1
|
Sabir IA, Nabi F, Manzoor MA, Ullah F, Saeed M, Hashem A, Alkahtani J, Abd-Allah EF, Qadir M. Genome-wide identification of chitinase gene family in Hordeum vulgare: insights into stress response mechanisms and evolutionary dynamics. BMC PLANT BIOLOGY 2025; 25:628. [PMID: 40361008 PMCID: PMC12070782 DOI: 10.1186/s12870-025-06475-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/27/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Chitinase, a key enzyme family within the pathogenesis-related (PR) protein, plays a crucial role in plant defense by degrading chitin, a major component of fungal cell walls. The HvCHT genes in barley are involved in responses to biotic and abiotic stresses, although their full range of functions is not yet fully understood. RESULTS In this study, we identified 24 potential HvCHT genes through a genome-wide analysis. The comparative synteny analysis showed conserved relationships between HvCHT genes and their homologs in Sorghum bicolor, Oryza sativa, and Arabidopsis thaliana. Chromosomal mapping, gene structure, characterization, protein motif analysis, and miRNA regulation were performed to gain insight into the genetic structures of these genes. Segmental duplication events observed in the HvCHT family suggest an important role in the evolutionary development of these genes. Additionally, cis-regulatory element analysis revealed the presence of light-responsive elements, and regulators for Abscisic acid, methyl jasmonate (MeJA), salicylic acid, and gibberellins, indicating potential involvement in stress responses. Transcriptomic data showed differential expression of HvCHT genes in response to salt stress, with distinct patterns observed in leaf and root tissues. Furthermore, the genes defensive responses to drought stress and Fusarium infection were characterized across multiple time points. Notably, qRT-PCR analysis confirmed the upregulation of HvCHT1, HvCHT4, and HvCHT17, highlighting their potential involvement in stress-related pathways. CONCLUSION These findings provide a comprehensive overview of the HvCHT genes role in barley defense mechanisms, underlining their regulatory functions in biotic and abiotic stressors. The results lay the groundwork for future functional studies on HvCHT genes, with the potential to enhance stress tolerance in crops. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Irfan Ali Sabir
- South China Agricultural University (SCAU), Guangzhou, Guangdong, 510642, China
| | - Farhan Nabi
- South China Agricultural University (SCAU), Guangzhou, Guangdong, 510642, China
| | | | - Fazal Ullah
- Department of Botany, University of Swabi, Swabi, Pakistan
| | - Muhammad Saeed
- Department of Botany, University of Swabi, Swabi, Pakistan
| | - Abeer Hashem
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box. 2455, Riyadh, 11451, Saudi Arabia
| | - Jawaher Alkahtani
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box. 2455, Riyadh, 11451, Saudi Arabia
| | - Elsayed Fathi Abd-Allah
- Department of Plant Production, College of Food and Agricultural Sciences, King Saud University, P.O. Box. 2460, Riyadh, 11451, Saudi Arabia
| | - Muslim Qadir
- South China Agricultural University (SCAU), Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
2
|
Cheng Y, Chen Y, Liu J, Li D, Zhang J, Li C, Yang W, Lei Z. Decanal: A Direct Defense Volatile Induced by Colletotrichum fructicola in the Tea Cultivar "Qiancha No. 1". JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10881-10895. [PMID: 40272259 PMCID: PMC12063612 DOI: 10.1021/acs.jafc.5c01834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
Plants release a variety of defensive volatiles in response to biotic stress. The present study examined interactions between Colletotrichum fructicola and the defense volatiles induced by this fungal species in the tea cultivar "Qiancha No. 1". Analysis of the volatiles emitted from C. fructicola-infected leaves of "Qiancha No. 1" revealed that four volatiles showed a relative content increase of more than 2%. Fungicidal activity assays demonstrated that decanal exhibited the strongest antifungal activity among the four volatiles. Further physiological experiments demonstrated that the antifungal mechanism of decanal was associated with disruption of the cell wall and the membrane. Transcriptome analysis revealed that the genes encoding Chitinase 1, chitin synthase 1, and endochitinase42 were identified as potential targets that may be involved in cell wall degradation by decanal. Additionally, genes encoding cytochrome P450-DIT2 and multidrug resistance protein fer6 were identified as potential targets that may be associated with membrane damage. This study is the first to demonstrate that decanal acts as a direct defense volatile in the interaction between C. fructicola and "Qiancha No. 1," highlighting its potential as an effective antifungal agent.
Collapse
Affiliation(s)
- Yongjia Cheng
- College
of Tea Science, Guizhou University, Guiyang 550025, China
| | - Yao Chen
- Guizhou
Tea Research Institute, Guizhou Academy
of Agricultural Sciences, Guiyang 550006, China
| | - Jianjun Liu
- College
of Tea Science, Guizhou University, Guiyang 550025, China
| | - Dongyang Li
- School
of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China
| | - Juan Zhang
- College
of Tea Science, Guizhou University, Guiyang 550025, China
| | - Chaojie Li
- College
of Tea Science, Guizhou University, Guiyang 550025, China
| | - Wen Yang
- Guizhou
Tea Research Institute, Guizhou Academy
of Agricultural Sciences, Guiyang 550006, China
| | - Zhiwei Lei
- Guizhou
Tea Research Institute, Guizhou Academy
of Agricultural Sciences, Guiyang 550006, China
| |
Collapse
|
3
|
Liu JJ, Wen JX, Li JF, Wang FZ. Nepenthes chitinase NkChit2b- 1 confers broad-spectrum resistance to chitin-containing pathogens and insects in plants. ADVANCED BIOTECHNOLOGY 2025; 3:12. [PMID: 40257666 PMCID: PMC12011681 DOI: 10.1007/s44307-025-00066-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
Chitinases play critical roles in plant-pathogen/insect interactions by degrading chitin, a key structural component of fungal cell walls and insect exoskeletons. However, current research lacks comprehensive studies on the broad-spectrum disease resistance of chitinases, and novel chitinases with higher enzymatic activity remain underexplored. Here, we report the prokaryotic expression and functional characterization of Nepenthes khasiana-derived chitinase NkChit2b-1, demonstrating its capacity to confer broad-spectrum resistance against chitin-containing phytopathogenic fungi and insect pests. Biochemical assays revealed that NkChit2b-1 exhibits high enzymatic activity within the optimal temperature range (28-42°C) for terrestrial plant growth and the pH range (5.0-6.0) encompassing pathogen-induced apoplastic alkalization in plants. This enzymatic profile correlates with its effective inhibition of mycelial growth in major phytopathogens including Sclerotinia sclerotiorum, Botrytis cinerea, and Magnaporthe oryzae. Exogenous application of NkChit2b-1 conferred enhanced resistance to these pathogens in both model species (e.g., Arabidopsis) and crop species (e.g., tobacco, tomato, and rice). Intriguingly, NkChit2b-1 pretreatment suppressed feeding activity of brown planthopper (BPH, Nilaparvata lugens) nymphs on rice phloem sap and induced mortality in adult BPH upon ingestion. Furthermore, NkChit2b-1 accelerated beet armyworm (Spodoptera exigua) egg hatching while delaying larval development. In addition, foliar application of NkChit2b-1 on Arabidopsis leaves conferred antifeedant activity against beet armyworm larvae in dual-choice assays. These results collectively indicate the exceptional potential of NkChit2b-1 as an eco-friendly "green pesticide". The exploration of novel chitinases and combinatorial chitinase strategies may overcome the limitations of single-enzyme formulations, thereby advancing chitinase applications in sustainable agriculture and plant protection.
Collapse
Affiliation(s)
- Jun-Jie Liu
- Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jin-Xuan Wen
- Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jian-Feng Li
- Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Feng-Zhu Wang
- Guangdong Provincial Key Laboratory of Plant Stress Biology, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
4
|
Zambare R, Bhagwat V, Singh S, Guntha M, Ghormade V, Tupe SG, Shaikh S, Deshpande MV. Microcycle Conidia Production in an Entomopathogenic Fungus Beauveria bassiana: The Role of Chitin Deacetylase in the Conidiation and the Contribution of Nanocoating in Conidial Stability. Microorganisms 2025; 13:900. [PMID: 40284736 PMCID: PMC12029682 DOI: 10.3390/microorganisms13040900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/29/2025] Open
Abstract
In the field, substantial quantities of insect pathogenic fungal conidia (5 × 1012/ha) are usually applied for the control of pests. In this regard, attempts are being made to obtain higher yields of conidia to make the process viable. One of the approaches is to induce microcycle conidia (MC) production. In a solid-state fermentation on rice, the SYB-grown inoculum with more pseudomycelia of B. bassiana enhanced MC production almost 5 times compared to the aerial conidia (AC) within 10 days. A chitosan (CNP) and alginate-chitosan (ACNP) nanocoating of MC increased the overall temperature and UV stability. The % cumulative mortalities of Spodoptera litura larvae over 10 d were 83 ± 8.0, 90 ± 5.0, 83 ± 5.0, and 90 ± 6 for AC-, MC-, CNP- coated MC and ACNP-coated MC, respectively. Using probit analysis, the LT50 values were 5.8, 6.0, 7.5, and 6.3 d for AC, MC, CNPs-MC, and ACNPs-MC, respectively. It was observed that chitin deacetylase (CDA) plays a significant role in increasing MC formation. The higher relative proportion of total CDA over chitosanase activity (higher CDA: chitosanase activity ratio) was found to be correlated with the microcycle conidiation.
Collapse
Affiliation(s)
- Rutuja Zambare
- R&D (Department of Scientific and Industrial Research recognized), Greenvention Biotech Pvt. Ltd., Uruli Kanchan 412202, India; (R.Z.); (S.G.T.)
- Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to Be University), Pune 411046, India;
| | - Vaidehi Bhagwat
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India; (V.B.); (S.S.); (M.G.)
| | - Shivangni Singh
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India; (V.B.); (S.S.); (M.G.)
| | - Maheswari Guntha
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India; (V.B.); (S.S.); (M.G.)
| | - Vandana Ghormade
- Nanobioscience Group, Agharkar Research Institute, Pune 411004, India; (V.B.); (S.S.); (M.G.)
| | - Santosh G. Tupe
- R&D (Department of Scientific and Industrial Research recognized), Greenvention Biotech Pvt. Ltd., Uruli Kanchan 412202, India; (R.Z.); (S.G.T.)
| | - Shamim Shaikh
- Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth (Deemed to Be University), Pune 411046, India;
| | - Mukund V. Deshpande
- R&D (Department of Scientific and Industrial Research recognized), Greenvention Biotech Pvt. Ltd., Uruli Kanchan 412202, India; (R.Z.); (S.G.T.)
| |
Collapse
|
5
|
Edo GI, Ndudi W, Ali ABM, Yousif E, Zainulabdeen K, Akpoghelie PO, Isoje EF, Igbuku UA, Opiti RA, Athan Essaghah AE, Ahmed DS, Umar H, Alamiery AA. Chitosan: An overview of its properties, solubility, functional technologies, food and health applications. Carbohydr Res 2025; 550:109409. [PMID: 39892276 DOI: 10.1016/j.carres.2025.109409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
The properties and potential applications of chitosan have attracted a lot of interest; each year, the number of publications and patents based on this polymer increases. A significant obstacle to the application of chitosan is its limited solubility in basic and neutral solutions. The fact that chitosan is a series of molecules with variations in size, content, and monomer distribution rather than a single polymer with a well-defined structure and a natural origin is another significant barrier. Some of the claimed biological qualities are distinct, and these characteristics have a fundamental effect on the polymer's technological and biological performance. The poor solubility of the polymer can be improved by chitosan chemistry, and in this assessment, we discuss the changes made to make chitosan more soluble and its possible uses. We concentrate on a few of the primary biological characteristics of chitosan and how they relate to the physicochemical characteristics of the polymer. The use of chitosan in the environmentally friendly manufacture of metallic nanoparticles as well as its usage as a booster for biocatalysts are two further applications of polymers that are linked to green processes that we revisit. This study also presents information about utilizing chitosan's technological advantages.
Collapse
Affiliation(s)
- Great Iruoghene Edo
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria; Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq.
| | - Winifred Ndudi
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Ali B M Ali
- Department of Air Conditioning Engineering, College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Emad Yousif
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
| | - Khalid Zainulabdeen
- Department of Chemistry, College of Sciences, Al-Nahrain University, Baghdad, Iraq
| | - Patrick Othuke Akpoghelie
- Science, Department of Food Science and Technology, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Endurance Fegor Isoje
- Science, Department of Science Laboratory Technology (Biochemistry Option), Delta State University of Science and Technology, Ozoro, Nigeria
| | - Ufuoma Augustina Igbuku
- Department of Chemistry, Faculty of Science, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Rapheal Ajiri Opiti
- Science, Department of Petroleum Chemistry, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Arthur Efeoghene Athan Essaghah
- Environmental Sciences, Department of Urban and Regional Planning, Delta State University of Science and Technology, Ozoro, Delta State, Nigeria
| | - Dina S Ahmed
- Department of Chemical Industries, Institute of Technology-Baghdad, Middle Technical University, Baghdad, Iraq
| | - Huzaifa Umar
- Operational Research Centre in Healthcare, Near East University, Nicosia, Cyprus
| | - Ahmed A Alamiery
- Al-Ayen Scientific Research Center, Al-Ayen Iraqi University, AUIQ, P.O. Box: 64004, An Nasiriyah, Thi Qar, Iraq
| |
Collapse
|
6
|
Danish M, Shahid M, Shafi Z, Zeyad MT, Farah MA, Al-Anazi KM, Ahamad L. Boosting disease resistance in Solanum melongena L. (eggplant) against Alternaria solani: the synergistic effect of biocontrol Acinetobacter sp. and indole-3-acetic acid (IAA). World J Microbiol Biotechnol 2025; 41:85. [PMID: 40011313 DOI: 10.1007/s11274-025-04282-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 01/30/2025] [Indexed: 02/28/2025]
Abstract
Alternaria solani causes early blight disease in eggplants, threatening production and leading to significant economic losses. Fungicides are used to control fungal diseases, but their overuse raises resistance concerns. Finding novel, eco-friendly biocontrol agents is therefore a solution for the future. The coordination between antagonistic bacterial agents and plant growth hormones in defense responses against fungal pathogens are crucial. This study assessed biocontrol potential of Acinetobacter sp. SCR-11 (Accession no. OR751536.1) and indole-3-acetic acid (IAA; 100 µM), singly and in combination, against A. solani in eggplants. Strain SCR-11 produced hydrogen cyanide (HCN; 5.7 µg mL⁻1), siderophore i.e. salicylic acid (14.7 µg mL⁻1), 2,3-dihydroxybenzoic acid (23.1 µg mL⁻1) and various extracellular lytic enzymes. Strain SCR-11 exhibited antagonistic activity by strongly inhibiting (82%) A. solani. Acinetobacter sp. inoculation and IAA treatment enhanced growth, biomass, and leaf pigments of A. solani-diseased eggplants, with effectiveness in order: SCR-11 + IAA > SCR-11 > IAA >. The combined treatments (SCR-11 + IAA) most effectively increased total soluble protein (62.5%), carbohydrate (60%), total soluble sugar (81%), and phenol (74%) in A. solani-infected eggplant. Biocontrol agent and IAA application significantly (p ≤ 0.05) reduced proline and malondialdehyde (MDA) levels, alleviating oxidative stress in A. solani-diseased eggplant. The SCR-11 + IAA treatment significantly reduced the percent disease index (71%) and increased protection (69%) in diseased eggplant. The Acinetobacter sp. and IAA coordination enhanced disease resistance in A. solani-infected eggplants by boosting defense enzyme activities (SOD, POD, PAL, and β-1, 3 glucanase), significantly protecting plants from pathogen attack. At harvest, soil populations of A. solani decreased, while SCR-11 populations increased significantly. Acinetobacter sp. and IAA work synergistically through pathogen suppression, plant growth promotion, and induction of plant defense responses. Thus, applying antagonistic PGPR strain with exogenous IAA enhances eggplant resistance to A. solani, providing an environmentally friendly agricultural solution.
Collapse
Affiliation(s)
- Mohammad Danish
- Botany Section, School of Sciences, Maulana Azad National Urdu University, Hyderabad, India.
| | - Mohammad Shahid
- Department of Agricultural Microbiology, Faculty of Agriculture Science, A.M.U., Aligarh, Uttar Pradesh, 202002, India
| | - Zaryab Shafi
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
| | - Mohammad Tarique Zeyad
- Department of Agricultural Microbiology, Faculty of Agriculture Science, A.M.U., Aligarh, Uttar Pradesh, 202002, India
| | - Mohammad Abul Farah
- Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Khalid Mashay Al-Anazi
- Department of Zoology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Lukman Ahamad
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| |
Collapse
|
7
|
González-Serrano F, Romero-Contreras YJ, Orta AH, Basanta MD, Morales H, Sandoval García G, Bello-López E, Escobedo-Muñoz AS, Bustamante VH, Ávila-Akerberg V, Cevallos MÁ, Serrano M, Rebollar EA. Amphibian skin bacteria contain a wide repertoire of genes linked to their antifungal capacities. World J Microbiol Biotechnol 2025; 41:78. [PMID: 40011297 PMCID: PMC11865118 DOI: 10.1007/s11274-025-04292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
Emerging diseases caused by fungi are a serious threat to wildlife biodiversity. The widespread fungal pathogen Batrachochytrium dendrobatidis (Bd) has caused dramatic amphibian population declines and species extinctions worldwide. While many amphibians have been negatively affected by Bd, some populations/species have persisted despite its presence. One factor contributing to amphibian protection against this fungus is the host-associated skin microbiome. In this study, we aimed to identify gene clusters associated with the antifungal activity of amphibian skin bacteria. Specifically, we explored skin bacteria isolated from species that have persisted in the wild despite the presence of Bd: the frogs Agalychnis callidryas, Craugastor fitzingeri, Dendropsophus ebraccatus, and the axolotl Ambystoma altamirani. Bacterial isolates were tested in vitro for their capacity to inhibit the growth of two fungal pathogens: Bd and the phytopathogen Botrytis cinerea (Bc). Genome mining of these bacterial isolates revealed a diverse repertoire of Biosynthetic Gene Clusters (BGCs) and chitin-degrading gene families (ChDGFs) whose composition and abundance differed among bacterial families. We found specific BGCs and ChDGFs that were associated with the capacity of bacteria to inhibit the growth of either Bd or Bc, suggesting that distinct fungi could be inhibited by different molecular mechanisms. By using similarity networks and machine learning, we identified BGCs encoding known antifungal compounds such as viscosin, fengycin, zwittermicin, as well as siderophores and a novel family of beta-lactones. Finally, we propose that the diversity of BGCs found in amphibian skin bacteria comprise a substantial genetic reservoir that could collectively explain the antifungal properties of the amphibian skin microbiome.
Collapse
Affiliation(s)
- Francisco González-Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca, Morelos, 62210, México
| | - Yordan J Romero-Contreras
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca, Morelos, 62210, México
| | - Alberto H Orta
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca, Morelos, 62210, México
- School of Environmental and Natural Sciences, Molecular Ecology & Evolution Group, Prifysgol Bangor University, Bangor, LL57 2DG, UK
| | - M Delia Basanta
- Department of Biology, University of Nevada, Reno, 1664 N. Virginia St, Reno, NV, 89557, USA
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Exterior s/n Alcaldía Coyoacán, Mexico City, Ciudad Universitaria, 04510, México
| | - Hugo Morales
- Facultad de Ciencias, Universidad Autónoma del Estado de México, Carretera Toluca - Ixtlahuaca Km 15.5, Piedras Blancas, Toluca de Lerdo, 50200, México
| | - Gabriela Sandoval García
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Av. Universidad 3000, Circuito Exterior s/n Alcaldía Coyoacán, Mexico City, Ciudad Universitaria, 04510, México
| | - Elena Bello-López
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca, Morelos, 62210, México
| | - A S Escobedo-Muñoz
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca, Morelos, 62210, México
| | - Víctor H Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, Morelos, 62251, México
| | - Víctor Ávila-Akerberg
- Instituto de Ciencias Agropecuarias y Rurales, Universidad Autónoma del Estado de México, Toluca, México
| | - Miguel Ángel Cevallos
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca, Morelos, 62210, México
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca, Morelos, 62210, México
| | - Eria A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Cuernavaca, Morelos, 62210, México.
| |
Collapse
|
8
|
Williams C, Carnahan BR, Hyland SN, DeMeester KE, Grimes CL. Bio-orthogonal Labeling of Chitin in Native Pathogenic Candida Species via the Chitin Scavenge Pathway. J Am Chem Soc 2025; 147:5632-5641. [PMID: 39925016 PMCID: PMC11849683 DOI: 10.1021/jacs.4c11554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
The fungal cell wall is essential for the integrity of the cell, providing strength and shape, as well as protection against environmental stimuli. For pathogenic fungi, the cell wall is also the initial point of contact with the host. Specific cell wall features such as hypha tails and smaller glycan components modulate a wide range of fungal interactions with the immune defenses. Here, a bio-orthogonal labeling method utilizing N-acetyl-glucosamine (NAG) probes is developed to fluorescently label native, pathogenic yeast via the chitin scavenging pathway. A panel of NAG probes was assembled, synthesized, and characterized for the ability to label the chitin in pathogenic yeast. Enzymatic data show that the native scavenging biosynthetic enzyme, Hxk1, is promiscuous, permitting the labeling of the native chitin biopolymer. This chitin labeling method was validated via the development of mass spectrometry protocols. When compared to the current available labeling systems for chitin, the probes do not affect the integrity of the cell wall and do not interrupt cell growth. Furthermore, the NAG probes enabled multiple "click" platforms across pathogenic Candida species including Candida albicans and Candida tropicalis. Budding and filamentous hyphal states were observed. The results indicate the probes' utility for in vivo study of the morphological, pathogenic switch, and visualization of growth patterns. Thus, the use of these probes in pathogenic Candida strains is ideal for a variety of future applications including strain specific antifungals, diagnostic tools, and immunomodulators.
Collapse
Affiliation(s)
- Caroline Williams
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Bella R. Carnahan
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Stephen N. Hyland
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
| | - Kristen E. DeMeester
- Department
of Chemistry, Lafayette College, Easton, Pennsylvania 18042, United States
| | - Catherine L. Grimes
- Department
of Chemistry and Biochemistry, University
of Delaware, Newark, Delaware 19716, United States
- Department
of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
9
|
Akhtar MR, Younas M, Xia X. Pathogenicity of Serratia marcescens strains as biological control agent: Implications for sustainable pest management. INSECT SCIENCE 2025. [PMID: 39910896 DOI: 10.1111/1744-7917.13489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/12/2024] [Accepted: 11/11/2024] [Indexed: 02/07/2025]
Abstract
The escalating demand for sustainable and eco-friendly pest management strategies has raised interest in harnessing the pathogenic potential of microorganisms. Serratia marcescens, a Gram-negative bacterium, has emerged as a potential biological control agent for sustainable pest management. This review critically examines the history, biology, identification, and pathogenicity of S. marcescens strain with their potential application in pest management. The diverse mechanisms employed by the strain to exert control over pests, including the production of metabolites and the induction of systemic resistance in plants, are examined. The review also summarizes the ecological significance and global distribution of S. marcescens associated with the use of S. marcescens in biological control strategies. Furthermore, the usage efficacy of S. marcescens over other conventional chemicals is discussed. A comprehensive understanding of the pathogenic potential of S. marcescens strains as biological control agents is crucial for developing effective and sustainable pest management strategies. This review consolidates current research advances on S. marcescens, and provides insights into the prospects and challenges of using S. marcescens for integrated pest management.
Collapse
Affiliation(s)
- Muhammad Rehan Akhtar
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou, China
| | - Muhammad Younas
- Vector-borne Virus Research Center, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaofeng Xia
- State Key Laboratory of Agricultural and Forestry Biosecurity, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Fujian Agriculture and Forestry University, Fuzhou, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, China
- Youxi-Yangzhong Vegetable Pest Prevention and Control, Fujian Observation and Research Station, Fuzhou, China
| |
Collapse
|
10
|
Allio R, Teullet S, Lutgen D, Magdeleine A, Koual R, Tilak MK, de Thoisy B, Emerling CA, Lefébure T, Delsuc F. Transcriptomic Data Reveal Divergent Paths of Chitinase Evolution Underlying Dietary Convergence in Anteaters and Pangolins. Genome Biol Evol 2025; 17:evaf002. [PMID: 39780438 PMCID: PMC11789784 DOI: 10.1093/gbe/evaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 12/18/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025] Open
Abstract
Ant-eating mammals represent a textbook example of convergent evolution. Among them, anteaters and pangolins exhibit the most extreme convergent phenotypes with complete tooth loss, elongated skulls, protruding tongues, and hypertrophied salivary glands producing large amounts of saliva. However, comparative genomic analyses have shown that anteaters and pangolins differ in their chitinase acidic gene (CHIA) repertoires, which potentially degrade the chitinous exoskeletons of ingested ants and termites. While the southern tamandua (Tamandua tetradactyla) harbors four functional CHIA paralogs (CHIA1-4), Asian pangolins (Manis spp.) have only one functional paralog (CHIA5). Here, we performed a comparative transcriptomic analysis of salivary glands in 33 placental species, including 16 novel transcriptomes from ant-eating species and close relatives. Our results suggest that salivary glands play an important role in adaptation to an insect-based diet, as expression of different CHIA paralogs is observed in insectivorous species. Furthermore, convergently evolved pangolins and anteaters express different chitinases in their digestive tracts. In the Malayan pangolin, CHIA5 is overexpressed in all major digestive organs, whereas in the southern tamandua, all four functional paralogs are expressed, at very high levels for CHIA1 and CHIA2 in the pancreas and for CHIA3 and CHIA4 in the salivary glands, stomach, liver, and pancreas. Overall, our results demonstrate that divergent molecular mechanisms within the chitinase acidic gene family underlie convergent adaptation to the ant-eating diet in pangolins and anteaters. This study highlights the role of historical contingency and molecular tinkering of the chitin digestive enzyme toolkit in this classic example of convergent evolution.
Collapse
Affiliation(s)
- Rémi Allio
- ISEM, CNRS, IRD, Univ. Montpellier, Montpellier, France
- CBGP, INRAE, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier, Montpellier, France
| | | | - Dave Lutgen
- ISEM, CNRS, IRD, Univ. Montpellier, Montpellier, France
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Swiss Ornithological Institute, Sempach, Switzerland
| | | | - Rachid Koual
- ISEM, CNRS, IRD, Univ. Montpellier, Montpellier, France
| | | | - Benoit de Thoisy
- Institut Pasteur de la Guyane, Cayenne, French Guiana, France
- Kwata NGO, Cayenne, French Guiana, France
| | - Christopher A Emerling
- ISEM, CNRS, IRD, Univ. Montpellier, Montpellier, France
- Biology Department, Reedley College, Reedley, CA, USA
| | - Tristan Lefébure
- LEHNA UMR 5023, CNRS, ENTPE, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
| | | |
Collapse
|
11
|
Xu J, Yao Y, Zhuang Q, Li Z, Zhang M, Wang S, Hu H, Ye J. Characterization of a chitinase from Trichinella spiralis and its immunomodulatory effects on allergic airway inflammation in mice. Parasit Vectors 2025; 18:6. [PMID: 39806495 PMCID: PMC11730484 DOI: 10.1186/s13071-024-06656-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND A fundamental tenet of the hygiene theory is the inverse association between helminth infections and the emergence of immune-mediated diseases. Research has been done to clarify the processes by which helminth-derived molecules can inhibit immunological disorders. This study aimed to evaluate the ability of Trichinella spiralis chitinase (Ts-chit) to ameliorate the symptoms of allergic airway inflammation. METHODS Recombinant Trichinella spiralis chitinase (rTs-chit) was expressed in Escherichia coli BL21, and its structural homology to murine acidic mammalian chitinase (AMCase) was comprehensively analyzed. The expression of Ts-chit was examined across all T. spiralis life stages. To explore its immunomodulatory potential, a murine model of allergen-induced airway inflammation was established. The effects of rTs-chit were evaluated by assessing airway hyperresponsiveness and cytokine profiles in bronchoalveolar lavage fluid and performing detailed histopathological and immunohistochemical analyses. RESULTS Recombinant Ts-chit (rTs-chit) was successfully expressed in E. coli BL21, showing strong structural similarity to murine acidic mammalian chitinase (AMCase). Expression profiling revealed that Ts-chit is present throughout all stages of the T. spiralis life cycle. In an allergic airway inflammation model, rTs-chit reduced weight loss and lung inflammation, lowering inflammatory cell infiltration and Th2 cytokines (IL-4, IL-5, IL-13) while increasing the immunosuppressive cytokine IL-10. Additionally, rTs-chit treatment decreased the expression of GATA3, arginase-1, MCP-1, CCL-11, and AMCase, along with reducing OVA-specific IgE, IgG, and IgG1 levels, suggesting its potential as an immunomodulatory agent. CONCLUSIONS This study highlights rTs-chit's potential as a therapeutic agent for allergic airway diseases, leveraging its structural similarity to host chitinases to regulate Th2 responses and inflammatory pathways. The findings provide new insights into helminth-derived proteins as promising candidates for immune-based therapies.
Collapse
Affiliation(s)
- Jia Xu
- School of Basic Medicine Science, Fujian Province, Putian University, Key Laboratory of Translational Tumor Medicine in , Putian City, 351100, Fujian Province, China
| | - Ye Yao
- School of Basic Medicine Science, Fujian Province, Putian University, Key Laboratory of Translational Tumor Medicine in , Putian City, 351100, Fujian Province, China
| | - Qisheng Zhuang
- School of Basic Medicine Science, Fujian Province, Putian University, Key Laboratory of Translational Tumor Medicine in , Putian City, 351100, Fujian Province, China
| | - Zixuan Li
- School of Basic Medicine Science, Fujian Province, Putian University, Key Laboratory of Translational Tumor Medicine in , Putian City, 351100, Fujian Province, China
| | - Min Zhang
- School of Basic Medicine Science, Fujian Province, Putian University, Key Laboratory of Translational Tumor Medicine in , Putian City, 351100, Fujian Province, China
| | - Shouan Wang
- School of Basic Medicine Science, Fujian Province, Putian University, Key Laboratory of Translational Tumor Medicine in , Putian City, 351100, Fujian Province, China
| | - Hongxin Hu
- The Affiliated Hospital of Putian University, Putian City, 351100, Fujian Province, China.
| | - Jianbin Ye
- School of Basic Medicine Science, Fujian Province, Putian University, Key Laboratory of Translational Tumor Medicine in , Putian City, 351100, Fujian Province, China.
- School of Pharmacy, Fujian Medical University, Fuzhou City, 350004, Fujian Province, China.
- School of Pharmacy, Putian University, Putian City, 351100, Fujian Province, China.
| |
Collapse
|
12
|
Gómez-Gaviria M, Mora-Montes HM. Exploring the potential of chitin and chitosan in nanobiocomposites for fungal immunological detection and antifungal action. Carbohydr Res 2024; 543:109220. [PMID: 39038396 DOI: 10.1016/j.carres.2024.109220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Chitin is a polymer of N-acetylglucosamine and an essential component of the fungal cell wall. Chitosan is the deacetylated form of chitin and is also important for maintaining the integrity of this structure. Both polysaccharides are widely distributed in nature and have been shown to have a variety of applications in biomedicine, including their potential in immune sensing and as potential antifungal agents. In addition, chitin has been reported to play an important role in the pathogen-host interaction, involving innate and adaptive immune responses. This paper will explore the role of chitin and chitosan when incorporated into nanobiocomposites to improve their efficacy in detecting fungi of medical interest and inhibiting their growth. Potential applications in diagnostic and therapeutic medicine will be discussed, highlighting their promise in the development of more sensitive and effective tools for the early diagnosis of fungal infections. This review aims to highlight the importance of the convergence of nanotechnology and biology in addressing public health challenges.
Collapse
Affiliation(s)
- Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, Mexico
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Gto, Mexico.
| |
Collapse
|
13
|
Dierick E, Callens C, Bloch Y, Savvides SN, Hark S, Pelzer S, Ducatelle R, Van Immerseel F, Goossens E. Clostridium perfringens chitinases, key enzymes during early stages of necrotic enteritis in broiler chickens. PLoS Pathog 2024; 20:e1012560. [PMID: 39283899 PMCID: PMC11426533 DOI: 10.1371/journal.ppat.1012560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/26/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024] Open
Abstract
The interaction between bacteria and the intestinal mucus is crucial during the early pathogenesis of many enteric diseases in mammals. A critical step in this process employed by both commensal and pathogenic bacteria focuses on the breakdown of the protective layer presented by the intestinal mucus by mucolytic enzymes. C. perfringens type G, the causative agent of necrotic enteritis in broilers, produces two glycosyl hydrolase family 18 chitinases, ChiA and ChiB, which display distinct substrate preferences. Whereas ChiB preferentially processes linear substrates such as chitin, ChiA prefers larger and more branched substrates, such as carbohydrates presented by the chicken intestinal mucus. Here, we show via crystal structures of ChiA and ChiB in the apo and ligand-bound forms that the two enzymes display structural features that explain their substrate preferences providing a structural blueprint for further interrogation of their function and inhibition. This research focusses on the roles of ChiA and ChiB in bacterial proliferation and mucosal attachment, two processes leading to colonization and invasion of the gut. ChiA and ChiB, either supplemented or produced by the bacteria, led to a significant increase in C. perfringens growth. In addition to nutrient acquisition, the importance of chitinases in bacterial attachment to the mucus layer was shown using an in vitro binding assay of C. perfringens to chicken intestinal mucus. Both an in vivo colonization trial and a necrotic enteritis trial were conducted, demonstrating that a ChiA chitinase mutant strain was less capable to colonize the intestine and was hampered in its disease-causing ability as compared to the wild-type strain. Our findings reveal that the pathogen-specific chitinases produced by C. perfringens type G strains play a fundamental role during colonization, suggesting their potential as vaccine targets.
Collapse
Affiliation(s)
- Evelien Dierick
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Chana Callens
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Yehudi Bloch
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Current address: European Molecular Biology Laboratory, EMBL Hamburg, c/o DESY, Hamburg, Germany
| | - Savvas N. Savvides
- Unit for Structural Biology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- Unit for Structural Biology, VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Sarah Hark
- Evonik Operations GmbH, Nutrition & Care, Halle, Westfalen, Germany
| | - Stefan Pelzer
- Evonik Operations GmbH, Nutrition & Care, Halle, Westfalen, Germany
| | - Richard Ducatelle
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Filip Van Immerseel
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Evy Goossens
- Livestock Gut Health Team (LiGHT) Ghent, Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
14
|
Williams C, Carnahan BR, Hyland SN, Grimes CL. Bioorthogonal labeling of chitin in pathogenic Candida species reveals biochemical mechanisms of hyphal growth and homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609898. [PMID: 39253419 PMCID: PMC11383299 DOI: 10.1101/2024.08.27.609898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Pathogenic fungi rely on the cell wall component, chitin, for critical structural and immunological functions. Here a chitin labeling method to visualize the hyphal pathogenic response was developed. The data show that filamentous fungi, Candida albicans , transport N -acetylglucosamine (NAG) bio-orthogonal probes and incorporate them into the cell wall, indicating the probes utility for in vivo study of the morphological, pathogenic switch. As yeast reside in complex microenvironments, The data show that the opportunistic microbe C. albicans , has developed processes to utilize surrounding bacterial cell wall fragments to initiate the morphogenic switch. The probes are utilized for visualization of growth patterns of pathogenic fungi, providing insights into novel mechanisms for the development of antifungals. Remodeling chitin in fungi using NAG derivatives will advance yeast pathogenic studies.
Collapse
|
15
|
Cazares-Álvarez JE, Báez-Astorga PA, Arroyo-Becerra A, Maldonado-Mendoza IE. Genome-Wide Identification of a Maize Chitinase Gene Family and the Induction of Its Expression by Fusarium verticillioides (Sacc.) Nirenberg (1976) Infection. Genes (Basel) 2024; 15:1087. [PMID: 39202446 PMCID: PMC11353892 DOI: 10.3390/genes15081087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
Maize chitinases are involved in chitin hydrolysis. Chitinases are distributed across various organisms including animals, plants, and fungi and are grouped into different glycosyl hydrolase families and classes, depending on protein structure. However, many chitinase functions and their interactions with other plant proteins remain unknown. The economic importance of maize (Zea mays L.) makes it relevant for studying the function of plant chitinases and their biological roles. This work aims to identify chitinase genes in the maize genome to study their gene structure, family/class classification, cis-related elements, and gene expression under biotic stress, such as Fusarium verticillioides infection. Thirty-nine chitinase genes were identified and found to be distributed in three glycosyl hydrolase (GH) families (18, 19 and 20). Likewise, the conserved domains and motifs were identified in each GH family member. The identified cis-regulatory elements are involved in plant development, hormone response, defense, and abiotic stress response. Chitinase protein-interaction network analysis predicted that they interact mainly with cell wall proteins. qRT-PCR analysis confirmed in silico data showing that ten different maize chitinase genes are induced in the presence of F. verticillioides, and that they could have several roles in pathogen infection depending on chitinase structure and cell wall localization.
Collapse
Affiliation(s)
- Jesús Eduardo Cazares-Álvarez
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81049, Sinaloa, Mexico;
| | - Paúl Alán Báez-Astorga
- CONAHCYT—Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81049, Sinaloa, Mexico;
| | - Analilia Arroyo-Becerra
- Laboratorio de Genómica Funcional y Biotecnología de Plantas, Centro de Investigación en Biotecnología Aplicada, Instituto Politécnico Nacional, Ex-Hacienda San Juan Molino Carretera Estatal Km 1.5, Santa Inés-Tecuexcomac-Tepetitla 90700, Tlaxcala, Mexico;
| | - Ignacio Eduardo Maldonado-Mendoza
- Departamento de Biotecnología Agrícola, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR), Unidad Sinaloa, Instituto Politécnico Nacional, Guasave 81049, Sinaloa, Mexico;
| |
Collapse
|
16
|
Rosazza T, Earl C, Eigentler L, Davidson FA, Stanley-Wall NR. Reciprocal sharing of extracellular proteases and extracellular matrix molecules facilitates Bacillus subtilis biofilm formation. Mol Microbiol 2024; 122:184-200. [PMID: 38922753 DOI: 10.1111/mmi.15288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Extracellular proteases are a class of public good that support growth of Bacillus subtilis when nutrients are in a polymeric form. Bacillus subtilis biofilm matrix molecules are another class of public good that are needed for biofilm formation and are prone to exploitation. In this study, we investigated the role of extracellular proteases in B. subtilis biofilm formation and explored interactions between different public good producer strains across various conditions. We confirmed that extracellular proteases support biofilm formation even when glutamic acid provides a freely available nitrogen source. Removal of AprE from the NCIB 3610 secretome adversely affects colony biofilm architecture, while sole induction of WprA activity into an otherwise extracellular protease-free strain is sufficient to promote wrinkle development within the colony biofilm. We found that changing the nutrient source used to support growth affected B. subtilis biofilm structure, hydrophobicity and architecture. We propose that the different phenotypes observed may be due to increased protease dependency for growth when a polymorphic protein presents the sole nitrogen source. We however cannot exclude that the phenotypic changes are due to alternative matrix molecules being made. Co-culture of biofilm matrix and extracellular protease mutants can rescue biofilm structure, yet reliance on extracellular proteases for growth influences population coexistence dynamics. Our findings highlight the intricate interplay between these two classes of public goods, providing insights into microbial social dynamics during biofilm formation across different ecological niches.
Collapse
Affiliation(s)
- Thibault Rosazza
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Chris Earl
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Lukas Eigentler
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
- Mathematics, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Fordyce A Davidson
- Mathematics, School of Science and Engineering, University of Dundee, Dundee, UK
| | - Nicola R Stanley-Wall
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
17
|
Farvardin A, González-Hernández AI, Llorens E, Camañes G, Scalschi L, Vicedo B. The Dual Role of Antimicrobial Proteins and Peptides: Exploring Their Direct Impact and Plant Defense-Enhancing Abilities. PLANTS (BASEL, SWITZERLAND) 2024; 13:2059. [PMID: 39124177 PMCID: PMC11314357 DOI: 10.3390/plants13152059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/12/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Plants face numerous environmental stresses that hinder their growth and productivity, including biotic agents, such as herbivores and parasitic microorganisms, as well as abiotic factors, such as cold, drought, salinity, and high temperature. To counter these challenges, plants have developed a range of defense strategies. Among these, plant antimicrobial proteins and peptides (APPs) have emerged as a promising solution. Due to their broad-spectrum activity, structural stability, and diverse mechanisms of action, APPs serve as powerful tools to complement and enhance conventional agricultural methods, significantly boosting plant defense and productivity. This review focuses on different studies on APPs, emphasizing their crucial role in combating plant pathogens and enhancing plant resilience against both biotic and abiotic stresses. Beginning with in vitro studies, we explore how APPs combat various plant pathogens. We then delve into the defense mechanisms triggered by APPs against biotic stress, showcasing their effectiveness against bacterial and fungal diseases. Additionally, we highlight the role of APPs in mitigating the abiotic challenges associated with climatic change. Finally, we discuss the current applications of APPs in agriculture, emphasizing their potential for sustainable agricultural practices and the need for future research in this area.
Collapse
Affiliation(s)
- Atefeh Farvardin
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071 Castellón de la Plana, Spain; (A.F.); (G.C.); (B.V.)
| | | | - Eugenio Llorens
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071 Castellón de la Plana, Spain; (A.F.); (G.C.); (B.V.)
| | - Gemma Camañes
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071 Castellón de la Plana, Spain; (A.F.); (G.C.); (B.V.)
| | - Loredana Scalschi
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071 Castellón de la Plana, Spain; (A.F.); (G.C.); (B.V.)
| | - Begonya Vicedo
- Biochemistry and Biotechnology Group, Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071 Castellón de la Plana, Spain; (A.F.); (G.C.); (B.V.)
| |
Collapse
|
18
|
Unuofin JO, Odeniyi OA, Majengbasan OS, Igwaran A, Moloantoa KM, Khetsha ZP, Iwarere SA, Daramola MO. Chitinases: expanding the boundaries of knowledge beyond routinized chitin degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38045-38060. [PMID: 38789707 PMCID: PMC11195638 DOI: 10.1007/s11356-024-33728-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Chitinases, enzymes that degrade chitin, have long been studied for their role in various biological processes. They play crucial roles in the moulting process of invertebrates, the digestion of chitinous food, and defense against chitin-bearing pathogens. Additionally, chitinases are involved in physiological functions in crustaceans, such as chitinous food digestion, moulting, and stress response. Moreover, chitinases are universally distributed in organisms from viruses to mammals and have diverse functions including tissue degradation and remodeling, nutrition uptake, pathogen invasion, and immune response regulation. The discovery of these diverse functions expands our understanding of the biological significance and potential applications of chitinases. However, recent research has shown that chitinases possess several other functions beyond just chitin degradation. Their potential as biopesticides, therapeutic agents, and tools for bioremediation underscores their significance in addressing global challenges. More importantly, we noted that they may be applied as bioweapons if ethical regulations regarding production, engineering and application are overlooked.
Collapse
Affiliation(s)
- John Onolame Unuofin
- Sustainable Energy and Environment Research Group (SEERG), Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Private bag X20 Hatfield, Pretoria, 0028, South Africa.
| | | | | | - Aboi Igwaran
- The Life Science Center Biology, School of Sciences and Technology, Örebro University, 701 82, Örebro, Sweden
| | - Karabelo MacMillan Moloantoa
- Department of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of Kwazulu Natal, Private Bag X540001, Durban, 4000, South Africa
| | - Zenzile Peter Khetsha
- Department of Agriculture, Central University of Technology, Free State, Private Bag X20539, Bloemfontein, 9300, South Africa
| | - Samuel Ayodele Iwarere
- Sustainable Energy and Environment Research Group (SEERG), Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Private bag X20 Hatfield, Pretoria, 0028, South Africa
| | - Michael Olawale Daramola
- Sustainable Energy and Environment Research Group (SEERG), Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Private bag X20 Hatfield, Pretoria, 0028, South Africa
| |
Collapse
|
19
|
Tue NH, Phuc NH, Hoa PTB, Tien NQD, Loc NH. Partitioning recombinant chitinase from Nicotiana benthamiana by an aqueous two-phase system based on polyethylene glycol and phosphate salts. Int J Biol Macromol 2024; 269:131924. [PMID: 38688335 DOI: 10.1016/j.ijbiomac.2024.131924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
The objectives of this study were to purify 42 kDa chitinase derived from Trichoderma asperellum SH16 produced in Nicotiana benthamiana by a polyethylene glycol (PEG)/salt aqueous two-phase system (ATPS). The specific activities of the crude chitinase and the partially purified chitinase from N. benthamiana were about 251 unit/mg and 386 unit/mg, respectively. The study found the 300 g/L PEG 6000 + 200 g/L potassium phosphate (PP) and 300 g/L PEG 6000 + 150 g/L sodium phosphate (SP) systems had the highest partitioning efficiency for each salt in primary extraction. However, among the two types of salt, PP displayed higher efficiency than SP, with a partitioning coefficient K of 4.85 vs. 3.89, a volume ratio V of 2.94 vs. 2.68, and a partitioning yield Y of approximately 95 % vs. 83 %. After back extraction, the enzymatic activity of purified chitinase was up to 834 unit/mg (PP) and 492 unit/mg (SP). The purification factors reached 3.32 (PP) and 1.96 (SP), with recovery yields of about 59 % and 61 %, respectively. SDS-PAGE and zymogram analysis showed that the recombinant chitinase was significantly purified by using ATPS. The purified enzyme exhibited high chitinolytic activity, with the hydrolysis zone's diameter being around 2.5 cm-3 cm. It also dramatically reduced the growth of Sclerotium rolfsii; the colony diameter after treatment with 60 unit of enzyme for 104 spores was only about 1 cm, compared to 3.5 cm in the control. The antifungal effect of chitinase suggests that this enzyme has great potential for applications in agricultural production as well as postharvest fruit and vegetable preservation.
Collapse
Affiliation(s)
- Nguyen Hoang Tue
- Institute of Bioactive Compounds and Department of Biotechnology, University of Sciences, Hue University, 77 Nguyen Hue St., Hue 49000, Viet Nam
| | - Nguyen Hoang Phuc
- Institute of Bioactive Compounds and Department of Biotechnology, University of Sciences, Hue University, 77 Nguyen Hue St., Hue 49000, Viet Nam
| | - Phung Thi Bich Hoa
- Department of Biology, University of Education, Hue University, 34 Le Loi St., Hue 49000, Viet Nam
| | - Nguyen Quang Duc Tien
- Institute of Bioactive Compounds and Department of Biotechnology, University of Sciences, Hue University, 77 Nguyen Hue St., Hue 49000, Viet Nam
| | - Nguyen Hoang Loc
- Institute of Bioactive Compounds and Department of Biotechnology, University of Sciences, Hue University, 77 Nguyen Hue St., Hue 49000, Viet Nam.
| |
Collapse
|
20
|
Kaur M, Nagpal M, Dhingra GA, Rathee A. Exploring chitin: novel pathways and structures as promising targets for biopesticides. Z NATURFORSCH C 2024; 79:125-136. [PMID: 38760917 DOI: 10.1515/znc-2024-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/05/2024] [Indexed: 05/20/2024]
Abstract
Chitin, the most prevalent polymer in nature, a significant structural polysaccharide that comes in second only to cellulose. Chitin is a crucial component of fungal cell walls and also present in many other creatures, such as viruses, plants, animals, insect exoskeletons, and crustacean shells. Chitin presents itself as a promising target for the development of biopesticides. It focuses on unraveling the unique structures and biochemical pathways associated with chitin, aiming to identify vulnerabilities that can be strategically leveraged for effective and environmentally sustainable pest control. It involves a comprehensive analysis of chitinase enzymes, chitin biosynthesis, and chitin-related processes across diverse organisms. By elucidating the molecular intricacies involved in chitin metabolism, this review seeks to unveil potential points of intervention that can disrupt essential biological processes in target pests without harming non-target species. This holistic approach to understanding chitin-related pathways aims to inform the design and optimization of biopesticides with enhanced specificity and reduced ecological impact. The outcomes of this study hold great promise for advancing innovative and eco-friendly pest management strategies. By targeting chitin structures and pathways, biopesticides developed based on these findings may offer a sustainable and selective alternative to conventional chemical pesticides, contributing to the ongoing efforts towards more environmentally conscious and effective pest control solutions.
Collapse
Affiliation(s)
- Malkiet Kaur
- 418665 University Institute of Pharma Sciences, Chandigarh University , Mohali, Punjab, India
| | - Manju Nagpal
- Chitkara College of Pharmacy, 154025 Chitkara University , Rajpura, Punjab, India
| | | | - Ankit Rathee
- 418665 University Institute of Pharma Sciences, Chandigarh University , Mohali, Punjab, India
| |
Collapse
|
21
|
De Oliveira IB, Alves SDS, Ferreira MM, Santos AS, Farias KS, Assis ETCDM, Mora-Ocampo IY, Muñoz JJM, Costa EA, Gramacho KP, Pirovani CP. Apoplastomes of contrasting cacao genotypes to witches' broom disease reveals differential accumulation of PR proteins. FRONTIERS IN PLANT SCIENCE 2024; 15:1387153. [PMID: 38817930 PMCID: PMC11137319 DOI: 10.3389/fpls.2024.1387153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Witches' broom disease (WBD) affects cocoa trees (Theobroma cacao L.) and is caused by the fungus Moniliophthora perniciosa that grows in the apoplast in its biotrophic phase and later progresses into the tissues, causing serious losses in the production of cocoa beans. Therefore, the apoplast of T. cacao can provide important defense responses during the interaction with M. perniciosa. In this work, the protein profile of the apoplast of the T. cacao genotypes Catongo, susceptible to WBD, and CCN-51, resistant one, was evaluated. The leaves of T. cacao were collected from asymptomatic plants grown in a greenhouse (GH) and from green witches' brooms grown under field (FD) conditions for extraction of apoplastic washing fluid (AWF). AWF was used in proteomic and enzymatic analysis. A total of 14 proteins were identified in Catongo GH and six in Catongo FD, with two proteins being common, one up-accumulated, and one down-accumulated. In CCN-51, 19 proteins were identified in the GH condition and 13 in FD, with seven proteins being common, one up-accumulated, and six down-accumulated. Most proteins are related to defense and stress in both genotypes, with emphasis on pathogenesis-related proteins (PR): PR-2 (β-1,3-glucanases), PR-3 and PR-4 (chitinases), PR-5 (thaumatine), PR-9 (peroxidases), and PR-14 (lipid transfer proteins). Furthermore, proteins from microorganisms were detected in the AWF. The enzymatic activities of PR-3 showed a significant increase (p < 0.05) in Catongo GH and PR-2 activity (p < 0.01) in CCN-51 FD. The protein profile of the T. cacao apoplastome offers insight into the defense dynamics that occur in the interaction with the fungus M. perniciosa and offers new insights in exploring future WBD control strategies.
Collapse
Affiliation(s)
- Ivina Barbosa De Oliveira
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Saline dos Santos Alves
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Monaliza Macêdo Ferreira
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Ariana Silva Santos
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Keilane Silva Farias
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | | | - Irma Yuliana Mora-Ocampo
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Jonathan Javier Mucherino Muñoz
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Eduardo Almeida Costa
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Karina Peres Gramacho
- Molecular Plant Pathology Laboratory, Centro de Pesquisa do Cacau (CEPEC/CEPLAC), Ilhéus, Bahia, Brazil
| | - Carlos Priminho Pirovani
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| |
Collapse
|
22
|
Mizoguchi E, Sadanaga T, Nanni L, Wang S, Mizoguchi A. Recently Updated Role of Chitinase 3-like 1 on Various Cell Types as a Major Influencer of Chronic Inflammation. Cells 2024; 13:678. [PMID: 38667293 PMCID: PMC11049018 DOI: 10.3390/cells13080678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Chitinase 3-like 1 (also known as CHI3L1 or YKL-40) is a mammalian chitinase that has no enzymatic activity, but has the ability to bind to chitin, the polymer of N-acetylglucosamine (GlcNAc). Chitin is a component of fungi, crustaceans, arthropods including insects and mites, and parasites, but it is completely absent from mammals, including humans and mice. In general, chitin-containing organisms produce mammalian chitinases, such as CHI3L1, to protect the body from exogenous pathogens as well as hostile environments, and it was thought that it had a similar effect in mammals. However, recent studies have revealed that CHI3L1 plays a pathophysiological role by inducing anti-apoptotic activity in epithelial cells and macrophages. Under chronic inflammatory conditions such as inflammatory bowel disease and chronic obstructive pulmonary disease, many groups already confirmed that the expression of CHI3L1 is significantly induced on the apical side of epithelial cells, and activates many downstream pathways involved in inflammation and carcinogenesis. In this review article, we summarize the expression of CHI3L1 under chronic inflammatory conditions in various disorders and discuss the potential roles of CHI3L1 in those disorders on various cell types.
Collapse
Affiliation(s)
- Emiko Mizoguchi
- Department of Immunology, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.S.); (S.W.); (A.M.)
- Department of Molecular Microbiology and Immunology, Brown University Alpert Medical School, Providence, RI 02912, USA
| | - Takayuki Sadanaga
- Department of Immunology, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.S.); (S.W.); (A.M.)
- Department of Molecular Microbiology and Immunology, Brown University Alpert Medical School, Providence, RI 02912, USA
| | - Linda Nanni
- Catholic University of the Sacred Heart, 00168 Rome, Italy;
| | - Siyuan Wang
- Department of Immunology, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.S.); (S.W.); (A.M.)
| | - Atsushi Mizoguchi
- Department of Immunology, Kurume University School of Medicine, Kurume 830-0011, Japan; (T.S.); (S.W.); (A.M.)
| |
Collapse
|
23
|
Subramani AK, Ramachandra R, Thote S, Govindaraj V, Vanzara P, Raval R, Raval K. Engineering a recombinant chitinase from the marine bacterium Bacillus aryabhattai with targeted activity on insoluble crystalline chitin for chitin oligomer production. Int J Biol Macromol 2024; 264:130499. [PMID: 38462115 DOI: 10.1016/j.ijbiomac.2024.130499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
Chitin, an abundant polysaccharide in India, is primary by-product of the seafood industry. Efficiently converting chitin into valuable products is crucial. Chitinase, transforms chitin into chitin oligomers, holds significant industrial potential. However, the crystalline and insoluble nature of chitin makes the conversion process challenging. In this study, a recombinant chitinase from marine bacteria Bacillus aryabhattai was developed. This enzyme exhibits activity against insoluble chitin substrates, chitin powder and flakes. The chitinase gene was cloned into the pET 23a plasmid and transformed into E. coli Rosetta pLysS. IPTG induction was employed to express chitinase, and purification using Ni-NTA affinity chromatography. Optimal chitinase activity against colloidal chitin was observed in Tris buffer at pH 8, temperature 55°C, with the presence of 400 mM sodium chloride. Enzyme kinetics studies revealed a Vmax of 2000 μmole min-1 and a Km of 4.6 mg mL-1. The highest chitinase activity against insoluble chitin powder and flakes reached 875 U mg-1 and 625 U mg-1, respectively. The chitinase demonstrated inhibition of Candida albicans, Fusarium solani, and Penicillium chrysogenum growth. Thin Layer Chromatography (TLC) and LC-MS analysis confirmed the production of chitin oligomers, chitin trimer, tetramer, pentamer, and hexamer, from chitin powder and flakes using recombinant chitinase.
Collapse
Affiliation(s)
- Arun Kumar Subramani
- Department of Chemical Engineering, National Institute of Technology, Karnataka 575025, India
| | - Reshma Ramachandra
- Department of Chemical Engineering, National Institute of Technology, Karnataka 575025, India
| | - Sachin Thote
- Department of Chemical Engineering, National Institute of Technology, Karnataka 575025, India
| | - Vishnupriya Govindaraj
- Department of Chemical Engineering, National Institute of Technology, Karnataka 575025, India
| | - Piyush Vanzara
- Department of Chemical Engineering, Vyavasayi Vidya Pratishthan Engineering College, Rajkot, Gujarat 360005, India
| | - Ritu Raval
- Department of Biotechnology, Manipal Academy of Higher Education (MAHE), Karnataka 576104, India.
| | - Keyur Raval
- Department of Chemical Engineering, National Institute of Technology, Karnataka 575025, India.
| |
Collapse
|
24
|
Yurnaliza Y, Nurwahyuni I, Lenny S, Lutfia A. Bioprospecting Study of Plant Growth Promoting Rhizospheric Bacteria from Oil Palm Plantation as Biological Control Agent of Ganoderma boninense. Pak J Biol Sci 2024; 27:256-267. [PMID: 38840466 DOI: 10.3923/pjbs.2024.256.267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
<b>Background and Objective:</b> The prioritisation of oil palm studies involves the exploration of novel bacterial isolates as possible agents for suppressing <i>Ganoderma boninense</i>. The objective of this study was to evaluate and characterise the potential of rhizospheric bacteria, obtained from the rhizosphere of oil palm plants, in terms of their ability to demonstrate anti-<i>Ganoderma </i>activity. <b>Materials and Methods:</b> The study began by employing a dual culture technique to select hostile bacteria. Qualitative detection was performed to assess the antifungal activity, as well as the synthesis of chitinase and glucanase, from certain isolates. The candidate strains were molecularly identified using 16S-rRNA ribosomal primers, specifically the 27F and 1492R primers. <b>Results:</b> The findings of the study indicated that the governmental plantation exhibited the highest ratio between diazotroph and indigenous bacterial populations in comparison to the other sites. Out of a pool of ninety bacterial isolates, a subset of twenty-one isolates demonstrated the ability to impede the development of <i>G. boninense</i>, as determined using a dual culture experiment. Twenty-one bacterial strains were found to exhibit antifungal activity. Nine possible bacteria were found based on the sequence analysis. These bacteria include <i>Burkholderia territorii</i> (RK2, RP2, RP3, RP5), <i>Burkholderia stagnalis</i> (RK3), <i>Burkholderia cenocepacia</i> (RP1), <i>Serratia marcescens</i> (RP13) and <i>Rhizobium multihospitium</i> (RU4). <b>Conclusion:</b> The findings of the study revealed that a significant proportion of the bacterial population exhibited the ability to perform nitrogen fixation, indole-3-acetic acid (IAA) production and phosphate solubilization. However, it is worth noting that <i>Rhizobium multihospitium</i> RU4 did not demonstrate the capacity for phosphate solubilization, while <i>B. territory</i> RK2 did not exhibit IAA production.
Collapse
|
25
|
Adnan M, Zafar M, Anwar Z. Screening of Chitinolytic Microfungi and Optimization of Parameters for Hyperproduction of Chitinase Through Solid-State Fermentation Technique. Appl Biochem Biotechnol 2024; 196:1840-1862. [PMID: 37440112 DOI: 10.1007/s12010-023-04663-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 07/14/2023]
Abstract
This study is intended for the production of chitinase enzyme from locally isolated fungal strains. Out of 10 isolated fungal strains from district Gujrat, Punjab, Pakistan, Aspergillus terreus SB3 (accession number ON738571) was found with maximum chitinolytic potential (80.8 U/mL/min). By applying central composite design (CCD) through response surface methodology (RSM) under solid-state fermentation (SSF), eight nutritional and physical parameters were optimized. Among these, temperature, substrate concentration, and pH were found as significant factors toward chitinase production in the first phase. Moisture and nitrogen source were found as significant factors during second phase of chitinase production. The effect of incubation period, inoculum size, and magnesium source was observed as non-significant. The chitinase activity was successfully enhanced more than 2 folds up to 198.5 U/mL/min at optimized conditions of 35 °C temperature, 4.5 pH, 20 g substrate concentration, 4-day incubation period, 55% moisture content, 4.5 mL inoculum size, 0.25 g ammonium sulfate, and 0.30 g magnesium sulfate using RSM design. It was also found that Ganoderma lucidum (bracket fungus) has more potential to be used for the production of chitinase compared to fish scales. The present study exhibited Aspergillus terreus SB3 (ON738571) as a potential indigenous strain capable for hyperproduction of chitinase through cheap fermentation technology that might be employed for the eradication of chitin-based sea waste to remove the marine pollution.
Collapse
Affiliation(s)
- Muhammad Adnan
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Punjab, Pakistan
| | - Muddassar Zafar
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Punjab, Pakistan.
| | - Zahid Anwar
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus, Gujrat, Punjab, Pakistan
| |
Collapse
|
26
|
Sharma A, Arya SK, Singh J, Kapoor B, Bhatti JS, Suttee A, Singh G. Prospects of chitinase in sustainable farming and modern biotechnology: an update on recent progress and challenges. Biotechnol Genet Eng Rev 2024; 40:310-340. [PMID: 36856523 DOI: 10.1080/02648725.2023.2183593] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/13/2023] [Indexed: 03/02/2023]
Abstract
Chitinases are multifunctional biocatalysts for the pest control and useful in modern biotechnology and pharmaceutical industries. Chemical-based fungicides and insecticides have caused more severe effects on environment and human health. Many pathogenic fungal species and insects became resistant to the chemical pesticides. The resistant fungi emerged as a multidrug resistant also and less susceptible insects are not possible to control adequately. Chitinases have an immense potential to be exploited as a biopesticide against fungi and insects. The direct use of chitinase in liquid formulation or whole microbial enzyme producing cells, both act as antagonistically against the pests. Chitinase can disintegrate the fungal cell wall and insect integument that holds the chitin as a vital structural component. Moreover, chitinase is applied for the synthesis of pharmaceutically important chitooligosaccharides. Chitinase producing microbes have the huge potential to utilize against the waste management of sea food remains like shells of crustaceans. Chitinase is valuable for the synthesis of protoplasts from industrially important fungi, further it act as the biocontrol agent of malaria and dengue fever causing larvae of mosquitoes. Chitinases also have been successfully used in wine and single cell protein producing industries. Present review is illustrating the updated information on the state of the art of different applications of chitinases in agriculture and biotechnology industry. It also bestows the understanding to the readers about the areas of extensively studied and the field where there is still much left to be done.
Collapse
Affiliation(s)
- Anindita Sharma
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, India
| | | | - Jatinder Singh
- Department of Horticulture, SAGR, Lovely Professional University, Phagwara, India
| | - Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, Phagwara, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine School of Health Sciences, Central University of Punjab, India
| | - Ashish Suttee
- Department of Pharmacognosy, School of Pharmaceutical Sciences, Lovely Professional University Phagwara, India
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, India
| |
Collapse
|
27
|
El-Sayed GM, Emam MTH, Hammad MA, Mahmoud SH. Gene Cloning, Heterologous Expression, and In Silico Analysis of Chitinase B from Serratia marcescens for Biocontrol of Spodoptera frugiperda Larvae Infesting Maize Crops. Molecules 2024; 29:1466. [PMID: 38611746 PMCID: PMC11012731 DOI: 10.3390/molecules29071466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Spodoptera frugiperda, the fall armyworm (FAW), is a highly invasive polyphagous insect pest that is considered a source of severe economic losses to agricultural production. Currently, the majority of chemical insecticides pose tremendous threats to humans and animals besides insect resistance. Thus, there is an urgent need to develop new pest management strategies with more specificity, efficiency, and sustainability. Chitin-degrading enzymes, including chitinases, are promising agents which may contribute to FAW control. Chitinase-producing microorganisms are reported normally in bacteria and fungi. In the present study, Serratia marcescens was successfully isolated and identified from the larvae of Spodoptera frugiperda. The bacterial strain NRC408 displayed the highest chitinase enzyme activity of 250 units per milligram of protein. Subsequently, the chitinase gene was cloned and heterologously expressed in E. coli BL21 (DE3). Recombinant chitinase B was overproduced to 2.5-fold, driven by the T7 expression system. Recombinant chitinase B was evaluated for its efficacy as an insecticidal bioagent against S. frugiperda larvae, which induced significant alteration in subsequent developmental stages and conspicuous malformations. Additionally, our study highlights that in silico analyses of the anticipated protein encoded by the chitinase gene (ChiB) offered improved predictions for enzyme binding and catalytic activity. The effectiveness of (ChiB) against S. frugiperda was evaluated in laboratory and controlled field conditions. The results indicated significant mortality, disturbed development, different induced malformations, and a reduction in larval populations. Thus, the current study consequently recommends chitinase B for the first time to control FAW.
Collapse
Affiliation(s)
- Ghada M. El-Sayed
- Microbial Genetic Department, Biotechnology Research Institute, National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki, Cairo 12622, Egypt
| | - Maha T. H. Emam
- Genetics & Cytology Department, Biotechnology Research Institute, National Research Centre, 33 El-Bohouth St. (Former El-Tahrir St.), Dokki, Cairo 12622, Egypt;
| | - Maher A. Hammad
- Department of Plant Protection, Faculty of Agriculture, Ain Shams University, Cairo 11566, Egypt
| | - Shaymaa H. Mahmoud
- Zoology Department, Faculty of Science, Menoufia University, Shibin El Kom 32511, Egypt;
| |
Collapse
|
28
|
Dindhoria K, Kumar R, Bhargava B, Kumar R. Metagenomic assembled genomes indicated the potential application of hypersaline microbiome for plant growth promotion and stress alleviation in salinized soils. mSystems 2024; 9:e0105023. [PMID: 38377278 PMCID: PMC10949518 DOI: 10.1128/msystems.01050-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/19/2024] [Indexed: 02/22/2024] Open
Abstract
Climate change is causing unpredictable seasonal variations globally. Due to the continuously increasing earth's surface temperature, the rate of water evaporation is enhanced, conceiving a problem of soil salinization, especially in arid and semi-arid regions. The accumulation of salt degrades soil quality, impairs plant growth, and reduces agricultural yields. Salt-tolerant, plant-growth-promoting microorganisms may offer a solution, enhancing crop productivity and soil fertility in salinized areas. In the current study, genome-resolved metagenomic analysis has been performed to investigate the salt-tolerating and plant growth-promoting potential of two hypersaline ecosystems, Sambhar Lake and Drang Mine. The samples were co-assembled independently by Megahit, MetaSpades, and IDBA-UD tools. A total of 67 metagenomic assembled genomes (MAGs) were reconstructed following the binning process, including 15 from Megahit, 26 from MetaSpades, and 26 from IDBA_UD assembly tools. As compared to other assemblers, the MAGs obtained by MetaSpades were of superior quality, with a completeness range of 12.95%-96.56% and a contamination range of 0%-8.65%. The medium and high-quality MAGs from MetaSpades, upon functional annotation, revealed properties such as salt tolerance (91.3%), heavy metal tolerance (95.6%), exopolysaccharide (95.6%), and antioxidant (60.86%) biosynthesis. Several plant growth-promoting attributes, including phosphate solubilization and indole-3-acetic acid (IAA) production, were consistently identified across all obtained MAGs. Conversely, characteristics such as iron acquisition and potassium solubilization were observed in a substantial majority, specifically 91.3%, of the MAGs. The present study indicates that hypersaline microflora can be used as bio-fertilizing agents for agricultural practices in salinized areas by alleviating prevalent stresses. IMPORTANCE The strategic implementation of metagenomic assembled genomes (MAGs) in exploring the properties and harnessing microorganisms from ecosystems like hypersaline niches has transformative potential in agriculture. This approach promises to redefine our comprehension of microbial diversity and its ecosystem roles. Recovery and decoding of MAGs unlock genetic resources, enabling the development of new solutions for agricultural challenges. Enhanced understanding of these microbial communities can lead to more efficient nutrient cycling, pest control, and soil health maintenance. Consequently, traditional agricultural practices can be improved, resulting in increased yields, reduced environmental impacts, and heightened sustainability. MAGs offer a promising avenue for sustainable agriculture, bridging the gap between cutting-edge genomics and practical field applications.
Collapse
Affiliation(s)
- Kiran Dindhoria
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Raghawendra Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Bhavya Bhargava
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
29
|
Sharma P, Pandey R, Chauhan NS. Biofertilizer and biocontrol properties of Stenotrophomonas maltophilia BCM emphasize its potential application for sustainable agriculture. FRONTIERS IN PLANT SCIENCE 2024; 15:1364807. [PMID: 38501138 PMCID: PMC10944936 DOI: 10.3389/fpls.2024.1364807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/09/2024] [Indexed: 03/20/2024]
Abstract
Introduction Microbial biofertilizers or biocontrol agents are potential sustainable approaches to overcome the limitations of conventional agricultural practice. However, the limited catalog of microbial candidates for diversified crops creates hurdles in successfully implementing sustainable agriculture for increasing global/local populations. The present study aimed to explore the wheat rhizosphere microbiota for microbial strains with a biofertilizer and biocontrol potential. Methods Using a microbial culturing-based approach, 12 unique microbial isolates were identified and screened for biofertilizer/biocontrol potential using genomics and physiological experimentations. Results and discussion Molecular, physiological, and phylogenetic characterization identified Stenotrophomonas maltophilia BCM as a potential microbial candidate for sustainable agriculture. Stenotrophomonas maltophilia BCM was identified as a coccus-shaped gram-negative microbe having optimal growth at 37°C in a partially alkaline environment (pH 8.0) with a proliferation time of ~67 minutes. The stress response physiology of Stenotrophomonas maltophilia BCM indicates its successful survival in dynamic environmental conditions. It significantly increased (P <0.05) the wheat seed germination percentage in the presence of phytopathogens and saline conditions. Genomic characterization decoded the presence of genes involved in plant growth promotion, nutrient assimilation, and antimicrobial activity. Experimental evidence also correlates with genomic insights to explain the potential of Stenotrophomonas maltophilia BCM as a potential biofertilizer and biocontrol agent. With these properties, Stenotrophomonas maltophilia BCM could sustainably promote wheat production to ensure food security for the increasing population, especially in native wheat-consuming areas.
Collapse
Affiliation(s)
- Pinki Sharma
- Department of Biochemistry, Maharshi Dayanand University, Haryana, Rohtak, India
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology Council of Scientific and Industrial Research (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Haryana, Rohtak, India
| |
Collapse
|
30
|
Abstract
At present, no biomarker exists which is truly specific for sarcoidosis and the ones available have modest sensitivity and specificity. The clinical context should dictate the choice of biomarker(s) used to address different clinical questions such as diagnosis, monitoring disease activity or monitoring response to treatment. In the future, in addition to known serum biomarkers, it seems fruitful to further explore a possible role of imaging, exhaled air and even biopsy-related biomarkers in sarcoidosis to guide clinical management.
Collapse
Affiliation(s)
- Sophie C van der Mark
- Department of Pulmonology, ILD Center of Excellence, St. Antonius Hospital, Koekoekslaan 1, 3435 CM, Nieuwegein, The Netherlands; Division of Heart and Lungs, University Medical Center, Utrecht, The Netherlands
| | - Vikaash W S Bajnath
- Department of Pulmonology, ILD Center of Excellence, St. Antonius Hospital, Koekoekslaan 1, 3435 CM, Nieuwegein, The Netherlands
| | - Marcel Veltkamp
- Department of Pulmonology, ILD Center of Excellence, St. Antonius Hospital, Koekoekslaan 1, 3435 CM, Nieuwegein, The Netherlands; Division of Heart and Lungs, University Medical Center, Utrecht, The Netherlands.
| |
Collapse
|
31
|
Castillo DC, Sinpoo C, Phokasem P, Yongsawas R, Sansupa C, Attasopa K, Suwannarach N, Inwongwan S, Noirungsee N, Disayathanoowat T. Distinct fungal microbiomes of two Thai commercial stingless bee species, Lepidotrigona terminata and Tetragonula pagdeni suggest a possible niche separation in a shared habitat. Front Cell Infect Microbiol 2024; 14:1367010. [PMID: 38469352 PMCID: PMC10925696 DOI: 10.3389/fcimb.2024.1367010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/07/2024] [Indexed: 03/13/2024] Open
Abstract
Stingless bees, a social corbiculate bee member, play a crucial role in providing pollination services. Despite their importance, the structure of their microbiome, particularly the fungal communities, remains poorly understood. This study presents an initial characterization of the fungal community associated with two Thai commercial stingless bee species, Lepidotrigona terminata (Smith) and Tetragonula pagdeni (Schwarz) from Chiang Mai, Thailand. Utilizing ITS amplicon sequencing, we identified distinct fungal microbiomes in these two species. Notably, fungi from the phyla Ascomycota, Basidiomycota, Mucoromycota, Mortierellomycota, and Rozellomycota were present. The most dominant genera, which varied significantly between species, included Candida and Starmerella. Additionally, several key enzymes associated with energy metabolism, structural strength, and host defense reactions, such as adenosine triphosphatase, alcohol dehydrogenase, β-glucosidase, chitinase, and peptidylprolyl isomerase, were predicted. Our findings not only augment the limited knowledge of the fungal microbiome in Thai commercial stingless bees but also provide insights for their sustainable management through understanding their microbiome.
Collapse
Affiliation(s)
- Diana C. Castillo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz, Nueva Ecija, Philippines
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
| | - Chainarong Sinpoo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Patcharin Phokasem
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
| | - Rujipas Yongsawas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
| | - Chakriya Sansupa
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Korrawat Attasopa
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nakarin Suwannarach
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Office of Research Administration, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Sahutchai Inwongwan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nuttapol Noirungsee
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Terd Disayathanoowat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Deep Technology in Beekeeping and Bee Products for Sustainable Development Goals (SMART BEE SDGs), Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
32
|
Xuan C, Feng M, Li X, Hou Y, Wei C, Zhang X. Genome-Wide Identification and Expression Analysis of Chitinase Genes in Watermelon under Abiotic Stimuli and Fusarium oxysporum Infection. Int J Mol Sci 2024; 25:638. [PMID: 38203810 PMCID: PMC10779513 DOI: 10.3390/ijms25010638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/12/2024] Open
Abstract
Chitinases, which catalyze the hydrolysis of chitin, the primary components of fungal cell walls, play key roles in defense responses, symbiotic associations, plant growth, and stress tolerance. In this study, 23 chitinase genes were identified in watermelon (Citrullus lanatus [Thunb.]) and classified into five classes through homology search and phylogenetic analysis. The genes with similar exon-intron structures and conserved domains were clustered into the same class. The putative cis-elements involved in the responses to phytohormone, stress, and plant development were identified in their promoter regions. A tissue-specific expression analysis showed that the ClChi genes were primarily expressed in the roots (52.17%), leaves (26.09%), and flowers (34.78%). Moreover, qRT-PCR results indicate that ClChis play multifaceted roles in the interaction between plant/environment. More ClChi members were induced by Race 2 of Fusarium oxysporum f. sp. niveum, and eight genes were expressed at higher levels on the seventh day after inoculation with Races 1 and 2, suggesting that these genes play a key role in the resistance of watermelon to Fusarium wilt. Collectively, these results improve knowledge of the chitinase gene family in watermelon species and help to elucidate the roles played by chitinases in the responses of watermelon to various stresses.
Collapse
Affiliation(s)
- Changqing Xuan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
| | - Mengjiao Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
| | - Xin Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
| | - Yinjie Hou
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
| | - Chunhua Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
| | - Xian Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A & F University, Xianyang 712100, China; (C.X.); (M.F.); (X.L.); (Y.H.)
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin 300384, China
| |
Collapse
|
33
|
Mahmoodi A, Farinas ET. Applications of Bacillus subtilis Protein Display for Medicine, Catalysis, Environmental Remediation, and Protein Engineering. Microorganisms 2024; 12:97. [PMID: 38257924 PMCID: PMC10821481 DOI: 10.3390/microorganisms12010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/24/2024] Open
Abstract
Bacillus subtilis spores offer several advantages that make them attractive for protein display. For example, protein folding issues associated with unfolded polypeptide chains crossing membranes are circumvented. In addition, they can withstand physical and chemical extremes such as heat, desiccation, radiation, ultraviolet light, and oxidizing agents. As a result, the sequence of the displayed protein can be easily obtained even under harsh screening conditions. Next, immobilized proteins have many economic and technological advantages. They can be easily separated from the reaction and the protein stability is increased in harsh environments. In traditional immobilization methods, proteins are expressed and purified and then they are attached to a matrix. In contrast, immobilization occurs naturally during the sporulation process. They can be easily separated from the reaction and the protein stability is increased in harsh environments. Spores are also amenable to high-throughput screening for protein engineering and optimization. Furthermore, they can be used in a wide array of biotechnological and industrial applications such as vaccines, bioabsorbants to remove toxic chemicals, whole-cell catalysts, bioremediation, and biosensors. Lastly, spores are easily produced in large quantities, have a good safety record, and can be used as additives in foods and drugs.
Collapse
|
34
|
Zubair M. Antimicrobial and Anti-Biofilm Activities of Coffea arabica L. Against the Clinical Strains Isolated From Diabetic Foot Ulcers. Cureus 2024; 16:e52539. [PMID: 38371116 PMCID: PMC10874490 DOI: 10.7759/cureus.52539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Diabetes-related complications such as diabetic foot infections foster resilient biofilms, complicating treatment. Innovative therapeutic solutions are urgently needed to address this challenge. In this research, coffee bean powder (green coffee been powder [GCBP], roasted coffee bean powder [RCBP], and spent coffee powder ground [SCPG]) was extracted and assessed for its ability to impede biofilm formation and associated functions in extended-spectrum beta-lactamase (ESBL) and methicillin-resistant Staphylococcus aureus (MRSA)-positive biofilm-forming strains of Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli (E. coli), and Staphylococcus aureus (S. aureus) obtained from foot ulcers. GCBP exhibited notable effectiveness in reducing biofilm formation, ranging from 17-76% in monocultures and 17-66% in mixed cultures. It significantly disrupted motility in P. aeruginosa and E. coli, a crucial factor influencing biofilm establishment. The critical biofilm-related functions for attachment and maintenance such as cell surface hydrophobicity and exopolysaccharide production were significantly inhibited at sub-MICs. Notably, GCBP elicited statistically significant reductions (29-59% in monocultures and 28-45% in mixed cultures) in pre-formed biofilms. The reduction in bacterial chitinase activity upon exposure to GCBP implies a potential mechanism for its ability to inhibit biofilm formation. This study emphasizes the potential of green coffee bean extract in tackling antibiotic-resistant bacterial biofilms associated with diabetic foot ulcers, suggesting innovative strategies for infection management through mechanistic understanding and optimized applications.
Collapse
|
35
|
Ramírez-Carreto S, Miranda-Zaragoza B, Simões N, González-Muñoz R, Rodríguez-Almazán C. Marine Bioprospecting: Enzymes and Stress Proteins from the Sea Anemones Anthopleura dowii and Lebrunia neglecta. Mar Drugs 2023; 22:12. [PMID: 38248637 PMCID: PMC10821040 DOI: 10.3390/md22010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
The bioprospecting of sea anemone tissues and secretions has revealed that they are natural libraries of polypeptides with diverse biological activities that can be utilized to develop of biotechnological tools with potential medical and industrial applications. This study conducted a proteomic analysis of crude venom extracts from Anthopleura dowii Verrill, 1869, and Lebrunia neglecta Duchassaing & Michelotti, 1860. The obtained data allowed us to identify 201 polypeptides, of which 39% were present in both extracts. Among the obtained sequences, hydrolase-type enzymes, oxidoreductases, transferases, heat shock proteins, adhesion proteins, and protease inhibitors, among others, were identified. Interaction analysis and functional annotation indicated that these proteins are primarily involved in endoplasmic reticulum metabolic processes such as carbon metabolism and protein processing. In addition, several proteins related to oxidative stress were identified, including superoxide dismutase, peroxiredoxins, thioredoxin, and glutathione oxidase. Our results provide novel information on the polypeptide composition of the crude venom extract from sea anemones, which can be utilized to develop molecules for therapeutic tools and industrial applications.
Collapse
Affiliation(s)
- Santos Ramírez-Carreto
- Instituto Nacional de Salud Pública, Centro de Investigación Sobre Enfermedades Infecciosas, Av. Universidad #655, Santa María Ahuacatitlan, Cuernavaca C.P. 62100, Mexico;
| | - Beatriz Miranda-Zaragoza
- Departamento de Micro y Nanotecnologías, Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Cto. Exterior S/N, C.U., Coyoacán, Ciudad de México C.P. 04510, Mexico;
| | - Nuno Simões
- Unidad Multidisciplinaria de Docencia e Investigación en Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Puerto Abrigo s/n, Sisal C.P. 97356, Mexico;
- International Chair for Coastal and Marine Studies, Harte Research Institute for Gulf of Mexico Studies, Texas A and M University-Corpus Christi, Corpus Christi, TX 78412, USA
- Laboratorio Nacional de Resiliencia Costera (LANRESC), Laboratorios Nacionales, CONACYT, Sisal C.P. 97356, Mexico
| | - Ricardo González-Muñoz
- Instituto de Investigaciones Marinas y Costeras, CONICET, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Dean Funes 3350, Mar del Plata C.P. 7600, Argentina;
| | - Claudia Rodríguez-Almazán
- Departamento de Micro y Nanotecnologías, Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Cto. Exterior S/N, C.U., Coyoacán, Ciudad de México C.P. 04510, Mexico;
| |
Collapse
|
36
|
Capovilla G, Castro KG, Collani S, Kearney SM, Kehoe DM, Chisholm SW. Chitin degradation by Synechococcus WH7803. Sci Rep 2023; 13:19944. [PMID: 37968300 PMCID: PMC10651935 DOI: 10.1038/s41598-023-47332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023] Open
Abstract
Chitin is an abundant, carbon-rich polymer in the marine environment. Chitinase activity has been detected in spent media of Synechococcus WH7803 cultures-yet it was unclear which specific enzymes were involved. Here we delivered a CRISPR tool into the cells via electroporation to generate loss-of-function mutants of putative candidates and identified ChiA as the enzyme required for the activity detected in the wild type.
Collapse
Affiliation(s)
- Giovanna Capovilla
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Kurt G Castro
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Silvio Collani
- Department of Fysiologisk Botanik, Umeå Plant Science Centre (UPSC), Umeå University, Umeå, Sweden
| | - Sean M Kearney
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, IN, USA
| | - Sallie W Chisholm
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
37
|
Campos S, Rodrigo AP, Moutinho Cabral I, Mendes VM, Manadas B, D’Ambrosio M, Costa PM. An Exploration of Novel Bioactives from the Venomous Marine Annelid Glycera alba. Toxins (Basel) 2023; 15:655. [PMID: 37999518 PMCID: PMC10674444 DOI: 10.3390/toxins15110655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023] Open
Abstract
The immense biodiversity of marine invertebrates makes them high-value targets for the prospecting of novel bioactives. The present study investigated proteinaceous toxins secreted by the skin and proboscis of Glycera alba (Annelida: Polychaeta), whose congenerics G. tridactyla and G. dibranchiata are known to be venomous. Proteomics and bioinformatics enabled the detection of bioactive proteins that hold potential for biotechnological applications, including toxins like glycerotoxins (GLTx), which can interfere with neuromuscular calcium channels and therefore have value for the development of painkillers, for instance. We also identified proteins involved in the biosynthesis of toxins. Other proteins of interest include venom and toxin-related bioactives like cysteine-rich venom proteins, many of which are known to interfere with the nervous system. Ex vivo toxicity assays with mussel gills exposed to fractionated protein extracts from the skin and proboscis revealed that fractions potentially containing higher-molecular-mass venom proteins can exert negative effects on invertebrate prey. Histopathology, DNA damage and caspase-3 activity suggest significant cytotoxic effects that can be coadjuvated by permeabilizing enzymes such as venom metalloproteinases M12B. Altogether, these encouraging findings show that venomous annelids are important sources of novel bioactives, albeit illustrating the challenges of surveying organisms whose genomes and metabolisms are poorly understood.
Collapse
Affiliation(s)
- Sónia Campos
- Associate Laboratory i4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (S.C.); (A.P.R.); (I.M.C.)
- UCIBIO Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Ana P. Rodrigo
- Associate Laboratory i4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (S.C.); (A.P.R.); (I.M.C.)
- UCIBIO Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Inês Moutinho Cabral
- Associate Laboratory i4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (S.C.); (A.P.R.); (I.M.C.)
- UCIBIO Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Vera M. Mendes
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197 Cantanhede, Portugal; (V.M.M.); (B.M.)
| | - Bruno Manadas
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197 Cantanhede, Portugal; (V.M.M.); (B.M.)
| | - Mariaelena D’Ambrosio
- Associate Laboratory i4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (S.C.); (A.P.R.); (I.M.C.)
- UCIBIO Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Pedro M. Costa
- Associate Laboratory i4HB Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; (S.C.); (A.P.R.); (I.M.C.)
- UCIBIO Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| |
Collapse
|
38
|
Teullet S, Tilak MK, Magdeleine A, Schaub R, Weyer NM, Panaino W, Fuller A, Loughry WJ, Avenant NL, de Thoisy B, Borrel G, Delsuc F. Metagenomics uncovers dietary adaptations for chitin digestion in the gut microbiota of convergent myrmecophagous mammals. mSystems 2023; 8:e0038823. [PMID: 37650612 PMCID: PMC10654083 DOI: 10.1128/msystems.00388-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/19/2023] [Indexed: 09/01/2023] Open
Abstract
IMPORTANCE Myrmecophagous mammals are specialized in the consumption of ants and/or termites. They do not share a direct common ancestor and evolved convergently in five distinct placental orders raising questions about the underlying adaptive mechanisms involved and the relative contribution of natural selection and phylogenetic constraints. Understanding how these species digest their prey can help answer these questions. More specifically, the role of their gut microbial symbionts in the digestion of the insect chitinous exoskeleton has not been investigated in all myrmecophagous orders. We generated 29 new gut metagenomes from nine myrmecophagous species to reconstruct more than 300 bacterial genomes in which we identified chitin-degrading enzymes. Studying the distribution of these chitinolytic bacteria among hosts revealed both shared and specific bacteria between ant-eating species. Overall, our results highlight the potential role of gut symbionts in the convergent dietary adaptation of myrmecophagous mammals and the evolutionary mechanisms shaping their gut microbiota.
Collapse
Affiliation(s)
- Sophie Teullet
- Institut des Sciences de l’Evolution de Montpellier (ISEM), Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Marie-Ka Tilak
- Institut des Sciences de l’Evolution de Montpellier (ISEM), Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Amandine Magdeleine
- Institut des Sciences de l’Evolution de Montpellier (ISEM), Univ Montpellier, CNRS, IRD, Montpellier, France
| | - Roxane Schaub
- CIC AG/Inserm 1424, Centre Hospitalier de Cayenne Andrée Rosemon, Cayenne, French Guiana, France
- Tropical Biome and immunopathology, Université de Guyane, Labex CEBA, DFR Santé, Cayenne, French Guiana, France
| | - Nora M. Weyer
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - Wendy Panaino
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- Centre for African Ecology, School of Animals, Plant, and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Andrea Fuller
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
| | - W. J. Loughry
- Department of Biology, Valdosta State University, Valdosta, Georgia, USA
| | - Nico L. Avenant
- National Museum and Centre for Environmental Management, University of the Free State, Bloemfontein, South Africa
| | - Benoit de Thoisy
- Institut Pasteur de la Guyane, Cayenne, French Guiana, France
- Kwata NGO, Cayenne, French Guiana, France
| | - Guillaume Borrel
- Evolutionary Biology of the Microbial Cell, Institut Pasteur, Université Paris Cité, Paris, France
| | - Frédéric Delsuc
- Institut des Sciences de l’Evolution de Montpellier (ISEM), Univ Montpellier, CNRS, IRD, Montpellier, France
| |
Collapse
|
39
|
Oliveira LD, Nachtigall PG, Vialla VL, Campos PF, Costa-Neves AD, Zaher H, Silva NJD, Grazziotin FG, Wilkinson M, Junqueira-de-Azevedo ILM. Comparing morphological and secretory aspects of cephalic glands among the New World coral snakes brings novel insights on their biological roles. Toxicon 2023; 234:107285. [PMID: 37683698 DOI: 10.1016/j.toxicon.2023.107285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/10/2023]
Abstract
Oral and other cephalic glands have been surveyed by several studies with distinct purposes. Despite the wide diversity and medical relevance of the New World coral snakes, studies focusing on understanding the biological roles of the glands within this group are still scarce. Specifically, the venom glands of some coral snakes were previously investigated but all other cephalic glands remain uncharacterized. In this sense, performing morphological and molecular analysis of these glands may help better understand their biological role. Here, we studied the morphology of the venom, infralabial, rictal, and harderian glands of thirteen species of Micrurus and Micruroides euryxanthus. We also performed a molecular characterization of these glands from selected species of Micrurus using transcriptomic and proteomic approaches. We described substantial morphological variation in the cephalic glands of New World coral snakes and structural evidence for protein-secreting cells in the inferior rictal glands. Our molecular analysis revealed that the venom glands, as expected, are majorly devoted to toxin production, however, the infralabial and inferior rictal glands also expressed some toxin genes at low to medium levels, despite the marked morphological differences. On the other hand, the harderian glands were dominated by the expression of lipocalins, but do not produce toxins. Our integrative analysis, including the prediction of biological processes and pathways, helped decipher some important traits of cephalic glands and better understand their biology.
Collapse
Affiliation(s)
- Leonardo de Oliveira
- Laboratório de Toxinologia Aplicada, Centre of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, 05503-900, Brazil; Herpetology, The Natural History Museum, London, SW7 5BD, United Kingdom.
| | - Pedro Gabriel Nachtigall
- Laboratório de Toxinologia Aplicada, Centre of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, 05503-900, Brazil
| | - Vincent Louis Vialla
- Laboratório de Toxinologia Aplicada, Centre of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, 05503-900, Brazil
| | - Pollyanna F Campos
- Laboratório de Toxinologia Aplicada, Centre of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, 05503-900, Brazil
| | | | - Hussam Zaher
- Museu de Zoologia da Universidade de São Paulo, Avenida Nazaré 481, Ipiranga, 04263-000, São Paulo, Brazil
| | - Nelson Jorge da Silva
- Programa de Pós-Graduação em Ciências Ambientais e Saúde, Pontifícia Universidade Católica de Goiás, Goiânia, Goiás, 74605-140, Brazil
| | - Felipe G Grazziotin
- Laboratório de Coleções Zoológicas, Instituto Butantan, São Paulo, 05503-900, Brazil
| | - Mark Wilkinson
- Herpetology, The Natural History Museum, London, SW7 5BD, United Kingdom
| | - Inácio L M Junqueira-de-Azevedo
- Laboratório de Toxinologia Aplicada, Centre of Toxins, Immune-Response and Cell Signaling (CeTICS), Instituto Butantan, São Paulo, 05503-900, Brazil
| |
Collapse
|
40
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Chitinases as key virulence factors in microbial pathogens: Understanding their role and potential as therapeutic targets. Int J Biol Macromol 2023; 249:126021. [PMID: 37506799 DOI: 10.1016/j.ijbiomac.2023.126021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Chitinases are crucial for the survival of bacterial and fungal pathogens both during host infection and outside the host in the environment. Chitinases facilitate adhesion onto host cells, act as virulence factors during infection, and provide protection from the host immune system, making them crucial factors in the survival of microbial pathogens. Understanding the mechanisms behind chitinase action is beneficial to design novel therapeutics to control microbial infections. This review explores the role of chitinases in the pathogenesis of bacterial, fungal, and viral infections. The mechanisms underlying the action of chitinases of bacterial, fungal, and viral pathogens in host cells are thoroughly reviewed. The evolutionary relationships between chitinases of various bacterial, fungal, and viral pathogens are discussed to determine their involvement in processes, such as adhesion and host immune system modulation. Gaining a better understanding of the distribution and activity of chitinases in these microbial pathogens can help elucidate their role in the invasion and infection of host cells.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
41
|
Arreguin-Perez CA, Miranda-Miranda E, Folch-Mallol JL, Cossío-Bayúgar R. Identification of Virulence Factors in Entomopathogenic Aspergillus flavus Isolated from Naturally Infected Rhipicephalus microplus. Microorganisms 2023; 11:2107. [PMID: 37630667 PMCID: PMC10457961 DOI: 10.3390/microorganisms11082107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Aspergillus flavus has been found to be an effective entomopathogenic fungus for various arthropods, including ticks. In particular, natural fungal infections in cattle ticks show promise for biocontrol of the Rhipicephalus (Boophilus) microplus tick, which is a major ectoparasite affecting cattle worldwide. Our study aimed to elucidate the specific entomopathogenic virulence factors encoded in the genome of an A. flavus strain isolated from naturally infected cattle ticks. We performed morphological and biochemical phenotyping alongside complete genome sequencing, which revealed that the isolated fungus was A. flavus related to the L morphotype, capable of producing a range of gene-coded entomopathogenic virulence factors, including ribotoxin, aflatoxin, kojic acid, chitinases, killer toxin, and satratoxin. To evaluate the efficacy of this A. flavus strain against ticks, we conducted experimental bioassays using healthy engorged female ticks. A morbidity rate of 90% was observed, starting at a concentration of 105 conidia/mL. At a concentration of 107 conidia/mL, we observed a 50% mortality rate and a 21.5% inhibition of oviposition. The highest levels of hatch inhibition (30.8%) and estimated reproduction inhibition (34.64%) were achieved at a concentration of 108 conidia/mL. Furthermore, the tick larval progeny that hatched from the infected tick egg masses showed evident symptoms of Aspergillus infection after incubation.
Collapse
Affiliation(s)
- Cesar A. Arreguin-Perez
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias INIFAP, Boulevard Cuauhnahuac 8534, Jiutepec 62574, Morelos, Mexico; (C.A.A.-P.); (E.M.-M.)
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Morelos, Mexico;
| | - Estefan Miranda-Miranda
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias INIFAP, Boulevard Cuauhnahuac 8534, Jiutepec 62574, Morelos, Mexico; (C.A.A.-P.); (E.M.-M.)
| | - Jorge Luis Folch-Mallol
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Morelos, Mexico;
| | - Raquel Cossío-Bayúgar
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias INIFAP, Boulevard Cuauhnahuac 8534, Jiutepec 62574, Morelos, Mexico; (C.A.A.-P.); (E.M.-M.)
| |
Collapse
|
42
|
Abstract
It has been widely appreciated that numerous bacterial species express chitinases for the purpose of degrading environmental chitin. However, chitinases and chitin-binding proteins are also expressed by pathogenic bacterial species during infection even though mammals do not produce chitin. Alternative molecular targets are therefore likely present within the host. Here, we will describe our current understanding of chitinase/chitin-binding proteins as virulence factors that promote bacterial colonization and infection. The targets of these chitinases in the host have been shown to include immune system components, mucins, and surface glycans. Bacterial chitinases have also been shown to interact with other microorganisms, targeting the peptidoglycan or chitin in the bacterial and fungal cell wall, respectively. This review highlights that even though the name "chitinase" implies activity toward chitin, chitinases can have a wide diversity of targets, including ones relevant to host infection. Chitinases may therefore be useful as a target of future anti-infective therapeutics.
Collapse
Affiliation(s)
- Jason R. Devlin
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Judith Behnsen
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
43
|
Pooja N, Chakraborty I, Rahman MH, Mazumder N. An insight on sources and biodegradation of bioplastics: a review. 3 Biotech 2023; 13:220. [PMID: 37265543 PMCID: PMC10230146 DOI: 10.1007/s13205-023-03638-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 05/15/2023] [Indexed: 06/03/2023] Open
Abstract
Durability and affordability are two main reasons for the widespread consumption of plastic in the world. However, the inability of these materials to undergo degradation has become a significant threat to the environment and human health To address this issue, bioplastics have emerged as a promising alternative. Bioplastics are obtained from renewable and sustainable biomass and have a lower carbon footprint and emit fewer greenhouse gases than petroleum-based plastics. The use of these bioplastics sourced from renewable biomass can also reduce the dependency on fossil fuels, which are limited in availability. This review provides an elaborate comparison of biodegradation rates of potential bioplastics in soil from various sources such as biomass, microorganisms, and monomers. These bioplastics show great potential as a replacement for conventional plastics due to their biodegradable and diverse properties.
Collapse
Affiliation(s)
- Nag Pooja
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Ishita Chakraborty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Md. Hafizur Rahman
- Department of Quality Control and Safety Management, Faculty of Food Sciences and Safety, Khulna Agricultural University, Khulna, Bangladesh
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
44
|
Ma Y, Wu M, Qin X, Dong Q, Li Z. Antimicrobial function of yeast against pathogenic and spoilage microorganisms via either antagonism or encapsulation: A review. Food Microbiol 2023; 112:104242. [PMID: 36906324 DOI: 10.1016/j.fm.2023.104242] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023]
Abstract
Contaminations of pathogenic and spoilage microbes on foods are threatening food safety and quality, highlighting the importance of developing antimicrobial agents. According to different working mechanisms, the antimicrobial activities of yeast-based agents were summarized from two aspects: antagonism and encapsulation. Antagonistic yeasts are usually applied as biocontrol agents for the preservation of fruits and vegetables via inactivating spoilage microbes, usually phytopathogens. This review systematically summarized various species of antagonistic yeasts, potential combinations to improve the antimicrobial efficiency, and the antagonistic mechanisms. The wide applications of the antagonistic yeasts are significantly limited by undesirable antimicrobial efficiency, poor environmental resistance, and a narrow antimicrobial spectrum. Another strategy for achieving effective antimicrobial activity is to encapsulate various chemical antimicrobial agents into a yeast-based carrier that has been previously inactivated. This is accomplished by immersing the dead yeast cells with porous structure in an antimicrobial suspension and applying high vacuum pressure to allow the agents to diffuse inside the yeast cells. Typical antimicrobial agents encapsulated in the yeast carriers have been reviewed, including chlorine-based biocides, antimicrobial essential oils, and photosensitizers. Benefiting from the existence of the inactive yeast carrier, the antimicrobial efficiencies and functional durability of the encapsulated antimicrobial agents, such as chlorine-based agents, essential oils, and photosensitizers, are significantly improved compared with the unencapsulated ones.
Collapse
Affiliation(s)
- Yue Ma
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, Shanghai, China.
| | - Mengjie Wu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, Shanghai, China.
| | - Xiaojie Qin
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, Shanghai, China.
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, Shanghai, China.
| | - Zhuosi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, Shanghai, China.
| |
Collapse
|
45
|
Zhang P, Ma X, Liu L, Mao C, Hu Y, Yan B, Guo J, Liu X, Shi J, Lee GS, Pan X, Deng Y, Zhang Z, Kang Z, Qiao Y. MEDIATOR SUBUNIT 16 negatively regulates rice immunity by modulating PATHOGENESIS RELATED 3 activity. PLANT PHYSIOLOGY 2023; 192:1132-1150. [PMID: 36815292 PMCID: PMC10231465 DOI: 10.1093/plphys/kiad120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/01/2023]
Abstract
Lesion mimic mutants (LMMs) are valuable genetic resources for unraveling plant defense responses including programmed cell death. Here, we identified a rice (Oryza sativa) LMM, spotted leaf 38 (spl38), and demonstrated that spl38 is essential for the formation of hypersensitive response-like lesions and innate immunity. Map-based cloning revealed that SPL38 encodes MEDIATOR SUBUNIT 16 (OsMED16). The spl38 mutant showed enhanced resistance to rice pathogens Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae (Xoo) and exhibited delayed flowering, while OsMED16-overexpressing plants showed increased rice susceptibility to M. oryzae. The OsMED16-edited rice lines were phenotypically similar to the spl38 mutant but were extremely weak, exhibited growth retardation, and eventually died. The C-terminus of OsMED16 showed interaction with the positive immune regulator PATHOGENESIS RELATED 3 (OsPR3), resulting in the competitive repression of its chitinase and chitin-binding activities. Furthermore, the ospr3 osmed16 double mutants did not exhibit the lesion mimic phenotype of the spl38 mutant. Strikingly, OsMED16 exhibited an opposite function in plant defense relative to that of Arabidopsis (Arabidopsis thaliana) AtMED16, most likely because of 2 amino acid substitutions between the monocot and dicot MED16s tested. Collectively, our findings suggest that OsMED16 negatively regulates cell death and immunity in rice, probably via the OsPR3-mediated chitin signaling pathway.
Collapse
Affiliation(s)
- Peng Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Xiaoding Ma
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lina Liu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Chanjuan Mao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yongkang Hu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Bingxiao Yan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinxia Shi
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Gang-Seob Lee
- National Institute of Agricultural Science, Jeon Ju 54874, Republic of Korea
| | - Xiaowu Pan
- Hunan Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
46
|
Abbey J, Jose S, Percival D, Jaakola L, Asiedu SK. Modulation of defense genes and phenolic compounds in wild blueberry in response to Botrytis cinerea under field conditions. BMC PLANT BIOLOGY 2023; 23:117. [PMID: 36849912 PMCID: PMC9972761 DOI: 10.1186/s12870-023-04090-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Botrytis blight is an important disease of wild blueberry [(Vaccinium angustifolium (Va) and V. myrtilloides (Vm))] with variable symptoms in the field due to differences in susceptibility among blueberry phenotypes. Representative blueberry plants of varying phenotypes were inoculated with spores of B. cinerea. The relative expression of pathogenesis-related genes (PR3, PR4), flavonoid biosynthesis genes, and estimation of the concentration of ten phenolic compounds between uninoculated and inoculated samples at different time points were analyzed. Representative plants of six phenotypes (brown stem Va, green stem Va, Va f. nigrum, tall, medium, and short stems of Vm) were collected and studied using qRT-PCR. The expression of targeted genes indicated a response of inoculated plants to B. cinerea at either 12, 24, 48 or 96 h post inoculation (hpi). The maximum expression of PR3 occurred at 24 hpi in all the phenotypes except Va f. nigrum and tall stem Vm. Maximum expression of both PR genes occurred at 12 hpi in Va f. nigrum. Chalcone synthase, flavonol synthase and anthocyanin synthase were suppressed at 12 hpi followed by an upregulation at 24 hpi. The expression of flavonoid pathway genes was phenotype-specific with their regulation patterns showing temporal differences among the phenotypes. Phenolic compound accumulation was temporally regulated at different post-inoculation time points. M-coumaric acid and kaempferol-3-glucoside are the compounds that were increased with B. cinerea inoculation. Results from this study suggest that the expression of PR and flavonoid genes, and the accumulation of phenolic compounds associated with B. cinerea infection could be phenotype specific. This study may provide a starting point for understanding and determining the mechanisms governing the wild blueberry-B. cinerea pathosystem.
Collapse
Affiliation(s)
- Joel Abbey
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, P.O. Box 550, Truro, NS, B2N 2R8, Canada.
| | - Sherin Jose
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, P.O. Box 550, Truro, NS, B2N 2R8, Canada
| | - David Percival
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, P.O. Box 550, Truro, NS, B2N 2R8, Canada
| | - Laura Jaakola
- Department of Arctic and Marine Biology, The Arctic University of Norway, Tromso, Norway
- NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, NO‑1431, Ås, Norway
| | - Samuel K Asiedu
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, 50 Pictou Road, P.O. Box 550, Truro, NS, B2N 2R8, Canada
| |
Collapse
|
47
|
Moshe M, Gupta CL, Sela N, Minz D, Banin E, Frenkel O, Cytryn E. Comparative genomics of Bacillus cereus sensu lato spp. biocontrol strains in correlation to in-vitro phenotypes and plant pathogen antagonistic capacity. Front Microbiol 2023; 14:996287. [PMID: 36846749 PMCID: PMC9947482 DOI: 10.3389/fmicb.2023.996287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
Bacillus cereus sensu lato (Bcsl) strains are widely explored due to their capacity to antagonize a broad range of plant pathogens. These include B. cereus sp. UW85, whose antagonistic capacity is attributed to the secondary metabolite Zwittermicin A (ZwA). We recently isolated four soil and root-associated Bcsl strains (MO2, S-10, S-25, LSTW-24) that displayed different growth profiles and in-vitro antagonistic effects against three soilborne plant pathogens models: Pythium aphanidermatum (oomycete) Rhizoctonia solani (basidiomycete), and Fusarium oxysporum (ascomycete). To identify genetic mechanisms potentially responsible for the differences in growth and antagonistic phenotypes of these Bcsl strains, we sequenced and compared their genomes, and that of strain UW85 using a hybrid sequencing pipeline. Despite similarities, specific Bcsl strains had unique secondary metabolite and chitinase-encoding genes that could potentially explain observed differences in in-vitro chitinolytic potential and anti-fungal activity. Strains UW85, S-10 and S-25 contained a (~500 Kbp) mega-plasmid that harbored the ZwA biosynthetic gene cluster. The UW85 mega-plasmid contained more ABC transporters than the other two strains, whereas the S-25 mega-plasmid carried a unique cluster containing cellulose and chitin degrading genes. Collectively, comparative genomics revealed several mechanisms that can potentially explain differences in in-vitro antagonism of Bcsl strains toward fungal plant pathogens.
Collapse
Affiliation(s)
- Maya Moshe
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Rishon-Lezion, Israel
- Institute of Plant Pathology and Weed Research, Agricultural Research Organization, Rishon-Lezion, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Chhedi Lal Gupta
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Rishon-Lezion, Israel
| | - Noa Sela
- Institute of Plant Pathology and Weed Research, Agricultural Research Organization, Rishon-Lezion, Israel
| | - Dror Minz
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Rishon-Lezion, Israel
| | - Ehud Banin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | - Omer Frenkel
- Institute of Plant Pathology and Weed Research, Agricultural Research Organization, Rishon-Lezion, Israel
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, Agricultural Research Organization, Rishon-Lezion, Israel
| |
Collapse
|
48
|
Soni T, Zhuang M, Kumar M, Balan V, Ubanwa B, Vivekanand V, Pareek N. Multifaceted production strategies and applications of glucosamine: a comprehensive review. Crit Rev Biotechnol 2023; 43:100-120. [PMID: 34923890 DOI: 10.1080/07388551.2021.2003750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Glucosamine (GlcN) and its derivatives are in high demand and used in various applications such as food, a precursor for the biochemical synthesis of fuels and chemicals, drug delivery, cosmetics, and supplements. The vast number of applications attributed to GlcN has raised its demand, and there is a growing emphasis on developing production methods that are sustainable and economical. Several: physical, chemical, enzymatic, microbial fermentation, recombinant processing methods, and their combinations have been reported to produce GlcN from chitin and chitosan available from different sources, such as animals, plants, and fungi. In addition, genetic manipulation of certain organisms has significantly improved the quality and yield of GlcN compared to conventional processing methods. This review will summarize the chitin and chitosan-degrading enzymes found in various organisms and the expression systems that are widely used to produce GlcN. Furthermore, new developments and methods, including genetic and metabolic engineering of Escherichia coli and Bacillus subtilis to produce high titers of GlcN and GlcNAc will be reviewed. Moreover, other sources of glucosamine production viz. starch and inorganic ammonia will also be discussed. Finally, the conversion of GlcN to fuels and chemicals using catalytic and biochemical conversion will be discussed.
Collapse
Affiliation(s)
- Twinkle Soni
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Mengchuan Zhuang
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX, USA
| | - Manish Kumar
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| | - Venkatesh Balan
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX, USA
| | - Bryan Ubanwa
- Department of Engineering Technology, College of Technology, University of Houston, Sugar Land, TX, USA
| | - Vivekanand Vivekanand
- Centre for Energy and Environment, Malaviya National Institute of Technology, Jaipur, India
| | - Nidhi Pareek
- Microbial Catalysis and Process Engineering Laboratory, Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
49
|
Casimiro B, Mota I, Veríssimo P, Canhoto J, Correia S. Enhancing the Production of Hydrolytic Enzymes in Elicited Tamarillo ( Solanum betaceum Cav.) Cell Suspension Cultures. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12010190. [PMID: 36616319 PMCID: PMC9824068 DOI: 10.3390/plants12010190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 05/07/2023]
Abstract
Plant cell suspension cultures are widely used as a tool for analyzing cellular and molecular processes, metabolite synthesis, and differentiation, bypassing the structural complexity of plants. Within the range of approaches used to increase the production of metabolites by plant cells, one of the most recurrent is applying elicitors capable of stimulating metabolic pathways related to defense mechanisms. Previous proteomics analysis of tamarillo cell lines and cell suspension cultures have been used to further characterize and optimize the growth and stress-related metabolite production under in vitro controlled conditions. The main objective of this work was to develop a novel plant-based bioreactor system to produce hydrolytic enzymes using an elicitation approach. Based on effective protocols for tamarillo micropropagation and plant cell suspension culture establishment from induced callus lines, cell growth has been optimized, and enzymatic activity profiles under in vitro controlled conditions characterized. By testing different sucrose concentrations and the effects of two types of biotic elicitors, it was found that 3% (w/v) sucrose concentration in the liquid medium enhanced the production of hydrolytic enzymes. Moreover, casein hydrolysate at 0.5 and 1.5 g/L promoted protein production, whereas yeast extract (0.5 g/L) enhanced glycosidase activity. Meanwhile, chitosan (0.05 and 0.1 g/L) enhanced glycosidases, alkaline phosphates, and protease activities.
Collapse
Affiliation(s)
- Bruno Casimiro
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456 Coimbra, Portugal
- Correspondence: (B.C.); (S.C.)
| | - Inês Mota
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Paula Veríssimo
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Jorge Canhoto
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Sandra Correia
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456 Coimbra, Portugal
- InnovPlantProtect CoLab, Estrada de Gil Vaz, 7351-901 Elvas, Portugal
- Correspondence: (B.C.); (S.C.)
| |
Collapse
|
50
|
Keimasi M, Salehifard K, Shahidi M, Esmaeili F, Mirshah Jafar Esfahani N, Beheshti S, Amirsadri M, Naseri F, Keimasi M, Ghorbani N, Mofid MR, Moradmand M. Ameliorative effects of omega-lycotoxin-Gsp2671e purified from the spider venom of Lycosa praegrandis on memory deficits of glutamate-induced excitotoxicity rat model. Front Pharmacol 2022; 13:1048563. [PMID: 36588719 PMCID: PMC9800828 DOI: 10.3389/fphar.2022.1048563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Memory impairment is one of the main complications of Alzheimer's disease (AD). This condition can be induced by hyper-stimulation of N-Methyl-D-aspartate receptors (NMDARs) of glutamate in the hippocampus, which ends up to pyramidal neurons determination. The release of neurotransmitters relies on voltage-gated calcium channels (VGCCs) such as P/Q-types. Omega-lycotoxin-Gsp2671e (OLG1e) is a P/Q-type VGCC modulator with high affinity and selectivity. This bio-active small protein was purified and identified from the Lycosa praegrandis venom. The effect of this state-dependent low molecular weight P/Q-type calcium modulator on rats was investigated via glutamate-induced excitotoxicity by N-Methyl-D-aspartate. Also, Electrophysiological amplitude of field excitatory postsynaptic potentials (fEPSPs) in the input-output and Long-term potentiation (LTP) curves were recorded in mossy fiber and the amount of synaptophysin (SYN), synaptosomal-associated protein, 25 kDa (SNAP-25), and synaptotagmin 1(SYT1) genes expression were measured using Real-time PCR technique for synaptic quantification. The outcomes of the current study suggest that OLG1e as a P/Q-type VGCC modulator has an ameliorative effect on excitotoxicity-induced memory defects and prevents the impairment of pyramidal neurons in the rat hippocampus.
Collapse
Affiliation(s)
- Mohammad Keimasi
- Department of Plant and Animal Biology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran,*Correspondence: Majid Moradmand, ; Mohammad Reza Mofid, ; Mohammad Keimasi,
| | - Kowsar Salehifard
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marzieh Shahidi
- Department of Plant and Animal Biology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Fariba Esmaeili
- Department of Plant and Animal Biology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Noushin Mirshah Jafar Esfahani
- Department of Plant and Animal Biology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Siamak Beheshti
- Department of Plant and Animal Biology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammadreza Amirsadri
- Department of Clinical Pharmacy and Pharmacy Practice, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Faezeh Naseri
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadjavad Keimasi
- Department of Plant and Animal Biology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Najmeh Ghorbani
- Department of Plant and Animal Biology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Mohammad Reza Mofid
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran,*Correspondence: Majid Moradmand, ; Mohammad Reza Mofid, ; Mohammad Keimasi,
| | - Majid Moradmand
- Department of Plant and Animal Biology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran,*Correspondence: Majid Moradmand, ; Mohammad Reza Mofid, ; Mohammad Keimasi,
| |
Collapse
|