1
|
Adame M, Vázquez H, Juárez-López D, Corzo G, Amezcua M, López D, González Z, Schcolnik-Cabrera A, Morales-Martínez A, Villegas E. Expression and characterization of scFv-6009FV in Pichia pastoris with improved ability to neutralize the neurotoxin Cn2 from Centruroides noxius. Int J Biol Macromol 2024; 275:133461. [PMID: 38945343 DOI: 10.1016/j.ijbiomac.2024.133461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Small single-chain variable fragments (scFv) are promising biomolecules to inhibit and neutralize toxins and to act as antivenoms. In this work, we aimed to produce a functional scFv-6009FV in the yeast Pichia pastoris, which inhibits the pure Cn2 neurotoxin and the whole venom of Centruroides noxius. We were able to achieve yields of up to 31.6 ± 2 mg/L in flasks. Furthermore, the protein showed a structure of 6.1 % α-helix, 49.1 % β-sheet, and 44.8 % of random coil by CD. Mass spectrometry confirmed the amino acid sequence and showed no glycosylation profile for this molecule. Purified scFv-6009FV allowed us to develop anti-scFvs in rabbits, which were then used in affinity columns to purify other scFvs. Determination of its half-maximal inhibitory concentration value (IC50) was 40 % better than the scFvs produced by E. coli as a control. Finally, we found that scFv-6009FV was able to inhibit ex vivo the pure Cn2 toxin and the whole venom from C. noxius in murine rescue experiments. These results demonstrated that under the conditions assayed here, P. pastoris is suited to produce scFv-6009FV that, compared to scFvs produced by E. coli, maintains the characteristics of an antibody and neutralizes the Cn2 toxin more effectively.
Collapse
Affiliation(s)
- Mariel Adame
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Hilda Vázquez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Daniel Juárez-López
- Instituto de Investigaciones Biomédicas, Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, México
| | - Gerardo Corzo
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Mónica Amezcua
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Daniela López
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Zuriel González
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | | | - Adriana Morales-Martínez
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Elba Villegas
- Departamento de Productos Naturales, Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México.
| |
Collapse
|
2
|
Yue J, Shao S, Zhou J, Luo W, Xu Y, Zhang Q, Jiang J, Zhu MM. A bispecific antibody targeting HER2 and CLDN18.2 eliminates gastric cancer cells expressing dual antigens by enhancing the immune effector function. Invest New Drugs 2024; 42:106-115. [PMID: 38198061 DOI: 10.1007/s10637-024-01417-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/03/2024] [Indexed: 01/11/2024]
Abstract
Gastric cancer (GC) is widely regarded as one of the toughest cancers to treat. Trastuzumab, which targets the human epidermal growth factor receptor 2 (HER2) for GC treatment, has demonstrated clinical success. However, these patients have a high likelihood of developing resistance. Additionally, Claudin18.2 (CLDN18.2) is a promising emerging target for GC treatment. Therefore, therapies that simultaneously target both HER2 and CLDN18.2 targets are of great significance. Here, we constructed a bispecific antibody targeting both HER2 and CLDN18.2 (HC-2G4S; BsAb), which displayed satisfactory purity, thermostability and enhancing antibody-dependent cell-mediated cytotoxicity (ADCC) activity. In a tumor spheroids model of GC, BsAb demonstrated greater therapeutic efficacy than monoclonal antibodies (mAb) or combination treatment strategies. We propose that the enhanced anti-tumor potency of BsAbs in vivo is due to the monovalent binding of single-chain antibodies to more targets due to weaker affinity, resulting in a more potent immune effect function. Therefore, HC-2G4S could be a productive agent for treating GC that is HER2-positive, CLDN18.2-positive, or both, with the potential to overcome trastuzumab resistance and provide significant clinical benefits and expanded indications.
Collapse
Affiliation(s)
- Jingying Yue
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong Province, 264003, China
| | - Shuai Shao
- RemeGen Co., Ltd., 58 Middle Beijing Road, Yantai, ShanDong, 264006, China
| | - Jie Zhou
- RemeGen Co., Ltd., 58 Middle Beijing Road, Yantai, ShanDong, 264006, China
| | - Wenting Luo
- RemeGen Co., Ltd., 58 Middle Beijing Road, Yantai, ShanDong, 264006, China
| | - Yanling Xu
- RemeGen Co., Ltd., 58 Middle Beijing Road, Yantai, ShanDong, 264006, China
| | - Qinbin Zhang
- RemeGen Co., Ltd., 58 Middle Beijing Road, Yantai, ShanDong, 264006, China
| | - Jing Jiang
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong Province, 264003, China
| | - Marie M Zhu
- School of Pharmacy, Binzhou Medical University, Yantai, Shandong Province, 264003, China.
| |
Collapse
|
3
|
Ren J, Liao X, Lewis JM, Chang J, Qu R, Carlson KR, Foss F, Girardi M. Generation and optimization of off-the-shelf immunotherapeutics targeting TCR-Vβ2+ T cell malignancy. Nat Commun 2024; 15:519. [PMID: 38225288 PMCID: PMC10789731 DOI: 10.1038/s41467-024-44786-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 01/05/2024] [Indexed: 01/17/2024] Open
Abstract
Current treatments for T cell malignancies encounter issues of disease relapse and off-target toxicity. Using T cell receptor (TCR)Vβ2 as a model, here we demonstrate the rapid generation of an off-the-shelf allogeneic chimeric antigen receptor (CAR)-T platform targeting the clone-specific TCR Vβ chain for malignant T cell killing while limiting normal cell destruction. Healthy donor T cells undergo CRISPR-induced TRAC, B2M and CIITA knockout to eliminate T cell-dependent graft-versus-host and host-versus-graft reactivity. Second generation 4-1BB/CD3zeta CAR containing high affinity humanized anti-Vβ scFv is expressed efficiently on donor T cells via both lentivirus and adeno-associated virus transduction with limited detectable pre-existing immunoreactivity. Our optimized CAR-T cells demonstrate specific and persistent killing of Vβ2+ Jurkat cells and Vβ2+ patient derived malignant T cells, in vitro and in vivo, without affecting normal T cells. In parallel, we generate humanized anti-Vβ2 antibody with enhanced antibody-dependent cellular cytotoxicity (ADCC) by Fc-engineering for NK cell ADCC therapy.
Collapse
Affiliation(s)
- Jingjing Ren
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.
| | - Xiaofeng Liao
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.
| | - Julia M Lewis
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Jungsoo Chang
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Rihao Qu
- The Computational Biology and Bioinformatics Program, Yale School of Medicine, New Haven, CT, USA
| | - Kacie R Carlson
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Francine Foss
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Michael Girardi
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Wang Z, Liu Y, Xu Y, Lu L, Zhu Z, Lv B, Fang X, Tang Y, Wang J, Cheng Y, Hu Y, Lou J, Wu P, Liu C, Liu Y, Zeng X, Xu Q. Anti-HER2 biparatopic antibody KJ015 has near-native structure, functional balanced high affinity, and synergistic efficacy with anti-PD-1 treatment in vivo. MAbs 2024; 16:2412881. [PMID: 39381966 PMCID: PMC11469434 DOI: 10.1080/19420862.2024.2412881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
Currently approved human epidermal growth factor receptor 2 (HER2)-targeted antibody therapies are largely derived from trastuzumab, including trastuzumab-chemotherapy combinations, fixed-dose trastuzumab-pertuzumab combinations, and trastuzumab antibody-drug conjugates. To expand the options, bispecific antibodies, which may better utilize the benefits of combination therapy, are being developed. Among them, biparatopic antibodies (bpAbs) have shown improved efficacy compared to monoclonal antibody (mAb) combinations in HER2-positive patients. BpAbs bind two independent epitopes on the same antigen, which allows fine-tuning of mechanisms of action, including enhancement of on-target specificity and induction of strong antigen clustering due to the unique binding mode. To fully utilize the potential of bpAbs for anti-HER2 drug development, it is crucial to consider formats that offer stability and high-yield production, along with a functional balance between the two epitopes. In this study, we rationally designed a bpAb, KJ015, that shares a common light chain with two Fab arms and exhibits functionally balanced high affinity for two HER2 non-overlapping epitopes. KJ015 demonstrated high-expression titers over 7 g/L and stable physicochemical properties at elevated concentrations, facilitating subcutaneous administration with hyaluronidase. Moreover, KJ015 maintained comparable antibody-dependent cytotoxicity, phagocytosis, and complement-dependent cytotoxicity with trastuzumab plus pertuzumab. It exhibited enhanced synergy when administered subcutaneously with hyaluronidase and anti-PD-1 mAb in a mouse tumor model, suggesting promising clinical prospects for this combination.
Collapse
Affiliation(s)
- Zheng Wang
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Yu Liu
- Department of Oncology, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Shanghai, China
| | - Yunxia Xu
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Lin Lu
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Zhen Zhu
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Baojie Lv
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Xin Fang
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Yao Tang
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Jinhua Wang
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Yu Cheng
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Ying Hu
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Junwen Lou
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Peican Wu
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Chendan Liu
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Yanjun Liu
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
| | - Xin Zeng
- Shanghai Bao Pharmaceuticals Co.Ltd, Baoshan, Shanghai, China
- School of Bioscience and Technology, Chengdu Medical College, Chengdu, China
| | - Qing Xu
- Department of Oncology, Shanghai Tenth People’s Hospital, Tongji University Cancer Center, Shanghai, China
| |
Collapse
|
5
|
Wachter S, Angevin T, Bubna N, Tan A, Cichy A, Brown D, Wolfe LS, Sappington R, Lilla E, Berry L, Grismer D, Orth C, Blanusa M, Mostafa S, Kaufmann H, Felderer K. Application of platform process development approaches to the manufacturing of Mabcalin™ bispecifics. J Biotechnol 2023; 377:13-22. [PMID: 37820750 DOI: 10.1016/j.jbiotec.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Bispecific biotherapeutics offer potent and highly specific treatment options in oncology and immuno-oncology. However, many bispecific formats are prone to high levels of aggregation and instability, leading to prolonged development timelines, inefficient manufacturing, and high costs. The novel class of Mabcalin™ molecules consist of Anticalin® proteins fused to an IgG and are currently being evaluated in pre-clinical and clinical studies. Here, we describe a robust high-yield manufacturing platform for these therapeutic fusion proteins providing data up to commercially relevant scales. A platform upstream process was established for one of the Mabcalin bispecifics and then applied to other clinically relevant drug candidates with different IgG target specificities. Process performance was compared in 3 L bioreactors and production was scaled-up to up to 1000 L for confirmation. The Mabcalin proteins' structural and biophysical similarities enabled a downstream platform approach consisting of initial protein A capture, viral inactivation, mixed-mode anion exchange polishing, second polishing by cation exchange or hydrophobic interaction chromatography, viral filtration, buffer exchange and concentration by ultrafiltration/diafiltration. All three processes met their target specifications and achieved comparable clearance of impurities and product yields across scales. The described platform approach provides a fast and economic path to process confirmation and is well comparable to classical monoclonal antibody approaches in terms of costs and time to clinic.
Collapse
Affiliation(s)
- Stefanie Wachter
- Pieris Pharmaceuticals GmbH, Zeppelinstr. 3, Hallbergmoos 85399 Germany.
| | - Thibaut Angevin
- Pieris Pharmaceuticals GmbH, Zeppelinstr. 3, Hallbergmoos 85399 Germany
| | - Niket Bubna
- KBI Biopharma, 4117 Emperor Blvd, Suite 200, Durham, NC 27703, USA
| | - Adelene Tan
- Pieris Pharmaceuticals GmbH, Zeppelinstr. 3, Hallbergmoos 85399 Germany
| | - Adam Cichy
- Pieris Pharmaceuticals GmbH, Zeppelinstr. 3, Hallbergmoos 85399 Germany
| | - David Brown
- KBI Biopharma, 4117 Emperor Blvd, Suite 200, Durham, NC 27703, USA
| | - Leslie S Wolfe
- KBI Biopharma, 4117 Emperor Blvd, Suite 200, Durham, NC 27703, USA
| | - Ryan Sappington
- KBI Biopharma, 4117 Emperor Blvd, Suite 200, Durham, NC 27703, USA
| | - Edward Lilla
- KBI Biopharma, 4117 Emperor Blvd, Suite 200, Durham, NC 27703, USA
| | - Luke Berry
- KBI Biopharma, 4117 Emperor Blvd, Suite 200, Durham, NC 27703, USA
| | - Dane Grismer
- KBI Biopharma, 4117 Emperor Blvd, Suite 200, Durham, NC 27703, USA
| | - Christian Orth
- Pieris Pharmaceuticals GmbH, Zeppelinstr. 3, Hallbergmoos 85399 Germany
| | - Milan Blanusa
- Pieris Pharmaceuticals GmbH, Zeppelinstr. 3, Hallbergmoos 85399 Germany
| | - Sigma Mostafa
- KBI Biopharma, 4117 Emperor Blvd, Suite 200, Durham, NC 27703, USA
| | - Hitto Kaufmann
- Pieris Pharmaceuticals GmbH, Zeppelinstr. 3, Hallbergmoos 85399 Germany
| | - Karin Felderer
- Pieris Pharmaceuticals GmbH, Zeppelinstr. 3, Hallbergmoos 85399 Germany
| |
Collapse
|
6
|
Koga H, Yamano T, Betancur J, Nagatomo S, Ikeda Y, Yamaguchi K, Nabuchi Y, Sato K, Teranishi-Ikawa Y, Sato M, Hirayama H, Hayasaka A, Torizawa T, Haraya K, Sampei Z, Shiraiwa H, Kitazawa T, Igawa T, Kuramochi T. Efficient production of bispecific antibody by FAST-Ig TM and its application to NXT007 for the treatment of hemophilia A. MAbs 2023; 15:2222441. [PMID: 37339067 PMCID: PMC10283433 DOI: 10.1080/19420862.2023.2222441] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/22/2023] Open
Abstract
Efficient production of bispecific antibodies (BsAbs) in single mammalian cells is essential for basic research and industrial manufacturing. However, preventing unwanted pairing of heavy chains (HCs) and light chains (LCs) is a challenging task. To address this, we created an engineering technology for preferential cognate HC/LC and HC/HC paring called FAST-Ig (Four-chain Assembly by electrostatic Steering Technology - Immunoglobulin), and applied it to NXT007, a BsAb for the treatment of hemophilia A. We introduced charged amino-acid substitutions at the HC/LC interface to facilitate the proper assembly for manufacturing a standard IgG-type BsAb. We generated CH1/CL interface-engineered antibody variants that achieved > 95% correct HC/LC pairing efficiency with favorable pharmacological properties and developability. Among these, we selected a design (C3) that allowed us to separate the mis-paired species with an unintended pharmacological profile using ion-exchange chromatography. Crystal structure analysis demonstrated that the C3 design did not affect the overall structure of both Fabs. To determine the final design for HCs-heterodimerization, we compared the stability of charge-based and knobs into hole-based Fc formats in acidic conditions and selected the more stable charge-based format. FAST-Ig was also applicable to stable CHO cell lines for industrial production and demonstrated robust chain pairing with different subclasses of parent BsAbs. Thus, it can be applied to a wide variety of BsAbs both preclinically and clinically.
Collapse
Affiliation(s)
- Hikaru Koga
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Takashi Yamano
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Juan Betancur
- API Process Development Department, Chugai Pharmaceutical Co., Ltd, Ukima, Tokyo, Japan
| | - Satoko Nagatomo
- Analytical Development Department, Chugai Pharmaceutical Co, Ltd, Ukima, Tokyo, Japan
| | - Yousuke Ikeda
- Analytical Development Department, Chugai Pharmaceutical Co, Ltd, Ukima, Tokyo, Japan
| | - Kazuki Yamaguchi
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Yoshiaki Nabuchi
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Kazuki Sato
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | | | - Motohiko Sato
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Hiroyuki Hirayama
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Akira Hayasaka
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Takuya Torizawa
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Kenta Haraya
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Zenjiro Sampei
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Hirotake Shiraiwa
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Takehisa Kitazawa
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| | - Tomoyuki Igawa
- Translational Research Division, Chugai Pharmaceutical Co., Ltd, Chuo-Ku, Tokyo, Japan
| | - Taichi Kuramochi
- Research Division, Chugai Pharmaceutical Co., Ltd, Yokohama, Kanagawa, Japan
| |
Collapse
|
7
|
Madsen AV, Kristensen P, Buell AK, Goletz S. Generation of robust bispecific antibodies through fusion of single-domain antibodies on IgG scaffolds: a comprehensive comparison of formats. MAbs 2023; 15:2189432. [PMID: 36939220 PMCID: PMC10038023 DOI: 10.1080/19420862.2023.2189432] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Bispecific antibodies (bsAbs) enable dual binding of different antigens with potential synergistic targeting effects and innovative therapeutic possibilities. The formation of bsAbs is, however, often dependent on complex engineering strategies with a high risk of antibody chain mispairing leading to contamination of the final product with incorrectly assembled antibody species. This study demonstrates formation of bsAbs in a generic and conceptually easy manner through fusion of single-domain antibodies (sdAbs) onto IgG scaffolds through flexible 10 amino acid linkers to form high-quality bsAbs with both binding functionalities intact and minimal product-related impurities. SdAbs are attractive fusion partners due to their small and monomeric nature combined with antigen-binding capabilities comparable to conventional human antibodies. By systematically comparing a comprehensive panel of symmetric αPD-L1×αHER2 antibodies, including reversely mirrored antigen specificities, we investigate how the molecular geometry affects production, stability, antigen binding and CD16a binding. SdAb fusion of the heavy chain was generally preferred over light chain fusion for promoting good expression and high biophysical stability as well as maintaining efficient binding to both antigens. We find that N-terminal sdAb fusion might sterically hinder antigen-binding to the Fv region of the IgG scaffold, whereas C-terminal fusion might disturb antigen-binding to the fused sdAb. Our work demonstrates a toolbox of complementary methods for in-depth analysis of key features, such as in-solution dual antigen binding, thermal stability, and aggregation propensity, to ensure high bsAb quality. These techniques can be executed at high-throughput and/or with very low material consumption and thus represent valuable tools for bsAb screening and development.
Collapse
Affiliation(s)
- Andreas V Madsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Peter Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Alexander K Buell
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Steffen Goletz
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
8
|
Huang MTF, Sharma V, Mendelsohn A, Wei Q, Li J, Yu B, Larrick JW, Lum LG. Broad reactivity and enhanced potency of recombinant anti-EGFR × anti-CD3 bispecific antibody-armed activated T cells against solid tumours. Ann Med 2022; 54:1047-1057. [PMID: 36799362 PMCID: PMC9045764 DOI: 10.1080/07853890.2022.2059101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 02/09/2022] [Accepted: 03/23/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction: Bispecific antibody (BiAb)-armed activated T cells (BATs) comprise an adoptive T cell therapy platform for treating cancer. Arming activated T cells (ATC) with anti-CD3 x anti-tumour associated antigen (TAA) BiAbs converts ATC into non-major histocompatibility complex (MHC)-restricted anti-tumour cytotoxic T lymphocytes (CTLs). Binding of target antigens via the BiAb bridge enables specific anti-tumour cytotoxicity, Th1 cytokines release, and T cell proliferation. Clinical trials in breast, prostate, and pancreatic cancer using BATs armed with chemically heteroconjugated BiAbs demonstrated safety, feasibility, induction of anti-tumour immune responses and potential increases in overall survival (OS).Objectives: The primary objective of this study was to develop a recombinant BiAb that confers enhanced anti-tumour activity of BATs against a broad range of solid tumours.Methods: A recombinant anti-epidermal growth factor receptor (EGFR) x anti-CD3 (OKT3) BiAb (rEGFRBi) was designed and expressed in CHO cells, used to arm ATC (rEGFR-BATs), and tested for specific cytotoxicity against breast, pancreatic and prostate cancers and glioblastoma.Results: rEGFR-BATs exhibit remarkably enhanced specific cytotoxicity and T1 cytokine secretion against a wide range of solid tumour cell lines vs. their respective chemically-heteroconjugated BATs.Conclusion: rEGFR-BATs may provide a "universal" T cell therapy for treating a wide range of solid tumours. KEY MESSAGEA (Gly4Ser)6 linker between the variable light and heavy chains of an scFv fused to the N-terminus of a heavy chain antibody confers unexpected stability to the heavy chain fusion protein and supports the efficient expression of the bispecific antibody.Arming of activated T cells with the rEGFRBi greatly enhances the relative cytotoxicity and Th1 cytokine secretion of theT cells relative to a chemically heteroconjugated BiAbs.rEGFR-BATs are promising candidates for the treatment of a broad range of solid tumours.
Collapse
Affiliation(s)
- Manley T. F. Huang
- Department of Medicine, Division of Hematology and Oncology, University of Virginia Cancer Center, Charlottesville, VA, USA
- TransTarget, Inc., Sunnyvale, CA, USA
| | | | | | | | - Jinjing Li
- Panorama Research, Inc., Sunnyvale, CA, USA
| | - Bo Yu
- Panorama Research, Inc., Sunnyvale, CA, USA
| | | | - Lawrence G. Lum
- Department of Medicine, Division of Hematology and Oncology, University of Virginia Cancer Center, Charlottesville, VA, USA
| |
Collapse
|
9
|
Cavallero GJ, Wang Y, Nwosu C, Gu S, Meiyappan M, Zaia J. O-Glycoproteomic analysis of engineered heavily glycosylated fusion proteins using nanoHILIC-MS. Anal Bioanal Chem 2022; 414:7855-7863. [PMID: 36136114 PMCID: PMC9568489 DOI: 10.1007/s00216-022-04318-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/02/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022]
Abstract
Recombinant protein engineering design affects therapeutic properties including protein efficacy, safety, and immunogenicity. Importantly, glycosylation modulates glycoprotein therapeutic pharmacokinetics, pharmacodynamics, and effector functions. Furthermore, the development of fusion proteins requires in-depth characterization of the protein integrity and its glycosylation to evaluate their critical quality attributes. Fc-fusion proteins can be modified by complex glycosylation on the active peptide, the fragment crystallizable (Fc) domain, and the linker peptides. Moreover, the type of glycosylation and the glycan distribution at a given glycosite depend on the host cell line and the expression system conditions that significantly impact safety and efficacy. Because of the inherent heterogeneity of glycosylation, it is necessary to assign glycan structural detail for glycoprotein quality control. Using conventional reversed-phase LC-MS methods, the different glycoforms at a given glycosite elute over a narrow retention time window, and glycopeptide ionization is suppressed by co-eluting non-modified peptides. To overcome this drawback, we used nanoHILIC-MS to characterize the complex glycosylation of UTI-Fc, a fusion protein that greatly increases the half-life of ulinastatin. By this methodology, we identified and characterized ulinastatin glycopeptides at the Fc domain and linker peptide. The results described herein demonstrate the advantages of nanoHILIC-MS to elucidate glycan features on glycotherapeutics that fail to be detected using traditional reversed-phase glycoproteomics.
Collapse
Affiliation(s)
- Gustavo J Cavallero
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Yan Wang
- Analytical Development, Pharmaceutical Sciences, Takeda Development Center Americas, Inc., Lexington, MA, 02421, USA
| | - Charles Nwosu
- Analytical Development, Pharmaceutical Sciences, Takeda Development Center Americas, Inc., Lexington, MA, 02421, USA
| | - Sheng Gu
- Analytical Development, Pharmaceutical Sciences, Takeda Development Center Americas, Inc., Lexington, MA, 02421, USA
| | - Muthuraman Meiyappan
- Analytical Development, Pharmaceutical Sciences, Takeda Development Center Americas, Inc., Lexington, MA, 02421, USA
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
10
|
Chen SW, Hoi KM, Mahfut FB, Yang Y, Zhang W. Effective flow-through polishing strategies for knob-into-hole bispecific antibodies. BIORESOUR BIOPROCESS 2022; 9:98. [PMID: 38647877 PMCID: PMC10992779 DOI: 10.1186/s40643-022-00590-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022] Open
Abstract
Bispecific antibodies (bsAbs), though possessing great therapeutic potential, are extremely challenging to obtain at high purity within a limited number of scalable downstream processing steps. Complementary to Protein A chromatography, polishing strategies play a critical role at removing the remaining high molecular weight (HMW) and low molecular weight (LMW) species, as well as host cell proteins (HCP) in order to achieve a final product of high purity. Here, we demonstrate using two knob-into-hole (KiH) bsAb constructs that two flow-through polishing steps utilising Capto Butyl ImpRes and Capto adhere resins, performed after an optimal Protein A affinity chromatography step can further reduce the HCP by 17- to 35-fold as well as HMW and LMW species with respect to monomer by ~ 4-6% and ~ 1%, respectively, to meet therapeutical requirement at 30-60 mg/mL-resin (R) load. This complete flow-through polishing strategy, guided by Design of Experiments (DoE), eliminates undesirable aggregation problems associated with the higher aggregation propensity of scFv containing bsAbs that may occur in the bind and elute mode, offering an improved ease of overall process operation without additional elution buffer preparation and consumption, thus aligning well with process intensification efforts. Overall, we demonstrate that through the employment of (1) Protein A chromatography step and (2) flow-through polishing steps, a final product containing < 1% HMW species, < 1% LMW species and < 100 ppm HCP can be obtained with an overall process recovery of 56-87%.
Collapse
Affiliation(s)
- Serene W Chen
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kong Meng Hoi
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Farouq Bin Mahfut
- Cell Line Development Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Yuansheng Yang
- Cell Line Development Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Wei Zhang
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
11
|
Chen SW, Hoi KM, Mahfut FB, Yang Y, Zhang W. Excellent removal of knob-into-hole bispecific antibody byproducts and impurities in a single-capture chromatography. BIORESOUR BIOPROCESS 2022; 9:72. [PMID: 38647639 PMCID: PMC10992212 DOI: 10.1186/s40643-022-00562-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/26/2022] [Indexed: 01/12/2023] Open
Abstract
Bispecific antibodies (bsAbs) are therapeutically promising due to their ability to bind to two different antigens. However, the bsAb byproducts and impurities, including mispaired homodimers, half-antibodies, light chain mispairings, antibody fragments and high levels of high molecular weight (HMW) species, all pose unique challenges to their downstream processing. Here, using two knob-into-hole (KiH) constructs of bsAbs as model molecules, we demonstrate the excellent removal of bsAb byproducts and impurities in a single Protein A chromatography under optimized conditions, including hole-hole homodimer mispaired products which are physicochemically very similar to the target bsAbs and still present even with the use of the KiH format, though at reduced levels. The removal occurs through the incorporation of an intermediate low-pH wash step and optimal elution conditions, achieving ~ 60% monomeric purity increase in a single Protein A step, without the introduction of sequence-specific bsAb modifications to specifically induce differential Protein A binding. Our results also suggest that the higher aggregation propensity of bsAbs may cause aggregation during the column process, hence an optimization of the appropriate loading amount, which may be lower than that of monoclonal antibodies (mAbs), is required. With the use of loading at 50% of 10% breakthrough (QB10) at 6-min residence time, we show that an overall high monomer purity of 92.1-93.2% can be achieved with good recovery of 78.4-90.6% within one capture step, which is a significant improvement from a monomer purity of ~ 30% in the cell culture supernatant (CCS). The results presented here would be an insightful guidance to all researchers working on the purification process development to produce bispecific antibodies, especially for knob-into-hole bispecific antibodies.
Collapse
Affiliation(s)
- Serene W Chen
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kong Meng Hoi
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Farouq Bin Mahfut
- Cell Line Development Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Yuansheng Yang
- Cell Line Development Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore
| | - Wei Zhang
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
12
|
Qi S, Deng S, Lian Z, Yu K. Novel Drugs with High Efficacy against Tumor Angiogenesis. Int J Mol Sci 2022; 23:6934. [PMID: 35805939 PMCID: PMC9267017 DOI: 10.3390/ijms23136934] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis is involved in physiological and pathological processes in the body. Tumor angiogenesis is a key factor associated with tumor growth, progression, and metastasis. Therefore, there is great interest in developing antiangiogenic strategies. Hypoxia is the basic initiating factor of tumor angiogenesis, which leads to the increase of vascular endothelial growth factor (VEGF), angiopoietin (Ang), hypoxia-inducible factor (HIF-1), etc. in hypoxic cells. The pathways of VEGF and Ang are considered to be critical steps in tumor angiogenesis. A number of antiangiogenic drugs targeting VEGF/VEGFR (VEGF receptor) or ANG/Tie2, or both, are currently being used for cancer treatment, or are still in various stages of clinical development or preclinical evaluation. This article aims to review the mechanisms of angiogenesis and tumor angiogenesis and to focus on new drugs and strategies for the treatment of antiangiogenesis. However, antitumor angiogenic drugs alone may not be sufficient to eradicate tumors. The molecular chaperone heat shock protein 90 (HSP90) is considered a promising molecular target. The VEGFR system and its downstream signaling molecules depend on the function of HSP90. This article also briefly introduces the role of HSP90 in angiogenesis and some HSP90 inhibitors.
Collapse
Affiliation(s)
- Shiyu Qi
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Shoulong Deng
- National Health Commission (NHC) of China Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China;
| | - Zhengxing Lian
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
13
|
Rizzo D, Cerofolini L, Giuntini S, Iozzino L, Pergola C, Sacco F, Palmese A, Ravera E, Luchinat C, Baroni F, Fragai M. Epitope Mapping and Binding Assessment by Solid-State NMR Provide a Way for the Development of Biologics under the Quality by Design Paradigm. J Am Chem Soc 2022; 144:10006-10016. [PMID: 35617699 PMCID: PMC9185746 DOI: 10.1021/jacs.2c03232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Multispecific biologics
are an emerging class of drugs, in which
antibodies and/or proteins designed to bind pharmacological targets
are covalently linked or expressed as fusion proteins to increase
both therapeutic efficacy and safety. Epitope mapping on the target
proteins provides key information to improve the affinity and also
to monitor the manufacturing process and drug stability. Solid-state
NMR has been here used to identify the pattern of the residues of
the programmed cell death ligand 1 (PD-L1) ectodomain that are involved
in the interaction with a new multispecific biological drug. This
is possible because the large size and the intrinsic flexibility of
the complexes are not limiting factors for solid-state NMR.
Collapse
Affiliation(s)
- Domenico Rizzo
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Stefano Giuntini
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy
| | - Luisa Iozzino
- Analytical Development Biotech Department, Merck Serono S.p.a, Via Luigi Einaudi, 11, 00012 Guidonia, RM, Italy
| | - Carlo Pergola
- Analytical Development Biotech Department, Merck Serono S.p.a, Via Luigi Einaudi, 11, 00012 Guidonia, RM, Italy
| | - Francesca Sacco
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Analytical Development Biotech Department, Merck Serono S.p.a, Via Luigi Einaudi, 11, 00012 Guidonia, RM, Italy
| | - Angelo Palmese
- Analytical Development Biotech Department, Merck Serono S.p.a, Via Luigi Einaudi, 11, 00012 Guidonia, RM, Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Fabio Baroni
- Analytical Development Biotech Department, Merck Serono S.p.a, Via Luigi Einaudi, 11, 00012 Guidonia, RM, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
14
|
Kaufmann JO, Brangsch J, Kader A, Saatz J, Mangarova DB, Zacharias M, Kempf WE, Schwaar T, Ponader M, Adams LC, Möckel J, Botnar RM, Taupitz M, Mägdefessel L, Traub H, Hamm B, Weller MG, Makowski MR. ADAMTS4-specific MR probe to assess aortic aneurysms in vivo using synthetic peptide libraries. Nat Commun 2022; 13:2867. [PMID: 35606349 PMCID: PMC9126943 DOI: 10.1038/s41467-022-30464-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/03/2022] [Indexed: 11/25/2022] Open
Abstract
The incidence of abdominal aortic aneurysms (AAAs) has substantially increased during the last 20 years and their rupture remains the third most common cause of sudden death in the cardiovascular field after myocardial infarction and stroke. The only established clinical parameter to assess AAAs is based on the aneurysm size. Novel biomarkers are needed to improve the assessment of the risk of rupture. ADAMTS4 (A Disintegrin And Metalloproteinase with ThromboSpondin motifs 4) is a strongly upregulated proteoglycan cleaving enzyme in the unstable course of AAAs. In the screening of a one-bead-one-compound library against ADAMTS4, a low-molecular-weight cyclic peptide is discovered with favorable properties for in vivo molecular magnetic resonance imaging applications. After identification and characterization, it's potential is evaluated in an AAA mouse model. The ADAMTS4-specific probe enables the in vivo imaging-based prediction of aneurysm expansion and rupture.
Collapse
Affiliation(s)
- Jan O Kaufmann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Humboldt-Universität zu Berlin, Department of Chemistry, Brook-Taylor-Str. 2, 12489, Berlin, Germany
- Federal Institute for Materials Research and Testing (BAM), Division 1.5 Protein Analysis, Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Julia Brangsch
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Königsweg 67, Building 21, 14163, Berlin, Germany
| | - Avan Kader
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195, Berlin, Germany
- Department of Radiology, Klinikum rechts der Isar, Technische Universität München (TUM), Ismaninger Straße 22, 81675, Munich, Germany
| | - Jessica Saatz
- Federal Institute for Materials Research and Testing (BAM), Division 1.1 Inorganic Trace Analysis, Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Dilyana B Mangarova
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, Building 12, 14163, Berlin, Germany
| | - Martin Zacharias
- Center of Functional Protein Assemblies, Technische Universität München (TUM), Ernst-Otto-Fischer-Str. 9, 85748, Garching, Germany
| | - Wolfgang E Kempf
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technische Universität München (TUM), 81675, Munich, Germany
| | - Timm Schwaar
- Federal Institute for Materials Research and Testing (BAM), Division 1.0 SAFIA Technologies, Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Marco Ponader
- Federal Institute for Materials Research and Testing (BAM), Division 1.5 Protein Analysis, Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Lisa C Adams
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Jana Möckel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Rene M Botnar
- King's College London, School of Biomedical Engineering and Imaging Sciences, London, UK
- Wellcome Trust / EPSRC Centre for Medical Engineering, King's College London, London, UK
- BHF Centre of Excellence, King's College London, London, UK
- Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute in Intelligent Healthcare Engineering, Santiago de Chile, Campus San Joaquín - Avda.Vicuña Mackenna, 4860, Macul, Santiago, Chile
- St Thomas' Hospital Westminster Bridge Road, London, SE1 7EH, UK
- Denmark Hill Campus, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Matthias Taupitz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Lars Mägdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technische Universität München (TUM), 81675, Munich, Germany
| | - Heike Traub
- Federal Institute for Materials Research and Testing (BAM), Division 1.1 Inorganic Trace Analysis, Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Bernd Hamm
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Michael G Weller
- Federal Institute for Materials Research and Testing (BAM), Division 1.5 Protein Analysis, Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Marcus R Makowski
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Radiology, Klinikum rechts der Isar, Technische Universität München (TUM), Ismaninger Straße 22, 81675, Munich, Germany.
- King's College London, School of Biomedical Engineering and Imaging Sciences, London, UK.
- St Thomas' Hospital Westminster Bridge Road, London, SE1 7EH, UK.
| |
Collapse
|
15
|
Chen SW, Zhang W. Current trends and challenges in the downstream purification of bispecific antibodies. Antib Ther 2021; 4:73-88. [PMID: 34056544 PMCID: PMC8155696 DOI: 10.1093/abt/tbab007] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/06/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
Bispecific antibodies (bsAbs) represent a highly promising class of biotherapeutic modality. The downstream processing of this class of antibodies is therefore of crucial importance in ensuring that these products can be obtained with high purity and yield. Due to the various fundamental structural similarities between bsAbs and monoclonal antibodies (mAbs), many of the current bsAb downstream purification methodologies are based on the established purification processes of mAbs, where affinity, charge, size, hydrophobicity and mixed-mode-based purification are frequently employed. Nevertheless, the downstream processing of bsAbs presents a unique set of challenges due to the presence of bsAb-specific byproducts, such as mispaired products, undesired fragments and higher levels of aggregates, that are otherwise absent or present in lower levels in mAb cell culture supernatants, thus often requiring the design of additional purification strategies in order to obtain products of high purity. Here, we outline the current major purification methods of bsAbs, highlighting the corresponding solutions that have been proposed to circumvent the unique challenges presented by this class of antibodies, including differential affinity chromatography, sequential affinity chromatography and the use of salt additives and pH gradients or multistep elutions in various modes of purification. Finally, a perspective towards future process development is offered.
Collapse
Affiliation(s)
- Serene W Chen
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore
| | - Wei Zhang
- Downstream Processing Group, Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore 138668, Singapore
| |
Collapse
|
16
|
Bhatta P, Whale KD, Sawtell AK, Thompson CL, Rapecki SE, Cook DA, Twomey BM, Mennecozzi M, Starkie LE, Barry EMC, Peters SJ, Kamal AM, Finney HM. Bispecific antibody target pair discovery by high-throughput phenotypic screening using in vitro combinatorial Fab libraries. MAbs 2021; 13:1859049. [PMID: 33487120 PMCID: PMC7849716 DOI: 10.1080/19420862.2020.1859049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Bispecific antibodies can uniquely influence cellular responses, but selecting target combinations for optimal functional activity remains challenging. Here we describe a high-throughput, combinatorial, phenotypic screening approach using a new bispecific antibody target discovery format, allowing screening of hundreds of target combinations. Simple in vitro mixing of Fab-fusion proteins from a diverse library enables the generation of thousands of screen-ready bispecific antibodies for high-throughput, biologically relevant assays. We identified an obligate bispecific co-targeting CD79a/b and CD22 as a potent inhibitor of human B cell activation from a short-term flow cytometry signaling assay. A long-term, high-content imaging assay identified anti-integrin bispecific inhibitors of human cell matrix accumulation targeting integrins β1 and β6 or αV and β1. In all cases, functional activity was conserved from the bispecific screening format to a therapeutically relevant format. We also introduce a broader type of mechanistic screen whereby functional modulation of different cell subsets in peripheral blood mononuclear cells was evaluated simultaneously. We identified bispecific antibodies capable of activating different T cell subsets of potential interest for applications in oncology or infectious disease, as well as bispecifics abrogating T cell activity of potential interest to autoimmune or inflammatory disease. The bispecific target pair discovery technology described herein offers access to new target biology and unique bispecific therapeutic opportunities in diverse disease indications.
Collapse
Affiliation(s)
- Pallavi Bhatta
- New Modalities and Therapeutics Group, UCB Pharma, Slough , Berkshire UK
| | - Kevin D Whale
- In Vitro Pharmacology Group, UCB Pharma, Slough , Berkshire, UK
| | - Amy K Sawtell
- In Vitro Pharmacology Group, UCB Pharma, Slough , Berkshire, UK
| | | | - Stephen E Rapecki
- New Modalities and Therapeutics Group, UCB Pharma, Slough , Berkshire UK
| | - David A Cook
- In Vitro Pharmacology Group, UCB Pharma, Slough , Berkshire, UK
| | - Breda M Twomey
- In Vitro Pharmacology Group, UCB Pharma, Slough , Berkshire, UK
| | | | - Laura E Starkie
- New Modalities and Therapeutics Group, UCB Pharma, Slough , Berkshire UK
| | - Emily M C Barry
- New Modalities and Therapeutics Group, UCB Pharma, Slough , Berkshire UK
| | - Shirley J Peters
- New Modalities and Therapeutics Group, UCB Pharma, Slough , Berkshire UK
| | - Ahmad M Kamal
- Immunology Partnering Group, UCB Pharma , Slough, Berkshire UK
| | - Helene M Finney
- In Vitro Pharmacology Group, UCB Pharma, Slough , Berkshire, UK
| |
Collapse
|
17
|
Root AR, Guntas G, Katragadda M, Apgar JR, Narula J, Chang CS, Hanscom S, McKenna M, Wade J, Meade C, Ma W, Guo Y, Liu Y, Duan W, Hendershot C, King AC, Zhang Y, Sousa E, Tam A, Benard S, Yang H, Kelleher K, Jin F, Piche-Nicholas N, Keating SE, Narciandi F, Lawrence-Henderson R, Arai M, Stochaj WR, Svenson K, Mosyak L, Lam K, Francis C, Marquette K, Wroblewska L, Zhu HL, Sheehan AD, LaVallie ER, D’Antona AM, Betts A, King L, Rosfjord E, Cunningham O, Lin L, Sapra P, Tchistiakova L, Mathur D, Bloom L. Discovery and optimization of a novel anti-GUCY2c x CD3 bispecific antibody for the treatment of solid tumors. MAbs 2021; 13:1850395. [PMID: 33459147 PMCID: PMC7833764 DOI: 10.1080/19420862.2020.1850395] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/26/2020] [Accepted: 11/10/2020] [Indexed: 12/29/2022] Open
Abstract
We report here the discovery and optimization of a novel T cell retargeting anti-GUCY2C x anti-CD3ε bispecific antibody for the treatment of solid tumors. Using a combination of hybridoma, phage display and rational design protein engineering, we have developed a fully humanized and manufacturable CD3 bispecific antibody that demonstrates favorable pharmacokinetic properties and potent in vivo efficacy. Anti-GUCY2C and anti-CD3ε antibodies derived from mouse hybridomas were first humanized into well-behaved human variable region frameworks with full retention of binding and T-cell mediated cytotoxic activity. To address potential manufacturability concerns, multiple approaches were taken in parallel to optimize and de-risk the two antibody variable regions. These approaches included structure-guided rational mutagenesis and phage display-based optimization, focusing on improving stability, reducing polyreactivity and self-association potential, removing chemical liabilities and proteolytic cleavage sites, and de-risking immunogenicity. Employing rapid library construction methods as well as automated phage display and high-throughput protein production workflows enabled efficient generation of an optimized bispecific antibody with desirable manufacturability properties, high stability, and low nonspecific binding. Proteolytic cleavage and deamidation in complementarity-determining regions were also successfully addressed. Collectively, these improvements translated to a molecule with potent single-agent in vivo efficacy in a tumor cell line adoptive transfer model and a cynomolgus monkey pharmacokinetic profile (half-life>4.5 days) suitable for clinical development. Clinical evaluation of PF-07062119 is ongoing.
Collapse
Affiliation(s)
- Adam R. Root
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | | | | | - Jatin Narula
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | - Sara Hanscom
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | - Jason Wade
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Caryl Meade
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Weijun Ma
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Yongjing Guo
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Yan Liu
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Weili Duan
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | - Amy C. King
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Yan Zhang
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Eric Sousa
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Amy Tam
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Susan Benard
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Han Yang
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | - Fang Jin
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | | | | | | | - Maya Arai
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | | | - Lidia Mosyak
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | | | | | | | | | - H. Lily Zhu
- BioMedicine Design, Pfizer Inc., Andover, MA, USA
| | | | | | | | - Alison Betts
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Lindsay King
- BioMedicine Design, Pfizer Inc., Andover, MA, USA
| | - Edward Rosfjord
- Oncology Research & Development, Pfizer Inc., Pearl River, NY, USA
| | | | - Laura Lin
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| | - Puja Sapra
- Oncology Research & Development, Pfizer Inc., Pearl River, NY, USA
| | | | - Divya Mathur
- Oncology Research & Development, Pfizer Inc., Pearl River, NY, USA
| | - Laird Bloom
- BioMedicine Design, Pfizer Inc., Cambridge, MA, USA
| |
Collapse
|
18
|
García-Martínez JM, Wang S, Weishaeupl C, Wernitznig A, Chetta P, Pinto C, Ho J, Dutcher D, Gorman PN, Kroe-Barrett R, Rinnenthal J, Giragossian C, Impagnatiello MA, Tirapu I, Hilberg F, Kraut N, Pearson M, Kuenkele KP. Selective Tumor Cell Apoptosis and Tumor Regression in CDH17-Positive Colorectal Cancer Models using BI 905711, a Novel Liver-Sparing TRAILR2 Agonist. Mol Cancer Ther 2020; 20:96-108. [PMID: 33037135 DOI: 10.1158/1535-7163.mct-20-0253] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/12/2020] [Accepted: 09/30/2020] [Indexed: 11/16/2022]
Abstract
Activation of TRAILR2 has emerged as an important therapeutic concept in cancer treatment. TRAILR2 agonistic molecules have only had limited clinical success, to date, due either to lack of efficacy or hepatotoxicity. BI 905711 is a novel tetravalent bispecific antibody targeting both TRAILR2 and CDH17 and represents a novel liver-sparing TRAILR2 agonist specifically designed to overcome the disadvantages of previous strategies. Here, we show that BI 905711 effectively triggered apoptosis in a broad panel of CDH17-positive colorectal cancer tumor cells in vitro. Efficient induction of apoptosis was dependent on the presence of CDH17, as exemplified by the greater than 1,000-fold drop in potency in CDH17-negative cells. BI 905711 demonstrated single-agent tumor regressions in CDH17-positive colorectal cancer xenografts, an effect that was further enhanced upon combination with irinotecan. Antitumor efficacy correlated with induction of caspase activation, as measured in both the tumor and plasma. Effective tumor growth inhibition was further demonstrated across a series of different colorectal cancer PDX models. BI 905711 induced apoptosis in both a cis (same cell) as well as trans (adjacent cell) fashion, translating into significant antitumor activity even in xenograft models with heterogeneous CDH17 expression. In summary, we demonstrate that BI 905711 has potent and selective antitumor activity in CDH17-positive colorectal cancer models both in vitro and in vivo. The high prevalence of over 95% CDH17-positive tumors in patients with colorectal cancer, the molecule preclinical efficacy together with its potential for a favorable safety profile, support the ongoing BI 905711 phase I trial in colorectal cancer and additional CDH17-positive cancer types (NCT04137289).
Collapse
Affiliation(s)
| | - Shirley Wang
- Boehringer Ingelheim Cancer Research Therapeutic Area, Vienna, Austria
| | | | | | - Paolo Chetta
- Boehringer Ingelheim Cancer Research Therapeutic Area, Vienna, Austria
| | - Catarina Pinto
- Boehringer Ingelheim Cancer Immunology and Immune Modulation, Vienna, Austria
| | - Jason Ho
- Boehringer Ingelheim Biotherapeutics Discovery Research, Ridgefield, Connecticut
| | - Darrin Dutcher
- Boehringer Ingelheim Biotherapeutics Discovery Research, Ridgefield, Connecticut
| | - Philip N Gorman
- Boehringer Ingelheim Biotherapeutics Discovery Research, Ridgefield, Connecticut
| | - Rachel Kroe-Barrett
- Boehringer Ingelheim Biotherapeutics Discovery Research, Ridgefield, Connecticut
| | - Joerg Rinnenthal
- Boehringer Ingelheim Cancer Research Therapeutic Area, Vienna, Austria
| | - Craig Giragossian
- Boehringer Ingelheim Biotherapeutics Discovery Research, Ridgefield, Connecticut
| | | | - Iñigo Tirapu
- Boehringer Ingelheim Cancer Immunology and Immune Modulation, Vienna, Austria
| | - Frank Hilberg
- Boehringer Ingelheim Cancer Research Therapeutic Area, Vienna, Austria
| | - Norbert Kraut
- Boehringer Ingelheim Cancer Research Therapeutic Area, Vienna, Austria
| | - Mark Pearson
- Boehringer Ingelheim Cancer Research Therapeutic Area, Vienna, Austria
| | | |
Collapse
|
19
|
Guo G, Han J, Wang Y, Li Y. A potential downstream platform approach for WuXiBody-based IgG-like bispecific antibodies. Protein Expr Purif 2020; 173:105647. [DOI: 10.1016/j.pep.2020.105647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
|
20
|
Abstract
Bispecific therapeutics target two distinct antigens simultaneously and provide novel functionalities that are not attainable with single monospecific molecules or combinations of them. The unique potential of bispecific therapeutics is driving extensive efforts to discover synergistic dual targets, design molecular formats to integrate bispecific elements, and accelerate successful clinical translation. In particular, the past decade has witnessed a boom in the design and development of bispecific antibody formats with more than 100 collections to date. Despite the remarkable progress that has been made to expand the number of formats, qualitative fine-tuning of bispecific formats is needed to achieve optimal dual-target engagement based on understanding of the spatiotemporal interdependence of the two physically linked binding specificities and the complex target biology associated with bispecific approaches. This review provides insights into the design parameters - including affinity, valency, and geometry - that need to be considered at an early stage of development in order to take the best advantage of bispecific therapeutics.
Collapse
Affiliation(s)
- Sung In Lim
- Department of Chemical Engineering, Pukyong National University, Yongso-ro 45, Nam-gu, Busan, South Korea.
| |
Collapse
|
21
|
Stöhr D, Jeltsch A, Rehm M. TRAIL receptor signaling: From the basics of canonical signal transduction toward its entanglement with ER stress and the unfolded protein response. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 351:57-99. [PMID: 32247582 DOI: 10.1016/bs.ircmb.2020.02.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cytokine tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a member of the large TNF superfamily that can trigger apoptosis in transformed or infected cells by binding and activating two receptors, TRAIL receptor 1 (TRAILR1) and TRAIL receptor 2 (TRAILR2). Compared to other death ligands of the same family, TRAIL induces apoptosis preferentially in malignant cells while sparing normal tissue and has therefore been extensively investigated for its suitability as an anti-cancer agent. Recently, it was noticed that TRAIL receptor signaling is also linked to endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). The role of TRAIL receptors in regulating cellular apoptosis susceptibility therefore is broader than previously thought. Here, we provide an overview of TRAIL-induced signaling, covering the core signal transduction during extrinsic apoptosis as well as its link to alternative outcomes, such as necroptosis or NF-κB activation. We discuss how environmental factors, transcriptional regulators, and genetic or epigenetic alterations regulate TRAIL receptors and thus alter cellular TRAIL susceptibility. Finally, we provide insight into the role of TRAIL receptors in signaling scenarios that engage the unfolded protein response and discuss how these findings might be translated into new combination therapies for cancer treatment.
Collapse
Affiliation(s)
- Daniela Stöhr
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany; University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany.
| | - Albert Jeltsch
- Department of Biochemistry, University of Stuttgart, Institute of Biochemistry and Technical Biochemistry, Stuttgart, Germany
| | - Markus Rehm
- University of Stuttgart, Institute of Cell Biology and Immunology, Stuttgart, Germany; University of Stuttgart, Stuttgart Research Center Systems Biology, Stuttgart, Germany; University of Stuttgart, Stuttgart Centre for Simulation Science, Stuttgart, Germany
| |
Collapse
|
22
|
Yu S, Zhang J, Yan Y, Yao X, Fang L, Xiong H, Liu Y, Chu Q, Zhou P, Wu K. A novel asymmetrical anti-HER2/CD3 bispecific antibody exhibits potent cytotoxicity for HER2-positive tumor cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:355. [PMID: 31412896 PMCID: PMC6694677 DOI: 10.1186/s13046-019-1354-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/01/2019] [Indexed: 01/05/2023]
Abstract
Background Human epidermal growth factor receptor 2 (HER2) is overexpressed in multiple cancers, which is associated with poor prognosis. Herceptin and other agents targeting HER2 have potent antitumor efficacy in patients with HER2-positive cancers. However, the development of drug resistance adversely impacts the efficacy of these treatments. It is therefore urgent to develop new HER2-targeted therapies. Bispecific antibodies (BsAbs) could guide immune cells toward tumor cells, and produced remarkable effects in some cancers. Methods A BsAb named M802 that targets HER2 and CD3 was produced by introducing a salt bridge and knobs-into-holes (KIHs) packing into the structure. Flow cytometry was performed to determine its binding activity and cytotoxicity. CCK-8, Annexin V/PI staining, western blotting, and ELISA were utilized to study its effect on cell proliferation, apoptosis, the signaling pathways of tumor cells, and the secretion of cytokines by immune cells. Subcutaneous tumor mouse models were used to analyze the in vivo antitumor effects of M802. Results We generated a new format of BsAb, M802, consisting of a monovalent unit against HER2 and a single chain unit against CD3. Our in vitro and in vivo experiments indicated that M802 recruited CD3-positive immune cells and was more cytotoxic than Herceptin in cells with high expression of HER2, low expression of HER2, and Herceptin resistance. Although M802 showed weaker effects than Herceptin on the PI3K/AKT and MAPK pathways, it was more cytotoxic due to its specific recognition of HER2 and its ability to recruit effector cells via its anti-CD3 moiety. Conclusions Our results indicated that M802 exhibited potent antitumor efficacy in vitro and in vivo. M802 retained the function of Herceptin in antitumor signaling pathways, and also recruited CD3-positive immune cells to eliminate HER2-positive tumor cells. Therefore, M802 might be a promising HER2 targeted agent. Electronic supplementary material The online version of this article (10.1186/s13046-019-1354-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shengnan Yu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Jing Zhang
- Wuhan YZY Biopharma Co., Ltd, Biolake, C2-1, No.666 Gaoxin Road, Wuhan, 430075, People's Republic of China
| | - Yongxiang Yan
- Wuhan YZY Biopharma Co., Ltd, Biolake, C2-1, No.666 Gaoxin Road, Wuhan, 430075, People's Republic of China
| | - Xudong Yao
- Department of Orthopedics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lijuan Fang
- Wuhan YZY Biopharma Co., Ltd, Biolake, C2-1, No.666 Gaoxin Road, Wuhan, 430075, People's Republic of China
| | - Hui Xiong
- Wuhan YZY Biopharma Co., Ltd, Biolake, C2-1, No.666 Gaoxin Road, Wuhan, 430075, People's Republic of China
| | - Yang Liu
- Wuhan YZY Biopharma Co., Ltd, Biolake, C2-1, No.666 Gaoxin Road, Wuhan, 430075, People's Republic of China
| | - Qian Chu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Pengfei Zhou
- Wuhan YZY Biopharma Co., Ltd, Biolake, C2-1, No.666 Gaoxin Road, Wuhan, 430075, People's Republic of China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
23
|
Molecular Mode of Action of TRAIL Receptor Agonists-Common Principles and Their Translational Exploitation. Cancers (Basel) 2019; 11:cancers11070954. [PMID: 31284696 PMCID: PMC6678900 DOI: 10.3390/cancers11070954] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/28/2019] [Accepted: 07/02/2019] [Indexed: 02/07/2023] Open
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and its death receptors TRAILR1/death receptor 4 (DR4) and TRAILR2/DR5 trigger cell death in many cancer cells but rarely exert cytotoxic activity on non-transformed cells. Against this background, a variety of recombinant TRAIL variants and anti-TRAIL death receptor antibodies have been developed and tested in preclinical and clinical studies. Despite promising results from mice tumor models, TRAIL death receptor targeting has failed so far in clinical studies to show satisfying anti-tumor efficacy. These disappointing results can largely be explained by two issues: First, tumor cells can acquire TRAIL resistance by several mechanisms defining a need for combination therapies with appropriate sensitizing drugs. Second, there is now growing preclinical evidence that soluble TRAIL variants but also bivalent anti-TRAIL death receptor antibodies typically require oligomerization or plasma membrane anchoring to achieve maximum activity. This review discusses the need for oligomerization and plasma membrane attachment for the activity of TRAIL death receptor agonists in view of what is known about the molecular mechanisms of how TRAIL death receptors trigger intracellular cell death signaling. In particular, it will be highlighted which consequences this has for the development of next generation TRAIL death receptor agonists and their potential clinical application.
Collapse
|
24
|
Abstract
Naïve antibody libraries provide a rich resource for the identification of binding domains against targets of therapeutic interest. Being naïve in nature means a lack in antigen bias, resulting in a breadth of diversity with respect to epitopes that can be successfully targeted. In combination with display-based technology platforms, selection strategies allow for the generation of ortholog cross-reactive binding domains which enable critical preclinical proof-of-concept studies. However, naïve binding domains often suffer from low target affinity. In addition, construction of large naïve libraries results in non-native pairing of heavy and light v-domains which can present a challenge to molecular stability. Here we describe effective methods for the parallel evolution of antibody affinity and thermal stability which couple mutant antibody library phage display with carefully designed selection strategies.
Collapse
|
25
|
Li Y. A brief introduction of IgG-like bispecific antibody purification: Methods for removing product-related impurities. Protein Expr Purif 2019; 155:112-119. [DOI: 10.1016/j.pep.2018.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 11/30/2018] [Indexed: 01/04/2023]
|
26
|
A parallel demonstration of different resins' antibody aggregate removing capability by a case study. Protein Expr Purif 2019; 153:59-69. [DOI: 10.1016/j.pep.2018.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 08/22/2018] [Indexed: 12/17/2022]
|
27
|
Hashii N, Ishii-Watabe A. [Site-specific O-Glycosylation Analysis of Therapeutic Fc-fusion Protein by Mass Spectrometry]. YAKUGAKU ZASSHI 2018; 138:1483-1494. [PMID: 30504662 DOI: 10.1248/yakushi.18-00020-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Therapeutic Fc-fusion proteins, created by linking bioactive peptides or receptor proteins to the Fc moiety of IgG, are currently being developed. In this development process, a Gly-Gly-Gly-Ser linker (G4S linker) is often used to link the peptide/protein and the Fc portion. O-xylose-type core glycans of glycosaminoglycan are known to attach to the Ser residue on the GSG motif in the G4S linker peptide repeats of the Fc fusion protein produced using the Chinese hamster ovary (CHO) cell expression system. In addition, a recent report demonstrated that unexpected mucin-type O-glycosylations occurred on a peptide in a bioactive peptide-Fc fusion protein; this glycosylation affected the bioactivity of the peptide. Therapeutic proteins with non-natural structures, such as Fc-fusion proteins, undergo unintended O-glycosylations; therefore, it is increasingly important to conduct detailed O-glycosylation analysis of fusion proteins during the developmental stages. In this paper, we have summarized recent reports on the unexpected O-glycosylation in fusion proteins, general O-glycosylation types and sequence motifs, and O-glycosylation analytical techniques involving O-linked oligosaccharide analysis and site-specific O-glycosylation analysis using LC/MS. In addition, we have introduced site-specific O-glycosylation analysis of Fc-fusion proteins with GS linker peptides by LC/MS using higher-energy collisional dissociation-tandem mass spectrometry (HCD-MS/MS) and electron-transfer dissociation (ETD)-MS/MS to obtain preferential dissociation of the peptide moiety in the glycopeptide.
Collapse
Affiliation(s)
- Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences
| | - Akiko Ishii-Watabe
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences
| |
Collapse
|
28
|
Cao M, Wang C, Chung WK, Motabar D, Wang J, Christian E, Lin S, Hunter A, Wang X, Liu D. Characterization and analysis of scFv-IgG bispecific antibody size variants. MAbs 2018; 10:1236-1247. [PMID: 30130449 PMCID: PMC6284595 DOI: 10.1080/19420862.2018.1505398] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bispecific antibodies are an emergent class of biologics that is of increasing interest for therapeutic applications. In one bispecific antibody format, single-chain variable fragments (scFv) are linked to or inserted in different locations of an intact immunoglobulin G (IgG) molecule to confer dual epitope binding. To improve biochemical stability, cysteine residues are often engineered on the heavy- and light-chain regions of the scFv to form an intrachain disulfide bond. Although this disulfide bond often improves stability, it can also introduce unexpected challenges to manufacturing or development. We report size variants that were observed for an appended scFv-IgG bispecific antibody. Structural characterization studies showed that the size variants resulted from the engineered disulfide bond on the scFv, whereby the engineered disulfide was found to be either open or unable to form an intrachain disulfide bond due to cysteinylation or glutathionylation of the cysteines. Furthermore, the scFv engineered cysteines also formed intermolecular disulfide bonds, leading to the formation of highly stable dimers and aggregates. Because both the monomer variants and dimers showed lower bioactivity, they were considered to be product-related impurities that must be monitored and controlled. To this end, we developed and optimized a robust, precise, and accurate high-resolution size-exclusion chromatographic method, using a statistical design-of-experiments methodology.
Collapse
Affiliation(s)
- Mingyan Cao
- a Department of Analytical Sciences , MedImmune , Gaithersburg , USA
| | - Chunlei Wang
- a Department of Analytical Sciences , MedImmune , Gaithersburg , USA
| | - Wai Keen Chung
- b Department of Purification Process Sciences , MedImmune , Gaithersburg , USA
| | - Dana Motabar
- b Department of Purification Process Sciences , MedImmune , Gaithersburg , USA
| | - Jihong Wang
- a Department of Analytical Sciences , MedImmune , Gaithersburg , USA
| | | | - Shihua Lin
- a Department of Analytical Sciences , MedImmune , Gaithersburg , USA
| | - Alan Hunter
- b Department of Purification Process Sciences , MedImmune , Gaithersburg , USA
| | - Xiangyang Wang
- a Department of Analytical Sciences , MedImmune , Gaithersburg , USA
| | - Dengfeng Liu
- a Department of Analytical Sciences , MedImmune , Gaithersburg , USA
| |
Collapse
|
29
|
Bhatta P, Humphreys DP. Relative Contribution of Framework and CDR Regions in Antibody Variable Domains to Multimerisation of Fv- and scFv-Containing Bispecific Antibodies. Antibodies (Basel) 2018; 7:antib7030035. [PMID: 31544885 PMCID: PMC6640685 DOI: 10.3390/antib7030035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022] Open
Abstract
Bispecific antibodies represent an emerging class of antibody drugs that are commonly generated by fusion of Fv or scFv antigen binding domains to IgG or Fab scaffolds. Fv- or scFv-mediated multimerisation of bispecific antibodies via promiscuous vH-vL pairing can result in sub-optimal monomer levels during expression, and hence, undesirable therapeutic protein yields. We investigate the contribution of disulphide stabilised Fv and scFv to Fab-Fv and Fab-scFv multimerisation. We show that monomer levels of isolated Fv/scFv cannot always be used to predict monomer levels of Fab-linked Fv/scFv, and that Fab-scFv monomer levels are greater than the equivalent Fab-Fv. Through grafting bispecifics with framework/CDR-‘swapped’ Fv and scFv, we show that monomer levels of disulphide stabilised Fab-Fv and Fab-scFv can be improved by Fv framework ‘swapping’. The Fab-Fv and Fab-scFv can be considered representative of the significant number of bispecific antibody formats containing appended Fv/scFv, as we also used Fv framework ‘swapping’ to increase the monomer level of an IgG-scFv bispecific antibody. This research may, therefore, be useful for maximising the monomeric yield of numerous pharmaceutically-relevant bispecific formats in pre-clinical development.
Collapse
Affiliation(s)
- Pallavi Bhatta
- Protein Sciences Group, UCB Pharma, Slough, Berkshire SL1 3WE, UK.
| | | |
Collapse
|
30
|
Wu X, Demarest SJ. Building blocks for bispecific and trispecific antibodies. Methods 2018; 154:3-9. [PMID: 30172007 DOI: 10.1016/j.ymeth.2018.08.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/23/2018] [Accepted: 08/25/2018] [Indexed: 01/07/2023] Open
Abstract
Bispecific antibodies (BsAbs), which target two antigens or epitopes, incorporate the specificities and properties of two distinct monoclonal antibodies (mAbs) into a single molecule. As such, BsAbs can elicit synergistic activities and provide the capacity for enhanced therapeutic efficacy and/or safety compared to what can be achieved with conventional monospecific IgGs. There are many building block formats to generate BsAbs and Trispecific antibodies (TsAbs) based on combining the antigen recognition domains of monoclonal antibodies (mAbs). This review describes the many and varied antibody-based building blocks used to achieve multivalency and multispecificity. These diverse building blocks provide opportunities to tailor the design of BsAbs and TsAbs to match the desired applications.
Collapse
Affiliation(s)
- Xiufeng Wu
- Lilly Biotechnology Center, 10290 Campus Point Dr., San Diego, CA 92121, United States.
| | - Stephen J Demarest
- Lilly Biotechnology Center, 10290 Campus Point Dr., San Diego, CA 92121, United States
| |
Collapse
|
31
|
Satta A, Mezzanzanica D, Caroli F, Frigerio B, Di Nicola M, Kontermann RE, Iacovelli F, Desideri A, Anichini A, Canevari S, Gianni AM, Figini M. Design, selection and optimization of an anti-TRAIL-R2/anti-CD3 bispecific antibody able to educate T cells to recognize and destroy cancer cells. MAbs 2018; 10:1084-1097. [PMID: 29993310 DOI: 10.1080/19420862.2018.1494105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or TRAIL-receptor agonistic monoclonal antibodies promote apoptosis in most cancer cells, and the differential expression of TRAIL-R2 between tumor and normal tissues allows its exploitation as a tumor-associated antigen. The use of these antibodies as anticancer agents has been extensively studied, but the results of clinical trials were disappointing. The observed lack of anticancer activity could be attributed to intrinsic or acquired resistance of tumor cells to this type of treatment. A possible strategy to circumvent drug resistance would be to strike tumor cells with a second modality based on a different mechanism of action. We therefore set out to generate and optimize a bispecific antibody targeting TRAIL-R2 and CD3. After the construction of different bispecific antibodies in tandem-scFv or single-chain diabody formats to reduce possible immunogenicity, we selected a humanized bispecific antibody with very low aggregates and long-term high stability and functionality. This antibody triggered TRAIL-R2 in an agonistic manner and its anticancer activity proved dramatically potentiated by the redirection of cytotoxic T cells against both sensitive and resistant melanoma cells. The results of our study show that combining the TRAIL-based antitumor strategy with an immunotherapeutic approach in a single molecule could be an effective addition to the anticancer armamentarium.
Collapse
Affiliation(s)
- Alessandro Satta
- a Molecular Therapies Unit, Department of Experimental Oncology and Molecular Medicine , Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| | - Delia Mezzanzanica
- a Molecular Therapies Unit, Department of Experimental Oncology and Molecular Medicine , Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| | - Francesco Caroli
- a Molecular Therapies Unit, Department of Experimental Oncology and Molecular Medicine , Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| | - Barbara Frigerio
- a Molecular Therapies Unit, Department of Experimental Oncology and Molecular Medicine , Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| | - Massimo Di Nicola
- b Medical Oncology C Unit, Department of Medical Oncology and Hematology , Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| | - Roland E Kontermann
- c Institut for Zellbiologie und Immunologie, Universität Stuttgart , Stuttgart , Germany
| | | | | | - Andrea Anichini
- e Human Tumor Immunobiology Unit, Department of Experimental Oncology and Molecular Medicine , Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| | - Silvana Canevari
- a Molecular Therapies Unit, Department of Experimental Oncology and Molecular Medicine , Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| | - Alessandro Massimo Gianni
- b Medical Oncology C Unit, Department of Medical Oncology and Hematology , Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy.,f Department of Pathophysiology and Transplantation , University of Milan , Milan , Italy
| | - Mariangela Figini
- a Molecular Therapies Unit, Department of Experimental Oncology and Molecular Medicine , Fondazione IRCCS Istituto Nazionale dei Tumori , Milan , Italy
| |
Collapse
|
32
|
Verdino P, Atwell S, Demarest SJ. Emerging trends in bispecific antibody and scaffold protein therapeutics. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Asano R, Nagai K, Makabe K, Takahashi K, Kumagai T, Kawaguchi H, Ogata H, Arai K, Umetsu M, Kumagai I. Structural considerations for functional anti-EGFR × anti-CD3 bispecific diabodies in light of domain order and binding affinity. Oncotarget 2018; 9:13884-13893. [PMID: 29568402 PMCID: PMC5862623 DOI: 10.18632/oncotarget.24490] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 02/10/2018] [Indexed: 01/05/2023] Open
Abstract
We previously reported a functional humanized bispecific diabody (bsDb) that targeted EGFR and CD3 (hEx3-Db) and enhancement of its cytotoxicity by rearranging the domain order in the V domain. Here, we further dissected the effect of domain order in bsDbs on their cross-linking ability and binding kinetics to elucidate general rules regarding the design of functional bsDbs. Using Ex3-Db as a model system, we first classified the four possible domain orders as anti-parallel (where both chimeric single-chain components are variable heavy domain (VH)-variable light domain (VL) or VL-VH order) and parallel types (both chimeric single-chain components are mixed with VH-VL and VL-VH order). Although anti-parallel Ex3-Dbs could cross-link the soluble target antigens, their cross-linking ability between soluble targets had no correlation with their growth inhibitory effects. In contrast, the binding affinity of one of the two constructs with a parallel-arrangement V domain was particularly low, and structural modeling supported this phenomenon. Similar results were observed with E2x3-Dbs, in which the V region of the anti-EGFR antibody clone in hEx3 was replaced with that of another anti-EGFR clone. Only anti-parallel types showed affinity-dependent cancer inhibitory effects in each molecule, and E2x3-LH (both components in VL-VH order) showed the most intense anti-tumor activity in vitro and in vivo. Our results showed that, in addition to rearranging the domain order of bsDbs, increasing their binding affinity may be an ideal strategy for enhancing the cytotoxicity of anti-parallel constructs and that E2x3-LH is particularly attractive as a candidate next-generation anti-cancer drug.
Collapse
Affiliation(s)
- Ryutaro Asano
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan.,Present Address: Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Keisuke Nagai
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Koki Makabe
- Graduate School of Science and Engineering, Yamagata University, Yonezawa 992-8510, Japan
| | - Kento Takahashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Takashi Kumagai
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Hiroko Kawaguchi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Hiromi Ogata
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Kyoko Arai
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Izumi Kumagai
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
34
|
|
35
|
Brinkmann U, Kontermann RE. The making of bispecific antibodies. MAbs 2017; 9:182-212. [PMID: 28071970 PMCID: PMC5297537 DOI: 10.1080/19420862.2016.1268307] [Citation(s) in RCA: 672] [Impact Index Per Article: 84.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/18/2016] [Accepted: 11/29/2016] [Indexed: 12/12/2022] Open
Abstract
During the past two decades we have seen a phenomenal evolution of bispecific antibodies for therapeutic applications. The 'zoo' of bispecific antibodies is populated by many different species, comprising around 100 different formats, including small molecules composed solely of the antigen-binding sites of two antibodies, molecules with an IgG structure, and large complex molecules composed of different antigen-binding moieties often combined with dimerization modules. The application of sophisticated molecular design and genetic engineering has solved many of the technical problems associated with the formation of bispecific antibodies such as stability, solubility and other parameters that confer drug properties. These parameters may be summarized under the term 'developability'. In addition, different 'target product profiles', i.e., desired features of the bispecific antibody to be generated, mandates the need for access to a diverse panel of formats. These may vary in size, arrangement, valencies, flexibility and geometry of their binding modules, as well as in their distribution and pharmacokinetic properties. There is not 'one best format' for generating bispecific antibodies, and no single format is suitable for all, or even most of, the desired applications. Instead, the bispecific formats collectively serve as a valuable source of diversity that can be applied to the development of therapeutics for various indications. Here, a comprehensive overview of the different bispecific antibody formats is provided.
Collapse
Affiliation(s)
- Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Im Nonnenwald, Penzberg, Germany
| | - Roland E. Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, Nobelstraße, Stuttgart, Germany
| |
Collapse
|
36
|
Dubuisson A, Micheau O. Antibodies and Derivatives Targeting DR4 and DR5 for Cancer Therapy. Antibodies (Basel) 2017; 6:E16. [PMID: 31548531 PMCID: PMC6698863 DOI: 10.3390/antib6040016] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 02/07/2023] Open
Abstract
Developing therapeutics that induce apoptosis in cancer cells has become an increasingly attractive approach for the past 30 years. The discovery of tumor necrosis factor (TNF) superfamily members and more specifically TNF-related apoptosis-inducing ligand (TRAIL), the only cytokine of the family capable of eradicating selectively cancer cells, led to the development of numerous TRAIL derivatives targeting death receptor 4 (DR4) and death receptor 5 (DR5) for cancer therapy. With a few exceptions, preliminary attempts to use recombinant TRAIL, agonistic antibodies, or derivatives to target TRAIL agonist receptors in the clinic have been fairly disappointing. Nonetheless, a tremendous effort, worldwide, is being put into the development of novel strategic options to target TRAIL receptors. Antibodies and derivatives allow for the design of novel and efficient agonists. We summarize and discuss here the advantages and drawbacks of the soar of TRAIL therapeutics, from the first developments to the next generation of agonistic products, with a particular insight on new concepts.
Collapse
Affiliation(s)
- Agathe Dubuisson
- University Bourgogne Franche-Comté, INSERM, LNC UMR1231, F-21079 Dijon, France.
- CovalAb, Research Department, 11 Avenue Albert Einstein, 69100 Villeurbanne, Lyon, France.
- INSERM, UMR1231, Laboratoire d'Excellence LipSTIC, F-21079 Dijon, France.
| | - Olivier Micheau
- University Bourgogne Franche-Comté, INSERM, LNC UMR1231, F-21079 Dijon, France.
- CovalAb, Research Department, 11 Avenue Albert Einstein, 69100 Villeurbanne, Lyon, France.
- INSERM, UMR1231, Laboratoire d'Excellence LipSTIC, F-21079 Dijon, France.
| |
Collapse
|
37
|
Froning KJ, Leaver-Fay A, Wu X, Phan S, Gao L, Huang F, Pustilnik A, Bacica M, Houlihan K, Chai Q, Fitchett JR, Hendle J, Kuhlman B, Demarest SJ. Computational design of a specific heavy chain/κ light chain interface for expressing fully IgG bispecific antibodies. Protein Sci 2017; 26:2021-2038. [PMID: 28726352 DOI: 10.1002/pro.3240] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 12/31/2022]
Abstract
The use of bispecific antibodies (BsAbs) to treat human diseases is on the rise. Increasingly complex and powerful therapeutic mechanisms made possible by BsAbs are spurring innovation of novel BsAb formats and methods for their production. The long-lived in vivo pharmacokinetics, optimal biophysical properties and potential effector functions of natural IgG monoclonal (and monospecific) antibodies has resulted in a push to generate fully IgG BsAb formats with the same quaternary structure as monoclonal IgGs. The production of fully IgG BsAbs is challenging because of the highly heterogeneous pairing of heavy chains (HCs) and light chains (LCs) when produced in mammalian cells with two IgG HCs and two LCs. A solution to the HC heterodimerization aspect of IgG BsAb production was first discovered two decades ago; however, addressing the LC mispairing issue has remained intractable until recently. Here, we use computational and rational engineering to develop novel designs to the HC/LC pairing issue, and particularly for κ LCs. Crystal structures of these designs highlight the interactions that provide HC/LC specificity. We produce and characterize multiple fully IgG BsAbs using these novel designs. We demonstrate the importance of specificity engineering in both the variable and constant domains to achieve robust HC/LC specificity within all the BsAbs. These solutions facilitate the production of fully IgG BsAbs for clinical use.
Collapse
Affiliation(s)
- K J Froning
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, California, 92121
| | - A Leaver-Fay
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - X Wu
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, California, 92121
| | - S Phan
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, California, 92121
| | - L Gao
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, California, 92121
| | - F Huang
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, California, 92121
| | - A Pustilnik
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, California, 92121
| | - M Bacica
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, California, 92121
| | - K Houlihan
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Q Chai
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, California, 92121
| | - J R Fitchett
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, California, 92121
| | - J Hendle
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, California, 92121
| | - B Kuhlman
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - S J Demarest
- Eli Lilly Biotechnology Center, 10300 Campus Point Drive, San Diego, California, 92121
| |
Collapse
|
38
|
Smith DJ, Shell MS. Can Simple Interaction Models Explain Sequence-Dependent Effects in Peptide Homodimerization? J Phys Chem B 2017; 121:5928-5943. [PMID: 28537734 DOI: 10.1021/acs.jpcb.7b03186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The development of rapid methods to explain and predict peptide interactions, aggregation, and self-assembly has become important to understanding amyloid disease pathology, the shelf stability of peptide therapeutics, and the design of novel peptide materials. Although experimental aggregation databases have been used to develop correlative and statistical models, molecular simulations offer atomic-level details that potentially provide greater physical insight and allow one to single out the most explanatory simple models. Here, we outline one such approach using a case study that develops homodimerization models for serine-glycine peptides with various hydrophobic leucine mutations. Using detailed all-atom simulations, we calculate reference dimerization free energy profiles and binding constants for a small peptide library. We then use statistical methods to systematically assess whether simple interaction models, which do not require expensive simulations and free energy calculation, can capture them. Surprisingly, some combinations of a few simple scaling laws well recapitulate the detailed, all-atom results with high accuracy. Specifically, we find that a recently proposed phenomenological hydrophobic force law and coarse measures of entropic effects in binding offer particularly high explanatory power, underscoring the physical relevance to association that these driving forces can play.
Collapse
Affiliation(s)
- David J Smith
- Department of Chemical Engineering, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| | - M Scott Shell
- Department of Chemical Engineering, University of California, Santa Barbara , Santa Barbara, California 93106, United States
| |
Collapse
|
39
|
Kums J, Nelke J, Rüth B, Schäfer V, Siegmund D, Wajant H. Quantitative analysis of cell surface antigen-antibody interaction using Gaussia princeps luciferase antibody fusion proteins. MAbs 2017; 9:506-520. [PMID: 28095113 DOI: 10.1080/19420862.2016.1274844] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Cell surface antigen-specific antibodies are of substantial diagnostic and therapeutic importance. The binding properties of such antibodies are usually evaluated by cell-free assays, in particular surface plasmon resonance (SPR) analysis, or flow cytometry. SPR analyses allow the detailed quantitative and dynamic evaluation of the binding properties of antibodies, but need purified, typically recombinantly produced antigens. It can, however, be difficult to produce the required antigen. Furthermore, cellular factors influencing the antigen-antibody interaction are not considered by this method. Flow cytometry-based analyses do not have these limitations, but require elaborated calibration controls for absolute quantification of bound molecules. To overcome the limitations of SRP and flow cytometry in the characterization of cell surface antigen-specific antibodies, we developed Fn14-specific antibody 18D1 as an example of an antibody fusion protein format that includes the luciferase of Gaussia princeps (GpL), which enables very simple and highly sensitive cellular binding studies. We found that GpL-tagging of the C-terminus of the antibody light chain does not affect the interaction of 18D1-IgG1 with its antigen and Fc-gamma receptors (FcγRs). In accordance with this, the GpL(LC-CT)-18D1-IgG1 antibody fusion protein showed basically the same FcγR-dependent agonistic properties as the parental 18D1 antibody. Similar results were obtained with isotype switch variants of 18D1 and antibodies specific for CD95, LTβR and CD40. In sum, we demonstrate that antibody GpL fusion proteins are easily manageable and versatile tools for the characterization of cell surface antigen-antibody interactions that have the potential to considerably extend the instrumentarium for the evaluation of antibodies.
Collapse
Affiliation(s)
- Juliane Kums
- a Division of Molecular Internal Medicine, Department of Internal Medicine II , University Hospital Würzburg , Würzburg , Germany
| | - Johannes Nelke
- a Division of Molecular Internal Medicine, Department of Internal Medicine II , University Hospital Würzburg , Würzburg , Germany
| | - Benedikt Rüth
- a Division of Molecular Internal Medicine, Department of Internal Medicine II , University Hospital Würzburg , Würzburg , Germany
| | - Viktoria Schäfer
- a Division of Molecular Internal Medicine, Department of Internal Medicine II , University Hospital Würzburg , Würzburg , Germany
| | - Daniela Siegmund
- a Division of Molecular Internal Medicine, Department of Internal Medicine II , University Hospital Würzburg , Würzburg , Germany
| | - Harald Wajant
- a Division of Molecular Internal Medicine, Department of Internal Medicine II , University Hospital Würzburg , Würzburg , Germany
| |
Collapse
|
40
|
Sharkey B, Pudi S, Wallace Moyer I, Zhong L, Prinz B, Baruah H, Lynaugh H, Kumar S, Wittrup KD, Nett JH. Purification of common light chain IgG-like bispecific antibodies using highly linear pH gradients. MAbs 2016; 9:257-268. [PMID: 27937066 DOI: 10.1080/19420862.2016.1267090] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Monovalent bispecific antibodies (BsAbs) are projected to have broad clinical applications due to their ability to bind two different targets simultaneously. Although they can be produced using recombinant technologies, the correct pairing of heavy and light chains is a significant manufacturing problem. Various approaches exploit mutations or linkers to favor the formation of the desired BsAb, but a format using a single common light chain has the advantage that no other modification to the antibody is required. This strategy reduces the number of formed molecules to three (the BsAb and the two parent mAbs), but the separation of the BsAb from the two monovalent parent molecules still poses a potentially difficult purification challenge. Current methods employ ion exchange chromatography and linear salt gradients, but are only successful if the difference in the observed isoelectric points (pIs) of two parent molecules is relatively large. Here, we describe the use of highly linear pH gradients for the facile purification of common light chain BsAbs. The method is effective at separating molecules with differences in pI as little as 0.10, and differing in their sequence by only a single charged amino acid. We also demonstrate that purification resins validated for manufacturing are compatible with this approach.
Collapse
Affiliation(s)
- Beth Sharkey
- a Department of High-Throughput Expression , Adimab LLC , Lebanon , NH , USA
| | - Sarat Pudi
- a Department of High-Throughput Expression , Adimab LLC , Lebanon , NH , USA
| | - Ian Wallace Moyer
- a Department of High-Throughput Expression , Adimab LLC , Lebanon , NH , USA
| | - Lihui Zhong
- a Department of High-Throughput Expression , Adimab LLC , Lebanon , NH , USA
| | - Bianka Prinz
- b Department of Antibody Discovery , Adimab LLC , Lebanon , NH , USA
| | - Hemanta Baruah
- b Department of Antibody Discovery , Adimab LLC , Lebanon , NH , USA
| | - Heather Lynaugh
- c Department of Protein Analytics , Adimab LLC , Lebanon , NH , USA
| | - Sampath Kumar
- a Department of High-Throughput Expression , Adimab LLC , Lebanon , NH , USA
| | - K Dane Wittrup
- a Department of High-Throughput Expression , Adimab LLC , Lebanon , NH , USA.,b Department of Antibody Discovery , Adimab LLC , Lebanon , NH , USA.,c Department of Protein Analytics , Adimab LLC , Lebanon , NH , USA
| | - Juergen H Nett
- a Department of High-Throughput Expression , Adimab LLC , Lebanon , NH , USA
| |
Collapse
|
41
|
Toughiri R, Wu X, Ruiz D, Huang F, Crissman JW, Dickey M, Froning K, Conner EM, Cujec TP, Demarest SJ. Comparing domain interactions within antibody Fabs with kappa and lambda light chains. MAbs 2016; 8:1276-1285. [PMID: 27454112 PMCID: PMC5058631 DOI: 10.1080/19420862.2016.1214785] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
IgG antibodies are multi-domain proteins with complex inter-domain interactions. Human IgG heavy chains (HCs) associate with light chains (LCs) of the κ or λ isotype to form mature antibodies capable of binding antigen. The HC/LC interaction involves 4 domains: VH and CH1 from the HC and VL and CL from the LC. Human Fabs with κ LCs have been well characterized for their unfolding behaviors and demonstrate a significant level of cooperativity and stabilization when all 4 domains are intact. Very little is known regarding the thermodynamic properties of human Fabs with λ LCs. Here, we dissect the domain contributions to Fab stability for both κ and λ LC-containing Fabs. We find the cooperativity of unfolding between the constant domains, CH1/Cλ, and variable domains, VH/Vλ, within λ LC-containing Fabs is significantly weaker than that of κ LC-containing Fabs. The data suggests there may not be an evolutionary necessity for strong variable/constant domain cooperativity within λ LC-containing Fabs. After investigating the biophysical properties of Fabs with mismatched variable and constant domain subunits (e.g., VH/Vκ paired with CH1/Cλ or T cell receptor Cα/Cβ), the major role of the constant domains for both κ- and λ-containing Fabs may be to reduce the hydrophobic exposure at the VH/VL interface. Even though Fabs with these non-native pairings were thermodynamically less stable, they secreted well from mammalian cells as well behaved monodisperse proteins, which was in contrast to what was observed with the VH/Vκ and VH/Vλ scFvs that secreted as a mixture of monomer and aggregates.
Collapse
Affiliation(s)
- Raheleh Toughiri
- a Eli Lilly and Company, Lilly Biotechnology Center , 10300 Campus Point Drive, San Diego , CA 92130 , USA
| | - Xiufeng Wu
- a Eli Lilly and Company, Lilly Biotechnology Center , 10300 Campus Point Drive, San Diego , CA 92130 , USA
| | - Diana Ruiz
- a Eli Lilly and Company, Lilly Biotechnology Center , 10300 Campus Point Drive, San Diego , CA 92130 , USA
| | - Flora Huang
- a Eli Lilly and Company, Lilly Biotechnology Center , 10300 Campus Point Drive, San Diego , CA 92130 , USA
| | - John W Crissman
- a Eli Lilly and Company, Lilly Biotechnology Center , 10300 Campus Point Drive, San Diego , CA 92130 , USA
| | - Mark Dickey
- a Eli Lilly and Company, Lilly Biotechnology Center , 10300 Campus Point Drive, San Diego , CA 92130 , USA
| | - Karen Froning
- a Eli Lilly and Company, Lilly Biotechnology Center , 10300 Campus Point Drive, San Diego , CA 92130 , USA
| | - Elaine M Conner
- a Eli Lilly and Company, Lilly Biotechnology Center , 10300 Campus Point Drive, San Diego , CA 92130 , USA
| | - Thomas P Cujec
- a Eli Lilly and Company, Lilly Biotechnology Center , 10300 Campus Point Drive, San Diego , CA 92130 , USA
| | - Stephen J Demarest
- a Eli Lilly and Company, Lilly Biotechnology Center , 10300 Campus Point Drive, San Diego , CA 92130 , USA
| |
Collapse
|
42
|
O'Brien C, Blanco M, Costanzo J, Enterline M, Fernandez E, Robinson A, Roberts C. Modulating non-native aggregation and electrostatic protein-protein interactions with computationally designed single-point mutations. Protein Eng Des Sel 2016; 29:231-243. [PMID: 27160179 PMCID: PMC4867096 DOI: 10.1093/protein/gzw010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/29/2016] [Accepted: 03/28/2016] [Indexed: 11/14/2022] Open
Abstract
Non-native protein aggregation is a ubiquitous challenge in the production, storage and administration of protein-based biotherapeutics. This study focuses on altering electrostatic protein-protein interactions as a strategy to modulate aggregation propensity in terms of temperature-dependent aggregation rates, using single-charge variants of human γ-D crystallin. Molecular models were combined to predict amino acid substitutions that would modulate protein-protein interactions with minimal effects on conformational stability. Experimental protein-protein interactions were quantified by the Kirkwood-Buff integrals (G22) from laser scattering, and G22 showed semi-quantitative agreement with model predictions. Experimental initial-rates for aggregation showed that increased (decreased) repulsive interactions led to significantly increased (decreased) aggregation resistance, even based solely on single-point mutations. However, in the case of a particular amino acid (E17), the aggregation mechanism was altered by substitution with R or K, and this greatly mitigated improvements in aggregation resistance. The results illustrate that predictions based on native protein-protein interactions can provide a useful design target for engineering aggregation resistance; however, this approach needs to be balanced with consideration of how mutations can impact aggregation mechanisms.
Collapse
Affiliation(s)
- C.J. O'Brien
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - M.A. Blanco
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - J.A. Costanzo
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - M. Enterline
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - E.J. Fernandez
- Department of Chemical Engineering, University of Virginia, Charlottesville, VA 22903, USA
| | - A.S. Robinson
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Chemical and Biomolecular Engineering, Tulane University, New Orleans, LA 70118, USA
| | - C.J. Roberts
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
43
|
Lee D, Kim D, Choi YB, Kang K, Sung ES, Ahn JH, Goo J, Yeom DH, Jang HS, Moon KD, Lee SH, You WK. Simultaneous blockade of VEGF and Dll4 by HD105, a bispecific antibody, inhibits tumor progression and angiogenesis. MAbs 2016; 8:892-904. [PMID: 27049350 DOI: 10.1080/19420862.2016.1171432] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Several angiogenesis inhibitors targeting the vascular endothelial growth factor (VEGF) signaling pathway have been approved for cancer treatment. However, VEGF inhibitors alone were shown to promote tumor invasion and metastasis by increasing intratumoral hypoxia in some preclinical and clinical studies. Emerging reports suggest that Delta-like ligand 4 (Dll4) is a promising target of angiogenesis inhibition to augment the effects of VEGF inhibitors. To evaluate the effects of simultaneous blockade against VEGF and Dll4, we developed a bispecific antibody, HD105, targeting VEGF and Dll4. The HD105 bispecific antibody, which is composed of an anti-VEGF antibody (bevacizumab-similar) backbone C-terminally linked with a Dll4-targeting single-chain variable fragment, showed potent binding affinities against VEGF (KD: 1.3 nM) and Dll4 (KD: 30 nM). In addition, the HD105 bispecific antibody competitively inhibited the binding of ligands to their receptors, i.e., VEGF to VEGFR2 (EC50: 2.84 ± 0.41 nM) and Dll4 to Notch1 (EC50: 1.14 ± 0.06 nM). Using in vitro cell-based assays, we found that HD105 effectively blocked both the VEGF/VEGFR2 and Dll4/Notch1 signaling pathways in endothelial cells, resulting in a conspicuous inhibition of endothelial cell proliferation and sprouting. HD105 also suppressed Dll4-induced Notch1-dependent activation of the luciferase gene. In vivo xenograft studies demonstrated that HD105 more efficiently inhibited the tumor progression of human A549 lung and SCH gastric cancers than an anti-VEGF antibody or anti-Dll4 antibody alone. In conclusion, HD105 may be a novel therapeutic bispecific antibody for cancer treatment.
Collapse
Affiliation(s)
- Dongheon Lee
- a Hanwha Chemical R&D Center , Biologics Business Unit , Gajeong-Ro, Yuseong-Gu , Daejeon , Republic of Korea
| | - Dongin Kim
- a Hanwha Chemical R&D Center , Biologics Business Unit , Gajeong-Ro, Yuseong-Gu , Daejeon , Republic of Korea
| | - Yu Bin Choi
- a Hanwha Chemical R&D Center , Biologics Business Unit , Gajeong-Ro, Yuseong-Gu , Daejeon , Republic of Korea
| | - Kyungjae Kang
- a Hanwha Chemical R&D Center , Biologics Business Unit , Gajeong-Ro, Yuseong-Gu , Daejeon , Republic of Korea
| | - Eun-Sil Sung
- a Hanwha Chemical R&D Center , Biologics Business Unit , Gajeong-Ro, Yuseong-Gu , Daejeon , Republic of Korea
| | - Jin-Hyung Ahn
- a Hanwha Chemical R&D Center , Biologics Business Unit , Gajeong-Ro, Yuseong-Gu , Daejeon , Republic of Korea
| | - Junseo Goo
- a Hanwha Chemical R&D Center , Biologics Business Unit , Gajeong-Ro, Yuseong-Gu , Daejeon , Republic of Korea
| | - Dong-Hoon Yeom
- a Hanwha Chemical R&D Center , Biologics Business Unit , Gajeong-Ro, Yuseong-Gu , Daejeon , Republic of Korea
| | - Hyun Sook Jang
- a Hanwha Chemical R&D Center , Biologics Business Unit , Gajeong-Ro, Yuseong-Gu , Daejeon , Republic of Korea
| | - Kyung Duk Moon
- a Hanwha Chemical R&D Center , Biologics Business Unit , Gajeong-Ro, Yuseong-Gu , Daejeon , Republic of Korea
| | - Sang Hoon Lee
- a Hanwha Chemical R&D Center , Biologics Business Unit , Gajeong-Ro, Yuseong-Gu , Daejeon , Republic of Korea
| | - Weon-Kyoo You
- a Hanwha Chemical R&D Center , Biologics Business Unit , Gajeong-Ro, Yuseong-Gu , Daejeon , Republic of Korea
| |
Collapse
|
44
|
Lu CY, Chen GJ, Tai PH, Yang YC, Hsu YS, Chang M, Hsu CL. Tetravalent anti-CD20/CD3 bispecific antibody for the treatment of B cell lymphoma. Biochem Biophys Res Commun 2016; 473:808-813. [PMID: 27040766 DOI: 10.1016/j.bbrc.2016.03.124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 03/25/2016] [Indexed: 11/16/2022]
Abstract
Bispecific antibodies (bsAbs) are second generation antibodies for therapeutic application in immunotherapy. One of the major strategies of the bsAb platform is the recruitment of immune effector T cells by incorporating an anti-CD3 domain. A bispecific T-cell engager (BiTE), with one end having an affinity for CD3 and the other end with affinity for CD19, has been approved in the US and Europe for the treatment of acute lymphoblastic leukemia. However, due to their small size and lack of Fc region, these single-chain variable fragment (scFv) bsAbs have short half-lives in vivo. Additionally, poor solubility, structural instability, and low production yields have also become major challenges in the bulk production process. To overcome these challenges, we have engineered a tetravalent bsAb with bivalent binding specificity for the CD20 and CD3 antigen in an immunoglobulin G (IgG) format. The fusion of the anti-CD3 scFvs to the CD20 antibody via a linker-hinge domain (LHD) results in improved antibody stabilization and properties. Here we demonstrate this antibody's highly efficient cancer cell elimination in a dose-dependent manner in a CD20-expressing B lymphoblastoid cell line in vitro. Our data suggest the potential clinical application of this bsAb for the treatment of CD20-expressing B cell malignancies.
Collapse
Affiliation(s)
- Chia-Yen Lu
- Institute of Biologics, Development Center for Biotechnology, New Taipei City, Taiwan
| | - Gregory J Chen
- Institute of Biologics, Development Center for Biotechnology, New Taipei City, Taiwan
| | - Pei-Han Tai
- Institute of Biologics, Development Center for Biotechnology, New Taipei City, Taiwan
| | - Yu-Chen Yang
- Institute of Biologics, Development Center for Biotechnology, New Taipei City, Taiwan
| | - Yu-Shen Hsu
- Laboratory of Biopharmaceutical Research, Advagene Biopharma, Taipei, Taiwan.
| | - Mingi Chang
- Laboratory of Biopharmaceutical Research, Advagene Biopharma, Taipei, Taiwan.
| | - Chuan-Lung Hsu
- Institute of Biologics, Development Center for Biotechnology, New Taipei City, Taiwan.
| |
Collapse
|
45
|
Wu X, Sereno AJ, Huang F, Lewis SM, Lieu RL, Weldon C, Torres C, Fine C, Batt MA, Fitchett JR, Glasebrook AL, Kuhlman B, Demarest SJ. Fab-based bispecific antibody formats with robust biophysical properties and biological activity. MAbs 2016; 7:470-82. [PMID: 25774965 DOI: 10.1080/19420862.2015.1022694] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A myriad of innovative bispecific antibody (BsAb) platforms have been reported. Most require significant protein engineering to be viable from a development and manufacturing perspective. Single-chain variable fragments (scFvs) and diabodies that consist only of antibody variable domains have been used as building blocks for making BsAbs for decades. The drawback with Fv-only moieties is that they lack the native-like interactions with CH1/CL domains that make antibody Fab regions stable and soluble. Here, we utilize a redesigned Fab interface to explore 2 novel Fab-based BsAbs platforms. The redesigned Fab interface designs limit heavy and light chain mixing when 2 Fabs are co-expressed simultaneously, thus allowing the use of 2 different Fabs within a BsAb construct without the requirement of one or more scFvs. We describe the stability and activity of a HER2×HER2 IgG-Fab BsAb, and compare its biophysical and activity properties with those of an IgG-scFv that utilizes the variable domains of the same parental antibodies. We also generated an EGFR × CD3 tandem Fab protein with a similar format to a tandem scFv (otherwise known as a bispecific T cell engager or BiTE). We show that the Fab-based BsAbs have superior biophysical properties compared to the scFv-based BsAbs. Additionally, the Fab-based BsAbs do not simply recapitulate the activity of their scFv counterparts, but are shown to possess unique biological activity.
Collapse
Key Words
- BiTE, bispecific T cell engager
- BsAb, bispecific antibody
- CD, circular dichroism
- DSC, differential scanning calorimetry
- Fab interface design
- Fab, antigen binding antibody fragment
- Fv, variable domains antibody fragment
- HC, antibody heavy chain
- IgG-Fab
- LC, antibody light chain
- LCMS, liquid chromatography with in-line mass spectrometry
- SEC-LC, size exclusion chromatography with in-line static light scattering
- T cell
- Tm, temperature at the midpoint of thermal unfolding
- bispecific antibody
- mAb, monoclonal antibody
- scFv, single chain Fv
- tandem Fab
Collapse
Affiliation(s)
- Xiufeng Wu
- a Eli Lilly Biotechnology Center ; San Diego , CA , USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wu X, Sereno AJ, Huang F, Zhang K, Batt M, Fitchett JR, He D, Rick HL, Conner EM, Demarest SJ. Protein design of IgG/TCR chimeras for the co-expression of Fab-like moieties within bispecific antibodies. MAbs 2015; 7:364-76. [PMID: 25611120 DOI: 10.1080/19420862.2015.1007826] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Immunoglobulins and T cell receptors (TCRs) share common sequences and structures. With the goal of creating novel bispecific antibodies (BsAbs), we generated chimeric molecules, denoted IgG_TCRs, where the Fv regions of several antibodies were fused to the constant domains of the α/β TCR. Replacing CH1 with Cα and CL with Cβ, respectively, was essential for achieving at least partial heavy chain/light chain assembly. Further optimization of the linker regions between the variable and constant domains, as well as replacement of the large FG loop of Cβ with a canonical β-turn, was necessary to consistently obtain full heavy chain/light chain assembly. The optimized IgG_TCR molecules were evaluated biophysically and shown to maintain the binding properties of their parental antibodies. A few BsAbs were generated by co-expressing native Fabs and IgG_TCR Fabs within the same molecular construct. We demonstrate that the IgG_TCR designs steered each of the light chains within the constructs to specifically pair with their cognate heavy chain counterparts. We did find that even with complete constant domain specificity between the CH1/CL and Cα/Cβ domains of the Fabs, strong variable domain interactions can dominate the pairing specificity and induce some mispairing. Overall, the IgG_TCR designs described here are a first step toward the generation of novel BsAbs that may be directed toward the treatment of multi-faceted and complex diseases.
Collapse
Key Words
- DSC, differential scanning calorimetry
- FG loop
- HC, heavy chain
- Ha, heavy chain containing Ca in place of CH1
- Hb, heavy chain containing Cb in place of CH1
- LC, light chain
- La, heavy chain containing Ca in place of CL
- Lb, heavy chain containing Cb in place of CL
- RU, resonance units
- SDS-PAGE, sodium dodecyl sulfate-polyacrylamide gel electrophoresis
- SEC, size exclusion chromatography
- SPR, surface plasmon resonance
- T cell receptor
- TCR, T cell receptor
- bispecific antibody
- protein chimera
- protein design
Collapse
Affiliation(s)
- Xiufeng Wu
- a Eli Lilly Biotechnology Center ; San Diego , CA USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhu Y, Choi SH, Shah K. Multifunctional receptor-targeting antibodies for cancer therapy. Lancet Oncol 2015; 16:e543-e554. [DOI: 10.1016/s1470-2045(15)00039-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 12/29/2022]
|
48
|
Tu C, Terraube V, Tam ASP, Stochaj W, Fennell BJ, Lin L, Stahl M, LaVallie ER, Somers W, Finlay WJJ, Mosyak L, Bard J, Cunningham O. A Combination of Structural and Empirical Analyses Delineates the Key Contacts Mediating Stability and Affinity Increases in an Optimized Biotherapeutic Single-chain Fv (scFv). J Biol Chem 2015; 291:1267-76. [PMID: 26515064 DOI: 10.1074/jbc.m115.688010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Indexed: 11/06/2022] Open
Abstract
Fully-human single-chain Fv (scFv) proteins are key potential building blocks of bispecific therapeutic antibodies, but they often suffer from manufacturability and clinical development limitations such as instability and aggregation. The causes of these scFv instability problems, in proteins that should be theoretically stable, remains poorly understood. To inform the future development of such molecules, we carried out a comprehensive structural analysis of the highly stabilized anti-CXCL13 scFv E10. E10 was derived from the parental 3B4 using complementarity-determining region (CDR)-restricted mutagenesis and tailored selection and screening strategies, and carries four mutations in VL-CDR3. High-resolution crystal structures of parental 3B4 and optimized E10 scFvs were solved in the presence and absence of human CXCL13. In parallel, a series of scFv mutants was generated to interrogate the individual contribution of each of the four mutations to stability and affinity improvements. In combination, these analyses demonstrated that the optimization of E10 was primarily mediated by removing clashes between both the VL and the VH, and between the VL and CXCL13. Importantly, a single, germline-encoded VL-CDR3 residue mediated the key difference between the stable and unstable forms of the scFv. This work demonstrates that, aside from being the critical mediators of specificity and affinity, CDRs may also be the primary drivers of biotherapeutic developability.
Collapse
Affiliation(s)
- Chao Tu
- From Global Biotherapeutics Technologies, Pfizer R&D, Cambridge, Massachusetts 02140 and
| | - Virginie Terraube
- Global Biotherapeutics Technologies, Pfizer R&D, Grange Castle Business Park, Dublin D22, Ireland
| | - Amy Sze Pui Tam
- From Global Biotherapeutics Technologies, Pfizer R&D, Cambridge, Massachusetts 02140 and
| | - Wayne Stochaj
- From Global Biotherapeutics Technologies, Pfizer R&D, Cambridge, Massachusetts 02140 and
| | - Brian J Fennell
- Global Biotherapeutics Technologies, Pfizer R&D, Grange Castle Business Park, Dublin D22, Ireland
| | - Laura Lin
- From Global Biotherapeutics Technologies, Pfizer R&D, Cambridge, Massachusetts 02140 and
| | - Mark Stahl
- From Global Biotherapeutics Technologies, Pfizer R&D, Cambridge, Massachusetts 02140 and
| | - Edward R LaVallie
- From Global Biotherapeutics Technologies, Pfizer R&D, Cambridge, Massachusetts 02140 and
| | - Will Somers
- From Global Biotherapeutics Technologies, Pfizer R&D, Cambridge, Massachusetts 02140 and
| | - William J J Finlay
- Global Biotherapeutics Technologies, Pfizer R&D, Grange Castle Business Park, Dublin D22, Ireland
| | - Lydia Mosyak
- From Global Biotherapeutics Technologies, Pfizer R&D, Cambridge, Massachusetts 02140 and
| | - Joel Bard
- From Global Biotherapeutics Technologies, Pfizer R&D, Cambridge, Massachusetts 02140 and
| | - Orla Cunningham
- Global Biotherapeutics Technologies, Pfizer R&D, Grange Castle Business Park, Dublin D22, Ireland
| |
Collapse
|
49
|
Abstract
Targeted treatment of cancer with monoclonal antibodies has added to the beneficial outcome of patients. In an attempt to improve anti-tumor activity of monoclonal antibodies, multi-specific antibodies have entered the research arena. To date, only a few multi-specific constructs have entered phase III clinical trials, in contrast to classical monoclonal antibodies, which are the standard first-line therapy in several tumor entities. In this review, we will assess selected multi-specific antibodies in pre-clinical and clinical development that may be new treatment options for cancer patients in the very near future. We will further evaluate therapy modalities including the timely distribution or the combination of various therapeutic approaches and assess the potential role of multi-specific antibodies in cancer treatment.
Collapse
Affiliation(s)
- Ron D Jachimowicz
- Department I of Internal Medicine, Innate Immunity Group, University Hospital Cologne, Joseph Stelzmann Str. 9, 50937, Cologne, Germany,
| | | | | |
Collapse
|
50
|
Spahr C, Shi SDH, Lu HS. O-glycosylation of glycine-serine linkers in recombinant Fc-fusion proteins: attachment of glycosaminoglycans and other intermediates with phosphorylation at the xylose sugar subunit. MAbs 2015; 6:904-14. [PMID: 24927272 DOI: 10.4161/mabs.28763] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
A xylose-based glycosaminoglycan (GAG) core was recently identified at a Ser residue in the linker sequence of a recombinant Fc fusion protein. The linker sequence, G-S-G-G-G-G, and an upstream acidic residue were serving as a substrate for O-xylosyltransferase, resulting in a major glycan composed of Xyl-Gal-Gal-GlcA and other minor intermediates. In this paper, a portion of an unrelated protein was fused to the C-terminus of an IgG Fc domain using the common (G4S) 4 linker repeat. This linker resulted in a heterogenous population of xylose-based glycans all containing at least a core Xyl. Commonly observed glycan structures include GAG-related di-, tri-, tetra-, and penta-saccharides (e.g., Xyl-Gal, Xyl-Gal-Gal, Xyl-Gal-Gal-GlcA, and Xyl-Gal-Gal-GlcA-HexNAc), as well as Xyl-Gal-Neu5Ac. Following alkaline phosphatase or sialidase treatment combined with CID fragmentation, low-level glycans with a mass addition of 79.9 Da were confirmed to be a result of phosphorylated xylose. A minute quantity of phosphorylated GAG pentasaccharides may also be sulfated (also 79.9 Da), possibly at the HexNAc moiety due to non-reactivity to alkaline phosphatase. The xylose moiety may be randomly incorporated in one of the three G-S-G sequence motifs; and the linker peptide shows evidence for multiple additions of xylose at very low levels.
Collapse
Affiliation(s)
- Chris Spahr
- Biologics Optimization; Therapeutic Discovery; Amgen Inc.; Thousand Oaks, CA USA
| | - Stone D-H Shi
- Biologics Optimization; Therapeutic Discovery; Amgen Inc.; Thousand Oaks, CA USA
| | - Hsieng S Lu
- Biologics Optimization; Therapeutic Discovery; Amgen Inc.; Thousand Oaks, CA USA
| |
Collapse
|