1
|
Klinkhammer K, Warren R, Knopp J, Nguyen T, De Langhe SP. Epithelial-mesenchymal cell competition coordinates fate transitions across tissue compartments during lung development and fibrosis. RESEARCH SQUARE 2025:rs.3.rs-6189965. [PMID: 40343336 PMCID: PMC12060972 DOI: 10.21203/rs.3.rs-6189965/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
Morphogenesis and cell state transitions must be coordinated in time and space to produce a functional tissue. In this study, we reveal that lung mesenchymal Yap levels and fitness antagonize epithelial Yap levels and stemness during lung development and repair following bleomycin injury. Elevated mesenchymal Yap signaling and fitness antagonize epithelial Yap levels and stemness, accelerating alveolar epithelial differentiation while impairing branching during lung development or bronchiolization after bleomycin injury. Conversely, mesenchymal Snail/Slug sequesters Yap/Taz to direct an adipogenic differentiation program towards alveolar fibroblast 1 (AF1) during both lung development and the resolution of pulmonary fibrosis. On the other hand, Yap/Myc-Tead binding instructs a myogenic differentiation program. Through our experiments and modeling, we identify tissue-scale mechanical cooperation as a pivotal factor in orchestrating organ formation and regeneration.
Collapse
Affiliation(s)
- Kylie Klinkhammer
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Rachel Warren
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Joseph Knopp
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Toan Nguyen
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Stijn P. De Langhe
- Department of Medicine, Division of Pulmonary and Critical Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
2
|
Demiray EB, Sezgin Arslan T, Derkus B, Arslan YE. A Facile Strategy for Preparing Flexible and Porous Hydrogel-Based Scaffolds from Silk Sericin/Wool Keratin by In Situ Bubble-Forming for Muscle Tissue Engineering Applications. Macromol Biosci 2025; 25:e2400362. [PMID: 39427341 PMCID: PMC11827552 DOI: 10.1002/mabi.202400362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/15/2024] [Indexed: 10/22/2024]
Abstract
In the present study, it is aimed to fabricate a novel silk sericin (SS)/wool keratin (WK) hydrogel-based scaffolds using an in situ bubble-forming strategy containing an N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) coupling reaction. During the rapid gelation process, CO2 bubbles are released by activating the carboxyl groups in sericin with EDC and NHS, entrapped within the gel, creating a porous cross-linked structure. With this approach, five different hydrogels (S2K1, S4K2, S2K4, S6K3, and S3K6) are constructed to investigate the impact of varying sericin and keratin ratios. Analyses reveal that more sericin in the proteinaceous mixture reinforced the hydrogel network. Additionally, the hydrogels' pore size distribution, swelling ratio, wettability, and in vitro biodegradation rate, which are crucial for the applications of biomaterials, are evaluated. Moreover, biocompatibility and proangiogenic properties are analyzed using an in-ovo chorioallantoic membrane assay. The findings suggest that the S4K2 hydrogel exhibited the most promising characteristics, featuring an adequately flexible and highly porous structure. The results obtained by in vitro assessments demonstrate the potential of S4K2 hydrogel in muscle tissue engineering. However, further work is necessary to improve hydrogels with an aligned structure to meet the features that can fully replace muscle tissue for volumetric muscle loss regeneration.
Collapse
Affiliation(s)
- Elif Beyza Demiray
- Regenerative Biomaterials Laboratory, Department of BioengineeringFaculty of Engineering, Çanakkale Onsekiz Mart UniversityÇanakkale17100Turkey
| | - Tugba Sezgin Arslan
- Regenerative Biomaterials Laboratory, Department of BioengineeringFaculty of Engineering, Çanakkale Onsekiz Mart UniversityÇanakkale17100Turkey
| | - Burak Derkus
- Stem Cell Research Lab, Department of ChemistryFaculty of Science, Ankara UniversityAnkara06100Turkey
| | - Yavuz Emre Arslan
- Regenerative Biomaterials Laboratory, Department of BioengineeringFaculty of Engineering, Çanakkale Onsekiz Mart UniversityÇanakkale17100Turkey
| |
Collapse
|
3
|
Choi S, Shin S. Inhibition of myotube formation by platelet-derived growth factor subunit B in QM7 cells. Anim Biosci 2025; 38:157-165. [PMID: 39210814 PMCID: PMC11725729 DOI: 10.5713/ab.24.0262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/11/2024] [Accepted: 07/01/2024] [Indexed: 09/04/2024] Open
Abstract
OBJECTIVE The primary objective of this study was to investigate the role and regulatory mechanisms of platelet-derived growth factor subunit B (PDGFB) in muscle differentiation. METHODS In this study, a vector for PDGFB was designed and transfected into quail muscle cells to investigate its role and regulatory mechanism during muscle formation. To investigate the inhibitory mechanisms of PDGFB on myogenic differentiation, the mRNA expression levels of various genes and the phosphorylation of extracellular signal-regulated kinase 1/2 (ERK 1/2), both known to regulate muscle development and differentiation were compared. RESULTS PDGFB-overexpressed (OE) cells formed morphologically shorter and thinner myotubes and demonstrated a smaller total myotube area than did the control cells. This result was also confirmed at the molecular level by a reduced amount of myosin heavy chain protein in the PDGFB-OE cells. Therefore, PDGFB inhibits the differentiation of muscle cells. Additionally, the expression of myogenin (MYOG) significantly decreased in the PDGFBOE cells on days 2 and 4 compared with that in the control cells. The phosphorylation of ERK 1/2, an upstream protein that inhibits MYOG expression, increased in the PDGFB-OE cells on day 4 compared with that in the control cells. The decreased expression of MYOG in the PDGFB-OE cells increased by inhibition ERK 1/2 phosphorylation. CONCLUSION PDGFB may suppress myogenesis by reducing MYOG expression through ERK 1/2 phosphorylation. These findings can help understand muscle differentiation and potentially improve poultry meat production.
Collapse
Affiliation(s)
- Sarang Choi
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224,
Korea
| | - Sangsu Shin
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju 37224,
Korea
- Research Institute for Innovative Animal Science, Kyungpook National University, Sangju 37224,
Korea
| |
Collapse
|
4
|
Lu HH, Ege D, Salehi S, Boccaccini AR. Ionic medicine: Exploiting metallic ions to stimulate skeletal muscle tissue regeneration. Acta Biomater 2024; 190:1-23. [PMID: 39454933 DOI: 10.1016/j.actbio.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
The regeneration of healthy and functional skeletal muscle at sites of injuries and defects remains a challenge. Mimicking the natural environment surrounding skeletal muscle cells and the application of electrical and mechanical stimuli are approaches being investigated to promote muscle tissue regeneration. Likewise, chemical stimulation with therapeutic (biologically active) ions is an emerging attractive alternative in the tissue engineering and regenerative medicine fields, specifically to trigger myoblast proliferation, myogenic differentiation, myofiber formation, and ultimately to promote new muscle tissue growth. The present review covers the specialized literature focusing on the biochemical stimulation of muscle tissue repair by applying inorganic ions (bioinorganics). Extracting information from the literature, different ions and their potential influence as chemical cues on skeletal muscle regeneration are discussed. It is revealed that different ions and their varied doses have an individual effect at different stages of muscle cellular development. The dose-dependent effects of ions, as well as applications of ions alone and in combination with biomaterials, are also summarized. Some ions, such as boron, silicon, magnesium, selenium and zinc, are reported to exhibit a beneficial effect on skeletal muscle cells in carefully controlled doses, while the effects of other ions such as iron and copper appear to be contradictory. In addition, calcium is an essential regulatory ion for the differentiation of myoblasts. On the other hand, some ions such as phosphate have been shown to inhibit muscle cell behavior. This review thus provides a complete overview of the application of ionic stimulation for skeletal muscle tissue engineering applications, highlighting the importance of inorganic ions as an attractive alternative to the application of small molecules and growth factors to stimulate muscle tissue repair. STATEMENT OF SIGNIFICANCE: Ionic medicine (IM) is emerging as a promising and attractive approach in the field of tissue engineering, including muscle tissue regeneration. IM is based on the delivery of biologically active ions to injury sites, acting as stimulants for the repair process. This method offers a potentially simpler and more affordable alternative to conventional biomolecule-based regulators such as growth factors. Different biologically active ions, depending on their specific doping concentrations, can have varying effects on cellular development, which could be either beneficial or inhibitory. This literature review covers the field of IM in muscle regeneration with focus on the impact of various ions on skeletal muscle regeneration. The paper is thus a critical summary for guiding future research in ionic-related regenerative medicine, highlighting the potential and challenges of this approach for muscle regeneration.
Collapse
Affiliation(s)
- Hsuan-Heng Lu
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Duygu Ege
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany; Institute of Biomedical Engineering, Bogazici University, Rasathane St., Kandilli 34684, Istanbul, Turkey
| | - Sahar Salehi
- Department of Biomaterials, Faculty of Engineering Science, University of Bayreuth, 95447 Bayreuth, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
5
|
Zhang S, Jiang X, Wei Q, Huang L, Huang Z, Zhang L. RAB32 promotes glioma cell progression by activating the JAK/STAT3 signaling pathway. J Int Med Res 2024; 52:3000605241282384. [PMID: 39628429 PMCID: PMC11615995 DOI: 10.1177/03000605241282384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/22/2024] [Indexed: 12/06/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the role of RAB32 in glioblastomas and its molecular mechanisms that regulate gliomas. METHODS The expression and prognostic value of RAB32 were evaluated using western blotting and the Gene Expression Profiling Interactive, Chinese Glioma Genome Atlas, and The Cancer Genome Atlas databases. Lentivirus containing sh-RAB32 or OE-RAB32 was used to manipulate RAB32 expression in glioma cells. The effects of RAB32 on cell proliferation, migration, and invasion were determined by western blotting, cell counting kit-8, plate cloning, wound healing, and transwell assays. Gene set enrichment analysis was used to screen for associations between the JAK/STAT3 signaling pathway and RAB32. The role of this pathway was verified using JAK/STAT3 inhibitors. RESULTS RAB32 expression was significantly upregulated in patients with glioma and in glioma cell lines. The expression level was positively correlated with the glioma grade and served as an independent prognostic factor. In vitro experiments revealed that RAB32 knockdown inhibited glioblastoma cell proliferation, migration, and invasion, while the opposite effects were observed with overexpression and could be inhibited by the JAK/STAT3 inhibitor BP-1-102. CONCLUSION RAB32 promotes malignant progression of glioblastoma cells through the JAK/STAT signaling pathway, providing new possibilities for therapeutic targets for glioblastoma.
Collapse
Affiliation(s)
- Sinan Zhang
- Jiamusi University, Jiamusi, Heilongjiang, China
- Department of Laboratory Medicine, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| | - Xudong Jiang
- Department of Laboratory Medicine, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
- Harbin Medical University (Daqing), Daqing, Heilongjiang, China
| | - Qing Wei
- Jiamusi University, Jiamusi, Heilongjiang, China
| | - Liji Huang
- Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou, Guangxi, China
| | - Zhuoyan Huang
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Lina Zhang
- Department of Laboratory Medicine, Daqing Oilfield General Hospital, Daqing, Heilongjiang, China
| |
Collapse
|
6
|
da Rosa TH, Bartikoski BJ, do Espírito Santo RC, Farinon M, de Souza Silva JM, Pedó RT, Gasparini ML, Karnopp T, Dos Santos LP, Chapacais G, di Domenico A, Loch S, Xavier RM. Treatment with tofacitinib attenuates muscle loss through myogenin activation in the collagen-induced arthritis. Adv Rheumatol 2024; 64:85. [PMID: 39538350 DOI: 10.1186/s42358-024-00416-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/03/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Sarcopenia is a muscle disease characterized by reduction of muscle strength and muscle mass. In RA, 25.9 to 43.3% of the patients present sarcopenia. The loss of muscle mass observed in RA patients occurs either by activation of catabolic pathways or by inhibition of anabolic pathways. Despite having a list of drugs capable of treating RA inflammation, their effect on muscle is unclear. Our objective was to evaluate the tofacitinib effect on the muscle mass of collagen-induced arthritis (CIA) mice. METHODS CIA was induced in male DBA/1J mice by subcutaneous injection of Type 2 Collagen plus Freund Adjuvant. Animals were randomized into 3 groups: CIA + tofacitinib; CIA + vehicle; and healthy controls. Treatment was administered twice a day, between days 18 and 45 after induction. Clinical score, edema, and body weight were evaluated during the experimental period. After euthanasia, tibiotarsal joints were collected for assessment of disease histopathological score, and tibialis anterior (TA) and gastrocnemius (GA) muscles were weighed to assess muscle mass. Muscle atrophy was evaluated by measurement of TA myofiber cross-sectional area (CSA). Protein expression was evaluated by western blot using GA homogenates. Serum inflammatory markers were evaluated by ELISA. Statistical analysis included ANOVA followed by Tukey's or with Kruskal-Wallis. The statistical difference was assumed for p < 0.05. RESULTS Tofacitinib treatment decreased arthritis severity by reducing clinical score, and hind paw edema in comparison with the vehicle group. Tofacitinib showed weight gain, higher TA and GA weights, and increased CSA compared to the vehicle group. On day 45, Tofacitinib presented increased muscle strength compared to the vehicle group, however, no difference was found in muscle fatigue. Pax7 expression was unchanged, while MyoD expression showed an increasing trend, and myogenin expression was significantly increased in Tofacitinib compared to vehicle and control groups. The treatment didn't modify Murf-1 expression. Tofacitinib mice showed decreased serum levels of TNF and increased IL-6 serum levels. CONCLUSION Tofacitinib attenuated muscle loss in arthritic mice, increased muscle weight and muscle CSA. Activation of satellite cell regeneration, based on the increased expression of myogenin, is a potential mechanism involved in tofacitinib action against muscle loss.
Collapse
Affiliation(s)
- Thales Hein da Rosa
- Laboratório de Doenças Autoimunes, Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil.
- Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, Porto Alegre, RS, 90035-003, Brazil.
| | - Bárbara Jonson Bartikoski
- Laboratório de Doenças Autoimunes, Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
- Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, Porto Alegre, RS, 90035-003, Brazil
| | - Rafaela Cavalheiro do Espírito Santo
- Laboratório de Doenças Autoimunes, Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
- Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, Porto Alegre, RS, 90035-003, Brazil
- Health Research and Innovation Science Centre, Klaipeda University, Klaipeda, Lithuania
| | - Mirian Farinon
- Laboratório de Doenças Autoimunes, Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
- Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, Porto Alegre, RS, 90035-003, Brazil
| | - Jordana Miranda de Souza Silva
- Laboratório de Doenças Autoimunes, Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
- Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, Porto Alegre, RS, 90035-003, Brazil
| | - Renata Ternus Pedó
- Laboratório de Doenças Autoimunes, Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
- Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, Porto Alegre, RS, 90035-003, Brazil
| | - Maria Luísa Gasparini
- Laboratório de Doenças Autoimunes, Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
- Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, Porto Alegre, RS, 90035-003, Brazil
| | - Thais Karnopp
- Laboratório de Doenças Autoimunes, Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
- Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, Porto Alegre, RS, 90035-003, Brazil
| | - Leonardo Peterson Dos Santos
- Laboratório de Doenças Autoimunes, Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
- Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, Porto Alegre, RS, 90035-003, Brazil
| | - Gustavo Chapacais
- Laboratório de Doenças Autoimunes, Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
- Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, Porto Alegre, RS, 90035-003, Brazil
| | - Andressa di Domenico
- Laboratório de Doenças Autoimunes, Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
- Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, Porto Alegre, RS, 90035-003, Brazil
| | - Sofia Loch
- Laboratório de Doenças Autoimunes, Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
- Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, Porto Alegre, RS, 90035-003, Brazil
| | - Ricardo Machado Xavier
- Laboratório de Doenças Autoimunes, Serviço de Reumatologia, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
- Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2400, Porto Alegre, RS, 90035-003, Brazil
| |
Collapse
|
7
|
Johnson SJ, Johnson HL, Powell RT, Stephan C, Stossi F, Cooper TA. Small Molecule Screening Identifies HSP90 as a Modifier of RNA Foci in Myotonic Dystrophy Type 1. Mol Cell Biol 2024:1-13. [PMID: 39415708 DOI: 10.1080/10985549.2024.2408025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/19/2024] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic disorder caused by a CTG triplet repeat expansion within the 3' untranslated region of the DMPK gene. Expression of the expanded allele generates RNA containing long tracts of CUG repeats (CUGexp RNA) that form hairpin structures and accumulate in nuclear RNA foci; however, the factors that control DMPK expression and the formation of CUGexp RNA foci remain largely unknown. We performed an unbiased small molecule screen in an immortalized human DM1 skeletal muscle myoblast cell line and identified HSP90 as a modifier of endogenous RNA foci. Small molecule inhibition of HSP90 leads to enhancement of RNA foci and upregulation of DMPK mRNA levels. Knockdown and overexpression of HSP90 in undifferentiated DM1 myoblasts validated the impact of HSP90 with upregulation and downregulation of DMPK mRNA, respectively. Furthermore, we identified p-STAT3 as a downstream mediator of HSP90 impacting levels of DMPK mRNA and RNA foci. Interestingly, differentiated cells exhibited an opposite effect of HSP90 inhibition displaying downregulation of DMPK mRNA through a mechanism independent of p-STAT3 involvement. This study has revealed a novel mediator for DMPK mRNA and foci regulation in DM1 cells with the potential to identify targets for future therapeutic intervention.
Collapse
Affiliation(s)
- Sara J Johnson
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Hannah L Johnson
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Reid T Powell
- Department of Translational Medical Science, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, USA
| | - Clifford Stephan
- Department of Translational Medical Science, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, USA
| | - Fabio Stossi
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Thomas A Cooper
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
8
|
Casella A, Lowen J, Griffin KH, Shimamoto N, Ramos-Rodriguez DH, Panitch A, Leach JK. Conductive Microgel Annealed Scaffolds Enhance Myogenic Potential of Myoblastic Cells. Adv Healthc Mater 2024; 13:e2302500. [PMID: 38069833 PMCID: PMC11759339 DOI: 10.1002/adhm.202302500] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/15/2023] [Indexed: 12/19/2023]
Abstract
Conductive biomaterials may capture native or exogenous bioelectric signaling, but incorporation of conductive moieties is limited by cytotoxicity, poor injectability, or insufficient stimulation. Microgel annealed scaffolds are promising as hydrogel-based materials due to their inherent void space that facilitates cell migration and proliferation better than nanoporous bulk hydrogels. Conductive microgels are generated from poly(ethylene) glycol (PEG and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT: PSS) to explore the interplay of void volume and conductivity on myogenic differentiation. PEDOT: PSS increases microgel conductivity two-fold while maintaining stiffness, annealing strength, and viability of associated myoblastic cells. C2C12 myoblasts exhibit increases in the late-stage differentiation marker myosin heavy chain as a function of both porosity and conductivity. Myogenin, an earlier marker, is influenced only by porosity. Human skeletal muscle-derived cells exhibit increased Myod1, insulin like growth factor-1, and insulin-like growth factor binding protein 2 at earlier time points on conductive microgel scaffolds compared to non-conductive scaffolds. They also secrete more vascular endothelial growth factor at early time points and express factors that led to macrophage polarization patterns observe during muscle repair. These data indicate that conductivity aids myogenic differentiation of myogenic cell lines and primary cells, motivating the need for future translational studies to promote muscle repair.
Collapse
Affiliation(s)
- Alena Casella
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA 95817
| | - Jeremy Lowen
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA 95817
| | - Katherine H. Griffin
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA 95817
- School of Veterinary Medicine, University of California, Davis, Davis, CA 95616
| | - Nathan Shimamoto
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA 95817
| | | | - Alyssa Panitch
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
- Department of Biomedical Engineering, Emory University, Atlanta, GA 30322
| | - J. Kent Leach
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616
- Department of Orthopaedic Surgery, School of Medicine, UC Davis Health, Sacramento, CA 95817
| |
Collapse
|
9
|
Lan Y, Yan D, Li X, Zhou C, Bai Y, Dong X. Muscle growth differences in Lijiang pigs revealed by ATAC-seq multi-omics. Front Vet Sci 2024; 11:1431248. [PMID: 39253524 PMCID: PMC11381499 DOI: 10.3389/fvets.2024.1431248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
As one of the largest tissues in the animal body, skeletal muscle plays a pivotal role in the production and quality of pork. Consequently, it is of paramount importance to investigate the growth and developmental processes of skeletal muscle. Lijiang pigs, which naturally have two subtypes, fast-growing and slow-growing, provide an ideal model for such studies by eliminating breed-related influences. In this study, we selected three fast-growing and three slow-growing 6-month-old Lijiang pigs as subjects. We utilized assay for transposase-accessible chromatin with sequencing (ATAC-seq) combined with genomics, RNA sequencing, and proteomics to screen for differentially expressed genes and transcription factors linked to increased longissimus dorsi muscle volume in Lijiang pigs. We identified 126 genes through ATAC-seq, including PPARA, TNRC6B, NEDD1, and FKBP5, that exhibited differential expression patterns during muscle growth. Additionally, we identified 59 transcription factors, including Foxh1, JunB, Mef2 family members (Mef2a/b/c/d), NeuroD1, and TEAD4. By examining open chromatin regions (OCRs) with significant genetic differentiation, genes such as SAV1, CACNA1H, PRKCG, and FGFR4 were found. Integrating ATAC-seq with transcriptomics and transcriptomics with proteomics, we identified differences in open chromatin regions, transcription, and protein levels of FKBP5 and SCARB2 genes in fast-growing and slow-growing Lijiang pigs. Utilizing multi-omics analysis with R packages, we jointed ATAC-seq, transcriptome, and proteome datasets, identifying enriched pathways related to glycogen metabolism and skeletal muscle cell differentiation. We pinpointed genes such as MYF6 and HABP2 that exhibit strong correlations across these diverse data types. This study provides a multi-faceted understanding of the molecular mechanisms that lead to differences in pig muscle fiber growth.
Collapse
Affiliation(s)
- Yi Lan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Dawei Yan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xinpeng Li
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Chunlu Zhou
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Ying Bai
- School of Life Sciences and Food Engineering, Hebei University of Engineering, Handan, Hebei, China
| | - Xinxing Dong
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
10
|
Fu Y, Nie JR, Shang P, Zhang B, Yan DW, Hao X, Zhang H. Tumor necrosis factor α deficiency promotes myogenesis and muscle regeneration. Zool Res 2024; 45:951-960. [PMID: 39021083 PMCID: PMC11298682 DOI: 10.24272/j.issn.2095-8137.2024.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/07/2024] [Indexed: 07/20/2024] Open
Abstract
Tumor necrosis factor α (TNFα) exhibits diverse biological functions; however, its regulatory roles in myogenesis are not fully understood. In the present study, we explored the function of TNFα in myoblast proliferation, differentiation, migration, and myotube fusion in primary myoblasts and C2C12 cells. To this end, we constructed TNFα muscle-conditional knockout ( TNFα-CKO) mice and compared them with flox mice to assess the effects of TNFα knockout on skeletal muscles. Results indicated that TNFα-CKO mice displayed phenotypes such as accelerated muscle development, enhanced regenerative capacity, and improved exercise endurance compared to flox mice, with no significant differences observed in major visceral organs or skeletal structure. Using label-free proteomic analysis, we found that TNFα-CKO altered the distribution of several muscle development-related proteins, such as Hira, Casz1, Casp7, Arhgap10, Gas1, Diaph1, Map3k20, Cfl2, and Igf2, in the nucleus and cytoplasm. Gene set enrichment analysis (GSEA) further revealed that TNFα deficiency resulted in positive enrichment in oxidative phosphorylation and MyoD targets and negative enrichment in JAK-STAT signaling. These findings suggest that TNFα-CKO positively regulates muscle growth and development, possibly via these newly identified targets and pathways.
Collapse
Affiliation(s)
- Yu Fu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China
| | - Jing-Ru Nie
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China
| | - Peng Shang
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi, Xizang 860000, China
| | - Bo Zhang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China
| | - Da-Wei Yan
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan 650201, China
| | - Xin Hao
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China. E-mail:
| | - Hao Zhang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China. E-mail:
| |
Collapse
|
11
|
Wu XF, Xu Q, Wang A, Wang BZ, Lan XY, Li WY, Liu Y. Relationship between Indel Variants within the JAK2 Gene and Growth Traits in Goats. Animals (Basel) 2024; 14:1994. [PMID: 38998106 PMCID: PMC11240706 DOI: 10.3390/ani14131994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/28/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024] Open
Abstract
Janus kinase 2 (JAK2) plays a critical role in myoblast proliferation and fat deposition in animals. Our previous RNA-Seq analyses identified a close association between the JAK2 gene and muscle development. To date, research delving into the relationship between the JAK2 gene and growth traits has been sparse. In this study, we sought to investigate the relationship between novel mutations within the JAK2 gene and goat growth traits. Herein, two novel InDel (Insertion/Deletion) polymorphisms within the JAK2 gene were detected in 548 goats, and only two genotypes were designated as ID (Insertion/Deletion) and DD (Deletion/Deletion). The results indicate that the two InDels, the del19008 locus in intron 2 and del72416 InDel in intron 6, showed significant associations with growth traits (p < 0.05). Compared to Nubian and Jianzhou Daer goats, the del72416 locus displayed a more pronounced effect in the Fuqing breed group. In the Nubian breed (NB) group, both InDels showed a marked influence on body height (BH). There were strong linkages observed for these two InDels between the Fuqing (FQ) and Jianzhou (JZ) populations. The DD-ID diplotype was associated with inferior growth traits in chest width (ChW) and cannon circumference (CaC) in the FQ goats compared to the other diplotypes. In the NB population, the DD-DD diplotype exhibited a marked negative impact on BH and HuWI (hucklebone width index), in contrast to the other diplotypes. In summary, our findings suggest that the two InDel polymorphisms within the JAK2 gene could serve as valuable molecular markers for enhancing goat growth traits in breeding programs.
Collapse
Affiliation(s)
- Xian-Feng Wu
- Fujian Provincial Key Laboratory of Animal Genetics and Breeding/Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Qian Xu
- Fujian Provincial Key Laboratory of Animal Genetics and Breeding/Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Ao Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ben-Zhi Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xian-Yong Lan
- Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, Xianyang 712100, China
| | - Wen-Yang Li
- Fujian Provincial Key Laboratory of Animal Genetics and Breeding/Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yuan Liu
- Fujian Provincial Key Laboratory of Animal Genetics and Breeding/Institute of Animal Husbandry and Veterinary, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| |
Collapse
|
12
|
Liu SY, Chen LK, Jhong YT, Chen CW, Hsiao LE, Ku HC, Lee PH, Hwang GS, Juan CC. Endothelin-1 impairs skeletal muscle myogenesis and development via ETB receptors and p38 MAPK signaling pathway. Clin Sci (Lond) 2024; 138:711-723. [PMID: 38804865 DOI: 10.1042/cs20240341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 05/29/2024]
Abstract
Myopenia is a condition marked by progressive decline of muscle mass and strength and is associated with aging or obesity. It poses the risk of falling, with potential bone fractures, thereby also increasing the burden on family and society. Skeletal muscle wasting is characterized by a reduced number of myoblasts, impaired muscle regeneration and increased muscle atrophy markers (Atrogin-1, MuRF-1). Endothelin-1 (ET-1) is a potent vasoconstrictor peptide. Increased circulating levels of ET-1 is noted with aging and is associated with muscular fibrosis and decline of strength. However, the regulatory mechanism controlling its effect on myogenesis and atrophy remains unknown. In the present study, the effects of ET-1 on myoblast proliferation, differentiation and development were investigated in C2C12 cells and in ET-1-infused mice. The results show that ET-1, acting via ETB receptors, reduced insulin-stimulated cell proliferation, and also reduced MyoD, MyoG and MyHC expression in the differentiation processes of C2C12 myoblasts. ET-1 inhibited myoblast differentiation through ETB receptors and the p38 mitogen-activated protein kinase (MAPK)-dependent pathway. Additionally, ET-1 decreased MyHC expression in differentiated myotubes. Inhibition of proteasome activity by MG132 ameliorated the ET-1-stimulated protein degradation in differentiated C2C12 myotubes. Furthermore, chronic ET-1 infusion caused skeletal muscle atrophy and impaired exercise performance in mice. In conclusion, ET-1 inhibits insulin-induced cell proliferation, impairs myogenesis and induces muscle atrophy via ETB receptors and the p38 MAPK-dependent pathway.
Collapse
Affiliation(s)
- Shui-Yu Liu
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Luei-Kui Chen
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Yi-Ting Jhong
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Chien-Wei Chen
- Department of Physical Education, Health, and Recreation, Teachers College, National Chiayi University, Chiayi, 621302, Taiwan
| | - Li-En Hsiao
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Huei-Chi Ku
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Pin-Hsuan Lee
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
| | - Guey-Shyang Hwang
- Department of Nursing, Chang Gung University of Science and Technology, Taoyuan, 33303, Taiwan
| | - Chi-Chang Juan
- Institutes of Physiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
| |
Collapse
|
13
|
Li J, Lin Y, Li D, He M, Kui H, Bai J, Chen Z, Gou Y, Zhang J, Wang T, Tang Q, Kong F, Jin L, Li M. Building Haplotype-Resolved 3D Genome Maps of Chicken Skeletal Muscle. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305706. [PMID: 38582509 PMCID: PMC11200017 DOI: 10.1002/advs.202305706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/07/2024] [Indexed: 04/08/2024]
Abstract
Haplotype-resolved 3D chromatin architecture related to allelic differences in avian skeletal muscle development has not been addressed so far, although chicken husbandry for meat consumption has been prevalent feature of cultures on every continent for more than thousands of years. Here, high-resolution Hi-C diploid maps (1.2-kb maximum resolution) are generated for skeletal muscle tissues in chicken across three developmental stages (embryonic day 15 to day 30 post-hatching). The sequence features governing spatial arrangement of chromosomes and characterize homolog pairing in the nucleus, are identified. Multi-scale characterization of chromatin reorganization between stages from myogenesis in the fetus to myofiber hypertrophy after hatching show concordant changes in transcriptional regulation by relevant signaling pathways. Further interrogation of parent-of-origin-specific chromatin conformation supported that genomic imprinting is absent in birds. This study also reveals promoter-enhancer interaction (PEI) differences between broiler and layer haplotypes in skeletal muscle development-related genes are related to genetic variation between breeds, however, only a minority of breed-specific variations likely contribute to phenotypic divergence in skeletal muscle potentially via allelic PEI rewiring. Beyond defining the haplotype-specific 3D chromatin architecture in chicken, this study provides a rich resource for investigating allelic regulatory divergence among chicken breeds.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Yu Lin
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Diyan Li
- School of PharmacyChengdu UniversityChengdu610106China
| | - Mengnan He
- Wildlife Conservation Research DepartmentChengdu Research Base of Giant Panda BreedingChengdu610057China
| | - Hua Kui
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Jingyi Bai
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Ziyu Chen
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Yuwei Gou
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Jiaman Zhang
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Tao Wang
- School of PharmacyChengdu UniversityChengdu610106China
| | - Qianzi Tang
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Fanli Kong
- College of Life ScienceSichuan Agricultural UniversityYa'an625014China
| | - Long Jin
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| | - Mingzhou Li
- State Key Laboratory of Swine and Poultry Breeding IndustryCollege of Animal Science and TechnologySichuan Agricultural UniversityChengdu611130China
| |
Collapse
|
14
|
Tam LM, Rand MD. Review: myogenic and muscle toxicity targets of environmental methylmercury exposure. Arch Toxicol 2024; 98:1645-1658. [PMID: 38546836 PMCID: PMC11105986 DOI: 10.1007/s00204-024-03724-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/29/2024] [Indexed: 05/01/2024]
Abstract
A number of environmental toxicants are noted for their activity that leads to declined motor function. However, the role of muscle as a proximal toxicity target organ for environmental agents has received considerably less attention than the toxicity targets in the nervous system. Nonetheless, the effects of conventional neurotoxicants on processes of myogenesis and muscle maintenance are beginning to resolve a concerted role of muscle as a susceptible toxicity target. A large body of evidence from epidemiological, animal, and in vitro studies has established that methylmercury (MeHg) is a potent developmental toxicant, with the nervous system being a preferred target. Despite its well-recognized status as a neurotoxicant, there is accumulating evidence that MeHg also targets muscle and neuromuscular development as well as contributes to the etiology of motor defects with prenatal MeHg exposure. Here, we summarize evidence for targets of MeHg in the morphogenesis and maintenance of skeletal muscle that reveal effects on MeHg distribution, myogenesis, myotube formation, myotendinous junction formation, neuromuscular junction formation, and satellite cell-mediated muscle repair. We briefly recapitulate the molecular and cellular mechanisms of skeletal muscle development and highlight the pragmatic role of alternative model organisms, Drosophila and zebrafish, in delineating the molecular underpinnings of muscle development and MeHg-mediated myotoxicity. Finally, we discuss how toxicity targets in muscle development may inform the developmental origins of health and disease theory to explain the etiology of environmentally induced adult motor deficits and accelerated decline in muscle fitness with aging.
Collapse
Affiliation(s)
- Lok Ming Tam
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Rochester, NY, 14642, USA.
- Clinical and Translational Science Institute, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA.
| | - Matthew D Rand
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Rochester, NY, 14642, USA
| |
Collapse
|
15
|
Ma T, Ren R, Lv J, Yang R, Zheng X, Hu Y, Zhu G, Wang H. Transdifferentiation of fibroblasts into muscle cells to constitute cultured meat with tunable intramuscular fat deposition. eLife 2024; 13:RP93220. [PMID: 38771186 PMCID: PMC11108645 DOI: 10.7554/elife.93220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Current studies on cultured meat mainly focus on the muscle tissue reconstruction in vitro, but lack the formation of intramuscular fat, which is a crucial factor in determining taste, texture, and nutritional contents. Therefore, incorporating fat into cultured meat is of superior value. In this study, we employed the myogenic/lipogenic transdifferentiation of chicken fibroblasts in 3D to produce muscle mass and deposit fat into the same cells without the co-culture or mixture of different cells or fat substances. The immortalized chicken embryonic fibroblasts were implanted into the hydrogel scaffold, and the cell proliferation and myogenic transdifferentiation were conducted in 3D to produce the whole-cut meat mimics. Compared to 2D, cells grown in 3D matrix showed elevated myogenesis and collagen production. We further induced fat deposition in the transdifferentiated muscle cells and the triglyceride content could be manipulated to match and exceed the levels of chicken meat. The gene expression analysis indicated that both lineage-specific and multifunctional signalings could contribute to the generation of muscle/fat matrix. Overall, we were able to precisely modulate muscle, fat, and extracellular matrix contents according to balanced or specialized meat preferences. These findings provide new avenues for customized cultured meat production with desired intramuscular fat contents that can be tailored to meet the diverse demands of consumers.
Collapse
Affiliation(s)
- Tongtong Ma
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, Shandong Agricultural UniversityTaianChina
| | - Ruimin Ren
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, Shandong Agricultural UniversityTaianChina
- College of Animal Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Jianqi Lv
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, Shandong Agricultural UniversityTaianChina
| | - Ruipeng Yang
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, Shandong Agricultural UniversityTaianChina
| | - Xinyi Zheng
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, Shandong Agricultural UniversityTaianChina
| | - Yang Hu
- College of Food Science and Technology, Huazhong Agricultural UniversityWuhanChina
| | - Guiyu Zhu
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, Shandong Agricultural UniversityTaianChina
| | - Heng Wang
- College of Animal Science and Technology, Key Laboratory of Efficient Utilization of Non-Grain Feed Resources, Ministry of Agriculture and Rural Affairs, Shandong Agricultural UniversityTaianChina
| |
Collapse
|
16
|
Pessino G, Scotti C, Maggi M, Immuno-Hub Consortium. Hepatocellular Carcinoma: Old and Emerging Therapeutic Targets. Cancers (Basel) 2024; 16:901. [PMID: 38473265 DOI: 10.3390/cancers16050901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Liver cancer, predominantly hepatocellular carcinoma (HCC), globally ranks sixth in incidence and third in cancer-related deaths. HCC risk factors include non-viral hepatitis, alcohol abuse, environmental exposures, and genetic factors. No specific genetic alterations are unequivocally linked to HCC tumorigenesis. Current standard therapies include surgical options, systemic chemotherapy, and kinase inhibitors, like sorafenib and regorafenib. Immunotherapy, targeting immune checkpoints, represents a promising avenue. FDA-approved checkpoint inhibitors, such as atezolizumab and pembrolizumab, show efficacy, and combination therapies enhance clinical responses. Despite this, the treatment of hepatocellular carcinoma (HCC) remains a challenge, as the complex tumor ecosystem and the immunosuppressive microenvironment associated with it hamper the efficacy of the available therapeutic approaches. This review explores current and advanced approaches to treat HCC, considering both known and new potential targets, especially derived from proteomic analysis, which is today considered as the most promising approach. Exploring novel strategies, this review discusses antibody drug conjugates (ADCs), chimeric antigen receptor T-cell therapy (CAR-T), and engineered antibodies. It then reports a systematic analysis of the main ligand/receptor pairs and molecular pathways reported to be overexpressed in tumor cells, highlighting their potential and limitations. Finally, it discusses TGFβ, one of the most promising targets of the HCC microenvironment.
Collapse
Affiliation(s)
- Greta Pessino
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Claudia Scotti
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Maristella Maggi
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Immuno-Hub Consortium
- Unit of Immunology and General Pathology, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
17
|
Martins B, Bister A, Dohmen RGJ, Gouveia MA, Hueber R, Melzener L, Messmer T, Papadopoulos J, Pimenta J, Raina D, Schaeken L, Shirley S, Bouchet BP, Flack JE. Advances and Challenges in Cell Biology for Cultured Meat. Annu Rev Anim Biosci 2024; 12:345-368. [PMID: 37963400 DOI: 10.1146/annurev-animal-021022-055132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Cultured meat is an emerging biotechnology that aims to produce meat from animal cell culture, rather than from the raising and slaughtering of livestock, on environmental and animal welfare grounds. The detailed understanding and accurate manipulation of cell biology are critical to the design of cultured meat bioprocesses. Recent years have seen significant interest in this field, with numerous scientific and commercial breakthroughs. Nevertheless, these technologies remain at a nascent stage, and myriad challenges remain, spanning the entire bioprocess. From a cell biological perspective, these include the identification of suitable starting cell types, tuning of proliferation and differentiation conditions, and optimization of cell-biomaterial interactions to create nutritious, enticing foods. Here, we discuss the key advances and outstanding challenges in cultured meat, with a particular focus on cell biology, and argue that solving the remaining bottlenecks in a cost-effective, scalable fashion will require coordinated, concerted scientific efforts. Success will also require solutions to nonscientific challenges, including regulatory approval, consumer acceptance, and market feasibility. However, if these can be overcome, cultured meat technologies can revolutionize our approach to food.
Collapse
Affiliation(s)
- Beatriz Martins
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Arthur Bister
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Richard G J Dohmen
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Maria Ana Gouveia
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Rui Hueber
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Lea Melzener
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Tobias Messmer
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
- Department of Physiology, Maastricht University, Maastricht, The Netherlands
| | - Joanna Papadopoulos
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Joana Pimenta
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Dhruv Raina
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Lieke Schaeken
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Sara Shirley
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| | - Benjamin P Bouchet
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands;
| | - Joshua E Flack
- Mosa Meat B.V., Maastricht, The Netherlands; , , , , , , , , , , , ,
| |
Collapse
|
18
|
Haddish K, Yun JW. Echinacoside stimulates myogenesis and ATP-dependent thermogenesis in the skeletal muscle via the activation of D1-like dopaminergic receptors. Arch Biochem Biophys 2024; 752:109886. [PMID: 38215960 DOI: 10.1016/j.abb.2024.109886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 12/27/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Recent studies have shown that some natural compounds from plants prevent obesity and related disorders, including the loss of skeletal muscle mass and strength. In this study, we investigated the effect of echinacoside (ECH), a caffeic acid glycoside from the phenylpropanoid class, on myogenesis and ATP-dependent thermogenesis in the skeletal muscle and its interaction with the dopaminergic receptors 1 and 5 (DRD1 and DRD5). We applied RT-PCR, immunoblot analysis, a staining method, and an assay kit to determine the effects of ECH on diverse target genes and proteins involved in skeletal muscle myogenesis and ATP-consuming futile processes. Our study demonstrated that ECH enhanced myogenic differentiation, glucose, and fatty acid uptake, as well as lipid catabolism, and induced ATP-dependent thermogenesis in vitro and in vivo. Moreover, ECH upregulated mitochondrial biogenesis proteins, mitochondrial oxidative phosphorylation (OXPHOS) complexes, and intracellular Ca2+ signaling as well as thermogenic proteins. These findings were further elucidated by mechanistic studies which showed that ECH mediates myogenesis via the DRD1/5 in C2C12 muscle cells. In addition, ECH stimulates α1-AR-mediated ATP-dependent thermogenesis via the DRD1/5/cAMP/SLN/SERCA1a pathway in C2C12 muscle cells. To the best of our knowledge, this is the first report that demonstrates the myogenic and thermogenic potential of ECH activity through the dopaminergic receptors. Understanding the novel functions of ECH in terms of its ability to prevent skeletal muscle loss and energy expenditure via ATP-consuming futile processes could help to develop potential alternative strategies to address muscle-related diseases, including combating obesity.
Collapse
Affiliation(s)
- Kiros Haddish
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Jong Won Yun
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
19
|
Lin J, Cai Y, Wang J, Liu R, Qiu C, Huang Y, Liu B, Yang X, Zhou S, Shen Y, Wang W, Zhu J. Transcriptome sequencing promotes insights on the molecular mechanism of SKP-SC-EVs mitigating denervation-induced muscle atrophy. Mol Biol Rep 2023; 51:9. [PMID: 38085347 DOI: 10.1007/s11033-023-08952-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/09/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Complex pathophysiological changes accompany denervation-induced skeletal muscle atrophy, but no effective treatment strategies exist. Our previous study indicated that extracellular vesicles derived from skin-derived precursors-derived Schwann cells (SKP-SC-EVs) can effectively mitigate denervation-induced muscle atrophy. However, the specific molecular mechanism remains unclear. METHODS AND RESULTS In this study, we used bioinformatics methods to scrutinize the impact of SKP-SC-EVs on gene expression in denervation-induced skeletal muscle atrophy. We found that SKP-SC-EVs altered the expression of 358 genes in denervated skeletal muscles. The differentially expressed genes were predominantly participated in biological processes, including cell cycle, inflammation, immunity, and adhesion, and signaling pathways, such as FoxO and PI3K.Using the Molecular Complex Detection (MCODE) plugin, we identified the two clusters with the highest score: cluster 1 comprised 37 genes, and Cluster 2 consisted of 24 genes. Then, fifty hub genes were identified using CytoHubba. The intersection of Hub genes and genes obtained by MCODE showed that all 23 genes related to the cell cycle in Cluster 1 were hub genes, and 5 genes in Cluster 2 were hub genes and associated with inflammation. CONCLUSIONS Overall, the differentially expressed genes in denervated skeletal muscle following SKP-SC-EVs treatment are primarily linked to the cell cycle and inflammation. Consequently, promoting proliferation and inhibiting inflammation may be the critical process in which SKP-SC-EVs delay denervation-induced muscle atrophy. Our findings contribute to a better understanding of the molecular mechanism of SKP-SC-EVs delaying denervation-induced muscle atrophy, offering a promising new avenue for muscle atrophy treatment.
Collapse
Affiliation(s)
- Junfei Lin
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Yong Cai
- Department of Neurology, Binhai County People's Hospital, Yancheng, Jiangsu Province, 224500, P. R. China
| | - Jian Wang
- Department of Clinical Laboratory, Nantong Third Hospital Affiliated to Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Ruiqi Liu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, 226001, Jiangsu Province, P. R. China
| | - Chong Qiu
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, 226001, Jiangsu Province, P. R. China
| | - Yan Huang
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, 226001, Jiangsu Province, P. R. China
| | - Boya Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xiaoming Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Songlin Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| | - Wei Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| | - Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| |
Collapse
|
20
|
Song P, Chen X, Zhao J, Li Q, Li X, Wang Y, Wang B, Zhao J. Vitamin A injection at birth improves muscle growth in lambs. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 14:204-212. [PMID: 37484991 PMCID: PMC10362083 DOI: 10.1016/j.aninu.2023.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 07/25/2023]
Abstract
Vitamin A and its metabolite, retinoic acid (RA) play important roles in regulating skeletal muscle development. This study was conducted to investigate the effects of early intramuscular vitamin A injection on the muscle growth of lambs. A total of 16 newborn lambs were given weekly intramuscular injections of corn oil (control group, n = 8) or 7,500 IU vitamin A palmitate (vitamin A group, n = 8) from birth to 3 wk of age (4 shots in total). At 3 wk of age and weaning, biceps femoris muscle samples were taken to analyze the effects of vitamin A on the myogenic capacity of skeletal muscle cells. All lambs were slaughtered at 8 months of age. The results suggest that vitamin A treatment accelerated the growth rate of lambs and increased the loin eye area (P < 0.05). Consistently, vitamin A increased the diameter of myofibers in longissimus thoracis muscle (P < 0.01) and increased the final body weight of lambs (P < 0.05). Vitamin A injection did not change the protein kinase B/mammalian target of rapamycin and myostatin signaling (P > 0.05). Moreover, vitamin A upregulated the expression of PAX7 (P < 0.05) and the myogenic marker genes including MYOD and MYOG (P < 0.01). The skeletal muscle-derived mononuclear cells from vitamin A-treated lambs showed higher expression of myogenic genes (P < 0.05) and formed more myotubes (P < 0.01) when myogenic differentiation was induced in vitro. In addition, in vitro analysis showed that RA promoted myogenic differentiation of the skeletal muscle-derived mononuclear cells in the first 3 d (P < 0.05) but not at the later stage (P > 0.05) as evidenced by myogenic gene expression and fusion index. Taken together, neonatal intramuscular vitamin A injection promotes lamb muscle growth by promoting the myogenic potential of satellite cells.
Collapse
Affiliation(s)
- Pengkang Song
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xiaoyou Chen
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jiamin Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Qiang Li
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xinrui Li
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yu Wang
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Bo Wang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Junxing Zhao
- College of Animal Science, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| |
Collapse
|
21
|
Casella A, Lowen J, Shimamoto N, Griffin KH, Filler AC, Panitch A, Leach JK. Conductive microgel annealed scaffolds enhance myogenic potential of myoblastic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551533. [PMID: 37577583 PMCID: PMC10418230 DOI: 10.1101/2023.08.01.551533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Bioelectricity is an understudied phenomenon to guide tissue homeostasis and regeneration. Conductive biomaterials may capture native or exogenous bioelectric signaling, but incorporation of conductive moieties is limited by cytotoxicity, poor injectability, or insufficient stimulation. Microgel annealed scaffolds are promising as hydrogel-based materials due to their inherent void space that facilitates cell migration and proliferation better than nanoporous bulk hydrogels. We generated conductive microgels from poly(ethylene) glycol and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) to explore the interplay of void volume and conductivity on myogenic differentiation. PEDOT:PSS increased microgel conductivity over 2-fold while maintaining stiffness, annealing strength, and viability of associated myoblastic cells. C2C12 myoblasts exhibited increases in the late-stage differentiation marker myosin heavy chain as a function of both porosity and conductivity. Myogenin, an earlier marker, was influenced only by porosity. Human skeletal muscle derived cells exhibited increased Myod1 , IGF-1, and IGFBP-2 at earlier timepoints on conductive microgel scaffolds compared to non-conductive scaffolds. They also secreted higher levels of VEGF at early timepoints and expressed factors that led to macrophage polarization patterns observed during muscle repair. These data indicate that conductivity aids myogenic differentiation of myogenic cell lines and primary cells, motivating the need for future translational studies to promote muscle repair.
Collapse
|
22
|
Li WL, Liu YH, Li JX, Ding MT, Adeola AC, Isakova J, Aldashev AA, Peng MS, Huang X, Xie G, Chen X, Yang WK, Zhou WW, Ghanatsaman ZA, Olaogun SC, Sanke OJ, Dawuda PM, Hytönen MK, Lohi H, Esmailizadeh A, Poyarkov AD, Savolainen P, Wang GD, Zhang YP. Multiple Origins and Genomic Basis of Complex Traits in Sighthounds. Mol Biol Evol 2023; 40:msad158. [PMID: 37433053 PMCID: PMC10401622 DOI: 10.1093/molbev/msad158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
Sighthounds, a distinctive group of hounds comprising numerous breeds, have their origins rooted in ancient artificial selection of dogs. In this study, we performed genome sequencing for 123 sighthounds, including one breed from Africa, six breeds from Europe, two breeds from Russia, and four breeds and 12 village dogs from the Middle East. We gathered public genome data of five sighthounds and 98 other dogs as well as 31 gray wolves to pinpoint the origin and genes influencing the morphology of the sighthound genome. Population genomic analysis suggested that sighthounds originated from native dogs independently and were comprehensively admixed among breeds, supporting the multiple origins hypothesis of sighthounds. An additional 67 published ancient wolf genomes were added for gene flow detection. Results showed dramatic admixture of ancient wolves in African sighthounds, even more than with modern wolves. Whole-genome scan analysis identified 17 positively selected genes (PSGs) in the African population, 27 PSGs in the European population, and 54 PSGs in the Middle Eastern population. None of the PSGs overlapped in the three populations. Pooled PSGs of the three populations were significantly enriched in "regulation of release of sequestered calcium ion into cytosol" (gene ontology: 0051279), which is related to blood circulation and heart contraction. In addition, ESR1, JAK2, ADRB1, PRKCE, and CAMK2D were under positive selection in all three selected groups. This suggests that different PSGs in the same pathway contributed to the similar phenotype of sighthounds. We identified an ESR1 mutation (chr1: g.42,177,149 T > C) in the transcription factor (TF) binding site of Stat5a and a JAK2 mutation (chr1: g.93,277,007 T > A) in the TF binding site of Sox5. Functional experiments confirmed that the ESR1 and JAK2 mutation reduced their expression. Our results provide new insights into the domestication history and genomic basis of sighthounds.
Collapse
Affiliation(s)
- Wu-Lue Li
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Yan-Hu Liu
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jin-Xiu Li
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Meng-Ting Ding
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Adeniyi C Adeola
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China
| | - Jainagul Isakova
- Laboratory of Molecular and Cell Biology, Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan
| | - Almaz A Aldashev
- Laboratory of Molecular and Cell Biology, Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan
| | - Min-Sheng Peng
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Xuezhen Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| | - Guoli Xie
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xi Chen
- Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi, China
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Wei-Kang Yang
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Wei-Wei Zhou
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zeinab Amiri Ghanatsaman
- Animal Science Research Department, Fars Agricultural and Natural Resources research and Education Center, Agricultural Research, Education and Extension Organization (AREEO), Shiraz, Iran
| | - Sunday C Olaogun
- Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oscar J Sanke
- Ministry of Agriculture and Natural Resources, Taraba State Government, Jalingo, Nigeria
| | - Philip M Dawuda
- Department of Animal Science, Faculty of Agriculture, National University of Lesotho, Roma, Southern Africa
| | - Marjo K Hytönen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Ali Esmailizadeh
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Andrey D Poyarkov
- Severtsov Institute of Ecology and Evolution, Russian Academy of Science, Moscow, Russia
| | - Peter Savolainen
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Gene Technology, Science for Life Laboratory, Solna, Sweden
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Yunnan Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
- Sino-Africa Joint Research Center, Chinese Academy of Sciences, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, China
| |
Collapse
|
23
|
Goto T, Ueha R, Sato T, Yamasoba T. Effects of early local administration of high-dose bFGF on a recurrent laryngeal nerve injury model. J Otolaryngol Head Neck Surg 2023; 52:47. [PMID: 37488610 PMCID: PMC10367270 DOI: 10.1186/s40463-023-00647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/29/2023] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Research on regenerative medicine using basic fibroblast growth factor (bFGF) has recently advanced in the field of laryngology. We previously reported that local administration of bFGF 1 month after recurrent laryngeal nerve (RLN) paralysis compensated for atrophy of the thyroarytenoid muscle. The objective of this study was to elucidate the effects of early bFGF administration on the thyroarytenoid muscle after RLN transection and to investigate the underlying mechanisms. METHODS A rat model of RLN paralysis was established in this study. One day after RLN transection, low- (200 ng) or high-dose (2000 ng) bFGF or saline (control) was administered to the thyroarytenoid muscle. The larynges were excised for histological and immunohistochemical examinations at 1, 7, 14, 28, and 56 days after administration. RESULTS The cross-sectional thyroarytenoid muscle area was significantly larger in the high-dose group than in the saline and low-dose groups on days 28 and 56. Immunohistochemistry indicated that bFGF significantly increased the number of satellite cells in the thyroarytenoid muscle up to day 14 and that of neuromuscular junctions on days 28 and 56. CONCLUSIONS A single, early local administration of high-dose bFGF prevented atrophic changes in the thyroarytenoid muscles by activating satellite cell proliferation and reforming neuromuscular junctions. As increased neuromuscular junctions are expected to maintain myofiber volume, bFGF administration may prevent thyroarytenoid muscle atrophy in the mid to long term.
Collapse
Affiliation(s)
- Takao Goto
- Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan.
| | - Rumi Ueha
- Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
- The University of Tokyo Hospital Swallowing Center, Tokyo, Japan
| | - Taku Sato
- Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
| | - Tatsuya Yamasoba
- Department of Otorhinolaryngology and Head and Neck Surgery, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-8655, Japan
- Tokyo Teishin Hospital, Tokyo, Japan
| |
Collapse
|
24
|
Shan S, Li Q, Criswell T, Atala A, Zhang Y. Stem cell therapy combined with controlled release of growth factors for the treatment of sphincter dysfunction. Cell Biosci 2023; 13:56. [PMID: 36927578 PMCID: PMC10018873 DOI: 10.1186/s13578-023-01009-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Sphincter dysfunction often occurs at the end of tubule organs such as the urethra, anus, or gastroesophageal sphincters. It is the primary consequence of neuromuscular impairment caused by trauma, inflammation, and aging. Despite intensive efforts to recover sphincter function, pharmacological treatments have not achieved significant improvement. Cell- or growth factor-based therapy is a promising approach for neuromuscular regeneration and the recovery of sphincter function. However, a decrease in cell retention and viability, or the short half-life and rapid degradation of growth factors after implantation, remain obstacles to the translation of these therapies to the clinic. Natural biomaterials provide unique tools for controlled growth factor delivery, which leads to better outcomes for sphincter function recovery in vivo when stem cells and growth factors are co-administrated, in comparison to the delivery of single therapies. In this review, we discuss the role of stem cells combined with the controlled release of growth factors, the methods used for delivery, their potential therapeutic role in neuromuscular repair, and the outcomes of preclinical studies using combination therapy, with the hope of providing new therapeutic strategies to treat incontinence or sphincter dysfunction of the urethra, anus, or gastroesophageal tissues, respectively.
Collapse
Affiliation(s)
- Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Tracy Criswell
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
25
|
Lee JH, Peng DQ, Jin XC, Smith SB, Lee HG. Vitamin D3 decreases myoblast fusion during the growth and increases myogenic gene expression during the differentiation phase in muscle satellite cells from Korean native beef cattle. J Anim Sci 2023; 101:skad192. [PMID: 37313716 PMCID: PMC10424720 DOI: 10.1093/jas/skad192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/13/2023] [Indexed: 06/15/2023] Open
Abstract
The process of myogenesis, which involves the growth and differentiation of muscle cells, is a crucial determinant of meat yield and quality in beef cattle. Essential nutrients, such as vitamins D and A, play vital roles in the development and maintenance of various tissues, including muscle. However, limited knowledge exists regarding the specific effects of vitamins A and D in bovine muscle. Therefore, the aim of this study was to investigate the impact of vitamins A and D treatment on myogenic fusion and differentiation in bovine satellite cells (BSC). BSC were isolated from Korean native beef cattle, specifically from four female cows approximately 30 mo old. These individual cows were used as biological replicates (n = 3 or 4), and we examined the effects of varying concentrations of vitamins A (All-trans retinoic acid; 100 nM) and D (1,25-dihydroxy-vitamin D3; 1 nM, 10 nM, and 100 nM), both individually and in combination, on myoblast fusion and myogenic differentiation during the growth phase (48 h) or differentiation phase (6 d). The results were statistically analyzed using GLM procedure of SAS with Tukey's test and t-tests or one-way ANOVA where appropriate. The findings revealed that vitamin A enhanced the myoblast fusion index, while vitamin D treatment decreased the myoblast fusion index during the growth phase. Furthermore, vitamin A treatment during the differentiation phase promoted terminal differentiation by regulating the expression of myogenic regulatory factors (Myf5, MyoD, MyoG, and Myf6) and inducing myotube hypertrophy compared to the control satellite cells (P < 0.01). In contrast, vitamin D treatment during the differentiation phase enhanced myogenic differentiation by increasing the mRNA expression of MyoG and Myf6 (P < 0.01). Moreover, the combined treatment of vitamins A and D during the growth phase increased myoblast fusion and further promoted myogenic differentiation and hypertrophy of myotubes during the differentiation phase (P < 0.01). These results suggest that vitamin A and D supplementation may have differential effects on muscle development in Korean native beef cattle during the feeding process.
Collapse
Affiliation(s)
- Jun Hee Lee
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Dong Qiao Peng
- College of Animal Sciences, Jilin University, Jilin Provincial key laboratory of livestock and poultry feed and feeding in northeastern frigid area, Changchun, China
| | - Xue Cheng Jin
- Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Stephen B Smith
- Department of Animal Science, A&M University, College Station, TX, USA
| | - Hong Gu Lee
- †Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| |
Collapse
|
26
|
Gattupalli M, Dey P, Poovizhi S, Patel RB, Mishra D, Banerjee S. The Prospects of RNAs and Common Significant Pathways in Cancer Therapy and Regenerative Medicine. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
27
|
Hayashi S, Yonekura S. Mild heat stimulation facilitates muscle hypertrophy in C2C12 and mouse satellite cells through myokine release to the culture medium. Biochem Biophys Res Commun 2022; 635:161-168. [DOI: 10.1016/j.bbrc.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/02/2022]
|
28
|
Li Y, Fu B, Zhang J, Wang G, Tian J, Li H, Xia Y, Xie J, Yu E. Comparative genome-wide methylation analysis reveals epigenetic regulation of muscle development in grass carp ( Ctenopharyngodon idellus) fed with whole faba bean. PeerJ 2022; 10:e14403. [PMID: 36438576 PMCID: PMC9686415 DOI: 10.7717/peerj.14403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/26/2022] [Indexed: 11/22/2022] Open
Abstract
Crisp grass carp (CGC), the most representative improved varieties of grass carp (GC), features higher muscle hardness after feeding faba bean (Vicia faba L.) for 90-120 days. DNA methylation, a most widely studied epigenetic modification, plays an essential role in muscle development. Previous studies have identified numerous differentially expressed genes (DEGs) between CGC and GC. However, it remains unknown if the expression levels of these DEGs are influenced by DNA methylation. In the present study, we performed a comprehensive analysis of DNA methylation profiles between CGC and GC, and identified important candidate genes related to muscle development coupled with the transcriptome sequencing data. A total of 9,318 differentially methylated genes (DMGs) corresponding to 155,760 differentially methylated regions (DMRs) were identified between the two groups under the CG context in promoter regions. Combined with the transcriptome sequencing data, 14 key genes related to muscle development were identified, eight of which (gsk3b, wnt8a, wnt11, axin2, stat1, stat2, jak2, hsp90) were involved in muscle fiber hyperplasia, six of which (tgf-β1, col1a1, col1a2, col1a3, col4a1, col18a1) were associated with collagen synthesis in crisp grass carp. The difference of methylation levels in the key genes might lead to the expression difference, further resulting in the increase of muscle hardness in crisp grass carp. Overall, this study can help further understand how faba bean modulates muscle development by the epigenetic modifications, providing novel insights into the texture quality improvement in other aquaculture fish species by nutritional programming.
Collapse
|
29
|
Jeong D, Seo JW, Lee H, Jung WK, Park YH, Bae H. Efficient Myogenic/Adipogenic Transdifferentiation of Bovine Fibroblasts in a 3D Bioprinting System for Steak-Type Cultured Meat Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202877. [PMID: 36192168 PMCID: PMC9631076 DOI: 10.1002/advs.202202877] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The interest in cultured meat is increasing because of the problems with conventional livestock industry. Recently, many studies related to cultured meat have been conducted, but producing large-sized cultured meat remains a challenge. It is aimed to introduce 3D bioprinting for producing large cell aggregates for cultured meat production. A hydrogel scaffold is produced at the centimeter scale using a bioink consisting of photocrosslinkable materials for digital light processing-based (DLP) printing, which has high printing accuracy and can produce geometrically complex structures. The light exposure time for hydrogel photopolymerization by DLP bioprinting is optimized based on photorheometry and cell viability assays. Naturally immortalized bovine embryonic fibroblast cells transformed with MyoD and PPARγ2 instead of primary cells are used as the latter have difficulties in maintaining stemness and are associated with animal ethics issues. The cells are mixed into the hydrogel for printing. Myogenesis and adipogenesis are induced simply by changing the medium after printing. Scaffolds are obtained successfully with living cells and large microchannels. The cooked cultured meat maintains its size and shape upon cutting. The overall dimensions are 3.43 cm × 5.53 cm × 0.96 cm. This study provides proof-of-concept for producing 3D cultured meat using bioinks.
Collapse
Affiliation(s)
- Dayi Jeong
- Department of Stem Cell and Regenerative BiotechnologyKU Convergence Science and Technology InstituteKonkuk UniversitySeoul05029Republic of Korea
| | - Jeong Wook Seo
- Department of Stem Cell and Regenerative BiotechnologyKU Convergence Science and Technology InstituteKonkuk UniversitySeoul05029Republic of Korea
| | - Hong‐Gu Lee
- Department of Animal Science and TechnologySanghuh College of Life SciencesKonkuk UniversitySeoul05029Republic of Korea
| | - Woo Kyung Jung
- NoAH Biotech Co., Ltd.Suwon‐siGyeonggi‐do16614Republic of Korea
| | - Yong Ho Park
- NoAH Biotech Co., Ltd.Suwon‐siGyeonggi‐do16614Republic of Korea
- Department of MicrobiologyCollege of Veterinary Medicine and Research Institute for Veterinary ScienceSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Hojae Bae
- Department of Stem Cell and Regenerative BiotechnologyKU Convergence Science and Technology InstituteKonkuk UniversitySeoul05029Republic of Korea
- Institute of Advanced Regenerative ScienceKonkuk University120 Neungdong‐ro, Gwangjin‐guSeoul05029Republic of Korea
| |
Collapse
|
30
|
Waldemer-Streyer RJ, Kim D, Chen J. Muscle cell-derived cytokines in skeletal muscle regeneration. FEBS J 2022; 289:6463-6483. [PMID: 35073461 PMCID: PMC9308828 DOI: 10.1111/febs.16372] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
Regeneration of the mammalian adult skeletal muscle is a well-orchestrated process regulated by multiple proteins and signalling pathways. Cytokines constitute a major class of regulators of skeletal myogenesis. It is well established that infiltrating immune cells at the site of muscle injury secrete cytokines, which play critical roles in the myofibre repair and regeneration process. In the past 10-15 years, skeletal muscle itself has emerged as a prolific producer of cytokines. Much attention in the field has been focused on the endocrine effects of muscle-secreted cytokines (myokines) on metabolic regulation. However, ample evidence suggests that muscle-derived cytokines also regulate myogenic differentiation and muscle regeneration in an autocrine manner. In this review, we survey cytokines that meet two criteria: (a) evidence of expression by muscle cells; (b) evidence demonstrating a myogenic function. Dozens of cytokines representing several major classes make up this group, and together they regulate all steps of the myogenic process. How such a large array of cytokines coordinate their signalling to form a regulatory network is a fascinating, pressing question. Functional studies that can distinguish the source of the cytokines in vivo are also much needed in order to facilitate exploration of their full therapeutic potential.
Collapse
Affiliation(s)
| | | | - Jie Chen
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, 601 S. Goodwin Ave., Urbana, IL 61801
| |
Collapse
|
31
|
The Promotion of Migration and Myogenic Differentiation in Skeletal Muscle Cells by Quercetin and Underlying Mechanisms. Nutrients 2022; 14:nu14194106. [PMID: 36235757 PMCID: PMC9572605 DOI: 10.3390/nu14194106] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Aging and muscle disorders frequently cause a decrease in myoblast migration and differentiation, leading to losses in skeletal muscle function and regeneration. Several studies have reported that natural flavonoids can stimulate muscle development. Quercetin, one such flavonoid found in many vegetables and fruits, has been used to promote muscle development. In this study, we investigated the effect of quercetin on migration and differentiation, two processes critical to muscle regeneration. We found that quercetin induced the migration and differentiation of mouse C2C12 cells. These results indicated quercetin could induce myogenic differentiation at the early stage through activated p-IGF-1R. The molecular mechanisms of quercetin include the promotion of myogenic differentiation via activated transcription factors STAT3 and the AKT signaling pathway. In addition, we demonstrated that AKT activation is required for quercetin induction of myogenic differentiation to occur. In addition, quercetin was found to promote myoblast migration by regulating the ITGB1 signaling pathway and activating phosphorylation of FAK and paxillin. In conclusion, quercetin can potentially be used to induce migration and differentiation and thus improve muscle regeneration.
Collapse
|
32
|
Wang Z, Cai D, Ju X, Li K, Liang S, Fang M, Nie Q. RNA Sequencing Reveals the Regulation of Betaine on Chicken Myogenesis. Animals (Basel) 2022; 12:ani12192508. [PMID: 36230250 PMCID: PMC9558966 DOI: 10.3390/ani12192508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Betaine is trimethylglycine and a universal methyl donor which could provide methyl and glycine for cells and animals. As a new star in epigenetics, N6-Methyladenosine has been reported to regulate multiple biological activities, but the regulatory mechanism of betaine on N6-Methyladenosine as well as myogenesis was little studied. In this study, we treated chicken primary myoblast cells with different concentrations of betaine (0, 10, 25, and 50 mmol/L) and found that myoblast cell proliferation was inhibited, although the cell cycle was promoted in the S phase by betaine, where the myotube area was increased as well as the differentiation marker genes MyoD, MyoG, MyHC, Myomarker, and Ckm. RNA sequencing obtained a total of 61 differentially expressed genes (DEGs); DEGs caused by 50 mmol/L betaine were mainly enriched in the regulation of skeletal muscle tissue regeneration and some amino acid metabolic processes. The gene expression pattern trends of all DEGs were mainly clustered into 2 profiles, with the increase in betaine concentration, the gene expression pattern either increased or decreased continuously. Overall, a low concentration betaine can increase the N6-Methyladenosine modification level and myotube area but depresses myoblast cell proliferation in vitro.
Collapse
Affiliation(s)
- Zhijun Wang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, National-Local Joint Engineering Research Center for Livestock Breeding, Ministry of Agriculture, Guangzhou 510642, China
| | - Danfeng Cai
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, National-Local Joint Engineering Research Center for Livestock Breeding, Ministry of Agriculture, Guangzhou 510642, China
| | - Xing Ju
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, National-Local Joint Engineering Research Center for Livestock Breeding, Ministry of Agriculture, Guangzhou 510642, China
| | - Kan Li
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, National-Local Joint Engineering Research Center for Livestock Breeding, Ministry of Agriculture, Guangzhou 510642, China
| | - Sisi Liang
- Department of Laboratory Animal Science, Medical College of Jinan University, Guangzhou 510632, China
| | - Meixia Fang
- Department of Laboratory Animal Science, Medical College of Jinan University, Guangzhou 510632, China
| | - Qinghua Nie
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding and Key Laboratory of Chicken Genetics, Breeding and Reproduction, National-Local Joint Engineering Research Center for Livestock Breeding, Ministry of Agriculture, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-20-8528-5759; Fax: +86-20-8528-0740
| |
Collapse
|
33
|
Márquez-Nogueras KM, Vuchkovska V, DiNello E, Osorio-Valencia S, Kuo IY. Polycystin-2 (PC2) is a key determinant of in vitro myogenesis. Am J Physiol Cell Physiol 2022; 323:C333-C346. [PMID: 35675637 PMCID: PMC9291421 DOI: 10.1152/ajpcell.00159.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The development of skeletal muscle (myogenesis) is a well-orchestrated process where myoblasts withdraw from the cell cycle and differentiate into myotubes. Signaling by fluxes in intracellular calcium (Ca2+) is known to contribute to myogenesis, and increased mitochondrial biogenesis is required to meet the metabolic demand of mature myotubes. However, gaps remain in the understanding of how intracellular Ca2+ signals can govern myogenesis. Polycystin-2 (PC2 or TRPP1) is a nonselective cation channel permeable to Ca2+. It can interact with intracellular calcium channels to control Ca2+ release and concurrently modulates mitochondrial function and remodeling. Due to these features, we hypothesized that PC2 is a central protein in mediating both the intracellular Ca2+ responses and mitochondrial changes seen in myogenesis. To test this hypothesis, we created CRISPR/Cas9 knockout (KO) C2C12 murine myoblast cell lines. PC2 KO cells were unable to differentiate into myotubes, had impaired spontaneous Ca2+ oscillations, and did not develop depolarization-evoked Ca2+ transients. The autophagic-associated pathway beclin-1 was downregulated in PC2 KO cells, and direct activation of the autophagic pathway resulted in decreased mitochondrial remodeling. Re-expression of full-length PC2, but not a calcium channel dead pathologic mutant, restored the differentiation phenotype and increased the expression of mitochondrial proteins. Our results establish that PC2 is a novel regulator of in vitro myogenesis by integrating PC2-dependent Ca2+ signals and metabolic pathways.
Collapse
Affiliation(s)
| | | | - Elisabeth DiNello
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois
| | - Sara Osorio-Valencia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois
| | - Ivana Y Kuo
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, Illinois
| |
Collapse
|
34
|
Hein TR, Peterson L, Bartikoski BJ, Portes J, Espírito Santo RC, Xavier RM. The effect of disease-modifying anti-rheumatic drugs on skeletal muscle mass in rheumatoid arthritis patients: a systematic review with meta-analysis. Arthritis Res Ther 2022; 24:171. [PMID: 35854372 PMCID: PMC9295282 DOI: 10.1186/s13075-022-02858-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/30/2022] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is an autoimmune disease, characterized by chronic and systemic inflammation. Besides, it is known that RA patients may present several comorbidities, such as sarcopenia, a condition where patients present both muscle mass and muscle quality impairment. RA treatment is mostly pharmacological and consists in controlling systemic inflammation and disease activity. Despite that, the effect of pharmacological treatment on sarcopenia is not well characterized. OBJECTIVE To summarize the effects of disease-modifying anti-rheumatic drugs (DMARDs) on skeletal muscle tissue in rheumatoid arthritis (RA) patients. METHODS A systematic review of randomized clinical trials and observational studies was conducted using MEDLINE, Embase, Cochrane Library, and Web of Science. We selected studies with rheumatoid arthritis patients treated with disease-modifying anti-rheumatic drugs (DMARDs) that analyzed muscle mass parameters such as lean mass and appendicular lean mass. Methodological quality was assessed using the Newcastle-Ottawa Quality Assessment Scale. Standardized mean difference (SMD) and 95% confidence intervals (CI) were set. A meta-analysis of observational studies was performed using the R software, and we considered significant statistics when p < 0.05. RESULTS Nine studies were included in this systematic review. In the meta-analysis, DMARD treatment had no positive difference (p = 0.60) in lean mass. In the same way, in the appendicular lean mass parameter, our results showed that DMARDs did not have changes between baseline and post-treatment analysis (p = 0.93). CONCLUSION There is no evidence of a significant effect of DMARD therapy, either synthetic or biological, on muscle mass. However, this association should be investigated with more studies.
Collapse
Affiliation(s)
- Thales R Hein
- Universidade Federal do Rio Grande do Sul, Rheumatology, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil.
| | - Leonardo Peterson
- Universidade Federal do Rio Grande do Sul, Rheumatology, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
| | - Barbara J Bartikoski
- Universidade Federal do Rio Grande do Sul, Rheumatology, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
| | - Juliana Portes
- Universidade Federal do Rio Grande do Sul, Rheumatology, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
| | - Rafaela C Espírito Santo
- Universidade Federal do Rio Grande do Sul, Rheumatology, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
| | - Ricardo M Xavier
- Universidade Federal do Rio Grande do Sul, Rheumatology, Rua Ramiro Barcelos, 2350, Porto Alegre, RS, 90035-903, Brazil
| |
Collapse
|
35
|
Noda Y, Okada S, Suzuki T. Regulation of A-to-I RNA editing and stop codon recoding to control selenoprotein expression during skeletal myogenesis. Nat Commun 2022; 13:2503. [PMID: 35523818 PMCID: PMC9076623 DOI: 10.1038/s41467-022-30181-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
Selenoprotein N (SELENON), a selenocysteine (Sec)-containing protein with high reductive activity, maintains redox homeostasis, thereby contributing to skeletal muscle differentiation and function. Loss-of-function mutations in SELENON cause severe neuromuscular disorders. In the early-to-middle stage of myoblast differentiation, SELENON maintains redox homeostasis and modulates endoplasmic reticulum (ER) Ca2+ concentration, resulting in a gradual reduction from the middle-to-late stages due to unknown mechanisms. The present study describes post-transcriptional mechanisms that regulate SELENON expression during myoblast differentiation. Part of an Alu element in the second intron of SELENON pre-mRNA is frequently exonized during splicing, resulting in an aberrant mRNA that is degraded by nonsense-mediated mRNA decay (NMD). In the middle stage of myoblast differentiation, ADAR1-mediated A-to-I RNA editing occurs in the U1 snRNA binding site at 5' splice site, preventing Alu exonization and producing mature mRNA. In the middle-to-late stage of myoblast differentiation, the level of Sec-charged tRNASec decreases due to downregulation of essential recoding factors for Sec insertion, thereby generating a premature termination codon in SELENON mRNA, which is targeted by NMD.
Collapse
Affiliation(s)
- Yuta Noda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Shunpei Okada
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Department of Microbiology, Faculty of Medicine, Shimane University, 89-1 Enyacho, Izumo, Shimane, 693-8501, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.
| |
Collapse
|
36
|
Ye B, Sheng Y, Zhang M, Hu Y, Huang H. Early detection and intervention of clonal hematopoiesis for preventing hematological malignancies. Cancer Lett 2022; 538:215691. [DOI: 10.1016/j.canlet.2022.215691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/03/2022] [Accepted: 04/17/2022] [Indexed: 12/17/2022]
|
37
|
Järvelä-Stölting M, Vesala L, Maasdorp MK, Ciantar J, Rämet M, Valanne S. Proteasome α6 Subunit Negatively Regulates the JAK/STAT Pathway and Blood Cell Activation in Drosophila melanogaster. Front Immunol 2021; 12:729631. [PMID: 35003057 PMCID: PMC8727353 DOI: 10.3389/fimmu.2021.729631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022] Open
Abstract
JAK/STAT signaling regulates central biological functions such as development, cell differentiation and immune responses. In Drosophila, misregulated JAK/STAT signaling in blood cells (hemocytes) induces their aberrant activation. Using mass spectrometry to analyze proteins associated with a negative regulator of the JAK/STAT pathway, and by performing a genome-wide RNAi screen, we identified several components of the proteasome complex as negative regulators of JAK/STAT signaling in Drosophila. A selected proteasome component, Prosα6, was studied further. In S2 cells, Prosα6 silencing decreased the amount of the known negative regulator of the pathway, ET, leading to enhanced expression of a JAK/STAT pathway reporter gene. Silencing of Prosα6 in vivo resulted in activation of the JAK/STAT pathway, leading to the formation of lamellocytes, a specific hemocyte type indicative of hemocyte activation. This hemocyte phenotype could be partially rescued by simultaneous knockdown of either the Drosophila STAT transcription factor, or MAPKK in the JNK-pathway. Our results suggest a role for the proteasome complex components in the JAK/STAT pathway in Drosophila blood cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Mirva Järvelä-Stölting
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Laura Vesala
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Matthew K. Maasdorp
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Joanna Ciantar
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Research Unit for Pediatrics, Pediatric Neurology, Pediatric Surgery, Child Psychiatry, Dermatology, Clinical Genetics, Obstetrics and Gynecology, Otorhinolaryngology and Ophthalmology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, University of Oulu, Oulu, Finland
| | - Susanna Valanne
- Laboratory of Experimental Immunology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- *Correspondence: Susanna Valanne,
| |
Collapse
|
38
|
Chen L, Hassani Nia F, Stauber T. Ion Channels and Transporters in Muscle Cell Differentiation. Int J Mol Sci 2021; 22:13615. [PMID: 34948411 PMCID: PMC8703453 DOI: 10.3390/ijms222413615] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/04/2021] [Accepted: 12/14/2021] [Indexed: 01/12/2023] Open
Abstract
Investigations on ion channels in muscle tissues have mainly focused on physiological muscle function and related disorders, but emerging evidence supports a critical role of ion channels and transporters in developmental processes, such as controlling the myogenic commitment of stem cells. In this review, we provide an overview of ion channels and transporters that influence skeletal muscle myoblast differentiation, cardiac differentiation from pluripotent stem cells, as well as vascular smooth muscle cell differentiation. We highlight examples of model organisms or patients with mutations in ion channels. Furthermore, a potential underlying molecular mechanism involving hyperpolarization of the resting membrane potential and a series of calcium signaling is discussed.
Collapse
Affiliation(s)
- Lingye Chen
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany;
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Fatemeh Hassani Nia
- Institute for Molecular Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany;
| | - Tobias Stauber
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany;
- Institute for Molecular Medicine, MSH Medical School Hamburg, 20457 Hamburg, Germany;
| |
Collapse
|
39
|
Benítez R, Núñez Y, Ayuso M, Isabel B, Fernández-Barroso MA, De Mercado E, Gómez-Izquierdo E, García-Casco JM, López-Bote C, Óvilo C. Changes in Biceps femoris Transcriptome along Growth in Iberian Pigs Fed Different Energy Sources and Comparative Analysis with Duroc Breed. Animals (Basel) 2021; 11:ani11123505. [PMID: 34944282 PMCID: PMC8697974 DOI: 10.3390/ani11123505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The genetic mechanisms that regulate biological processes, such as skeletal muscle development and growth, or intramuscular fat deposition, have attracted great interest, given their impact on production traits and meat quality. In this sense, a comparison of the transcriptome of skeletal muscle between phenotypically different pig breeds, or along growth, could be useful to improve the understanding of the molecular processes underlying the differences in muscle metabolism and phenotypic traits, potentially driving the identification of causal genes, regulators and metabolic pathways involved in their variability. Abstract This experiment was conducted to investigate the effects of developmental stage, breed, and diet energy source on the genome-wide expression, meat quality traits, and tissue composition of biceps femoris muscle in growing pure Iberian and Duroc pigs. The study comprised 59 Iberian (IB) and 19 Duroc (DU) animals, who started the treatment at an average live weight (LW) of 19.9 kg. The animals were kept under identical management conditions and fed two diets with different energy sources (6% high oleic sunflower oil or carbohydrates). Twenty-nine IB animals were slaughtered after seven days of treatment at an average LW of 24.1 kg, and 30 IB animals plus all the DU animals were slaughtered after 47 days at an average LW of 50.7 kg. The main factors affecting the muscle transcriptome were age, with 1832 differentially expressed genes (DEGs), and breed (1055 DEGs), while the effect of diet on the transcriptome was very small. The results indicated transcriptome changes along time in Iberian animals, being especially related to growth and tissue development, extracellular matrix (ECM) composition, and cytoskeleton organization, with DEGs affecting relevant functions and biological pathways, such as myogenesis. The breed also affected functions related to muscle development and cytoskeleton organization, as well as functions related to solute transport and lipid and carbohydrate metabolism. Taking into account the results of the two main comparisons (age and breed effects), we can postulate that the Iberian breed is more precocious than the Duroc breed, regarding myogenesis and muscle development, in the studied growing stage.
Collapse
Affiliation(s)
- Rita Benítez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain; (R.B.); (Y.N.); (M.A.F.-B.); (J.M.G.-C.)
| | - Yolanda Núñez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain; (R.B.); (Y.N.); (M.A.F.-B.); (J.M.G.-C.)
| | - Miriam Ayuso
- Department of Veterinary Sciences, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, B-2610 Wilrijk, Belgium;
| | - Beatriz Isabel
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (B.I.); (C.L.-B.)
| | - Miguel A. Fernández-Barroso
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain; (R.B.); (Y.N.); (M.A.F.-B.); (J.M.G.-C.)
| | - Eduardo De Mercado
- Centro de Pruebas de Porcino ITACYL, Hontalbilla, 40353 Segovia, Spain; (E.D.M.); (E.G.-I.)
| | - Emilio Gómez-Izquierdo
- Centro de Pruebas de Porcino ITACYL, Hontalbilla, 40353 Segovia, Spain; (E.D.M.); (E.G.-I.)
| | - Juan M. García-Casco
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain; (R.B.); (Y.N.); (M.A.F.-B.); (J.M.G.-C.)
| | - Clemente López-Bote
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (B.I.); (C.L.-B.)
| | - Cristina Óvilo
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain; (R.B.); (Y.N.); (M.A.F.-B.); (J.M.G.-C.)
- Correspondence: ; Tel.: +34-91-3471492
| |
Collapse
|
40
|
Dai C, Reyes-Ordoñez A, You JS, Chen J. A non-translational role of threonyl-tRNA synthetase in regulating JNK signaling during myogenic differentiation. FASEB J 2021; 35:e21948. [PMID: 34569098 DOI: 10.1096/fj.202101094r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 11/11/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are house-keeping enzymes that are essential for protein synthesis. However, it has become increasingly evident that some aaRSs also have non-translational functions. Here we report the identification of a non-translational function of threonyl-tRNA synthetase (ThrRS) in myogenic differentiation. We find that ThrRS negatively regulates myoblast differentiation in vitro and injury-induced skeletal muscle regeneration in vivo. This function is independent of amino acid binding or aminoacylation activity of ThrRS, and knockdown of ThrRS leads to enhanced differentiation without affecting the global protein synthesis rate. Furthermore, we show that the non-catalytic new domains (UNE-T and TGS) of ThrRS are both necessary and sufficient for the myogenic function. In searching for a molecular mechanism of this new function, we find the kinase JNK to be a downstream target of ThrRS. Our data further reveal MEKK4 and MKK4 as upstream regulators of JNK in myogenesis and the MEKK4-MKK4-JNK pathway to be a mediator of the myogenic function of ThrRS. Finally, we show that ThrRS physically interacts with Axin1, disrupts Axin1-MEKK4 interaction and consequently inhibits JNK signaling. In conclusion, we uncover a non-translational function for ThrRS in the maintenance of homeostasis of skeletal myogenesis and identify the Axin1-MEKK4-MKK4-JNK signaling axis to be an immediate target of ThrRS action.
Collapse
Affiliation(s)
- Chong Dai
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Adriana Reyes-Ordoñez
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jae-Sung You
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jie Chen
- Department of Cell & Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
41
|
Kostyuk SV, Proskurnina EV, Ershova ES, Kameneva LV, Malinovskaya EM, Savinova EA, Sergeeva VA, Umriukhin PE, Dolgikh OA, Khakina EA, Kraevaya OA, Troshin PA, Kutsev SI, Veiko NN. The Phosphonate Derivative of C 60 Fullerene Induces Differentiation towards the Myogenic Lineage in Human Adipose-Derived Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:ijms22179284. [PMID: 34502190 PMCID: PMC8431706 DOI: 10.3390/ijms22179284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 12/26/2022] Open
Abstract
Inductors of myogenic stem cell differentiation attract attention, as they can be used to treat myodystrophies and post-traumatic injuries. Functionalization of fullerenes makes it possible to obtain water-soluble derivatives with targeted biochemical activity. This study examined the effects of the phosphonate C60 fullerene derivatives on the expression of myogenic transcription factors and myogenic differentiation of human mesenchymal stem cells (MSCs). Uptake of the phosphonate C60 fullerene derivatives in human MSCs, intracellular ROS visualization, superoxide scavenging potential, and the expression of myogenic, adipogenic, and osteogenic differentiation genes were studied. The prolonged MSC incubation (within 7–14 days) with the C60 pentaphoshonate potassium salt promoted their differentiation towards the myogenic lineage. The transcription factors and gene expressions determining myogenic differentiation (MYOD1, MYOG, MYF5, and MRF4) increased, while the expression of osteogenic differentiation factors (BMP2, BMP4, RUNX2, SPP1, and OCN) and adipogenic differentiation factors (CEBPB, LPL, and AP2 (FABP4)) was reduced or did not change. The stimulation of autophagy may be one of the factors contributing to the increased expression of myogenic differentiation genes in MSCs. Autophagy may be caused by intracellular alkalosis and/or short-term intracellular oxidative stress.
Collapse
Affiliation(s)
- Svetlana V. Kostyuk
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| | - Elena V. Proskurnina
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
- Correspondence:
| | - Elizaveta S. Ershova
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| | - Larisa V. Kameneva
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| | - Elena M. Malinovskaya
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| | - Ekaterina A. Savinova
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| | - Vasilina A. Sergeeva
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| | - Pavel E. Umriukhin
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
- Department of Normal Physiology, I.M. Sechenov First Moscow State Medical University (Sechenov University) , Mohovaya Str. 11-4, 125009 Moscow, Russia
| | - Olga A. Dolgikh
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| | - Ekaterina A. Khakina
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences, Vavylova St. 28, B-334, 119991 Moscow, Russia;
| | - Olga A. Kraevaya
- Institute of Problems of Chemical Physics of Russian Academy of Sciences, Semenov Prospect 1, 142432 Chernogolovka (Moscow Region), Russia; (O.A.K.); (P.A.T.)
| | - Pavel A. Troshin
- Institute of Problems of Chemical Physics of Russian Academy of Sciences, Semenov Prospect 1, 142432 Chernogolovka (Moscow Region), Russia; (O.A.K.); (P.A.T.)
| | - Sergey I. Kutsev
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| | - Natalia N. Veiko
- Research Centre for Medical Genetics, ul. Moskvorechye 1, 115522 Moscow, Russia; (S.V.K.); (E.S.E.); (L.V.K.); (E.M.M.); (E.A.S.); (V.A.S.); (P.E.U.); (O.A.D.); (S.I.K.); (N.N.V.)
| |
Collapse
|
42
|
Ruppert PM, Deng L, Hooiveld GJ, Hangelbroek RW, Zeigerer A, Kersten S. RNA sequencing reveals niche gene expression effects of beta-hydroxybutyrate in primary myotubes. Life Sci Alliance 2021; 4:4/10/e202101037. [PMID: 34407998 PMCID: PMC8380668 DOI: 10.26508/lsa.202101037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/24/2022] Open
Abstract
RNA sequencing reveals primary myocyte-specific gene-regulatory niche effects for β-hydroxybutyrate but do not support a general signaling of β-hydroxybutyrate role in other primary cells or during cellular differentiation in vitro. Various forms of fasting and ketogenic diet have shown promise in (pre-)clinical studies to normalize body weight, improve metabolic health, and protect against disease. Recent studies suggest that β-hydroxybutyrate (βOHB), a fasting-characteristic ketone body, potentially acts as a signaling molecule mediating its beneficial effects via histone deacetylase inhibition. Here, we have investigated whether βOHB, in comparison to the well-established histone deacetylase inhibitor butyrate, influences cellular differentiation and gene expression. In various cell lines and primary cell types, millimolar concentrations of βOHB did not alter differentiation in vitro, as determined by gene expression and histological assessment, whereas equimolar concentrations of butyrate consistently impaired differentiation. RNA sequencing revealed that unlike butyrate, βOHB minimally impacted gene expression in primary adipocytes, macrophages, and hepatocytes. However, in myocytes, βOHB up-regulated genes involved in the TCA cycle and oxidative phosphorylation, while down-regulating genes belonging to cytokine and chemokine signal transduction. Overall, our data do not support the notion that βOHB serves as a powerful signaling molecule regulating gene expression but suggest that βOHB may act as a niche signaling molecule in myocytes.
Collapse
Affiliation(s)
- Philip Mm Ruppert
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Lei Deng
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Guido Jej Hooiveld
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Roland Wj Hangelbroek
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands.,Euretos BV, Utrecht, The Netherlands
| | - Anja Zeigerer
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany and Joint Heidelberg-Institute for Diabetes and Cancer Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
43
|
Rational design of heterodimeric receptors capable of activating target signaling molecules. Sci Rep 2021; 11:16809. [PMID: 34413422 PMCID: PMC8376883 DOI: 10.1038/s41598-021-96396-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/06/2021] [Indexed: 11/08/2022] Open
Abstract
Intracellular signal transduction is regulated by a variety of transmembrane receptors. Many researchers have aimed to arbitrarily regulate the intracellular signaling and subsequent cell fate with artificial receptors, of which the ligand recognition and signaling properties could be artificially designed. Although several architectures of homodimeric artificial receptors have been reported, engineering of heterodimeric receptors, which are abundant among natural receptors, have yet to be thoroughly investigated. In this study, we rationally design artificial heterodimeric receptors for activating target signaling molecules. We locate a tyrosine motif on an engineered tyrosine kinase domain, which is further connected to a small molecule-responsive heterodimeric module, attaining a pair of heterodimeric receptors with different tyrosine motifs within the pair. The resultant heterodimeric receptors successfully activate target signaling molecules and even control cell proliferation levels according to the properties of tyrosine motifs connected. Thus, our heterodimeric receptors may open a new era of tailor-made designer receptors, which could be useful for cell therapy against intractable diseases.
Collapse
|
44
|
Xia L, Jin P, Tian W, Liang S, Tan L, Li B. Up-regulation of MARVEL domain-containing protein 1 (MARVELD1) accelerated the malignant phenotype of glioma cancer cells via mediating JAK/STAT signaling pathway. ACTA ACUST UNITED AC 2021; 54:e10236. [PMID: 34008750 PMCID: PMC8130134 DOI: 10.1590/1414-431x2020e10236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 11/24/2020] [Indexed: 12/24/2022]
Abstract
This work aimed to research the function of MARVEL domain-containing protein 1 (MARVELD1) in glioma as well as its functioning mode. Bioinformatics analysis was utilized to assess the MARVELD1 expression in glioma tissues and its relationship with grade and prognosis, based on The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Chinese Glioma Genome Atlas (CGGA) databases. Cell Counting Kit-8 (CCK-8), colony formation, and Transwell assays were carried out to determine the impact of MARVELD1 on malignant biological behavior of glioma, such as proliferation, invasion, and migration. qRT-PCR was carried out to test the mRNA level of MARVELD1. Western blot assay was performed to measure the protein expression of MARVELD1 and JAK/STAT pathway-related proteins. MARVELD1 was expressed at high levels in glioma tissues and cell lines. Kaplan-Meier survival analysis revealed that the higher MARVELD1 expression, the shorter the survival time of patients with glioma. Also, the MARVELD1 expression in WHO IV was significantly enhanced compared to that in WHO II and WHO III. Furthermore, the functional analysis of MARVELD1 in vitro revealed that knockdown of MARVELD1 in U251 cells restrained cell proliferation, migration, and invasion, while up-regulation of MARVELD1 in U87 cells presented opposite outcomes. Finally, we found that JAK/STAT signaling pathway mediated the function of MARVELD1 in glioma. MARVELD1 contributed to promoting the malignant progression of glioma, which is the key driver of activation of JAK/STAT signaling pathway in gliomas.
Collapse
Affiliation(s)
- Lingyang Xia
- Department of Neurosurgery, The Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - Peng Jin
- Department of Operating Room, Hongqi Hospital Affiliated to Mudanjiang Medical College, Mudanjiang, China
| | - Wei Tian
- Department of Operating Room, Hongqi Hospital Affiliated to Mudanjiang Medical College, Mudanjiang, China
| | - Shuang Liang
- Department of X-ray, Hongqi Hospital Affiliated to Mudanjiang Medical College, Mudanjiang, China
| | - Liye Tan
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Mudanjiang Medical College, Mudanjiang, China
| | - Binxin Li
- Department of Operating Room, Hongqi Hospital Affiliated to Mudanjiang Medical College, Mudanjiang, China
| |
Collapse
|
45
|
Aránega AE, Lozano-Velasco E, Rodriguez-Outeiriño L, Ramírez de Acuña F, Franco D, Hernández-Torres F. MiRNAs and Muscle Regeneration: Therapeutic Targets in Duchenne Muscular Dystrophy. Int J Mol Sci 2021; 22:ijms22084236. [PMID: 33921834 PMCID: PMC8072594 DOI: 10.3390/ijms22084236] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022] Open
Abstract
microRNAs (miRNAs) are small non-coding RNAs required for the post-transcriptional control of gene expression. MicroRNAs play a critical role in modulating muscle regeneration and stem cell behavior. Muscle regeneration is affected in muscular dystrophies, and a critical point for the development of effective strategies for treating muscle disorders is optimizing approaches to target muscle stem cells in order to increase the ability to regenerate lost tissue. Within this framework, miRNAs are emerging as implicated in muscle stem cell response in neuromuscular disorders and new methodologies to regulate the expression of key microRNAs are coming up. In this review, we summarize recent advances highlighting the potential of miRNAs to be used in conjunction with gene replacement therapies, in order to improve muscle regeneration in the context of Duchenne Muscular Dystrophy (DMD).
Collapse
Affiliation(s)
- Amelia Eva Aránega
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
- Correspondence:
| | - Estefanía Lozano-Velasco
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
| | - Lara Rodriguez-Outeiriño
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
| | - Felicitas Ramírez de Acuña
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
| | - Francisco Hernández-Torres
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Avda. de la Investigación 11, 18016 Granada, Spain
| |
Collapse
|
46
|
Wu N, Li Y, He X, Lin J, Long D, Cheng X, Brand-Saberi B, Wang G, Yang X. Retinoic Acid Signaling Plays a Crucial Role in Excessive Caffeine Intake-Disturbed Apoptosis and Differentiation of Myogenic Progenitors. Front Cell Dev Biol 2021; 9:586767. [PMID: 33791291 PMCID: PMC8006404 DOI: 10.3389/fcell.2021.586767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/04/2021] [Indexed: 11/13/2022] Open
Abstract
Whether or not the process of somitogenesis and myogenesis is affected by excessive caffeine intake still remains ambiguous. In this study, we first showed that caffeine treatment results in chest wall deformities and simultaneously reduced mRNA expressions of genes involved in myogenesis in the developing chicken embryos. We then used embryo cultures to assess in further detail how caffeine exposure affects the earliest steps of myogenesis, and we demonstrated that the caffeine treatment suppressed somitogenesis of chicken embryos by interfering with the expressions of crucial genes modulating apoptosis, proliferation, and differentiation of myogenic progenitors in differentiating somites. These phenotypes were abrogated by a retinoic acid (RA) antagonist in embryo cultures, even at low caffeine doses in C2C12 cells, implying that excess RA levels are responsible for these phenotypes in cells and possibly in vivo. These findings highlight that excessive caffeine exposure is negatively involved in regulating the development of myogenic progenitors through interfering with RA signaling. The RA somitogenesis/myogenesis pathway might be directly impacted by caffeine signaling rather than reflecting an indirect effect of the toxicity of excess caffeine dosage.
Collapse
Affiliation(s)
- Nian Wu
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Yingshi Li
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China
| | - Xiangyue He
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Department of Pathology, Medical School, Jinan University, Guangzhou, China
| | - Jiayi Lin
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China
| | - Denglu Long
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China
| | - Xin Cheng
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Institute of Anatomy, Ruhr-University Bochum, Bochum, Germany
| | - Guang Wang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| | - Xuesong Yang
- Division of Histology and Embryology, International Joint Laboratory for Embryonic Development and Prenatal Medicine, Medical College, Jinan University, Guangzhou, China.,Key Laboratory for Regenerative Medicine of the Ministry of Education, Jinan University, Guangzhou, China
| |
Collapse
|
47
|
Determination of the pathways of potential muscle damage and regeneration in response to acute and long-term swimming exercise in mice. Life Sci 2021; 272:119265. [PMID: 33626393 DOI: 10.1016/j.lfs.2021.119265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/15/2021] [Accepted: 02/15/2021] [Indexed: 01/22/2023]
Abstract
The objective of the current study was examining early and late (3, 24 h) responses to acute, chronic swimming exercise as muscle damage and regeneration in gastrocnemius-soleus muscle complexes. We also aimed to reveal the signaling pathways involved. 8-12 weeks old mice were grouped as control, exercise. Exercising groups were firstly divided into two as acute and chronic, later every group was again divided in terms of time (3, 24 h) passed from the last exercise session until exsanguination. Acute exercise groups swam 30 min, while chronic swimming groups exercised 30 min/day, 5 days/week, 6 weeks. Histological investigations were performed to determine muscle damage and regeneration. Whole-genome expression analysis was applied to total RNA samples. Microarray data was confirmed by quantitative real-time PCR. Exercising mice muscle revealed enhanced damage, leukocyte infiltration. Increments in acute and chronic 3 h groups were statistically significant. Car3, Neb, Obscn, Ttn, Igfbp5, Igfbp7, Gsk3β, and Usp2 were down-regulated in muscles of swimming mice. The exercise-induced signaling pathways involved in muscle damage and regeneration were drawn. Our findings demonstrate that swimming induces muscle damage. Samples were obtained at 3 and 24 h following exercise, this time duration seems not sufficient for the development of myofibrillogenesis.
Collapse
|
48
|
Shen J, Hao Z, Wang J, Hu J, Liu X, Li S, Ke N, Song Y, Lu Y, Hu L, Qiao L, Wu X, Luo Y. Comparative Transcriptome Profile Analysis of Longissimus dorsi Muscle Tissues From Two Goat Breeds With Different Meat Production Performance Using RNA-Seq. Front Genet 2021; 11:619399. [PMID: 33519920 PMCID: PMC7838615 DOI: 10.3389/fgene.2020.619399] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Carcass weight, meat quality and muscle components are important traits economically and they underpin most of the commercial return to goat producers. In this study, the Longissimus dorsi muscle tissues were collected from five Liaoning cashmere (LC) goats and five Ziwuling black (ZB) goats with phenotypic difference in carcass weight, some meat quality traits and muscle components. The histological quantitative of collagen fibers and the transcriptome profiles in the Longissimus dorsi muscle tissues were investigated using Masson-trichrome staining and RNA-Seq, respectively. The percentage of total collagen fibers in the Longissimus dorsi muscle tissues from ZB goats was less than those from LC goats, suggesting that these ZB goats had more tender meat. An average of 15,919 and 15,582 genes were found to be expressed in Longissimus dorsi muscle tissues from LC and ZB goats, respectively. Compared to LC goats, the expression levels of 78 genes were up-regulated in ZB goats, while 133 genes were down-regulated. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses revealed that the differentially expressed genes (DEGs) were significantly enriched in GO terms related to the muscle growth and development and the deposition of intramuscular fat and lipid metabolism, hippo signaling pathway and Jak-STAT signaling pathway. The results provide an improved understanding of the genetic mechanisms regulating meat production performance in goats, and will help us improve the accuracy of selection for meat traits in goats using marker-assisted selection based on these differentially expressed genes obtained.
Collapse
Affiliation(s)
- Jiyuan Shen
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zhiyun Hao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiqing Wang
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiang Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiu Liu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Shaobin Li
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Na Ke
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yize Song
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yujie Lu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Liyan Hu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Lirong Qiao
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xinmiao Wu
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuzhu Luo
- Gansu Key Laboratory of Herbivorous Animal Biotechnology, Faculty of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
49
|
N-(Pyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-amine Derivatives as Selective Janus Kinase 2 Inhibitors for the Treatment of Myeloproliferative Neoplasms. J Med Chem 2020; 63:14921-14936. [PMID: 33256400 DOI: 10.1021/acs.jmedchem.0c01488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this study, we described a series of N-(pyrimidin-2-yl)-1,2,3,4-tetrahydroisoquinolin-6-amine derivatives as selective JAK2 (Janus kinase 2) inhibitors. Systematic exploration of the structure-activity relationship though cyclization modification based on previously reported compound 18e led to the discovery of the superior derivative 13ac. Compound 13ac showed excellent potency on JAK2 kinase, SET-2, and Ba/F3V617F cells (high expression of JAK2V617F mutation) with IC50 values of 3, 11.7, and 41 nM, respectively. Further mechanistic studies demonstrated that compound 13ac could downregulate the phosphorylation of downstream proteins of JAK2 kinase in cells. Compound 13ac also showed good selectivity in kinase scanning and potent in vivo antitumor efficacy with 82.3% tumor growth inhibition in the SET-2 xenograft model. Moreover, 13ac significantly ameliorated the disease symptoms in a Ba/F3-JAK2V617F allograft model, with 77.1% normalization of spleen weight, which was more potent than Ruxolitinib.
Collapse
|
50
|
Myofiber necroptosis promotes muscle stem cell proliferation via releasing Tenascin-C during regeneration. Cell Res 2020; 30:1063-1077. [PMID: 32839552 PMCID: PMC7784988 DOI: 10.1038/s41422-020-00393-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Necroptosis, a form of programmed cell death, is characterized by the loss of membrane integrity and release of intracellular contents, the execution of which depends on the membrane-disrupting activity of the Mixed Lineage Kinase Domain-Like protein (MLKL) upon its phosphorylation. Here we found myofibers committed MLKL-dependent necroptosis after muscle injury. Either pharmacological inhibition of the necroptosis upstream kinase Receptor Interacting Protein Kinases 1 (RIPK1) or genetic ablation of MLKL expression in myofibers led to significant muscle regeneration defects. By releasing factors into the muscle stem cell (MuSC) microenvironment, necroptotic myofibers facilitated muscle regeneration. Tenascin-C (TNC), released by necroptotic myofibers, was found to be critical for MuSC proliferation. The temporary expression of TNC in myofibers is tightly controlled by necroptosis; the extracellular release of TNC depends on necroptotic membrane rupture. TNC directly activated EGF receptor (EGFR) signaling pathway in MuSCs through its N-terminus assembly domain together with the EGF-like domain. These findings indicate that necroptosis plays a key role in promoting MuSC proliferation to facilitate muscle regeneration.
Collapse
|