1
|
Yuan M, Liu A, Xu B, Sales K, Karnik S, Voelker T, Salha D, Zimmer J, O’Dell M, Gorityala S, Hays A, Lester T, Reynolds G, Tary-Lehmann M, Yu M, Roberge M, Malone K, Patel V, Love I, Lin J, Diaz M, Xu T, Garofolo W, McGregor J, Leskovar A, Kernstock R, Pellerin M, Brown M, Spytko A, Lowes S, Ambrose D, Dufield D, Kane C, Veeramachaneni R, Luna M, Warrino D, Dwivedi V, Xu A, Hyer E, Iles T, Majumdar R, Sikkema D, Thomas E, Carlsson A, Dakappagari N, Riccitelli N, Marco CD, Bouhajib M, Iordachescu A, Sanghvi M, Barton H, Lavelle A, Dompkowski E, Rundlett S, Matys K, Sangster T, Turksma A, Gu W, Liu J, Hoffpauir B, Rocha A, Pirro J, Bergeron J, O’Brien K, Fang X, Dong K, Yamashita J. Recommendations on biomarker assay validation (BAV) in tissues by GCC. Bioanalysis 2025; 17:429-438. [PMID: 40248960 PMCID: PMC12026151 DOI: 10.1080/17576180.2025.2471243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 04/19/2025] Open
Abstract
Biomarker analysis enables a deep understanding of physiological and biological processes and offers insights into pathological disease states and conditions. When measured in tissues, the spatial distribution of biomarkers may be evaluated. To meet regulatory and sponsor requirements, guidance on the approach to validation and the parameters to be evaluated is essential. The main goals of this GCC white paper are to disseminate the survey results discussed during the 16th& 17thGCC Closed Forums (2023 & 2024) and to provide recommendations from the GCC members on technical and regulatory considerations for the bioanalysis of biomarkers in tissues.
Collapse
Affiliation(s)
- Moucun Yuan
- PPD, part of Thermo Fisher Scientific, Richmond, VA, USA
| | | | - Bin Xu
- Accurant Biotech, Cranbury, NJ, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Mathilde Yu
- Cerba Research Canada Formally CIRION BioPharma Research Inc, a Cerba Research Company, Laval, QC, Canada
| | - Martin Roberge
- Cerba Research Canada Formally CIRION BioPharma Research Inc, a Cerba Research Company, Laval, QC, Canada
| | | | | | - Iain Love
- Charles River Laboratories, EdinburgTranent, UK
| | | | - Manisha Diaz
- Eurofins Viracor BioPharma Services, Lenexa, KS, USA
| | - Tao Xu
- Frontage Laboratories, Exton, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Allan Xu
- Keystone Bioanalytical, North Wales, PA, USA
| | | | | | | | | | | | | | - Naveen Dakappagari
- Navigate BioPharma Services, Inc. (A Novartis Subsidiary), Carlsbad, CA, USA
| | - Nathan Riccitelli
- Navigate BioPharma Services, Inc. (A Novartis Subsidiary), Carlsbad, CA, USA
| | | | | | | | | | - Hollie Barton
- PPD, part of Thermo Fisher Scientific, Richmond, VA, USA
| | - Amy Lavelle
- PPD, part of Thermo Fisher Scientific, Richmond, VA, USA
| | | | | | | | | | | | - Weihua Gu
- Shanghai Xihua Scientific Co, Shanghai, China
| | - Jia Liu
- Shanghai Xihua Scientific Co, Shanghai, China
| | | | | | | | | | | | | | - Kelly Dong
- United-Power Pharma Tech Co, Beijing, China
| | | |
Collapse
|
2
|
Wojcik J, Sikorski T, Wang J, Huang Y, Sugimoto H, Baratta M, Ciccimaro E, Green R, Jian W, Kar S, Kim YJ, Lassman M, Mohapatra S, Qian M, Rosenbaum AI, Sarvaiya H, Tian Y, Vainshtein I, Yuan L, Tao L, Ji A, Kochansky C, Qiu H, Maes E, Chen LZ, Cooley M, Dufield D, Hyer E, Johnson J, Li W, Liu A, Lu Y, Meissen J, Palandra J, Tang X, Vigil A, Wei W, Vinter S, Xue Y, Yang L, Zheng N, Benson K, McCush F, Liang Z, Abberley L, Andisik M, Araya M, Cho S(J, Colligan L, Dasgupta A, Dudek M, Edmison A, Fischer S, Folian B, Garofolo F, Ishii-Watabe A, Ivanova D, Gijsel SKD, Luo L, McGuinness M, ’Day CO, Salehzadeh-Asl R, Neto JT, Verhaeghe T, Wan K, Whale E, Yan W, Yang E, Zhang J. 2024 White Paper on Recent Issues in Bioanalysis: Three Way-Cross Validation; Urine Clinical Analysis; Automated Methods; Regulatory Queries on Plasma Protein Binding; Automated Biospecimen Management; ELN Migration; Ultra-Sensitivity Mass Spectrometry ( Part 1A - Recommendations on Advanced Strategies for Mass Spectrometry Assays, Chromatography, Sample Preparation and BMV/Regulated Bioanalysis Part 1B - Regulatory Agencies' Inputs on Regulated Bioanalysis/BMV). Bioanalysis 2025; 17:299-337. [PMID: 39862144 PMCID: PMC12054924 DOI: 10.1080/17576180.2025.2450194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
The 18th Workshop on Recent Issues in Bioanalysis (18th WRIB) took place in San Antonio, TX, USA on May 6-10, 2024. Over 1100 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 18th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week to allow an exhaustive and thorough coverage of all major issues in bioanalysis of biomarkers, immunogenicity, gene therapy, cell therapy and vaccines.Moreover, in-depth workshops on "IVDR Implementation in EU & Changes for LDT in the US" and on "Harmonization of Vaccine Clinical Assays Validation" were the special features of the 18th edition.As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues.This 2024 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2024 edition of this comprehensive White Paper has been divided into three parts for editorial reasons.This publication (Part 1) covers in Part 1A the Recommendations on Mass Spectrometry Assays and Regulated Bioanalysis/BMV and in Part 1B the Regulatory Inputs on these topics. Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) and Part 2 (Biomarkers/BAV, IVD/CDx, LBA and Cell-Based Assays) are published in volume 17 of Bioanalysis, issues 3 and 4 (2025), respectively.
Collapse
Affiliation(s)
| | | | | | - Yue Huang
- Revolution Medicines, South San Francisco, CA, USA
| | | | | | | | | | - Wenying Jian
- Johnson & Johnson Innovative Medicine, Spring House, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yang Lu
- US FDA, Silver Spring, MD, USA
| | | | | | | | | | - Wei Wei
- Boehringer Ingelheim, Ridgefield, CT, USA
| | | | - Yongjun Xue
- Bristol Myers Squibb, Lawrenceville, NJ, USA
| | - Li Yang
- US FDA, Silver Spring, MD, USA
| | - Naiyu Zheng
- Bristol Myers Squibb, Lawrenceville, NJ, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Lina Luo
- Bristol Myers Squibb, Lawrenceville, NJ, USA
| | | | | | | | | | - Tom Verhaeghe
- Johnson & Johnson Innovative Medicine, Beerse, Belgium
| | | | | | - Weili Yan
- Genentech, South San Francisco, CA, USA
| | - Eric Yang
- GlaxoSmithKline, Collegeville, PA, USA
| | | |
Collapse
|
3
|
Tounekti O, Prior S, Wassmer S, Xu J, Wong A, Fang X, Sonderegger I, Smeraglia J, Huleatt J, Loo L, Beaver C, DelCarpini J, Dessy F, Diebold S, Fiscella M, Garofolo F, Grimaldi C, Gupta S, Hou V, Irwin C, Jani D, Joseph J, Kalina W, Kar S, Kavita U, Lu Y, Marshall JC, Mayer C, Mora J, Nolan K, Peng K, Riccitelli N, Scully I, Seitzer J, Stern M, Wadhwa M, Xu Y, Verthelyi D, Sumner G, Clements-Egan A, Chen C, Gorovits B, Torri A, Baltrukonis D, Gunn G, Ishii-Watabe A, Kramer D, Kubiak RJ, Mullins G, Pan L, Partridge MA, Poetzl J, Rasamoelisolo M, Sirtori FR, Richards S, Saad OM, Shao W, Song Y, Song S, Staack RF, Wu B, Manangeeswaran M, Thacker S. 2024 White Paper on Recent Issues in Bioanalysis: Evolution of Immunogenicity Assessment beyond ADA/NAb; Regulated Genomic/NGS Assays; Hypersensitivity Reactions; Minimum Noise Reduction; False Positive Range; Modernized Vaccine Approaches; NAb/TAb Correlation (PART 3A - Recommendations on Advanced Strategies for Molecular Assays and Immunogenicity of Gene Therapy, Cell Therapy, Vaccine; Biotherapeutics Immunogenicity Assessment & Clinical Relevance PART 3B - Regulatory Agencies' Input on Immunogenicity/Technologies of Biotherapeutics, Gene, Cell & Vaccine Therapies). Bioanalysis 2025; 17:105-149. [PMID: 39862111 PMCID: PMC11863570 DOI: 10.1080/17576180.2024.2439229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 01/27/2025] Open
Abstract
The 18th Workshop on Recent Issues in Bioanalysis (18th WRIB) took place in San Antonio, TX, USA on May 6-10, 2024. Over 1100 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 18th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week to allow an exhaustive and thorough coverage of all major issues in bioanalysis of biomarkers, immunogenicity, gene therapy, cell therapy and vaccines.Moreover, in-depth workshops on "IVDR Implementation in EU & Changes for LDT in the US" and on "Harmonization of Vaccine Clinical Assays Validation" were the special features of the 18th edition.As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and Regulatory Agencies experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues.This 2024 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2024 edition of this comprehensive White Paper has been divided into three parts for editorial reasons.This publication (Part 3) covers in the Part 3A the recommendations on Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity and in Part 3B the Regulatory Inputs on these topics. Part 1 (Mass Spectrometry Assays and Regulated Bioanalysis/BMV) and Part 2 (Biomarkers/BAV, IVD/CDx, LBA and Cell-Based Assays) are published in volume 17 of Bioanalysis, issues 4 and 5 (2025), respectively.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - James Huleatt
- Gates Medical Research Institute, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yanmei Lu
- Sangamo, South San Francisco, CA, USA
| | | | | | | | | | - Kun Peng
- Genentech, South San Francisco, CA, USA
| | | | | | | | - Mark Stern
- Bristol Myers Squibb, Lawrenceville, NJ, USA
| | | | | | | | | | | | - Cecil Chen
- AstraZeneca, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yuan Song
- Genentech, South San Francisco, CA, USA
| | | | - Roland F. Staack
- Roche Pharma Research & Early Development, Roche Innovation Center, Munich, Germany
| | - Bonnie Wu
- Johnson & Johnson Innovative Medicine, Spring House, PA, USA
| | | | | |
Collapse
|
4
|
Bivi N, Graham D, Joglekar L, McGuire K, Stoop J, Zoghbi J, Baker B, Bandukwala A, Bond S, Buoninfante A, Chen J, Dysinger M, Engelbergs J, Fiscella M, Garofolo F, Hopper S, Jones B, King L, Murphy R, Palmer R, Sanderink G, Seyda A, Tang H, Van Tuyl A, Wagner L, Walravens K, Wang K, Zander H, Zhu L, Li M, Lin YD, Natalia M, Standifer N, Eck S, Goihberg P, Grugan K, Hedrick MN, Hopkins G, Kar S, Keller S, McGrath S, O’Gorman B, Stevens C, Stevens E, Terszowski G, Trampont PC, Yao S, Joyce A, Kumar S, Owen C, Pine S, Yearwood G, Cao L, Clausen V, Coble K, Culbert A, Gupta S, Hughes R, Liu S, Lu K, Martello R, Reese KJ, Stubenrauch KG, Wen Y. 2024 White paper on recent issues in bioanalysis: Impact of LDT in US and IVDR in EU; AI/ML for High Parameter Flow Cytometry; The rise of Olink Technology; CDx for AAV Gene Therapies; Integrative Bioanalysis by Multiple Platforms; Super Sensitive ADA/NAb LBA ( PART 2A - Recommendations on Advanced Strategies for Biomarkers, IVD/CDx Assays (BAV), Cell Based Assays (CBA), and Ligand-Binding Assays (LBA) PART 2B - Regulatory Agencies' Input on Biomarkers, IVD/CDx, and Biomarker Assay Validation). Bioanalysis 2025; 17:211-248. [PMID: 39862107 PMCID: PMC11866642 DOI: 10.1080/17576180.2024.2442218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/27/2025] Open
Abstract
The 18th Workshop on Recent Issues in Bioanalysis (18th WRIB) took place in San Antonio, TX, USA on May 6-10, 2024. Over 1100 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 18th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week to allow an exhaustive and thorough coverage of all major issues in bioanalysis of biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on "IVDR Implementation in EU & Changes for LDT in the US" and on "Harmonization of Vaccine Clinical Assays Validation" were the special features of the 18th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2024 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2024 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 2) covers in the Part 2A the recommendations on Biomarkers/BAV, IVD/CDx, LBA and Cell-Based Assays and in Part 2B the Regulatory Inputs on these topics. Part 1 (Mass Spectrometry Assays and Regulated Bioanalysis/BMV) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 17 of Bioanalysis, issues 5 and 3 (2025), respectively.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Jeff Chen
- AstraZeneca, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | - Agnes Seyda
- Bristol Myers Squibb, Lawrenceville, NJ, USA
| | | | | | | | | | - Kai Wang
- GlaxoSmithKline, Collegeville, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Shuyu Yao
- GlaxoSmithKline, Collegeville, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - Kun Lu
- Regeneron, Tarrytown, NY, USA
| | | | | | - Kay-Gunnar Stubenrauch
- F. Hoffmann-La Roche Ltd, Roche Pharma Research & Early Development (pRED), Basel, Switzerland
| | - Yi Wen
- Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
5
|
Liu W, Yang J, Yan W, Peng K. Reformation of a Clinical Anti-Drug Antibody Assay to Enable the Immunogenicity Assessment of a Bispecific Antibody Biotherapeutic. AAPS J 2024; 27:12. [PMID: 39663290 DOI: 10.1208/s12248-024-00996-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/09/2024] [Indexed: 12/13/2024] Open
Abstract
An enzyme-linked immunosorbent assay (ELISA) based anti-drug antibody (ADA) assay was developed to support the clinical development of a bispecific antibody biotherapeutic anti-A/B. This anti-A/B clinical ADA Version 1 (V1) assay was successfully validated initially using commercial samples from the target indication. However, applying the validation cut point factors (CPFs) led to a high untreated ADA positive rate in the Phase 1 study baseline sample analysis. While implementing the in-study CPFs was effective to mitigate the high baseline prevalence, this led to unfavorable assay sensitivity with no drug tolerance, which necessitated an assay re-optimization. The re-optimized Version 2 assay (V2) was able to mitigate the matrix interference observed in the clinical sample testing using the V1 assay, proven to be a more suitable method. The V2 assay optimization work was discussed, and the performance of the V1 and V2 assays during validation and clinical sample analysis was compared. Preliminary sample testing results generated using the two versions of the assay were compared and the ADA clinical impact was discussed. Our experience insinuates that a successfully validated method does not guarantee to be appropriate for sample testing. Adjustments of the method may be required to ensure that it performs as expected during sample testing and throughout the assay's lifecycle. This work highlights the importance of verifying the assay suitability during clinical sample testing and making appropriate adjustments as needed, especially in the first clinical study and the first study for a new indication.
Collapse
Affiliation(s)
- Wenyu Liu
- Department of BioAnalytical Sciences, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080-4990, USA
| | - Jie Yang
- Department of BioAnalytical Sciences, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080-4990, USA
| | - Weili Yan
- Department of BioAnalytical Sciences, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080-4990, USA
| | - Kun Peng
- Department of BioAnalytical Sciences, Genentech Inc, 1 DNA Way, South San Francisco, California, 94080-4990, USA.
| |
Collapse
|
6
|
Baratta M, Jian W, Hengel S, Kaur S, Cunliffe J, Boer J, Hughes N, Kar S, Kellie J, Kim YJ, Lassman M, Mehl J, Morgan L, Palandra J, Sarvaiya H, Zeng J, Zheng N, Wang J, Yuan L, Ji A, Kochansky C, Tao L, Huang Y, Maes E, Barbero L, Contrepois K, Ferrari L, Fu Y, Johnson J, Jones B, Kansal M, Lu Y, Post N, Shen H(H, Xue Y(YJ, Zhang Y(C, Biswas G, Cho S(J, Edmison A, Benson K, Abberley L, Azadeh M, Francis J, Garofolo F, Gupta S, Ivanova I(D, Ishii-Watabe A, Karnik S, Kassim S, Kavetska O, Keller S, Kossary E, Li W, McCush F, Mendes DN, Abhari MR, Scheibner K, Sikorski T, Staack RF, Tabler E, Tang H, Wan K, Wang YM, Whale E, Yang L, Zimmer J, Bandukwala A, Du X, Kholmanskikh O, Gijsel SKD, Wadhwa M, Xu J, Buoninfante A, Cludts I, Diebold S, Maxfield K, Mayer C, Pedras-Vasconcelos J, Abhari MR, Shubow S, Tanaka Y, Tounekti O, Verthelyi D, Wagner L. 2023 White Paper on Recent Issues in Bioanalysis: Deuterated Drugs; LNP; Tumor/FFPE Biopsy; Targeted Proteomics; Small Molecule Covalent Inhibitors; Chiral Bioanalysis; Remote Regulatory Assessments; Sample Reconciliation/Chain of Custody (PART 1A - Recommendations on Mass Spectrometry, Chromatography, Sample Preparation Latest Developments, Challenges, and Solutions and BMV/Regulated Bioanalysis PART 1B - Regulatory Agencies' Inputs on Regulated Bioanalysis/BMV, Biomarkers/IVD/CDx/BAV, Immunogenicity, Gene & Cell Therapy and Vaccine). Bioanalysis 2024; 16:307-364. [PMID: 38913185 PMCID: PMC11216509 DOI: 10.1080/17576180.2024.2347153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 06/25/2024] Open
Abstract
The 17th Workshop on Recent Issues in Bioanalysis (17th WRIB) took place in Orlando, FL, USA on June 19-23, 2023. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 17th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week to allow an exhaustive and thorough coverage of all major issues in bioanalysis of biomarkers, immunogenicity, gene therapy, cell therapy and vaccines.Moreover, in-depth workshops on "EU IVDR 2017/746 Implementation and impact for the Global Biomarker Community: How to Comply with this NEW Regulation" and on "US FDA/OSIS Remote Regulatory Assessments (RRAs)" were the special features of the 17th edition.As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues.This 2023 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2023 edition of this comprehensive White Paper has been divided into three parts for editorial reasons.This publication covers the recommendations on Mass Spectrometry Assays, Regulated Bioanalysis/BMV (Part 1A) and Regulatory Inputs (Part 1B). Part 2 (Biomarkers, IVD/CDx, LBA and Cell-Based Assays) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 16 of Bioanalysis, issues 7 and 8 (2024), respectively.
Collapse
Affiliation(s)
| | - Wenying Jian
- Johnson & Johnson Innovative Medicine, Spring House, PA, USA
| | | | | | | | | | | | | | | | | | | | - John Mehl
- GlaxoSmithKline, Collegeville, PA, USA
| | | | | | | | | | - Naiyu Zheng
- Bristol-Myers Squibb, Lawrenceville, NJ, USA
| | | | | | | | | | | | - Yue Huang
- AstraZeneca, South San Francisco, CA, USA
| | | | | | | | - Luca Ferrari
- F. Hoffmann-La Roche Ltd, Roche Pharma Research & Early Development (pRED), Basel, Switzerland
| | | | | | | | | | - Yang Lu
- US FDA, Silver Spring, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Roland F Staack
- Roche Pharma Research & Early Development, Roche Innovation Center, Munich, Germany
| | | | | | | | | | | | - Li Yang
- US FDA, Silver Spring, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Kholmanskikh O, Wang YM, Hersey S, Wadhwa M, Block K, Bandukwala A, Szapacs M, Weiner R, Awwad K, Dessy F, Downing S, Du X, Garofolo F, Harris S, Hou V, Jones J, Kar S, Kinhikar A, Li M, Mathews J, Meissen J, Sumner GO, Pan L, Sanderink G, Scully I, Stanta J, Tanaka Y, Vauleon S, Wagner L, Wang K, Zhu L, Eck S, Lin YD, Azadeh M, Decman V, Diebold S, Du X, Goihberg P, Alcaide EG, Gonneau C, Hedrick MN, Hopkins G, Kar S, Loschko J, McCausland M, Mendez L, Sehra S, Stevens E, Sun YS, Tangri S, Trampont PC, Cludts I, Dysinger M, Kavita U, Sugimoto H, Chilewski S, Grimaldi C, Jiang Y, Kamerud J, Liu S, Owen C, Palackal N, Petit-frere C, Pine S, Abhari MR, Scheibner K, Williams L, Xu T, Zhang G. 2023 White Paper on Recent Issues in Bioanalysis: EU IVDR 2017/746 Implementation/Impact, IVD/CDx/CLIA Approved Assays, High Dimensional Cytometry, Multiplexing Technologies, LBA Tissue Analysis, Vaccine Study Endpoints, Cell-Based Assays for Biomarkers, Cell Therapy and Vaccines ( PART 2 - Recommendations on Development & Validation of Biomarkers, IVD, CDx, Cell-Based, Flow Cytometry, Ligand-Binding and Enzyme Assays; Advanced Critical Reagents Strategies). Bioanalysis 2024; 16:179-220. [PMID: 38899739 PMCID: PMC11216500 DOI: 10.1080/17576180.2024.2340961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 04/05/2024] [Indexed: 06/21/2024] Open
Abstract
The 17th Workshop on Recent Issues in Bioanalysis (17th WRIB) took place in Orlando, FL, USA on 19-23 June 2023. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 17th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week to allow an exhaustive and thorough coverage of all major issues in bioanalysis of biomarkers, immunogenicity, gene therapy, cell therapy and vaccines.Moreover, in-depth workshops on "EU IVDR 2017/746 Implementation and impact for the Global Biomarker Community: How to Comply with these NEW Regulations" and on "US FDA/OSIS Remote Regulatory Assessments (RRAs)" were the special features of the 17th edition.As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues.This 2023 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2023 edition of this comprehensive White Paper has been divided into three parts for editorial reasons.This publication (Part 2) covers the recommendations on Biomarkers, IVD/CDx, LBA and Cell-Based Assays. Part 1A (Mass Spectrometry Assays and Regulated Bioanalysis/BMV), P1B (Regulatory Inputs) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 16 of Bioanalysis, issues 9 and 7 (2024), respectively.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Francis Dessy
- GlaxoSmithKline, Rixensart, Belgium
- Takeda, Cambridge, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kai Wang
- GlaxoSmithKline, Collegeville, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Valentine JL, Dengler A, Zhao A, Truong T, McAfee S, Hassanein M, Irvin SC, Chen J, Meng X, Yan H, Torri A, Sumner G, Andisik MD, Paccaly A, Partridge MA. Immunogenicity of Cemiplimab: Low Incidence of Antidrug Antibodies and Cut-Point Suitability Across Tumor Types. J Clin Pharmacol 2024; 64:125-136. [PMID: 37656820 DOI: 10.1002/jcph.2340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/24/2023] [Indexed: 09/03/2023]
Abstract
The immunogenicity of cemiplimab, a fully human immunoglobulin G4 monoclonal antibody directed against programmed cell death 1, was assessed in patients across multiple tumor types. The development of antidrug antibodies (ADAs) against cemiplimab was monitored using a validated bridging immunoassay. To identify ADA-positive samples in the assay, statistically determined cut points were established by analyzing baseline clinical study samples from a mixed population of different tumor types, and this validation cut point was used to assess immunogenicity in all subsequent studies. Regulatory guidance requires that ADA assay cut points be verified for appropriateness in different patient populations. Thus, for the cemiplimab ADA assay, we evaluated whether each new oncology population was comparable with the validation population used to set the cut point. Assay responses from 2393 individual serum samples from 8 different tumor types were compared with the validation population, using established statistical methods for cut-point determination and comparison, with no significant differences observed. Across tumor types, the immunogenicity of cemiplimab was low, with an overall treatment-emergent ADA incidence rate of 1.9% and 2.5% at intravenous dose regimens of 3 mg/kg every 2 weeks and 350 mg every 3 weeks, respectively. Moreover, no neutralizing antibodies to cemiplimab were detected in patients with ADA-positive samples, and there was no observed impact of cemiplimab ADAs on pharmacokinetics. Study-specific cut points may be required in some diseases, such as immune and inflammatory diseases; however, based on this analysis, in-study cut points are not required for each new oncology disease indication for cemiplimab.
Collapse
Affiliation(s)
- Jenny L Valentine
- Bioanalytical Sciences and Pharmacometrics, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Andrew Dengler
- Bioanalytical Sciences and Pharmacometrics, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - An Zhao
- Bioanalytical Sciences and Pharmacometrics, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Tiffany Truong
- Bioanalytical Sciences and Pharmacometrics, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Sean McAfee
- Bioanalytical Sciences and Pharmacometrics, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Mohamed Hassanein
- Bioanalytical Sciences and Pharmacometrics, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Susan C Irvin
- Bioanalytical Sciences and Pharmacometrics, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Jihua Chen
- Bioanalytical Sciences and Pharmacometrics, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Xiao Meng
- Bioanalytical Sciences and Pharmacometrics, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Hong Yan
- Bioanalytical Sciences and Pharmacometrics, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Albert Torri
- Bioanalytical Sciences and Pharmacometrics, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Giane Sumner
- Bioanalytical Sciences and Pharmacometrics, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Matthew D Andisik
- Bioanalytical Sciences and Pharmacometrics, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Anne Paccaly
- Bioanalytical Sciences and Pharmacometrics, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | - Michael A Partridge
- Bioanalytical Sciences and Pharmacometrics, Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| |
Collapse
|
9
|
Sumner G, Keller S, Huleatt J, Staack RF, Wagner L, Azadeh M, Bandukwala A, Cao L, Du X, Salinas GF, Garofolo F, Harris S, Hopper S, Irwin C, Ji Q, Joseph J, King L, Kinhikar A, Lu Y, Luo R, Mabrouk O, Malvaux L, Marshall JC, McGuire K, Mikol V, Neely R, Qiu X, Saito Y, Salaun B, Scully I, Smeraglia J, Solstad T, Stoop J, Tang H, Teixeira P, Wang Y, Wright M, Mendez L, Beaver C, Eacret J, Au-Yeung A, Decman V, Dessy F, Eck S, Goihberg P, Alcaide EG, Gonneau C, Grugan K, Hedrick MN, Kar S, Sehra S, Stevens E, Stevens C, Sun Y, McCush F, Williams L, Fischer S, Wu B, Jordan G, Burns C, Cludts I, Coble K, Grimaldi C, Henderson N, Joyce A, Lotz G, Lu Y, Luo L, Neff F, Sperinde G, Stubenrauch KG, Wang Y, Ware M, Xu W. 2022 White Paper on Recent Issues in Bioanalysis: Enzyme Assay Validation, BAV for Primary End Points, Vaccine Functional Assays, Cytometry in Tissue, LBA in Rare Matrices, Complex NAb Assays, Spectral Cytometry, Endogenous Analytes, Extracellular Vesicles Part 2 - Recommendations on Biomarkers/CDx, Flow Cytometry, Ligand-Binding Assays Development & Validation; Emerging Technologies; Critical Reagents Deep Characterization. Bioanalysis 2023; 15:861-903. [PMID: 37584363 DOI: 10.4155/bio-2023-0151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023] Open
Abstract
The 16th Workshop on Recent Issues in Bioanalysis (16th WRIB) took place in Atlanta, GA, USA on September 26-30, 2022. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 16th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on ICH M10 BMV final guideline (focused on this guideline training, interpretation, adoption and transition); mass spectrometry innovation (focused on novel technologies, novel modalities, and novel challenges); and flow cytometry bioanalysis (rising of the 3rd most common/important technology in bioanalytical labs) were the special features of the 16th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2022 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2022 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 2) covers the recommendations on LBA, Biomarkers/CDx and Cytometry. Part 1 (Mass Spectrometry and ICH M10) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 15 of Bioanalysis, issues 16 and 14 (2023), respectively.
Collapse
Affiliation(s)
| | | | | | - Roland F Staack
- Roche Pharma Research & Early Development, Roche Innovation Center, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | - Qin Ji
- AbbVie, North Chicago, IL, USA
| | | | | | | | - Yang Lu
- US FDA, Silver Spring, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Priscila Teixeira
- Roche Pharma Research & Early Development, Roche Innovation Center, Munich, Germany
| | - Yixin Wang
- Bristol-Myers Squibb, Lawrenceville, NJ, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Gregor Jordan
- Roche Pharma Research & Early Development, Roche Innovation Center, Munich, Germany
| | | | | | | | | | - Neil Henderson
- Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Gregor Lotz
- Roche Pharma Research & Early Development, Roche Innovation Center, Munich, Germany
| | | | | | - Florian Neff
- Roche Pharma Research & Early Development, Roche Innovation Center, Munich, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Szapacs M, Jian W, Spellman D, Cunliffe J, Verburg E, Kaur S, Kellie J, Li W, Mehl J, Qian M, Qiu X, Sirtori FR, Rosenbaum AI, Sikorski T, Surapaneni S, Wang J, Wilson A, Zhang J, Xue Y, Post N, Huang Y, Goykhman D, Yuan L, Fang K, Casavant E, Chen L, Fu Y, Huang M, Ji A, Johnson J, Lassman M, Li J, Saad O, Sarvaiya H, Tao L, Wang Y, Zheng N, Dasgupta A, Abhari MR, Ishii-Watabe A, Saito Y, Mendes Fernandes DN, Bower J, Burns C, Carleton K, Cho SJ, Du X, Fjording M, Garofolo F, Kar S, Kavetska O, Kossary E, Lu Y, Mayer A, Palackal N, Salha D, Thomas E, Verhaeghe T, Vinter S, Wan K, Wang YM, Williams K, Woolf E, Yang L, Yang E, Bandukwala A, Hopper S, Maher K, Xu J, Brodsky E, Cludts I, Irwin C, Joseph J, Kirshner S, Manangeeswaran M, Maxfield K, Pedras-Vasconcelos J, Solstad T, Thacker S, Tounekti O, Verthelyi D, Wadhwa M, Wagner L, Yamamoto T, Zhang L, Zhou L. 2022 White Paper on Recent Issues in Bioanalysis: ICH M10 BMV Guideline & Global Harmonization; Hybrid Assays; Oligonucleotides & ADC; Non-Liquid & Rare Matrices; Regulatory Inputs ( Part 1A - Recommendations on Mass Spectrometry, Chromatography and Sample Preparation, Novel Technologies, Novel Modalities, and Novel Challenges, ICH M10 BMV Guideline & Global Harmonization Part 1B - Regulatory Agencies' Inputs on Regulated Bioanalysis/BMV, Biomarkers/CDx/BAV, Immunogenicity, Gene & Cell Therapy and Vaccine). Bioanalysis 2023; 15:955-1016. [PMID: 37650500 DOI: 10.4155/bio-2023-0167] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
The 16th Workshop on Recent Issues in Bioanalysis (16th WRIB) took place in Atlanta, GA, USA on September 26-30, 2022. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 16th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on the ICH M10 BMV final guideline (focused on this guideline training, interpretation, adoption and transition); mass spectrometry innovation (focused on novel technologies, novel modalities, and novel challenges); and flow cytometry bioanalysis (rising of the 3rd most common/important technology in bioanalytical labs) were the special features of the 16th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2022 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2022 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 1A) covers the recommendations on Mass Spectrometry and ICH M10. Part 1B covers the Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine. Part 2 (LBA, Biomarkers/CDx and Cytometry) and Part 3 (Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity) are published in volume 15 of Bioanalysis, issues 15 and 14 (2023), respectively.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - John Mehl
- GlaxoSmithKline, Collegeville, PA, USA
| | | | | | | | | | | | | | | | | | | | - Yongjun Xue
- Bristol-Myers Squibb, Lawrenceville, NJ, USA
| | | | - Yue Huang
- AstraZeneca, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Ola Saad
- Genentech, South San Francisco, CA, USA
| | | | | | | | - Naiyu Zheng
- Bristol-Myers Squibb, Lawrenceville, NJ, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yang Lu
- US FDA, Silver Spring, MD, USA
| | | | | | | | | | | | | | | | | | | | | | - Li Yang
- US FDA, Silver Spring, MD, USA
| | - Eric Yang
- GlaxoSmithKline, Collegeville, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Pan L, Mora J, Walravens K, Wagner L, Hopper S, Loo L, Bettoun D, Bond S, Dessy F, Downing S, Garofolo F, Gupta S, Henderson N, Irwin C, Ishii-Watabe A, Kar S, Jawa V, Joseph J, Malvaux L, Marshall JC, McDevitt J, Mohapatra S, Seitzer J, Smith J, Solstad T, Sugimoto H, Tounekti O, Wu B, Wu Y, Xu Y, Xu J, Yamamoto T, Yang L, Torri A, Kirshner S, Maxfield K, Vasconcelos JP, Abhari MR, Verthelyi D, Brodsky E, Carrasco-Triguero M, Kamerud J, Andisik M, Baltrukonis D, Bivi N, Cludts I, Coble K, Gorovits B, Gunn GR, Gupta S, Millner AH, Joyce A, Kubiak RJ, Kumar S, Liao K, Manangeeswaran M, Partridge M, Pine S, Poetzl J, Rajadhyaksha M, Rasamoelisolo M, Richards S, Song Y, Swanson S, Thacker S, Wadhwa M, Wolf A, Zhang L, Zhou L. 2022 White Paper on Recent Issues in Bioanalysis: FDA Draft Guidance on Immunogenicity Information in Prescription Drug Labeling, LNP & Viral Vectors Therapeutics/Vaccines Immunogenicity, Prolongation Effect, ADA Affinity, Risk-based Approaches, NGS, qPCR, ddPCR Assays ( Part 3 - Recommendations on Gene Therapy, Cell Therapy, Vaccines Immunogenicity & Technologies; Immunogenicity & Risk Assessment of Biotherapeutics and Novel Modalities; NAb Assays Integrated Approach). Bioanalysis 2023; 15:773-814. [PMID: 37526071 DOI: 10.4155/bio-2023-0135] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023] Open
Abstract
The 2022 16th Workshop on Recent Issues in Bioanalysis (WRIB) took place in Atlanta, GA, USA on September 26-30, 2022. Over 1000 professionals representing pharma/biotech companies, CROs, and multiple regulatory agencies convened to actively discuss the most current topics of interest in bioanalysis. The 16th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on ICH M10 BMV final guideline (focused on this guideline training, interpretation, adoption and transition); mass spectrometry innovation (focused on novel technologies, novel modalities, and novel challenges); and flow cytometry bioanalysis (rising of the 3rd most common/important technology in bioanalytical labs) were the special features of the 16th edition. As in previous years, WRIB continued to gather a wide diversity of international, industry opinion leaders and regulatory authority experts working on both small and large molecules as well as gene, cell therapies and vaccines to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance, and achieving scientific excellence on bioanalytical issues. This 2022 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2022 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers the recommendations on Gene Therapy, Cell therapy, Vaccines and Biotherapeutics Immunogenicity. Part 1 (Mass Spectrometry and ICH M10) and Part 2 (LBA, Biomarkers/CDx and Cytometry) are published in volume 15 of Bioanalysis, issues 16 and 15 (2023), respectively.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Vibha Jawa
- Bristol Myers Squibb, Lawrenceville, NJ, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yuan Song
- Genentech, South San Francisco, CA, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Dere RC, Beardsley RL, Lu D, Lu T, Ku GHW, Man G, Nguyen V, Kaur S. Integrated summary of immunogenicity of polatuzumab vedotin in patients with relapsed or refractory B-cell non-Hodgkin’s lymphoma. Front Immunol 2023; 14:1119510. [PMID: 37063860 PMCID: PMC10090561 DOI: 10.3389/fimmu.2023.1119510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Polatuzumab vedotin, marketed under the trade name POLIVY®, is a CD79b-targeted antibody-drug conjugate that preferentially delivers a potent anti-mitotic agent (monomethyl auristatin E) to B cells, resulting in anti-cancer activity against B-cell malignancies. In 2019, polatuzumab vedotin in combination with rituximab and bendamustine was approved by the United States Food and Drug Administration for the treatment of adult patients with diffuse large B-cell lymphoma who have received at least two prior therapies. Recent Health Authority guidance recommendations for submitting an Integrated Summary of Immunogenicity were followed including a comprehensive immunogenicity risk assessment, bioanalytical strategy, and immunogenicity data to support the registration of polatuzumab vedotin. Key components of the polatuzumab vedotin Integrated Summary of Immunogenicity and data are presented. Validated semi-homogeneous bridging enzyme-linked immunosorbent assays were used to detect anti-drug antibodies (ADA) to polatuzumab vedotin and characterize the immune response in patients with non-Hodgkin’s lymphoma. The overall incidence of ADA observed for polatuzumab vedotin was low across seven clinical trials. The low incidence of ADA is likely due to the mechanism of action of polatuzumab vedotin that involves targeting and killing of B cells, thereby limiting the development to plasma cells and ADA secretion. Furthermore, patients are co-medicated with rituximab, which also targets B cells and results in B-cell depletion. Therefore, the immunogenicity risk is considered low and not expected to impact the polatuzumab vedotin benefit/risk profile.
Collapse
Affiliation(s)
- Randall C. Dere
- Department of BioAnalytical Sciences, Genentech, Inc., South, San Francisco, CA, United States
- *Correspondence: Randall C. Dere,
| | - Richard L. Beardsley
- Department of Analytical Development and Quality Control, Genentech, Inc., South San Francisco, CA, United States
| | - Dan Lu
- Department of Clinical Pharmacology Oncology, Genentech, Inc., South San Francisco, CA, United States
| | - Tong Lu
- Department of Clinical Pharmacology Oncology, Genentech, Inc., South San Francisco, CA, United States
| | - Grace H-W. Ku
- Department of Product Development Hematology, Genentech, Inc., South San Francisco, CA, United States
| | - Gabriel Man
- Department of Product Development Safety, Genentech, Inc., South San Francisco, CA, United States
| | - Van Nguyen
- Department of BioAnalytical Sciences, Genentech, Inc., South, San Francisco, CA, United States
| | - Surinder Kaur
- Department of BioAnalytical Sciences, Genentech, Inc., South, San Francisco, CA, United States
| |
Collapse
|
13
|
Carle K, Kellie JF, Gunn GR, Jiang Y. Determination of label efficiency and label degree of critical reagents by LC-MS and native MS. Anal Biochem 2023; 664:115033. [PMID: 36584741 DOI: 10.1016/j.ab.2022.115033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
Degree of labeling and label efficiency are key factors for optimal characterization of critical reagents that are used in ligand binding assays. Here, three case studies are shown demonstrating how liquid chromatography-mass spectrometry (LC-MS) was utilized to characterize critical reagents using three unique methodologies. Critical reagent batches were prepared for LC-MS analysis by use of: 20 mM dithiothreitol (DTT) (Case 1), rapid PNGaseF (Case 2), and a mobile phase diluent (Case 3). LC-MS was run at three different MS method conditions in each troubleshooting case specific for reduced IgG, intact IgG, and native LC-MS, respectively. Specified LC-MS methods based on sample type and configuration elucidated clear MS profiles, allowing for degree of labeling and label efficiencies to be calculated. Ultimately the LC-MS analyses were fine-tuned for critical reagent characterization, and practices for analyzing similar reagents in the future can be established.
Collapse
Affiliation(s)
- Katie Carle
- Bioanalysis, Immunogenicity & Biomarkers, IVIVT, GSK, 1250 S. Collegeville Rd, Collegeville, PA, 19426, USA.
| | - John F Kellie
- Bioanalysis, Immunogenicity & Biomarkers, IVIVT, GSK, 1250 S. Collegeville Rd, Collegeville, PA, 19426, USA
| | - George R Gunn
- Bioanalysis, Immunogenicity & Biomarkers, IVIVT, GSK, 1250 S. Collegeville Rd, Collegeville, PA, 19426, USA
| | - Yong Jiang
- Bioanalysis, Immunogenicity & Biomarkers, IVIVT, GSK, 1250 S. Collegeville Rd, Collegeville, PA, 19426, USA.
| |
Collapse
|
14
|
2021 White Paper on Recent Issues in Bioanalysis: TAb/NAb, Viral Vector CDx, Shedding Assays; CRISPR/Cas9 & CAR-T Immunogenicity; PCR & Vaccine Assay Performance; ADA Assay Comparability & Cut Point Appropriateness ( Part 3 - Recommendations on Gene Therapy, Cell Therapy, Vaccine Assays; Immunogenicity of Biotherapeutics and Novel Modalities; Integrated Summary of Immunogenicity Harmonization). Bioanalysis 2022; 14:737-793. [PMID: 35578991 DOI: 10.4155/bio-2022-0081] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The 15th edition of the Workshop on Recent Issues in Bioanalysis (15th WRIB) was held on 27 September to 1 October 2021. Even with a last-minute move from in-person to virtual, an overwhelmingly high number of nearly 900 professionals representing pharma and biotech companies, contract research organizations (CROs), and multiple regulatory agencies still eagerly convened to actively discuss the most current topics of interest in bioanalysis. The 15th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on biomarker assay development and validation (BAV) (focused on clarifying the confusion created by the increased use of the term "Context of Use - COU"); mass spectrometry of proteins (therapeutic, biomarker and transgene); state-of-the-art cytometry innovation and validation; and, critical reagent and positive control generation were the special features of the 15th edition. This 2021 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2021 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers the recommendations on TAb/NAb, Viral Vector CDx, Shedding Assays; CRISPR/Cas9 & CAR-T Immunogenicity; PCR & Vaccine Assay Performance; ADA Assay Comparability & Cut Point Appropriateness. Part 1A (Endogenous Compounds, Small Molecules, Complex Methods, Regulated Mass Spec of Large Molecules, Small Molecule, PoC), Part 1B (Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine) and Part 2 (ISR for Biomarkers, Liquid Biopsies, Spectral Cytometry, Inhalation/Oral & Multispecific Biotherapeutics, Accuracy/LLOQ for Flow Cytometry) are published in volume 14 of Bioanalysis, issues 9 and 10 (2022), respectively.
Collapse
|
15
|
2021 White Paper on Recent Issues in Bioanalysis: ISR for Biomarkers, Liquid Biopsies, Spectral Cytometry, Inhalation/Oral & Multispecific Biotherapeutics, Accuracy/LLOQ for Flow Cytometry ( Part 2 - Recommendations on Biomarkers/CDx Assays Development & Validation, Cytometry Validation & Innovation, Biotherapeutics PK LBA Regulated Bioanalysis, Critical Reagents & Positive Controls Generation). Bioanalysis 2022; 14:627-692. [PMID: 35578974 DOI: 10.4155/bio-2022-0080] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The 15th edition of the Workshop on Recent Issues in Bioanalysis (15th WRIB) was held on 27 September to 1 October 2021. Even with a last-minute move from in-person to virtual, an overwhelmingly high number of nearly 900 professionals representing pharma and biotech companies, contract research organizations (CROs), and multiple regulatory agencies still eagerly convened to actively discuss the most current topics of interest in bioanalysis. The 15th WRIB included three Main Workshops and seven Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on biomarker assay development and validation (BAV) (focused on clarifying the confusion created by the increased use of the term "context of use" [COU]); mass spectrometry of proteins (therapeutic, biomarker and transgene); state-of-the-art cytometry innovation and validation; and critical reagent and positive control generation were the special features of the 15th edition. This 2021 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2021 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 2) covers the recommendations on ISR for Biomarkers, Liquid Biopsies, Spectral Cytometry, Inhalation/Oral & Multispecific Biotherapeutics, Accuracy/LLOQ for Flow Cytometry. Part 1A (Endogenous Compounds, Small Molecules, Complex Methods, Regulated Mass Spec of Large Molecules, Small Molecule, PoC), Part 1B (Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine) and Part 3 (TAb/NAb, Viral Vector CDx, Shedding Assays; CRISPR/Cas9 & CAR-T Immunogenicity; PCR & Vaccine Assay Performance; ADA Assay Comparability & Cut Point Appropriateness) are published in volume 14 of Bioanalysis, issues 9 and 11 (2022), respectively.
Collapse
|
16
|
Fernández-Metzler C, Ackermann B, Garofolo F, Arnold ME, DeSilva B, Gu H, Laterza O, Mao Y, Rose M, Vazvaei-Smith F, Steenwyk R. Biomarker Assay Validation by Mass Spectrometry. AAPS J 2022; 24:66. [PMID: 35534647 DOI: 10.1208/s12248-022-00707-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/31/2022] [Indexed: 11/30/2022] Open
Abstract
Decades of discussion and publication have gone into the guidance from the scientific community and the regulatory agencies on the use and validation of pharmacokinetic and toxicokinetic assays by chromatographic and ligand binding assays for the measurement of drugs and metabolites. These assay validations are well described in the FDA Guidance on Bioanalytical Methods Validation (BMV, 2018). While the BMV included biomarker assay validation, the focus was on understanding the challenges posed in validating biomarker assays and the importance of having reliable biomarker assays when used for regulatory submissions, rather than definition of the appropriate experiments to be performed. Different from PK bioanalysis, analysis of biomarkers can be challenging due to the presence of target analyte(s) in the control matrices used for calibrator and quality control sample preparation, and greater difficulty in procuring appropriate reference standards representative of the endogenous molecule. Several papers have been published offering recommendations for biomarker assay validation. The situational nature of biomarker applications necessitates fit-for-purpose (FFP) assay validation. A unifying theme for FFP analysis is that method validation requirements be consistent with the proposed context of use (COU) for any given biomarker. This communication provides specific recommendations for biomarker assay validation (BAV) by LC-MS, for both small and large molecule biomarkers. The consensus recommendations include creation of a validation plan that contains definition of the COU of the assay, use of the PK assay validation elements that support the COU, and definition of assay validation elements adapted to fit biomarker assays and the acceptance criteria for both.
Collapse
Affiliation(s)
| | - Brad Ackermann
- Eli Lilly & Company, Lilly Corporate Center, Indianapolis, IN, 46285, USA
| | - Fabio Garofolo
- BRI - a Frontage Company, 8898 Heather St, Vancouver, British Columbia, V6P 3S8, Canada
| | - Mark E Arnold
- Labcorp Drug Development, 221 Tulip Tree Drive, Westampton, NJ, 08060-5511, USA
| | - Binodh DeSilva
- Bristol-Myers Squibb Co., Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Huidong Gu
- Bristol-Myers Squibb Co., Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Omar Laterza
- Merck and Co Inc., 90 E Scott Ave, Rahway, NJ, 07065, USA
| | - Yan Mao
- Boehringer-Ingelheim Pharmaceuticals, 900 Ridgebury Road, Ridgefield, CT, 06877, USA
| | - Mark Rose
- Gossamer Bio Inc., 3013 Science Park Road, Suite 200, San Diego, CA, 92121, USA
| | | | - Rick Steenwyk
- Pfizer-Retired, 8739 N Homestead Circle, Irons, MI, 49644, USA
| |
Collapse
|
17
|
2021 White Paper on Recent Issues in Bioanalysis: Mass Spec of Proteins, Extracellular Vesicles, CRISPR, Chiral Assays, Oligos; Nanomedicines Bioanalysis; ICH M10 Section 7.1; Non-Liquid & Rare Matrices; Regulatory Inputs ( Part 1A - Recommendations on Endogenous Compounds, Small Molecules, Complex Methods, Regulated Mass Spec of Large Molecules, Small Molecule, PoC & Part 1B - Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine). Bioanalysis 2022; 14:505-580. [PMID: 35578993 DOI: 10.4155/bio-2022-0078] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The 15th edition of the Workshop on Recent Issues in Bioanalysis (15th WRIB) was held on 27 September to 1 October 2021. Even with a last-minute move from in-person to virtual, an overwhelmingly high number of nearly 900 professionals representing pharma and biotech companies, contract research organizations (CROs), and multiple regulatory agencies still eagerly convened to actively discuss the most current topics of interest in bioanalysis. The 15th WRIB included 3 Main Workshops and 7 Specialized Workshops that together spanned 1 week in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccines. Moreover, in-depth workshops on biomarker assay development and validation (BAV) (focused on clarifying the confusion created by the increased use of the term "Context of Use - COU"); mass spectrometry of proteins (therapeutic, biomarker and transgene); state-of-the-art cytometry innovation and validation; and, critical reagent and positive control generation were the special features of the 15th edition. This 2021 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2021 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 1A) covers the recommendations on Endogenous Compounds, Small Molecules, Complex Methods, Regulated Mass Spec of Large Molecules, Small Molecule, PoC. Part 1B covers the Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine. Part 2 (ISR for Biomarkers, Liquid Biopsies, Spectral Cytometry, Inhalation/Oral & Multispecific Biotherapeutics, Accuracy/LLOQ for Flow Cytometry) and Part 3 (TAb/NAb, Viral Vector CDx, Shedding Assays; CRISPR/Cas9 & CAR-T Immunogenicity; PCR & Vaccine Assay Performance; ADA Assay Comparabil ity & Cut Point Appropriateness) are published in volume 14 of Bioanalysis, issues 10 and 11 (2022), respectively.
Collapse
|
18
|
Dubiel EA, Myler H, Arnold ME, Bennett P, Gatz J, Groeber E, Gupta S, Kane C, Li F, Mylott W, Noah C, O'Dell M, Tewalt E, Warrino D, Vick A. Biological Matrix Supply Chain Shortages: More Matrices Are Now Rare-the Case for Surrogate Matrices. AAPS J 2022; 24:42. [PMID: 35288790 PMCID: PMC8920421 DOI: 10.1208/s12248-022-00694-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 02/27/2022] [Indexed: 11/30/2022] Open
Abstract
The COVID-19 pandemic has strained the biological matrix supply chain. An upsurge in demand driven by numerous COVID-19 therapeutic and vaccine development programs to combat the pandemic, along with logistical challenges sourcing and transporting matrix, has led to increased lead times for multiple matrices. Biological matrix shortages can potentially cause significant delays in drug development programs across the pharmaceutical and biotechnology industry. Given the current circumstances, discussion is warranted around what will likely be increased use of surrogate matrices in support of pharmacokinetic (PK), immunogenicity, and biomarker assays for regulatory filings. Regulatory authorities permit the use of surrogate matrix in bioanalytical methods in instances where matrix is rare or difficult to obtain, as long as the surrogate is appropriately selected and scientifically justified. Herein, the scientific justification and possible regulatory implications of employing surrogate matrix in PK, immunogenicity, and biomarker assays are discussed. In addition, the unique challenges that cell and gene therapy (C>) and other innovative therapeutic modalities place on matrix supply chains are outlined. Matrix suppliers and contract research organizations (CROs) are actively implementing mitigation strategies to alleviate the current strain on the matrix supply chain and better prepare the industry for any future unexpected strains. To maintain ethical standards, these mitigation strategies include projecting matrix needs with suppliers at least 6 months in advance and writing or updating study protocols to allow for additional matrix draws from study subjects and/or re-purposing of subject matrix from one drug development program to another.
Collapse
Affiliation(s)
- Evan A Dubiel
- PPD Clinical Research Services, Thermo Fisher Scientific, 2244 Dabney Road, Richmond, Virginia, 23230-3323, USA
| | - Heather Myler
- PPD Clinical Research Services, Thermo Fisher Scientific, 2244 Dabney Road, Richmond, Virginia, 23230-3323, USA.
| | - Mark E Arnold
- Labcorp Drug Development, 8211 SciCor Drive, Indianapolis, Indiana, 46214, USA
| | - Patrick Bennett
- Alliance Pharma Inc., 17 Lee Blvd., Malvern, Pennsylvania, 19355, USA
| | - Jeff Gatz
- BioIVT LLC, PO Box 770, Hicksville, New York, 11802, USA
| | - Elizabeth Groeber
- Charles River Laboratories, 1407 George Rd, Ashland, Ohio, 44805, USA
| | - Seema Gupta
- PPD Clinical Research Services, Thermo Fisher Scientific, 2244 Dabney Road, Richmond, Virginia, 23230-3323, USA
| | - Cheikh Kane
- KCAS Bioanalytical and Biomarker Services, 12400 Shawnee Mission Parkway, Shawnee, Kansas, 66216, USA
| | - Fumin Li
- PPD Clinical Research Services, Thermo Fisher Scientific, 2244 Dabney Road, Richmond, Virginia, 23230-3323, USA
| | - William Mylott
- PPD Clinical Research Services, Thermo Fisher Scientific, 2244 Dabney Road, Richmond, Virginia, 23230-3323, USA
| | - Courtney Noah
- BioIVT LLC, PO Box 770, Hicksville, New York, 11802, USA
| | - Mark O'Dell
- Labcorp Drug Development, 8211 SciCor Drive, Indianapolis, Indiana, 46214, USA
| | - Eric Tewalt
- PPD Clinical Research Services, Thermo Fisher Scientific, 2244 Dabney Road, Richmond, Virginia, 23230-3323, USA
| | - Dominic Warrino
- KCAS Bioanalytical and Biomarker Services, 12400 Shawnee Mission Parkway, Shawnee, Kansas, 66216, USA
| | - Andrew Vick
- Charles River Laboratories, 1407 George Rd, Ashland, Ohio, 44805, USA
| |
Collapse
|
19
|
Myler H, Pedras-Vasconcelos J, Phillips K, Hottenstein CS, Chamberlain P, Devanaryan V, Gleason C, Goodman J, Manning MS, Purushothama S, Richards S, Shen H, Zoghbi J, Amaravadi L, Barger T, Bowen S, Bowsher RR, Clements-Egan A, Geng D, Goletz TJ, Gunn GR, Hallett W, Hodsdon ME, Janelsins BM, Jawa V, Kamondi S, Kirshner S, Kramer D, Liang M, Lindley K, Liu S, Liu Z, McNally J, Mikulskis A, Nelson R, Ahbari MR, Qu Q, Ruppel J, Snoeck V, Song A, Yan H, Ware M. Anti-drug Antibody Validation Testing and Reporting Harmonization. AAPS J 2021; 24:4. [PMID: 34853961 PMCID: PMC8816448 DOI: 10.1208/s12248-021-00649-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 11/30/2022] Open
Abstract
Evolving immunogenicity assay performance expectations and a lack of harmonized anti-drug antibody validation testing and reporting tools have resulted in significant time spent by health authorities and sponsors on resolving filing queries. Following debate at the American Association of Pharmaceutical Sciences National Biotechnology Conference, a group was formed to address these gaps. Over the last 3 years, 44 members from 29 organizations (including 5 members from Europe and 10 members from FDA) discussed gaps in understanding immunogenicity assay requirements and have developed harmonization tools for use by industry scientists to facilitate filings to health authorities. Herein, this team provides testing and reporting strategies and tools for the following assessments: (1) pre-study validation cut point; (2) in-study cut points, including procedures for applying cut points to mixed populations; (3) system suitability control criteria for in-study plate acceptance; (4) assay sensitivity, including the selection of an appropriate low positive control; (5) specificity, including drug and target tolerance; (6) sample stability that reflects sample storage and handling conditions; (7) assay selectivity to matrix components, including hemolytic, lipemic, and disease state matrices; (8) domain specificity for multi-domain therapeutics; (9) and minimum required dilution and extraction-based sample processing for titer reporting.
Collapse
Affiliation(s)
- Heather Myler
- Immunochemistry Department, PPD Laboratories, 2244 Dabney Road, Richmond, Virginia, 23230-3323, USA.
| | - João Pedras-Vasconcelos
- Product Quality and Immunogenicity, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20903, USA
| | - Kelli Phillips
- Immunochemistry Department, PPD Laboratories, 2244 Dabney Road, Richmond, Virginia, 23230-3323, USA
| | - Charles Scott Hottenstein
- Immunogenicity, GlaxoSmithKline Pharmaceuticals, 1250 South Collegeville Road, Collegeville, Pennsylvania, 19426, USA
| | - Paul Chamberlain
- NDA Advisory Services, Ltd., Grove House, Guildford Road, Leatherhead, KT22 9DF, Surrey, UK
| | | | - Carol Gleason
- Global Biometric and Data Sciences, Bristol-Myers Squibb, Princeton, New Jersey, 08540, USA
| | - Joanne Goodman
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - Shobha Purushothama
- Diagnostics Accelerator, Alzheimer's Drug Discovery Foundation, 57W 57th Street, New York, New York, USA
| | - Susan Richards
- Translational Medicine and Early Development, Sanofi, Framingham, Massachusetts, 01701, USA
| | - Honglue Shen
- Specialty Bioanalytics, Teva Pharmaceuticals, West Chester, Pennsylvania, 19380, USA
| | - Jad Zoghbi
- Translational Medicine and Early Development, Sanofi, Framingham, Massachusetts, 01701, USA
| | | | - Troy Barger
- Bioanalytical Sciences, Amgen Research, Thousand Oaks, California, 91320, USA
| | - Steven Bowen
- Product Quality and Immunogenicity, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20903, USA
| | - Ronald R Bowsher
- B2S Life Sciences, 97 East Monroe Street, Franklin, Indiana, 46131, USA
| | | | - Dong Geng
- Legend Biotech, 10 Knightsbridge Road, Piscataway, New Jersey, 08554, USA
| | - Theresa J Goletz
- Drug Metabolism & Pharmacokinetics, EMD Serono, Billerica, Massachusetts, 01821, USA
| | - George R Gunn
- Immunogenicity, GlaxoSmithKline Pharmaceuticals, 1250 South Collegeville Road, Collegeville, Pennsylvania, 19426, USA
| | - William Hallett
- Product Quality and Immunogenicity, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20903, USA
| | - Michael E Hodsdon
- Laboratory for Experimental Medicine, Eli Lilly and Company, Indianapolis, Indiana, 46285, USA
| | - Brian M Janelsins
- Product Quality and Immunogenicity, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20903, USA
| | - Vibha Jawa
- Predictive and Clinical Immunogenicity Pharmacometrics, Pharmacodynamics and Drug Metabolism, Merck and Co., 2000 Galloping Hill Road, Kenilworth, New Jersey, 07033, USA
| | - Szilard Kamondi
- Kamondi Bioanalytical Consultancy, Rheinfelden, Switzerland / Roche Pharma Research & Early Development, Pharmaceutical Sciences, Bioanalytical R&D, Roche Innovation Center, Basel, Switzerland
| | - Susan Kirshner
- Product Quality and Immunogenicity, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20903, USA
| | - Daniel Kramer
- Translational Medicine and Early Development, Sanofi, Frankfurt am Main, Germany
| | - Meina Liang
- Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, BioPharmaceuticals R&D, AstraZeneca, South San Francisco, California, USA
| | | | - Susana Liu
- Pfizer Inc., 17300 Trans Canada Hwy, Kirkland, Quebec, Canada
| | - ZhenZhen Liu
- Product Quality and Immunogenicity, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20903, USA
| | - Jim McNally
- BioAgilytix Labs, Durham, North Carolina, 27713, USA
| | - Alvydas Mikulskis
- Clinical Biomarkers, Vertex Pharmaceuticals, Inc., Boston, Massachusetts, 02210, USA
| | - Robert Nelson
- Immunochemistry Department, Covance Laboratories Ltd., Harrogate, HG3 1PY, UK
| | - Mohsen Rajabi Ahbari
- Office of Study Integrity and Surveillance, Office of Translational Sciences, Center for Drug Evaluation and Research (CDER), Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Qiang Qu
- Global Product Development, Pfizer Inc., Andover, Massachusetts, 01810, USA
| | - Jane Ruppel
- BioAnalytical Sciences, Genentech, South San Francisco, California, USA
| | - Veerle Snoeck
- Translational Biomarkers and Bioanalysis, UCB Biopharma SRL, B-1420, Braine-l'Alleud, Belgium
| | - An Song
- Development Sciences, Immune-Onc Therapeutics, Palo Alto, California, 94303, USA
| | - Haoheng Yan
- Product Quality and Immunogenicity, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drugs Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20903, USA
| | - Mark Ware
- Janssen BioTherapeutics, Janssen R&D LLC, Spring House, Pennsylvania, 19477, USA
| |
Collapse
|
20
|
Davidson A, Brimhall D, Kay J, Keystone E, Lee SJ, Kim SH, Bae YJ, Choi EJ, Furst DE. Randomised, phase I pharmacokinetic study of adalimumab biosimilar CT-P17 (40 mg/0.4 mL) by autoinjector and prefilled syringe in healthy subjects. Br J Clin Pharmacol 2021; 87:4323-4333. [PMID: 33822406 PMCID: PMC8597139 DOI: 10.1111/bcp.14850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/25/2021] [Accepted: 03/27/2021] [Indexed: 12/12/2022] Open
Abstract
AIMS To evaluate pharmacokinetic equivalence and preliminary safety of the adalimumab biosimilar CT-P17 administered via autoinjector (CT-P17 AI) or prefilled syringe (CT-P17 PFS) in healthy subjects. METHODS This phase I, open-label study (ClinicalTrials.gov: NCT04295356) randomised subjects (1:1) to receive a single 40-mg (100 mg/mL) dose of CT-P17 AI or CT-P17 PFS. Primary endpoint was pharmacokinetic equivalence of CT-P17 AI to CT-P17 PFS for: area under the concentration-time curve from time zero to infinity (AUC0-inf ); area under the concentration-time curve from time zero to the last quantifiable concentration (AUC0-last ); maximum serum concentration (Cmax ). Equivalence was determined if the 90% confidence interval for the geometric least-squares mean ratio was within the 80-125% equivalence margin. Additional pharmacokinetic endpoints, safety and immunogenicity were evaluated. RESULTS Of 193 subjects who were randomised (98 CT-P17 AI; 95 CT-P17 PFS), 180 received study drug. Pharmacokinetic equivalence was demonstrated: 90% confidence intervals were within the 80-125% equivalence margin (AUC0-inf : 93.98-114.29; AUC0-last : 91.09-121.86; Cmax : 94.08-111.90). Mean serum CT-P17 concentrations, secondary pharmacokinetic parameters and numbers of subjects with antidrug antibodies (ADAs) or neutralising ADAs were comparable between groups. AUC0-inf , AUC0-last and Cmax were numerically lower for ADA-positive than for ADA-negative subjects (both groups); pharmacokinetic equivalence was also demonstrated among ADA-positive subjects. CT-P17 AI and CT-P17 PFS were well tolerated, with comparable overall safety profiles. CONCLUSIONS CT-P17 AI and CT-P17 PFS were pharmacokinetically equivalent. Overall safety and immunogenicity were comparable between the 2 delivery devices.
Collapse
Affiliation(s)
| | | | - Jonathan Kay
- University of Massachusetts Medical School and UMass Memorial Medical CenterWorcesterMassachusettsUSA
| | | | | | | | | | | | - Daniel E. Furst
- University of CaliforniaLos AngelesCaliforniaUSA
- University of WashingtonSeattleWashingtonUSA
- University of FlorenceFlorenceItaly
| |
Collapse
|
21
|
Lot-to-lot reproducibility, stability and life cycle management of antibody reagents for flow cytometry. Bioanalysis 2021; 13:745-759. [PMID: 34009005 DOI: 10.4155/bio-2020-0320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The increasing number of biopharmaceuticals, gene and cell therapies in development has seen a growing use of flow cytometry to measure biomarkers, generate pharmacokinetic data, assess immunogenicity and investigate target engagement. The importance of these data types and their inclusion in regulatory submissions mean that flow cytometry analyses are now expected to demonstrate robust performance and comply with both regulatory and scientific recommendations during their validation and subsequent use in sample analysis. The control of the 'critical reagents' commonly used in flow cytometry presents some specific challenges, particularly when an assay is required for use over a long period of time across different phases of a drug development program, or where it is deployed in complex, multisite clinical studies. This paper highlights some key challenges in flow cytometry reagent management with some of the strategies employed to control and monitor flow cytometry critical reagents.
Collapse
|
22
|
Calibrator material selection: a key criteria during biomarker assay method development. Bioanalysis 2021; 13:787-796. [PMID: 33960820 DOI: 10.4155/bio-2020-0208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Biomarker assay method development is a multistep rigorous process and calibrant material selection is integral to ensuring the quality of such assays. However, the impact of selection of calibrator material may often get overlooked. In this article, we highlight three case studies where biomarker calibrant material selection was deemed an essential criterion for consideration. Through these case studies we highlight challenges faced, steps taken and discuss the impact on assay-related decision-making. We also provide additional perspectives for selection and characterization of calibrant proteins in the setting of an evolving biomarker context of use.
Collapse
|
23
|
Current and effective strategies for critical reagent characterization, storage, stability, retesting and life cycle management for ligand-binding assays and flow cytometry. Bioanalysis 2021; 13:737-740. [PMID: 34037426 DOI: 10.4155/bio-2021-0086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
Critical reagents: evolution of WRIB recommendations on critical reagents. Bioanalysis 2021; 13:741-743. [PMID: 33890504 DOI: 10.4155/bio-2021-0066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
25
|
Critical reagent generation, characterization, handling and storage workflows: impact on ligand binding assays. Bioanalysis 2021; 13:847-860. [PMID: 33890503 DOI: 10.4155/bio-2020-0252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The foundation of pharmacokinetics and antidrug antibodies assay robustness relies on the use of high-quality reagents. Over the past decade, there has been increasing interest within the pharmaceutical industry, as well as regulators, on defining best practices and scientific approaches for generation, characterization and handling of critical reagents. In this review, we will discuss current knowledge and practices on critical reagent workflows and state-of-the-art approaches for characterization, generation, stability and storage and how each of these steps can impact ligand-binding assay robustness.
Collapse
|
26
|
Increasing robustness, reliability and storage stability of critical reagents by freeze-drying. Bioanalysis 2021; 13:829-840. [PMID: 33890493 DOI: 10.4155/bio-2020-0299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aim: Stabilization of critical reagents by freeze-drying would facilitate storage and transportation at ambient temperatures, and simultaneously enable constant reagent performance for long-term bioanalytical support throughout drug development. Freeze-drying as a generic process for stable performance and storage of critical reagents was investigated by establishing an universal formulation buffer and lyophilization process. Results: Using a storage-labile model protein, formulation buffers were evaluated to preserve reagent integrity during the freeze-drying process, and to retain functional performance after temperature stress. Application to critical reagents used in pharmacokinetics and anti-drug antibodies assays demonstrated stable functional performance of the reagents after 11 month at +40°C. Conclusion: Stabilization and storage of critical assay reagents by freeze-drying is an attractive alternative to traditional deep freezing.
Collapse
|
27
|
Adventures in critical reagent lot changes in ligand-binding assays: redevelopment, bridging and additional processing requirements. Bioanalysis 2021; 13:771-777. [PMID: 33884890 DOI: 10.4155/bio-2020-0216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Critical reagents have significant impact on ligand-binding assay performance. The critical reagents selected during method development should be well-evaluated, as the quality of these reagents will dictate performance of the assay over time. Critical reagents in ligand-binding assays are almost always produced using a biological system, so batch yield, purity and performance tend to vary greatly. Due to the essential nature of critical reagents in the assay, changes in critical reagents can have dramatic impact on the assay and results, so close monitoring of assay performance is required. Methodology & results: We present here three examples of critical reagent lot changes that required creative solutions to maintain assay performance. The first case study is an example of the impact of different lots of analyte within a quantitative assay that resulted in the need to redevelop the assay in a different format. Case study two outlines an assay where a surrogate matrix is the critical reagent in an assay and the difficulties encountered over the course of several years and lot changes. The third case study covers an immunogenicity assay with a commercial detection that did not have sufficient quantity to cover the entire study lifecycle. As a result of the reagent change, a new assay was developed. Discussion & conclusion: A robust plan for critical reagent generation and lifecycle management should be adapted in order to avoid costly delays and rework. The performance of an assay depends on the continuity of the critical reagent supply. Reagents should be carefully selected to include the binding and performance properties required for an assay.
Collapse
|
28
|
Abstract
Background: Anti-Drug Antibody assays (ADA) are developed and constructed with biological and chemical reagents. Capture and detector reagents as well as ADA standard are considered critical for the performance's characteristics of a bridging assay. Current literature well describes theoretical considerations to manage critical reagents (CR) life cycle management. Nevertheless, those recommendations must be completed by a pragmatic approach which have to be exemplified. Methodology: This article intends to present and describe two study cases of bioanalytical challenge coming from the practical experience of dealing with ADA CR and offers a concrete explanation of how to solve issues. Conclusion: An appropriate management of ADA CR goes through availability anticipation, characterization and by a scientific understanding process of assay and reagents inconsistency.
Collapse
|
29
|
Critical reagent characterization and re-evaluation to ensure long-term stability: two case studies. Bioanalysis 2021; 13:807-815. [PMID: 33884894 DOI: 10.4155/bio-2020-0222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Characterization of critical reagents can mitigate adverse impact to ligand-binding assay performance. We investigated the conjugation conditions of a bispecific protein to SULFO-TAG NHS-Ester™ ruthenium to resolve a steady increase in ligand-binding assay background signal. Functional and biophysical attributes in stability samples revealed low pH (4.0) conjugation and formulation buffers were key to decrease aggregate formation. We also identified pH-specific (3.0) purification conditions to reduce aggregate levels from 37% to <5% of a mouse IgG3 reagent antibody. These case studies support the utility of biophysical and functional characterization of critical reagents as a proactive approach to maintain long-term stability and provide the basis for our recommendations a risk-based approach to establish re-evaluation intervals for traditional and novel reagents.
Collapse
|
30
|
The importance of quality critical reagents for the entire developmental lifecycle of a biopharmaceutical: a pharmacokinetic case study. Bioanalysis 2021; 13:817-827. [PMID: 33769084 DOI: 10.4155/bio-2020-0253] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background: High-quality critical reagents are essential to the successful support of biotherapeutic drug development regardless of the analytical platform used for support. The lack of such a reagent, early in the development lifecycle of a biotherapeutic can have detrimental impact on resource and translation of data across development phases. Results: Here, a pharmacokinetic assay case study is shared that illustrates what can occur when there is a lack of a reproducible and sustainable critical reagent early in the development lifecycle of a biotherapeutic. Various assay formats and critical reagents, as well as reagents generation programs, were initiated to find a reagent and assay format which was fit for purpose. Conclusions: Identification of appropriate critical reagents early in the development lifecycle of a biotherapeutic as advantageous.
Collapse
|
31
|
2020 White Paper on Recent Issues in Bioanalysis: Vaccine Assay Validation, qPCR Assay Validation, QC for CAR-T Flow Cytometry, NAb Assay Harmonization and ELISpot Validation ( Part 3 - Recommendations on Immunogenicity Assay Strategies, NAb Assays, Biosimilars and FDA/EMA Immunogenicity Guidance/Guideline, Gene & Cell Therapy and Vaccine Assays). Bioanalysis 2021; 13:415-463. [PMID: 33533276 DOI: 10.4155/bio-2021-0007] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The 14th edition of the Workshop on Recent Issues in Bioanalysis (14th WRIB) was held virtually on June 15-29, 2020 with an attendance of over 1000 representatives from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations, and regulatory agencies worldwide. The 14th WRIB included three Main Workshops, seven Specialized Workshops that together spanned 11 days in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy and vaccine. Moreover, a comprehensive vaccine assays track; an enhanced cytometry track and updated Industry/Regulators consensus on BMV of biotherapeutics by LCMS were special features in 2020. As in previous years, this year's WRIB continued to gather a wide diversity of international industry opinion leaders and regulatory authority experts working on both small and large molecules to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance and achieving scientific excellence on bioanalytical issues. This 2020 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the Global Bioanalytical Community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2020 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers the recommendations on Vaccine, Gene/Cell Therapy, NAb Harmonization and Immunogenicity). Part 1 (Innovation in Small Molecules, Hybrid LBA/LCMS & Regulated Bioanalysis), Part 2A (BAV, PK LBA, Flow Cytometry Validation and Cytometry Innovation) and Part 2B (Regulatory Input) are published in volume 13 of Bioanalysis, issues 4 and 5 (2020), respectively.
Collapse
|
32
|
2020 White Paper on Recent Issues in Bioanalysis: BAV Guidance, CLSI H62, Biotherapeutics Stability, Parallelism Testing, CyTOF and Regulatory Feedback ( Part 2A - Recommendations on Biotherapeutics Stability, PK LBA Regulated Bioanalysis, Biomarkers Assays, Cytometry Validation & Innovation Part 2B - Regulatory Agencies' Inputs on Bioanalysis, Biomarkers, Immunogenicity, Gene & Cell Therapy and Vaccine). Bioanalysis 2021; 13:295-361. [PMID: 33511867 DOI: 10.4155/bio-2021-0005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The 14th edition of the Workshop on Recent Issues in Bioanalysis (14th WRIB) was held virtually on June 15-29, 2020 with an attendance of over 1000 representatives from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations, and regulatory agencies worldwide. The 14th WRIB included three Main Workshops, seven Specialized Workshops that together spanned 11 days in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy and vaccine. Moreover, a comprehensive vaccine assays track; an enhanced cytometry track and updated Industry/Regulators consensus on BMV of biotherapeutics by LCMS were special features in 2020. As in previous years, this year's WRIB continued to gather a wide diversity of international industry opinion leaders and regulatory authority experts working on both small and large molecules to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance and achieving scientific excellence on bioanalytical issues. This 2020 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the Global Bioanalytical Community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2020 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication covers the recommendations on (Part 2A) BAV, PK LBA, Flow Cytometry Validation and Cytometry Innovation and (Part 2B) Regulatory Input. Part 1 (Innovation in Small Molecules, Hybrid LBA/LCMS & Regulated Bioanalysis), Part 3 (Vaccine, Gene/Cell Therapy, NAb Harmonization and Immunogenicity) are published in volume 13 of Bioanalysis, issues 4, and 6 (2021), respectively.
Collapse
|
33
|
2020 White Paper on Recent Issues in Bioanalysis: BMV of Hybrid Assays, Acoustic MS, HRMS, Data Integrity, Endogenous Compounds, Microsampling and Microbiome ( Part 1 - Recommendations on Industry/Regulators Consensus on BMV of Biotherapeutics by LCMS, Advanced Application in Hybrid Assays, Regulatory Challenges in Mass Spec, Innovation in Small Molecules, Peptides and Oligos). Bioanalysis 2021; 13:203-238. [PMID: 33470871 DOI: 10.4155/bio-2020-0324] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The 14th edition of the Workshop on Recent Issues in Bioanalysis (14th WRIB) was held virtually on June 15-29, 2020 with an attendance of over 1000 representatives from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations, and regulatory agencies worldwide. The 14th WRIB included three Main Workshops, seven Specialized Workshops that together spanned 11 days in order to allow exhaustive and thorough coverage of all major issues in bioanalysis, biomarkers, immunogenicity, gene therapy, cell therapy and vaccine. Moreover, a comprehensive vaccine assays track; an enhanced cytometry track and updated Industry/Regulators consensus on BMV of biotherapeutics by Mass Spectrometry (hybrid assays, LCMS and HRMS) were special features in 2020. As in previous years, this year's WRIB continued to gather a wide diversity of international industry opinion leaders and regulatory authority experts working on both small and large molecules to facilitate sharing and discussions focused on improving quality, increasing regulatory compliance and achieving scientific excellence on bioanalytical issues. This 2020 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the Global Bioanalytical Community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2020 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication covers the recommendations on (Part 1) Hybrid Assays, Innovation in Small Molecules, & Regulated Bioanalysis. Part 2A (BAV, PK LBA, Flow Cytometry Validation and Cytometry Innovation), Part 2B (Regulatory Input) and Part 3 (Vaccine, Gene/Cell Therapy, NAb Harmonization and Immunogenicity) are published in volume 13 of Bioanalysis, issues 5, and 6 (2021), respectively.
Collapse
|
34
|
Assessment of clinically relevant immunogenicity for mAbs; are we over reporting ADA? Bioanalysis 2020; 12:1325-1336. [PMID: 32946271 DOI: 10.4155/bio-2020-0174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Immunogenicity is recognized as a possible clinical risk due to the development of anti drug antibodies (ADAs) that can adversely impact drug safety and efficacy. Although robust assays are currently used to assess the ADA, there is a debate on how best to generate the most appropriate immunogenicity data. There are several factors that can trigger ADA formation including the immunity status of the target population and the severity of the disease indication. Immunogenicity testing has defaulted to the most conservative approach regardless of the inherent risk of the molecule or the patient population. For low-risk biotherapeutics such as human monoclonal antibodies, ADA data that provide clinically relevant information should be prioritized when establishing immunogenicity monitoring plans.
Collapse
|
35
|
Abstract
The term axial spondyloarthritis (axSpA) encompasses a heterogeneous group of diseases that have variable presentations, extra-articular manifestations and clinical outcomes, and that will respond differently to treatments. The prototypical type of axSpA, ankylosing spondylitis, is thought to be caused by interaction between the genetically primed host immune system and gut microbiota. Currently used biomarkers such as HLA-B27 status, C-reactive protein and erythrocyte sedimentation rate have, at best, moderate diagnostic and predictive value. Improved biomarkers are needed for axSpA to assist with early diagnosis and to better predict treatment responses and long-term outcomes. Advances in a range of 'omics' technologies and statistical approaches, including genomics approaches (such as polygenic risk scores), microbiome profiling and, potentially, transcriptomic, proteomic and metabolomic profiling, are making it possible for more informative biomarker sets to be developed for use in such clinical applications. Future developments in this field will probably involve combinations of biomarkers that require novel statistical approaches to analyse and to produce easy to interpret metrics for clinical application. Large publicly available datasets from well-characterized case-cohort studies that use extensive biological sampling, particularly focusing on early disease and responses to medications, are required to establish successful biomarker discovery and validation programmes.
Collapse
|
36
|
Novel bioanalytical method for the characterization of the immune response directed against a bispecific F(ab) fragment. Bioanalysis 2020; 12:509-517. [PMID: 32351119 DOI: 10.4155/bio-2020-0064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: The work was aimed at developing a bioanalytical approach to identify immunogenic parts of a bispecific F(ab) fragment and to characterize the immune response seen in a preclinical study. Experimental: The bioanalytical method consists of a set of domain detection assays that use germlined variants of the drug. Results: The method demonstrated that anti-drug antibodies (ADAs) were predominantly directed against both antigen-binding sites of the drug. Conclusion: The method was capable to discriminate between ADAs directed against one of the antigen-binding sites, both sites or the constant domain, allowing for an estimation of the relative binding prevalence for these subunits. The developed approach provides a practical and robust solution for exploratory characterization of ADAs against multidomain biotherapeutics.
Collapse
|
37
|
Tan CY, Steeno GS, You Z, Gaitonde P, Cai CH, Kamerud J, Gorovits B, Baltrukonis DJ. Criteria to Reevaluate Anti-drug Antibody Assay Cut Point Suitability in the Target Population. AAPS JOURNAL 2020; 22:19. [PMID: 31900604 DOI: 10.1208/s12248-019-0400-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/19/2019] [Indexed: 11/30/2022]
Abstract
After tier 1 and 2 cut points for anti-drug antibody (ADA) assays are derived during pre-study assay validation in a population, there is a need to verify the continued appropriateness of the previously derived cut points during sample analysis in the same or different populations, per FDA guidance (US HHS, FDA, CDER, CBER, 2019). Proper sample size-dependent criteria with statistical underpinning were derived and presented in this technical note to aid in assessing the appropriateness of tier 1 and tier 2 cut points, respectively.
Collapse
Affiliation(s)
- Charles Y Tan
- Worldwide Research Development and Medical, Pfizer Inc., 500 Arcola Rd, Collegeville, Pennsylvania, 19426, USA.
| | - Gregory S Steeno
- Worldwide Research Development and Medical, Pfizer Inc., 500 Arcola Rd, Collegeville, Pennsylvania, 19426, USA
| | - Zhiping You
- Worldwide Research Development and Medical, Pfizer Inc., 500 Arcola Rd, Collegeville, Pennsylvania, 19426, USA
| | - Puneet Gaitonde
- Worldwide Research Development and Medical, Pfizer Inc., 500 Arcola Rd, Collegeville, Pennsylvania, 19426, USA
| | - Chun-Hua Cai
- Worldwide Research Development and Medical, Pfizer Inc., 500 Arcola Rd, Collegeville, Pennsylvania, 19426, USA
| | - John Kamerud
- Worldwide Research Development and Medical, Pfizer Inc., 500 Arcola Rd, Collegeville, Pennsylvania, 19426, USA
| | - Boris Gorovits
- Worldwide Research Development and Medical, Pfizer Inc., 500 Arcola Rd, Collegeville, Pennsylvania, 19426, USA
| | - Daniel J Baltrukonis
- Worldwide Research Development and Medical, Pfizer Inc., 500 Arcola Rd, Collegeville, Pennsylvania, 19426, USA
| |
Collapse
|
38
|
2019 White Paper on Recent Issues in Bioanalysis: FDA Immunogenicity Guidance, Gene Therapy, Critical Reagents, Biomarkers and Flow Cytometry Validation (Part 3 - Recommendations on 2019 FDA Immunogenicity Guidance, Gene Therapy Bioanalytical Challenges, Strategies for Critical Reagent Management, Biomarker Assay Validation, Flow Cytometry Validation & CLSI H62). Bioanalysis 2019; 11:2207-2244. [PMID: 31820675 DOI: 10.4155/bio-2019-0271] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The 2019 13th Workshop on Recent Issues in Bioanalysis (WRIB) took place in New Orleans, LA, USA on April 1-5, 2019 with an attendance of over 1000 representatives from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations and regulatory agencies worldwide. WRIB was once again a 5-day, week-long event - a full immersion week of bioanalysis, biomarkers, immunogenicity and gene therapy. As usual, it was specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest including both small- and large-molecule bioanalysis involving LCMS, hybrid LBA/LCMS, LBA cell-based/flow cytometry assays and qPCR approaches. This 2019 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2019 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers New Insights in Biomarker Assay Validation, Current & Effective Strategies for Critical Reagent Management, Flow Cytometry Validation in Drug Discovery & Development & CLSI H62, Interpretation of the 2019 FDA Immunogenicity Guidance and Gene Therapy Bioanalytical Challenges. Part 1 (Innovation in Small Molecules and Oligonucleotides & Mass Spectrometry Method Development Strategies for Large Molecule Bioanalysis) and Part 2 (Recommendations on the 2018 FDA BMV Guidance, 2019 ICH M10 BMV Draft Guideline and regulatory agencies' input on bioanalysis, biomarkers, immunogenicity and gene therapy) are published in volume 11 of Bioanalysis, issues 22 and 23 (2019), respectively.
Collapse
|
39
|
2019 White Paper On Recent Issues in Bioanalysis: FDA BMV Guidance, ICH M10 BMV Guideline and Regulatory Inputs ( Part 2 - Recommendations on 2018 FDA BMV Guidance, 2019 ICH M10 BMV Draft Guideline and Regulatory Agencies' Input on Bioanalysis, Biomarkers and Immunogenicity). Bioanalysis 2019; 11:2099-2132. [PMID: 31833782 DOI: 10.4155/bio-2019-0270] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The 2019 13th Workshop on Recent Issues in Bioanalysis (WRIB) took place in New Orleans, LA on 1-5 April 2019 with an attendance of over 1000 representatives from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations and regulatory agencies worldwide. WRIB was once again a 5-day, week-long event - a full immersion week of bioanalysis, biomarkers, immunogenicity and gene therapy. As usual, it was specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest including both small- and large-molecule bioanalysis involving LCMS, hybrid LBA/LCMS, LBA cell-based/flow cytometry assays and qPCR approaches. This 2019 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2019 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 2) covers the recommendations on the 2018 FDA BMV guidance, 2019 ICH M10 BMV draft guideline and regulatory agencies' input on bioanalysis, biomarkers, immunogenicity and gene therapy. Part 1 (Innovation in small molecules and oligonucleotides and mass spectrometry method development strategies for large molecules bioanalysis) and Part 3 (New insights in biomarker assay validation, current and effective strategies for critical reagent management, flow cytometry validation in drug discovery and development and CLSI H62, interpretation of the 2019 FDA immunogenicity guidance and gene therapy bioanalytical challenges) are published in volume 10 of Bioanalysis, issues 22 and 24 (2019), respectively.
Collapse
|
40
|
2019 White Paper on Recent Issues in Bioanalysis: Chromatographic Assays (Part 1 - Innovation in Small Molecules and Oligonucleotides & Mass Spectrometric Method Development Strategies for Large Molecule Bioanalysis). Bioanalysis 2019; 11:2029-2048. [PMID: 31808716 DOI: 10.4155/bio-2019-0260] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The 2019 13th Workshop on Recent Issues in Bioanalysis (WRIB) took place in New Orleans, LA, USA on April 1-5, 2019 with an attendance of over 1000 representatives from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations and regulatory agencies worldwide. WRIB was once again a 5-day, week-long event - a full immersion week of bioanalysis, biomarkers, immunogenicity and gene therapy. As usual, it was specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest including both small- and large-molecule bioanalysis involving LCMS, hybrid LBA/LCMS, LBA cell-based/flow cytometry assays and qPCR approaches. This 2019 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2019 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 1) covers the recommendations on Innovation in Small Molecules and Oligonucleotides & Mass Spec Method Development Strategies for Large Molecules Bioanalysis. Part 2 (2018 FDA BMV Guidance, 2019 ICH M10 BMV Draft Guideline and regulatory agencies' input on bioanalysis, biomarkers, immunogenicity and gene therapy) and Part 3 (New Insights in Biomarkers Assays Validation, Current & Effective Strategies for Critical Reagent Management, Flow Cytometry Validation in drug discovery & development & CLSI H62, Interpretation of the 2019 FDA Immunogenicity Guidance and The Gene Therapy Bioanalytical Challenges) are published in volume 11 of Bioanalysis, issues 23 and 24 (2019), respectively.
Collapse
|
41
|
Civoli F, Kasinath A, Cai XY, Wadhwa M, Exley A, Oldfield P, Alvandkouhi S, Schaffar G, Chappell J, Bowsher R, Devanarayan V, Marini J, Rebarchak S, Anderson M, Koppenburg V, Lester T. Recommendations for the Development and Validation of Immunogenicity Assays in Support of Biosimilar Programs. AAPS JOURNAL 2019; 22:7. [PMID: 31792633 DOI: 10.1208/s12248-019-0386-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/18/2019] [Indexed: 11/30/2022]
Abstract
For biosimilar drug development programs, it is essential to demonstrate that there are no clinically significant differences between the proposed biosimilar therapeutic (biosimilar) and its reference product (originator). Based on a stepwise comprehensive comparability exercise, the biosimilar must demonstrate similarity to the originator in physicochemical characteristics, biological activity, pharmacokinetics, efficacy, and safety, including immunogenicity. The goal of the immunogenicity assessment is to evaluate potential differences between the proposed biosimilar product and the originator product in the incidence and severity of human immune responses. Establishing that there are no clinically meaningful differences in the immune response between the products is a key element in the demonstration of biosimilarity. An issue of practical, regulatory, and financial importance is to establish whether a two-assay (based on the biosimilar and originator respectively) or a one-assay approach (based on the biosimilar) is optimal for the comparative immunogenicity assessment. This paper recommends the use of a single, biosimilar-based assay for assessing immunogenic similarity in support of biosimilar drug development. The development and validation of an ADA assay used for a biosimilar program should include all the assessments recommended for an innovator program (10-16, 29). In addition, specific parameters also need to be evaluated, to gain confidence that the assay can detect antibodies against both the biosimilar and the originator. Specifically, the biosimilar and the originator should be compared in antigenic equivalence, to assess the ability of the biosimilar and the originator to bind in a similar manner to the positive control(s), as well as in the confirmatory assay and drug tolerance experiments. Practical guidance for the development and validation of anti-drug antibody (ADA) assays to assess immunogenicity of a biosimilar in comparison to the originator, using the one-assay approach, are described herein.
Collapse
Affiliation(s)
| | | | - Xiao-Yan Cai
- Accurant Biotech, Inc., Cranbury, New Jersey, USA
| | - Meenu Wadhwa
- Medicines and Healthcare Products Regulatory Agency (MHRA), National Institute for Biological Standards and Control (NIBSC), Hertfordshire, UK
| | - Andrew Exley
- Regulatory Division, Medicines and Healthcare Products Regulatory Agency (MHRA), London, UK
| | | | | | | | | | | | | | - Joseph Marini
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Shannon Rebarchak
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | | | | | - Todd Lester
- BioAgilytix Labs, Durham, North Carolina, USA
| |
Collapse
|
42
|
Looking beyond the WRIB Decennial Index of the White Papers in Bioanalysis. Bioanalysis 2019; 11:563-565. [DOI: 10.4155/bio-2019-0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
43
|
Critical reagent screening and characterization: benefits and approaches for protein biomarker assays by hybrid LC–MS. Bioanalysis 2019; 11:785-795. [DOI: 10.4155/bio-2018-0277] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In recent years, hybrid ligand-binding assays (LBAs)/LC–MS assays have been increasingly used for quantitation of protein biomarkers in biological matrices. However, unlike in LBAs where the importance of critical reagent screening and characterization is well understood and widely reported, benefits of well-characterized hybrid LC–MS assay reagents are frequently underestimated. Two groups of analyte-specific reagents, binding reagents and assay calibrators, are considered the critical reagents for biomarker assays. In this article, we summarize the similarities and differences of critical reagents used in LBAs and hybrid LC–MS assays, overview the benefits and approaches of critical reagent screening, characterization, antibody conjugation and discuss bioanalytical considerations in hybrid LC–MS assay development for robust measurements of protein biomarkers in biological matrices.
Collapse
|
44
|
Recommendations for classification of commercial LBA kits for biomarkers in drug development from the GCC for bioanalysis. Bioanalysis 2019; 11:645-653. [DOI: 10.4155/bio-2019-0072] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Over the last decade, the use of biomarker data has become integral to drug development. Biomarkers are not only utilized for internal decision-making by sponsors; they are increasingly utilized to make critical decisions for drug safety and efficacy. As the regulatory agencies are routinely making decisions based on biomarker data, there has been significant scrutiny on the validation of biomarker methods. Contract research organizations regularly use commercially available immunoassay kits to validate biomarker methods. However, adaptation of such kits in a regulated environment presents significant challenges and was one of the key topics discussed during the 12th Global Contract Research Organization Council for Bioanalysis (GCC) meeting. This White Paper reports the GCC members’ opinion on the challenges facing the industry and the GCC recommendations on the classification of commercial kits that can be a win-win for commercial kit vendors and end users.
Collapse
|
45
|
Elucidation of the statistical factors that influence anti-drug antibody cut point setting through a multi-laboratory study. Bioanalysis 2019; 11:509-524. [DOI: 10.4155/bio-2018-0178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Aim: Appropriateness of anti-drug antibody (ADA) assay is critical for immunogenicity assessment of biopharmaceuticals. Although cut point setting in ADA assay has a large impact on the results, a standard statistical approach for its setting has not been well established. Methodology: In this multi-laboratory study, to elucidate factors influencing the cut point setting, we compared the statistical approaches and calculated cut points for multiple datasets of ADA assays using the individual procedure employed at each laboratory. Conclusion: We showed that outlier exclusion, false-positive rate and investigating data distribution have the greatest impact on both screening and confirmatory cut points. Our results would be useful for industry researchers and regulators engaged in immunogenicity assessment of biopharmaceuticals.
Collapse
|
46
|
Review of Recommendations for Bioanalytical Method Validation: Chromatographic Assays and Ligand Binding Assays. Chromatographia 2018. [DOI: 10.1007/s10337-018-3677-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
2018 White Paper on Recent Issues in Bioanalysis: focus on flow cytometry, gene therapy, cut points and key clarifications on BAV (Part 3 - LBA/cell-based assays: immunogenicity, biomarkers and PK assays). Bioanalysis 2018; 10:1973-2001. [PMID: 30488726 DOI: 10.4155/bio-2018-0287] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The 2018 12th Workshop on Recent Issues in Bioanalysis took place in Philadelphia, PA, USA on April 9-13, 2018 with an attendance of over 900 representatives from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations and regulatory agencies worldwide. WRIB was once again a 5-day full immersion in bioanalysis, biomarkers and immunogenicity. As usual, it was specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest including both small- and large-molecule bioanalysis involving LCMS, hybrid LBA/LCMS and LBA/cell-based assays approaches. This 2018 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2018 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 3) covers the recommendations for large molecule bioanalysis, biomarkers and immunogenicity using LBA and cell-based assays. Part 1 (LCMS for small molecules, peptides, oligonucleotides and small molecule biomarkers) and Part 2 (hybrid LBA/LCMS for biotherapeutics and regulatory agencies' inputs) are published in volume 10 of Bioanalysis, issues 22 and 23 (2018), respectively.
Collapse
|
48
|
2018 White Paper on Recent Issues in Bioanalysis: 'A global bioanalytical community perspective on last decade of incurred samples reanalysis (ISR)' (Part 1 - small molecule regulated bioanalysis, small molecule biomarkers, peptides & oligonucleotide bioanalysis). Bioanalysis 2018; 10:1781-1801. [PMID: 30488725 DOI: 10.4155/bio-2018-0268] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The 2018 12th Workshop on Recent Issues in Bioanalysis (12th WRIB) took place in Philadelphia, PA, USA on April 9-13, 2018 with an attendance of over 900 representatives from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations and regulatory agencies worldwide. WRIB was once again a 5-day full immersion in bioanalysis, biomarkers and immunogenicity. As usual, it was specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest including both small- and large-molecule bioanalysis involving LC-MS, hybrid ligand binding assay (LBA)/LC-MS and LBA/cell-based assays approaches. This 2018 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop, and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2018 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 1) covers the recommendations for LC-MS for small molecules, peptides, oligonucleotides and small molecule biomarkers. Part 2 (hybrid LBA/LC-MS for biotherapeutics and regulatory agencies' inputs) and Part 3 (large molecule bioanalysis, biomarkers and immunogenicity using LBA and cell-based assays) are published in volume 10 of Bioanalysis, issues 23 and 24 (2018), respectively.
Collapse
|
49
|
2018 White Paper on Recent Issues in Bioanalysis: focus on immunogenicity assays by hybrid LBA/LCMS and regulatory feedback (Part 2 - PK, PD & ADA assays by hybrid LBA/LCMS & regulatory agencies' inputs on bioanalysis, biomarkers and immunogenicity). Bioanalysis 2018; 10:1897-1917. [PMID: 30488729 DOI: 10.4155/bio-2018-0285] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The 2018 12th Workshop on Recent Issues in Bioanalysis took place in Philadelphia, PA, USA on April 9-13, 2018 with an attendance of over 900 representatives from pharmaceutical/biopharmaceutical companies, biotechnology companies, contract research organizations and regulatory agencies worldwide. WRIB was once again a 5-day, week-long event - a full immersion week of bioanalysis, biomarkers and immunogenicity. As usual, it was specifically designed to facilitate sharing, reviewing, discussing and agreeing on approaches to address the most current issues of interest including both small- and large-molecule bioanalysis involving LCMS, hybrid LBA/LCMS and LBA/cell-based assays approaches. This 2018 White Paper encompasses recommendations emerging from the extensive discussions held during the workshop and is aimed to provide the bioanalytical community with key information and practical solutions on topics and issues addressed, in an effort to enable advances in scientific excellence, improved quality and better regulatory compliance. Due to its length, the 2018 edition of this comprehensive White Paper has been divided into three parts for editorial reasons. This publication (Part 2) covers the recommendations for PK, PD and ADA assays by hybrid LBA/LCMS and regulatory agencies' input. Part 1 (LCMS for small molecules, peptides, oligonucleotides and small molecule biomarkers) and Part 3 (LBA/cell-based assays: immunogenicity, biomarkers and PK assays) are published in volume 10 of Bioanalysis, issues 22 and 24 (2018), respectively.
Collapse
|
50
|
Groell F, Jordan O, Borchard G. In vitro models for immunogenicity prediction of therapeutic proteins. Eur J Pharm Biopharm 2018; 130:128-142. [DOI: 10.1016/j.ejpb.2018.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/09/2018] [Accepted: 06/08/2018] [Indexed: 12/21/2022]
|