1
|
Lodge J, Kajtar L, Duxbury R, Hall D, Burley GA, Cordy J, Yates JW, Rattray Z. Quantifying antibody binding: techniques and therapeutic implications. MAbs 2025; 17:2459795. [PMID: 39957177 PMCID: PMC11834528 DOI: 10.1080/19420862.2025.2459795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/18/2025] Open
Abstract
The binding kinetics of an antibody for its target antigen represent key determinants of its biological function and success as a novel biotherapeutic. Defining these interactions and kinetics is critical for understanding the pharmacological and pharmacodynamic profiles of antibodies in therapeutic applications, with line of sight to clinical translation. In this review, we discuss the latest developments in approaches to measure and modulate antibody-antigen interactions, including antibody engineering, novel antibody formats, current, and emerging technologies for measuring antibody-antigen binding interactions, and emerging perspectives within the field. We also explore how emerging computational methods are set to become powerful tools for modeling antibody-binding interactions under physiologically relevant conditions. Finally, we consider the therapeutic implications of modulating target engagement in terms of pharmacodynamics and pharmacokinetics.
Collapse
Affiliation(s)
- James Lodge
- Large Molecule Discovery, GSK, Stevenage, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Lewis Kajtar
- Large Molecule Discovery, GSK, Stevenage, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Rachel Duxbury
- Large Molecule Discovery, GSK, Stevenage, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - David Hall
- Large Molecule Discovery, GSK, Stevenage, UK
| | - Glenn A. Burley
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | | | | | - Zahra Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
2
|
Chin SE, Gallego P, Aagaard A, Carmen S, Barrett N, Wolny M, Cloarec S, Paterson J, Sivapalan R, Hunt J, Murray TV, Delaney T, Sjögren T, Neal F. Identification of unique binding mode anti-NTF3 antibodies from a novel long VH CDR3 phage display library. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 31:100216. [PMID: 39832740 DOI: 10.1016/j.slasd.2025.100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Neurotrophic factor 3 (NTF3) is a cysteine knot protein and a member of the nerve growth factor (NGF) family of cytokines. NTF3 engages the Trk family of receptor tyrosine kinases, playing a pivotal role in the development and function of both the central and peripheral nervous systems. Its involvement in neuronal survival, differentiation, and growth links NTF3 to a spectrum of neurodegenerative diseases. Consequently, targeting NTF3 with antibodies holds promise as a first in class therapeutic opportunity for a wide range of conditions. Specific and neutralizing antibodies against NTF3 were successfully isolated using phage display. Initial phage display selections revealed a preference of hits for a longer than average complementarity-determining region 3 (CDR3) in the heavy chain variable domain (VH). To investigate this further we developed a long loop length VH CDR3 antibody library that demonstrated increased hit rates versus a standard antibody library and allowed the isolation of IgG that demonstrated inhibition of functional activity, coupled with a favourable kinetic profile. Structural analysis of the Fab/NTF3 interaction, via X-ray crystallography, unveiled an unconventional interaction wherein regions beyond the longer CDR loops of the Fab induced ordering in a flexible loop on NTF3, which remained disordered in its free antigenic state. This comprehensive approach not only sheds light on the therapeutic potential of NTF3-specific antibodies but also provides critical structural details that enhance our understanding of the complex NTF3-Fab interaction thus offering valuable insights for future antibody design and therapeutic development.
Collapse
Affiliation(s)
- Stacey E Chin
- Biologics Engineering, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Pablo Gallego
- Structure and BioPhysics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anna Aagaard
- Structure and BioPhysics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Sara Carmen
- Former AstraZeneca employee, Biologics Engineering, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - Marcin Wolny
- Biologics Engineering, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Sophie Cloarec
- Biologics Engineering, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Judy Paterson
- Biologics Engineering, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Rohan Sivapalan
- Biologics Engineering, Oncology R&D, AstraZeneca, Cambridge, UK
| | - James Hunt
- Biologics Engineering, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Thomas V Murray
- Biologics Engineering, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Tracy Delaney
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, USA
| | - Tove Sjögren
- Structure and BioPhysics, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Frances Neal
- Biologics Engineering, Oncology R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
3
|
Sun D, Sun Y, Janezic E, Zhou T, Johnson M, Azumaya C, Noreng S, Chiu C, Seki A, Arenzana TL, Nicoludis JM, Shi Y, Wang B, Ho H, Joshi P, Tam C, Payandeh J, Comps-Agrar L, Wang J, Rutz S, Koerber JT, Masureel M. Structural basis of antibody inhibition and chemokine activation of the human CC chemokine receptor 8. Nat Commun 2023; 14:7940. [PMID: 38040762 PMCID: PMC10692165 DOI: 10.1038/s41467-023-43601-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
The C-C motif chemokine receptor 8 (CCR8) is a class A G-protein coupled receptor that has emerged as a promising therapeutic target in cancer. Targeting CCR8 with an antibody has appeared to be an attractive therapeutic approach, but the molecular basis for chemokine-mediated activation and antibody-mediated inhibition of CCR8 are not fully elucidated. Here, we obtain an antagonist antibody against human CCR8 and determine structures of CCR8 in complex with either the antibody or the endogenous agonist ligand CCL1. Our studies reveal characteristic antibody features allowing recognition of the CCR8 extracellular loops and CCL1-CCR8 interaction modes that are distinct from other chemokine receptor - ligand pairs. Informed by these structural insights, we demonstrate that CCL1 follows a two-step, two-site binding sequence to CCR8 and that antibody-mediated inhibition of CCL1 signaling can occur by preventing the second binding event. Together, our results provide a detailed structural and mechanistic framework of CCR8 activation and inhibition that expands our molecular understanding of chemokine - receptor interactions and offers insight into the development of therapeutic antibodies targeting chemokine GPCRs.
Collapse
Affiliation(s)
- Dawei Sun
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Yonglian Sun
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Eric Janezic
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Tricia Zhou
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Matthew Johnson
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Caleigh Azumaya
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Sigrid Noreng
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, 94080, USA
- Septerna Inc., South San Francisco, CA, 94080, USA
| | - Cecilia Chiu
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Akiko Seki
- Department of Cancer Immunology, Genentech Inc., South San Francisco, CA, 94080, USA
- Tune Therapeutics, Durham, NC, 27701, USA
| | - Teresita L Arenzana
- Department of Cancer Immunology, Genentech Inc., South San Francisco, CA, 94080, USA
- HIBio, South San Francisco, CA, 94080, USA
| | - John M Nicoludis
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Yongchang Shi
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Baomei Wang
- Department of Cancer Immunology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Hoangdung Ho
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Prajakta Joshi
- Department of Biomolecular Resources, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Christine Tam
- Department of Biomolecular Resources, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Jian Payandeh
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, 94080, USA
- Exelixis Inc., Alameda, CA, 94502, USA
| | - Laëtitia Comps-Agrar
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Jianyong Wang
- Department of Biochemical and Cellular Pharmacology, Genentech Inc., South San Francisco, CA, 94080, USA
| | - Sascha Rutz
- Department of Cancer Immunology, Genentech Inc., South San Francisco, CA, 94080, USA.
| | - James T Koerber
- Department of Antibody Engineering, Genentech Inc., South San Francisco, CA, 94080, USA.
| | - Matthieu Masureel
- Department of Structural Biology, Genentech Inc., South San Francisco, CA, 94080, USA.
| |
Collapse
|
4
|
Li J, Kang G, Wang J, Yuan H, Wu Y, Meng S, Wang P, Zhang M, Wang Y, Feng Y, Huang H, de Marco A. Affinity maturation of antibody fragments: A review encompassing the development from random approaches to computational rational optimization. Int J Biol Macromol 2023; 247:125733. [PMID: 37423452 DOI: 10.1016/j.ijbiomac.2023.125733] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Routinely screened antibody fragments usually require further in vitro maturation to achieve the desired biophysical properties. Blind in vitro strategies can produce improved ligands by introducing random mutations into the original sequences and selecting the resulting clones under more and more stringent conditions. Rational approaches exploit an alternative perspective that aims first at identifying the specific residues potentially involved in the control of biophysical mechanisms, such as affinity or stability, and then to evaluate what mutations could improve those characteristics. The understanding of the antigen-antibody interactions is instrumental to develop this process the reliability of which, consequently, strongly depends on the quality and completeness of the structural information. Recently, methods based on deep learning approaches critically improved the speed and accuracy of model building and are promising tools for accelerating the docking step. Here, we review the features of the available bioinformatic instruments and analyze the reports illustrating the result obtained with their application to optimize antibody fragments, and nanobodies in particular. Finally, the emerging trends and open questions are summarized.
Collapse
Affiliation(s)
- Jiaqi Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Guangbo Kang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Jiewen Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Haibin Yuan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
| | - Yili Wu
- Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and the Affiliated Kangning Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Oujiang Laboratory, Wenzhou, Zhejiang 325035, China
| | - Shuxian Meng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Ping Wang
- New Technology R&D Department, Tianjin Modern Innovative TCM Technology Company Limited, Tianjin 300392, China
| | - Miao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; China Resources Biopharmaceutical Company Limited, Beijing 100029, China
| | - Yuli Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Tianjin Pharmaceutical Da Ren Tang Group Corporation Limited, Traditional Chinese Pharmacy Research Institute, Tianjin Key Laboratory of Quality Control in Chinese Medicine, Tianjin 300457, China; State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, China
| | - Yuanhang Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - He Huang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China.
| | - Ario de Marco
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, Slovenia.
| |
Collapse
|
5
|
Langreder N, Schäckermann D, Unkauf T, Schubert M, Frenzel A, Bertoglio F, Hust M. Antibody Affinity and Stability Maturation by Error-Prone PCR. Methods Mol Biol 2023; 2702:395-410. [PMID: 37679631 DOI: 10.1007/978-1-0716-3381-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Human antibodies are the most important class of biologicals, and antibodies - human and nonhuman - are indispensable as research agents and for diagnostic assays. When generating antibodies, they sometimes show the desired specificity profile but lack sufficient affinity for the desired application. In this article, a phage display-based method and protocol to increase the affinity of recombinant antibody fragments is given.The given protocol starts with the construction of a mutated antibody gene library by error-prone PCR. Subsequently, the selection of high-affinity variants is performed by panning on immobilized antigen with washing conditions optimized for off-rate-dependent selection. A screening ELISA protocol to identify antibodies with improved affinity and an additional protocol to select antibodies with improved thermal stability is described.
Collapse
Affiliation(s)
- Nora Langreder
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dorina Schäckermann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Wirtschaftsgenossenschaft deutscher Tierärzte eG (WDT), Garbsen, Germany
| | - Tobias Unkauf
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Bayer Consumer Care AG, Basel, Switzerland
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - André Frenzel
- YUMAB GmbH, Science Campus Braunschweig-Süd, Braunschweig, Germany
| | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Choose Life Biotech SA, Bellinzona, Switzerland
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
6
|
Scribner JA, Hicks SW, Sinkevicius KW, Yoder NC, Diedrich G, Brown JG, Lucas J, Fuller ME, Son T, Dastur A, Hooley J, Espelin CW, Themeles M, Chen FZ, Li Y, Chiechi M, Lee J, Barat B, Widjaja L, Gorlatov S, Tamura J, Ciccarone V, Ab O, McEachem KA, Koenig S, Westin EH, Moore PA, Chittenden T, Gregory RJ, Bonvini E, Loo D. Preclinical Evaluation of IMGC936, a Next Generation Maytansinoid-based Antibody-drug Conjugate Targeting ADAM9-expressing Tumors. Mol Cancer Ther 2022; 21:1047-1059. [PMID: 35511740 DOI: 10.1158/1535-7163.mct-21-0915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/03/2022] [Accepted: 04/27/2022] [Indexed: 11/16/2022]
Abstract
A disintegrin and metalloprotease (ADAM) 9 is a member of the ADAM family of multifunctional, multidomain type 1 transmembrane proteins. ADAM9 is overexpressed in many cancers, including non-small cell lung, pancreatic, gastric, breast, ovarian, and colorectal cancer, but exhibits limited expression in normal tissues. A target-unbiased discovery platform based on intact tumor and progenitor cell immunizations, followed by an immunohistochemistry screen, led to the identification of anti-ADAM9 antibodies with selective tumor-versus-normal tissue binding. Subsequent analysis revealed anti-ADAM9 antibodies were efficiently internalized and processed by tumor cells making ADAM9 an attractive target for antibody-drug conjugate development. Here, we describe the preclinical evaluation of IMGC936, a novel antibody-drug conjugate targeted against ADAM9. IMGC936 is comprised of a high-affinity humanized antibody site-specifically conjugated to DM21-C, a next-generation linker-payload that combines a maytansinoid microtubule-disrupting payload with a stable tripeptide linker, at a drug antibody ratio of approximately 2.0. Additionally, the YTE mutation (M252Y/S254T/T256E) was introduced into the CH2 domain of the antibody Fc to maximize in vivo plasma half-life and exposure. IMGC936 exhibited cytotoxicity toward ADAM9-positive human tumor cell lines, as well as bystander killing, potent antitumor activity in human cell line-derived xenograft and patient-derived xenograft tumor models, and an acceptable safety profile in cynomolgus monkeys with favorable pharmacokinetic properties. Our preclinical data provide a strong scientific rationale for the further development of IMGC936 as a therapeutic candidate for the treatment of ADAM9-positive cancers. A first-in-human study of IMGC936 in patients with advanced solid tumors has been initiated (NCT04622774).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Thomas Son
- MacroGenics, Inc., Brisbane, California, United States
| | | | - Jeff Hooley
- MacroGenics, Inc., Brisbane, CA, United States
| | | | | | | | - Ying Li
- MacroGenics, Inc., Brisbane, CA, United States
| | | | - Jenny Lee
- ImmunoGen (United States), Waltham, MA, United States
| | | | | | | | - James Tamura
- MacroGenics, Inc., Rockville, Maryland, United States
| | | | - Olga Ab
- ImmunoGen (United States), Waltham, United States
| | | | | | | | | | | | | | | | - Deryk Loo
- MacroGenics, Inc., Brisbane, CA, United States
| |
Collapse
|
7
|
To'a Salazar G, Huang Z, Zhang N, Zhang XG, An Z. Antibody Therapies Targeting Complex Membrane Proteins. ENGINEERING 2021; 7:1541-1551. [DOI: 10.1016/j.eng.2020.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Scott MJ, Jowett A, Orecchia M, Ertl P, Ouro-Gnao L, Ticehurst J, Gower D, Yates J, Poulton K, Harris C, Mullin MJ, Smith KJ, Lewis AP, Barton N, Washburn ML, de Wildt R. Rapid identification of highly potent human anti-GPCR antagonist monoclonal antibodies. MAbs 2021; 12:1755069. [PMID: 32343620 PMCID: PMC7188403 DOI: 10.1080/19420862.2020.1755069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Complex cellular targets such as G protein-coupled receptors (GPCRs), ion channels, and other multi-transmembrane proteins represent a significant challenge for therapeutic antibody discovery, primarily because of poor stability of the target protein upon extraction from cell membranes. To assess whether a limited set of membrane-bound antigen formats could be exploited to identify functional antibodies directed against such targets, we selected a GPCR of therapeutic relevance (CCR1) and identified target binders using an in vitro yeast-based antibody discovery platform (AdimabTM) to expedite hit identification. Initially, we compared two different biotinylated antigen formats overexpressing human CCR1 in a ‘scouting’ approach using a subset of the antibody library. Binders were isolated using streptavidin-coated beads, expressed as yeast supernatants, and screened using a high-throughput binding assay and flow cytometry on appropriate cell lines. The most suitable antigen was then selected to isolate target binders using the full library diversity. This approach identified a combined total of 183 mAbs with diverse heavy chain sequences. A subset of clones exhibited high potencies in primary cell chemotaxis assays, with IC50 values in the low nM/high pM range. To assess the feasibility of any further affinity enhancement, full-length hCCR1 protein was purified, complementary-determining region diversified libraries were constructed from a high and lower affinity mAb, and improved binders were isolated by fluorescence-activated cell sorting selections. A significant affinity enhancement was observed for the lower affinity parental mAb, but not the high affinity mAb. These data exemplify a methodology to generate potent human mAbs for challenging targets rapidly using whole cells as antigen and define a route to the identification of affinity-matured variants if required.
Collapse
Affiliation(s)
- Martin J Scott
- Department of Biopharm Discovery, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Amanda Jowett
- Department of Biopharm Discovery, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Martin Orecchia
- Department of Biopharm Discovery, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Peter Ertl
- Department of Biopharm Discovery, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Larissa Ouro-Gnao
- Department of Biopharm Discovery, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Julia Ticehurst
- Department of Biopharm Discovery, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - David Gower
- Department of Biopharm Discovery, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - John Yates
- Department of Biopharm Discovery, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Katie Poulton
- Department of Biopharm Discovery, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Carol Harris
- Department of Protein & Cellular Sciences, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Michael J Mullin
- Department of Protein & Cellular Sciences, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Kathrine J Smith
- Department of Protein & Cellular Sciences, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Alan P Lewis
- Department of Data & Computational Sciences, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Nick Barton
- Department of Data & Computational Sciences, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Michael L Washburn
- Experimental Medicine Unit, Glaxo Smith Kline Research & Development, Collegeville, PA, USA
| | - Ruud de Wildt
- Department of Biopharm Discovery, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| |
Collapse
|
9
|
Affinity maturation: highlights in the application of in vitro strategies for the directed evolution of antibodies. Emerg Top Life Sci 2021; 5:601-608. [PMID: 33660765 PMCID: PMC8726058 DOI: 10.1042/etls20200331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 01/04/2023]
Abstract
Affinity maturation is a key technique in protein engineering which is used to improve affinity and binding interactions in vitro, a process often required to fulfil the therapeutic potential of antibodies. There are many available display technologies and maturation methods developed over the years, which have been instrumental in the production of therapeutic antibodies. However, due to the inherent limitations in display capacity of these technologies, accommodation of expansive and complex library builds is still a challenge. In this article, we discuss our recent efforts in the affinity maturation of a difficult antibody lineage using an unbiased approach, which sought to explore a larger sequence space through the application of DNA recombination and shuffling techniques across the entire antibody region and selections using ribosome display. We also highlight the key features of several display technologies and diversification methods, and discuss the strategies devised by different groups in response to different challenges. Particular attention is drawn to examples which are aimed at the expansion of sequence, structural or experimental diversity through different means and approaches. Here, we provide our perspectives on these methodologies and the considerations involved in the design of effective strategies for the directed evolution of antibodies.
Collapse
|
10
|
Chan DTY, Jenkinson L, Haynes SW, Austin M, Diamandakis A, Burschowsky D, Seewooruthun C, Addyman A, Fiedler S, Ryman S, Whitehouse J, Slater LH, Gowans E, Shibata Y, Barnard M, Wilkinson RW, Vaughan TJ, Holt SV, Cerundolo V, Carr MD, Groves MAT. Extensive sequence and structural evolution of Arginase 2 inhibitory antibodies enabled by an unbiased approach to affinity maturation. Proc Natl Acad Sci U S A 2020; 117:16949-16960. [PMID: 32616569 PMCID: PMC7382286 DOI: 10.1073/pnas.1919565117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Affinity maturation is a powerful technique in antibody engineering for the in vitro evolution of antigen binding interactions. Key to the success of this process is the expansion of sequence and combinatorial diversity to increase the structural repertoire from which superior binding variants may be selected. However, conventional strategies are often restrictive and only focus on small regions of the antibody at a time. In this study, we used a method that combined antibody chain shuffling and a staggered-extension process to produce unbiased libraries, which recombined beneficial mutations from all six complementarity-determining regions (CDRs) in the affinity maturation of an inhibitory antibody to Arginase 2 (ARG2). We made use of the vast display capacity of ribosome display to accommodate the sequence space required for the diverse library builds. Further diversity was introduced through pool maturation to optimize seven leads of interest simultaneously. This resulted in antibodies with substantial improvements in binding properties and inhibition potency. The extensive sequence changes resulting from this approach were translated into striking structural changes for parent and affinity-matured antibodies bound to ARG2, with a large reorientation of the binding paratope facilitating increases in contact surface and shape complementarity to the antigen. The considerable gains in therapeutic properties seen from extensive sequence and structural evolution of the parent ARG2 inhibitory antibody clearly illustrate the advantages of the unbiased approach developed, which was key to the identification of high-affinity antibodies with the desired inhibitory potency and specificity.
Collapse
Affiliation(s)
- Denice T Y Chan
- Cancer Research UK-AstraZeneca Antibody Alliance Laboratory, CB21 6GP Cambridge, United Kingdom
| | - Lesley Jenkinson
- Cancer Research UK-AstraZeneca Antibody Alliance Laboratory, CB21 6GP Cambridge, United Kingdom
| | - Stuart W Haynes
- Cancer Research UK-AstraZeneca Antibody Alliance Laboratory, CB21 6GP Cambridge, United Kingdom
| | - Mark Austin
- Cancer Research UK-AstraZeneca Antibody Alliance Laboratory, CB21 6GP Cambridge, United Kingdom
- Antibody Discovery & Protein Engineering, BioPharmaceuticals Research & Development, AstraZeneca, CB21 6GH Cambridge, United Kingdom
| | - Agata Diamandakis
- Cancer Research UK-AstraZeneca Antibody Alliance Laboratory, CB21 6GP Cambridge, United Kingdom
| | - Daniel Burschowsky
- Leicester Institute of Structural and Chemical Biology, University of Leicester, LE1 7HB Leicester, United Kingdom
- Department of Molecular and Cell Biology, University of Leicester, LE1 7HB Leicester, United Kingdom
| | - Chitra Seewooruthun
- Leicester Institute of Structural and Chemical Biology, University of Leicester, LE1 7HB Leicester, United Kingdom
- Department of Molecular and Cell Biology, University of Leicester, LE1 7HB Leicester, United Kingdom
| | - Alexandra Addyman
- Cancer Research UK-AstraZeneca Antibody Alliance Laboratory, CB21 6GP Cambridge, United Kingdom
| | - Sebastian Fiedler
- Cancer Research UK-AstraZeneca Antibody Alliance Laboratory, CB21 6GP Cambridge, United Kingdom
| | - Stephanie Ryman
- Cancer Research UK-AstraZeneca Antibody Alliance Laboratory, CB21 6GP Cambridge, United Kingdom
| | - Jessica Whitehouse
- Cancer Research UK-AstraZeneca Antibody Alliance Laboratory, CB21 6GP Cambridge, United Kingdom
| | - Louise H Slater
- Cancer Research UK-AstraZeneca Antibody Alliance Laboratory, CB21 6GP Cambridge, United Kingdom
| | - Ellen Gowans
- Cancer Research UK-AstraZeneca Antibody Alliance Laboratory, CB21 6GP Cambridge, United Kingdom
| | - Yoko Shibata
- Cancer Research UK-AstraZeneca Antibody Alliance Laboratory, CB21 6GP Cambridge, United Kingdom
| | - Michelle Barnard
- Cancer Research UK-AstraZeneca Antibody Alliance Laboratory, CB21 6GP Cambridge, United Kingdom
| | - Robert W Wilkinson
- Early Oncology Discovery, Oncology Research & Development, AstraZeneca, CB21 6GH Cambridge, United Kingdom
| | - Tristan J Vaughan
- Antibody Discovery & Protein Engineering, BioPharmaceuticals Research & Development, AstraZeneca, CB21 6GH Cambridge, United Kingdom
| | - Sarah V Holt
- Cancer Research UK-AstraZeneca Antibody Alliance Laboratory, CB21 6GP Cambridge, United Kingdom
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Mark D Carr
- Leicester Institute of Structural and Chemical Biology, University of Leicester, LE1 7HB Leicester, United Kingdom;
- Department of Molecular and Cell Biology, University of Leicester, LE1 7HB Leicester, United Kingdom
| | - Maria A T Groves
- Cancer Research UK-AstraZeneca Antibody Alliance Laboratory, CB21 6GP Cambridge, United Kingdom;
- Antibody Discovery & Protein Engineering, BioPharmaceuticals Research & Development, AstraZeneca, CB21 6GH Cambridge, United Kingdom
| |
Collapse
|
11
|
Smider BA, Smider VV. Formation of ultralong DH regions through genomic rearrangement. BMC Immunol 2020; 21:30. [PMID: 32487018 PMCID: PMC7265228 DOI: 10.1186/s12865-020-00359-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 05/20/2020] [Indexed: 01/02/2023] Open
Abstract
Background Cow antibodies are very unusual in having exceptionally long CDR H3 regions. The genetic basis for this length largely derives from long heavy chain diversity (DH) regions, with a single “ultralong” DH, IGHD8–2, encoding over 50 amino acids. Many bovine IGHD regions have sequence similarity but have several nucleotide repeating units that diversify their lengths. Genomically, most DH regions exist in three clusters that appear to have formed from DNA duplication events. However, the relationship between the genomic arrangement and long CDR lengths is unclear. Results The DH cluster containing IGHD8–2 underwent a rearrangement and deletion event in relation to the other clusters in the region corresponding to IGHD8–2, with possible fusion of two DH regions and expansion of short repeats to form the ultralong IGHD8–2 gene. Conclusions Length heterogeneity within DH regions is a unique evolutionary genomic mechanism to create immune diversity, including formation of ultralong CDR H3 regions.
Collapse
Affiliation(s)
- Brevin A Smider
- The Applied Biomedical Science Institute, San Diego, CA, 92127, USA
| | - Vaughn V Smider
- The Applied Biomedical Science Institute, San Diego, CA, 92127, USA. .,The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
12
|
Hutchings CJ. A review of antibody-based therapeutics targeting G protein-coupled receptors: an update. Expert Opin Biol Ther 2020; 20:925-935. [PMID: 32264722 DOI: 10.1080/14712598.2020.1745770] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION G protein-coupled receptors (GPCRs) play key roles in many biological functions and are linked to many diseases across all therapeutic areas. As such, GPCRs represent a significant opportunity for antibody-based therapeutics. AREAS COVERED The structure of the major GPCR families is summarized in the context of choice of antigen source employed in the drug discovery process and receptor biology considerations which may impact on targeting strategies. An overview of the therapeutic GPCR-antibody target landscape and the diversity of current therapeutic programs is provided along with summary case studies for marketed antibody drugs or those in advanced clinical studies. Antibodies in early clinical studies and the emergence of next-generation modalities are also highlighted. EXPERT OPINION The GPCR-antibody pipeline has progressed significantly with a number of technical developments enabling the successful resolution of some of the challenges previously encountered and this has contributed to the growing interest in antibody-based therapeutics addressing this target class.
Collapse
|
13
|
Ma Y, Ding Y, Song X, Ma X, Li X, Zhang N, Song Y, Sun Y, Shen Y, Zhong W, Hu LA, Ma Y, Zhang MY. Structure-guided discovery of a single-domain antibody agonist against human apelin receptor. SCIENCE ADVANCES 2020; 6:eaax7379. [PMID: 31998837 PMCID: PMC6962038 DOI: 10.1126/sciadv.aax7379] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/29/2019] [Indexed: 06/01/2023]
Abstract
Developing antibody agonists targeting the human apelin receptor (APJ) is a promising therapeutic approach for the treatment of chronic heart failure. Here, we report the structure-guided discovery of a single-domain antibody (sdAb) agonist JN241-9, based on the cocrystal structure of APJ with an sdAb antagonist JN241, the first cocrystal structure of a class A G protein-coupled receptor (GPCR) with a functional antibody. As revealed by the structure, JN241 binds to the extracellular side of APJ, makes critical contacts with the second extracellular loop, and inserts the CDR3 into the ligand-binding pocket. We converted JN241 into a full agonist JN241-9 by inserting a tyrosine into the CDR3. Modeling and molecular dynamics simulation shed light on JN241-9-stimulated receptor activation, providing structural insights for finding agonistic antibodies against class A GPCRs.
Collapse
Affiliation(s)
- Yanbin Ma
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Yao Ding
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Xianqiang Song
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Xiaochuan Ma
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Xun Li
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Ning Zhang
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Yunpeng Song
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Yaping Sun
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Yuqing Shen
- Therapeutic Discovery, Amgen Inc., One Amgen Center Dr., Thousand Oaks, CA 91320, USA
| | - Wenge Zhong
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Liaoyuan A. Hu
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Yingli Ma
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| | - Mei-Yun Zhang
- Amgen Discovery Research, Amgen Asia R&D Center, Amgen Biopharmaceutical R&D (Shanghai) Co. Ltd., 13th Floor, Building No. 2, 4560 Jinke Road, Zhangjiang, Shanghai 201210, China
| |
Collapse
|
14
|
Therapeutic Monoclonal Antibodies to Complex Membrane Protein Targets: Antigen Generation and Antibody Discovery Strategies. BioDrugs 2019; 32:339-355. [PMID: 29934752 DOI: 10.1007/s40259-018-0289-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cell surface membrane proteins comprise a wide array of structurally and functionally diverse proteins involved in a variety of important physiological and homeostatic processes. Complex integral membrane proteins, which are embedded in the lipid bilayer by multiple transmembrane-spanning helices, are represented by families of proteins that are important target classes for drug discovery. Such protein families include G-protein-coupled receptors, ion channels and transporters. Although these targets have typically been the domain of small-molecule drugs, the exquisite specificity of monoclonal antibodies offers a significant opportunity to selectively modulate these target proteins. Nevertheless, the isolation of antibodies with desired pharmacological functions has proved difficult because of technical challenges in preparing membrane protein antigens for antibody drug discovery. In this review, we describe recent progress in defining strategies for the generation of membrane protein antigens. We also describe antibody-isolation strategies that identify antibodies that bind the membrane protein and modulate protein function.
Collapse
|
15
|
Lim CC, Choong YS, Lim TS. Cognizance of Molecular Methods for the Generation of Mutagenic Phage Display Antibody Libraries for Affinity Maturation. Int J Mol Sci 2019; 20:E1861. [PMID: 30991723 PMCID: PMC6515083 DOI: 10.3390/ijms20081861] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/25/2022] Open
Abstract
Antibodies leverage on their unique architecture to bind with an array of antigens. The strength of interaction has a direct relation to the affinity of the antibodies towards the antigen. In vivo affinity maturation is performed through multiple rounds of somatic hypermutation and selection in the germinal centre. This unique process involves intricate sequence rearrangements at the gene level via molecular mechanisms. The emergence of in vitro display technologies, mainly phage display and recombinant DNA technology, has helped revolutionize the way antibody improvements are being carried out in the laboratory. The adaptation of molecular approaches in vitro to replicate the in vivo processes has allowed for improvements in the way recombinant antibodies are designed and tuned. Combinatorial libraries, consisting of a myriad of possible antibodies, are capable of replicating the diversity of the natural human antibody repertoire. The isolation of target-specific antibodies with specific affinity characteristics can also be accomplished through modification of stringent protocols. Despite the ability to screen and select for high-affinity binders, some 'fine tuning' may be required to enhance antibody binding in terms of its affinity. This review will provide a brief account of phage display technology used for antibody generation followed by a summary of different combinatorial library characteristics. The review will focus on available strategies, which include molecular approaches, next generation sequencing, and in silico approaches used for antibody affinity maturation in both therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Chia Chiu Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia.
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Penang 11800, Malaysia.
| |
Collapse
|
16
|
De Groof TWM, Bobkov V, Heukers R, Smit MJ. Nanobodies: New avenues for imaging, stabilizing and modulating GPCRs. Mol Cell Endocrinol 2019; 484:15-24. [PMID: 30690070 DOI: 10.1016/j.mce.2019.01.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/30/2022]
Abstract
The family of G protein-coupled receptors (GPCRs) is the largest class of membrane proteins and an important drug target due to their role in many (patho)physiological processes. Besides small molecules, GPCRs can be targeted by biologicals including antibodies and antibody fragments. This review describes the use of antibodies and in particular antibody fragments from camelid-derived heavy chain-only antibodies (nanobodies/VHHs/sdAbs) for detecting, stabilizing, modulating and therapeutically targeting GPCRs. Altogether, it becomes increasingly clear that the small size, structure and protruding antigen-binding loops of nanobodies are favorable features for the development of selective and potent GPCRs-binding molecules. This makes them attractive tools to modulate GPCR activity but also as targeting modalities for GPCR-directed therapeutics. In addition, these antibody-fragments are important tools in the stabilization of particular conformations of these receptors. Lastly, nanobodies, in contrast to conventional antibodies, can also easily be expressed intracellularly which render nanobodies important tools for studying GPCR function. Hence, GPCR-targeting nanobodies are ideal modalities to image, stabilize and modulate GPCR function.
Collapse
Affiliation(s)
- Timo W M De Groof
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Vladimir Bobkov
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands; Argenx BVBA, Industriepark Zwijnaarde 7, 9052, Zwijnaarde, Belgium
| | - Raimond Heukers
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands; QVQ Holding B.V., Yalelaan 1, 3484 CL, Utrecht, the Netherlands
| | - Martine J Smit
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands.
| |
Collapse
|
17
|
Cox TO, Gunther EC, Brody AH, Chiasseu MT, Stoner A, Smith LM, Haas LT, Hammersley J, Rees G, Dosanjh B, Groves M, Gardener M, Dobson C, Vaughan T, Chessell I, Billinton A, Strittmatter SM. Anti-PrP C antibody rescues cognition and synapses in transgenic alzheimer mice. Ann Clin Transl Neurol 2019; 6:554-574. [PMID: 30911579 PMCID: PMC6414488 DOI: 10.1002/acn3.730] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/21/2018] [Accepted: 01/08/2019] [Indexed: 12/28/2022] Open
Abstract
Objective Amyloid-beta oligomers (Aßo) trigger the development of Alzheimer's disease (AD) pathophysiology. Cellular prion protein (PrPC) initiates synaptic damage as a high affinity receptor for Aßo. Here, we evaluated the preclinical therapeutic efficacy of a fully human monoclonal antibody against PrPC. This AZ59 antibody selectively targets the Aβo binding site in the amino-terminal unstructured domain of PrPC to avoid any potential risk of direct toxicity. Methods Potency of AZ59 was evaluated by binding to PrPC, blockade of Aβo interaction and interruption of Aβo signaling. AZ59 was administered to mice by weekly intraperitoneal dosing and brain antibody measured. APP/PS1 transgenic mice were treated with AZ59 and assessed by memory tests, by brain biochemistry and by histochemistry for Aß, gliosis and synaptic density. Results AZ59 binds PrPC with 100 pmol/L affinity and blocks human brain Aßo binding to PrPC, as well as prevents synaptotoxic signaling. Weekly i.p. dosing of 20 mg/kg AZ59 in a murine form achieves trough brain antibody levels greater than 10 nmol/L. Aged symptomatic APP/PS1 transgenic mice treated with AZ59 for 5-7 weeks show a full rescue of behavioral and synaptic loss phenotypes. This recovery occurs without clearance of plaque pathology or elimination of gliosis. AZ59 treatment also normalizes synaptic signaling abnormalities in transgenic brain. These benefits are dose-dependent and persist for at least 1 month after the last dose. Interpretation Preclinical data demonstrate that systemic AZ59 therapy rescues central synapses and memory function from transgenic Alzheimer's disease pathology, supporting a disease-modifying therapeutic potential.
Collapse
Affiliation(s)
- Timothy O. Cox
- Cellular Neuroscience Neurodegeneration & RepairDepartments of Neurology and of NeuroscienceYale University School of MedicineNew Haven06536Connecticut
| | - Erik C. Gunther
- Cellular Neuroscience Neurodegeneration & RepairDepartments of Neurology and of NeuroscienceYale University School of MedicineNew Haven06536Connecticut
| | - A. Harrison Brody
- Cellular Neuroscience Neurodegeneration & RepairDepartments of Neurology and of NeuroscienceYale University School of MedicineNew Haven06536Connecticut
| | - Marius T. Chiasseu
- Cellular Neuroscience Neurodegeneration & RepairDepartments of Neurology and of NeuroscienceYale University School of MedicineNew Haven06536Connecticut
| | - Austin Stoner
- Cellular Neuroscience Neurodegeneration & RepairDepartments of Neurology and of NeuroscienceYale University School of MedicineNew Haven06536Connecticut
| | - Levi M. Smith
- Cellular Neuroscience Neurodegeneration & RepairDepartments of Neurology and of NeuroscienceYale University School of MedicineNew Haven06536Connecticut
| | - Laura T. Haas
- Cellular Neuroscience Neurodegeneration & RepairDepartments of Neurology and of NeuroscienceYale University School of MedicineNew Haven06536Connecticut
| | - Jayne Hammersley
- Antibody Discovery and Protein EngineeringMedImmuneGranta ParkCambridgeCB21 6GHUK
| | - Gareth Rees
- Antibody Discovery and Protein EngineeringMedImmuneGranta ParkCambridgeCB21 6GHUK
| | - Bhupinder Dosanjh
- Antibody Discovery and Protein EngineeringMedImmuneGranta ParkCambridgeCB21 6GHUK
| | - Maria Groves
- Antibody Discovery and Protein EngineeringMedImmuneGranta ParkCambridgeCB21 6GHUK
| | - Matthew Gardener
- Antibody Discovery and Protein EngineeringMedImmuneGranta ParkCambridgeCB21 6GHUK
| | - Claire Dobson
- Antibody Discovery and Protein EngineeringMedImmuneGranta ParkCambridgeCB21 6GHUK
| | - Tristan Vaughan
- Antibody Discovery and Protein EngineeringMedImmuneGranta ParkCambridgeCB21 6GHUK
| | - Iain Chessell
- NeuroscienceIMED Biotech UnitAstraZenecaGranta ParkCambridgeCB21 6GHUK
| | - Andrew Billinton
- NeuroscienceIMED Biotech UnitAstraZenecaGranta ParkCambridgeCB21 6GHUK
| | - Stephen M. Strittmatter
- Cellular Neuroscience Neurodegeneration & RepairDepartments of Neurology and of NeuroscienceYale University School of MedicineNew Haven06536Connecticut
| |
Collapse
|
18
|
|
19
|
Spooner W, McLaren W, Slidel T, Finch DK, Butler R, Campbell J, Eghobamien L, Rider D, Kiefer CM, Robinson MJ, Hardman C, Cunningham F, Vaughan T, Flicek P, Huntington CC. Haplosaurus computes protein haplotypes for use in precision drug design. Nat Commun 2018; 9:4128. [PMID: 30297836 PMCID: PMC6175845 DOI: 10.1038/s41467-018-06542-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 09/07/2018] [Indexed: 01/08/2023] Open
Abstract
Selecting the most appropriate protein sequences is critical for precision drug design. Here we describe Haplosaurus, a bioinformatic tool for computation of protein haplotypes. Haplosaurus computes protein haplotypes from pre-existing chromosomally-phased genomic variation data. Integration into the Ensembl resource provides rapid and detailed protein haplotypes retrieval. Using Haplosaurus, we build a database of unique protein haplotypes from the 1000 Genomes dataset reflecting real-world protein sequence variability and their prevalence. For one in seven genes, their most common protein haplotype differs from the reference sequence and a similar number differs on their most common haplotype between human populations. Three case studies show how knowledge of the range of commonly encountered protein forms predicted in populations leads to insights into therapeutic efficacy. Haplosaurus and its associated database is expected to find broad applications in many disciplines using protein sequences and particularly impactful for therapeutics design.
Collapse
Affiliation(s)
- William Spooner
- Eagle Genomics Ltd., Biodata Innovation Centre, Wellcome Genome Campus, Hinxton, Cambridge, CB10 3DR UK
- Genomics England, QMUL Dawson Hall, London, EC1M 6BQ UK
| | - William McLaren
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | | | | | - Robin Butler
- MedImmune Ltd., Granta Park, Cambridge, CB21 4QR UK
| | | | | | - David Rider
- MedImmune Ltd., Granta Park, Cambridge, CB21 4QR UK
| | | | | | | | - Fiona Cunningham
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | | | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD UK
| | | |
Collapse
|
20
|
Colley CS, England E, Linley JE, Wilkinson TCI. Screening Strategies for the Discovery of Ion Channel Monoclonal Antibodies. ACTA ACUST UNITED AC 2018; 82:e44. [DOI: 10.1002/cpph.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Caroline S. Colley
- Antibody Discovery and Protein Engineering, MedImmune; Cambridge United Kingdom
| | - Elizabeth England
- Antibody Discovery and Protein Engineering, MedImmune; Cambridge United Kingdom
| | - John E. Linley
- Neuroscience, IMED Biotech Unit, AstraZeneca; Cambridge United Kingdom
| | | |
Collapse
|
21
|
Avram O, Vaisman-Mentesh A, Yehezkel D, Ashkenazy H, Pupko T, Wine Y. ASAP - A Webserver for Immunoglobulin-Sequencing Analysis Pipeline. Front Immunol 2018; 9:1686. [PMID: 30105017 PMCID: PMC6077260 DOI: 10.3389/fimmu.2018.01686] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/09/2018] [Indexed: 12/16/2022] Open
Abstract
Reproducible and robust data on antibody repertoires are invaluable for basic and applied immunology. Next-generation sequencing (NGS) of antibody variable regions has emerged as a powerful tool in systems immunology, providing quantitative molecular information on antibody polyclonal composition. However, major computational challenges exist when analyzing antibody sequences, from error handling to hypermutation profiles and clonal expansion analyses. In this work, we developed the ASAP (A webserver for Immunoglobulin-Seq Analysis Pipeline) webserver (https://asap.tau.ac.il). The input to ASAP is a paired-end sequence dataset from one or more replicates, with or without unique molecular identifiers. These datasets can be derived from NGS of human or murine antibody variable regions. ASAP first filters and annotates the sequence reads using public or user-provided germline sequence information. The ASAP webserver next performs various calculations, including somatic hypermutation level, CDR3 lengths, V(D)J family assignments, and V(D)J combination distribution. These analyses are repeated for each replicate. ASAP provides additional information by analyzing the commonalities and differences between the repeats (“joint” analysis). For example, ASAP examines the shared variable regions and their frequency in each replicate to determine which sequences are less likely to be a result of a sample preparation derived and/or sequencing errors. Moreover, ASAP clusters the data to clones and reports the identity and prevalence of top ranking clones (clonal expansion analysis). ASAP further provides the distribution of synonymous and non-synonymous mutations within the V genes somatic hypermutations. Finally, ASAP provides means to process the data for proteomic analysis of serum/secreted antibodies by generating a variable region database for liquid chromatography high resolution tandem mass spectrometry (LC-MS/MS) interpretation. ASAP is user-friendly, free, and open to all users, with no login requirement. ASAP is applicable for researchers interested in basic questions related to B cell development and differentiation, as well as applied researchers who are interested in vaccine development and monoclonal antibody engineering. By virtue of its user-friendliness, ASAP opens the antibody analysis field to non-expert users who seek to boost their research with immune repertoire analysis.
Collapse
Affiliation(s)
- Oren Avram
- George S. Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Anna Vaisman-Mentesh
- George S. Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Dror Yehezkel
- George S. Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Haim Ashkenazy
- George S. Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Tal Pupko
- George S. Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Yariv Wine
- George S. Wise Faculty of Life Sciences, School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| |
Collapse
|
22
|
Analysis of the effect of promoter type and skin pretreatment on antigen expression and antibody response after gene gun-based immunization. PLoS One 2018; 13:e0197962. [PMID: 29856790 PMCID: PMC5983433 DOI: 10.1371/journal.pone.0197962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/13/2018] [Indexed: 11/29/2022] Open
Abstract
Monoclonal antibodies (mAbs) have enabled numerous basic research discoveries and therapeutic approaches for many protein classes. However, there still exist a number of target classes, such as multi-pass membrane proteins, for which antibody discovery is difficult, due in part to lack of high quality, recombinant protein. Here we describe the impact of several parameters on antigen expression and the development of mAbs against human claudin 4 (CLDN4), a potential multi-indication cancer target. Using gene gun-based DNA delivery and bioluminescence imaging, we optimize promoter type by comparing expression profiles of four robust in vivo promoters. In addition, we observe that most vectors rapidly lose expression, ultimately reaching almost background levels by three days post-delivery. Recognizing this limitation, we next explored skin pretreatment strategies as an orthogonal method to further boost the efficiency of mAb generation. We show that SDS pretreatment can boost antigen expression, but fails to significantly increase mAb discovery efficiency. In contrast, we find that sandpaper pretreatment yields 5-fold more FACS+ anti-CLDN4 hybridomas, without impacting antigen expression. Our findings coupled with other strategies to improve DNA immunizations should improve the success of mAb discovery against other challenging targets and enable the generation of critical research tools and therapeutic candidates.
Collapse
|
23
|
Nelson B, Adams J, Kuglstatter A, Li Z, Harris SF, Liu Y, Bohini S, Ma H, Klumpp K, Gao J, Sidhu SS. Structure-Guided Combinatorial Engineering Facilitates Affinity and Specificity Optimization of Anti-CD81 Antibodies. J Mol Biol 2018; 430:2139-2152. [PMID: 29778602 DOI: 10.1016/j.jmb.2018.05.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 12/12/2022]
Abstract
Hepatitis C viral infection is the major cause of chronic hepatitis that affects as many as 71 million people worldwide. Rather than target the rapidly shifting viruses and their numerous serotypes, four independent antibodies were made to target the host antigen CD81 and were shown to block hepatitis C viral entry. The single-chain variable fragment of each antibody was crystallized in complex with the CD81 large extracellular loop in order to guide affinity maturation of two distinct antibodies by phage display. Affinity maturation of antibodies using phage display has proven to be critical to therapeutic antibody development and typically involves modification of the paratope for increased affinity, improved specificity, enhanced stability or a combination of these traits. One antibody was engineered for increased affinity for human CD81 large extracellular loop that equated to increased efficacy, while the second antibody was engineered for cross-reactivity with cynomolgus CD81 to facilitate animal model testing. The use of structures to guide affinity maturation library design demonstrates the utility of combining structural analysis with phage display technologies.
Collapse
Affiliation(s)
- Bryce Nelson
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Jarrett Adams
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | | | - Zhijian Li
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | | | - Yang Liu
- Hoffmann-La Roche Inc., Palo Alto, 94304, CA, USA
| | | | - Han Ma
- Hoffmann-La Roche Inc., Palo Alto, 94304, CA, USA
| | - Klaus Klumpp
- Hoffmann-La Roche Inc., Palo Alto, 94304, CA, USA
| | - Junjun Gao
- Hoffmann-La Roche Inc., Palo Alto, 94304, CA, USA.
| | - Sachdev S Sidhu
- Banting and Best Department of Medical Research and Department of Medical Genetics, The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
24
|
Sanada H, Kobayashi K, Oyama K, Maru T, Nakanishi T, Umetsu M, Asano R, Kumagai I. Affinity maturation of humanized anti-epidermal growth factor receptor antibody using a modified phage-based open sandwich selection method. Sci Rep 2018; 8:5414. [PMID: 29615700 PMCID: PMC5882652 DOI: 10.1038/s41598-018-23796-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/21/2018] [Indexed: 11/09/2022] Open
Abstract
Affinity maturation is one of the cardinal strategies for improving antibody function using in vitro evolutionary methods; one such well-established method is phage display. To minimise gene deletion, we previously developed an open sandwich (OS) method wherein selection was performed using only phage-displaying VH fragments after mixing with soluble VL fragments. The decrease in anti-EGFR antibody 528 affinity through humanization was successfully recovered by selecting VH mutants using this OS method. However, the affinity was not similar to that of parental 528. For further affinity maturation, we aimed to isolate VL mutants that act in synergy with VH mutants. However, the OS method could not be applied for selecting VL fragments because the preparation of soluble VH fragments was hampered by their instability and insolubility. Therefore, we initially designed a modified OS method based on domain-swapping of VH fragments, from added soluble Fv fragments to phage-displaying VL fragments. Using this novel Fv-added OS selection method, we successfully isolated VL mutants, and one of the Fv comprising VH and VL mutants showed affinity almost equivalent to that of parental 528. This method is applicable for engineering other VL fragments for affinity maturation.
Collapse
Affiliation(s)
- Hideaki Sanada
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Kazuki Kobayashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Kenji Oyama
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Takamitsu Maru
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Takeshi Nakanishi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan
| | - Ryutaro Asano
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan. .,Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, 184-8588, Japan.
| | - Izumi Kumagai
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, 980-8579, Japan.
| |
Collapse
|
25
|
Abstract
Antibodies are the fastest growing class of pharmaceutical proteins and essential tools for research and diagnostics. Often antibodies do show a desirable specificity profile but lack sufficient affinity for the desired application. Here, we describe a method to increase the affinity of recombinant antibody fragments based on the construction of mutagenized phage display libraries.After the construction of a mutated antibody gene library by error-prone PCR, selection of high-affinity variants is either performed by panning in solution or on immobilized antigen with washing conditions optimized for off-rate-dependent selection. An additional screening protocol to identify antibodies with improved thermal stability is described.
Collapse
Affiliation(s)
- Tobias Unkauf
- Institut für Biochemie, Biotechnologie und Bioinformatik, Abteilung Biotechnologie, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Michael Hust
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | - André Frenzel
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany.
- YUMAB GmbH, Braunschweig, Germany.
| |
Collapse
|
26
|
Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. Nat Rev Drug Discov 2017; 16:787-810. [PMID: 28706220 DOI: 10.1038/nrd.2017.91] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
G-protein-coupled receptors (GPCRs) are activated by a diverse range of ligands, from large proteins and proteases to small peptides, metabolites, neurotransmitters and ions. They are expressed on all cells in the body and have key roles in physiology and homeostasis. As such, GPCRs are one of the most important target classes for therapeutic drug discovery. The development of drugs targeting GPCRs has therapeutic value across a wide range of diseases, including cancer, immune and inflammatory disorders as well as neurological and metabolic diseases. The progress made by targeting GPCRs with antibody-based therapeutics, as well as technical hurdles to overcome, are presented and discussed in this Review. Antibody therapeutics targeting C-C chemokine receptor type 4 (CCR4), CCR5 and calcitonin gene-related peptide (CGRP) are used as illustrative clinical case studies.
Collapse
|
27
|
Xiao X, Douthwaite JA, Chen Y, Kemp B, Kidd S, Percival-Alwyn J, Smith A, Goode K, Swerdlow B, Lowe D, Wu H, Dall'Acqua WF, Chowdhury PS. A high-throughput platform for population reformatting and mammalian expression of phage display libraries to enable functional screening as full-length IgG. MAbs 2017; 9:996-1006. [PMID: 28613102 DOI: 10.1080/19420862.2017.1337617] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Phage display antibody libraries are a rich resource for discovery of potential therapeutic antibodies. Single-chain variable fragment (scFv) libraries are the most common format due to the efficient display of scFv by phage particles and the ease by which soluble scFv antibodies can be expressed for high-throughput screening. Typically, a cascade of screening and triaging activities are performed, beginning with the assessment of large numbers of E. coli-expressed scFv, and progressing through additional assays with individual reformatting of the most promising scFv to full-length IgG. However, use of high-throughput screening of scFv for the discovery of full-length IgG is not ideal because of the differences between these molecules. Furthermore, the reformatting step represents a bottle neck in the process because each antibody has to be handled individually to preserve the unique VH and VL pairing. These problems could be resolved if populations of scFv could be reformatted to full-length IgG before screening without disrupting the variable region pairing. Here, we describe a novel strategy that allows the reformatting of diverse populations of scFv from phage selections to full-length IgG in a batch format. The reformatting process maintains the diversity and variable region pairing with high fidelity, and the resulted IgG pool enables high-throughput expression of IgG in mammalian cells and cell-based functional screening. The improved process led to the discovery of potent candidates that are comparable or better than those obtained by traditional methods. This strategy should also be readily applicable to Fab-based phage libraries. Our approach, Screening in Product Format (SiPF), represents a substantial improvement in the field of antibody discovery using phage display.
Collapse
Affiliation(s)
- Xiaodong Xiao
- a Department of Antibody Discovery and Protein Engineering , Gaithersburg , MD , USA
| | - Julie A Douthwaite
- b Department of Antibody Discovery and Protein Engineering , Cambridge , UK
| | - Yan Chen
- a Department of Antibody Discovery and Protein Engineering , Gaithersburg , MD , USA
| | - Ben Kemp
- b Department of Antibody Discovery and Protein Engineering , Cambridge , UK
| | - Sara Kidd
- b Department of Antibody Discovery and Protein Engineering , Cambridge , UK
| | | | - Alison Smith
- b Department of Antibody Discovery and Protein Engineering , Cambridge , UK
| | - Kate Goode
- b Department of Antibody Discovery and Protein Engineering , Cambridge , UK
| | - Bonnie Swerdlow
- c Department of Respiratory, Inflammation and Autoimmune Diseases , Gaithersburg , MD , USA
| | - David Lowe
- b Department of Antibody Discovery and Protein Engineering , Cambridge , UK
| | - Herren Wu
- a Department of Antibody Discovery and Protein Engineering , Gaithersburg , MD , USA
| | - William F Dall'Acqua
- a Department of Antibody Discovery and Protein Engineering , Gaithersburg , MD , USA
| | - Partha S Chowdhury
- a Department of Antibody Discovery and Protein Engineering , Gaithersburg , MD , USA
| |
Collapse
|
28
|
Discovery of functional monoclonal antibodies targeting G-protein-coupled receptors and ion channels. Biochem Soc Trans 2017; 44:831-7. [PMID: 27284048 DOI: 10.1042/bst20160028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Indexed: 11/17/2022]
Abstract
The development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these target proteins. Given this opportunity, substantial effort has been applied to address the technical challenges of targeting these complex membrane proteins with monoclonal antibodies. In this review recent progress made in the strategies for discovery of functional monoclonal antibodies for these challenging membrane protein targets is addressed.
Collapse
|
29
|
Harper J, Lloyd C, Dimasi N, Toader D, Marwood R, Lewis L, Bannister D, Jovanovic J, Fleming R, D'Hooge F, Mao S, Marrero AM, Korade M, Strout P, Xu L, Chen C, Wetzel L, Breen S, van Vlerken-Ysla L, Jalla S, Rebelatto M, Zhong H, Hurt EM, Hinrichs MJ, Huang K, Howard PW, Tice DA, Hollingsworth RE, Herbst R, Kamal A. Preclinical Evaluation of MEDI0641, a Pyrrolobenzodiazepine-Conjugated Antibody-Drug Conjugate Targeting 5T4. Mol Cancer Ther 2017; 16:1576-1587. [PMID: 28522587 DOI: 10.1158/1535-7163.mct-16-0825] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/28/2017] [Accepted: 04/28/2017] [Indexed: 11/16/2022]
Abstract
Antibody-drug conjugates (ADC) are used to selectively deliver cytotoxic agents to tumors and have the potential for increased clinical benefit to cancer patients. 5T4 is an oncofetal antigen overexpressed on the cell surface in many carcinomas on both bulk tumor cells as well as cancer stem cells (CSC), has very limited normal tissue expression, and can internalize when bound by an antibody. An anti-5T4 antibody was identified and optimized for efficient binding and internalization in a target-specific manner, and engineered cysteines were incorporated into the molecule for site-specific conjugation. ADCs targeting 5T4 were constructed by site-specifically conjugating the antibody with payloads that possess different mechanisms of action, either a DNA cross-linking pyrrolobenzodiazepine (PBD) dimer or a microtubule-destabilizing tubulysin, so that each ADC had a drug:antibody ratio of 2. The resulting ADCs demonstrated significant target-dependent activity in vitro and in vivo; however, the ADC conjugated with a PBD payload (5T4-PBD) elicited more durable antitumor responses in vivo than the tubulysin conjugate in xenograft models. Likewise, the 5T4-PBD more potently inhibited the growth of 5T4-positive CSCs in vivo, which likely contributed to its superior antitumor activity. Given that the 5T4-PBD possessed both potent antitumor activity as well as anti-CSC activity, and thus could potentially target bulk tumor cells and CSCs in target-positive indications, it was further evaluated in non-GLP rat toxicology studies that demonstrated excellent in vivo stability with an acceptable safety profile. Taken together, these preclinical data support further development of 5T4-PBD, also known as MEDI0641, against 5T4+ cancer indications. Mol Cancer Ther; 16(8); 1576-87. ©2017 AACR.
Collapse
Affiliation(s)
- Jay Harper
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland.
| | - Christopher Lloyd
- Antibody Discovery and Protein Engineering, MedImmune, Ltd, Cambridge, United Kingdom
| | - Nazzareno Dimasi
- Antibody Discovery and Protein Engineering, MedImmune, LLC, Gaithersburg, Maryland
| | - Dorin Toader
- Antibody Discovery and Protein Engineering, MedImmune, LLC, Gaithersburg, Maryland
| | - Rose Marwood
- Antibody Discovery and Protein Engineering, MedImmune, Ltd, Cambridge, United Kingdom
| | - Leeanne Lewis
- Antibody Discovery and Protein Engineering, MedImmune, Ltd, Cambridge, United Kingdom
| | - David Bannister
- Antibody Discovery and Protein Engineering, MedImmune, Ltd, Cambridge, United Kingdom
| | - Jelena Jovanovic
- Antibody Discovery and Protein Engineering, MedImmune, Ltd, Cambridge, United Kingdom
| | - Ryan Fleming
- Antibody Discovery and Protein Engineering, MedImmune, LLC, Gaithersburg, Maryland
| | | | - Shenlan Mao
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland
| | | | - Martin Korade
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland
| | - Patrick Strout
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland
| | - Linda Xu
- Antibody Discovery and Protein Engineering, MedImmune, LLC, Gaithersburg, Maryland
| | - Cui Chen
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland
| | - Leslie Wetzel
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland
| | - Shannon Breen
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland
| | | | - Sanjoo Jalla
- Project Management, MedImmune, LLC, Gaithersburg, Maryland
| | | | - Haihong Zhong
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland
| | - Elaine M Hurt
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland
| | | | - Keven Huang
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland
| | | | - David A Tice
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland
| | | | - Ronald Herbst
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland
| | - Adeela Kamal
- Oncology Research, MedImmune, LLC, Gaithersburg, Maryland.,Ferring Pharmaceuticals, San Diego, California
| |
Collapse
|
30
|
Ayoub MA, Crépieux P, Koglin M, Parmentier M, Pin JP, Poupon A, Reiter E, Smit M, Steyaert J, Watier H, Wilkinson T. Antibodies targeting G protein-coupled receptors: Recent advances and therapeutic challenges. MAbs 2017; 9:735-741. [PMID: 28475474 DOI: 10.1080/19420862.2017.1325052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Le STUDIUM conference was held November 24-25, 2016 in Tours, France as a satellite workshop of the 5th meeting of the French GDR 3545 on "G Protein-Coupled Receptors (GPCRs) -From Physiology to Drugs," which was held in Tours during November 22-24, 2016. The conference gathered speakers from academia and industry considered to be world leaders in the molecular pharmacology and signaling of GPCRs, with a particular interest in the development of therapeutic GPCR antibodies (Abs). The main topics were new advances and challenges in the development of antibodies targeting GPCRs and their potential applications to the study of the structure and function of GPCRs, as well as their implication in physiology and pathophysiology. The conference included 2 sessions, with the first dedicated to the recent advances in methodological strategies used for GPCR immunization using thermo-stabilized and purified GPCRs, and the development of various formats of Abs such as monoclonal IgG, single-chain variable fragments and nanobodies (Nbs) by in vitro and in silico approaches. The second session focused on GPCR Nbs as a "hot" field of research on GPCRs. This session started with discussion of the pioneering Nbs developed against GPCRs and their application to structural studies, then transitioned to talks on original ex vivo and in vivo studies on GPCR-selective Nbs showing promising therapeutic applications of Nbs in important physiologic systems, such as the central nervous and the immune systems, as well as in cancer. The conference ended with the consensus that Abs and especially Nbs are opening a new era of research on GPCR structure, pharmacology and pathophysiology.
Collapse
Affiliation(s)
- Mohammed Akli Ayoub
- a PRC, INRA, CNRS, Université François-Rabelais de Tours , Nouzilly , France.,b LE STUDIUM® Loire Valley Institute for Advanced Studies , Orléans , France.,c Biology Department , College of Science, United Arab Emirates University , Al Ain , United Arab Emirates
| | - Pascale Crépieux
- a PRC, INRA, CNRS, Université François-Rabelais de Tours , Nouzilly , France
| | - Markus Koglin
- d Heptares Therapeutics Ltd , BioPark, Welwyn Garden City, Hertfordshire , UK
| | - Marc Parmentier
- e Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Université Libre de Bruxelles , Brussels , Belgium.,f Welbio, Université Libre de Bruxelles , Brussels , Belgium
| | - Jean-Philippe Pin
- g Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS UMR5203 , Montpellier , France.,h INSERM U1091 , Montpellier , France
| | - Anne Poupon
- a PRC, INRA, CNRS, Université François-Rabelais de Tours , Nouzilly , France
| | - Eric Reiter
- a PRC, INRA, CNRS, Université François-Rabelais de Tours , Nouzilly , France
| | - Martine Smit
- i Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Vrije Universiteit , Amsterdam , The Netherlands
| | - Jan Steyaert
- j Structural Biology Brussels, Vrije Universiteit Brussels , Brussels , Belgium.,k Structural Biology Research Center, Vlaams Instituut voor Biotechnologie , Brussels , Belgium
| | - Hervé Watier
- l Université François-Rabelais de Tours, CNRS, UMR 7292 , Tours , France.,m Laboratoire d'Immunologie, CHRU de Tours , Tours , France
| | - Trevor Wilkinson
- n Antibody Discovery and Protein Engineering, MedImmune , Cambridge , UK
| |
Collapse
|
31
|
Development of therapeutic antibodies to G protein-coupled receptors and ion channels: Opportunities, challenges and their therapeutic potential in respiratory diseases. Pharmacol Ther 2016; 169:113-123. [PMID: 27153991 DOI: 10.1016/j.pharmthera.2016.04.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The development of recombinant antibody therapeutics continues to be a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Therapeutic drug targets such as soluble cytokines, growth factors and single transmembrane spanning receptors have been successfully targeted by recombinant monoclonal antibodies and the development of new product candidates continues. Despite this growth, however, certain classes of important disease targets have remained intractable to therapeutic antibodies due to the complexity of the target molecules. These complex target molecules include G protein-coupled receptors and ion channels which represent a large target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these important regulators of cell function. Given this opportunity, a significant effort has been applied to address the challenges of targeting these complex molecules and a number of targets are linked to the pathophysiology of respiratory diseases. In this review, we provide a summary of the importance of GPCRs and ion channels involved in respiratory disease and discuss advantages offered by antibodies as therapeutics at these targets. We highlight some recent GPCRs and ion channels linked to respiratory disease mechanisms and describe in detail recent progress made in the strategies for discovery of functional antibodies against challenging membrane protein targets such as GPCRs and ion channels.
Collapse
|
32
|
Jo M, Jung ST. Engineering therapeutic antibodies targeting G-protein-coupled receptors. Exp Mol Med 2016; 48:e207. [PMID: 26846450 PMCID: PMC4892866 DOI: 10.1038/emm.2015.105] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 09/21/2015] [Indexed: 12/16/2022] Open
Abstract
G-protein–coupled receptors (GPCRs) are one of the most attractive therapeutic target classes because of their critical roles in intracellular signaling and their clinical relevance to a variety of diseases, including cancer, infection and inflammation. However, high conformational variability, the small exposed area of extracellular epitopes and difficulty in the preparation of GPCR antigens have delayed both the isolation of therapeutic anti-GPCR antibodies as well as studies on the structure, function and biochemical mechanisms of GPCRs. To overcome the challenges in generating highly specific anti-GPCR antibodies with enhanced efficacy and safety, various forms of antigens have been successfully designed and employed for screening with newly emerged systems based on laboratory animal immunization and high-throughput-directed evolution.
Collapse
Affiliation(s)
- Migyeong Jo
- Department of Bio and Nano Chemistry, Kookmin University, Seoul, Korea
| | - Sang Taek Jung
- Department of Bio and Nano Chemistry, Kookmin University, Seoul, Korea
| |
Collapse
|
33
|
Huang R, Fang P, Hao Z, Kay BK. Directed Evolution of a Highly Specific FN3 Monobody to the SH3 Domain of Human Lyn Tyrosine Kinase. PLoS One 2016; 11:e0145872. [PMID: 26731115 PMCID: PMC4701441 DOI: 10.1371/journal.pone.0145872] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 12/09/2015] [Indexed: 11/26/2022] Open
Abstract
Affinity reagents of high affinity and specificity are very useful for studying the subcellular locations and quantities of individual proteins. To generate high-quality affinity reagents for human Lyn tyrosine kinase, a phage display library of fibronectin type III (FN3) monobodies was affinity selected with a recombinant form of the Lyn SH3 domain. While a highly specific monobody, TA8, was initially isolated, we chose to improve its affinity through directed evolution. A secondary library of 1.2 × 109 variants was constructed and screened by affinity selection, yielding three variants, two of which have affinities of ~ 40 nM, a 130-fold increase over the original TA8 monobody. One of the variants, 2H7, displayed high specificity to the Lyn SH3 domain, as shown by ELISA and probing arrays of 150 SH3 domains. Furthermore, the 2H7 monobody was able to pull down endogenous Lyn from a lysate of Burkitt's lymphoma cells, thereby demonstrating its utility as an affinity reagent for detecting Lyn in a complex biological mixture.
Collapse
Affiliation(s)
- Renhua Huang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail: (RH); (BK)
| | - Pete Fang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Zengping Hao
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Brian K. Kay
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail: (RH); (BK)
| |
Collapse
|