1
|
Mohanty A, Vekariya V, Yadav S, Agrawal-Rajput R. Natural phytochemicals reverting M2 to M1 macrophages: A novel alternative leishmaniasis therapy. Microb Pathog 2025; 200:107311. [PMID: 39863089 DOI: 10.1016/j.micpath.2025.107311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/29/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
INTRODUCTION Leishmaniasis is a tropical parasitic disease caused by the protozoan Leishmania which remains a significant global health concern with diverse clinical manifestations. Transmitted through the bite of an infected sandfly, its progression depends on the interplay between the host immune response and the parasite. The disease outcome is linked to macrophage polarisation into M1 and M2 phenotypes. M1 macrophages are pro-inflammatory and promote parasite clearance, while M2 macrophages support tissue repair and parasite survival by facilitating promastigote entry and intracellular amastigote proliferation. PURPOSE The review focuses on discovering novel phytochemicals that exploit the immunomodulatory properties of macrophages, which can serve as an alternative antileishmanial treatments due to their diverse chemical structures and ability to modulate immune responses. It examines the immunomodulatory effects of phytochemicals that directly or indirectly promote antileishmanial activity by influencing macrophage polarisation and cytokine secretion. They can induce M1 macrophage polarisation to directly combat leishmaniasis or suppress M2 macrophages, thereby exerting indirect antileishmanial activity by influencing the release of M1-and M2-related cytokines. RESULTS & DISCUSSION Phytochemicals demonstrate antileishmanial effects through ROS production, M1 activation, and cytokine modulation. They regulate M1/M2-related cytokines and macrophage activity, influencing immune responses. Although their effects may be non-specific, targeted delivery strategies could overcome current therapeutic limitations, positioning phytochemicals as promising candidates for leishmaniasis treatment to counter the limitations of current medications.
Collapse
Affiliation(s)
- Aditya Mohanty
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Vasu Vekariya
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Shivani Yadav
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
2
|
Avendaño Leon OL, Santos Urbancg Moncorvo FM, Curti C, Kabri Y, Redon S, Vanelle P, Torres-Santos EC. Hit-to-lead optimization of 4,5-dihydrofuran-3-sulfonyl scaffold against Leishmania amazonensis. Effect of an aliphatic moiety. Eur J Med Chem 2024; 280:116935. [PMID: 39383654 DOI: 10.1016/j.ejmech.2024.116935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
In line with our objective of designing new antileishmanial compounds for oral use, we report the synthesis and biological evaluation in vitro of original 4,5-dihydrofuran derivatives bearing an amidoxime group. Previous optimization focused on position 3 of the dihydrofuran ring involving aromatic fragments, resulting in the identification of the compound (HIT) 4-(5-benzyl-3-((4-fluorophenyl)sulfonyl)-5-methyl-4,5-dihydrofuran-2-yl)-N'-hydroxybenzimidamide (IC50 = 5.4 ± 1.0 μM, L. amazonensis promastigote, IC50 = 7.9 ± 1.1 μM, L. amazonensis intracellular amastigote). In the present work, position 3 was substituted with an aliphatic moiety. This modification was guided by a ligand-based approach, given the unknown biological target or mechanism of action for this compound. The 4,5-dihydrofuran derivatives were synthesized using microwave-assisted manganese (III) acetate-based oxidative cyclization of linear β-keto-carboxylic and β-keto-sulfone substrates, overcoming synthetic challenges to obtain aliphatic derivatives of 4,5-dihydrofuran-3-carboxamides. Finally, an unexpected and interesting biological activity with the 4,5-dihydrofuran-3-carboxylate (IC50 < 5 μM) against the amastigote form is discussed.
Collapse
Affiliation(s)
- Oscar Leonardo Avendaño Leon
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385, Marseille, France.
| | | | - Christophe Curti
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385, Marseille, France; Service Central de la Qualité et de l'Information Pharmaceutiques (SCQIP) Hôpital de la Conception, Pharmacy Department. Assistance Publique - Hôpitaux de Marseille (AP-HM), 147 Bd Baille, 13005, France.
| | - Youssef Kabri
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385, Marseille, France.
| | - Sébastien Redon
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385, Marseille, France.
| | - Patrice Vanelle
- Aix Marseille Univ, CNRS, ICR UMR 7273, Equipe Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, 27 Boulevard Jean Moulin, CS30064, CEDEX 05, 13385, Marseille, France; Service Central de la Qualité et de l'Information Pharmaceutiques (SCQIP) Hôpital de la Conception, Pharmacy Department. Assistance Publique - Hôpitaux de Marseille (AP-HM), 147 Bd Baille, 13005, France.
| | - Eduardo Caio Torres-Santos
- Laboratório de Bioquímica de Tripanosomatídeos, Instituto Oswaldo Cruz - FIOCRUZ, Av. Brasil, 4365, Rio de Janeiro, 21040-900, Brazil.
| |
Collapse
|
3
|
Sarma M, Borkotoky S, Dubey VK. Structure-based drug designing against Leishmania donovani using docking and molecular dynamics simulation studies: exploring glutathione synthetase as a drug target. J Biomol Struct Dyn 2024; 42:7628-7636. [PMID: 37491862 DOI: 10.1080/07391102.2023.2240429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023]
Abstract
In the pursuit of developing novel anti-leishmanial agents, we conducted an extensive computational study to screen inhibitors from the FDA-approved ZINC database against Leishmania donovani glutathione synthetase. The three-dimensional structure of Leishmania donovani glutathione synthetase was constructed by homology modeling, using the crystallographic structure of Trypanosoma brucei glutathione synthetase as a template. Subsequently, molecular docking studies were carried out for a large number of compounds using AutoDock Vina. Among the screened compounds, we selected the top five with strong binding affinity to Leishmania donovani glutathione synthetase but having a very low affinity to its human homolog. Further investigations on protein-ligand complexes were done by conducting molecular dynamics (MD) simulation and MM/PBSA analysis. The results revealed that Olysio (Simeprevir) exhibited the lowest binding energy (-89.21 kcal/mol), followed by Telithromycin (-45.34 kcal/mol). These findings showed that these compounds have the potential to act as inhibitors of glutathione synthetase. Hence, our study provides valuable insights for the development of a novel therapeutic strategy against Leishmania donovani by targeting the glutathione synthetase enzyme.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manash Sarma
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Subhomoi Borkotoky
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
4
|
González-Montero MC, Andrés-Rodríguez J, García-Fernández N, Pérez-Pertejo Y, Reguera RM, Balaña-Fouce R, García-Estrada C. Targeting Trypanothione Metabolism in Trypanosomatids. Molecules 2024; 29:2214. [PMID: 38792079 PMCID: PMC11124245 DOI: 10.3390/molecules29102214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Infectious diseases caused by trypanosomatids, including African trypanosomiasis (sleeping sickness), Chagas disease, and different forms of leishmaniasis, are Neglected Tropical Diseases affecting millions of people worldwide, mainly in vulnerable territories of tropical and subtropical areas. In general, current treatments against these diseases are old-fashioned, showing adverse effects and loss of efficacy due to misuse or overuse, thus leading to the emergence of resistance. For these reasons, searching for new antitrypanosomatid drugs has become an urgent necessity, and different metabolic pathways have been studied as potential drug targets against these parasites. Considering that trypanosomatids possess a unique redox pathway based on the trypanothione molecule absent in the mammalian host, the key enzymes involved in trypanothione metabolism, trypanothione reductase and trypanothione synthetase, have been studied in detail as druggable targets. In this review, we summarize some of the recent findings on the molecules inhibiting these two essential enzymes for Trypanosoma and Leishmania viability.
Collapse
Affiliation(s)
- María-Cristina González-Montero
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
| | - Julia Andrés-Rodríguez
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
| | - Nerea García-Fernández
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
| | - Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
5
|
Bernabeu De Maria M, Matczuk M, Tesauro D, Saviano M, Sikorski J, Chiappetta G, Godin S, Szpunar J, Lobinski R, Ronga L. Study of metalation of thioredoxin by gold(I) therapeutic compounds using combined liquid chromatography/capillary electrophoresis with inductively coupled plasma/electrospray MS/MS detection. Anal Bioanal Chem 2024; 416:2819-2833. [PMID: 38244050 DOI: 10.1007/s00216-024-05140-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024]
Abstract
The reactivity of thioredoxin (Trx1) with the Au(I) drug auranofin (AF) and two therapeutic N-heterocyclic carbene (NHC)2-Au(I) complexes (bis [1-methyl-3-acridineimidazolin-2-ylidene]gold(I) tetrafluoroborate (Au3BC) and [1,3-diethyl-4,5-bis(4methoxyphenyl)imidazol-2-ylidene]gold(I) (Au4BC)) was investigated. Direct infusion (DI) electrospray ionization (ESI) mass spectrometry (MS) allowed information on the structure, stoichiometry, and kinetics of formation of Trx-Au adducts. The fragmentation of the formed adducts in the gas phase gave insights into the exact Au binding site within the protein, demonstrating the preference for Trx1 Cys32 or Cys35 of AF or the (NHC)2-Au(I) complex Au3BC, respectively. Reversed-phase HPLC suffered from the difficulty of elution of gold compounds, did not preserve the formed metal-protein adducts, and favored the loss of ligands (phosphine or NHC) from Au(I). These limitations were eliminated by capillary electrophoresis (CE) which enabled the separation of the gold compounds, Trx1, and the formed adducts. The ICP-MS/MS detection allowed the simultaneous quantitative monitoring of the gold and sulfur isotopes and the determination of the metallation extent of the protein. The hyphenation of the mentioned techniques was used for the analysis of Trx1-Au adducts for the first time.
Collapse
Affiliation(s)
- Mikel Bernabeu De Maria
- Université de Pau Et Des Pays de L'Adour, E2S UPPA, CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM-UMR 5254), 64053, Pau, France
| | - Magdalena Matczuk
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland
| | - Diego Tesauro
- Department of Pharmacy and CIRPeB, Università degli Studi di Napoli Federico II, Via Montesano 49, 80131, Naples, Italy
| | - Michele Saviano
- Instituto Di Cristallografia (IC), CNR, 70126, Caserta, Italy
| | - Jacek Sikorski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland
| | - Giovanni Chiappetta
- Biological Mass Spectrometry and Proteomics (SMBP), ESPCI Paris, Université PSL, LPC CNRS UMR8249, 75005, Paris, France
| | - Simon Godin
- Université de Pau Et Des Pays de L'Adour, E2S UPPA, CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM-UMR 5254), 64053, Pau, France
| | - Joanna Szpunar
- Université de Pau Et Des Pays de L'Adour, E2S UPPA, CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM-UMR 5254), 64053, Pau, France
| | - Ryszard Lobinski
- Université de Pau Et Des Pays de L'Adour, E2S UPPA, CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM-UMR 5254), 64053, Pau, France
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664, Warsaw, Poland
| | - Luisa Ronga
- Université de Pau Et Des Pays de L'Adour, E2S UPPA, CNRS, Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM-UMR 5254), 64053, Pau, France.
| |
Collapse
|
6
|
Bharadava K, Upadhyay TK, Kaushal RS, Ahmad I, Alraey Y, Siddiqui S, Saeed M. Genomic Insight of Leishmania Parasite: In-Depth Review of Drug Resistance Mechanisms and Genetic Mutations. ACS OMEGA 2024; 9:12500-12514. [PMID: 38524425 PMCID: PMC10955595 DOI: 10.1021/acsomega.3c09400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/26/2024]
Abstract
Leishmaniasis, which is caused by a parasitic protozoan of the genus Leishmania, is still a major threat to global health, impacting millions of individuals worldwide in endemic areas. Chemotherapy has been the principal method for managing leishmaniasis; nevertheless, the evolution of drug resistance offers a significant obstacle to therapeutic success. Drug-resistant behavior in these parasites is a complex phenomenon including both innate and acquired mechanisms. Resistance is frequently related to changes in drug transportation, drug target alterations, and enhanced efflux of the drug from the pathogen. This review has revealed specific genetic mutations in Leishmania parasites that are associated with resistance to commonly used antileishmanial drugs such as pentavalent antimonials, miltefosine, amphotericin B, and paromomycin, resulting in changes in gene expression along with the functioning of various proteins involved in drug uptake, metabolism, and efflux. Understanding the genetic changes linked to drug resistance in Leishmania parasites is essential for creating approaches for tackling and avoiding the spread of drug-resistant variants. Based on which specific treatments focus on mutations and pathways could potentially improve treatment efficacy and help long-term leishmaniasis control. More study is needed to uncover the complete range of genetic changes generating medication resistance and to develop new therapies based on available information.
Collapse
Affiliation(s)
- Krupanshi Bharadava
- Biophysics
& Structural Biology, Research & Development Cell, Parul University, Vadodara, Gujarat 391760, India
| | - Tarun Kumar Upadhyay
- Department
of Life Sciences, Parul Institute of Applied Sciences & Research
and Development Cell, Parul University, Vadodara, Gujarat 391760, India
| | - Radhey Shyam Kaushal
- Biophysics
& Structural Biology, Research & Development Cell, Parul University, Vadodara, Gujarat 391760, India
- Department
of Life Sciences, Parul Institute of Applied Sciences & Research
and Development Cell, Parul University, Vadodara, Gujarat 391760, India
| | - Irfan Ahmad
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Yasser Alraey
- Department
of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Samra Siddiqui
- Department
of Health Service Management, College of Public Health and Health
Informatics, University of Hail, Hail 55476, Saudi Arabia
| | - Mohd Saeed
- Department
of Biology, College of Science, University
of Hail, Hail 55476, Saudi Arabia
| |
Collapse
|
7
|
Paes SS, Silva-Silva JV, Portal Gomes PW, da Silva LO, da Costa APL, Lopes Júnior ML, Hardoim DDJ, Moragas-Tellis CJ, Taniwaki NN, Bertho AL, de Molfetta FA, Almeida-Souza F, Santos LS, Calabrese KDS. (-)-5-Demethoxygrandisin B a New Lignan from Virola surinamensis (Rol.) Warb. Leaves: Evaluation of the Leishmanicidal Activity by In Vitro and In Silico Approaches. Pharmaceutics 2023; 15:2292. [PMID: 37765261 PMCID: PMC10535778 DOI: 10.3390/pharmaceutics15092292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Leishmaniasis is a complex disease caused by infection with different Leishmania parasites. The number of medications used for its treatment is still limited and the discovery of new drugs is a valuable approach. In this context, here we describe the in vitro leishmanicidal activity and the in silico interaction between trypanothione reductase (TryR) and (-)-5-demethoxygrandisin B from the leaves of Virola surinamensis (Rol.) Warb. The compound (-)-5-demethoxygrandisin B was isolated from V. surinamensis leaves, a plant found in the Brazilian Amazon, and it was characterized as (7R,8S,7'R,8'S)-3,4,5,3',4'-pentamethoxy-7,7'-epoxylignan. In vitro antileishmanial activity was examined against Leishmania amazonensis, covering both promastigote and intracellular amastigote phases. Cytotoxicity and nitrite production were gauged using BALB/c peritoneal macrophages. Moreover, transmission electron microscopy was applied to probe ultrastructural alterations, and flow cytometry assessed the shifts in the mitochondrial membrane potential. In silico methods such as molecular docking and molecular dynamics assessed the interaction between the most stable configuration of (-)-5-demethoxygrandisin B and TryR from L. infantum (PDB ID 2JK6). As a result, the (-)-5-demethoxygrandisin B was active against promastigote (IC50 7.0 µM) and intracellular amastigote (IC50 26.04 µM) forms of L. amazonensis, with acceptable selectivity indexes. (-)-5-demethoxygrandisin B caused ultrastructural changes in promastigotes, including mitochondrial swelling, altered kDNA patterns, vacuoles, vesicular structures, autophagosomes, and enlarged flagellar pockets. It reduced the mitochondria membrane potential and formed bonds with important residues in the TryR enzyme. The molecular dynamics simulations showed stability and favorable interaction with TryR. The compound targets L. amazonensis mitochondria via TryR enzyme inhibition.
Collapse
Affiliation(s)
- Steven Souza Paes
- Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - João Victor Silva-Silva
- Laboratory of Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil (K.d.S.C.)
- Laboratory of Medicinal and Computational Chemistry, Institute of Physics of São Carlos, University of São Paulo, São Carlos 13418-900, SP, Brazil
| | - Paulo Wender Portal Gomes
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA 92123, USA
| | | | - Ana Paula Lima da Costa
- Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Manoel Leão Lopes Júnior
- Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Daiana de Jesus Hardoim
- Laboratory of Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil (K.d.S.C.)
| | - Carla J. Moragas-Tellis
- Laboratory of Natural Products for Public Health, Pharmaceutical Technology Institute, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | | | - Alvaro Luiz Bertho
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil;
- Flow Cytometry Core Facility, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, RJ, Brazil
| | - Fábio Alberto de Molfetta
- Laboratory of Molecular Modeling, Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil;
| | - Fernando Almeida-Souza
- Laboratory of Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil (K.d.S.C.)
- Postgraduate Program in Animal Science, State University of Maranhão, Sao Luis 65055-310, MA, Brazil
| | - Lourivaldo Silva Santos
- Institute of Exact and Natural Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Kátia da Silva Calabrese
- Laboratory of Protozoology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21041-250, RJ, Brazil (K.d.S.C.)
| |
Collapse
|
8
|
Schirmann JG, Bortoleti BTS, Gonçalves MD, Tomiotto-Pellissier F, Camargo PG, Miranda-Sapla MM, Lima CHS, Bispo MLF, Costa IN, Conchon-Costa I, Pavanelli WR, Dekker RFH, Barbosa-Dekker AM. In-vitro biological evaluation of 3,3',5,5'-tetramethoxy-biphenyl-4,4'-diol and molecular docking studies on trypanothione reductase and Gp63 from Leishmania amazonensis demonstrated anti-leishmania potential. Sci Rep 2023; 13:6928. [PMID: 37117253 PMCID: PMC10147928 DOI: 10.1038/s41598-023-34124-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023] Open
Abstract
Available treatments for leishmaniasis have been widely used since the 1940s but come at a high cost, variable efficacy, high toxicity, and adverse side-effects. 3,3',5,5'-Tetramethoxy-biphenyl-4,4'-diol (TMBP) was synthesized through laccase-catalysis of 2,6-dimethoxyphenol and displayed antioxidant and anticancer activity, and is considered a potential drug candidate. Thus, this study aimed to evaluate the anti-leishmanial effect of TMBP against promastigote and amastigote forms of Leishmania (L.) amazonensis and investigated the mechanisms involved in parasite death. TMBP treatment inhibited the proliferation (IC50 0.62-0.86 µM) and induced the death of promastigote forms by generating reactive oxygen species and mitochondrial dysfunction. In intracellular amastigotes, TMBP reduced the percentage of infected macrophages, being 62.7 times more selective to the parasite (CC50 53.93 µM). TMBP did not hemolyze sheep erythrocytes; indicative of low cytotoxicity. Additionally, molecular docking analysis on two enzyme targets of L. amazonensis: trypanothione reductase (TR) and leishmanolysin (Gp63), suggested that the hydroxyl group could be a pharmacophoric group due to its binding affinity by hydrogen bonds with residues at the active site of both enzymes. TMBP was more selective to the Gp63 target than TR. This is the first report that TMBP is a promising compound to act as an anti-leishmanial agent.
Collapse
Affiliation(s)
- Jéseka G Schirmann
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil.
| | - Bruna T S Bortoleti
- Fiocruz, Programa de Pós-Graduação em Biociências e Biotecnologia, Instituto Carlos Chagas, Curitiba, PR, Brazil
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Manoela D Gonçalves
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Fernanda Tomiotto-Pellissier
- Fiocruz, Programa de Pós-Graduação em Biociências e Biotecnologia, Instituto Carlos Chagas, Curitiba, PR, Brazil
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Priscila G Camargo
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Milena M Miranda-Sapla
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Camilo H S Lima
- Instituto de Química, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Marcelle L F Bispo
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Idessania N Costa
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Ivete Conchon-Costa
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Wander R Pavanelli
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Robert F H Dekker
- Programa de Pós-Graduação em Engenharia Ambiental, Universidade Tecnológica Federal do Paraná, Câmpus de Londrina, Londrina, PR, Brazil
| | - Aneli M Barbosa-Dekker
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil.
| |
Collapse
|
9
|
Kumar M, Tripathi MK, Gupta D, Kumar S, Biswas NR, Ethayathulla AS, Kaur P. N-acetylglucosamine-phosphatidylinositol de-N-acetylase as a novel target for probing potential inhibitor against Leishmania donovani. J Biomol Struct Dyn 2023; 41:1904-1918. [PMID: 35014594 DOI: 10.1080/07391102.2021.2025429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Leishmania donavani is the causative agent of leishmaniasis, responsible for social and economic disruption, especially in developing countries. Lack of effective drugs with few side effects have necessitated the discovery of newer therapeutic solutions for leishmaniasis. Glycophosphatidylinositol (GPI) synthesis plays a vital role in protozoan cell membranes structural formation and antigenic modification. Hence, any disruption in its biosynthesis can prove fatal to the parasitic protozoans. N-acetylglucosamine-phosphatidylinositol de-N-acetylase (NAGP-deacetylase) is an enzyme from the GPI biosynthetic pathway that catalyzes the deacetylation of N-acetylglucosaminylphosphatidylinositol to glucosaminylphosphatidylinositol, a step essential for the proper functioning of the enzyme. In the quest for novel scaffolds as anti-leishmaniasis agents, we have executed in silico virtual screening, density function theory, molecular dynamics and MM-GBSA based energy calculations with a natural product library and a diverse library set from Chembridge database. Two compounds, 14671 and 4610, were identified at the enzyme's active site and interacted with catalytic residues, Asp43, Asp44, His41, His147, His 150, Arg80 and Arg231. Both molecules exhibited stable conformation in their protein-ligand complexes with binding free energies for compound-14671 and compound-4610 of -54 ± 4 and -50 ± 4 kcal/mol, respectively. These scaffolds can be incorporated in future synthetic determinations, focusing on developing druggable inhibitor support, increasing potency, and introducing species selectivity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mukesh Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | | | - Deepali Gupta
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjit Kumar
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Nihar Ranjan Biswas
- Department of Pharmacology, Indira Gandhi Institute of Medical Science (IGIMS), Patna, India
| | - A S Ethayathulla
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
10
|
Zaman N, Azam SS. Quantum Dynamics and Bi Metal Force Field Parameterization Yielding Significant Antileishmanial Targets. J Chem Inf Model 2023; 63:1371-1385. [PMID: 36730993 DOI: 10.1021/acs.jcim.2c01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Amid emerging drug resistance to metal inhibitors, high toxicity, and onerous drug delivery procedures, the computational design of alternate formulations encompassing functional metal-containing compounds greatly relies on large-scale atomistic simulations. Simulations particularly with Au(I), Ag, Bi(V), and Sb(V) pose a major challenge to elucidate their molecular mechanism due to the absence of force field parameters. This study thus quantum mechanically derives force field parameters of Bi(V) as an extension of the previous experimental study conducted on heteroleptic triorganobismuth(V) biscarboxylates of type [BiR3(O2CR')2]. We have modeled two organo-bismuth(V) carboxylates, which are optimized and parameterized along with the famous pentavalent antimonial drug: meglumine antimoniate using quantum mechanics original Seminarian methods with the SBKJC effective core potential (ECP) basis set. Furthermore, molecular dynamics (MD) simulations of bismuth- and antimony-containing compounds in complex with two enzymes, trypanothione synthetase-amidase (TSA) and trypanothione reductase, are performed to target the (T(SH)2) pathway at multiple points. MD simulations provide novel insights into the binding mechanism of TSA and highlight the role of a single residue Arg569 in modulating the ligand dynamics. Moreover, the presence of an ortho group in a ligand is emphasized to facilitate interactions between Arg569 and the active site residue Arg313 for higher inhibitory activity of TSA. This preliminary generation of parameters specific to bismuth validated by simulations in replica will become a preamble of future computational and experimental research work to open avenues for newer and suitable drug targets.
Collapse
Affiliation(s)
- Naila Zaman
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad45320, Pakistan
| | - Syed Sikander Azam
- Computational Biology Lab, National Center for Bioinformatics, Quaid-i-Azam University, Islamabad45320, Pakistan
| |
Collapse
|
11
|
Towards Arginase Inhibition: Hybrid SAR Protocol for Property Mapping of Chlorinated N-arylcinnamamides. Int J Mol Sci 2023; 24:ijms24043611. [PMID: 36835023 PMCID: PMC9968098 DOI: 10.3390/ijms24043611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
A series of seventeen 4-chlorocinnamanilides and seventeen 3,4-dichlorocinnamanilides were characterized for their antiplasmodial activity. In vitro screening on a chloroquine-sensitive strain of Plasmodium falciparum 3D7/MRA-102 highlighted that 23 compounds possessed IC50 < 30 µM. Typically, 3,4-dichlorocinnamanilides showed a broader range of activity compared to 4-chlorocinnamanilides. (2E)-N-[3,5-bis(trifluoromethyl)phenyl]-3-(3,4-dichlorophenyl)prop-2-en-amide with IC50 = 1.6 µM was the most effective agent, while the other eight most active derivatives showed IC50 in the range from 1.8 to 4.6 µM. A good correlation between the experimental logk and the estimated clogP was recorded for the whole ensemble of the lipophilicity generators. Moreover, the SAR-mediated similarity assessment of the novel (di)chlorinated N-arylcinnamamides was conducted using the collaborative (hybrid) ligand-based and structure-related protocols. In consequence, an 'averaged' selection-driven interaction pattern was produced based in namely 'pseudo-consensus' 3D pharmacophore mapping. The molecular docking approach was engaged for the most potent antiplasmodial agents in order to gain an insight into the arginase-inhibitor binding mode. The docking study revealed that (di)chlorinated aromatic (C-phenyl) rings are oriented towards the binuclear manganese cluster in the energetically favorable poses of the chloroquine and the most potent arginase inhibitors. Additionally, the water-mediated hydrogen bonds were formed via carbonyl function present in the new N-arylcinnamamides and the fluorine substituent (alone or in trifluoromethyl group) of N-phenyl ring seems to play a key role in forming the halogen bonds.
Collapse
|
12
|
Gupta D, Singh PK, Yadav PK, Narender T, Patil UK, Jain SK, Chourasia MK. Emerging strategies and challenges of molecular therapeutics in antileishmanial drug development. Int Immunopharmacol 2023; 115:109649. [PMID: 36603357 DOI: 10.1016/j.intimp.2022.109649] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/16/2022] [Accepted: 12/24/2022] [Indexed: 01/05/2023]
Abstract
Molecular therapy refers to targeted therapies based on molecules which have been intelligently directed towards specific biomolecular structures and include small molecule drugs, monoclonal antibodies, proteins and peptides, DNA or RNA-based strategies, targeted chemotherapy and nanomedicines. Molecular therapy is emerging as the most effective strategy to combat the present challenges of life-threatening visceral leishmaniasis, where the successful human vaccine is currently unavailable. Moreover, current chemotherapy-based strategies are associated with the issues of ineffective targeting, unavoidable toxicities, invasive therapies, prolonged treatment, high treatment costs and the development of drug-resistant strains. Thus, the rational approach to antileishmanial drug development primarily demands critical exploration and exploitation of biochemical differences between host and parasite biology, immunocharacteristics of parasite homing, and host-parasite interactions at the molecular/cellular level. Following this, the novel technology-based designing and development of host and/or parasite-targeted therapeutics having leishmanicidal and immunomodulatory activity is utmost essential to improve treatment efficacy. Thus, the present review is focused on immunological and molecular checkpoint targets in host-pathogen interaction, and molecular therapeutic prospects for Leishmania intervention, and the challenges ahead.
Collapse
Affiliation(s)
- Deepak Gupta
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India; Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Pankaj K Singh
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India; Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Pavan K Yadav
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Tadigoppula Narender
- Division of Medicinal and Process Chemistry, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India
| | - Umesh K Patil
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India
| | - Sanjay K Jain
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar 470003, M.P., India
| | - Manish K Chourasia
- Division of Pharmaceutics and Pharmacokinetics, CSIR-Central Drug Research Institute, Lucknow 226031, U.P., India.
| |
Collapse
|
13
|
Soto-Vásquez MR, Alvarado-García PAA, Osorio EH, Tallini LR, Bastida J. Antileishmanial Activity of Clinanthus milagroanthus S. Leiva & Meerow (Amaryllidaceae) Collected in Peru. PLANTS (BASEL, SWITZERLAND) 2023; 12:322. [PMID: 36679035 PMCID: PMC9866881 DOI: 10.3390/plants12020322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Leishmaniasis is a worldwide infectious parasitic disease caused by different species of protozoa of the genus Leishmania, which are transmitted to animals and humans through the bite of insects of the Psychodidae family. In the present work, the antileishmanial activity of an alkaloid extract of the bulbs of Clinanthus milagroanthus S. Leiva & Meerow (Amaryllidaceae) was evaluated in vitro, in vivo, and in silico against the parasite Leishmania braziliensis, and the chemical profile of the sample was determined by GC-MS analysis. At concentrations of 1, 10, and 100 µg·mL−1, the alkaloid extract presented inhibition percentages of 8.7%, 23.1%, and 98.8%, respectively, against L. braziliensis with a p < 0.05, and IC50 values of 18.5 ± 0.3 µg·mL−1. Furthermore, at a dose of 1.0 mg·kg−1, a greater decrease in lesion size was observed (90%) for in vivo assays, as well as a decrease in infection (96%), finding no significant differences (p > 0.05) in comparison with amphotericin B (92% and 98%, respectively). Eleven alkaloids were identified in C. milagroanthus bulbs: galanthamine, vittatine/crinine, 8-O-demethylmaritidine, anhydrolycorine, 11,12-dehydroanhydrolycorine, hippamine, lycorine, 2-hydroxyanhydrolycorine, 7-hydroxyclivonine, 2α-hydroxyhomolycorine, and 7-hydroxyclivonine isomer. A molecular model of Leishmania braziliensis trypanothione reductase (TRLb) was built using computational experiments to evaluate in silico the potential of the Amaryllidaceae alkaloid identified in C. milagroanthus toward this enzyme. The structures galanthamine, 7-hydroxyclivonine isomer, and crinine showed better estimated free energy of binding than the reference compound, amphotericin B. In conclusion, this is the first in vitro, in vivo, and in silico report about the antileishmanial potential and alkaloid profiling of the extract of C. milagroanthus bulbs, which could become an interesting source of bioactive molecules.
Collapse
Affiliation(s)
- Marilú Roxana Soto-Vásquez
- Facultad de Farmacia y Bioquímica, Universidad Nacional de Trujillo, Av. Juan Pablo II s/n, Trujillo 13011, Peru
| | | | - Edison H. Osorio
- Facultad de Ciencias Naturales y Matemáticas, Universidad de Ibagué, Carrera 22 Calle 67, Ibagué 730001, Colombia
| | - Luciana R. Tallini
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Spain
| | - Jaume Bastida
- Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Av. Joan XXIII 27–31, 08028 Barcelona, Spain
| |
Collapse
|
14
|
Medeiros RMTE, Carvalho AMRS, Ferraz IDA, Medeiros FAC, Cruz LDR, Rocha MODC, Coelho EAF, Gonçalves DU, Mendes TADO, Duarte MC, Menezes-Souza D. Mapping linear B-cell epitopes of the Tryparedoxin Peroxidase and its implications in the serological diagnosis of tegumentary leishmaniasis. Acta Trop 2022; 232:106521. [PMID: 35595092 DOI: 10.1016/j.actatropica.2022.106521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 12/01/2022]
Abstract
Diagnosis of tegumentary leishmaniasis (TL) is essential to avoid permanent damage and severe functional sequelae and there is an urgent need to discover new antigens. The present study aimed to comprehensively evaluate the potential use of the Tryparedoxin Peroxidase (TryP) as an antigen for serological tests. The proposal integrates data from immunoproteomics with immunoinformatics, in addition to a precise analysis of protein levels in the evolutionary stages of the parasite by flow cytometry. To evaluate the performance in the diagnosis of TL, Enzyme-Linked Immunosorbent Assay (ELISA) assays were performed using the recombinant protein and the respective B-cell epitope, followed by an analysis of the contribution of this peptide in the recognition of the protein by patients, evaluated by serum depletion assays. We showed that the TryP has a linear B-cell epitope with high divergence compared to orthologs from Trypanosoma cruzi and Homo sapiens. The results also show high expression and positive cells for TryP (TryP+) in the infective metacyclic promastigotes (MET) and intracellular (24 and 48 hours) stages. From the depletion assays, it was possible to confirm the contribution of the peptide in the specific recognition of the TryP protein by patients with TL (13.7-15.9%). ELISA using the peptide showed high performance in the diagnosis compared to the recombinant TryP (rTryP), Soluble Leishmania braziliensis Antigen (sLba) and Immunofluorescence Assay (IFA) with accuracy of 94.29, 89.29, 65.00 and 37.14%, respectively). We can conclude that the MNEPAPP peptide is a potential antigen for the diagnosis of TL.
Collapse
Affiliation(s)
- Rutyanne Maria Tonelli Elisei Medeiros
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Maria Ravena Severino Carvalho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Isabela de Andrade Ferraz
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Alvarenga Cardoso Medeiros
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luiza Dos Reis Cruz
- Laboratorio de Química Orgânica Sintética, Instituto de Química, Universidade de Campinas, Campinas, Brazil
| | - Manoel Otávio da Costa Rocha
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Eduardo Antonio Ferraz Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Denise Utsch Gonçalves
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Mariana Costa Duarte
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Menezes-Souza
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
15
|
Shaslinah N, Sangavi P, Sangeetha R, Gowthamkumar S, Sindhu V, Langeswaran K. Screening and identification of potential inhibitor for visceral leishmaniasis (VL) through computational analysis. J Genet Eng Biotechnol 2022; 20:35. [PMID: 35195803 PMCID: PMC8866605 DOI: 10.1186/s43141-022-00318-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 02/14/2022] [Indexed: 11/24/2022]
Abstract
Aim The aim of this investigation is to detect potential inhibitor for visceral leishmaniasis through computational analysis. Background Leishmaniasis is categorized as a vector born pathogenic infection prevalent in tropical, subtropical, and in Mediterranean zones spread by intra-macrophage protozoa. The clinical syndrome of leishmaniasis is divided into the following type’s namely cutaneous leishmaniasis, mucocutaneous leishmaniasis, visceral leishmaniasis, and dermal leishmaniasis. Trypanothione synthetase is a key enzyme involving in glutathione biosynthesis as well as hydrolysis. Trypanothione is one of the promising drug targets for parasites. Parasites are inimitable with concern to their dependence on trypanothione to regulate intracellular thiol-redox balance in fighting against oxidative stress and biochemical anxiety. However, trypanothione synthetase was presumed as the target therapeutic alternate in VL therapy. Objective The important objective of this current investigation is to identify or analyze the potential inhibitor for V. leishmaniasis through computational approaches which include virtual screening, molecular docking, ADME prediction, and molecular dynamic simulation. Methods An investigation was performed to develop a 3D protein structure, using computational screening among associated similar structured proteins from popular compound database banks such as Specs, Maybridge, and Enamine, to detect novel staging with a series of validation for emerging innovative drugs molecules. Modeled protein ligand complex was further analyzed to know the binding ability of the complex. Molecular dynamics were performed to ascertain its stability at 50 ns. Results Trypanothione synthetase overall ability in the outcome of series of analysis. Among three database compounds screened, the compound from the Specs database exhibited the better protein-ligand docking scores and fulfilled the drug-like properties through ADMET analysis, and the docked complexes had better stability throughout the simulation. Besides, the other two database leads fulfilled the pharmacological properties, and the complexes were stable in the simulation. Conclusion By analyzing the various compounds from different databases, we concluded that the Specs database compound exhibits potential activity against the target protein and is considered a promising inhibitor for trypanothione synthetase.
Collapse
Affiliation(s)
- N Shaslinah
- Cancer Informatics Laboratory, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - P Sangavi
- Cancer Informatics Laboratory, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| | - R Sangeetha
- Department of Physics, Mannar Thirumalai Naicker College, Pasumalai, Madurai, Tamil Nadu, India
| | - S Gowthamkumar
- Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute, Chettiand Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - V Sindhu
- Faculty of Allied Health Sciences, Chettinad Hospital & Research Institute, Chettiand Academy of Research and Education, Kelambakkam, Tamil Nadu, India
| | - K Langeswaran
- Cancer Informatics Laboratory, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
16
|
Esteves BB, Melo-Braga MN, Gorshkov V, Verano-Braga T, Larsen MR, Gontijo CMF, Quaresma PF, Andrade HM. Characterization of Differentially Abundant Proteins Among Leishmania (Viannia) braziliensis Strains Isolated From Atypical or Typical Lesions. Front Cell Infect Microbiol 2022; 12:824968. [PMID: 35242720 PMCID: PMC8886221 DOI: 10.3389/fcimb.2022.824968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022] Open
Abstract
Leishmania (Viannia) braziliensis is the main etiological agent of cutaneous and mucocutaneous leishmaniasis in Latin America. Non-ulcerated atypical tegumentary leishmaniasis cases caused by L. braziliensis have been reported in several regions of the American continent, including the Xacriabá indigenous reserve in São João das Missões/Minas Gerais, Brazil. Parasites isolated from these atypical clinical lesions are resistant to antimony-based therapeutics. In the present study, proteins displaying differential abundance in two strains of L. braziliensis isolated from patients with atypical lesions compared with four strains isolated from patients with typical lesions were identified using a quantitative proteomics approach based on tandem mass tag labeling (TMT) and mass spectrometry. A total of 532 (P<0.05) differentially abundant proteins were identified (298 upregulated and 234 downregulated) in strains from atypical lesions compared to strains from typical lesions. Prominent positively regulated proteins in atypical strains included those that may confer greater survival inside macrophages, proteins related to antimony resistance, and proteins associated with higher peroxidase activity. Additionally, we identified proteins showing potential as new drug and vaccine targets. Our findings contribute to the characterization of these intriguing L. braziliensis strains and provide a novel perspective on Atypical Cutaneous Leishmaniasis (ACL) cases that have been associated with therapeutic failures.
Collapse
Affiliation(s)
- Bárbara B. Esteves
- Laboratório de Leishmanioses, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcella N. Melo-Braga
- Laboratório de Biologia Sintética e Biomiméticos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vladimir Gorshkov
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Thiago Verano-Braga
- Núcleo de Proteômica Funcional, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Martin R. Larsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Célia M. F. Gontijo
- Study Group in Leishmaniosis, Instituto René Rachou (IRR) –Fundação Oswaldo Cruz (FIOCRUZ/MG) Belo Horizonte, Belo Horizonte, Brazil
| | - Patricia F. Quaresma
- Departamento de Microbiologia Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Helida M. Andrade
- Laboratório de Leishmanioses, Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- *Correspondence: Helida M. Andrade,
| |
Collapse
|
17
|
Identification of 3-Methoxycarpachromene and Masticadienonic Acid as New Target Inhibitors against Trypanothione Reductase from Leishmania Infantum Using Molecular Docking and ADMET Prediction. Molecules 2021; 26:molecules26113335. [PMID: 34206087 PMCID: PMC8199445 DOI: 10.3390/molecules26113335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 11/17/2022] Open
Abstract
Polyphenolic and Terpenoids are potent natural antiparasitic compounds. This study aimed to identify new drug against Leishmania parasites, leishmaniasis’s causal agent. A new in silico analysis was accomplished using molecular docking, with the Autodock vina program, to find the binding affinity of two important phytochemical compounds, Masticadienonic acid and the 3-Methoxycarpachromene, towards the trypanothione reductase as target drugs, responsible for the defense mechanism against oxidative stress and virulence of these parasites. There were exciting and new positive results: the molecular docking results show as elective binding profile for ligands inside the active site of this crucial enzyme. The ADMET study suggests that the 3-Methoxycarpachromene has the highest probability of human intestinal absorption. Through this work, 3-Methoxycarpachromene and Masticadienonic acid are shown to be potentially significant in drug discovery, especially in treating leishmaniasis. Hence, drug development should be completed with promising results.
Collapse
|
18
|
da Silva MA, Fokoue HH, Fialho SN, Dos Santos APDA, Rossi NRDLP, Gouveia ADJ, Ferreira AS, Passarini GM, Garay AFG, Alfonso JJ, Soares AM, Zanchi FB, Kato MJ, Teles CBG, Kuehn CC. Antileishmanial activity evaluation of a natural amide and its synthetic analogs against Leishmania (V.) braziliensis: an integrated approach in vitro and in silico. Parasitol Res 2021; 120:2199-2218. [PMID: 33963899 DOI: 10.1007/s00436-021-07169-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Leishmaniasis is considered a neglected disease, which makes it an unattractive market for the pharmaceutical industry; hence, efforts in the search for biologically active substances are hampered by this lack of financial motivation. Thus, in the present study, we report the leishmanicidal activity and the possible mechanisms of action of compounds with promising activity against the species Leishmania (V.) braziliensis, the causative agent of the skin disease leishmaniasis. The natural compound 1a (piplartine) and the analog 2a were the most potent against promastigote forms with growth inhibition values for 50% of the parasite population (IC50) = 8.58 and 11.25 μM, respectively. For amastigote forms, the ICa50 values were 1.46 and 16.7 μM, respectively. In the molecular docking study, piplartine showed favorable binding energy (-7.13 kcal/mol) and with 50% inhibition of trypanothione reductase (IC50) = 91.1 μM. Preliminary investigations of the mechanism of action indicate that piplartine increased ROS levels, induced loss of cell membrane integrity, and caused accumulation of lipid bodies after 24 h of incubation at its lowest effective concentration (IC50), which was not observed for the synthetic analog 2a. The mode of action for the leishmanicidal activity of piplartine (1a) was assigned to involve affinity for the trypanothione reductase of Leishmania (V.) braziliensis TR.
Collapse
Affiliation(s)
- Minelly A da Silva
- Federal Institute of Education, Science and Technology of Rondônia - IFRO, Porto Velho, Rondônia, Brazil.
- Federal University of Rondônia - UNIR, Porto Velho, Rondônia, Brazil.
- Instituto Federal de Rondônia - Porto Velho-Calama, Av. Calama, 4985 - Flodoaldo Pontes Pinto, Porto Velho, RO, 76820-441, Brazil.
| | - Harold H Fokoue
- Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos, Farmanguinhos - FIOCRUZ/RJ, Rio de Janeiro, Brazil
| | - Saara N Fialho
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, Rondônia, Brazil
| | | | - Norton R D L P Rossi
- Federal University of Rondônia - UNIR, Porto Velho, Rondônia, Brazil
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
| | | | - Amália S Ferreira
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
| | - Guilherme M Passarini
- Federal University of Rondônia - UNIR, Porto Velho, Rondônia, Brazil
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
| | - Ana F G Garay
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
- Centro para el Desarrollo de la Investigación Científica - CEDIC, Asunción, Paraguay
| | - Jorge J Alfonso
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
- Centro para el Desarrollo de la Investigación Científica - CEDIC, Asunción, Paraguay
| | - Andreimar M Soares
- Federal University of Rondônia - UNIR, Porto Velho, Rondônia, Brazil
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, Rondônia, Brazil
- National Institute of Science and Technology of Epidemiology in the Western Amazon - INCT-EpiAmO, Rondônia, Brazil
| | - Fernando B Zanchi
- Federal University of Rondônia - UNIR, Porto Velho, Rondônia, Brazil
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, Rondônia, Brazil
| | - Massuo J Kato
- Institute of Chemistry, University of São Paulo - USP, São Paulo, Brazil
| | - Carolina B G Teles
- Federal University of Rondônia - UNIR, Porto Velho, Rondônia, Brazil
- Fundação Oswaldo Cruz - Rondônia - FIOCRUZ/RO, Porto Velho, Rondônia, Brazil
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal - BIONORTE, Porto Velho, Rondônia, Brazil
- National Institute of Science and Technology of Epidemiology in the Western Amazon - INCT-EpiAmO, Rondônia, Brazil
| | - Christian C Kuehn
- Federal University of Rondônia - UNIR, Porto Velho, Rondônia, Brazil
| |
Collapse
|
19
|
Inacio JDF, Fonseca MS, Limaverde-Sousa G, Tomas AM, Castro H, Almeida-Amaral EE. Epigallocathechin- O-3-Gallate Inhibits Trypanothione Reductase of Leishmania infantum, Causing Alterations in Redox Balance and Leading to Parasite Death. Front Cell Infect Microbiol 2021; 11:640561. [PMID: 33842389 PMCID: PMC8027256 DOI: 10.3389/fcimb.2021.640561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/09/2021] [Indexed: 01/15/2023] Open
Abstract
Leishmania infantum is a protozoan parasite that causes a vector borne infectious disease in humans known as visceral leishmaniasis (VL). This pathology, also caused by L. donovani, presently impacts the health of 500,000 people worldwide, and is treated with outdated anti-parasitic drugs that suffer from poor treatment regimens, severe side effects, high cost and/or emergence of resistant parasites. In previous works we have disclosed the anti-Leishmania activity of (-)-Epigallocatechin 3-O-gallate (EGCG), a flavonoid compound present in green tea leaves. To date, the mechanism of action of EGCG against Leishmania remains unknown. This work aims to shed new light into the leishmanicidal mode of action of EGCG. Towards this goal, we first confirmed that EGCG inhibits L. infantum promastigote proliferation in a concentration-dependent manner. Second, we established that the leishmanicidal effect of EGCG was associated with i) mitochondria depolarization and ii) decreased concentration of intracellular ATP, and iii) increased concentration of intracellular H2O2. Third, we found that the leishmanicidal effect and the elevated H2O2 levels induced by of EGCG can be abolished by PEG-catalase, strongly suggesting that this flavonoid kills L. infantum promastigotes by disturbing their intracellular redox balance. Finally, we gathered in silico and in vitro evidence that EGCG binds to trypanothione reductase (TR), a central enzyme of the redox homeostasis of Leishmania, acting as a competitive inhibitor of its trypanothione substrate.
Collapse
Affiliation(s)
- Job D F Inacio
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brazil
| | - Myslene S Fonseca
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brazil
| | - Gabriel Limaverde-Sousa
- Laboratório de Esquistossomose Experimental, Instituto Osvaldo Cruz, Fundação Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brazil
| | - Ana M Tomas
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Helena Castro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Elmo E Almeida-Amaral
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Alcolea V, Moreno E, Etxebeste-Mitxeltorena M, Navarro-Blasco I, González-Peñas E, Jiménez-Ruiz A, Irache JM, Sanmartín C, Espuelas S. 3,5-Dimethyl-4-isoxazoyl selenocyanate as promising agent for the treatment of Leishmania infantum-infected mice. Acta Trop 2021; 215:105801. [PMID: 33352169 DOI: 10.1016/j.actatropica.2020.105801] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/01/2020] [Accepted: 12/12/2020] [Indexed: 12/20/2022]
Abstract
Compounds 1 and 2 (selenocyanate and diselenide derivatives, respectively) were evaluated for their potential use in vivo against visceral leishmaniasis (VL). Both entities showed low cytoxicity in vitro in Vero and Caco-2 cell lines. However, the compounds were not suitable for their oral administration, since they exhibited poor values of intestinal permeability in vitro. Microsomal stability assays did not show any metabolite for compound 1 after 120 min, whereas 2 was highly metabolized by the enzyme CYP450. Thus, the in vivo efficacy of compound 1 was assessed in a murine model of L. infantum VL. The daily i.v. administration of 1 mg/kg of compound 1 during 5 consecutive days reduced parasite load in liver, spleen and bone marrow (99.2%, 91.7% and 61.4%, respectively) compared to non-treated mice. To the best of our knowledge, this is the first time that a selenium compound has been tested in vivo against VL. Thus, this work evidences the possible usefulness of selenocyanate derivatives for the treatment of this disease.
Collapse
Affiliation(s)
- Verónica Alcolea
- Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Esther Moreno
- Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Mikel Etxebeste-Mitxeltorena
- Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Iñigo Navarro-Blasco
- Department of Chemistry, School of Sciences, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | - Elena González-Peñas
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain
| | | | - Juan Manuel Irache
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain
| | - Carmen Sanmartín
- Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain.
| | - Socorro Espuelas
- Institute of Tropical Health, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, Irunlarrea 1, 31008 Pamplona, Spain; Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, 31008 Pamplona, Spain.
| |
Collapse
|
21
|
Mukherjee D, Yousuf M, Dey S, Chakraborty S, Chaudhuri A, Kumar V, Sarkar B, Nath S, Hussain A, Dutta A, Mishra T, Roy BG, Singh S, Chakraborty S, Adhikari S, Pal C. Targeting the Trypanothione Reductase of Tissue-Residing Leishmania in Hosts' Reticuloendothelial System: A Flexible Water-Soluble Ferrocenylquinoline-Based Preclinical Drug Candidate. J Med Chem 2020; 63:15621-15638. [PMID: 33296601 DOI: 10.1021/acs.jmedchem.0c00690] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since inception, the magic bullets developed against leishmaniasis traveled a certain path and then dropped down due to either toxicity or the emergence of resistance. The route of administration is also an important concern. We developed a series of water-soluble ferrocenylquinoline derivatives, targeting Leishmania donovani, among which CQFC1 showed the highest efficacy even in comparison to other drugs, in use or used, both in oral and intramuscular routes. It did not induce any toxicity to splenocytes and on hematopoiesis, induced protective cytokines, and did not hamper the drug-metabolizing enzymes in hosts. It acts through the reduction and the inhibition of parasites' survival enzyme trypanothione reductase of replicating amastigotes in hosts' reticuloendothelial tissues. Unlike conventional drugs, this molecule did not induce the resistance-conferring genes in laboratory-maintained resistant L. donovani lines. Experimentally, this easily bioavailable preclinical drug candidate overcame all of the limitations causing the discontinuation of the other conventional antileishmanial drugs.
Collapse
Affiliation(s)
- Debarati Mukherjee
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, Pin-700126, West Bengal, India
| | - Md Yousuf
- Department of Chemistry, University of Calcutta, Kolkata, Pin-700009 West Bengal, India
| | - Somaditya Dey
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, Pin-700126, West Bengal, India
| | - Sondipon Chakraborty
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, Pin-700126, West Bengal, India
| | - Ankur Chaudhuri
- Department of Microbiology, West Bengal State University, Barasat, North 24 Parganas, Pin-700126, West Bengal, India
| | - Vinay Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Mohali, Pin-160062 Punjab, India
| | - Biswajyoti Sarkar
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, Pin-700126, West Bengal, India
| | - Supriya Nath
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, Pin-700126, West Bengal, India
| | - Aabid Hussain
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, Pin-700126, West Bengal, India
| | - Aritri Dutta
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, Pin-700126, West Bengal, India
| | - Tanushree Mishra
- Department of Chemistry, University of Calcutta, Kolkata, Pin-700009 West Bengal, India
| | - Biswajit Gopal Roy
- Department of Chemistry, Sikkim University,Tadong, Pin-737102 Gangtok, Sikkim, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Mohali, Pin-160062 Punjab, India
| | - Sibani Chakraborty
- Department of Microbiology, West Bengal State University, Barasat, North 24 Parganas, Pin-700126, West Bengal, India
| | - Susanta Adhikari
- Department of Chemistry, University of Calcutta, Kolkata, Pin-700009 West Bengal, India
| | - Chiranjib Pal
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, North 24 Parganas, Pin-700126, West Bengal, India
| |
Collapse
|
22
|
Camargo PG, Bortoleti BTDS, Fabris M, Gonçalves MD, Tomiotto-Pellissier F, Costa IN, Conchon-Costa I, Lima CHDS, Pavanelli WR, Bispo MDLF, Macedo F. Thiohydantoins as anti-leishmanial agents: n vitro biological evaluation and multi-target investigation by molecular docking studies. J Biomol Struct Dyn 2020; 40:3213-3222. [PMID: 33183184 DOI: 10.1080/07391102.2020.1845979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Leishmaniasis is a neglected tropical disease caused by protozoa of the genus Leishmania. The first-line treatment of this disease is still based on pentavalent antimonial drugs that have a high toxicity profile, which could induce parasitic resistance. Therefore, there is a critical need to discover more effective and selective novel anti-leishmanial agents. In this context, thiohydantoins are a versatile class of substances due to their simple synthesis and several biological activities. In this work, thiohydantoins 1a-l were evaluated in vitro for antileishmania activity. Among them, four derivatives (1c, 1e, 1h and 1l) showed promising IC50 values around 10 µM against promastigotes forms of Leishmania amazonensis and low cytotoxicity profile for peritoneal macrophages cells. Besides, these compounds induce oxidative stress through an increase in ROS production and the labeling of annexin-V and propidium iodide, indicating that promastigotes were undergoing a late apoptosis-like process. Additionally, molecular consensual docking analysis was carried out against two important targets to L. amazonensis: arginase and trypanothione reductase enzymes. Docking results suggest that thiohydantoin ring could be a pharmacophoric group due to its binding affinity by hydrogens bond interactions with important amino acid residues at the active site of both enzymes. These results demonstrate that compounds 1c, 1e, 1h and 1l may are promising in future advance studies.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Priscila Goes Camargo
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Marcieli Fabris
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Manoela Daiele Gonçalves
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Idessania Nazareth Costa
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | - Ivete Conchon-Costa
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Wander Rogério Pavanelli
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Londrina, Brazil
| | | | - Fernando Macedo
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, Brazil
| |
Collapse
|
23
|
2-Amino-1,3,4-thiadiazoles as prospective agents in trypanosomiasis and other parasitoses. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2020; 70:259-290. [PMID: 32074064 DOI: 10.2478/acph-2020-0031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/24/2019] [Indexed: 01/19/2023]
Abstract
Parasitic diseases are a serious public health problem affecting hundreds of millions of people worldwide. African trypanosomiasis, American trypanosomiasis, leishmaniasis, malaria and toxoplasmosis are the main parasitic infections caused by protozoan parasites with over one million deaths each year. Due to old medications and drug resistance worldwide, there is an urgent need for new antiparasitic drugs. 1,3,4-Thiadiazoles have been widely studied for medical applications. The chemical, physical and pharmacokinetic properties recommend 1,3,4-thiadiazole ring as a target in drug development. Many scientific papers report the antiparasitic potential of 2-amino-1,3,4-thiadiazoles. This review presents synthetic 2-amino-1,3,4-thiadiazoles exhibiting antitrypanosomal, antimalarial and antitoxoplasmal activities. Although there are insufficient results to state the quality of 2-amino-1,3,4-thiadiazoles as a new class of antiparasitic agents, many reported derivatives can be considered as lead compounds for drug synthesis and a promise for the future treatment of parasitosis and provide a valid strategy for the development of potent antiparasitic drugs.
Collapse
|
24
|
Pessenda G, da Silva JS. Arginase and its mechanisms in Leishmania persistence. Parasite Immunol 2020; 42:e12722. [PMID: 32294247 DOI: 10.1111/pim.12722] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/14/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Leishmaniasis is a neglected infectious disease with clinical presentations ranging from asymptomatic or mild symptoms to chronic infection and eventual death. The mechanisms of disease susceptibility and pathology have been extensively studied, but there are no steadfast rules regarding leishmaniasis. A Th1 response is usually associated with infection control, while a predominant Th2 response is detrimental to the patient. In this scenario, the enzymes arginase and inducible nitric oxide synthase represent two possible pathways of immune response. While the former contributes to parasite replication, the latter is crucial for its control. In the present review, we collected study results that associate arginase expression in patients and in experimental models with disease susceptibility/chronicity and show some proposed mechanisms that explain the role of arginase in maintaining Leishmania infection, including polyamine and thiol synthesis, tissue-resident macrophage (TRM) proliferation and activation and T-cell suppression and exhaustion.
Collapse
Affiliation(s)
- Gabriela Pessenda
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - João Santana da Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Fundação Oswaldo Cruz Bi-institucional, Ribeirão Preto, Brazil
| |
Collapse
|
25
|
Crentsil JA, Yamthe LRT, Anibea BZ, Broni E, Kwofie SK, Tetteh JKA, Osei-Safo D. Leishmanicidal Potential of Hardwickiic Acid Isolated From Croton sylvaticus. Front Pharmacol 2020; 11:753. [PMID: 32523532 PMCID: PMC7261830 DOI: 10.3389/fphar.2020.00753] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/06/2020] [Indexed: 01/31/2023] Open
Abstract
Leishmania is a parasitic protozoon responsible for the neglected tropical disease Leishmaniasis. Approximately, 350 million people are susceptible and close to 70,000 death cases globally are reported annually. The lack of effective leishmanicides, the emergence of drug resistance and toxicity concerns necessitate the pursuit for effective antileishmanial drugs. Natural compounds serve as reservoirs for discovering new drugs due to their chemical diversity. Hardwickiic acid (HA) isolated from the stembark of Croton sylvaticus was evaluated for its leishmanicidal potential against Leishmania donovani and L. major promastigotes. The susceptibility of the promastigotes to HA was determined using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide/phenazine methosulfate colorimetric assay with Amphotericin B serving as positive control. HA showed a significant antileishmanial activity on L. donovani promastigotes with an IC50 value of 31.57± 0.06 µM with respect to the control drug, amphotericin B with IC50 of 3.35 ± 0.14 µM). The cytotoxic activity was observed to be CC50 = 247.83 ± 6.32 µM against 29.99 ± 2.82 µM for curcumin, the control, resulting in a selectivity index of SI = 7.85. Molecular modeling, docking and dynamics simulations of selected drug targets corroborated the observed antileishmanial activity of HA. Novel insights into the mechanisms of binding were obtained for trypanothione reductase (TR), pteridine reductase 1 (PTR1), and glutamate cysteine ligase (GCL). The binding affinity of HA to the drug targets LmGCL, LmPTR1, LdTR, LmTR, LdGCL, and LdPTR1 were obtained as -8.0, -7.8, -7.6, -7.5, -7.4 and -7.1 kcal/mol, respectively. The role of Lys16, Ser111, and Arg17 as critical residues required for binding to LdPTR1 was reinforced. HA was predicted as a Caspase-3 stimulant and Caspase-8 stimulant, implying a possible role in apoptosis, which was shown experimentally that HA induced parasite death by loss of membrane integrity. HA was also predicted as antileishmanial molecule corroborating the experimental activity. Therefore, HA is a promising antileishmanial molecule worthy of further development as a biotherapeutic agent.
Collapse
Affiliation(s)
- Justice Afrifa Crentsil
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences (CBAS), University of Ghana, Accra, Ghana
| | - Lauve Rachel Tchokouaha Yamthe
- Institute for Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon.,Department of Parasitology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.,Antimicrobial and Biocontrol Agents Unit, Laboratory for Phytobiochemistry and Medicinal Plants Studies, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Barbara Zenabu Anibea
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences (CBAS), University of Ghana, Accra, Ghana
| | - Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, CBAS, University of Ghana, Accra, Ghana
| | - Samuel Kojo Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, CBAS, University of Ghana, Accra, Ghana.,West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, CBAS, University of Ghana, Accra, Ghana.,Department of Medicine, Loyola University Medical Center, Maywood, IL, United States.,Department of Physics and Engineering Science, Coastal Carolina University, Conway, SC, United States
| | - John Kweku Amissah Tetteh
- Department of Immunology, College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dorcas Osei-Safo
- Department of Chemistry, School of Physical and Mathematical Sciences, College of Basic and Applied Sciences (CBAS), University of Ghana, Accra, Ghana
| |
Collapse
|
26
|
Scotti MT, Monteiro AFM, de Oliveira Viana J, Bezerra Mendonça Junior FJ, Ishiki HM, Tchouboun EN, De Araújo RSA, Scotti L. Recent Theoretical Studies Concerning Important Tropical Infections. Curr Med Chem 2020; 27:795-834. [DOI: 10.2174/0929867326666190711121418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/20/2018] [Accepted: 04/12/2019] [Indexed: 01/02/2023]
Abstract
Neglected Tropical Diseases (NTDs) form a group of diseases that are strongly associated
with poverty, flourish in impoverished environments, and thrive best in tropical areas,
where they tend to present overlap. They comprise several diseases, and the symptoms
vary dramatically from disease to disease, often causing from extreme pain, and untold misery
that anchors populations to poverty, permanent disability, and death. They affect more than 1
billion people worldwide; mostly in poor populations living in tropical and subtropical climates.
In this review, several complementary in silico approaches are presented; including
identification of new therapeutic targets, novel mechanisms of activity, high-throughput
screening of small-molecule libraries, as well as in silico quantitative structure-activity relationship
and recent molecular docking studies. Current and active research against Sleeping
Sickness, American trypanosomiasis, Leishmaniasis and Schistosomiasis infections will hopefully
lead to safer, more effective, less costly and more widely available treatments against
these parasitic forms of Neglected Tropical Diseases (NTDs) in the near future.
Collapse
Affiliation(s)
- Marcus Tullius Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Alex France Messias Monteiro
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | - Jéssika de Oliveira Viana
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| | | | - Hamilton M. Ishiki
- University of Western Sao Paulo (Unoeste), Presidente Prudente, SP, Brazil
| | | | - Rodrigo Santos A. De Araújo
- Laboratory of Synthesis and Drug Delivery, Department of Biological Science, State University of Paraiba, Joao Pessoa, PB, Brazil
| | - Luciana Scotti
- Postgraduate Program in Natural and Synthetic Bioactive Products, Federal University of Paraíba, Joao Pessoa - PB, Brazil
| |
Collapse
|
27
|
Mosquillo MF, Smircich P, Ciganda M, Lima A, Gambino D, Garat B, Pérez-Díaz L. Comparative high-throughput analysis of the Trypanosoma cruzi response to organometallic compounds. Metallomics 2020; 12:813-828. [DOI: 10.1039/d0mt00030b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An in-depth, comparative look at the effects of two structurally related organometallic Pd and Pt compounds on the global gene expression pattern of T. cruzi epimastigotes. This parasite is the causative agent of Chagas disease.
Collapse
Affiliation(s)
- M. Florencia Mosquillo
- Laboratorio de Interacciones Moleculares
- Facultad de Ciencias
- Universidad de la República
- Montevideo
- Uruguay
| | - Pablo Smircich
- Laboratorio de Interacciones Moleculares
- Facultad de Ciencias
- Universidad de la República
- Montevideo
- Uruguay
| | | | - Analía Lima
- Instituto de Investigaciones Biológicas Clemente Estable
- Montevideo
- Uruguay
- Unidad de Bioquímica y Proteómica Analíticas
- Institut Pasteur de Montevideo
| | - Dinorah Gambino
- Área Química Inorgánica
- Facultad de Química
- Universidad de la República
- Montevideo
- Uruguay
| | - Beatriz Garat
- Laboratorio de Interacciones Moleculares
- Facultad de Ciencias
- Universidad de la República
- Montevideo
- Uruguay
| | - Leticia Pérez-Díaz
- Laboratorio de Interacciones Moleculares
- Facultad de Ciencias
- Universidad de la República
- Montevideo
- Uruguay
| |
Collapse
|
28
|
Saavedra E, González-Chávez Z, Moreno-Sánchez R, Michels PA. Drug Target Selection for Trypanosoma cruzi Metabolism by Metabolic Control Analysis and Kinetic Modeling. Curr Med Chem 2019; 26:6652-6671. [DOI: 10.2174/0929867325666180917104242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 08/17/2018] [Accepted: 08/17/2018] [Indexed: 11/22/2022]
Abstract
In the search for therapeutic targets in the intermediary metabolism of trypanosomatids
the gene essentiality criterion as determined by using knock-out and knock-down genetic
strategies is commonly applied. As most of the evaluated enzymes/transporters have
turned out to be essential for parasite survival, additional criteria and approaches are clearly
required for suitable drug target prioritization. The fundamentals of Metabolic Control
Analysis (MCA; an approach in the study of control and regulation of metabolism) and kinetic
modeling of metabolic pathways (a bottom-up systems biology approach) allow quantification
of the degree of control that each enzyme exerts on the pathway flux (flux control coefficient)
and metabolic intermediate concentrations (concentration control coefficient). MCA
studies have demonstrated that metabolic pathways usually have two or three enzymes with
the highest control of flux; their inhibition has more negative effects on the pathway function
than inhibition of enzymes exerting low flux control. Therefore, the enzymes with the highest
pathway control are the most convenient targets for therapeutic intervention. In this review,
the fundamentals of MCA as well as experimental strategies to determine the flux control coefficients
and metabolic modeling are analyzed. MCA and kinetic modeling have been applied
to trypanothione metabolism in Trypanosoma cruzi and the model predictions subsequently
validated in vivo. The results showed that three out of ten enzyme reactions analyzed
in the T. cruzi anti-oxidant metabolism were the most controlling enzymes. Hence, MCA and
metabolic modeling allow a further step in target prioritization for drug development against
trypanosomatids and other parasites.
Collapse
Affiliation(s)
- Emma Saavedra
- Departamento de Bioquimica, Instituto Nacional de Cardiologia Ignacio Chavez. Mexico City, Mexico
| | - Zabdi González-Chávez
- Departamento de Bioquimica, Instituto Nacional de Cardiologia Ignacio Chavez. Mexico City, Mexico
| | - Rafael Moreno-Sánchez
- Departamento de Bioquimica, Instituto Nacional de Cardiologia Ignacio Chavez. Mexico City, Mexico
| | - Paul A.M. Michels
- Centre for Immunity, Infection and Evolution (CIIE) and Centre for Translational and Chemical Biology (CTCB), School of Biological Sciences, The University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
29
|
Matadamas-Martínez F, Hernández-Campos A, Téllez-Valencia A, Vázquez-Raygoza A, Comparán-Alarcón S, Yépez-Mulia L, Castillo R. Leishmania mexicana Trypanothione Reductase Inhibitors: Computational and Biological Studies. MOLECULES (BASEL, SWITZERLAND) 2019; 24:molecules24183216. [PMID: 31487860 PMCID: PMC6767256 DOI: 10.3390/molecules24183216] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/24/2019] [Accepted: 08/31/2019] [Indexed: 12/27/2022]
Abstract
Leishmanicidal drugs have many side effects, and drug resistance to all of them has been documented. Therefore, the development of new drugs and the identification of novel therapeutic targets are urgently needed. Leishmania mexicana trypanothione reductase (LmTR), a NADPH-dependent flavoprotein oxidoreductase important to thiol metabolism, is essential for parasite viability. Its absence in the mammalian host makes this enzyme an attractive target for the development of new anti-Leishmania drugs. Herein, a tridimensional model of LmTR was constructed and the molecular docking of 20 molecules from a ZINC database was performed. Five compounds (ZINC04684558, ZINC09642432, ZINC12151998, ZINC14970552, and ZINC11841871) were selected (docking scores -10.27 kcal/mol to -5.29 kcal/mol and structurally different) and evaluated against recombinant LmTR (rLmTR) and L. mexicana promastigote. Additionally, molecular dynamics simulation of LmTR-selected compound complexes was achieved. The five selected compounds inhibited rLmTR activity in the range of 32.9% to 40.1%. The binding of selected compounds to LmTR involving different hydrogen bonds with distinct residues of the molecule monomers A and B is described. Compound ZINC12151998 (docking score -10.27 kcal/mol) inhibited 32.9% the enzyme activity (100 µM) and showed the highest leishmanicidal activity (IC50 = 58 µM) of all the selected compounds. It was more active than glucantime, and although its half-maximal cytotoxicity concentration (CC50 = 53 µM) was higher than that of the other four compounds, it was less cytotoxic than amphotericin B. Therefore, compound ZINC12151998 provides a promising starting point for a hit-to-lead process in our search for new anti-Leishmania drugs that are more potent and less cytotoxic.
Collapse
Affiliation(s)
- Félix Matadamas-Martínez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Unidad Médica de Alta Especialidad-Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Alicia Hernández-Campos
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Alfredo Téllez-Valencia
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango Av. Universidad y Fanny Anitúa S/N, Durango 34000, Mexico
| | - Alejandra Vázquez-Raygoza
- Facultad de Medicina y Nutrición, Universidad Juárez del Estado de Durango Av. Universidad y Fanny Anitúa S/N, Durango 34000, Mexico
| | - Sandra Comparán-Alarcón
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Unidad Médica de Alta Especialidad-Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico
| | - Lilián Yépez-Mulia
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Unidad Médica de Alta Especialidad-Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico.
| | - Rafael Castillo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico.
| |
Collapse
|
30
|
Pomel S, Mao W, Ha-Duong T, Cavé C, Loiseau PM. GDP-Mannose Pyrophosphorylase: A Biologically Validated Target for Drug Development Against Leishmaniasis. Front Cell Infect Microbiol 2019; 9:186. [PMID: 31214516 PMCID: PMC6554559 DOI: 10.3389/fcimb.2019.00186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/15/2019] [Indexed: 01/02/2023] Open
Abstract
Leishmaniases are neglected tropical diseases that threaten about 350 million people in 98 countries around the world. In order to find new antileishmanial drugs, an original approach consists in reducing the pathogenic effect of the parasite by impairing the glycoconjugate biosynthesis, necessary for parasite recognition and internalization by the macrophage. Some proteins appear to be critical in this way, and one of them, the GDP-Mannose Pyrophosphorylase (GDP-MP), is an attractive target for the design of specific inhibitors as it is essential for Leishmania survival and it presents significant differences with the host counterpart. Two GDP-MP inhibitors, compounds A and B, have been identified in two distinct studies by high throughput screening and by a rational approach based on molecular modeling, respectively. Compound B was found to be the most promising as it exhibited specific competitive inhibition of leishmanial GDP-MP and antileishmanial activities at the micromolar range with interesting selectivity indexes, as opposed to compound A. Therefore, compound B can be used as a pharmacological tool for the development of new specific antileishmanial drugs.
Collapse
Affiliation(s)
- Sébastien Pomel
- UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Wei Mao
- UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Tâp Ha-Duong
- UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Christian Cavé
- UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Philippe M Loiseau
- UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| |
Collapse
|
31
|
Colotti G, Saccoliti F, Gramiccia M, Di Muccio T, Prakash J, Yadav S, Dubey VK, Vistoli G, Battista T, Mocci S, Fiorillo A, Bibi A, Madia VN, Messore A, Costi R, Di Santo R, Ilari A. Structure-guided approach to identify a novel class of anti-leishmaniasis diaryl sulfide compounds targeting the trypanothione metabolism. Amino Acids 2019; 52:247-259. [PMID: 31037461 DOI: 10.1007/s00726-019-02731-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/03/2019] [Indexed: 01/03/2023]
Abstract
Leishmania protozoans are the causative agent of leishmaniasis, a neglected tropical disease consisting of three major clinical forms: visceral leishmaniasis (VL), cutaneous leishmaniasis, and mucocutaneous leishmaniasis. VL is caused by Leishmania donovani in East Africa and the Indian subcontinent and by Leishmania infantum in Europe, North Africa, and Latin America, and causes an estimated 60,000 deaths per year. Trypanothione reductase (TR) is considered to be one of the best targets to find new drugs against leishmaniasis. This enzyme is fundamental for parasite survival in the human host since it reduces trypanothione, a molecule used by the tryparedoxin/tryparedoxin peroxidase system of Leishmania to neutralize the hydrogen peroxide produced by host macrophages during infection. Recently, we solved the X-ray structure of TR in complex with the diaryl sulfide compound RDS 777 (6-(sec-butoxy)-2-((3-chlorophenyl)thio)pyrimidin-4-amine), which impairs the parasite defense against the reactive oxygen species by inhibiting TR with high efficiency. The compound binds to the catalytic site and engages in hydrogen bonds the residues more involved in the catalysis, namely Glu466', Cys57 and Cys52, thereby inhibiting the trypanothione binding. On the basis of the RDS 777-TR complex, we synthesized structurally related diaryl sulfide analogs as TR inhibitors able to compete for trypanothione binding to the enzyme and to kill the promastigote in the micromolar range. One of the most active among these compounds (RDS 562) was able to reduce the trypanothione concentration in cell of about 33% via TR inhibition. RDS 562 inhibits selectively Leishmania TR, while it does not inhibit the human homolog glutathione reductase.
Collapse
Affiliation(s)
- Gianni Colotti
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, IBPM-CNR, c/o Dip. Scienze Biochimiche Università Sapienza, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Francesco Saccoliti
- Dip. Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Università Sapienza, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Marina Gramiccia
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità Viale Regina Elena, 299, 00161, Rome, Italy
| | - Trentina Di Muccio
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità Viale Regina Elena, 299, 00161, Rome, Italy
| | - Jay Prakash
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 981039, India
| | - Sunita Yadav
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi, 221005, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University) Varanasi, Varanasi, 221005, India
| | - Giulio Vistoli
- Dip. di Scienze Farmaceutiche, Università degli Studi di Milano, via Mangiagalli 25, 20133, Milan, Italy
| | - Theo Battista
- Dip. Scienze Biochimiche, Università Sapienza, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Stefano Mocci
- Dip. Scienze Biochimiche, Università Sapienza, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Annarita Fiorillo
- Dip. Scienze Biochimiche, Università Sapienza, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Aasia Bibi
- Dip. Scienze Biochimiche, Università Sapienza, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Valentina Noemi Madia
- Dip. Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Università Sapienza, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Antonella Messore
- Dip. Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Università Sapienza, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Roberta Costi
- Dip. Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Università Sapienza, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Roberto Di Santo
- Dip. Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, Università Sapienza, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Andrea Ilari
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, IBPM-CNR, c/o Dip. Scienze Biochimiche Università Sapienza, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
32
|
Serban G. Future Prospects in the Treatment of Parasitic Diseases: 2-Amino-1,3,4-Thiadiazoles in Leishmaniasis. Molecules 2019; 24:E1557. [PMID: 31010226 PMCID: PMC6514673 DOI: 10.3390/molecules24081557] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/14/2019] [Accepted: 04/17/2019] [Indexed: 02/08/2023] Open
Abstract
Neglected tropical diseases affect the lives of a billion people worldwide. Among them, the parasitic infections caused by protozoan parasites of the Trypanosomatidae family have a huge impact on human health. Leishmaniasis, caused by Leishmania spp., is an endemic parasitic disease in over 88 countries and is closely associated with poverty. Although significant advances have been made in the treatment of leishmaniasis over the last decade, currently available chemotherapy is far from satisfactory. The lack of an approved vaccine, effective medication and significant drug resistance worldwide had led to considerable interest in discovering new, inexpensive, efficient and safe antileishmanial agents. 1,3,4-Thiadiazole rings are found in biologically active natural products and medicinally important synthetic compounds. The thiadiazole ring exhibits several specific properties: it is a bioisostere of pyrimidine or benzene rings with prevalence in biologically active compounds; the sulfur atom increases lipophilicity and combined with the mesoionic character of thiadiazoles imparts good oral absorption and good cell permeability, resulting in good bioavailability. This review presents synthetic 2-amino-1,3,4-thiadiazole derivatives with antileishmanial activity. Many reported derivatives can be considered as lead compounds for the synthesis of future agents as an alternative to the treatment of leishmaniasis.
Collapse
Affiliation(s)
- Georgeta Serban
- Pharmaceutical Chemistry Department, Faculty of Medicine and Pharmacy, University of Oradea, 29 Nicolae Jiga, 410028 Oradea, Romania.
| |
Collapse
|
33
|
Identification and binding mode of a novel Leishmania Trypanothione reductase inhibitor from high throughput screening. PLoS Negl Trop Dis 2018; 12:e0006969. [PMID: 30475811 PMCID: PMC6283646 DOI: 10.1371/journal.pntd.0006969] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/06/2018] [Accepted: 11/03/2018] [Indexed: 11/30/2022] Open
Abstract
Trypanothione reductase (TR) is considered to be one of the best targets to find new drugs against Leishmaniasis. This enzyme is fundamental for parasite survival in the host since it reduces trypanothione, a molecule used by the tryparedoxin/tryparedoxin peroxidase system of Leishmania to neutralize hydrogen peroxide produced by host macrophages during infection. In order to identify new lead compounds against Leishmania we developed and validated a new luminescence-based high-throughput screening (HTS) assay that allowed us to screen a library of 120,000 compounds. We identified a novel chemical class of TR inhibitors, able to kill parasites with an IC50 in the low micromolar range. The X-ray crystal structure of TR in complex with a compound from this class (compound 3) allowed the identification of its binding site in a pocket at the entrance of the NADPH binding site. Since the binding site of compound 3 identified by the X-ray structure is unique, and is not present in human homologs such as glutathione reductase (hGR), it represents a new target for drug discovery efforts. Human leishmaniasis is one of the most diffused neglected vector-borne diseases and causes 60,000 deaths annually, a rate surpassed only by malaria among parasitic diseases. Anti-Leishmania treatments are unsatisfactory in terms of their safety and efficacy and there is an urgent need to find treatments. Compounds targeting proteins that are essential for parasite survival but that are not present in the human host are of especial interest with a view to developing selective and non-toxic drugs. Leishmania uses trypanothione as its main detoxifying molecule, allowing the parasite to neutralize the reactive oxygen species produced by macrophages during the infection. Trypanothione is activated by Trypanothione reductase (TR), an enzyme that is absent in man but that is essential for parasite survival, and is therefore considered an attractive target. The new luminescence-based high-throughput screening assay that we have developed and validated allowed us to identify new TR inhibitors by screening a collection of 120,000 compounds. Hit follow-up led to a prototype molecule, compound 3, that we have shown is able to bind in a cavity at the entrance of the NADPH binding site, thereby inhibiting TR. Compound 3 is not able to inhibit the human homolog glutathione reductase (hGR) since the residues lining its NADPH binding cavity are not conserved with respect to TR. Based on their mechanism of action, compounds from the class represented by compound 3 are useful leads for the design new drugs against leishmaniasis.
Collapse
|
34
|
Prakash J, Yadav S, Saha G, Chiranjivi AK, Kumar S, Sasidharan S, Saudagar P, Dubey VK. Episomal expression of human glutathione reductase (HuGR) in Leishmania sheds light on evolutionary pressure for unique redox metabolism pathway: Impaired stress tolerance ability of Leishmania donovani. Int J Biol Macromol 2018; 121:498-507. [PMID: 30316767 DOI: 10.1016/j.ijbiomac.2018.10.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/30/2018] [Accepted: 10/10/2018] [Indexed: 11/26/2022]
Abstract
Trypanothione based redox metabolism is unique to the Trypanosomatida family. Despite extensive studies on redox metabolism of Leishmania parasites, a prominent question of why Leishmania adopt this unique redox pathway remains elusive. We have episomally expressed human glutathione reductase (HuGR) in Leishmania donovani (LdGR+) and investigated its effect. LdGR+ strain has slower growth compared to the wild type (Ld) indicating decreased survival ability of the strain. Further, LdGR+ strain showed enhanced accumulation of intracellular reactive oxygen species (ROS) and more sensitivity to the anti-leishmanial drug, Miltefosine, inferring increased stress level. In contrast, the expression analyses of genes specific to redox metabolism were increased significantly in LdGR+ strain compared to wild type. Lower infectivity index of the LdGR+ strain substantiated the above findings and indicated that the expression of HuGR reduces the stress tolerance ability of the parasite. From molecular docking studies with HuGR, it was observed that oxidized trypanothione (TS2) binds much better than oxidized glutathione (GS2). These results also give us hints that the parasite is losing infectivity potential due to an overall increase in intracellular stress caused with the expression of HuGR, showcasing a possible role of evolutionary pressure on the Leishmania parasites posed by HuGR.
Collapse
Affiliation(s)
- Jay Prakash
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sunita Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, India
| | - Gundappa Saha
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Adarsh Kumar Chiranjivi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Suresh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Santanu Sasidharan
- Department of Biotechnology, National Institute of Technology, Warangal 506004, India
| | - Prakash Saudagar
- Department of Biotechnology, National Institute of Technology, Warangal 506004, India.
| | - Vikash Kumar Dubey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India; School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi 221005, India.
| |
Collapse
|
35
|
Ilari A, Genovese I, Fiorillo F, Battista T, De Ionna I, Fiorillo A, Colotti G. Toward a Drug Against All Kinetoplastids: From LeishBox to Specific and Potent Trypanothione Reductase Inhibitors. Mol Pharm 2018; 15:3069-3078. [PMID: 29897765 DOI: 10.1021/acs.molpharmaceut.8b00185] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Leishmaniasis, Chagas disease, and sleeping sickness affect millions of people worldwide and lead to the death of about 50 000 humans per year. These diseases are caused by the kinetoplastids Leishmania, Trypanosoma cruzi, and Trypanosoma brucei, respectively. These parasites share many general features, including gene conservation, high amino acid identity among proteins, the presence of subcellular structures as glycosomes and the kinetoplastid, and genome architecture, that may make drug development family specific, rather than species-specific, i.e., on the basis of the inhibition of a common, conserved parasite target. However, no optimal molecular targets or broad-spectrum drugs have been identified to date to cure these diseases. Here, the LeishBox from GlaxoSmithKline high-throughput screening, a 192-molecule set of best antileishmanial compounds, based on 1.8 million compounds, was used to identify specific inhibitors of a validated Leishmania target, trypanothione reductase (TR), while analyzing in parallel the homologous human enzyme glutathione reductase (GR). We identified three specific highly potent TR inhibitors and performed docking on the TR solved structure, thereby elucidating the putative molecular basis of TR inhibition. Since TRs from kinetoplastids are well conserved, and these compounds inhibit the growth of Leishmania, Trypanosoma cruzi, and Trypanosoma brucei, the identification of a common validated target may lead to the development of potent antikinetoplastid drugs.
Collapse
Affiliation(s)
- Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM CNR), Department of Biochemical Sciences , Sapienza University , P.le A. Moro 5 , 00185 Rome , Italy
| | - Ilaria Genovese
- Department of Biochemical Sciences , Sapienza University , P.le A. Moro 5 , 00185 Rome , Italy
| | - Fabiana Fiorillo
- Department of Biochemical Sciences , Sapienza University , P.le A. Moro 5 , 00185 Rome , Italy
| | - Theo Battista
- Department of Biochemical Sciences , Sapienza University , P.le A. Moro 5 , 00185 Rome , Italy
| | - Ilenia De Ionna
- Department of Biochemical Sciences , Sapienza University , P.le A. Moro 5 , 00185 Rome , Italy
| | - Annarita Fiorillo
- Department of Biochemical Sciences , Sapienza University , P.le A. Moro 5 , 00185 Rome , Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM CNR), Department of Biochemical Sciences , Sapienza University , P.le A. Moro 5 , 00185 Rome , Italy
| |
Collapse
|
36
|
First example of peptides targeting the dimer interface of Leishmania infantum trypanothione reductase with potent in vitro antileishmanial activity . Eur J Med Chem 2017; 135:49-59. [PMID: 28431354 DOI: 10.1016/j.ejmech.2017.04.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/30/2017] [Accepted: 04/11/2017] [Indexed: 12/27/2022]
Abstract
A series of 9-mer and 13-mer amide-bridged cyclic peptides derived from the linear prototype Ac-PKIIQSVGIS-Nle-K-Nle-NH2 (Toro et al. ChemBioChem2013) has been designed and synthesized by introduction of the lactam between amino acid side chains that are separated by one helical turn (i, i+4). All of these compounds were tested in vitro as both dimerization and enzyme inhibitors of Leishmania infantum trypanothione reductase (Li-TryR). Three of the 13-mer cyclic peptide derivatives (3, 4 and 6) inhibited the oxidoreductase activity of Li-TryR in the low micromolar range and they also disrupted enzyme dimerization. Cyclic analogues 3 and 4 were more resistant to proteases than was the linear prototype. Furthermore, the most potent TryR inhibitors in the linear and cyclic series displayed potent in vitro activity against Leishmania infantum upon conjugation with cationic cell-penetrating peptides. To date, these conjugated peptides can be considered the first example of TryR dimerization inhibitors that are active in cell culture.
Collapse
|
37
|
Saccoliti F, Angiulli G, Pupo G, Pescatori L, Madia VN, Messore A, Colotti G, Fiorillo A, Scipione L, Gramiccia M, Di Muccio T, Di Santo R, Costi R, Ilari A. Inhibition of Leishmania infantum trypanothione reductase by diaryl sulfide derivatives. J Enzyme Inhib Med Chem 2017; 32:304-310. [PMID: 28098499 PMCID: PMC6010130 DOI: 10.1080/14756366.2016.1250755] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The study presented here aimed at identifying a new class of compounds acting against Leishmania parasites, the causative agent of Leishmaniasis. For this purpose, the thioether derivatives of our in-house library have been evaluated in whole-cell screening assays in order to determine their in vitro activity against Leishmania protozoan. Among them, promising results have been achieved with compound RDS 777 (6-(sec-butoxy)-2-((3-chlorophenyl)thio)pyrimidin-4-amine) (IC50 = 29.43 µM), which is able to impair the mechanism of the parasite defence against the reactive oxygen species by inhibiting the trypanothione reductase (TR) with high efficiency (Ki 0.25 ± 0.18 µM). The X-ray structure of L. infantum TR in complex with RDS 777 disclosed the mechanism of action of this compound that binds to the catalytic site and engages in hydrogen bonds the residues more involved in the catalysis, namely Glu466', Cys57 and Cys52, thereby inhibiting the trypanothione binding and avoiding its reduction.
Collapse
Affiliation(s)
- Francesco Saccoliti
- a Istituto Pasteur-Fondazione Cenci Bolognetti , Dipartimento di Chimica e Tecnologie del Farmaco , "Sapienza" Università di Roma , Roma , Italia
| | - Gabriella Angiulli
- b Istituto di Biologia e Patologia Molecolari - CNR , and Dipartimento di Scienze Biochimiche , " Sapienza" Università di Roma , Roma , Italia
| | - Giovanni Pupo
- a Istituto Pasteur-Fondazione Cenci Bolognetti , Dipartimento di Chimica e Tecnologie del Farmaco , "Sapienza" Università di Roma , Roma , Italia
| | - Luca Pescatori
- a Istituto Pasteur-Fondazione Cenci Bolognetti , Dipartimento di Chimica e Tecnologie del Farmaco , "Sapienza" Università di Roma , Roma , Italia
| | - Valentina Noemi Madia
- a Istituto Pasteur-Fondazione Cenci Bolognetti , Dipartimento di Chimica e Tecnologie del Farmaco , "Sapienza" Università di Roma , Roma , Italia
| | - Antonella Messore
- a Istituto Pasteur-Fondazione Cenci Bolognetti , Dipartimento di Chimica e Tecnologie del Farmaco , "Sapienza" Università di Roma , Roma , Italia
| | - Gianni Colotti
- b Istituto di Biologia e Patologia Molecolari - CNR , and Dipartimento di Scienze Biochimiche , " Sapienza" Università di Roma , Roma , Italia
| | - Annarita Fiorillo
- b Istituto di Biologia e Patologia Molecolari - CNR , and Dipartimento di Scienze Biochimiche , " Sapienza" Università di Roma , Roma , Italia
| | - Luigi Scipione
- a Istituto Pasteur-Fondazione Cenci Bolognetti , Dipartimento di Chimica e Tecnologie del Farmaco , "Sapienza" Università di Roma , Roma , Italia
| | - Marina Gramiccia
- c Dipartimento di Malattie Infettive, Parassitarie e Immunomediate , Istituto Superiore di Sanità , Roma , Italia
| | - Trentina Di Muccio
- c Dipartimento di Malattie Infettive, Parassitarie e Immunomediate , Istituto Superiore di Sanità , Roma , Italia
| | - Roberto Di Santo
- a Istituto Pasteur-Fondazione Cenci Bolognetti , Dipartimento di Chimica e Tecnologie del Farmaco , "Sapienza" Università di Roma , Roma , Italia
| | - Roberta Costi
- a Istituto Pasteur-Fondazione Cenci Bolognetti , Dipartimento di Chimica e Tecnologie del Farmaco , "Sapienza" Università di Roma , Roma , Italia
| | - Andrea Ilari
- b Istituto di Biologia e Patologia Molecolari - CNR , and Dipartimento di Scienze Biochimiche , " Sapienza" Università di Roma , Roma , Italia
| |
Collapse
|
38
|
Abstract
In trypanosomatids, polyamine and trypanothione pathways can be considered as a whole unique metabolism, where most enzymes are essential for parasitic survival and infectivity. Leishmania parasites and all the other members of the Trypanosomatids family depend on polyamines for growth and survival: the enzymes involved in the synthesis and utilization of spermidine and trypanothione, i.e., arginase, ornithine decarboxylase, S-adenosylmethionine decarboxylase, spermidine synthase and in particular trypanothione synthetase-amidase, trypanothione reductase and tryparedoxin-dependent peroxidase are promising targets for drug development. This review deals with recent structure-based studies on these enzymes, aimed at the discovery of inhibitors of this pathway.
Collapse
|
39
|
Arginase Is Essential for Survival of Leishmania donovani Promastigotes but Not Intracellular Amastigotes. Infect Immun 2016; 85:IAI.00554-16. [PMID: 27795357 PMCID: PMC5203656 DOI: 10.1128/iai.00554-16] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/16/2016] [Indexed: 12/12/2022] Open
Abstract
Studies of Leishmania donovani have shown that both ornithine decarboxylase and spermidine synthase, two enzymes of the polyamine biosynthetic pathway, are critical for promastigote proliferation and required for maximum infection in mice. However, the importance of arginase (ARG), the first enzyme of the polyamine pathway in Leishmania, has not been analyzed in L. donovani. To test ARG function in intact parasites, we generated Δarg null mutants in L. donovani and evaluated their ability to proliferate in vitro and trigger infections in mice. The Δarg knockout was incapable of growth in the absence of polyamine supplementation, but the auxotrophic phenotype could be bypassed by addition of either millimolar concentrations of ornithine or micromolar concentrations of putrescine or by complementation with either glycosomal or cytosolic versions of ARG. Spermidine supplementation of the medium did not circumvent the polyamine auxotrophy of the Δarg line. Although ARG was found to be essential for ornithine and polyamine synthesis, ornithine decarboxylase appeared to be the rate-limiting enzyme for polyamine production. Mouse infectivity studies revealed that the Δarg lesion reduced parasite burdens in livers by an order of magnitude but had little impact on the numbers of parasites recovered from spleens. Thus, ARG is essential for proliferation of promastigotes but not intracellular amastigotes. Coupled with previous studies, these data support a model in which L. donovani amastigotes readily salvage ornithine and have some access to host spermidine pools, while host putrescine appears to be unavailable for salvage by the parasite.
Collapse
|
40
|
Couto N, Wood J, Barber J. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network. Free Radic Biol Med 2016; 95:27-42. [PMID: 26923386 DOI: 10.1016/j.freeradbiomed.2016.02.028] [Citation(s) in RCA: 577] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 02/19/2016] [Accepted: 02/24/2016] [Indexed: 02/07/2023]
Abstract
In this review article we examine the role of glutathione reductase in the regulation, modulation and maintenance of cellular redox homoeostasis. Glutathione reductase is responsible for maintaining the supply of reduced glutathione; one of the most abundant reducing thiols in the majority of cells. In its reduced form, glutathione plays key roles in the cellular control of reactive oxygen species. Reactive oxygen species act as intracellular and extracellular signalling molecules and complex cross talk between levels of reactive oxygen species, levels of oxidised and reduced glutathione and other thiols, and antioxidant enzymes such as glutathione reductase determine the most suitable conditions for redox control within a cell or for activation of programmed cell death. Additionally, we discuss the translation and expression of glutathione reductase in a number of organisms including yeast and humans. In yeast and human cells, a single gene expresses more than one form of glutathione reductase, destined for residence in the cytoplasm or for translocation to different organelles; in plants, however, two genes encoding this protein have been described. In general, insects and kinetoplastids (a group of protozoa, including Plasmodia and Trypanosoma) do not express glutathione reductase or glutathione biosynthetic enzymes. Instead, they express either the thioredoxin system or the trypanothione system. The thioredoxin system is also present in organisms that have the glutathione system and there may be overlapping functions with cross-talk between the two systems. Finally we evaluate therapeutic targets to overcome oxidative stress associated cellular disorders.
Collapse
Affiliation(s)
- Narciso Couto
- Michael Barber Centre for Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Road, Manchester M1 7DN, UK; ChELSI Institute, Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK.
| | - Jennifer Wood
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Jill Barber
- Michael Barber Centre for Mass Spectrometry, Manchester Institute of Biotechnology, University of Manchester, Princess Road, Manchester M1 7DN, UK; Manchester Pharmacy School, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
41
|
Novel Heteroaryl Selenocyanates and Diselenides as Potent Antileishmanial Agents. Antimicrob Agents Chemother 2016; 60:3802-12. [PMID: 27067328 DOI: 10.1128/aac.02529-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 04/06/2016] [Indexed: 12/11/2022] Open
Abstract
A series of new selenocyanates and diselenides bearing interesting bioactive scaffolds (quinoline, quinoxaline, acridine, chromene, furane, isosazole, etc.) was synthesized, and their in vitro leishmanicidal activities against Leishmania infantum amastigotes along with their cytotoxicities in human THP-1 cells were determined. Interestingly, most tested compounds were active in the low micromolar range and led us to identify four lead compounds (1h, 2d, 2e, and 2f) with 50% effective dose (ED50) values ranging from 0.45 to 1.27 μM and selectivity indexes of >25 for all of them, much higher than those observed for the reference drugs. These active derivatives were evaluated against infected macrophages, and in order to gain preliminary knowledge about their possible mechanism of action, the inhibition of trypanothione reductase (TryR) was measured. Among these novel structures, compounds 1h (3,5-dimethyl-4-isoxazolyl selenocyanate) and 2d [3,3'-(diselenodiyldimethanediyl)bis(2-bromothiophene)] exhibited good association between TryR inhibitory activity and antileishmanial potency, pointing to 1h, for its excellent theoretical ADME (absorption, distribution, metabolism, and excretion) properties, as the most promising lead molecule for leishmancidal drug design.
Collapse
|
42
|
Up-regulation of cytosolic tryparedoxin in Amp B resistant isolates of Leishmania donovani and its interaction with cytosolic tryparedoxin peroxidase. Biochimie 2016; 121:312-25. [DOI: 10.1016/j.biochi.2015.12.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/26/2015] [Indexed: 11/18/2022]
|
43
|
Di Pietro O, Vicente-García E, Taylor MC, Berenguer D, Viayna E, Lanzoni A, Sola I, Sayago H, Riera C, Fisa R, Clos MV, Pérez B, Kelly JM, Lavilla R, Muñoz-Torrero D. Multicomponent reaction-based synthesis and biological evaluation of tricyclic heterofused quinolines with multi-trypanosomatid activity. Eur J Med Chem 2015; 105:120-37. [PMID: 26479031 PMCID: PMC4638191 DOI: 10.1016/j.ejmech.2015.10.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 09/28/2015] [Accepted: 10/06/2015] [Indexed: 11/28/2022]
Abstract
Human African trypanosomiasis (HAT), Chagas disease and leishmaniasis, which are caused by the trypanosomatids Trypanosoma brucei, Trypanosoma cruzi and Leishmania species, are among the most deadly neglected tropical diseases. The development of drugs that are active against several trypanosomatids is appealing from a clinical and economic viewpoint, and seems feasible, as these parasites share metabolic pathways and hence might be treatable by common drugs. From benzonapthyridine 1, an inhibitor of acetylcholinesterase (AChE) for which we have found a remarkable trypanocidal activity, we have designed and synthesized novel benzo[h][1,6]naphthyridines, pyrrolo[3,2-c]quinolines, azepino[3,2-c]quinolines, and pyrano[3,2-c]quinolines through 2–4-step sequences featuring an initial multicomponent Povarov reaction as the key step. To assess the therapeutic potential of the novel compounds, we have evaluated their in vitro activity against T. brucei, T. cruzi, and Leishmania infantum, as well as their brain permeability, which is of specific interest for the treatment of late-stage HAT. To assess their potential toxicity, we have determined their cytotoxicity against rat myoblast L6 cells and their AChE inhibitory activity. Several tricyclic heterofused quinoline derivatives were found to display an interesting multi-trypanosomatid profile, with one-digit micromolar potencies against two of these parasites and two-digit micromolar potency against the other. Pyranoquinoline 39, which displays IC50 values of 1.5 μM, 6.1 μM and 29.2 μM against T. brucei, L. infantum and T. cruzi, respectively, brain permeability, better drug-like properties (lower lipophilicity and molecular weight and higher CNS MPO desirability score) than hit 1, and the lowest AChE inhibitory activity of the series (IC50 > 30 μM), emerges as an interesting multi-trypanosomatid lead, amenable to further optimization particularly in terms of its selectivity index over mammalian cells. Novel classes of tricyclic heterofused quinolines have been synthesized. Their 2–4-step syntheses involve a multicomponent Povarov reaction as the key step. Some compounds exhibit single digit micromolar potencies against 2 trypanosomatids. All compounds with multi-trypanosomatid activity can cross the blood–brain barrier. Most compounds with multi-trypanosomatid activity have drug like properties.
Collapse
Affiliation(s)
- Ornella Di Pietro
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | | | - Martin C Taylor
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Diana Berenguer
- Laboratori de Parasitologia, Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Elisabet Viayna
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Anna Lanzoni
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Irene Sola
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Helena Sayago
- Barcelona Science Park, Baldiri Reixac, 10-12, E-08028, Barcelona, Spain
| | - Cristina Riera
- Laboratori de Parasitologia, Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Roser Fisa
- Laboratori de Parasitologia, Departament de Microbiologia i Parasitologia Sanitàries, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - M Victòria Clos
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Institut de Neurociències, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - Belén Pérez
- Departament de Farmacologia, de Terapèutica i de Toxicologia, Institut de Neurociències, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Barcelona, Spain
| | - John M Kelly
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Rodolfo Lavilla
- Barcelona Science Park, Baldiri Reixac, 10-12, E-08028, Barcelona, Spain; Laboratori de Química Orgànica, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain
| | - Diego Muñoz-Torrero
- Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, and Institut de Biomedicina (IBUB), Universitat de Barcelona, Av. Joan XXIII, 27-31, E-08028, Barcelona, Spain.
| |
Collapse
|
44
|
Kotowski N, Jardim R, Dávila AMR. Improved orthologous databases to ease protozoan targets inference. Parasit Vectors 2015; 8:494. [PMID: 26416523 PMCID: PMC4587786 DOI: 10.1186/s13071-015-1090-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/11/2015] [Indexed: 11/10/2022] Open
Abstract
Background Homology inference helps on identifying similarities, as well as differences among organisms, which provides a better insight on how closely related one might be to another. In addition, comparative genomics pipelines are widely adopted tools designed using different bioinformatics applications and algorithms. In this article, we propose a methodology to build improved orthologous databases with the potential to aid on protozoan target identification, one of the many tasks which benefit from comparative genomics tools. Methods Our analyses are based on OrthoSearch, a comparative genomics pipeline originally designed to infer orthologs through protein-profile comparison, supported by an HMM, reciprocal best hits based approach. Our methodology allows OrthoSearch to confront two orthologous databases and to generate an improved new one. Such can be later used to infer potential protozoan targets through a similarity analysis against the human genome. Results The protein sequences of Cryptosporidium hominis, Entamoeba histolytica and Leishmania infantum genomes were comparatively analyzed against three orthologous databases: (i) EggNOG KOG, (ii) ProtozoaDB and (iii) Kegg Orthology (KO). That allowed us to create two new orthologous databases, “KO + EggNOG KOG” and “KO + EggNOG KOG + ProtozoaDB”, with 16,938 and 27,701 orthologous groups, respectively. Such new orthologous databases were used for a regular OrthoSearch run. By confronting “KO + EggNOG KOG” and “KO + EggNOG KOG + ProtozoaDB” databases and protozoan species we were able to detect the following total of orthologous groups and coverage (relation between the inferred orthologous groups and the species total number of proteins): Cryptosporidium hominis: 1,821 (11 %) and 3,254 (12 %); Entamoeba histolytica: 2,245 (13 %) and 5,305 (19 %); Leishmania infantum: 2,702 (16 %) and 4,760 (17 %). Using our HMM-based methodology and the largest created orthologous database, it was possible to infer 13 orthologous groups which represent potential protozoan targets; these were found because of our distant homology approach. We also provide the number of species-specific, pair-to-pair and core groups from such analyses, depicted in Venn diagrams. Conclusions The orthologous databases generated by our HMM-based methodology provide a broader dataset, with larger amounts of orthologous groups when compared to the original databases used as input. Those may be used for several homology inference analyses, annotation tasks and protozoan targets identification. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1090-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nelson Kotowski
- Computational and Systems Biology Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Avenida Brasil, 4365, 21040-360, Rio de Janeiro, RJ, Brazil.
| | - Rodrigo Jardim
- Computational and Systems Biology Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Avenida Brasil, 4365, 21040-360, Rio de Janeiro, RJ, Brazil.
| | - Alberto M R Dávila
- Computational and Systems Biology Laboratory, Oswaldo Cruz Institute, FIOCRUZ, Avenida Brasil, 4365, 21040-360, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
45
|
Amano Y, Namatame I, Tateishi Y, Honboh K, Tanabe E, Niimi T, Sakashita H. Structural insights into the novel inhibition mechanism of Trypanosoma cruzi spermidine synthase. ACTA ACUST UNITED AC 2015; 71:1879-89. [PMID: 26327378 DOI: 10.1107/s1399004715013048] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 07/07/2015] [Indexed: 01/08/2023]
Abstract
Trypanosoma cruzi causes Chagas disease, a severe disease affecting 8-10 million people in Latin America. While nifurtimox and benznidazole are used to treat this disease, their efficacy is limited and adverse effects are observed. New therapeutic targets and novel drugs are therefore urgently required. Enzymes in the polyamine-trypanothione pathway are promising targets for the treatment of Chagas disease. Spermidine synthase is a key enzyme in this pathway that catalyzes the transfer of an aminopropyl group from decarboxylated S-adenosylmethionine (dcSAM) to putrescine. Fragment-based drug discovery was therefore conducted to identify novel, potent inhibitors of spermidine synthase from T. cruzi (TcSpdSyn). Here, crystal structures of TcSpdSyn in complex with dcSAM, trans-4-methylcyclohexylamine and hit compounds from fragment screening are reported. The structure of dcSAM complexed with TcSpdSyn indicates that dcSAM stabilizes the conformation of the `gatekeeping' loop to form the putrescine-binding pocket. The structures of fragments bound to TcSpdSyn revealed two fragment-binding sites: the putrescine-binding pocket and the dimer interface. The putrescine-binding pocket was extended by an induced-fit mechanism. The crystal structures indicate that the conformation of the dimer interface is required to stabilize the gatekeeping loop and that fragments binding to this interface inhibit TcSpdSyn by disrupting its conformation. These results suggest that utilizing the dynamic structural changes in TcSpdSyn that occur upon inhibitor binding will facilitate the development of more selective and potent inhibitors.
Collapse
Affiliation(s)
- Yasushi Amano
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Ichiji Namatame
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Yukihiro Tateishi
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Kazuya Honboh
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Eiki Tanabe
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Tatsuya Niimi
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Hitoshi Sakashita
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| |
Collapse
|
46
|
Angiulli G, Lantella A, Forte E, Angelucci F, Colotti G, Ilari A, Malatesta F. Leishmania infantum trypanothione reductase is a promiscuous enzyme carrying an NADPH:O2 oxidoreductase activity shared by glutathione reductase. Biochim Biophys Acta Gen Subj 2015; 1850:1891-7. [PMID: 26033467 DOI: 10.1016/j.bbagen.2015.05.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/05/2015] [Accepted: 05/27/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND Leishmania infantum is a protozoan of the trypanosomatid family causing visceral leishmaniasis. Leishmania parasites are transmitted by the bite of phlebotomine sand flies to the human host and are phagocyted by macrophages. The parasites synthesize N1-N8-bis(glutationyl)-spermidine (trypanothione, TS2), which furnishes electrons to the tryparedoxin-tryparedoxin peroxidase couple to reduce the reactive oxygen species produced by macrophages. Trypanothione is kept reduced by trypanothione reductase (TR), a FAD-containing enzyme essential for parasite survival. METHODS The enzymatic activity has been studied by stopped-flow, absorption spectroscopy, and amperometric measurements. RESULTS The study reported here demonstrates that the steady-state parameters change as a function of the order of substrates addition to the TR-containing solution. In particular, when the reaction is carried out by adding NADPH to a solution containing the enzyme and trypanothione, the KM for NADPH decreases six times compared to the value obtained by adding TS2 as last reagent to start the reaction (1.9 vs. 12μM). More importantly, we demonstrate that TR is able to catalyze the oxidation of NADPH also in the absence of trypanothione. Thus, TR catalyzes the reduction of O2 to water through the sequential formation of C(4a)-(hydro)peroxyflavin and sulfenic acid intermediates. This NADPH:O2 oxidoreductase activity is shared by Saccharomyces cerevisiae glutathione reductase (GR). CONCLUSIONS TR and GR, in the absence of their physiological substrates, may catalyze the electron transfer reaction from NADPH to molecular oxygen to yield water. GENERAL SIGNIFICANCE TR and GR are promiscuous enzymes.
Collapse
Affiliation(s)
- Gabriella Angiulli
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome Italy
| | - Antonella Lantella
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome Italy
| | - Elena Forte
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome Italy
| | - Francesco Angelucci
- Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell'Ambiente, University of L'Aquila, L'Aquila, Italy
| | - Gianni Colotti
- CNR-Institute of Molecular Biology and Pathology, c/o Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy
| | - Andrea Ilari
- CNR-Institute of Molecular Biology and Pathology, c/o Department of Biochemical Sciences, Sapienza University of Rome, Rome, Italy.
| | - Francesco Malatesta
- Department of Biochemical Sciences "Alessandro Rossi Fanelli", Sapienza University of Rome, Rome Italy.
| |
Collapse
|
47
|
Structure-based discovery of the first non-covalent inhibitors of Leishmania major tryparedoxin peroxidase by high throughput docking. Sci Rep 2015; 5:9705. [PMID: 25951439 PMCID: PMC4423475 DOI: 10.1038/srep09705] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 03/13/2015] [Indexed: 11/17/2022] Open
Abstract
Leishmaniasis is a neglected vector-born disease caused by a protozoan of the genus Leishmania and affecting more than 1.300.000 people worldwide. The couple tryparedoxin/tryparedoxin peroxidase is essential for parasite survival in the host since it neutralizes the hydrogen peroxide produced by macrophages during the infection. Herein we report a study aimed at discovering the first class of compounds able to non-covalently inhibit tryparedoxin peroxidase. We have solved the high-resolution structure of Tryparedoxin peroxidase I from Leishmania major (LmTXNPx) in the reduced state and in fully folded conformation. A first series of compounds able to inhibit LmTXNPx was identified by means of the high throughput docking technique. The inhibitory activity of these compounds was validated by a Horseradish peroxidase-based enzymatic assay and their affinity for LmTXNPx calculated by surface plasmon resonance experiments. On the basis of these results, the analysis of the enzyme-inhibitor docked models allowed us to rationally design and synthesize a series of N,N-disubstituted 3-aminomethyl quinolones. These compounds showed an inhibitory potency against LmTXNPx in the micromolar range. Among them, compound 12 represents the first non-covalent LmTXNPx inhibitor reported to date and could pave the way to the discovery of a new class of drugs against leishmaniasis.
Collapse
|
48
|
O’Sullivan MC, Durham TB, Valdes HE, Dauer KL, Karney NJ, Forrestel AC, Bacchi CJ, Baker JF. Dibenzosuberyl substituted polyamines and analogs of clomipramine as effective inhibitors of trypanothione reductase; molecular docking, and assessment of trypanocidal activities. Bioorg Med Chem 2015; 23:996-1010. [DOI: 10.1016/j.bmc.2015.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/04/2015] [Accepted: 01/09/2015] [Indexed: 12/15/2022]
|
49
|
Keenan M, Chaplin JH. A New Era for Chagas Disease Drug Discovery? PROGRESS IN MEDICINAL CHEMISTRY 2015; 54:185-230. [DOI: 10.1016/bs.pmch.2014.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
50
|
Nagle A, Khare S, Kumar AB, Supek F, Buchynskyy A, Mathison CJN, Chennamaneni N, Pendem N, Buckner FS, Gelb M, Molteni V. Recent developments in drug discovery for leishmaniasis and human African trypanosomiasis. Chem Rev 2014; 114:11305-47. [PMID: 25365529 PMCID: PMC4633805 DOI: 10.1021/cr500365f] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Indexed: 02/08/2023]
Affiliation(s)
- Advait
S. Nagle
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Shilpi Khare
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Arun Babu Kumar
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Frantisek Supek
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Andriy Buchynskyy
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Casey J. N. Mathison
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| | - Naveen
Kumar Chennamaneni
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Nagendar Pendem
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Frederick S. Buckner
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Michael
H. Gelb
- Departments of Chemistry, Biochemistry, and Medicine, University
of Washington, Seattle, Washington 98195, United States
| | - Valentina Molteni
- Genomics
Institute of the Novartis Research Foundation, 10675 John Jay Hopkins Drive, San Diego, California 92121, United States
| |
Collapse
|