1
|
Pande AH, Sandeep, Shinde SH. Polybodies: Next-generation clinical antibodies. Drug Discov Today 2024; 29:104198. [PMID: 39369985 DOI: 10.1016/j.drudis.2024.104198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/08/2024]
Abstract
Conventional antibodies [full-length and fragments: F(ab')2, fragment antigen-binding (Fab), single-chain variable fragment (scFv), variable heavy domain of heavy chain antibody (VHH)] are monospecific, first-generation antibodies, that have dominated the biopharmaceuticals field. However, protein engineering approaches has led to the advent of the next-generation antibodies (polybodies), which are significant improvement over the conventional antibodies. Polybodies comprise polyspecific and/or polyvalent antibodies that enable a single antibody to target multiple specific antigens simultaneously. Polybodies are superior to first-generation antibodies (more efficacious, broad-spectrum, resistance resilient, customizable, etc.) and provide a cost-effective healthcare solution. This review addresses recent developments in polybodies, highlighting their superiority over conventional antibodies and offering future perspectives to encourage the generation of innovative immunotherapies.
Collapse
Affiliation(s)
- Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India.
| | - Sandeep
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| | - Suraj H Shinde
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, Mohali 160062, Punjab, India
| |
Collapse
|
2
|
Ghorbanalipoor S, Matsumoto K, Gross N, Heimberg L, Krause M, Veldkamp W, Magens M, Zanken J, Neuschutz KJ, De Luca DA, Kridin K, Vidarsson G, Chakievska L, Visser R, Kunzel S, Recke A, Gupta Y, Boch K, Vorobyev A, Kalies K, Manz RA, Bieber K, Ludwig RJ. High throughput screening identifies repurposable drugs for modulation of innate and acquired immune responses. J Autoimmun 2024; 148:103302. [PMID: 39163739 DOI: 10.1016/j.jaut.2024.103302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024]
Abstract
A balanced immune system is essential to maintain adequate host defense and effective self-tolerance. While an immune system that fails to generate appropriate response will permit infections to develop, uncontrolled activation may lead to autoinflammatory or autoimmune diseases. To identify drug candidates capable of modulating immune cell functions, we screened 1200 small molecules from the Prestwick Chemical Library for their property to inhibit innate or adaptive immune responses. Our studies focused specifically on drug interactions with T cells, B cells, and polymorphonuclear leukocytes (PMNs). Candidate drugs that were validated in vitro were examined in preclinical models to determine their immunomodulatory impact in chronic inflammatory diseases, here investigated in chronic inflammatory skin diseases. Using this approach, we identified several candidate drugs that were highly effective in preclinical models of chronic inflammatory disease. For example, we found that administration of pyrvinium pamoate, an FDA-approved over-the-counter anthelmintic drug, suppressed B cell activation in vitro and halted the progression of B cell-dependent experimental pemphigoid by reducing numbers of autoantigen-specific B cell responses. In addition, in studies performed in gene-deleted mouse strains provided additional insight into the mechanisms underlying these effects, for example, the receptor-dependent actions of tamoxifen that inhibit immune-complex-mediated activation of PMNs. Collectively, our methods and findings provide a vast resource that can be used to identify drugs that may be repurposed and used to promote or inhibit cellular immune responses.
Collapse
Affiliation(s)
| | - Kazuko Matsumoto
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Natalie Gross
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Linda Heimberg
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Malin Krause
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Wendelien Veldkamp
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Moritz Magens
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Johannes Zanken
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Kerstin J Neuschutz
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - David A De Luca
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany; Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Khalaf Kridin
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Gestur Vidarsson
- Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Lenche Chakievska
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Remco Visser
- Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands; Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, the Netherlands
| | - Sven Kunzel
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Andreas Recke
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Yask Gupta
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany
| | - Katharina Boch
- Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Artem Vorobyev
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany; Department of Dermatology, University of Lübeck, Lübeck, Germany
| | - Kathrin Kalies
- Institute for Anatomy, University of Lübeck, Lübeck, Germany
| | - Rudolf A Manz
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Katja Bieber
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany.
| | - Ralf J Ludwig
- Lübeck Institute of Experimental Dermatology, University of Lübeck, Lübeck, Germany; Department of Dermatology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
3
|
Niazi SK, Omarsdottir S. Lectin-Based Fluorescent Comparison of Glycan Profile-FDA Validation to Expedite Approval of Biosimilars. Int J Mol Sci 2024; 25:9240. [PMID: 39273189 PMCID: PMC11395676 DOI: 10.3390/ijms25179240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/16/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Glycan profile comparisons are one of the most tedious analytical exercises for establishing compliance with recombinant therapeutic protein batches. Based on its intensive research, the FDA has confirmed that lectin array binding with fluorescent monitoring is the fastest and most reliable method for profile comparisons. Using a database of over 150 biological products expressed in nine diverse mammalian cell systems, the FDA immobilized 74 lectins to study their binding using fluorescently labeled glycoproteins. The FDA identified nine distinct lectins from a custom-designed lectin microarray: rPhoSL, rOTH3, RCA120, rMan2, MAL_I, rPSL1a, PHAE, rMOA, and PHALs, which detect core fucose, terminal GlcNAc, terminal β-galactose, high mannose, α-2,3-linked sialic acids, α-2,6-linked sialic acids, bisecting GlcNAc, terminal α-galactose, and triantennary structures, respectively. This method can be used for screening and routine testing and to monitor batch-to-batch variability of therapeutic proteins, including establishing analytical similarity as a crucial part of biosimilar development.
Collapse
Affiliation(s)
| | - Sesselja Omarsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, IS-107 Reykjavik, Iceland;
| |
Collapse
|
4
|
Reinert T, Houzé P, Francois YN, Gahoual R. Enhancing affinity purification of monoclonal antibodies from human serum for subsequent CZE-MS analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1234:123974. [PMID: 38271747 DOI: 10.1016/j.jchromb.2023.123974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024]
Abstract
Due to the separation technique employed, capillary electrophoresis coupled to mass spectrometry (CE-MS) analysis performances are significantly influenced by the chemical composition and the complexity of the sample. In various applications, that impact has prevented the use of CE-MS for the characterization and quantification of proteins in biological samples. Here we present the development and evaluation and a sample preparation procedure, based on affinity purification, for the specific extraction of the monoclonal antibody (mAbs) infliximab from human serum in order to perform subsequent proteolytic digestion and CE-MS/MS analysis. Three distinctive sample preparation strategies were envisaged. In each case, the different steps composing the protocol were thoroughly optimized and evaluated in order to provide a sample preparation addressing the important complexity of serums samples while providing an optimal compatibility with CE-MS/MS analysis. The different sample preparation strategies were assessed concerning the possibility to achieve an appropriate absolute quantification of the mAbs using CE-MS/MS for samples mimicking patient serum samples. Also, the possibility to perform the characterization of several types of post-translational modifications (PTMs) was evaluated. The sample preparation protocols allowed the quantification of the mAbs in serums samples for concentration as low as 0.2 µg·mL-1 (2.03 nM) using CE-MS/MS analysis, also the possibility to characterize and estimate the modification level of PTMs hotspots in a consistent manner. Results allowed to attribute the effect on the electrophoretic separation of the different steps composing sample preparation. Finally, they demonstrated that sample preparation for CE-MS/MS analysis could benefit greatly for the extended applicability of this type of analysis for complex biological matrices.
Collapse
Affiliation(s)
- Tessa Reinert
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, France; Université Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS, Inserm, Faculté de sciences pharmaceutiques et biologiques, Paris, France.
| | - Pascal Houzé
- Université Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS, Inserm, Faculté de sciences pharmaceutiques et biologiques, Paris, France; Laboratoire de Toxicologie Biologique, Hôpital Lariboisière, Assistance Publique - Hôpitaux de Paris (AP-HP), Paris, France
| | - Yannis-Nicolas Francois
- Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, France
| | - Rabah Gahoual
- Université Paris Cité, Unité de Technologies Chimiques et Biologiques pour la Santé (UTCBS), CNRS, Inserm, Faculté de sciences pharmaceutiques et biologiques, Paris, France
| |
Collapse
|
5
|
Beaumal C, Beck A, Hernandez-Alba O, Carapito C. Advanced mass spectrometry workflows for accurate quantification of trace-level host cell proteins in drug products: Benefits of FAIMS separation and gas-phase fractionation DIA. Proteomics 2023; 23:e2300172. [PMID: 37148167 DOI: 10.1002/pmic.202300172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 05/08/2023]
Abstract
Therapeutic monoclonal antibodies (mAb) production relies on multiple purification steps before release as a drug product (DP). A few host cell proteins (HCPs) may co-purify with the mAb. Their monitoring is crucial due to the considerable risk they represent for mAb stability, integrity, and efficacy and their potential immunogenicity. Enzyme-linked immunosorbent assays (ELISA) commonly used for global HCP monitoring present limitations in terms of identification and quantification of individual HCPs. Therefore, liquid chromatography tandem mass spectrometry (LC-MS/MS) has emerged as a promising alternative. Challenging DP samples show an extreme dynamic range requiring high performing methods to detect and reliably quantify trace-level HCPs. Here, we investigated the benefits of adding high-field asymmetric ion mobility spectrometry (FAIMS) separation and gas phase fractionation (GPF) prior to data independent acquisition (DIA). FAIMS LC-MS/MS analysis allowed the identification of 221 HCPs among which 158 were reliably quantified for a global amount of 880 ng/mg of NIST mAb Reference Material. Our methods have also been successfully applied to two FDA/EMA approved DPs and allowed digging deeper into the HCP landscape with the identification and quantification of a few tens of HCPs with sensitivity down to the sub-ng/mg of mAb level.
Collapse
Affiliation(s)
- Corentin Beaumal
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, CNRS, Université de Strasbourg, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - Alain Beck
- IRPF, Centre d'Immunologie Pierre-Fabre (CIPF), Saint-Julien-en-Genevois, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, CNRS, Université de Strasbourg, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, IPHC UMR 7178, CNRS, Université de Strasbourg, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg, France
| |
Collapse
|
6
|
Han D, Huang Z, Rahimi E, Ardekani AM. Solute Transport across the Lymphatic Vasculature in a Soft Skin Tissue. BIOLOGY 2023; 12:942. [PMID: 37508373 PMCID: PMC10375963 DOI: 10.3390/biology12070942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/22/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023]
Abstract
Convective transport of drug solutes in biological tissues is regulated by the interstitial fluid pressure, which plays a crucial role in drug absorption into the lymphatic system through the subcutaneous (SC) injection. In this paper, an approximate continuum poroelasticity model is developed to simulate the pressure evolution in the soft porous tissue during an SC injection. This poroelastic model mimics the deformation of the tissue by introducing the time variation of the interstitial fluid pressure. The advantage of this method lies in its computational time efficiency and simplicity, and it can accurately model the relaxation of pressure. The interstitial fluid pressure obtained using the proposed model is validated against both the analytical and the numerical solution of the poroelastic tissue model. The decreasing elasticity elongates the relaxation time of pressure, and the sensitivity of pressure relaxation to elasticity decreases with the hydraulic permeability, while the increasing porosity and permeability due to deformation alleviate the high pressure. An improved Kedem-Katchalsky model is developed to study solute transport across the lymphatic vessel network, including convection and diffusion in the multi-layered poroelastic tissue with a hybrid discrete-continuum vessel network embedded inside. At last, the effect of different structures of the lymphatic vessel network, such as fractal trees and Voronoi structure, on the lymphatic uptake is investigated. In this paper, we provide a novel and time-efficient computational model for solute transport across the lymphatic vasculature connecting the microscopic properties of the lymphatic vessel membrane to the macroscopic drug absorption.
Collapse
Affiliation(s)
- Dingding Han
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| | - Ziyang Huang
- Mechanical Engineering Department, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ehsan Rahimi
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| | - Arezoo M Ardekani
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, IN 47907, USA
| |
Collapse
|
7
|
Jethva PN, Gross ML. Hydrogen Deuterium Exchange and other Mass Spectrometry-based Approaches for Epitope Mapping. FRONTIERS IN ANALYTICAL SCIENCE 2023; 3:1118749. [PMID: 37746528 PMCID: PMC10512744 DOI: 10.3389/frans.2023.1118749] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Antigen-antibody interactions are a fundamental subset of protein-protein interactions responsible for the "survival of the fittest". Determining the interacting interface of the antigen, called an epitope, and that on the antibody, called a paratope, is crucial to antibody development. Because each antigen presents multiple epitopes (unique footprints), sophisticated approaches are required to determine the target region for a given antibody. Although X-ray crystallography, Cryo-EM, and nuclear magnetic resonance can provide atomic details of an epitope, they are often laborious, poor in throughput, and insensitive. Mass spectrometry-based approaches offer rapid turnaround, intermediate structural resolution, and virtually no size limit for the antigen, making them a vital approach for epitope mapping. In this review, we describe in detail the principles of hydrogen deuterium exchange mass spectrometry in application to epitope mapping. We also show that a combination of MS-based approaches can assist or complement epitope mapping and push the limit of structural resolution to the residue level. We describe in detail the MS methods used in epitope mapping, provide our perspective about the approaches, and focus on elucidating the role that HDX-MS is playing now and in the future by organizing a discussion centered around several improvements in prototype instrument/applications used for epitope mapping. At the end, we provide a tabular summary of the current literature on HDX-MS-based epitope mapping.
Collapse
Affiliation(s)
- Prashant N. Jethva
- Department of Chemistry, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Michael L. Gross
- Department of Chemistry, Washington University in St. Louis, St Louis, MO 63130, USA
| |
Collapse
|
8
|
Ji Y, Liu D, Zhu H, Bao L, Chang R, Gao X, Yin J. Unstructured Polypeptides as a Versatile Drug Delivery Technology. Acta Biomater 2023; 164:74-93. [PMID: 37075961 DOI: 10.1016/j.actbio.2023.04.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/23/2023] [Accepted: 04/13/2023] [Indexed: 04/21/2023]
Abstract
Although polyethylene glycol (PEG), or "PEGylation" has become a widely applied approach for improving the efficiency of drug delivery, the immunogenicity and non-biodegradability of this synthetic polymer have prompted an evident need for alternatives. To overcome these caveats and to mimic PEG -or other natural or synthetic polymers- for the purpose of drug half-life extension, unstructured polypeptides are designed. Due to their tunable length, biodegradability, low immunogenicity and easy production, unstructured polypeptides have the potential to replace PEG as the preferred technology for therapeutic protein/peptide delivery. This review provides an overview of the evolution of unstructured polypeptides, starting from natural polypeptides to engineered polypeptides and discusses their characteristics. Then, it is described that unstructured polypeptides have been successfully applied to numerous drugs, including peptides, proteins, antibody fragments, and nanocarriers, for half-life extension. Innovative applications of unstructured peptides as releasable masks, multimolecular adaptors and intracellular delivery carriers are also discussed. Finally, challenges and future perspectives of this promising field are briefly presented. STATEMENT OF SIGNIFICANCE: : Polypeptide fusion technology simulating PEGylation has become an important topic for the development of long-circulating peptide or protein drugs without reduced activity, complex processes, and kidney injury caused by PEG modification. Here we provide a detailed and in-depth review of the recent advances in unstructured polypeptides. In addition to the application of enhanced pharmacokinetic performance, emphasis is placed on polypeptides as scaffolders for the delivery of multiple drugs, and on the preparation of reasonably designed polypeptides to manipulate the performance of proteins and peptides. This review will provide insight into future application of polypeptides in peptide or protein drug development and the design of novel functional polypeptides.
Collapse
Affiliation(s)
- Yue Ji
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Haichao Zhu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Lichen Bao
- Jiangsu Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing 210009, China
| | - Ruilong Chang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals and State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
9
|
Yamazaki S, Matsuda Y. Tag‐Free Enzymatic Modification for Antibody−Drug Conjugate Production. ChemistrySelect 2022. [DOI: 10.1002/slct.202203753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Yutaka Matsuda
- Ajinomoto Bio-Pharma Services 11040 Roselle Street San Diego CA 92121 United States
| |
Collapse
|
10
|
Casasola-LaMacchia A, Seward RJ, Tourdot S, Willetts M, Kruppa G, Agostino MJ, Bergeron G, Ahyi-Amendah N, Ciarla A, Lu Z, Kim HY, Hickling TP, Neubert H. HLAII peptide presentation of infliximab increases when complexed with TNF. Front Immunol 2022; 13:932252. [PMID: 36177046 PMCID: PMC9513746 DOI: 10.3389/fimmu.2022.932252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
CD4+ T-cell activation through recognition of Human Leukocyte Antigen II (HLAII)-presented peptides is a key step in the development of unwanted immune response against biotherapeutics, such as the generation of anti-drug antibodies (ADA). Therefore, the identification of HLAII-presented peptides derived from biotherapeutics is a crucial part of immunogenicity risk assessment and mitigation strategies during drug development. To date, numerous CD4+ T-cell epitopes have been identified by HLAII immunopeptidomics in antibody-based biotherapeutics using either their native or aggregated form. Antibody-target immune complexes have been detected in patients with ADA and are thought to play a role in ADA development by enhancing the presentation of CD4+ T-cell epitopes at the surface of antigen presenting cells (APCs). The aim of this study was to investigate the effect of biotherapeutic antibody-target immune complexes on the HLAII peptide presentation of biotherapeutics in human primary monocyte-derived dendritic cells (DCs). The trimeric tumor necrosis factor (TNF) and its biotherapeutic antagonists infliximab (INFL), adalimumab (ADAL), and a single armed Fab' were used as a model system. The HLAII immunopeptidome of DCs loaded with antagonists or their immune complexes with TNF was analyzed by trapped ion mobility time-of-flight mass spectrometry (timsTOF MS) leading to the identification of ~ 12,000 unique HLAII-associated peptides per preparation. Anti-TNF sequences were detected at a median of 0.3% of the total immunopeptidome, against a majority background of peptides from endogenous and media-derived proteins. TNF antagonist presentation spanned the variable and constant regions in a widespread manner in both light and heavy chains, consistent with previously discovered HLAII peptides. This investigation extends the collection of observed HLAII peptides from anti-TNF biotherapeutics to include sequences that at least partially span the complementary determining regions (CDRs), such as the LCDR1 for both INFL and ADAL. Although antagonist presentation varied significantly across donors, peptides from both bivalent antagonists INFL and ADAL were more highly presented relative to the Fab'. While TNF immune complexes did not alter overall HLAII presentation, a moderate increase in presentation of a subset of peptide clusters was observed in the case of INFL-TNF, which included HCDR2, HCDR3 and LCDR2 sequences.
Collapse
Affiliation(s)
- Andrea Casasola-LaMacchia
- BioMedicine Design, Worldwide Research, Development and Medical, Pfizer Inc., Andover, MA, United States
| | - Robert Joseph Seward
- BioMedicine Design, Worldwide Research, Development and Medical, Pfizer Inc., Andover, MA, United States
| | - Sophie Tourdot
- BioMedicine Design, Worldwide Research, Development and Medical, Pfizer Inc., Andover, MA, United States
| | | | - Gary Kruppa
- Bruker Daltonics, Billerica, MA, United States
| | | | - Gabrielle Bergeron
- BioMedicine Design, Worldwide Research, Development and Medical, Pfizer Inc., Andover, MA, United States
| | - Nathalie Ahyi-Amendah
- BioMedicine Design, Worldwide Research, Development and Medical, Pfizer Inc., Andover, MA, United States
| | - Andrew Ciarla
- BioMedicine Design, Worldwide Research, Development and Medical, Pfizer Inc., Andover, MA, United States
| | - Zhaojiang Lu
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA, United States
| | - Hai-Young Kim
- Analytical Research and Development, Biotherapeutics Pharmaceutical Sciences, Pfizer Inc., Andover, MA, United States
| | - Timothy P. Hickling
- BioMedicine Design, Worldwide Research, Development and Medical, Pfizer Inc., Andover, MA, United States
| | - Hendrik Neubert
- BioMedicine Design, Worldwide Research, Development and Medical, Pfizer Inc., Andover, MA, United States
| |
Collapse
|
11
|
Liu T, Xu J, Guo Q, Zhang D, Li J, Qian W, Guo H, Zhou X, Hou S. Identification, Efficacy, and Stability Evaluation of Succinimide Modification With a High Abundance in the Framework Region of Golimumab. Front Chem 2022; 10:826923. [PMID: 35449588 PMCID: PMC9017650 DOI: 10.3389/fchem.2022.826923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/08/2022] [Indexed: 11/24/2022] Open
Abstract
Succinimide (Asu) is the intermediate for asparagine deamidation in therapeutic proteins, and it can be readily hydrolyzed to form aspartate and iso-aspartate residues. Moreover, Asu plays an important role in the protein degradation pathways, asparagine deamidation, and aspartic acid isomerization. Here, Asu modification with a high abundance in the framework region (FR) of golimumab was first reported, the effect of denaturing buffer pH on the Asu modification homeostasis was studied, and the results revealed that it was relatively stable over a pH range of 6.0–7.0 whereas a rapid decrease at pH 8.0. Then, the peptide-based multi-attribute method (MAM) analyses showed that the Asu formation was at Asn 43 in the FR of the heavy chain. Meanwhile, the efficacy [affinity, binding and bioactivity, complement-dependent cytotoxicity (CDC) activity, and antibody-dependent cell-mediated cytotoxicity (ADCC) activity] and stability of the Asu modification of golimumab were evaluated, and the current results demonstrated comparable efficacy and stability between the Asu low- and high-abundance groups. Our findings provide valuable insights into Asu modification and its effect on efficacy and stability, and this study also demonstrates that there is a need to develop a broad-spectrum, rapid, and accurate platform to identify and characterize new peaks in the development of therapeutic proteins, particularly for antibody drugs.
Collapse
Affiliation(s)
- Tao Liu
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, China
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
| | - Jin Xu
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- Shanghai Zhangjiang Biotechnology Co., Ltd., Shanghai, China
| | - Qingcheng Guo
- Taizhou Mabtech Pharmaceuticals Co., Ltd., Taizhou, China
| | - Dapeng Zhang
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Jun Li
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Weizhu Qian
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
| | - Huaizu Guo
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- Shanghai Zhangjiang Biotechnology Co., Ltd., Shanghai, China
- *Correspondence: Huaizu Guo, ; Xinli Zhou, ; Sheng Hou,
| | - Xinli Zhou
- Department of Oncology, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Huaizu Guo, ; Xinli Zhou, ; Sheng Hou,
| | - Sheng Hou
- State Key Laboratory of Antibody Medicine and Targeted Therapy, Shanghai, China
- NMPA Key Laboratory for Quality Control of Therapeutic Monoclonal Antibodies, Shanghai, China
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, China
- *Correspondence: Huaizu Guo, ; Xinli Zhou, ; Sheng Hou,
| |
Collapse
|
12
|
Nainwal N, Chirmade T, Gani K, Rana S, Bhambure R. Understanding unfolding and refolding of the antibody fragments (Fab). II. Mapping intra and inter-chain disulfide bonds using mass spectrometry. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
13
|
De novo Discovery of Peptide-based Affinity Ligands for the Fab Fragment of Human Immunoglobulin G. J Chromatogr A 2022; 1669:462941. [DOI: 10.1016/j.chroma.2022.462941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 12/16/2022]
|
14
|
Hagan JB, Ender E, Divekar RD, Pongdee T, Rank MA. Risk for Postmarket Black Box Warnings in FDA-Approved Monoclonal Antibodies. Mayo Clin Proc Innov Qual Outcomes 2022; 6:69-76. [PMID: 35024565 PMCID: PMC8724853 DOI: 10.1016/j.mayocpiqo.2021.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Objective To estimate the potential risk for a future postmarket black box warning (BBW) of US Food and Drug Administration (FDA)-approved monoclonal antibodies (mAbs) because of the importance for medical clinicians to understand mAb risks and benefits, including unknown future risks, especially for recently approved mAbs. Methods The complete dates of the study were March 16, 2020, through May 12, 2021. We searched the FDALabel database online and reviewed the scientific literature to determine current and previous FDA-approved mAbs as of March 2020. The BBWs and initial FDA-issued safety warnings were identified. The BBWs were categorized as premarket or postmarket. For mAbs with specific postmarket BBWs, previous FDA labels were evaluated to identify the presence or absence of an initial corresponding specific FDA warning. Results In March 2020, a total of 83 mAbs had FDA approval; 33 had BBWs (27 premarket and 13 postmarket BBWs). Of these 33 mAbs, 55 individual specific BBWs existed (36 premarket and 19 postmarket specific warnings). On average, the specific BBWs occurred in the postmarket period at a rate of 3.4% (19/562) per year. Most (73.7%; 14/19) specific postmarket BBWs were preceded by an FDA warning in a median time of 3.61 (interquartile range, 1.36-5.78) years. Specific postmarket BBWs not preceded by a specific FDA product label warning occurred at an average rate of 0.9% (5/562) per year. Conclusion Specific postmarket BBWs occurred in FDA-approved mAbs at a rate of 3.4% per year. Specific postmarket BBWs not preceded by a specific FDA product label warning had a rate of 0.9% per year.
Collapse
Affiliation(s)
- John B. Hagan
- Division of Allergic Diseases, Mayo Clinic, Rochester, MN
- Correspondence: Address to John B. Hagan, MD, Division of Allergic Diseases, Mayo Clinic, 200 First St SW, Rochester, MN 55905.
| | - Elizabeth Ender
- Internal Medicine-Pediatrics, Marshfield Clinic, Marshfield, WI
| | | | - Thanai Pongdee
- Division of Allergic Diseases, Mayo Clinic, Rochester, MN
| | - Matthew A. Rank
- Division of Allergy, Asthma, and Clinical Immunology, Mayo Clinic, Scottsdale, AZ
| |
Collapse
|
15
|
Das R, Langou S, Le TT, Prasad P, Lin F, Nguyen TD. Electrical Stimulation for Immune Modulation in Cancer Treatments. Front Bioeng Biotechnol 2022; 9:795300. [PMID: 35087799 PMCID: PMC8788921 DOI: 10.3389/fbioe.2021.795300] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/17/2021] [Indexed: 12/17/2022] Open
Abstract
Immunotherapy is becoming a very common treatment for cancer, using approaches like checkpoint inhibition, T cell transfer therapy, monoclonal antibodies and cancer vaccination. However, these approaches involve high doses of immune therapeutics with problematic side effects. A promising approach to reducing the dose of immunotherapeutic agents given to a cancer patient is to combine it with electrical stimulation, which can act in two ways; it can either modulate the immune system to produce the immune cytokines and agents in the patient's body or it can increase the cellular uptake of these immune agents via electroporation. Electrical stimulation in form of direct current has been shown to reduce tumor sizes in immune-competent mice while having no effect on tumor sizes in immune-deficient mice. Several studies have used nano-pulsed electrical stimulations to activate the immune system and drive it against tumor cells. This approach has been utilized for different types of cancers, like fibrosarcoma, hepatocellular carcinoma, human papillomavirus etc. Another common approach is to combine electrochemotherapy with immune modulation, either by inducing immunogenic cell death or injecting immunostimulants that increase the effectiveness of the treatments. Several therapies utilize electroporation to deliver immunostimulants (like genes encoded with cytokine producing sequences, cancer specific antigens or fragments of anti-tumor toxins) more effectively. Lastly, electrical stimulation of the vagus nerve can trigger production and activation of anti-tumor immune cells and immune reactions. Hence, the use of electrical stimulation to modulate the immune system in different ways can be a promising approach to treat cancer.
Collapse
Affiliation(s)
- Ritopa Das
- Department of Biomedical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Sofia Langou
- Department of Physiology and Neurobiology, University of Connecticut, Mansfield, CT, United States
| | - Thinh T. Le
- Department of Mechanical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Pooja Prasad
- Department of Cell and Molecular Biology, University of Connecticut, Mansfield, CT, United States
| | - Feng Lin
- Department of Mechanical Engineering, University of Connecticut, Mansfield, CT, United States
| | - Thanh D. Nguyen
- Department of Biomedical Engineering, University of Connecticut, Mansfield, CT, United States
- Department of Mechanical Engineering, University of Connecticut, Mansfield, CT, United States
- Institute of Materials Science, University of Connecticut, Mansfield, CT, United States
| |
Collapse
|
16
|
Fang YM, Lin DQ, Yao SJ. Tetrapeptide ligands screening for antibody separation and purification by molecular simulation and experimental verification. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
Matsuda Y. Current approaches for the purification of antibody-drug conjugates. J Sep Sci 2021; 45:27-37. [PMID: 34473399 DOI: 10.1002/jssc.202100575] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/21/2023]
Abstract
In the past two decades, antibody-drug conjugates have gained increasing attention because they expand the therapeutic index when compared with that of traditional chemotherapies. Antibody-drug conjugates are highly complex structures consisting of antibodies covalently conjugated with small-molecule cytotoxic drugs. The complex structure of antibody-drug conjugates makes chemistry, manufacturing, and control difficult. In contrast to antibody production, distinct purification methods following conjugation of antibodies with drug-linkers are required for the manufacturing. For process development of antibody drug conjugates, the drug-to-antibody ratio, free drug-linkers, and aggregates are critical quality attributes that must be strictly controlled and removed by appropriate purification techniques. In this review, features of various purification methods used to purify antibody drug conjugates are described and evaluated. The future landscape of the antibody-conjugates field is also discussed briefly.
Collapse
|
18
|
The evolution of commercial drug delivery technologies. Nat Biomed Eng 2021; 5:951-967. [PMID: 33795852 DOI: 10.1038/s41551-021-00698-w] [Citation(s) in RCA: 656] [Impact Index Per Article: 164.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 02/11/2021] [Indexed: 02/07/2023]
Abstract
Drug delivery technologies have enabled the development of many pharmaceutical products that improve patient health by enhancing the delivery of a therapeutic to its target site, minimizing off-target accumulation and facilitating patient compliance. As therapeutic modalities expanded beyond small molecules to include nucleic acids, peptides, proteins and antibodies, drug delivery technologies were adapted to address the challenges that emerged. In this Review Article, we discuss seminal approaches that led to the development of successful therapeutic products involving small molecules and macromolecules, identify three drug delivery paradigms that form the basis of contemporary drug delivery and discuss how they have aided the initial clinical successes of each class of therapeutic. We also outline how the paradigms will contribute to the delivery of live-cell therapies.
Collapse
|
19
|
Rikhi R, Karnuta J, Hussain M, Collier P, Funchain P, Tang WHW, Chan TA, Moudgil R. Immune Checkpoint Inhibitors Mediated Lymphocytic and Giant Cell Myocarditis: Uncovering Etiological Mechanisms. Front Cardiovasc Med 2021; 8:721333. [PMID: 34434981 PMCID: PMC8381278 DOI: 10.3389/fcvm.2021.721333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 07/14/2021] [Indexed: 12/26/2022] Open
Abstract
The advent of immune checkpoint inhibitors (ICIs) has revolutionized the field of oncology, but these are associated with immune related adverse events. One such adverse event, is myocarditis, which has limited the continued immunosuppressive treatment options in patients afflicted by the disease. Pre-clinical and clinical data have found that specific ICI targets and precipitate distinct myocardial infiltrates, consistent with lymphocytic or giant cell myocarditis. Specifically, it has been reported that CTLA-4 inhibition preferentially results in giant cell myocarditis with a predominately CD4+ T cell infiltrate and PD-1 inhibition leads to lymphocytic myocarditis, with a predominately CD8+ T cell infiltrate. Our manuscript discusses the latest literature surrounding ICI pathways and targets, while detailing proposed mechanisms behind ICI mediated myocarditis.
Collapse
Affiliation(s)
- Rishi Rikhi
- Department of Medicine, Cleveland Clinic Foundation, Cleveland, OH, United States.,Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Jaret Karnuta
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Muzna Hussain
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Patrick Collier
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Pauline Funchain
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Department of Hematology and Medical Oncology, Taussig Cancer Center Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Wai Hong Wilson Tang
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| | - Timothy A Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Lerner Research Institute, Cleveland, OH, United States
| | - Rohit Moudgil
- Department of Medicine, Case Western Reserve University, Cleveland, OH, United States.,Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
20
|
Pracucci E, Pillai V, Lamers D, Parra R, Landi S. Neuroinflammation: A Signature or a Cause of Epilepsy? Int J Mol Sci 2021; 22:6981. [PMID: 34209535 PMCID: PMC8267969 DOI: 10.3390/ijms22136981] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/11/2021] [Accepted: 06/23/2021] [Indexed: 12/21/2022] Open
Abstract
Epilepsy can be both a primary pathology and a secondary effect of many neurological conditions. Many papers show that neuroinflammation is a product of epilepsy, and that in pathological conditions characterized by neuroinflammation, there is a higher probability to develop epilepsy. However, the bidirectional mechanism of the reciprocal interaction between epilepsy and neuroinflammation remains to be fully understood. Here, we attempt to explore and discuss the relationship between epilepsy and inflammation in some paradigmatic neurological and systemic disorders associated with epilepsy. In particular, we have chosen one representative form of epilepsy for each one of its actual known etiologies. A better understanding of the mechanistic link between neuroinflammation and epilepsy would be important to improve subject-based therapies, both for prophylaxis and for the treatment of epilepsy.
Collapse
Affiliation(s)
- Enrico Pracucci
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (E.P.); (V.P.); (D.L.); (R.P.)
| | - Vinoshene Pillai
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (E.P.); (V.P.); (D.L.); (R.P.)
| | - Didi Lamers
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (E.P.); (V.P.); (D.L.); (R.P.)
| | - Riccardo Parra
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (E.P.); (V.P.); (D.L.); (R.P.)
| | - Silvia Landi
- National Enterprise for Nanoscience and Nanotechnology (NEST), Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa, 56127 Pisa, Italy; (E.P.); (V.P.); (D.L.); (R.P.)
- Institute of Neuroscience CNR, 56127 Pisa, Italy
| |
Collapse
|
21
|
Huan L, Shi Q. Increasing immunoglobulin G adsorption in dextran-grafted protein A gels. Eng Life Sci 2021; 21:392-404. [PMID: 34140850 PMCID: PMC8182282 DOI: 10.1002/elsc.202000097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 11/27/2022] Open
Abstract
The formation of a stable spatial arrangement of protein A ligands is a great challenge for the development of high-capacity polymer-grafted protein A adsorbents due to the complexity in interplay between coupled ligands and polymer chain. In this work, carboxymethyl dextrans (CMDs) with different molecular weight were introduced to provide stable spatial ligand arrangement in CMD-grafted protein A gels to improve IgG adsorption. The result showed that coupling of protein A ligand in CMD-grafted layer had no marked influence on pore size and dextran layers coupled with the ligands were stable in experimental range of salt concentrations. The result of IgG adsorption revealed that carboxymethyl dextran T10, a short CMD, was more suitable as a scaffold for the synthesis of high-capacity protein A gels. Moreover, the maximal adsorption capacity for IgG was obtained to be 96.4 mg/g gel at ionic capacities of 300-350 mmol/L and a ligand density of 15.2 mg/g gel. Dynamic binding capacity for IgG exhibited a higher capacity utilization in CMD-grafted protein A gels than non-grafted protein A gel. The research presented a tactics to establish a stable dextran layer coupled with protein A ligands and demonstrated its importance to improve binding capacity for IgG.
Collapse
Affiliation(s)
- Liming Huan
- Department of Biochemical EngineeringSchool of Chemical Engineering and TechnologyTianjin UniversityTianjinP. R. China
| | - Qing‐Hong Shi
- Department of Biochemical EngineeringSchool of Chemical Engineering and TechnologyTianjin UniversityTianjinP. R. China
- Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education)Tianjin UniversityTianjinP. R. China
| |
Collapse
|
22
|
Liu C, Kobashigawa Y, Yamauchi S, Fukuda N, Sato T, Masuda T, Ohtsuki S, Morioka H. Convenient method of producing cyclic single-chain Fv antibodies by split-intein-mediated protein ligation and chaperone co-expression. J Biochem 2021; 168:257-263. [PMID: 32275752 DOI: 10.1093/jb/mvaa042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 03/31/2020] [Indexed: 11/13/2022] Open
Abstract
Single-chain Fv (scFv) is a recombinant antibody in which the variable regions of the heavy chain (VH) and light chain (VL) are connected by a short flexible polypeptide linker. Compared with monoclonal antibodies, scFvs have the advantages of low-cost production using Escherichia coli and easy genetic manipulation. ScFvs are, therefore, regarded as useful modules for producing next-generation medical antibodies. The practical use of scFvs has been limited due to their aggregation propensity mediated by interchain VH-VL interactions. To overcome this problem, we recently reported a cyclic scFv whose N-terminus and C-terminus were connected by sortase A-mediated ligation. Preparation of cyclic scFv is, however, a time-consuming process. To accelerate the application study of cyclic scFv, we developed a method to produce cyclic scFv by the combined use of a protein ligation technique based on protein trans-splicing reaction (PTS) by split intein and a chaperone co-expression system. This method allows for the preparation of active cyclic scFv from the cytoplasm of E. coli. The present method was applied to the production of cyclic 73MuL9-scFv, a GA-pyridine antibody, as a kind of advanced glycation end-product. These findings are expected to evoke further application study of cyclic scFv.
Collapse
Affiliation(s)
| | | | | | | | - Takashi Sato
- Department of Analytical and Biophysical Chemistry
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | | |
Collapse
|
23
|
Politch JA, Cu-Uvin S, Moench TR, Tashima KT, Marathe JG, Guthrie KM, Cabral H, Nyhuis T, Brennan M, Zeitlin L, Spiegel HML, Mayer KH, Whaley KJ, Anderson DJ. Safety, acceptability, and pharmacokinetics of a monoclonal antibody-based vaginal multipurpose prevention film (MB66): A Phase I randomized trial. PLoS Med 2021; 18:e1003495. [PMID: 33534791 PMCID: PMC7857576 DOI: 10.1371/journal.pmed.1003495] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/12/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND MB66 film is a multipurpose prevention technology (MPT) product with monoclonal antibodies (mAbs) against HIV-1 (VRC01-N) and HSV-1 and 2 (HSV8-N). The mAbs were produced by transient expression in Nicotiana benthamiana (N). We conducted a Phase I clinical trial to assess the safety, pharmacokinetics (PK), and ex vivo efficacy of single and repeated doses of MB66 when used intravaginally. METHODS AND FINDINGS The clinical trial enrolled healthy reproductive-aged, sexually abstinent women. In Segment A, 9 women received a single MB66 film which was inserted into the vaginal posterior fornix by a clinician. In Segment B, 29 women were randomly assigned to MB66 (Active) or Placebo film groups and were instructed to insert 1 film vaginally for 7 consecutive days. Visits and clinical sampling occurred predose and at various time points after single and repeated film doses. The primary endpoint was number of adverse events (AEs) Grade 2 or higher related to product use. Secondary endpoints included film dissolution rate, Nugent score (a Gram stain scoring system to diagnose bacterial vaginosis), vaginal pH, post-use survey results, cytokine concentrations in cervicovaginal lavage (CVL) specimens (assessed by Luminex assay), mAb concentrations in vaginal fluid collected from 4 sites (assessed by ELISA), and HIV and HSV neutralization activity of CVL samples ex vivo (assessed by TZM-bl and plaque reduction assay, respectively). The product was generally safe and well tolerated, with no serious AEs recorded in either segment. The AEs in this study were primarily genitourinary in nature with the most commonly reported AE being asymptomatic microscopic hematuria. There were no differences in vaginal pH or Nugent scores or significant increases in levels of proinflammatory cytokines for up to 7 days after film insertion in either segment or between Active and Placebo groups. Acceptability and willingness to use the product were judged to be high by post-use surveys. Concentrations of VRC01-N and HSV8-N in vaginal secretions were assessed over time to generate pharmacokinetic curves. Antibody levels peaked 1 hour postdosing with Active film (median: 35 μg/mL) and remained significantly elevated at 24 hours post first and seventh film (median: 1.8 μg/mL). Correcting for sample dilution (1:20), VRC01-N concentrations ranged from 36 to 700 μg/mL at the 24-hour time point, greater than 100-fold the IC50 for VRC01 (0.32 μg/mL); HSV8-N concentrations ranged from 80 to 601 μg/mL, well above the IC50 of 0.1 μg/m. CVL samples collected 24 hours after MB66 insertion significantly neutralized both HIV-1 and HSV-2 ex vivo. Study limitations include the small size of the study cohort, and the fact that no samples were collected between 24 hours and 7 days for pharmacokinetic evaluation. CONCLUSIONS Single and repeated intravaginal applications of MB66 film were safe, well tolerated, and acceptable. Concentrations and ex vivo bioactivity of both mAbs in vaginal secretions were significantly elevated and thus could provide protection for at least 24 hours postdose. However, further research is needed to evaluate the efficacy of MB66 film in women at risk for HIV and HSV infection. Additional antibodies could be added to this platform to provide protection against other sexually transmitted infections (STIs) and contraception. TRIAL REGISTRATION ClinicalTrials.gov NCT02579083.
Collapse
Affiliation(s)
- Joseph A. Politch
- Boston University School of Medicine, Department of Medicine, Boston, Massachusetts, United States of America
| | - Susan Cu-Uvin
- Alpert Medical School of Brown University, Department of Obstetrics and Gynecology and Medicine, Providence, Rhode Island, United States of America
| | - Thomas R. Moench
- Mapp Biopharmaceutical Inc., San Diego, California, United States of America
| | - Karen T. Tashima
- Division of Infectious Diseases, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Jai G. Marathe
- Boston University School of Medicine, Department of Medicine, Boston, Massachusetts, United States of America
| | - Kate M. Guthrie
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University, Providence, Rhode Island, United States of America
| | - Howard Cabral
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Tara Nyhuis
- Mapp Biopharmaceutical Inc., San Diego, California, United States of America
| | - Miles Brennan
- Mapp Biopharmaceutical Inc., San Diego, California, United States of America
| | - Larry Zeitlin
- Mapp Biopharmaceutical Inc., San Diego, California, United States of America
| | - Hans M. L. Spiegel
- Kelly Government Solutions, Contractor to National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, Rockville, Maryland, United States of America
| | - Kenneth H. Mayer
- Harvard Medical School, Department of Medicine, Boston, Massachusetts, United States of America
| | - Kevin J. Whaley
- Mapp Biopharmaceutical Inc., San Diego, California, United States of America
| | - Deborah J. Anderson
- Boston University School of Medicine, Department of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
24
|
|
25
|
Pastrana B, Nieves S, Li W, Liu X, Dimitrov DS. Developability Assessment of an Isolated C H2 Immunoglobulin Domain. Anal Chem 2021; 93:1342-1351. [PMID: 33325681 DOI: 10.1021/acs.analchem.0c02663] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The IgG CH2 domain continues to hold promise for the development of new therapeutic entities because of its bifunctional role as a biomarker and effector protein. The need for further understanding of molecular stability and aggregation in therapeutic proteins has led to the development of a breakthrough quantum cascade laser microscope to allow for real-time comparability assessment of an array of related proteins in solution upon thermal perturbation. Our objective was to perform a comprehensive developability assessment of three similar monoclonal antibody (mAb) fragments: CH2, CH2s, and m01s. The CH2 construct consists of residues Pro238 to Lys340 of the IgG1 heavy chain sequence. CH2s has a 7-residue deletion at the N-terminus and a 16-residue C-terminal extension containing a histidine tag. The m01s construct is identical to CH2s, except for two cysteines introduced at positions 242 and 334. A series of hyperspectral images was acquired during thermal perturbation from 28 to 60 °C for all three proteins in an array. Co-distribution and two-dimensional infrared correlation spectroscopies yielded the mechanism of aggregation and stability for these three proteins. The level of detail is unprecedented, identifying the regions within CH2 and CH2s that are prone to self-association and establishing the differences in stability. Furthermore, CH2 helical segments, β-sheets, β-turns, and random coil regions were less stable than in CH2s and m01s because of the presence of the N-terminal 310-helix and β-turn type III. The engineered disulfide bridge in m01s eliminated the self-association process and rendered this mAb fragment the most stable.
Collapse
Affiliation(s)
- Belinda Pastrana
- Protein Dynamic Solutions, 9 Audubon Road, Wakefield, Massachusetts 01880-1256, United States
| | - Sherly Nieves
- Protein Dynamic Solutions, 9 Audubon Road, Wakefield, Massachusetts 01880-1256, United States
| | - Wei Li
- National Cancer Institute, Frederick, Maryland 21702-1201, United States.,Department of Medicine, Center for Antibody Therapeutics, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, Pennsylvania 15261, United States
| | - Xianglei Liu
- Department of Medicine, Center for Antibody Therapeutics, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, Pennsylvania 15261, United States
| | - Dimiter S Dimitrov
- National Cancer Institute, Frederick, Maryland 21702-1201, United States.,Department of Medicine, Center for Antibody Therapeutics, University of Pittsburgh, 3550 Terrace Street, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|
26
|
Khan MAAK, Turjya RR, Islam ABMMK. Computational engineering the binding affinity of Adalimumab monoclonal antibody for designing potential biosimilar candidate. J Mol Graph Model 2021; 102:107774. [DOI: 10.1016/j.jmgm.2020.107774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/15/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
|
27
|
Matsuda Y, Mendelsohn BA. An overview of process development for antibody-drug conjugates produced by chemical conjugation technology. Expert Opin Biol Ther 2020; 21:963-975. [PMID: 33141625 DOI: 10.1080/14712598.2021.1846714] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: We discuss chemical conjugation strategies for antibody-drug conjugates (ADCs) from an industrial perspective and compare three promising chemical conjugation technologies to produce site-specific ADCs.Areas covered: Currently, nine ADCs are commercially approved and all are produced by chemical conjugation technology. However, seven of these ADCs contain a relatively broad drug distribution, potentially limiting their therapeutic indices. In 2019, the first site-specific ADC was launched on the market by Daiichi-Sankyo. This achievement, and an analysis of clinical trials over the last decade, indicates that current industrial interest in the ADC field is shifting toward site-specific conjugation technologies. From an industrial point of view, we aim to provide guidance regarding established conjugation methodologies that have already been applied to scale-up stages. With an emphasis on highly productive, scalable, and synthetic process robustness, conjugation methodologies for ADC production is discussed herein.Expert opinion: All three chemical conjugation technologies described in this review have various advantages and disadvantages, therefore drug developers can utilize these depending on their biological and/or protein targets. The future landscape of the ADC field is also discussed.
Collapse
Affiliation(s)
- Yutaka Matsuda
- Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki 210-8681, Japan
| | - Brian A Mendelsohn
- Process Development & Tech Transfer, Ajinomoto Bio-Pharma Services, 11040 Roselle Street, San Diego, CA 92121, United States
| |
Collapse
|
28
|
Karlberg M, de Souza JV, Fan L, Kizhedath A, Bronowska AK, Glassey J. QSAR Implementation for HIC Retention Time Prediction of mAbs Using Fab Structure: A Comparison between Structural Representations. Int J Mol Sci 2020; 21:ijms21218037. [PMID: 33126648 PMCID: PMC7663183 DOI: 10.3390/ijms21218037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
Monoclonal antibodies (mAbs) constitute a rapidly growing biopharmaceutical sector. However, their growth is impeded by high failure rates originating from failed clinical trials and developability issues in process development. There is, therefore, a growing need for better in silico tools to aid in risk assessment of mAb candidates to promote early-stage screening of potentially problematic mAb candidates. In this study, a quantitative structure–activity relationship (QSAR) modelling workflow was designed for the prediction of hydrophobic interaction chromatography (HIC) retention times of mAbs. Three novel descriptor sets derived from primary sequence, homology modelling, and atomistic molecular dynamics (MD) simulations were developed and assessed to determine the necessary level of structural resolution needed to accurately capture the relationship between mAb structures and HIC retention times. The results showed that descriptors derived from 3D structures obtained after MD simulations were the most suitable for HIC retention time prediction with a R2 = 0.63 in an external test set. It was found that when using homology modelling, the resulting 3D structures became biased towards the used structural template. Performing an MD simulation therefore proved to be a necessary post-processing step for the mAb structures in order to relax the structures and allow them to attain a more natural conformation. Based on the results, the proposed workflow in this paper could therefore potentially contribute to aid in risk assessment of mAb candidates in early development.
Collapse
Affiliation(s)
- Micael Karlberg
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (M.K.); (L.F.); (A.K.)
| | - João Victor de Souza
- Chemistry—School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (J.V.d.S.); (A.K.B.)
| | - Lanyu Fan
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (M.K.); (L.F.); (A.K.)
- Chemistry—School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (J.V.d.S.); (A.K.B.)
| | - Arathi Kizhedath
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (M.K.); (L.F.); (A.K.)
| | - Agnieszka K. Bronowska
- Chemistry—School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (J.V.d.S.); (A.K.B.)
| | - Jarka Glassey
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (M.K.); (L.F.); (A.K.)
- Correspondence:
| |
Collapse
|
29
|
Burton RE, Kim S, Patel R, Hartman DS, Tracey DE, Fox BS. Structural features of bovine colostral immunoglobulin that confer proteolytic stability in a simulated intestinal fluid. J Biol Chem 2020; 295:12317-12327. [PMID: 32665404 PMCID: PMC7443484 DOI: 10.1074/jbc.ra120.014327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/06/2020] [Indexed: 01/16/2023] Open
Abstract
Bovine colostral antibodies, purified from cow's milk produced immediately after calving, have enhanced resistance to degradation by intestinal proteases relative to antibodies from human or bovine serum, making them of particular interest as orally administered therapeutic agents. However, the basis of this resistance is not well defined. We evaluated the stability of AVX-470, a bovine colostral anti-tumor necrosis factor (TNF) polyclonal antibody used in early clinical studies for treatment of ulcerative colitis, using conditions that mimic the human small intestine. AVX-470 was degraded ∼3 times more slowly than human IgG antibodies or infliximab (a monoclonal mouse-human chimeric IgG). Bovine IgG1 antibodies, the primary component of AVX-470, were slowly cleaved to F(ab')2 fragments. In contrast, bovine IgG2 and human IgG1 antibodies were cleaved rapidly into Fab and smaller fragments, pointing to specific regions where additional stability might be gained. Infliximab was modified to incorporate the sequences from these regions, including the bovine IgG1 hinge region and a predicted disulfide bonding motif linking the upper hinge region, the CH1 domain, and the light chain. This infliximab-bovine IgG1 chimera (bovinized infliximab) retained the antigen binding and neutralization activity of the WT sequence but was degraded 9-fold more slowly than the unmodified infliximab. This remarkable increase in stability with as few as 18 amino acid substitutions suggests that this bovinization process is a means to enable oral delivery of proven therapeutic antibodies as well as novel antibodies to targets that have been previously inaccessible to therapies delivered by injection.
Collapse
Affiliation(s)
| | - Skaison Kim
- Avaxia Biologics/Circle33 LLC, Jackson, Wyoming, USA
| | - Rutvij Patel
- Avaxia Biologics/Circle33 LLC, Jackson, Wyoming, USA
| | | | | | - Barbara S Fox
- Avaxia Biologics/Circle33 LLC, Jackson, Wyoming, USA
| |
Collapse
|
30
|
Davis JS, Ferreira D, Paige E, Gedye C, Boyle M. Infectious Complications of Biological and Small Molecule Targeted Immunomodulatory Therapies. Clin Microbiol Rev 2020; 33:e00035-19. [PMID: 32522746 PMCID: PMC7289788 DOI: 10.1128/cmr.00035-19] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The past 2 decades have seen a revolution in our approach to therapeutic immunosuppression. We have moved from relying on broadly active traditional medications, such as prednisolone or methotrexate, toward more specific agents that often target a single receptor, cytokine, or cell type, using monoclonal antibodies, fusion proteins, or targeted small molecules. This change has transformed the treatment of many conditions, including rheumatoid arthritis, cancers, asthma, and inflammatory bowel disease, but along with the benefits have come risks. Contrary to the hope that these more specific agents would have minimal and predictable infectious sequelae, infectious complications have emerged as a major stumbling block for many of these agents. Furthermore, the growing number and complexity of available biologic agents makes it difficult for clinicians to maintain current knowledge, and most review articles focus on a particular target disease or class of agent. In this article, we review the current state of knowledge about infectious complications of biologic and small molecule immunomodulatory agents, aiming to create a single resource relevant to a broad range of clinicians and researchers. For each of 19 classes of agent, we discuss the mechanism of action, the risk and types of infectious complications, and recommendations for prevention of infection.
Collapse
Affiliation(s)
- Joshua S Davis
- Department of Infectious Diseases and Immunology, John Hunter Hospital, Newcastle, NSW, Australia
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| | - David Ferreira
- School of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Emma Paige
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia
| | - Craig Gedye
- School of Medicine, University of New South Wales, Sydney, NSW, Australia
- Department of Oncology, Calvary Mater Hospital, Newcastle, NSW, Australia
| | - Michael Boyle
- Department of Infectious Diseases and Immunology, John Hunter Hospital, Newcastle, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
31
|
Pan X, Stader F, Abduljalil K, Gill KL, Johnson TN, Gardner I, Jamei M. Development and Application of a Physiologically-Based Pharmacokinetic Model to Predict the Pharmacokinetics of Therapeutic Proteins from Full-term Neonates to Adolescents. AAPS JOURNAL 2020; 22:76. [DOI: 10.1208/s12248-020-00460-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
|
32
|
Fu K, March K, Alexaki A, Fabozzi G, Moysi E, Petrovas C. Immunogenicity of Protein Therapeutics: A Lymph Node Perspective. Front Immunol 2020; 11:791. [PMID: 32477334 PMCID: PMC7240201 DOI: 10.3389/fimmu.2020.00791] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022] Open
Abstract
The continuous development of molecular biology and protein engineering technologies enables the expansion of the breadth and complexity of protein therapeutics for in vivo administration. However, the immunogenicity and associated in vivo development of antibodies against therapeutics are a major restriction factor for their usage. The B cell follicular and particularly germinal center areas in secondary lymphoid organs are the anatomical sites where the development of antibody responses against pathogens and immunogens takes place. A growing body of data has revealed the importance of the orchestrated function of highly differentiated adaptive immunity cells, including follicular helper CD4 T cells and germinal center B cells, for the optimal generation of these antibody responses. Understanding the cellular and molecular mechanisms mediating the antibody responses against therapeutics could lead to novel strategies to reduce their immunogenicity and increase their efficacy.
Collapse
Affiliation(s)
- Kristy Fu
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Kylie March
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Aikaterini Alexaki
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Giulia Fabozzi
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Eirini Moysi
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Constantinos Petrovas
- Tissue Analysis Core, Immunology Laboratory, Vaccine Research Center, NIAID, National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
33
|
Towards a new avenue for producing therapeutic proteins: Microalgae as a tempting green biofactory. Biotechnol Adv 2020; 40:107499. [DOI: 10.1016/j.biotechadv.2019.107499] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 10/02/2019] [Accepted: 12/17/2019] [Indexed: 02/08/2023]
|
34
|
Tawfiq Z, Caiazza NC, Kambourakis S, Matsuda Y, Griffin B, Lippmeier JC, Mendelsohn BA. Synthesis and Biological Evaluation of Antibody Drug Conjugates Based on an Antibody Expression System: Conamax. ACS OMEGA 2020; 5:7193-7200. [PMID: 32280859 PMCID: PMC7143411 DOI: 10.1021/acsomega.9b03628] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/05/2020] [Indexed: 06/11/2023]
Abstract
Antibody production for ADCs (or in general) is commonly performed by CHO-based platforms and limited by volumetric productivity, expensive downstream purification, and extended optimization timelines. The Conamax platform is a novel microbial-based protein production and secretion system. A suite of synthetic biology tools have enabled high volumetric productivity (>1 g/L/d) and glycoengineering to produce simple and consistent human-like post-translational modifications. Conamax can be engineered to secrete genuine, functional monoclonal antibodies that have been successfully used to make antibody drug conjugates (ADCs) via cysteine-linked conjugation. Specifically, we evaluated ADCs derived from both a Conamax-produced anti-HER2 antibody and comparable commercially sourced Chinese hamster ovary (CHO)-produced material in an NCI-N87 gastric cancer xenograft model. Conjugation efficiency and resulting analytical data indicated comparable ADC quality and attributes. No statistical difference was observed between Conamax- and CHO-derived test articles thereby indicating similar efficacy and function. These results further demonstrate the potential of Conamax as a useful platform for the discovery and production of therapeutic antibodies and ADCs.
Collapse
Affiliation(s)
- Zhala Tawfiq
- Ajinomoto
Bio-Pharma Services, 11040 Roselle St, San Diego, California 92121, United States
| | - Nicky C. Caiazza
- Synthetic
Genomics, 11149 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Spiros Kambourakis
- Synthetic
Genomics, 11149 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Yutaka Matsuda
- Ajinomoto
Bio-Pharma Services, 11040 Roselle St, San Diego, California 92121, United States
| | - Benjamin Griffin
- Synthetic
Genomics, 11149 North Torrey Pines Road, La Jolla, California 92037, United States
| | | | - Brian A. Mendelsohn
- Ajinomoto
Bio-Pharma Services, 11040 Roselle St, San Diego, California 92121, United States
| |
Collapse
|
35
|
Combination of intact, middle-up and bottom-up levels to characterize 7 therapeutic monoclonal antibodies by capillary electrophoresis – Mass spectrometry. J Pharm Biomed Anal 2020; 182:113107. [DOI: 10.1016/j.jpba.2020.113107] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 12/22/2022]
|
36
|
Vermeulen JG, Burt F, van Heerden E, du Preez LL, Meiring M. Characterization of the inhibition mechanism of a tissuefactor inhibiting single-chain variable fragment: a combined computational approach. J Mol Model 2020; 26:87. [PMID: 32219568 DOI: 10.1007/s00894-020-4350-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/11/2020] [Indexed: 10/24/2022]
Abstract
The interaction of a single-chain variable fragment (scFv) directed against human tissue factor (TF) was predicted using an in silico approach with the aim to establish a most likely mechanism of inhibition. The structure of the TF inhibiting scFv (TFI-scFv) was predicted using homology modeling, and complementarity-determining regions (CDRs) were identified. The CDR was utilized to direct molecular docking between the homology model of TFI-scFv and the crystal structure of the extracellular domains of human tissue factor. The rigid-body docking model was refined by means of molecular dynamic (MD) simulations, and the most prevalent cluster was identified. MD simulations predicted improved interaction between TFI-scFv and TF and propose the formation of stable complex for duration of the 600-ns simulation. Analysis of the refined docking model suggests that the interactions between TFI-scFv would interfere with the allosterical activation of coagulation factor VII (FVII) by TF. This interaction would prevent the formation of the active TF:VIIa complex and in so doing inhibit the initiation phase of blood coagulation as observers during in vitro testing.
Collapse
Affiliation(s)
- Jan-G Vermeulen
- Department of Microbial, Biochemical and Food Biotechnology, Faculty of Agricultural Sciences, University of the Free State, Bloemfontein, South Africa. .,Department of Haematology and Cell Biology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.
| | - Felicity Burt
- Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.,National Health Laboratory Service, Universitas, Bloemfontein, South Africa
| | - Esta van Heerden
- Department of Microbial, Biochemical and Food Biotechnology, Faculty of Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Louis Lategan du Preez
- Department of Microbial, Biochemical and Food Biotechnology, Faculty of Agricultural Sciences, University of the Free State, Bloemfontein, South Africa
| | - Muriel Meiring
- Department of Haematology and Cell Biology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa.,National Health Laboratory Service, Universitas, Bloemfontein, South Africa
| |
Collapse
|
37
|
Function-based high-throughput screening for antibody antagonists and agonists against G protein-coupled receptors. Commun Biol 2020; 3:146. [PMID: 32218528 PMCID: PMC7099005 DOI: 10.1038/s42003-020-0867-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Hybridoma and phage display are two powerful technologies for isolating target-specific monoclonal antibodies based on the binding. However, for complex membrane proteins, such as G protein-coupled receptors (GPCRs), binding-based screening rarely results in functional antibodies. Here we describe a function-based high-throughput screening method for quickly identifying antibody antagonists and agonists against GPCRs by combining glycosylphosphatidylinositol-anchored antibody cell display with β-arrestin recruitment-based cell sorting and screening. This method links antibody genotype with phenotype and is applicable to all GPCR targets. We validated this method by identifying a panel of antibody antagonists and an antibody agonist to the human apelin receptor from an immune antibody repertoire. In contrast, we obtained only neutral binders and antibody antagonists from the same repertoire by phage display, suggesting that the new approach described here is more efficient than traditional methods in isolating functional antibodies. This new method may create a new paradigm in antibody drug discovery. Ren et al. develop a function-based high-throughput screening method for identifying antibody antagonists and agonists against GPCRs by combining GPI-anchored antibody cell surface display and β-arrestin recruitment reporter assay. They identify a panel of antibody antagonists and an agonist to the human apelin receptor, which is not obtainable from phage display technology.
Collapse
|
38
|
Zhang J, Zhao Y, Cao Y, Yu Z, Wang G, Li Y, Ye X, Li C, Lin X, Song H. Synthetic sRNA-Based Engineering of Escherichia coli for Enhanced Production of Full-Length Immunoglobulin G. Biotechnol J 2020; 15:e1900363. [PMID: 32034883 DOI: 10.1002/biot.201900363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/06/2019] [Indexed: 12/18/2022]
Abstract
Production of monoclonal antibodies (mAbs) receives considerable attention in the pharmaceutical industry. There has been an increasing interest in the expression of mAbs in Escherichia coli for analytical and therapeutic applications in recent years. Here, a modular synthetic biology approach is developed to rationally engineer E. coli by designing three functional modules to facilitate high-titer production of immunoglobulin G (IgG). First, a bicistronic expression system is constructed and the expression of the key genes in the pyruvate metabolism is tuned by the technologies of synthetic sRNA translational repression and gene overexpression, thus enhancing the cellular material and energy metabolism of E. coli for IgG biosynthesis (module 1). Second, to prevent the IgG biodegradation by proteases, the expression of a number of key proteases is identified and inhibited via synthetic sRNAs (module 2). Third, molecular chaperones are co-expressed to promote the secretion and folding of IgG (module 3). Synergistic integration of the three modules into the resulting recombinant E. coli results in a yield of the full-length IgG ≈150 mg L-1 in a 5L fed-batch bioreactor. The modular synthetic biology approach could be of general use in the production of recombinant mAbs.
Collapse
Affiliation(s)
- Jinhua Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) , School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Yanshu Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) , School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) , School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Zhenpeng Yu
- Yangzhou Lianao Biopharmaceutical Co. Ltd., and Yangzhou Aurisco Pharmaceutical Co. Ltd., Wanmei Road No. 5, Hanjiang Economic Development Zone, Yangzhou, Jiangsu, 225100, P. R. China
| | - Guoping Wang
- Yangzhou Lianao Biopharmaceutical Co. Ltd., and Yangzhou Aurisco Pharmaceutical Co. Ltd., Wanmei Road No. 5, Hanjiang Economic Development Zone, Yangzhou, Jiangsu, 225100, P. R. China
| | - Yiqun Li
- Yangzhou Lianao Biopharmaceutical Co. Ltd., and Yangzhou Aurisco Pharmaceutical Co. Ltd., Wanmei Road No. 5, Hanjiang Economic Development Zone, Yangzhou, Jiangsu, 225100, P. R. China
| | - Xiaoqiong Ye
- Yangzhou Lianao Biopharmaceutical Co. Ltd., and Yangzhou Aurisco Pharmaceutical Co. Ltd., Wanmei Road No. 5, Hanjiang Economic Development Zone, Yangzhou, Jiangsu, 225100, P. R. China
| | - Congfa Li
- College of Food Science and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Xue Lin
- College of Food Science and Technology, Hainan University, Haikou, 570228, P. R. China
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE) , School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| |
Collapse
|
39
|
Recent progress in transglutaminase-mediated assembly of antibody-drug conjugates. Anal Biochem 2020; 595:113615. [PMID: 32035039 DOI: 10.1016/j.ab.2020.113615] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/17/2020] [Accepted: 02/04/2020] [Indexed: 02/08/2023]
Abstract
Antibody-drug conjugates (ADCs) are hybrid molecules intended to overcome the drawbacks of conventional small molecule chemotherapy and therapeutic antibodies by merging beneficial characteristics of both molecule classes to develop more efficient and patient-friendly options for cancer treatment. During the last decades a versatile bioconjugation toolbox that comprises numerous chemical and enzymatic technologies have been developed to covalently attach a cytotoxic cargo to a tumor-targeting antibody. Microbial transglutaminase (mTG) that catalyzes isopeptide bond formation between proteinaceous or peptidic glutamines and lysines, provides many favorable properties that are beneficial for the manufacturing of these conjugates. However, to efficiently utilize the enzyme for the constructions of ADCs, different drawbacks had to be overcome that originate from the enzyme's insufficiently understood substrate specificity. Within this review, pioneering methodologies, recent achievements and remaining limitations of mTG-assisted assembly of ADCs will be highlighted.
Collapse
|
40
|
Stradner A, Schurtenberger P. Potential and limits of a colloid approach to protein solutions. SOFT MATTER 2020; 16:307-323. [PMID: 31830196 DOI: 10.1039/c9sm01953g] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Looking at globular proteins with the eyes of a colloid scientist has a long tradition, in fact a significant part of the early colloid literature was focused on protein solutions. However, it has also been recognized that proteins are much more complex than the typical hard sphere-like synthetic model colloids. Proteins are not perfect spheres, their interaction potentials are in general not isotropic, and using theories developed for such particles are thus clearly inadequate in many cases. In this perspective article, we now take a closer look at the field. In particular, we reflect on the fact that modern colloid science has been undergoing a tremendous development, where a multitude of novel systems have been developed in the lab and in silico. During the last decade we have seen a rapidly increasing number of reports on the synthesis of anisotropic, patchy and/or responsive synthetic colloids, that start to resemble their complex biological counterparts. This experimental development is also reflected in a corresponding theoretical and simulation effort. The experimental and theoretical toolbox of colloid science has thus rapidly expanded, and there is obviously an enormous potential for an application of these new concepts to protein solutions, which has already been realized and harvested in recent years. In this perspective article we make an attempt to critically discuss the exploitation of colloid science concepts to better understand protein solutions. We not only consider classical applications such as the attempt to understand and predict solution stability and phase behaviour, but also discuss new challenges related to the dynamics, flow behaviour and liquid-solid transitions found in concentrated or crowded protein solutions. It not only aims to provide an overview on the progress in experimental and theoretical (bio)colloid science, but also discusses current shortcomings in our ability to correctly reproduce and predict the structural and dynamic properties of protein solutions based on such a colloid approach.
Collapse
Affiliation(s)
- Anna Stradner
- Division of Physical Chemistry, Department of Chemistry, Lund University, PO Box 124, SE-221 00 Lund, Sweden.
| | | |
Collapse
|
41
|
Wei B, Han G, Tang J, Sandoval W, Zhang YT. Native Hydrophobic Interaction Chromatography Hyphenated to Mass Spectrometry for Characterization of Monoclonal Antibody Minor Variants. Anal Chem 2019; 91:15360-15364. [DOI: 10.1021/acs.analchem.9b04467] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Bingchuan Wei
- Department of Protein Analytical Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Guanghui Han
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jia Tang
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Wendy Sandoval
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Yonghua Taylor Zhang
- Department of Protein Analytical Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| |
Collapse
|
42
|
Karadag M, Arslan M, Kaleli NE, Kalyoncu S. Physicochemical determinants of antibody-protein interactions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 121:85-114. [PMID: 32312427 DOI: 10.1016/bs.apcsb.2019.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Antibodies are specialized proteins generated by immune system for high specificity and affinity binding to target antigens. Because of their essential roles in immune system, antibodies have been successfully developed and engineered as biopharmaceuticals for treatment of various diseases. Analysis of antibody-protein interactions is always required to get detailed information on effectivity of such antibody-based therapeutics. Although physicochemical rules cannot be generalized for every antibody-protein interaction, there are some features which should be taken into account during antibody development and engineering efforts. In this chapter, physicochemical analysis of antibody paratope-protein epitope interactions will be discussed to highlight important characteristics. First, paratope and non-paratope regions of antibodies will be described and important roles of these regions on binding and biophysical features of antibodies will be discussed. Then, general features of epitope regions of protein antigens will be introduced along with several computational/experimental tools to identify them. Lastly, a rising star of antibody biopharmaceuticals, nanobodies, will be described to show importance of next-generation antibody fragment based biopharmaceuticals in drug development.
Collapse
Affiliation(s)
- Murat Karadag
- Izmir Biomedicine and Genome Center, İzmir, Turkey; Izmir Biomedicine and Genome Institute, Dokuz Eylul University, İzmir, Turkey
| | - Merve Arslan
- Izmir Biomedicine and Genome Center, İzmir, Turkey; Izmir Biomedicine and Genome Institute, Dokuz Eylul University, İzmir, Turkey
| | - Nazli Eda Kaleli
- Izmir Biomedicine and Genome Center, İzmir, Turkey; Izmir Biomedicine and Genome Institute, Dokuz Eylul University, İzmir, Turkey
| | | |
Collapse
|
43
|
Machiesky L, Côté O, Kirkegaard LH, Mefferd SC, Larkin C. A rapid lateral flow immunoassay for identity testing of biotherapeutics. J Immunol Methods 2019; 474:112666. [DOI: 10.1016/j.jim.2019.112666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 10/26/2022]
|
44
|
Tada M, Aoyama M, Ishii-Watabe A. Fcγ Receptor Activation by Human Monoclonal Antibody Aggregates. J Pharm Sci 2019; 109:576-583. [PMID: 31676270 DOI: 10.1016/j.xphs.2019.10.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/09/2019] [Accepted: 10/25/2019] [Indexed: 01/11/2023]
Abstract
Protein aggregates are a potential risk factor for immunogenicity. The measurement, characterization, and control of protein aggregates in drug products are indispensable for the development of biopharmaceuticals, including therapeutic mAbs. In this study, Fcγ receptor (FcγR)-expressing reporter cell lines were used to analyze the FcγR-activation properties of mAb aggregates. Comparison of aggregates of mAbs harboring different IgG subclasses revealed that the FcγR-activation profiles of the mAb aggregates were dependent on IgG subclass. In addition, aggregates of Fc-engineered mAb with enhanced FcγR-activation properties exhibited stronger activation of FcγRs than was observed in the wild-type aggregates, whereas aggregates of Fc-engineered mAb with decreased FcγR-activation properties showed reduced activation. These results suggest that FcγR activation by mAb aggregates depends greatly on the Fc functions of the native (nonaggregated) mAbs. We also showed that aggregates of mAbs smaller than 1 μm in size have the potential to directly activate FcγRs. Unintended immune cell activation can be induced on account of FcγR activation by mAb aggregates and such FcγR activation may contribute to immunogenicity, and therefore, analysis of the FcγR-activation properties of mAb aggregates using FcγR-expressing reporter cell lines is a promising approach for the characterization of mAb aggregates.
Collapse
Affiliation(s)
- Minoru Tada
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan.
| | - Michihiko Aoyama
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Akiko Ishii-Watabe
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| |
Collapse
|
45
|
Rafique A, Satake K, Kishimoto S, Hasan Khan K, Kato DI, Ito Y. Efficient Screening and Design of Variable Domain of Heavy Chain Antibody Ligands Through High Throughput Sequencing for Affinity Chromatography to Purify Fab Fragments. Monoclon Antib Immunodiagn Immunother 2019; 38:190-200. [DOI: 10.1089/mab.2019.0027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Abdur Rafique
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, University of Kagoshima, Kagoshima, Japan
| | - Kiriko Satake
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, University of Kagoshima, Kagoshima, Japan
| | - Satoshi Kishimoto
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, University of Kagoshima, Kagoshima, Japan
| | - Kamrul Hasan Khan
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, University of Kagoshima, Kagoshima, Japan
| | - Dai-ichiro Kato
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, University of Kagoshima, Kagoshima, Japan
| | - Yuji Ito
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, University of Kagoshima, Kagoshima, Japan
| |
Collapse
|
46
|
Liu C, Kobashigawa Y, Yamauchi S, Toyota Y, Teramoto M, Ikeguchi Y, Fukuda N, Sato T, Sato Y, Kimura H, Morioka H. Preparation of single-chain Fv antibodies in the cytoplasm of Escherichia coli by simplified and systematic chaperone optimization. J Biochem 2019; 166:455-462. [DOI: 10.1093/jb/mvz059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/13/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
A single-chain variable fragment (scFv) antibody is a recombinant protein in which a peptide linker connects the variable regions of the heavy chain and light chain. Due to its smaller molecular size, an scFv can be expressed using Escherichia coli. The presence of two disulphide bonds in the molecule often prevents expression of correctly folded scFv in the E. coli cytoplasm, making a refolding process necessary to regenerate scFv activity. The refolding process is time-consuming and requires large amounts of expensive reagents, such as guanidine hydrochloride, l-arginine and glutathione. Here, to conveniently obtain scFv proteins, we devised a simple and systematic method to optimize the co-expression of chaperone proteins and to combine them with specially engineered E. coli strains that permit the formation of stable disulphide bonds within the cytoplasm. Several scFv proteins were successfully obtained in a soluble form from E. coli cytoplasm. Thermal denaturation experiments and/or surface plasmon resonance measurements revealed that the thus-obtained scFvs possessed a stable tertiary structure and antigen-binding activity. The combined use of engineered E. coli with the simplified and systematic chaperone optimization can be useful for the production of scFv proteins.
Collapse
Affiliation(s)
- Chenjiang Liu
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yoshihiro Kobashigawa
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Soichiro Yamauchi
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuya Toyota
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Manaka Teramoto
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuka Ikeguchi
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Natsuki Fukuda
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takashi Sato
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuko Sato
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Hiroshi Kimura
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Hiroshi Morioka
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
47
|
Gene expression profile of human T cells following a single stimulation of peripheral blood mononuclear cells with anti-CD3 antibodies. BMC Genomics 2019; 20:593. [PMID: 31324145 PMCID: PMC6642599 DOI: 10.1186/s12864-019-5967-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/11/2019] [Indexed: 01/24/2023] Open
Abstract
Background Anti-CD3 immunotherapy was initially approved for clinical use for renal transplantation rejection prevention. Subsequently, new generations of anti-CD3 antibodies have entered clinical trials for a broader spectrum of therapeutic applications, including cancer and autoimmune diseases. Despite their extensive use, little is known about the exact mechanism of these molecules, except that they are able to activate T cells, inducing an overall immunoregulatory and tolerogenic behavior. To better understand the effects of anti-CD3 antibodies on human T cells, PBMCs were stimulated, and then, we performed RNA-seq assays of enriched T cells to assess changes in their gene expression profiles. In this study, three different anti-CD3 antibodies were used for the stimulation: two recombinant antibody fragments, namely, a humanized and a chimeric FvFc molecule, and the prototype mouse mAb OKT3. Results Gene Ontology categories and individual immunoregulatory markers were compared, suggesting a similarity in modulated gene sets, mainly those for immunoregulatory and inflammatory terms. Upregulation of interleukin receptors, such as IL2RA, IL1R, IL12RB2, IL18R1, IL21R and IL23R, and of inhibitory molecules, such as FOXP3, CTLA4, TNFRSF18, LAG3 and PDCD1, were also observed, suggesting an inhibitory and exhausted phenotype. Conclusions We used a deep transcriptome sequencing method for comparing three anti-CD3 antibodies in terms of Gene Ontology enrichment and immunological marker expression. The present data showed that both recombinant antibodies induced a compatible expression profile, suggesting that they might be candidates for a closer evaluation with respect to their therapeutic value. Moreover, the proposed methodology is amenable to be more generally applied for molecular comparison of cell receptor dependent antibody therapy. Electronic supplementary material The online version of this article (10.1186/s12864-019-5967-8) contains supplementary material, which is available to authorized users.
Collapse
|
48
|
Giorgetti J, Lechner A, Del Nero E, Beck A, François YN, Leize-Wagner E. Intact monoclonal antibodies separation and analysis by sheathless capillary electrophoresis-mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2019; 25:324-332. [PMID: 30351978 DOI: 10.1177/1469066718807798] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Capillary electrophoresis-mass spectrometry coupling is a growing technique in biopharmaceutics characterization. Assessment of monoclonal antibodies is well known at middle-up and bottom-up levels to obtain information about the sequence, post-translational modifications and degradation products. Intact protein analysis is an actual challenge to be closer to the real protein structure. At this level, actual techniques are time consuming or cumbersome processes. In this work, a 20 minutes separation method has been developed to optimize characterization of intact monoclonal antibodies. Thus, separation has been done on a positively charged coated capillary with optimized volatile background electrolyte and sample buffer. Three world-wide health authorities approved monoclonal antibodies have been used to set up a rapid and ease of use method. Intact trastuzumab, rituximab and palivizumab isoforms have been partially separated with this method in less than 20 minutes under denaturing conditions. For each monoclonal antibody, 2X-glycosylated and 1X-glycosylated structures have been identified and separated. Concerning basic and acidic variants, potential aspartic acid isomerization modification and asparagine deamidation have been observed. Accurate mass determination for high-mass molecular species remains a challenge, but the progress in intact monoclonal antibodies separation appears very promising for biopharmaceutics characterization.
Collapse
Affiliation(s)
- Jérémie Giorgetti
- 1 Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Antony Lechner
- 1 Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Elise Del Nero
- 1 Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Alain Beck
- 2 Centre d'immunologie Pierre Fabre, Saint-Julien-en-Genevois, France
| | - Yannis-Nicolas François
- 1 Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| | - Emmanuelle Leize-Wagner
- 1 Laboratoire de Spectrométrie de Masse des Interactions et des Systèmes (LSMIS) UMR 7140 (Unistra-CNRS), Université de Strasbourg, Strasbourg, France
| |
Collapse
|
49
|
Lim MS, So MK, Lim CS, Song DH, Kim JW, Woo J, Ko BJ. Validation of Rapi-Fluor method for glycan profiling and application to commercial antibody drugs. Talanta 2019; 198:105-110. [DOI: 10.1016/j.talanta.2019.01.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/18/2019] [Accepted: 01/24/2019] [Indexed: 01/09/2023]
|
50
|
Shembekar N, Hu H, Eustace D, Merten CA. Single-Cell Droplet Microfluidic Screening for Antibodies Specifically Binding to Target Cells. Cell Rep 2019; 22:2206-2215. [PMID: 29466744 PMCID: PMC5842027 DOI: 10.1016/j.celrep.2018.01.071] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 12/18/2017] [Accepted: 01/24/2018] [Indexed: 11/18/2022] Open
Abstract
Monoclonal antibodies are a main player in modern drug discovery. Many antibody screening formats exist, each with specific advantages and limitations. Nonetheless, it remains challenging to screen antibodies for the binding of cell-surface receptors (the most important class of all drug targets) or for the binding to target cells rather than purified proteins. Here, we present a high-throughput droplet microfluidics approach employing dual-color normalized fluorescence readout to detect antibody binding. This enables us to obtain quantitative data on target cell recognition, using as little as 33 fg of IgG per assay. Starting with an excess of hybridoma cells releasing unspecific antibodies, individual clones secreting specific binders (of target cells co-encapsulated into droplets) could be enriched 220-fold after sorting 80,000 clones in a single experiment. This opens the way for therapeutic antibody discovery, especially since the single-cell approach is in principle also applicable to primary human plasma cells. Binding assay with co-encapsulation of hybridoma and target cell in droplets Signal normalization allows quantitative detection of Ab binding without focusing Droplet sorting for antibody binding shows enrichment of specific hybridoma cells 33 fg of antibody can be detected and up to 80,000 clones can be screened
Collapse
Affiliation(s)
- Nachiket Shembekar
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg, Germany
| | - Hongxing Hu
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg, Germany
| | - David Eustace
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg, Germany
| | - Christoph A Merten
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, Meyerhofstrasse 1, Heidelberg, Germany.
| |
Collapse
|