
- Department of Basic Medical Science, Faculty of Medicine, Al-Balqa’ Applied University, AL-Salt 19117, Jordan;
| |
Collapse
|
33
|
Rana N, Gupta P, Singh H, Nagarajan K. Role of Bioactive Compounds, Novel Drug Delivery Systems, and Polyherbal Formulations in the Management of Rheumatoid Arthritis. Comb Chem High Throughput Screen 2024; 27:353-385. [PMID: 37711009 DOI: 10.2174/1386207326666230914103714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/04/2023] [Accepted: 07/24/2023] [Indexed: 09/16/2023]
Abstract
Rheumatoid Arthritis (RA) is an autoimmune disorder that generally causes joint synovial inflammation as well as gradual cartilage and degenerative changes, resulting in progressive immobility. Cartilage destruction induces synovial inflammation, including synovial cell hyperplasia, increased synovial fluid, and synovial pane development. This phenomenon causes articular cartilage damage and joint alkalosis. Traditional medicinal system exerts their effect through several cellular mechanisms, including inhibition of inflammatory mediators, oxidative stress suppression, cartilage degradation inhibition, increasing antioxidants and decreasing rheumatic biomarkers. The medicinal plants have yielded a variety of active constituents from various chemical categories, including alkaloids, triterpenoids, steroids, glycosides, volatile oils, flavonoids, lignans, coumarins, terpenes, sesquiterpene lactones, anthocyanins, and anthraquinones. This review sheds light on the utilization of medicinal plants in the treatment of RA. It explains various phytoconstituents present in medicinal plants and their mechanism of action against RA. It also briefs about the uses of polyherbal formulations (PHF), which are currently in the market and the toxicity associated with the use of medicinal plants and PHF, along with the limitations and research gaps in the field of PHF. This review paper is an attempt to understand various mechanistic approaches employed by several medicinal plants, their possible drug delivery systems and synergistic effects for curing RA with minimum side effects.
Collapse
Affiliation(s)
- Neha Rana
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, Uttar Pradesh, India
| | - Piyush Gupta
- Department of Chemistry, SRM Institute of Science and Technology, Faculty of Engineering and Technology, NCR Campus, Delhi-NCR Campus, Delhi-Meerut Road, Modinagar, 201204, Ghaziabad, Uttar Pradesh, India
| | - Hridayanand Singh
- Dr. K. N. Modi Institute of Pharmaceutical Education and Research, Modinagar, 201204, Uttar Pradesh, India
| | - Kandasamy Nagarajan
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, Uttar Pradesh, India
| |
Collapse
|
34
|
Li LN. Peganum harmala L.: A Review of Botany, Traditional Use, Phytochemistry, Pharmacology, Quality Marker, and Toxicity. Comb Chem High Throughput Screen 2024; 27:797-822. [PMID: 37350001 DOI: 10.2174/1386207326666230622164243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/14/2023] [Accepted: 05/31/2023] [Indexed: 06/24/2023]
Abstract
BACKGROUND Peganum harmala L. is a perennial herb of Peganum in Zygophyllaceae family. It has been used as a national medicinal herb with the efficacy of strengthening muscle, warming stomach, dispelling cold, and removing dampness in Chinese folk. Clinically, it is mainly used to treat diseases such as weak muscles and veins, joint pain, cough and phlegm, dizziness, headache, and irregular menstruation. METHODS The relevant information about P. harmala L. in this review is based on online databases, including Elsevier, Willy, Web of Science, PubMed, ScienceDirect, SciFinder, SpringLink, Google Scholar, Baidu Scholar, ACS publications, SciHub, Scopus, and CNKI. The other information was acquired from ancient books and classical works about P. harmala L. RESULTS P. harmala L. is an important medicinal plant with a variety of traditional uses according to the theory of Chinese medicine. Phytochemical research revealed that P. harmala L. contained alkaloids, volatile oils, flavonoids, triterpenoids, coumarins, lignins, anthraquinones. Modern studies showed P. harmala L. possessed multiple bioactivities, including anti-cancer, neuroprotective, anti-bacterial, anti-inflammatory, hypoglycemic, anti-hypertensive, anti-asthmatic, and insecticidal activities. Furthermore, the contents of the quality marker and toxicity of P. harmala L. were summarized and analyzed in this review. CONCLUSION The botany, traditional use, phytochemistry, pharmacology, quality marker, and toxicity of P. harmala L. were reviewed in this paper. It will not only provide an important clue for further studying P. harmala L., but also supply an important theoretical basis and valuable reference for in-depth research and exploitations of this plant in the future.
Collapse
Affiliation(s)
- Ling-Na Li
- Department of Pharmacy and Biotechnology, Zibo Vocational Institute, Zibo, China
| |
Collapse
|
35
|
Amtaghri S, Slaoui M, Eddouks M. Moroccan Antihypertensive Plants and their Mechanisms of Action. Endocr Metab Immune Disord Drug Targets 2024; 24:1254-1279. [PMID: 38243970 DOI: 10.2174/0118715303272284231126145853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/24/2023] [Accepted: 10/06/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND The use of herbal remedies, medicinal plants, and their derivatives for the treatment and control of hypertension is well-known and widespread throughout Morocco. AIMS The aim of the study was to review the antihypertensive and vasorelaxant medicinal plants of the Moroccan pharmacopeia. OBJECTIVE To date, no review on Moroccan medicinal plants exhibiting antihypertensive effects has been performed, and their mechanism of action has not been specified. The objective of this review was to collect, analyze, and critically assess published publications on experimental and clinical research that explored the blood pressure-reducing abilities of Moroccan medicinal plant extracts. MATERIALS AND METHODS This study collected, processed, and critically analyzed published studies related to experimental and clinical research that investigated Moroccan herbal derivatives' blood pressure-lowering abilities using a number of scientific databases, including ScienceDirect, Scopus, PubMed, Google Scholar, and others. Plantlist.org was used to validate the right plant names. RESULTS The results revealed 22 species of Moroccan medicinal plants belonging to 13 different groups with recognized antihypertensive properties. The species were abundant in a variety of chemical elements. Asteraceae (08 species), Lamiaceae (3 species), Apiaceae (2 species), and 1 species each from the following families: Parmeliaceae, Fabaceae, Cistaceae, Malvaceae, Polygonaceae, Brassicaceae, Myrtaceae, Rutaceae, Amaranthaceae, Rosaceae, and Lauraceae were the most frequently mentioned families for their antihypertensive properties. The most used parts were the leaves and the aerial parts. The two main methods of preparation among Moroccans were decoction and infusion. This study demonstrated the known antihypertensive and vasorelaxant properties of Moroccan medicinal plants in vivo and in vitro, as well as their mechanisms of action. Interestingly, phytochemicals can operate on blood vessels directly via a vasorelaxant impact involving a range of signaling cascades or indirectly by blocking or activating multiple systems, such as an angiotensin-converting enzyme (ACE), renin-angiotensin system (RAS), or diuretic activity. CONCLUSION The review of the available data reveals that more work needs to be done to examine all the Moroccan medicinal plants that have been suggested as antihypertensive in published ethnopharmacological surveys. A review of the literature in this area reveals that methodologies of the experimental study need to be standardized, and purified molecules need to be studied. In addition, mechanistic investigations, when they exist, are generally incomplete. In contrast, only a few advanced clinical investigations have been conducted. However, all studies fail to determine the efficacy/safety ratio.
Collapse
Affiliation(s)
- Smail Amtaghri
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia, 52000, Morocco
- Energy, materials and sustainable development (EMDD) Team- Higher School of Technology-SALE, Center for Water, Natural Resources Environment and Sustainable Development (CERNE2D), Mohammed V University in Rabat, Rabat, Morocco
| | - Miloudia Slaoui
- Energy, materials and sustainable development (EMDD) Team- Higher School of Technology-SALE, Center for Water, Natural Resources Environment and Sustainable Development (CERNE2D), Mohammed V University in Rabat, Rabat, Morocco
| | - Mohamed Eddouks
- Team of Ethnopharmacology and Pharmacognosy, Faculty of Sciences and Techniques Errachidia, Moulay Ismail University of Meknes, BP 509, Boutalamine, Errachidia, 52000, Morocco
| |
Collapse
|
36
|
Kaushik A, Kaushik M, Kaur G, Gupta V. Perspective of Secondary Metabolites in Respect of Multidrug Resistance (MDR): A Review. Infect Disord Drug Targets 2024; 24:40-52. [PMID: 38031773 DOI: 10.2174/0118715265210606231113105225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/07/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023]
Abstract
Aberrant and haphazard use of antibiotics has created the development of antimicrobial resistance which is a bizarre challenge for human civilization. This emerging crisis of antibiotic resistance for microbial pathogens is alarming all the nations posing a global threat to human health. It is difficult to treat bacterial infections as they develop resistance to all antimicrobial resistance. Currently used antibacterial agents inhibit a variety of essential metabolic pathways in bacteria, including macro-molecular synthesis (MMS) pathways (e.g. protein, DNA, RNA, cell wall) most often by targeting a specific enzyme or subcellular component e.g. DNA gyrase, RNA polymerase, ribosomes, transpeptidase. Despite the availability of diverse synthetic molecules, there are still many complications in managing progressive and severe antimicrobial resistance. Currently not even a single antimicrobial agent is available for which the microbes do not show resistance. Thus, the lack of efficient drug molecules for combating microbial resistance requires continuous research efforts to overcome the problem of multidrug-resistant bacteria. The phytochemicals from various plants have the potential to combat the microbial resistance produced by bacteria, fungi, protozoa and viruses without producing any side effects. This review is a concerted effort to identify some of the major active phytoconstituents from various medicinal plants which might have the potential to be used as an alternative and effective strategy to fight against microbial resistance and can promote research for the treatment of MDR.
Collapse
Affiliation(s)
- Aditi Kaushik
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar, Punjab, India
| | - Manish Kaushik
- KC Group of Institutions, UNA, H.P, MMDU, Mullana, Ambala, Haryana, India
| | - Gagandeep Kaur
- Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Vrinda Gupta
- Chitkara Group of Institutions, Chitkara University, Chandigarh, India
| |
Collapse
|
37
|
Abstract
Classic psychedelics, including lysergic acid diethylamide (LSD), psilocybin, mescaline, N,N-dimethyltryptamine (DMT) and 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), are potent psychoactive substances that have been studied for their physiological and psychological effects. However, our understanding of the potential interactions and outcomes when using these substances in combination with other drugs is limited. This systematic review aims to provide a comprehensive overview of the current research on drug-drug interactions between classic psychedelics and other drugs in humans. We conducted a thorough literature search using multiple databases, including PubMed, PsycINFO, Web of Science and other sources to supplement our search for relevant studies. A total of 7102 records were screened, and studies involving human data describing potential interactions (as well as the lack thereof) between classic psychedelics and other drugs were included. In total, we identified 52 studies from 36 reports published before September 2, 2023, encompassing 32 studies on LSD, 10 on psilocybin, 4 on mescaline, 3 on DMT, 2 on 5-MeO-DMT and 1 on ayahuasca. These studies provide insights into the interactions between classic psychedelics and a range of drugs, including antidepressants, antipsychotics, anxiolytics, mood stabilisers, recreational drugs and others. The findings revealed various effects when psychedelics were combined with other drugs, including both attenuated and potentiated effects, as well as instances where no changes were observed. Except for a few case reports, no serious adverse drug events were described in the included studies. An in-depth discussion of the results is presented, along with an exploration of the potential molecular pathways that underlie the observed effects.
Collapse
Affiliation(s)
- Andreas Halman
- Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - Geraldine Kong
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Jerome Sarris
- NICM Health Research Institute, Western Sydney University, Sydney, Australia
- Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
- Psychae Institute, Melbourne, VIC, Australia
| | - Daniel Perkins
- Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
- Psychae Institute, Melbourne, VIC, Australia
| |
Collapse
|
38
|
Rahimian Z, Sadrian S, Shahisavandi M, Aligholi H, Zarshenas MM, Abyar A, Zeraatpisheh Z, Asadi-Pooya AA. Antiseizure Effects of Peganum harmala L. and Lavandula angustifolia. BIOMED RESEARCH INTERNATIONAL 2023; 2023:4121998. [PMID: 38089644 PMCID: PMC10715855 DOI: 10.1155/2023/4121998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 03/30/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023]
Abstract
Peganum harmala L. and Lavandula angustifolia are two traditional herbs with probable antiseizure effects. This study evaluated the effects of these two herbal extracts on pentylenetetrazol- (PTZ-) induced seizures in mice. We prepared hydroalcoholic extracts using P. harmala seeds and the aerial parts of L. angustifolia and then randomly divided 190 mice into 19 groups. Normal saline (10 mg/kg), diazepam (2 mg/kg), P. harmala (2.5, 5, 10, 15, 30, 45, and 60 mg/kg), and L. angustifolia (200, 400, 600, and 800 mg/kg) were intraperitoneally (IP) administrated 30 min before an IP administration of PTZ (90 mg/kg). Animals were observed for behavioral changes for one hour. In addition, the effects of flumazenil and naloxone on the antiseizure activity of P. harmala and L. angustifolia were assessed. P. harmala showed antiseizure activity at the dose of 10 mg/kg; it prolonged the seizure latency and decreased the seizure duration. The mortality protection rate was 90% for this herbal extract. L. angustifolia (600 mg/kg) prolonged the seizure latency and decreased both seizure duration and mortality. Neither flumazenil nor naloxone significantly reversed the antiseizure activities of P. harmala and L. angustifolia. In mice, the hydroalcoholic extracts of P. harmala and L. angustifolia showed antiseizure activity against PTZ-induced seizures. We could not delineate the exact antiseizure mechanisms of these extracts in the current study.
Collapse
Affiliation(s)
- Zahra Rahimian
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Students Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - SeyedHassan Sadrian
- Students Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Shahisavandi
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hadi Aligholi
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad M. Zarshenas
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Phytopharmaceuticals (Traditional Pharmacy), Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Abyar
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zeraatpisheh
- Research Center for Psychiatry and Behavioral Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali A. Asadi-Pooya
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Jefferson Comprehensive Epilepsy Center, Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
39
|
Ruffell SGD, Crosland‐Wood M, Palmer R, Netzband N, Tsang W, Weiss B, Gandy S, Cowley‐Court T, Halman A, McHerron D, Jong A, Kennedy T, White E, Perkins D, Terhune DB, Sarris J. Ayahuasca: A review of historical, pharmacological, and therapeutic aspects. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2023; 2:e146. [PMID: 38868739 PMCID: PMC11114307 DOI: 10.1002/pcn5.146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/13/2023] [Accepted: 08/30/2023] [Indexed: 06/14/2024]
Abstract
Ayahuasca is a psychedelic plant brew originating from the Amazon rainforest. It is formed from two basic components, the Banisteriopsis caapi vine and a plant containing the potent psychedelic dimethyltryptamine (DMT), usually Psychotria viridis. Here we review the history of ayahuasca and describe recent work on its pharmacology, phenomenological responses, and clinical applications. There has been a significant increase in interest in ayahuasca since the turn of the millennium. Anecdotal evidence varies significantly, ranging from evangelical accounts to horror stories involving physical and psychological harm. The effects of the brew on personality and mental health outcomes are discussed in this review. Furthermore, phenomenological analyses of the ayahuasca experience are explored. Ayahuasca is a promising psychedelic agent that warrants greater empirical attention regarding its basic neurochemical mechanisms of action and potential therapeutic application.
Collapse
Affiliation(s)
- Simon G. D. Ruffell
- Onaya ScienceIquitosPeru
- Psychae InstituteMelbourneVictoriaAustralia
- School of Population and Global HealthUniversity of MelbourneMelbourneAustralia
| | - Max Crosland‐Wood
- Onaya ScienceIquitosPeru
- Psychology and Psychotherapy departmentCentral and North West London NHS TrustLondonUK
| | - Rob Palmer
- Onaya ScienceIquitosPeru
- School of MedicineUniversity of YaleNew HavenConnecticutUSA
- Department of PsychologyUniversity of New MexicoAlbuquerqueNew MexicoUSA
| | | | - WaiFung Tsang
- Onaya ScienceIquitosPeru
- Institute of Psychology, Psychiatry and NeuroscienceSouth London and The Maudsley NHS TrustLondonUK
- Department of Psychology, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - Brandon Weiss
- Onaya ScienceIquitosPeru
- Division of PsychiatryImperial College LondonLondonUK
| | | | - Tessa Cowley‐Court
- Psychae InstituteMelbourneVictoriaAustralia
- School of Population and Global HealthUniversity of MelbourneMelbourneAustralia
| | - Andreas Halman
- School of Population and Global HealthUniversity of MelbourneMelbourneAustralia
| | | | - Angelina Jong
- Institute of Psychology, Psychiatry and NeuroscienceSouth London and The Maudsley NHS TrustLondonUK
- Department of Psychology, Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | | | | | - Daniel Perkins
- Psychae InstituteMelbourneVictoriaAustralia
- School of Population and Global HealthUniversity of MelbourneMelbourneAustralia
- Centre for Mental HealthSwinburne UniversityMelbourneAustralia
| | - Devin B. Terhune
- Psychology and Psychotherapy departmentCentral and North West London NHS TrustLondonUK
| | - Jerome Sarris
- Psychae InstituteMelbourneVictoriaAustralia
- NICM Health Research InstituteWestern Sydney UniversitySydneyAustralia
- Florey Institute for Neuroscience and Mental HealthUniversity of MelbourneMelbourneAustralia
| |
Collapse
|
40
|
Thorat VH, Hsieh JC. Nickel-Catalyzed Intramolecular Dual Annulation Reaction of Aryl Nitrile-Containing 1,2,3-Benzotriazin-4(3 H)-ones: A Pathway To Synthesize Luotonin A and Related Polycyclic Pyrroloquinazolinones. Org Lett 2023; 25:7990-7994. [PMID: 37906681 DOI: 10.1021/acs.orglett.3c03142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Herein, we report a nickel-catalyzed intramolecular denitrogenative dual annulation reaction of aryl nitrile-containing 1,2,3-benzotriazine-4(3H)-ones to synthesize polycyclic pyrroloquinazolinones with a tolerance of a wide diversity of substituents. This catalytic reaction is the first denitrogenative transannulation of 1,2,3-benzotriazine-4(3H)-one with nitrile, which can be applied as the critical step to synthesize luotonin A with a high step economy.
Collapse
Affiliation(s)
- Vijaykumar H Thorat
- Department of Chemistry, Tamkang University, New Taipei City 251301, Taiwan, Republic of China
| | - Jen-Chieh Hsieh
- Department of Chemistry, Tamkang University, New Taipei City 251301, Taiwan, Republic of China
| |
Collapse
|
41
|
Bibi M, Batool SA, Iqbal S, Zaidi SB, Hussain R, Akhtar M, Khan A, Alqahtani MS, Abbas M, Ur Rehman MA. Synthesis and characterization of mesoporous bioactive glass nanoparticles loaded with peganum harmala for bone tissue engineering. Heliyon 2023; 9:e21636. [PMID: 38027746 PMCID: PMC10665746 DOI: 10.1016/j.heliyon.2023.e21636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/08/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Globally, there is an increase in a number of bone disorders including osteoarthritis (OA), osteomyelitis, bone cancer, and etc., which has led to a demand for bone tissue regeneration. In order to take use of the osteogenic potential of natural herbs, mesoporous bioactive glass nanoparticles (MBGNs) have the ability to deliver therapeutically active chemicals locally. MBGNs influence bioactivity and osteointegration of materials making them suitable for bone tissue engineering (BTE). In the present study, we developed Peganum Harmala (P. harmala) loaded MBGNs (PH-MBGNs) synthesized via modified Stöber process. The MBGNs were analyzed in terms of surface morphology, chemical make-up, amorphous nature, chemical interaction, pore size, and surface area before and after loading with P. harmala. A burst release of drug from PH-MBGNs was observed within 8 h immersion in phosphate buffer saline (PBS). PH-MBGNs effectively prevented Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) from spreading. Furthermore, PH-MBGNs developed a hydroxyapatite (HA) layer in the presence of simulated body fluid (SBF) after 21 days, which confirmed the in-vitro bioactivity of MBGNs. In conclusion, PH-MBGNs synthesized in this work are potential candidate for scaffolding or a constituent in the coatings for BTE applications.
Collapse
Affiliation(s)
- Maria Bibi
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan
| | - Syeda Ammara Batool
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan
| | - Sajid Iqbal
- Department of Nuclear and Quantum Engineering Korea Advanced Institute of Science and Technology (KAIST) 34141, Daejeon, Republic of Korea
| | - Shaher Bano Zaidi
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan
| | - Rabia Hussain
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan
| | - Memoona Akhtar
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan
| | - Ahmad Khan
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Muhammad Atiq Ur Rehman
- Department of Materials Science and Engineering, Institute of Space Technology Islamabad, Islamabad 44000, Pakistan
| |
Collapse
|
42
|
Acero VP, Cribas ES, Browne KD, Rivellini O, Burrell JC, O’Donnell JC, Das S, Cullen DK. Bedside to bench: the outlook for psychedelic research. Front Pharmacol 2023; 14:1240295. [PMID: 37869749 PMCID: PMC10588653 DOI: 10.3389/fphar.2023.1240295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/30/2023] [Indexed: 10/24/2023] Open
Abstract
There has recently been a resurgence of interest in psychedelic compounds based on studies demonstrating their potential therapeutic applications in treating post-traumatic stress disorder, substance abuse disorders, and treatment-resistant depression. Despite promising efficacy observed in some clinical trials, the full range of biological effects and mechanism(s) of action of these compounds have yet to be fully established. Indeed, most studies to date have focused on assessing the psychological mechanisms of psychedelics, often neglecting the non-psychological modes of action. However, it is important to understand that psychedelics may mediate their therapeutic effects through multi-faceted mechanisms, such as the modulation of brain network activity, neuronal plasticity, neuroendocrine function, glial cell regulation, epigenetic processes, and the gut-brain axis. This review provides a framework supporting the implementation of a multi-faceted approach, incorporating in silico, in vitro and in vivo modeling, to aid in the comprehensive understanding of the physiological effects of psychedelics and their potential for clinical application beyond the treatment of psychiatric disorders. We also provide an overview of the literature supporting the potential utility of psychedelics for the treatment of brain injury (e.g., stroke and traumatic brain injury), neurodegenerative diseases (e.g., Parkinson's and Alzheimer's diseases), and gut-brain axis dysfunction associated with psychiatric disorders (e.g., generalized anxiety disorder and major depressive disorder). To move the field forward, we outline advantageous experimental frameworks to explore these and other novel applications for psychedelics.
Collapse
Affiliation(s)
- Victor P. Acero
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
| | - Emily S. Cribas
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kevin D. Browne
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - Olivia Rivellini
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
| | - Justin C. Burrell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| | - John C. O’Donnell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Penn Psychedelics Collaborative, University of Pennsylvania, Philadelphia, PA, United States
| | - Suradip Das
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Neurotrauma, Neurodegeneration and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, United States
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
43
|
Chen B, Yan M, Gao H, Ma Q, Li L, Lü G, Gong Y, Wen L, Xu S, Wang J, Zhao J. In vitro and in vivo Efficacies of Novel Harmine Derivatives in the Treatment of Cystic Echinococcosis. Drug Des Devel Ther 2023; 17:2441-2454. [PMID: 37637266 PMCID: PMC10454840 DOI: 10.2147/dddt.s419002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/08/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Cystic echinococcosis (CE) is a chronic zoonotic parasitic disease caused by the larvae of the Echinococcus granulosus sensu lato (s.l.) cluster. The current existing drugs have limited therapeutic efficacy against cystic echinococcosis, and thus, there is an urgent need to develop new drugs. Methods In this study, 7 harmine (HM) derivatives were screened and the effects of HM derivatives on E. granulosus sensu stricto (s.s.) were evaluated by in vitro and mouse experiments. The safety of the HM derivatives was assessed by cytotoxicity assays, acute toxicity study in animals and subacute toxicity study. Results These results show that the HM derivatives H-2-168 and DH-004 exhibited more significant antiparasitic effects at an initial concentration of 40 μM. The results of further studies showed that H-2-168 and DH-004 had dose-dependent effects against protoscoleces and had satisfactory therapeutic outcomes in vivo. Electron microscopy observations demonstrated that H-2-168 and DH-004 caused severe disruption of the parasite ultrastructure. Notably, the results of the acute toxicity and subchronic toxicity studies showed that H-2-168 and DH-004 had significantly improved safety. In addition, we found that H-2-168 and DH-004 induced DNA damage in E. granulosus s.s., which may be the mechanism by which these drugs produce their therapeutic effects. Discussion Overall, the data from this work demonstrate that H-2-168 and DH-004 are highly effective candidate compounds with low toxicity for the treatment of CE and will provide a new therapeutic strategy for CE pharmacological treatment.
Collapse
Affiliation(s)
- Bei Chen
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Mingzhi Yan
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Huijing Gao
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Qin Ma
- HuaShiDan Pharmaceutical Company Limited, Urumqi, Xinjiang, People’s Republic of China
| | - Lihua Li
- Xinjiang Urumqi Maternal and Child Health Hospital, Urumqi, Xinjiang, People’s Republic of China
| | - Guodong Lü
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Yuehong Gong
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Limei Wen
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Shaoquan Xu
- College of Pharmacy, Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Jianhua Wang
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| | - Jun Zhao
- First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, People’s Republic of China
| |
Collapse
|
44
|
Morsy MHE, Nabil ZI, Darwish ST, Al-Eisa RA, Mehana AE. Anti-Diabetic and Anti-Adipogenic Effect of Harmine in High-Fat-Diet-Induced Diabetes in Mice. Life (Basel) 2023; 13:1693. [PMID: 37629550 PMCID: PMC10455780 DOI: 10.3390/life13081693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
One of the most important health issues facing the world today is obesity. It is an important independent risk factor for developing type 2 diabetes. Harmine offers various pharmacological effects, such as anti-inflammatory and anti-tumor effects. The current study aims to investigate Harmine's anti-diabetic and anti-adipogenic properties in albino mice after inducing low-grade inflammation with a high-fat diet (HFD). About forty-eight male albino mice were divided into four groups. Group 1: control mice were injected with daily saline and fed a normal chow diet of 21% protein for 5 months. Group 2: mice were treated daily with IP-injected Harmine (30 mg/kg body weight) and were fed a normal chow diet for 5 months. Group 3: mice were fed HFD to induce type 2 Diabetes Mellitus (T2DM) for 5 months. Group 4: mice were fed HFD for 14 weeks and treated with Harmine for the last 6 weeks. A figh-fat diet caused a significant increase in body and organ weight, lipid profiles, and destructive changes within the pancreas, kidney, and liver tissue. The administration of Harmine led to a remarkable improvement in the histological and ultrastructural changes induced by HFD. The findings indicate that mice cured using Harmine had lower oxidative stress, a higher total antioxidant capacity, and a reduced lipid profile compared to HFD mice. Harmine led to the hepatocytes partly restoring their ordinary configuration. Furthermore, it was noticed that the pathological incidence of damage in the structure of both the kidney and pancreas sections reduced in comparison with the diabetic group. Additional research will be required to fully understand Harmine and its preventive effects on the two forms of diabetes.
Collapse
Affiliation(s)
- Menna H E Morsy
- Department of Zoology, Faculty of Science, Arish University, Arish 45511, Egypt
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Zohour I Nabil
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Samah T Darwish
- Department of Zoology, Faculty of Science, Arish University, Arish 45511, Egypt
| | - Rasha A Al-Eisa
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Amir E Mehana
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
45
|
Derbak H, Imre K, Benabdelhak AC, Moussaoui M, Kribeche A, Kebbi R, Ayad A. Effect of Peganum harmala Total Alkaloid Extract on Sexual Behavior and Sperm Parameters in Male Mice. Vet Sci 2023; 10:498. [PMID: 37624285 PMCID: PMC10459670 DOI: 10.3390/vetsci10080498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/26/2023] Open
Abstract
The study was designed to evaluate the effects of the total alkaloid extract of Algerian Peganum harmala seeds on sexual behavior and male reproductive function. After two weeks of acclimatization, the male mice were randomly divided into four groups (seven mice in each group). For 35 days, the extract was administered orally at dose levels of 6.25, 12.5, and 25 mg/kg body weight per day to the respective groups of male mice (n = 7) and normal saline daily to the control group. On day 28, sexual behavior parameters were recorded. At the end of the trial, reproductive organ weights, sperm quality, seminal fructose, and testosterone hormone levels were evaluated. The three treated groups were compared with the control using statistical variance analysis (one-way ANOVA, p < 0.05), followed by Tukey's test. The results of the groups treated with 12.5 and 6.25 mg/kg of P. harmala alkaloid revealed the MF and IF parameters to be the lowest compared to the control group (p < 0.05). However, the male mice treated with 25 mg/kg recorded the highest values. A low significant value of ML was observed in the group treated with 25 mg/kg of the total alkaloid extract of P. harmala compared to the control group (p < 0.01), while a rise was observed in the concentration group treated with 6.25 mg/kg. Regarding IL, the male mice treated with different concentrations of the total alkaloid extract of P. harmala recorded a higher time than the control group. Moreover, an increase in the gonadosomatic index was noticed in all groups compared to the control group. However, there was a significant (p < 0.01) decrease in the sperm counts of the groups treated with 12.5 mg/kg and 6.25 mg/kg. However, there was no significant difference in the motility, membrane integrity, and total antioxidant capacity of sperm cells compared to the control. The extract treatment also brought about a non-significant increase in fructose content of the seminal vesicle and serum testosterone level. The findings of this study demonstrate that the extract acts in a dose-dependent manner, and it has varying effects on the reproductive parameters of male mice.
Collapse
Affiliation(s)
- Hanane Derbak
- Department of Biological and Environmental Sciences, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia 06000, Algeria; (H.D.); (A.C.B.); (M.M.); (R.K.)
| | - Kálmán Imre
- Department of Animal Production and Veterinary Public Health, Faculty of Veterinary Medicine, University of Life Sciences “King Mihai I” from Timișoara, 300645 Timisoara, Romania
| | - Amira Chahrazad Benabdelhak
- Department of Biological and Environmental Sciences, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia 06000, Algeria; (H.D.); (A.C.B.); (M.M.); (R.K.)
| | - Mohamed Moussaoui
- Department of Biological and Environmental Sciences, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia 06000, Algeria; (H.D.); (A.C.B.); (M.M.); (R.K.)
- Pharmaceutical Sciences Research Center (CRSP), Constantine 25000, Algeria
| | - Amina Kribeche
- Laboratory of Biomathematics, Biochemistry, Biophysics and Scientometrics (L3BS), University of Bejaia, Bejaia 06000, Algeria;
| | - Rosa Kebbi
- Department of Biological and Environmental Sciences, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia 06000, Algeria; (H.D.); (A.C.B.); (M.M.); (R.K.)
| | - Abdelhanine Ayad
- Department of Biological and Environmental Sciences, Faculty of Nature and Life Sciences, University of Bejaia, Bejaia 06000, Algeria; (H.D.); (A.C.B.); (M.M.); (R.K.)
| |
Collapse
|
46
|
Al-Momani H, Almasri M, Al Balawi D, Hamed S, Albiss BA, Aldabaibeh N, Ibrahim L, Albalawi H, Al Haj Mahmoud S, Khasawneh AI, Kilani M, Aldhafeeri M, Bani-Hani M, Wilcox M, Pearson J, Ward C. The efficacy of biosynthesized silver nanoparticles against Pseudomonas aeruginosa isolates from cystic fibrosis patients. Sci Rep 2023; 13:8876. [PMID: 37264060 DOI: 10.1038/s41598-023-35919-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023] Open
Abstract
The high antibiotic resistance of Pseudomonas aeruginosa (PA) makes it critical to develop alternative antimicrobial agents that are effective and affordable. One of the many applications of silver nanoparticles (Ag NPs) is their use as an antimicrobial agent against bacteria resistant to common antibiotics. The key purpose of this research was to assess the antibacterial and antibiofilm effectiveness of biosynthesized Ag NPs against six biofilm-forming clinically isolated strains of PA and one reference strain (ATCC 27853). Ag NPs were biosynthesized using a seed extract of Peganum harmala as a reducing agent. Ag NPs were characterized by Ultraviolet-visible (UV-Vis) spectroscopy and scanning transmission electron microscopy (STEM). The effect of Ag NPs on biofilm formation and eradication was examined through micro-titer plate assays, and the minimal inhibitory (MIC) and minimum bactericidal (MBC) concentrations determined. In addition, real-time polymerase chain reactions (RT-PCR) were performed to examine the effects of Ag NPs on the expression of seven PA biofilm-encoding genes (LasR, LasI, LssB, rhIR, rhII, pqsA and pqsR). The biosynthesized Ag NPs were spherically-shaped with a mean diameter of 11 nm. The MIC for each PA strain was 15.6 µg/ml, while the MBC was 31.25 µg/ml. All PA strains exposed to Ag NPs at sub-inhibitory concentrations (0.22-7.5 µg/ml) showed significant inhibitory effects on growth and biofilm formation. Biomass and biofilm metabolism were reduced dependent on Ag NP concentration. The expression of the quorum-sensing genes of all strains were significantly reduced at an Ag NP concentration of 7.5 µg/ml. The results demonstrate the extensive in-vitro antibacterial and antibiofilm performance of Ag NPs and their potential in the treatment of PA infection. It is recommended that future studies examine the possible synergy between Ag NPs and antibiotics.
Collapse
Affiliation(s)
- Hafez Al-Momani
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, Hashemite University Medical School, The Hashemite University, Zarqa, 13133, Jordan.
| | - Muna Almasri
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Dua'A Al Balawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Saja Hamed
- Department of Pharmaceutical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, The Hashemite University, Zarqa, Jordan
| | - Borhan Aldeen Albiss
- Nanotechnology Institute, Jordan University of Science & Technology, P.O. Box 3030, Irbid, 22110, Jordan
| | - Nour Aldabaibeh
- Supervisor of Microbiology Laboratory, Laboratory Medicine Department, Jordan University Hospital, Amman, Jordan
| | - Lugain Ibrahim
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Hadeel Albalawi
- Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, 13133, Jordan
| | - Sameer Al Haj Mahmoud
- Department of Basic Medical Science, Faculty of Medicine, Al-Balqa' Applied University, AL-Salt, Jordan
| | - Ashraf I Khasawneh
- Department of Microbiology, Pathology and Forensic Medicine, Faculty of Medicine, Hashemite University Medical School, The Hashemite University, Zarqa, 13133, Jordan
| | - Muna Kilani
- Department of Pediatrics, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Muneef Aldhafeeri
- Biosciences Institute, Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - Muayyad Bani-Hani
- Department of Plant Production and Protection, Faculty of Agriculture, Jerash University, Jerash, Jordan
| | - Matthew Wilcox
- Institutes of Cellular Medicine and Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
- Biosciences Institute, Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - Jeffrey Pearson
- Biosciences Institute, Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| | - Christopher Ward
- Institutes of Cellular Medicine and Cell & Molecular Biosciences, Newcastle University Medical School, Newcastle University, Newcastle Upon Tyne, NE2 4HH, UK
| |
Collapse
|
47
|
Jiang N, Chen L, Li J, Li W, Jiang S. Lethal and Sublethal Toxicity of Beta-Carboline Alkaloids from Peganum harmala (L.) against Aedes albopictus Larvae (Diptera: Culicidae). TOXICS 2023; 11:341. [PMID: 37112568 PMCID: PMC10143510 DOI: 10.3390/toxics11040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Plant-derived agents are powerful bio-pesticides for the eco-friendly control of mosquito vectors and other blood-sucking arthropods. The larval toxicity of beta-carboline alkaloids against the Asian tiger mosquito, Aedes albopictus (Skuse) (Diptera: Culicidae), was investigated under laboratory conditions. The total alkaloid extracts (TAEs) and beta-carboline alkaloids (harmaline, harmine, harmalol, and harman) from Peganum harmala seeds were isolated and tested in this bioassay. All alkaloids were tested either individually or as binary mixtures, using the co-toxicity coefficient (CTC) and Abbott's formula analysis. The results revealed considerable toxicity of the tested alkaloids against A. albopictus larvae. When all larval instars were exposed to the TAEs at 48 h post-treatment, the mortality of all larval instars varied in a concentration-dependent manner. The second-instar larvae were the most susceptible to different concentrations of TAEs, and the fourth-instar larvae were more tolerant to TAEs than the second-instar larvae. Especially, the third-instar larvae exposed to all alkaloids also showed that all doses resulted in an increased mortality of the third-instar larvae at 48 h post-treatment, and the toxicities of the tested alkaloids in a descending order were TAEs > harmaline > harmine > harmalol, with the LC50 values of 44.54 ± 2.56, 55.51 ± 3.01, 93.67 ± 4.53, and 117.87 ± 5.61 μg/mL at 48 h post-treatment, respectively. In addition, all compounds were also tested individually or in a 1:1 ratio (dose LC25/LC25) as binary mixtures to assess the synergistic toxicity of these binary combinations against the third-instar larvae at 24 and 48 h post-treatment, respectively. The results demonstrated that when tested as a binary mixture, all compounds (especially TAEs, harmaline, and harmine) showed their synergistic effects, exceeding the toxicity of each compound alone. Interestingly, the obtained data further revealed that the TAEs at sublethal doses (LC10 and LC25) could significantly delay the larval development and decrease the pupation and emergence rates of A. albopictus. This phenomenon could be helpful in order to develop more effective control strategies for different notorious vector mosquitoes.
Collapse
Affiliation(s)
- Nan Jiang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Li Chen
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Jinmei Li
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Wenyong Li
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| | - Shuanglin Jiang
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China
| |
Collapse
|
48
|
Devi M, Moral R, Thakuria S, Mitra A, Paul S. Hydrophobic Deep Eutectic Solvents as Greener Substitutes for Conventional Extraction Media: Examples and Techniques. ACS OMEGA 2023; 8:9702-9728. [PMID: 36969397 PMCID: PMC10034849 DOI: 10.1021/acsomega.2c07684] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Deep eutectic solvents (DESs) are multicomponent designer solvents that exist as stable liquids over a wide range of temperatures. Over the last two decades, research has been dedicated to developing noncytotoxic, biodegradable, and biocompatible DESs to replace commercially available toxic organic solvents. However, most of the DESs formulated until now are hydrophilic and disintegrate via dissolution on coming in contact with the aqueous phase. To expand the repertoire of DESs as green solvents, hydrophobic DESs (HDESs) were prepared as an alternative. The hydrophobicity is a consequence of the constituents and can be modified according to the nature of the application. Due to their immiscibility, HDESs induce phase segregation in an aqueous solution and thus can be utilized as an extracting medium for a multitude of compounds. Here, we review literature reporting the usage of HDESs for the extraction of various organic compounds and metal ions from aqueous solutions and absorption of gases like CO2. We also discuss the techniques currently employed in the extraction processes. We have delineated the limitations that might reduce the applicability of these solvents and also discussed examples of how DESs behave as reaction media. Our review presents the possibility of HDESs being used as substitutes for conventional organic solvents.
Collapse
Affiliation(s)
| | | | | | | | - Sandip Paul
- . Phone: +91-361-2582321. Fax: +91-361-2582349
| |
Collapse
|
49
|
Metal-Catalyzed Cascade Reactions between Alkynoic Acids and Dinucleophiles: A Review. Catalysts 2023. [DOI: 10.3390/catal13030495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Cascade reactions provide a straightforward access to many valuable compounds and reduce considerably the number of steps of a synthetic sequence. Among the domino and multicomponent processes that involve alkynes, the cascade reaction between alkynoic acids and C-, N-, O- and S-aminonucleophiles stands out as a particularly powerful tool for the one-pot construction of libraries of nitrogen-containing heterocyclic compounds with scaffold diversity and molecular complexity. This reaction, based on an initial metal-catalyzed cycloisomerization that generates an alkylidene lactone intermediate, was originally catalyzed by gold(I) catalysts, along with silver salts or Brönsted acid additives, but other alternative metal catalysts have emerged in the last decade as well as different reaction media. This review examines the existing literature on the topic of metal-catalyzed cascade reactions of acetylenic acids and dinucleophiles and discusses aspects concerning substrate/catalyst ratio for every catalyst system, nature of the aminonucleophile involved and substrate scope. In addition, alternative solvents are also considered, and an insight into the pathway of the reaction and possible intermediates is also provided.
Collapse
|
50
|
Patel V, Bambharoliya T, Shah D, Patel Y, Savaliya N, Patel Y, Patel R, Bhavsar V, Patel H, Patel M, Patel A. Recent Progress for the Synthesis of β-Carboline Derivatives – an Update. Polycycl Aromat Compd 2023. [DOI: 10.1080/10406638.2023.2180525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Affiliation(s)
- Vidhi Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, India
| | | | - Drashti Shah
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, India
| | - Yug Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, India
| | - Neel Savaliya
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, India
| | - Yash Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, India
| | - Riddhisiddhi Patel
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, India
| | | | - Harnisha Patel
- Department of Pharmaceutical Chemistry, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Mehul Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, India
| | - Ashish Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT Campus, Changa, India
| |
Collapse
|