1
|
Lestari TD, Khairullah AR, Utama S, Mulyati S, Hernawati T, Damayanti R, Rimayanti R, Wardhani BWK, Fauzia KA, Moses IB, Ahmad RZ, Wibowo S, Fauziah I, Kurniasih DAA, Baihaqi ZA, Wasito W, Kusala MKJ, Lisnanti1 EF. Bovine spongiform encephalopathy: A review of current knowledge and challenges. Open Vet J 2025; 15:54-68. [PMID: 40092198 PMCID: PMC11910271 DOI: 10.5455/ovj.2024.v15.i1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/31/2024] [Indexed: 03/19/2025] Open
Abstract
Bovine spongiform encephalopathy (BSE), also referred to as mad cow disease, is a chronic degenerative disease that affects the central nervous system. BSE is caused by a misfolded isoform of the prion protein, a widely expressed glycoprotein. The illness is referred to as Variant Creutzfeldt-Jakob disease (vCJD) in humans. In the United Kingdom (UK), BSE in cattle was first discovered in 1986. Based on epidemiological data, it appears that animal feed containing tainted meat and bone meal (MBM) as a source of meat protein is the common cause of the BSE outbreak in the UK. Clinical indicators in cows include irregular body posture, incoordination, difficulty in standing, weight loss, and temperamental changes, including agitation and hostility. Feeding livestock MBM obtained from BSE-infected livestock contaminated with BSE prions is the only known risk factor for BSE development. Strong evidence linking BSE to human transmission and a variant type of CJD has brought the disease to the attention of many countries. Screening living animals for BSE is challenging. In most cases, suspected animals are usually killed. Typically, the central nervous system is examined for prions to diagnose this illness. There is currently no robust treatment for BSE. The prevention of BSE can be achieved by avoiding the feeding of susceptible animals with ruminant tissues that might carry prions.
Collapse
Affiliation(s)
- Tita Damayanti Lestari
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Suzanita Utama
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sri Mulyati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Tatik Hernawati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ratna Damayanti
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Rimayanti Rimayanti
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Bantari Wisynu Kusuma Wardhani
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Riza Zainuddin Ahmad
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Syahputra Wibowo
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Ima Fauziah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Dea Anita Ariani Kurniasih
- Research Center for Public Health and Nutrition, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Zein Ahmad Baihaqi
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Wasito Wasito
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | | | - Ertika Fitri Lisnanti1
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
2
|
Lestari TD, Khairullah AR, Utama S, Mulyati S, Hernawati T, Damayanti R, Rimayanti R, Wardhani BWK, Fauzia KA, Moses IB, Ahmad RZ, Wibowo S, Fauziah I, Kurniasih DAA, Baihaqi ZA, Wasito W, Kusala MKJ, Lisnanti1 EF. Bovine spongiform encephalopathy: A review of current knowledge and challenges. Open Vet J 2025; 15:54-68. [PMID: 40092198 PMCID: PMC11910271 DOI: 10.5455/ovj.2025.v15.i1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/31/2024] [Indexed: 04/11/2025] Open
Abstract
Bovine spongiform encephalopathy (BSE), also referred to as mad cow disease, is a chronic degenerative disease that affects the central nervous system. BSE is caused by a misfolded isoform of the prion protein, a widely expressed glycoprotein. The illness is referred to as Variant Creutzfeldt-Jakob disease (vCJD) in humans. In the United Kingdom (UK), BSE in cattle was first discovered in 1986. Based on epidemiological data, it appears that animal feed containing tainted meat and bone meal (MBM) as a source of meat protein is the common cause of the BSE outbreak in the UK. Clinical indicators in cows include irregular body posture, incoordination, difficulty in standing, weight loss, and temperamental changes, including agitation and hostility. Feeding livestock MBM obtained from BSE-infected livestock contaminated with BSE prions is the only known risk factor for BSE development. Strong evidence linking BSE to human transmission and a variant type of CJD has brought the disease to the attention of many countries. Screening living animals for BSE is challenging. In most cases, suspected animals are usually killed. Typically, the central nervous system is examined for prions to diagnose this illness. There is currently no robust treatment for BSE. The prevention of BSE can be achieved by avoiding the feeding of susceptible animals with ruminant tissues that might carry prions.
Collapse
Affiliation(s)
- Tita Damayanti Lestari
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Suzanita Utama
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sri Mulyati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Tatik Hernawati
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Ratna Damayanti
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Rimayanti Rimayanti
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Bantari Wisynu Kusuma Wardhani
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Kartika Afrida Fauzia
- Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency (BRIN), Bogor, Indonesia
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Oita University, Yufu, Japan
| | - Ikechukwu Benjamin Moses
- Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki, Nigeria
| | - Riza Zainuddin Ahmad
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Syahputra Wibowo
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Ima Fauziah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Dea Anita Ariani Kurniasih
- Research Center for Public Health and Nutrition, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Zein Ahmad Baihaqi
- Research Center for Animal Husbandry, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Wasito Wasito
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | | | - Ertika Fitri Lisnanti1
- Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
3
|
Nguyen DLB, Okolicsanyi RK, Haupt LM. Heparan sulfate proteoglycans: Mediators of cellular and molecular Alzheimer's disease pathogenic factors via tunnelling nanotubes? Mol Cell Neurosci 2024; 129:103936. [PMID: 38750678 DOI: 10.1016/j.mcn.2024.103936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/14/2024] [Accepted: 05/01/2024] [Indexed: 05/19/2024] Open
Abstract
Neurological disorders impact around one billion individuals globally (15 % approx.), with significant implications for disability and mortality with their impact in Australia currently amounts to 6.8 million deaths annually. Heparan sulfate proteoglycans (HSPGs) are complex extracellular molecules implicated in promoting Tau fibril formation resulting in Tau tangles, a hallmark of Alzheimer's disease (AD). HSPG-Tau protein interactions contribute to various AD stages via aggregation, toxicity, and clearance, largely via interactions with the glypican 1 and syndecan 3 core proteins. The tunnelling nanotubes (TNTs) pathway is emerging as a facilitator of intercellular molecule transport, including Tau and Amyloid β proteins, across extensive distances. While current TNT-associated evidence primarily stems from cancer models, their role in Tau propagation and its effects on recipient cells remain unclear. This review explores the interplay of TNTs, HSPGs, and AD-related factors and proposes that HSPGs influence TNT formation in neurodegenerative conditions such as AD.
Collapse
Affiliation(s)
- Duy L B Nguyen
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia
| | - Rachel K Okolicsanyi
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Australia
| | - Larisa M Haupt
- Stem Cell and Neurogenesis Group, Genomics Research Centre, Centre for Genomics and Personalised Health, School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, Queensland 4059, Australia; Centre for Biomedical Technologies, Queensland University of Technology (QUT), 60 Musk Ave., Kelvin Grove, QLD 4059, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Australia; Max Planck Queensland Centre for the Materials Sciences of Extracellular Matrices, Queensland University of Technology (QUT), Australia.
| |
Collapse
|
4
|
Szabó-Meleg E. Intercellular Highways in Transport Processes. Results Probl Cell Differ 2024; 73:173-201. [PMID: 39242380 DOI: 10.1007/978-3-031-62036-2_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Communication among cells is vital in multicellular organisms. Various structures and mechanisms have evolved over time to achieve the intricate flow of material and information during this process. One such way of communication is through tunnelling membrane nanotubes (TNTs), which were initially described in 2004. These TNTs are membrane-bounded actin-rich cellular extensions, facilitating direct communication between distant cells. They exhibit remarkable diversity in terms of structure, morphology, and function, in which cytoskeletal proteins play an essential role. Biologically, TNTs play a crucial role in transporting membrane components, cell organelles, and nucleic acids, and they also present opportunities for the efficient transmission of bacteria and viruses, furthermore, may contribute to the dissemination of misfolded proteins in certain neurodegenerative diseases. Convincing results of studies conducted both in vitro and in vivo indicate that TNTs play roles in various biomedical processes, including cell differentiation, tissue regeneration, neurodegenerative diseases, immune response and function, as well as tumorigenesis.
Collapse
Affiliation(s)
- Edina Szabó-Meleg
- Department of Biophysics, Medical School, University of Pécs, Pécs, Hungary.
| |
Collapse
|
5
|
Kapoor D, Sharma P, Saini A, Azhar E, Elste J, Kohlmeir EK, Shukla D, Tiwari V. Tunneling Nanotubes: The Cables for Viral Spread and Beyond. Results Probl Cell Differ 2024; 73:375-417. [PMID: 39242387 DOI: 10.1007/978-3-031-62036-2_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Multicellular organisms require cell-to-cell communication to maintain homeostasis and thrive. For cells to communicate, a network of filamentous, actin-rich tunneling nanotubes (TNTs) plays a pivotal role in facilitating efficient cell-to-cell communication by connecting the cytoplasm of adjacent or distant cells. Substantial documentation indicates that diverse cell types employ TNTs in a sophisticated and intricately organized fashion for both long and short-distance communication. Paradoxically, several pathogens, including viruses, exploit the structural integrity of TNTs to facilitate viral entry and rapid cell-to-cell spread. These pathogens utilize a "surfing" mechanism or intracellular transport along TNTs to bypass high-traffic cellular regions and evade immune surveillance and neutralization. Although TNTs are present across various cell types in healthy tissue, their magnitude is increased in the presence of viruses. This heightened induction significantly amplifies the role of TNTs in exacerbating disease manifestations, severity, and subsequent complications. Despite significant advancements in TNT research within the realm of infectious diseases, further studies are imperative to gain a precise understanding of TNTs' roles in diverse pathological conditions. Such investigations are essential for the development of novel therapeutic strategies aimed at leveraging TNT-associated mechanisms for clinical applications. In this chapter, we emphasize the significance of TNTs in the life cycle of viruses, showcasing the potential for a targeted approach to impede virus-host cell interactions during the initial stages of viral infections. This approach holds promise for intervention and prevention strategies.
Collapse
Affiliation(s)
- Divya Kapoor
- Department of Microbiology and Immunology, Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, USA
| | - Pankaj Sharma
- Department of Microbiology and Immunology, Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, USA
| | - Akash Saini
- Hinsdale Central High School, Hinsdale, IL, USA
| | - Eisa Azhar
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - James Elste
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | | | - Deepak Shukla
- Department of Microbiology and Immunology, Department of Ophthalmology and Visual Sciences, University of Illinois, Chicago, IL, USA
| | - Vaibhav Tiwari
- Department of Microbiology and Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA.
| |
Collapse
|
6
|
Sáenz-de-Santa-María I, Henderson JM, Pepe A, Zurzolo C. Identification and Characterization of Tunneling Nanotubes for Intercellular Trafficking. Curr Protoc 2023; 3:e939. [PMID: 37994667 DOI: 10.1002/cpz1.939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Tunneling nanotubes (TNTs) are thin membranous channels providing a direct cytoplasmic connection between remote cells. They are commonly observed in different cell cultures and increasing evidence supports their role in intercellular communication, and pathogen and amyloid protein transfer. However, the study of TNTs presents several pitfalls (e.g., difficulty in preserving such delicate structures, possible confusion with other protrusions, structural and functional heterogeneity, etc.) and therefore requires thoroughly designed approaches. The methods described in this protocol represent a guideline for the characterization of TNTs (or TNT-like structures) in cell culture. Specifically, optimized protocols to (1) identify TNTs and the cytoskeletal elements present inside them; (2) evaluate TNT frequency in cell culture; (3) unambiguously distinguish them from other cellular connections or protrusions; (4) monitor their formation in living cells; (5) characterize TNTs by a micropatterning approach; and (6) investigate TNT ultrastructure by cryo-EM are provided. Finally, this article describes how to assess TNT-mediated cell-to-cell transfer of cellular components, which is a fundamental criterion for identifying functional TNTs. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Identification of tunneling nanotubes Alternate Protocol 1: Identifying the cytoskeletal elements present in tunneling nanotubes Alternate Protocol 2: Distinguishing tunneling nanotubes from intercellular bridges formed during cell division Basic Protocol 2: Deciphering tunneling nanotube formation and lifetime by live fluorescent microscopy Alternate Protocol 3: Deciphering tunneling nanotube formation using a live-compatible dye Basic Protocol 3: Assessing tunneling nanotubes functionality in intercellular transfer Alternate Protocol 4: Flow cytometry approach to quantify the rate of vesicle or mitochondria transfer Support Protocol: Controls to support TNT-mediated transfer Basic Protocol 4: Studies of tunneling nanotubes by cell micropatterning Basic Protocol 5: Characterization of the ultrastructure of tunneling nanotubes by cryo-EM.
Collapse
Affiliation(s)
- Inés Sáenz-de-Santa-María
- Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, CNRS UMR3691, Paris, France
| | - J Michael Henderson
- Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, CNRS UMR3691, Paris, France
| | - Anna Pepe
- Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, CNRS UMR3691, Paris, France
| | - Chiara Zurzolo
- Unité de Trafic Membranaire et Pathogénèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, CNRS UMR3691, Paris, France
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
7
|
Wegner L, Porth ML, Ehlers K. Multicellularity and the Need for Communication-A Systematic Overview on (Algal) Plasmodesmata and Other Types of Symplasmic Cell Connections. PLANTS (BASEL, SWITZERLAND) 2023; 12:3342. [PMID: 37765506 PMCID: PMC10536634 DOI: 10.3390/plants12183342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
In the evolution of eukaryotes, the transition from unicellular to simple multicellular organisms has happened multiple times. For the development of complex multicellularity, characterized by sophisticated body plans and division of labor between specialized cells, symplasmic intercellular communication is supposed to be indispensable. We review the diversity of symplasmic connectivity among the eukaryotes and distinguish between distinct types of non-plasmodesmatal connections, plasmodesmata-like structures, and 'canonical' plasmodesmata on the basis of developmental, structural, and functional criteria. Focusing on the occurrence of plasmodesmata (-like) structures in extant taxa of fungi, brown algae (Phaeophyceae), green algae (Chlorophyta), and streptophyte algae, we present a detailed critical update on the available literature which is adapted to the present classification of these taxa and may serve as a tool for future work. From the data, we conclude that, actually, development of complex multicellularity correlates with symplasmic connectivity in many algal taxa, but there might be alternative routes. Furthermore, we deduce a four-step process towards the evolution of canonical plasmodesmata and demonstrate similarity of plasmodesmata in streptophyte algae and land plants with respect to the occurrence of an ER component. Finally, we discuss the urgent need for functional investigations and molecular work on cell connections in algal organisms.
Collapse
Affiliation(s)
- Linus Wegner
- Institute of Botany, Justus-Liebig University, D-35392 Giessen, Germany;
| | | | - Katrin Ehlers
- Institute of Botany, Justus-Liebig University, D-35392 Giessen, Germany;
| |
Collapse
|
8
|
Padmanabhan S, Manjithaya R. Leaderless secretory proteins of the neurodegenerative diseases via TNTs: a structure-function perspective. Front Mol Neurosci 2023; 16:983108. [PMID: 37396786 PMCID: PMC10308029 DOI: 10.3389/fnmol.2023.983108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 05/26/2023] [Indexed: 07/04/2023] Open
Abstract
Neurodegenerative disease-causing proteins such as alpha-synuclein, tau, and huntingtin are known to traverse across cells via exosomes, extracellular vesicles and tunneling nanotubes (TNTs). There seems to be good synergy between exosomes and TNTs in intercellular communication. Interestingly, many of the known major neurodegenerative proteins/proteolytic products are leaderless and are also reported to be secreted out of the cell via unconventional protein secretion. Such classes contain intrinsically disordered proteins and regions (IDRs) within them. The dynamic behavior of these proteins is due to their heterogenic conformations that is exhibited owing to various factors that occur inside the cells. The amino acid sequence along with the chemical modifications has implications on the functional roles of IDRs inside the cells. Proteins that form aggregates resulting in neurodegeneration become resistant to degradation by the processes of autophagy and proteasome system thus leading to Tunneling nanotubes, TNT formation. The proteins that traverse across TNTs may or may not be dependent on the autophagy machinery. It is not yet clear whether the conformation of the protein plays a crucial role in its transport from one cell to another without getting degraded. Although there is some experimental data, there are many grey areas which need to be revisited. This review provides a different perspective on the structural and functional aspects of these leaderless proteins that get secreted outside the cell. In this review, attention has been focused on the characteristic features that lead to aggregation of leaderless secretory proteins (from structural-functional aspect) with special emphasis on TNTs.
Collapse
|
9
|
Cordero Cervantes D, Khare H, Wilson AM, Mendoza ND, Coulon-Mahdi O, Lichtman JW, Zurzolo C. 3D reconstruction of the cerebellar germinal layer reveals tunneling connections between developing granule cells. SCIENCE ADVANCES 2023; 9:eadf3471. [PMID: 37018410 PMCID: PMC10075961 DOI: 10.1126/sciadv.adf3471] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
The difficulty of retrieving high-resolution, in vivo evidence of the proliferative and migratory processes occurring in neural germinal zones has limited our understanding of neurodevelopmental mechanisms. Here, we used a connectomic approach using a high-resolution, serial-sectioning scanning electron microscopy volume to investigate the laminar cytoarchitecture of the transient external granular layer (EGL) of the developing cerebellum, where granule cells coordinate a series of mitotic and migratory events. By integrating image segmentation, three-dimensional reconstruction, and deep-learning approaches, we found and characterized anatomically complex intercellular connections bridging pairs of cerebellar granule cells throughout the EGL. Connected cells were either mitotic, migratory, or transitioning between these two cell stages, displaying a chronological continuum of proliferative and migratory events never previously observed in vivo at this resolution. This unprecedented ultrastructural characterization poses intriguing hypotheses about intercellular connectivity between developing progenitors and its possible role in the development of the central nervous system.
Collapse
Affiliation(s)
- Diégo Cordero Cervantes
- Membrane Traffic and Pathogenesis, Institut Pasteur, Université Paris Cité, CNRS UMR 3691, F-75015 Paris, France
- Université Paris-Saclay, 91405 Orsay, France
| | - Harshavardhan Khare
- Membrane Traffic and Pathogenesis, Institut Pasteur, Université Paris Cité, CNRS UMR 3691, F-75015 Paris, France
| | - Alyssa Michelle Wilson
- Department of Neurology, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nathaly Dongo Mendoza
- Membrane Traffic and Pathogenesis, Institut Pasteur, Université Paris Cité, CNRS UMR 3691, F-75015 Paris, France
- Research Center in Bioengineering, Universidad de Ingeniería y Tecnología-UTEC, Lima 15049, Peru
| | - Orfane Coulon-Mahdi
- Membrane Traffic and Pathogenesis, Institut Pasteur, Université Paris Cité, CNRS UMR 3691, F-75015 Paris, France
| | - Jeff William Lichtman
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Chiara Zurzolo
- Membrane Traffic and Pathogenesis, Institut Pasteur, Université Paris Cité, CNRS UMR 3691, F-75015 Paris, France
| |
Collapse
|
10
|
Polyakova N, Kalashnikova M, Belyavsky A. Non-Classical Intercellular Communications: Basic Mechanisms and Roles in Biology and Medicine. Int J Mol Sci 2023; 24:ijms24076455. [PMID: 37047428 PMCID: PMC10095225 DOI: 10.3390/ijms24076455] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
In multicellular organisms, interactions between cells and intercellular communications form the very basis of the organism’s survival, the functioning of its systems, the maintenance of homeostasis and adequate response to the environment. The accumulated experimental data point to the particular importance of intercellular communications in determining the fate of cells, as well as their differentiation and plasticity. For a long time, it was believed that the properties and behavior of cells were primarily governed by the interactions of secreted or membrane-bound ligands with corresponding receptors, as well as direct intercellular adhesion contacts. In this review, we describe various types of other, non-classical intercellular interactions and communications that have recently come into the limelight—in particular, the broad repertoire of extracellular vesicles and membrane protrusions. These communications are mediated by large macromolecular structural and functional ensembles, and we explore here the mechanisms underlying their formation and present current data that reveal their roles in multiple biological processes. The effects mediated by these new types of intercellular communications in normal and pathological states, as well as therapeutic applications, are also discussed. The in-depth study of novel intercellular interaction mechanisms is required for the establishment of effective approaches for the control and modification of cell properties both for basic research and the development of radically new therapeutic strategies.
Collapse
Affiliation(s)
- Natalia Polyakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
| | - Maria Kalashnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, 117485 Moscow, Russia
| | - Alexander Belyavsky
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Vavilova 32, 119991 Moscow, Russia
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova 5A, 117485 Moscow, Russia
- Correspondence:
| |
Collapse
|
11
|
Dong LF, Rohlena J, Zobalova R, Nahacka Z, Rodriguez AM, Berridge MV, Neuzil J. Mitochondria on the move: Horizontal mitochondrial transfer in disease and health. J Cell Biol 2023; 222:213873. [PMID: 36795453 PMCID: PMC9960264 DOI: 10.1083/jcb.202211044] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
Mammalian genes were long thought to be constrained within somatic cells in most cell types. This concept was challenged recently when cellular organelles including mitochondria were shown to move between mammalian cells in culture via cytoplasmic bridges. Recent research in animals indicates transfer of mitochondria in cancer and during lung injury in vivo, with considerable functional consequences. Since these pioneering discoveries, many studies have confirmed horizontal mitochondrial transfer (HMT) in vivo, and its functional characteristics and consequences have been described. Additional support for this phenomenon has come from phylogenetic studies. Apparently, mitochondrial trafficking between cells occurs more frequently than previously thought and contributes to diverse processes including bioenergetic crosstalk and homeostasis, disease treatment and recovery, and development of resistance to cancer therapy. Here we highlight current knowledge of HMT between cells, focusing primarily on in vivo systems, and contend that this process is not only (patho)physiologically relevant, but also can be exploited for the design of novel therapeutic approaches.
Collapse
Affiliation(s)
- Lan-Feng Dong
- https://ror.org/02sc3r913School of Pharmacy and Medical Sciences, Griffith University, Southport, Australia,Lan-Feng Dong:
| | - Jakub Rohlena
- https://ror.org/00wzqmx94Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague-West, Czech Republic
| | - Renata Zobalova
- https://ror.org/00wzqmx94Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague-West, Czech Republic
| | - Zuzana Nahacka
- https://ror.org/00wzqmx94Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague-West, Czech Republic
| | | | | | - Jiri Neuzil
- https://ror.org/02sc3r913School of Pharmacy and Medical Sciences, Griffith University, Southport, Australia,https://ror.org/00wzqmx94Institute of Biotechnology, Academy of Sciences of the Czech Republic, Prague-West, Czech Republic,Faculty of Science, Charles University, Prague, Czech Republic,First Faculty of Medicine, Charles University, Prague, Czech Republic,Correspondence to Jiri Neuzil: ,
| |
Collapse
|
12
|
Valappil DK, Mini NJ, Dilna A, Nath S. Membrane interaction to intercellular spread of pathology in Alzheimer’s disease. Front Neurosci 2022; 16:936897. [PMID: 36161178 PMCID: PMC9500529 DOI: 10.3389/fnins.2022.936897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022] Open
Abstract
Progressive development of pathology is one of the major characteristic features of neurodegenerative diseases. Alzheimer’s disease (AD) is the most prevalent among them. Extracellular amyloid-β (Aβ) plaques and intracellular tau neurofibrillary tangles are the pathological phenotypes of AD. However, cellular and animal studies implicate tau as a secondary pathology in developing AD while Aβ aggregates is considered as a trigger point. Interaction of Aβ peptides with plasma membrane (PM) seems to be a promising site of involvement in the events that lead to AD. Aβ binding to the lipid membranes initiates formation of oligomers of Aβ species, and these oligomers are known as primary toxic agents for neuronal toxicities. Once initiated, neuropathological toxicities spread in a “prion-like” fashion probably through the mechanism of intercellular transfer of pathogenic aggregates. In the last two decades, several studies have demonstrated neuron-to-neuron transfer of neurodegenerative proteins including Aβ and tau via exosomes and tunneling nanotubes (TNTs), the two modes of long-range intercellular transfer. Emerging pieces of evidence indicate that molecular pathways related to the biogenesis of exosomes and TNTs interface with endo-lysosomal pathways and cellular signaling in connection to vesicle recycling-imposed PM and actin remodulation. In this review, we discuss interactions of Aβ aggregates at the membrane level and its implications in intercellular spread of pathogenic aggregates. Furthermore, we hypothesize how spread of pathogenic aggregates contributes to complex molecular events that could regulate pathological and synaptic changes related to AD.
Collapse
Affiliation(s)
| | | | | | - Sangeeta Nath
- *Correspondence: Sangeeta Nath, ; orcid.org/0000-0003-0050-0606
| |
Collapse
|
13
|
Rubio-Casillas A, Redwan EM, Uversky VN. SARS-CoV-2: A Master of Immune Evasion. Biomedicines 2022; 10:1339. [PMID: 35740361 PMCID: PMC9220273 DOI: 10.3390/biomedicines10061339] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 02/07/2023] Open
Abstract
Viruses and their hosts have coevolved for a long time. This coevolution places both the pathogen and the human immune system under selective pressure; on the one hand, the immune system has evolved to combat viruses and virally infected cells, while viruses have developed sophisticated mechanisms to escape recognition and destruction by the immune system. SARS-CoV-2, the pathogen that is causing the current COVID-19 pandemic, has shown a remarkable ability to escape antibody neutralization, putting vaccine efficacy at risk. One of the virus's immune evasion strategies is mitochondrial sabotage: by causing reactive oxygen species (ROS) production, mitochondrial physiology is impaired, and the interferon antiviral response is suppressed. Seminal studies have identified an intra-cytoplasmatic pathway for viral infection, which occurs through the construction of tunneling nanotubes (TNTs), hence enhancing infection and avoiding immune surveillance. Another method of evading immune monitoring is the disruption of the antigen presentation. In this scenario, SARS-CoV-2 infection reduces MHC-I molecule expression: SARS-CoV-2's open reading frames (ORF 6 and ORF 8) produce viral proteins that specifically downregulate MHC-I molecules. All of these strategies are also exploited by other viruses to elude immune detection and should be studied in depth to improve the effectiveness of future antiviral treatments. Compared to the Wuhan strain or the Delta variant, Omicron has developed mutations that have impaired its ability to generate syncytia, thus reducing its pathogenicity. Conversely, other mutations have allowed it to escape antibody neutralization and preventing cellular immune recognition, making it the most contagious and evasive variant to date.
Collapse
Affiliation(s)
- Alberto Rubio-Casillas
- Biology Laboratory, Autlán Regional Preparatory School, University of Guadalajara, Autlán 48900, Jalisco, Mexico
| | - Elrashdy M. Redwan
- Biological Science Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, Alexandria 21934, Egypt
| | - Vladimir N. Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
14
|
Rodrigues PV, de Godoy JVP, Bosque BP, Amorim Neto DP, Tostes K, Palameta S, Garcia-Rosa S, Tonoli CCC, de Carvalho HF, de Castro Fonseca M. Transcellular propagation of fibrillar α-synuclein from enteroendocrine to neuronal cells requires cell-to-cell contact and is Rab35-dependent. Sci Rep 2022; 12:4168. [PMID: 35264710 PMCID: PMC8907230 DOI: 10.1038/s41598-022-08076-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/02/2022] [Indexed: 01/15/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative condition featured by motor dysfunction, death of midbrain dopaminergic neurons and accumulation of α-synuclein (αSyn) aggregates. Growing evidence suggests that PD diagnosis happens late in the disease progression and that the pathology may originate much earlier in the enteric nervous system (ENS) before advancing to the brain, via autonomic fibers. It was recently described that a specific cell type from the gut epithelium named enteroendocrine cells (EECs) possess many neuron-like properties including αSyn expression. By facing the gut lumen and being directly connected with αSyn-containing enteric neurons in a synaptic manner, EECs form a neural circuit between the gastrointestinal tract and the ENS, thereby being a possible key player in the outcome of PD in the gut. We have characterized the progression and the cellular mechanisms involved in αSyn pre-formed fibrils (PFFs) transfer from EECs to neuronal cells. We show that brain organoids efficiently internalize αSyn PFF seeds which triggers the formation of larger intracellular inclusions. In addition, in the enteroendocrine cell line STC-1 and in the neuronal cell line SH-SY5Y, αSyn PFFs induced intracellular calcium (Ca2+) oscillations on an extracellular Ca2+ source-dependent manner and triggered αSyn fibrils internalization by endocytosis. We characterized the spread of αSyn PFFs from enteroendocrine to neuronal cells and showed that this process is dependent on physical cell-to-cell contact and on Rab35 GTPase. Lastly, inhibition of Rab35 increases the clearance of αSyn fibrils by redirecting them to the lysosomal compartment. Therefore, our results reveal mechanisms that contribute to the understanding of how seeded αSyn fibrils promote the progression of αSyn pathology from EECs to neuronal cells shifting the focus of PD etiology to the ENS.
Collapse
Affiliation(s)
- Paulla Vieira Rodrigues
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo, 13083-100, Brazil.,Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - João Vitor Pereira de Godoy
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo, 13083-100, Brazil.,Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Beatriz Pelegrini Bosque
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo, 13083-100, Brazil.,Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Dionísio Pedro Amorim Neto
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo, 13083-100, Brazil.,Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil
| | - Katiane Tostes
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo, 13083-100, Brazil
| | - Soledad Palameta
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo, 13083-100, Brazil
| | - Sheila Garcia-Rosa
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo, 13083-100, Brazil
| | - Celisa Caldana Costa Tonoli
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo, 13083-100, Brazil
| | | | - Matheus de Castro Fonseca
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), 10000 Giuseppe Maximo Scolfaro St., Campinas, São Paulo, 13083-100, Brazil. .,Department of Structural and Functional Biology, State University of Campinas, Campinas, São Paulo, Brazil. .,Laboratory of Sarkis Mazmanian, Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA, USA.
| |
Collapse
|
15
|
Merolli A, Kasaei L, Ramasamy S, Kolloli A, Kumar R, Subbian S, Feldman LC. An intra-cytoplasmic route for SARS-CoV-2 transmission unveiled by Helium-ion microscopy. Sci Rep 2022; 12:3794. [PMID: 35260703 PMCID: PMC8904465 DOI: 10.1038/s41598-022-07867-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/23/2022] [Indexed: 12/11/2022] Open
Abstract
SARS-CoV-2 virions enter the host cells by docking their spike glycoproteins to the membrane-bound Angiotensin Converting Enzyme 2. After intracellular assembly, the newly formed virions are released from the infected cells to propagate the infection, using the extra-cytoplasmic ACE2 docking mechanism. However, the molecular events underpinning SARS-CoV-2 transmission between host cells are not fully understood. Here, we report the findings of a scanning Helium-ion microscopy study performed on Vero E6 cells infected with mNeonGreen-expressing SARS-CoV-2. Our data reveal, with unprecedented resolution, the presence of: (1) long tunneling nanotubes that connect two or more host cells over submillimeter distances; (2) large scale multiple cell fusion events (syncytia); and (3) abundant extracellular vesicles of various sizes. Taken together, these ultrastructural features describe a novel intra-cytoplasmic connection among SARS-CoV-2 infected cells that may act as an alternative route of viral transmission, disengaged from the well-known extra-cytoplasmic ACE2 docking mechanism. Such route may explain the elusiveness of SARS-CoV-2 to survive from the immune surveillance of the infected host.
Collapse
Affiliation(s)
- Antonio Merolli
- Department of Physics and Astronomy, School of Arts and Sciences, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ, 08854, USA. .,Department Physics and Astronomy, Rutgers University, DLS Building, 145 Bevier Road, Room 108, Piscataway, NJ, 08854, USA.
| | - Leila Kasaei
- Department of Physics and Astronomy, School of Arts and Sciences, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Santhamani Ramasamy
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Afsal Kolloli
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Ranjeet Kumar
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Selvakumar Subbian
- Public Health Research Institute (PHRI), New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Leonard C Feldman
- Department of Physics and Astronomy, School of Arts and Sciences, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| |
Collapse
|
16
|
Specialized Intercellular Communications via Tunnelling Nanotubes in Acute and Chronic Leukemia. Cancers (Basel) 2022; 14:cancers14030659. [PMID: 35158927 PMCID: PMC8833474 DOI: 10.3390/cancers14030659] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/20/2022] [Accepted: 01/27/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Tunneling nanotubes (TNTs) are cytoplasmic channels which regulate the contacts between cells and allow the transfer of several elements, including ions, mitochondria, microvesicles, exosomes, lysosomes, proteins, and microRNAs. Through this transport, TNTs are implicated in different physiological and pathological phenomena, such as immune response, cell proliferation and differentiation, embryogenesis, programmed cell death, and angiogenesis. TNTs can promote cancer progression, transferring substances capable of altering apoptotic dynamics, modifying the metabolism and energy balance, inducing changes in immunosurveillance, or affecting the response to chemotherapy. In this review, we evaluated their influence on hematologic malignancies’ progression and resistance to therapies, focusing on acute and chronic myeloid and acute lymphoid leukemia. Abstract Effectual cell-to-cell communication is essential to the development and differentiation of organisms, the preservation of tissue tasks, and the synchronization of their different physiological actions, but also to the proliferation and metastasis of tumor cells. Tunneling nanotubes (TNTs) are membrane-enclosed tubular connections between cells that carry a multiplicity of cellular loads, such as exosomes, non-coding RNAs, mitochondria, and proteins, and they have been identified as the main participants in healthy and tumoral cell communication. TNTs have been described in numerous tumors in in vitro, ex vivo, and in vivo models favoring the onset and progression of tumors. Tumor cells utilize TNT-like membranous channels to transfer information between themselves or with the tumoral milieu. As a result, tumor cells attain novel capabilities, such as the increased capacity of metastasis, metabolic plasticity, angiogenic aptitude, and chemoresistance, promoting tumor severity. Here, we review the morphological and operational characteristics of TNTs and their influence on hematologic malignancies’ progression and resistance to therapies, focusing on acute and chronic myeloid and acute lymphoid leukemia. Finally, we examine the prospects and challenges for TNTs as a therapeutic approach for hematologic diseases by examining the development of efficient and safe drugs targeting TNTs.
Collapse
|
17
|
Nasoni MG, Carloni S, Canonico B, Burattini S, Cesarini E, Papa S, Pagliarini M, Ambrogini P, Balduini W, Luchetti F. Melatonin reshapes the mitochondrial network and promotes intercellular mitochondrial transfer via tunneling nanotubes after ischemic-like injury in hippocampal HT22 cells. J Pineal Res 2021; 71:e12747. [PMID: 34085316 PMCID: PMC8365755 DOI: 10.1111/jpi.12747] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/21/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022]
Abstract
Mitochondrial dysfunction is considered one of the hallmarks of ischemia/reperfusion injury. Mitochondria are plastic organelles that undergo continuous biogenesis, fusion, and fission. They can be transferred between cells through tunneling nanotubes (TNTs), dynamic structures that allow the exchange of proteins, soluble molecules, and organelles. Maintaining mitochondrial dynamics is crucial to cell function and survival. The present study aimed to assess the effects of melatonin on mitochondrial dynamics, TNT formation, and mitochondria transfer in HT22 cells exposed to oxygen/glucose deprivation followed by reoxygenation (OGD/R). The results showed that melatonin treatment during the reoxygenation phase reduced mitochondrial reactive oxygen species (ROS) production, improved cell viability, and increased the expression of PGC1α and SIRT3. Melatonin also preserved the expression of the membrane translocase proteins TOM20 and TIM23, and of the matrix protein HSP60, which are involved in mitochondrial biogenesis. Moreover, it promoted mitochondrial fusion and enhanced the expression of MFN2 and OPA1. Remarkably, melatonin also fostered mitochondrial transfer between injured HT22 cells through TNT connections. These results provide new insights into the effect of melatonin on mitochondrial network reshaping and cell survival. Fostering TNTs formation represents a novel mechanism mediating the protective effect of melatonin in ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Maria Gemma Nasoni
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Silvia Carloni
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Barbara Canonico
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Sabrina Burattini
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Erica Cesarini
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Stefano Papa
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Marica Pagliarini
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Patrizia Ambrogini
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Walter Balduini
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| | - Francesca Luchetti
- Department of Biomolecular SciencesUniversity of Urbino Carlo BoUrbinoItaly
| |
Collapse
|
18
|
Valdebenito S, Malik S, Luu R, Loudig O, Mitchell M, Okafo G, Bhat K, Prideaux B, Eugenin EA. Tunneling nanotubes, TNT, communicate glioblastoma with surrounding non-tumor astrocytes to adapt them to hypoxic and metabolic tumor conditions. Sci Rep 2021; 11:14556. [PMID: 34267246 PMCID: PMC8282675 DOI: 10.1038/s41598-021-93775-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
Cell-to-cell communication is essential for the development and proper function of multicellular systems. We and others demonstrated that tunneling nanotubes (TNT) proliferate in several pathological conditions such as HIV, cancer, and neurodegenerative diseases. However, the nature, function, and contribution of TNT to cancer pathogenesis are poorly understood. Our analyses demonstrate that TNT structures are induced between glioblastoma (GBM) cells and surrounding non-tumor astrocytes to transfer tumor-derived mitochondria. The mitochondrial transfer mediated by TNT resulted in the adaptation of non-tumor astrocytes to tumor-like metabolism and hypoxia conditions. In conclusion, TNT are an efficient cell-to-cell communication system used by cancer cells to adapt the microenvironment to the invasive nature of the tumor.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, Fifth Floor, 105 11th Street, Galveston, TX, 77555, USA
| | - Shaily Malik
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, Fifth Floor, 105 11th Street, Galveston, TX, 77555, USA
| | - Ross Luu
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, Fifth Floor, 105 11th Street, Galveston, TX, 77555, USA
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Megan Mitchell
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | | | - Krishna Bhat
- Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, M.D. Anderson, Houston, TX, USA
| | - Brendan Prideaux
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, Fifth Floor, 105 11th Street, Galveston, TX, 77555, USA
| | - Eliseo A Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, Fifth Floor, 105 11th Street, Galveston, TX, 77555, USA.
| |
Collapse
|
19
|
Nahacka Z, Zobalova R, Dubisova M, Rohlena J, Neuzil J. Miro proteins connect mitochondrial function and intercellular transport. Crit Rev Biochem Mol Biol 2021; 56:401-425. [PMID: 34139898 DOI: 10.1080/10409238.2021.1925216] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mitochondria are organelles present in most eukaryotic cells, where they play major and multifaceted roles. The classical notion of the main mitochondrial function as the powerhouse of the cell per se has been complemented by recent discoveries pointing to mitochondria as organelles affecting a number of other auxiliary processes. They go beyond the classical energy provision via acting as a relay point of many catabolic and anabolic processes, to signaling pathways critically affecting cell growth by their implication in de novo pyrimidine synthesis. These additional roles further underscore the importance of mitochondrial homeostasis in various tissues, where its deregulation promotes a number of pathologies. While it has long been known that mitochondria can move within a cell to sites where they are needed, recent research has uncovered that mitochondria can also move between cells. While this intriguing field of research is only emerging, it is clear that mobilization of mitochondria requires a complex apparatus that critically involves mitochondrial proteins of the Miro family, whose role goes beyond the mitochondrial transfer, as will be covered in this review.
Collapse
Affiliation(s)
- Zuzana Nahacka
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Renata Zobalova
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Maria Dubisova
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Jakub Rohlena
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic.,School of Medical Science, Griffith University, Southport, Australia
| |
Collapse
|
20
|
Tiwari V, Koganti R, Russell G, Sharma A, Shukla D. Role of Tunneling Nanotubes in Viral Infection, Neurodegenerative Disease, and Cancer. Front Immunol 2021; 12:680891. [PMID: 34194434 PMCID: PMC8236699 DOI: 10.3389/fimmu.2021.680891] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/26/2021] [Indexed: 12/14/2022] Open
Abstract
The network of tunneling nanotubes (TNTs) represents the filamentous (F)-actin rich tubular structure which is connected to the cytoplasm of the adjacent and or distant cells to mediate efficient cell-to-cell communication. They are long cytoplasmic bridges with an extraordinary ability to perform diverse array of function ranging from maintaining cellular physiology and cell survival to promoting immune surveillance. Ironically, TNTs are now widely documented to promote the spread of various pathogens including viruses either during early or late phase of their lifecycle. In addition, TNTs have also been associated with multiple pathologies in a complex multicellular environment. While the recent work from multiple laboratories has elucidated the role of TNTs in cellular communication and maintenance of homeostasis, this review focuses on their exploitation by the diverse group of viruses such as retroviruses, herpesviruses, influenza A, human metapneumovirus and SARS CoV-2 to promote viral entry, virus trafficking and cell-to-cell spread. The later process may aggravate disease severity and the associated complications due to widespread dissemination of the viruses to multiple organ system as observed in current coronavirus disease 2019 (COVID-19) patients. In addition, the TNT-mediated intracellular spread can be protective to the viruses from the circulating immune surveillance and possible neutralization activity present in the extracellular matrix. This review further highlights the relevance of TNTs in ocular and cardiac tissues including neurodegenerative diseases, chemotherapeutic resistance, and cancer pathogenesis. Taken together, we suggest that effective therapies should consider precise targeting of TNTs in several diseases including virus infections.
Collapse
Affiliation(s)
- Vaibhav Tiwari
- Department of Microbiology & Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Greer Russell
- Department of Biomedical Sciences, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Ananya Sharma
- Vanderbilt University School of Medicine, Nashville, TN, United States
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States.,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
21
|
Ray B, Mahalakshmi AM, Tuladhar S, Bhat A, Srinivasan A, Pellegrino C, Kannan A, Bolla SR, Chidambaram SB, Sakharkar MK. "Janus-Faced" α-Synuclein: Role in Parkinson's Disease. Front Cell Dev Biol 2021; 9:673395. [PMID: 34124057 PMCID: PMC8194081 DOI: 10.3389/fcell.2021.673395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/15/2021] [Indexed: 01/03/2023] Open
Abstract
Parkinson's disease (PD) is a pathological condition characterized by the aggregation and the resultant presence of intraneuronal inclusions termed Lewy bodies (LBs) and Lewy neurites which are mainly composed of fibrillar α-synuclein (α-syn) protein. Pathogenic aggregation of α-syn is identified as the major cause of LBs deposition. Several mutations in α-syn showing varied aggregation kinetics in comparison to the wild type (WT) α-syn are reported in PD (A30P, E46K, H 50Q, G51D, A53E, and A53T). Also, the cell-to-cell spread of pathological α-syn plays a significant role in PD development. Interestingly, it has also been suggested that the pathology of PD may begin in the gastrointestinal tract and spread via the vagus nerve (VN) to brain proposing the gut-brain axis of α-syn pathology in PD. Despite multiple efforts, the behavior and functions of this protein in normal and pathological states (specifically in PD) is far from understood. Furthermore, the etiological factors responsible for triggering aggregation of this protein remain elusive. This review is an attempt to collate and present latest information on α-syn in relation to its structure, biochemistry and biophysics of aggregation in PD. Current advances in therapeutic efforts toward clearing the pathogenic α-syn via autophagy/lysosomal flux are also reviewed and reported.
Collapse
Affiliation(s)
- Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
| | - Sunanda Tuladhar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Abid Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
| | - Asha Srinivasan
- Division of Nanoscience & Technology, Faculty of Life Sciences, JSS Academy of Higher Education & Research, Mysuru, India
| | - Christophe Pellegrino
- Institut National de la Santé et de la Recherche Médicale, Institute of Mediterranean Neurobiology, Aix-Marseille University, Marseille, France
| | - Anbarasu Kannan
- Department of Protein Chemistry and Technology, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Srinivasa Rao Bolla
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan City, Kazakhstan
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, India
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru, India
- Special Interest Group – Brain, Behaviour, and Cognitive Neurosciences Research, JSS Academy of Higher Education & Research, Mysuru, India
| | | |
Collapse
|
22
|
Wang XT, Sun H, Chen NH, Yuan YH. Tunneling nanotubes: A novel pharmacological target for neurodegenerative diseases? Pharmacol Res 2021; 170:105541. [PMID: 33711434 DOI: 10.1016/j.phrs.2021.105541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 12/25/2022]
Abstract
Diversiform ways of intercellular communication are vital links in maintaining homeostasis and disseminating physiological states. Among intercellular bridges, tunneling nanotubes (TNTs) discovered in 2004 were recognized as potential pharmacology targets related to the pathogenesis of common or infrequent neurodegenerative disorders. The neurotoxic aggregates in neurodegenerative diseases including scrapie prion protein (PrPSc), mutant tau protein, amyloid-beta (Aβ) protein, alpha-synuclein (α-syn) as well as mutant Huntington (mHTT) protein could promote TNT formation via certain physiological mechanisms, in turn, mediating the intercellular transmission of neurotoxicity. In this review, we described in detail the skeleton, the formation, the physicochemical properties, and the functions of TNTs, while paying particular attention to the key role of TNTs in the transport of pathological proteins during neurodegeneration.
Collapse
Affiliation(s)
- Xiao-Tong Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Hua Sun
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; NHC Key Laboratory of Drug Addiction Medicine, The First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
23
|
Chastagner P, Loria F, Vargas JY, Tois J, I Diamond M, Okafo G, Brou C, Zurzolo C. Fate and propagation of endogenously formed Tau aggregates in neuronal cells. EMBO Mol Med 2020; 12:e12025. [PMID: 33179866 PMCID: PMC7721367 DOI: 10.15252/emmm.202012025] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Tau accumulation in the form of neurofibrillary tangles in the brain is a hallmark of tauopathies such as Alzheimer's disease (AD). Tau aggregates accumulate in brain regions in a defined spatiotemporal pattern and may induce the aggregation of native Tau in a prion-like manner. However, the underlying mechanisms of cell-to-cell spreading of Tau pathology are unknown and could involve encapsulation within exosomes, trans-synaptic passage, and tunneling nanotubes (TNTs). We have established a neuronal cell model to monitor both internalization of externally added fibrils, synthetic (K18) or Tau from AD brain extracts, and real-time conversion of microtubule-binding domain of Tau fused to a fluorescent marker into aggregates. We found that these endogenously formed deposits colabel with ubiquitin and p62 but are not recruited to macroautophagosomes, eventually escaping clearance. Furthermore, endogenous K18-seeded Tau aggregates spread to neighboring cells where they seed new deposits. Transfer of Tau aggregates depends on direct cell contact, and they are found inside TNTs connecting neuronal cells. We further demonstrate that contact-dependent transfer occurs in primary neurons and between neurons and astrocytes in organotypic cultures.
Collapse
Affiliation(s)
| | - Frida Loria
- Unité de Trafic Membranaire et PathogenèseInstitut PasteurParisFrance
- Present address:
Laboratorio de Apoyo a la InvestigaciónHospital Universitario Fundación AlcorcónMadridSpain
| | - Jessica Y Vargas
- Unité de Trafic Membranaire et PathogenèseInstitut PasteurParisFrance
| | - Josh Tois
- Unité de Trafic Membranaire et PathogenèseInstitut PasteurParisFrance
| | - Marc I Diamond
- Center for Alzheimer's and Neurodegenerative DiseasesPeter O'Donnell Jr. Brain InstituteUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | | | - Christel Brou
- Unité de Trafic Membranaire et PathogenèseInstitut PasteurParisFrance
| | - Chiara Zurzolo
- Unité de Trafic Membranaire et PathogenèseInstitut PasteurParisFrance
| |
Collapse
|
24
|
Tunneling Nanotubes: The Fuel of Tumor Progression? Trends Cancer 2020; 6:874-888. [DOI: 10.1016/j.trecan.2020.04.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 12/26/2022]
|
25
|
Cazzaniga FA, De Luca CMG, Bistaffa E, Consonni A, Legname G, Giaccone G, Moda F. Cell-free amplification of prions: Where do we stand? PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 175:325-358. [PMID: 32958239 DOI: 10.1016/bs.pmbts.2020.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), atypical parkinsonisms, frontotemporal dementia (FTLD) and prion diseases are characterized by the accumulation of misfolded proteins in the central nervous system (CNS). Although the cause for the initiation of protein aggregation is not well understood, these aggregates are disease-specific. For instance, AD is characterized by the intraneuronal accumulation of tau and extracellular deposition of amyloid-β (Aβ), PD is marked by the intraneuronal accumulation of α-synuclein, many FTLD are associated with the accumulation of TDP-43 while prion diseases show aggregates of misfolded prion protein. Hence, misfolded proteins are considered disease-specific biomarkers and their identification and localization in the CNS, collected postmortem, is required for a definitive diagnosis. With the development of two innovative cell-free amplification techniques named Protein Misfolding Cyclic Amplification (PMCA) and Real-Time Quaking-Induced Conversion (RT-QuIC), traces of disease-specific biomarkers were found in CSF and other peripheral tissues (e.g., urine, blood, and olfactory mucosa) of patients with different NDs. These techniques exploit an important feature shared by many misfolded proteins, that is their ability to interact with their normally folded counterparts and force them to undergo similar structural rearrangements. Essentially, RT-QuIC and PMCA mimic in vitro the same pathological processes of protein misfolding which occur in vivo in a very rapid manner. For this reason, they have been employed for studying different aspects of protein misfolding but, overall, they seem to be very promising for the premortem diagnosis of NDs.
Collapse
Affiliation(s)
- Federico Angelo Cazzaniga
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 and Neuropathology, Milan, Italy
| | | | - Edoardo Bistaffa
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 and Neuropathology, Milan, Italy
| | - Alessandra Consonni
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Milan, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Giorgio Giaccone
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 and Neuropathology, Milan, Italy
| | - Fabio Moda
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 and Neuropathology, Milan, Italy.
| |
Collapse
|
26
|
Subramaniam S. Rhes Tunnels: A Radical New Way of Communication in the Brain's Striatum? Bioessays 2020; 42:e1900231. [PMID: 32236969 PMCID: PMC7310467 DOI: 10.1002/bies.201900231] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/13/2020] [Indexed: 12/11/2022]
Abstract
Ras homolog enriched in the striatum (Rhes) is a striatal enriched protein that promotes the formation of thin membranous tubes resembling tunneling nanotubes (TNT)-"Rhes tunnels"-that connect neighboring cell and transport cargoes: vesicles and proteins between the neuronal cells. Here the literature on TNT-like structures is reviewed, and the implications of Rhes-mediated TNT, the mechanisms of its formation, and its potential in novel cell-to-cell communication in regulating striatal biology and disease are emphasized. Thought-provoking ideas regarding how Rhes-mediated TNT, if it exists, in vivo, would radically change the way neurons communicate in the brain are discussed.
Collapse
|
27
|
Matejka N, Reindl J. Perspectives of cellular communication through tunneling nanotubes in cancer cells and the connection to radiation effects. Radiat Oncol 2019; 14:218. [PMID: 31796110 PMCID: PMC6889217 DOI: 10.1186/s13014-019-1416-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023] Open
Abstract
Direct cell-to-cell communication is crucial for the survival of cells in stressful situations such as during or after radiation exposure. This communication can lead to non-targeted effects, where non-treated or non-infected cells show effects induced by signal transduction from non-healthy cells or vice versa. In the last 15 years, tunneling nanotubes (TNTs) were identified as membrane connections between cells which facilitate the transfer of several cargoes and signals. TNTs were identified in various cell types and serve as promoter of treatment resistance e.g. in chemotherapy treatment of cancer. Here, we discuss our current understanding of how to differentiate tunneling nanotubes from other direct cellular connections and their role in the stress reaction of cellular networks. We also provide a perspective on how the capability of cells to form such networks is related to the ability to surpass stress and how this can be used to study radioresistance of cancer cells.
Collapse
Affiliation(s)
- Nicole Matejka
- Institut für angewandte Physik und Messtechnik, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
| | - Judith Reindl
- Institut für angewandte Physik und Messtechnik, Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg, Germany
| |
Collapse
|
28
|
Venkatesh VS, Lou E. Tunneling nanotubes: A bridge for heterogeneity in glioblastoma and a new therapeutic target? Cancer Rep (Hoboken) 2019; 2:e1185. [PMID: 32729189 PMCID: PMC7941610 DOI: 10.1002/cnr2.1185] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/10/2019] [Accepted: 04/10/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The concept of tumour heterogeneity is not novel but is fast becoming a paradigm by which to explain part of the highly recalcitrant nature of aggressive malignant tumours. Glioblastoma is a prime example of such difficult-to-treat, invasive, and incurable malignancies. With the advent of the post-genomic age and increased access to next-generation sequencing technologies, numerous publications have described the presence and extent of intratumoural and intertumoural heterogeneity present in glioblastoma. Moreover, there have been numerous reports more directly correlating the heterogeneity of glioblastoma to its refractory, reoccurring, and inevitably terminal nature. It is therefore prudent to consider the different forms of heterogeneity seen in glioblastoma and how to harness this understanding to better strategize novel therapeutic approaches. One of the most central questions of tumour heterogeneity is how these numerous different cell types (both tumour and non-tumour) in the tumour mass communicate. RECENT FINDINGS This chapter provides a brief review on the variable heterogeneity of glioblastoma, with a focus on cellular heterogeneity and on modalities of communication that can induce further molecular diversity within the complex and ever-evolving tumour microenvironment. We provide particular emphasis on the emerging role of actin-based cellular conduits called tunnelling nanotubes (TNTs) and tumour microtubes (TMs) and outline the perceived current problems in the field that need to be resolved before pharmacological targeting of TNTs can become a reality. CONCLUSIONS We conclude that TNTs and TMs provide a new and exciting avenue for the therapeutic targeting of glioblastoma and that numerous inroads have already made into TNT and TM biology. However, to target TMs and TNTs, several advances must be made before this aim can become a reality.
Collapse
Affiliation(s)
| | - Emil Lou
- Division of Hematology, Oncology and TransplantationUniversity of MinnesotaMinneapolisMinnesota
| |
Collapse
|
29
|
Bistaffa E, Rossi M, De Luca CMG, Cazzaniga F, Carletta O, Campagnani I, Tagliavini F, Legname G, Giaccone G, Moda F. Prion Efficiently Replicates in α-Synuclein Knockout Mice. Mol Neurobiol 2019; 56:7448-7457. [PMID: 31041657 DOI: 10.1007/s12035-019-1602-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/09/2019] [Indexed: 10/26/2022]
Abstract
Prion diseases are a group of neurodegenerative disorders associated with the conformational conversion of the cellular prion protein (PrPC) into an abnormal misfolded form named PrPSc. Other than accumulating in the brain, PrPSc can bind PrPC and force it to change conformation to PrPSc. The exact mechanism which underlies the process of PrPC/PrPSc conversion still needs to be defined and many molecules or cofactors might be involved. Several studies have documented an important role of PrPC to act as receptor for abnormally folded forms of α-synuclein which are responsible of a group of diseases known as synucleinopathies. The presence of PrPC was required to promote efficient internalization and spreading of abnormal α-synuclein between cells. In this work, we have assessed whether α-synuclein exerts any role in PrPSc conversion and propagation either in vitro or in vivo. Indeed, understanding the mechanism of PrPC/PrPSc conversion and the identification of cofactors involved in this process is crucial for developing new therapeutic strategies. Our results showed that PrPSc was able to efficiently propagate in the brain of animals even in the absence of α-synuclein thus suggesting that this protein did not act as key modulator of prion propagation. Thus, α-synuclein might take part in this process but is not specifically required for sustaining prion conversion and propagation.
Collapse
Affiliation(s)
- Edoardo Bistaffa
- Unit of Neuropathology and Neurology 5, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Martina Rossi
- Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Chiara Maria Giulia De Luca
- Unit of Neuropathology and Neurology 5, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.,Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Federico Cazzaniga
- Unit of Neuropathology and Neurology 5, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Olga Carletta
- Unit of Neuropathology and Neurology 5, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ilaria Campagnani
- Unit of Neuropathology and Neurology 5, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Fabrizio Tagliavini
- Unit of Neuropathology and Neurology 5, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Legname
- Department of Neuroscience, Laboratory of Prion Biology, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Giorgio Giaccone
- Unit of Neuropathology and Neurology 5, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Fabio Moda
- Unit of Neuropathology and Neurology 5, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| |
Collapse
|
30
|
Zhu S, Abounit S, Korth C, Zurzolo C. Transfer of disrupted-in-schizophrenia 1 aggregates between neuronal-like cells occurs in tunnelling nanotubes and is promoted by dopamine. Open Biol 2018; 7:rsob.160328. [PMID: 28275106 PMCID: PMC5376705 DOI: 10.1098/rsob.160328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/10/2017] [Indexed: 12/22/2022] Open
Abstract
The disrupted-in-schizophrenia 1 (DISC1) gene was identified as a genetic risk factor for chronic mental illnesses (CMI) such as schizophrenia, bipolar disorder and severe recurrent depression. Insoluble aggregated DISC1 variants were found in the cingular cortex of sporadic, i.e. non-genetic, CMI patients. This suggests protein pathology as a novel, additional pathogenic mechanism, further corroborated in a recent transgenic rat model presenting DISC1 aggregates. Since the potential role of aggregation of DISC1 in sporadic CMI is unknown, we investigated whether DISC1 undergoes aggregation in cell culture and could spread between neuronal cells in a prion-like manner, as shown for amyloid proteins in neurodegenerative diseases. Co-culture experiments between donor cells forming DISC1 aggregates and acceptor cells showed that 4.5% of acceptor cells contained donor-derived DISC1 aggregates, thus indicating an efficient transfer in vitro. DISC1 aggregates were found inside tunnelling nanotubes (TNTs) and transfer was enhanced by increasing TNT formation and notably by dopamine treatment, which also induces DISC1 aggregation. These data indicate that DISC1 aggregates can propagate between cells similarly to prions, thus providing some molecular basis for the role of protein pathology in CMI.
Collapse
Affiliation(s)
- Seng Zhu
- Institut Pasteur, Membrane Traffic and Pathogenesis Unit, 25-28 rue du Docteur Roux, 75724 Paris, France
| | - Saïda Abounit
- Institut Pasteur, Membrane Traffic and Pathogenesis Unit, 25-28 rue du Docteur Roux, 75724 Paris, France
| | - Carsten Korth
- Department of Neuropathology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Chiara Zurzolo
- Institut Pasteur, Membrane Traffic and Pathogenesis Unit, 25-28 rue du Docteur Roux, 75724 Paris, France
| |
Collapse
|
31
|
Zhang TL, Wan XR, Wu R, Wang C. Effects of PrP C on DF-1 cells' biological processes and RNA-seq-based analysis of differential genes. J Cell Physiol 2018; 233:6671-6682. [PMID: 29319183 DOI: 10.1002/jcp.26447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 01/05/2018] [Indexed: 12/15/2022]
Abstract
To reveal the effects of PrPC on cells' biological processes and on gene expression. We established stable DF-1 (PrPC -knockdown (KD)) cells, and combined with DF-1 (wt) and DF-1 (PrPC -overexpression (OE)) cells that we previously established we studied the effects of chicken PrPC (PrPC ) on DF-1 cells' processes. Then by using high throughput sequencing technology (HTS) and bioinformatics, we analyzed the differentially expressed genes (DEGs) between these cells. The results show that compared with DF-1 (wt) and DF-1 (PrPC -scramble), DF-1 (PrPC -KD) are significantly decreased in adhesion, proliferation, formation rate of colony and cells number of colony, scratch wound healing rate, cells number of invasion and migration, S phase cell populations, but the apoptosis rate and G1 phase cell populations are significantly increased. Conversely, all of these features in DF-1 (PrPC -OE) are opposite. In addition, compared with DF-1 (wt), we found that there are totally 1055 DE genes between DF-1 (PrPC -KD) and DF-1 (PrPC -OE) cells. After Go and pathway enrichment analysis, we know that these DEGs are significantly enriched in cell, cell part, cellular process, and metabolic pathway. In short, we found that PrPC can promote DF-1 cells' processes except apoptosis. Furthermore, PrPC involves in the focal adhesion, cancer, ribosome, metabolic pathways, and so forth, and the overexpression of PrPC can promote the pathway of amoebiasis, but its down-regulation can promote the pathway of serotonergic synapse. However, the details are keeping unknown and that would be our next research.
Collapse
Affiliation(s)
- Tian-Liang Zhang
- Gansu Agricultural University, College of Veterinary Medicine, Lanzhou, Gansu, China
| | - Xue-Rui Wan
- Gansu Agricultural University, College of Veterinary Medicine, Lanzhou, Gansu, China
| | - Run Wu
- Gansu Agricultural University, College of Veterinary Medicine, Lanzhou, Gansu, China
| | - Chuan Wang
- Gansu Agricultural University, College of Veterinary Medicine, Lanzhou, Gansu, China
| |
Collapse
|
32
|
Abstract
While HIV-1 infection of target cells with cell-free viral particles has been largely documented, intercellular transmission through direct cell-to-cell contact may be a predominant mode of propagation in host. To spread, HIV-1 infects cells of the immune system and takes advantage of their specific particularities and functions. Subversion of intercellular communication allows to improve HIV-1 replication through a multiplicity of intercellular structures and membrane protrusions, like tunneling nanotubes, filopodia, or lamellipodia-like structures involved in the formation of the virological synapse. Other features of immune cells, like the immunological synapse or the phagocytosis of infected cells are hijacked by HIV-1 and used as gateways to infect target cells. Finally, HIV-1 reuses its fusogenic capacity to provoke fusion between infected donor cells and target cells, and to form infected syncytia with high capacity of viral production and improved capacities of motility or survival. All these modes of cell-to-cell transfer are now considered as viral mechanisms to escape immune system and antiretroviral therapies, and could be involved in the establishment of persistent virus reservoirs in different host tissues.
Collapse
Affiliation(s)
- Lucie Bracq
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), Institut Pasteur Shanghai-Chinese Academy of Sciences, Shanghai, China.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| | - Maorong Xie
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| | - Serge Benichou
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), Institut Pasteur Shanghai-Chinese Academy of Sciences, Shanghai, China.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| | - Jérôme Bouchet
- Inserm U1016, Institut Cochin, Paris, France.,CNRS, UMR8104, Paris, France.,Université Paris-Descartes, Sorbonne Paris-Cité, Paris, France.,International Associated Laboratory (LIA VirHost), CNRS, Université Paris-Descartes, Institut Pasteur, Paris, France
| |
Collapse
|
33
|
Pseudorabies Virus US3-Induced Tunneling Nanotubes Contain Stabilized Microtubules, Interact with Neighboring Cells via Cadherins, and Allow Intercellular Molecular Communication. J Virol 2017; 91:JVI.00749-17. [PMID: 28747498 DOI: 10.1128/jvi.00749-17] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/16/2017] [Indexed: 01/01/2023] Open
Abstract
Tunneling nanotubes (TNTs) are long bridge-like structures that connect eukaryotic cells and mediate intercellular communication. We found earlier that the conserved alphaherpesvirus US3 protein kinase induces long cell projections that contact distant cells and promote intercellular virus spread. In this report, we show that the US3-induced cell projections constitute TNTs. In addition, we report that US3-induced TNTs mediate intercellular transport of information (e.g., green fluorescent protein [GFP]) in the absence of other viral proteins. US3-induced TNTs are remarkably stable compared to most TNTs described in the literature. In line with this, US3-induced TNTs were found to contain stabilized (acetylated and detyrosinated) microtubules. Transmission electron microscopy showed that virus particles are individually transported in membrane-bound vesicles in US3-induced TNTs and are released along the TNT and at the contact area between a TNT and the adjacent cell. Contact between US3-induced TNTs and acceptor cells is very stable, which correlated with a marked enrichment in adherens junction components beta-catenin and E-cadherin at the contact area. These data provide new structural insights into US3-induced TNTs and how they may contribute to intercellular communication and alphaherpesvirus spread.IMPORTANCE Tunneling nanotubes (TNT) represent an important and yet still poorly understood mode of long-distance intercellular communication. We and others reported earlier that the conserved alphaherpesvirus US3 protein kinase induces long cellular protrusions in infected and transfected cells. Here, we show that US3-induced cell projections constitute TNTs, based on structural properties and transport of biomolecules. In addition, we report on different particular characteristics of US3-induced TNTs that help to explain their remarkable stability compared to physiological TNTs. In addition, transmission electron microscopy assays indicate that, in infected cells, virions travel in the US3-induced TNTs in membranous transport vesicles and leave the TNT via exocytosis. These data generate new fundamental insights into the biology of (US3-induced) TNTs and into how they may contribute to intercellular virus spread and communication.
Collapse
|
34
|
Hanna SJ, McCoy-Simandle K, Miskolci V, Guo P, Cammer M, Hodgson L, Cox D. The Role of Rho-GTPases and actin polymerization during Macrophage Tunneling Nanotube Biogenesis. Sci Rep 2017; 7:8547. [PMID: 28819224 PMCID: PMC5561213 DOI: 10.1038/s41598-017-08950-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 07/17/2017] [Indexed: 01/06/2023] Open
Abstract
Macrophage interactions with other cells, either locally or at distances, are imperative in both normal and pathological conditions. While soluble means of communication can transmit signals between different cells, it does not account for all long distance macrophage interactions. Recently described tunneling nanotubes (TNTs) are membranous channels that connect cells together and allow for transfer of signals, vesicles, and organelles. However, very little is known about the mechanism by which these structures are formed. Here we investigated the signaling pathways involved in TNT formation by macrophages using multiple imaging techniques including super-resolution microscopy (3D-SIM) and live-cell imaging including the use of FRET-based Rho GTPase biosensors. We found that formation of TNTs required the activity and differential localization of Cdc42 and Rac1. The downstream Rho GTPase effectors mediating actin polymerization through Arp2/3 nucleation, Wiskott-Aldrich syndrome protein (WASP) and WASP family verprolin-homologous 2 (WAVE2) proteins are also important, and both pathways act together during TNT biogenesis. Finally, TNT function as measured by transfer of cellular material between cells was reduced following depletion of a single factor demonstrating the importance of these factors in TNTs. Given that the characterization of TNT formation is still unclear in the field; this study provides new insights and would enhance the understanding of TNT formation towards investigating new markers.
Collapse
Affiliation(s)
- Samer J Hanna
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY, 10461, USA
| | - Kessler McCoy-Simandle
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY, 10461, USA
| | - Veronika Miskolci
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY, 10461, USA
| | - Peng Guo
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY, 10461, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Analytical Imaging Facility, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Michael Cammer
- Microscopy Core, DART, NYU Langone Medical Center, Bronx, NY, 10016, USA
| | - Louis Hodgson
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY, 10461, USA.,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dianne Cox
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY, 10461, USA. .,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY, 10461, USA. .,Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
35
|
Malik S, Eugenin EA. Mechanisms of HIV Neuropathogenesis: Role of Cellular Communication Systems. Curr HIV Res 2017; 14:400-411. [PMID: 27009098 DOI: 10.2174/1570162x14666160324124558] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2015] [Revised: 03/22/2016] [Accepted: 02/24/2016] [Indexed: 12/11/2022]
Abstract
BACKGROUND One of the major complications of Human Immunodeficiency Virus (HIV) infection is the development of HIV-Associated Neurocognitive Disorders (HANDs) in approximately 50-60% of HIV infected individuals. Despite undetectable viral loads in the periphery owing to anti-retroviral therapy, neuroinflammation and neurocognitive impairment are still prevalent in HIV infected individuals. Several studies indicate that the central nervous system (CNS) abnormalities observed in HIV infected individuals are not a direct effect of viral replication in the CNS, rather these neurological abnormalities are associated with amplification of HIV specific signals by unknown mechanisms. We propose that some of these mechanisms of damage amplification are mediated by gap junction channels, pannexin and connexin hemichannels, tunneling nanotubes and microvesicles/exosomes. OBJECTIVE Our laboratory and others have demonstrated that HIV infection targets cell to cell communication by altering all these communication systems resulting in enhanced bystander apoptosis of uninfected cells, inflammation and viral infection. Here we discuss the role of these communication systems in HIV neuropathogenesis. CONCLUSION In the current manuscript, we have described the mechanisms by which HIV "hijacks" these host cellular communication systems, leading to exacerbation of HIV neuropathogenesis, and to simultaneously promote the survival of HIV infected cells, resulting in the establishment of viral reservoirs.
Collapse
Affiliation(s)
| | - Eliseo A Eugenin
- Public Health Research Institute (PHRI) and Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ, USA.
| |
Collapse
|
36
|
Sarnataro D, Pepe A, Zurzolo C. Cell Biology of Prion Protein. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 150:57-82. [PMID: 28838675 DOI: 10.1016/bs.pmbts.2017.06.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cellular prion protein (PrPC) is a mammalian glycoprotein which is usually found anchored to the plasma membrane via a glycosylphosphatidylinositol (GPI) anchor. The precise function of PrPC remains elusive but may depend upon its cellular localization. PrPC misfolds to a pathogenic isoform PrPSc, the causative agent of neurodegenerative prion diseases. Nonetheless some forms of prion disease develop in the apparent absence of infectious PrPSc, suggesting that molecular species of PrP distinct from PrPSc may represent the primary neurotoxic culprits. Indeed, in some inherited cases of human prion disease, the predominant form of PrP detectable in the brain is not PrPSc but rather CtmPrP, a transmembrane form of the protein. The relationship between the neurodegeneration occurring in prion diseases involving PrPSc and that associated with CtmPrP remains unclear. However, the different membrane topology of the PrP mutants, as well as the presence of the GPI anchor, could influence both the function and the intracellular localization and trafficking of the protein, all being potentially very important in the pathophysiological mechanism that ultimately causes the disease. Here, we review the latest findings on the fundamental aspects of prions biology, from the PrPC biosynthesis, function, and structure up to its intracellular traffic and analyze the possible roles of the different topological isoforms of the protein, as well as the GPI anchor, in the pathogenesis of the disease.
Collapse
Affiliation(s)
- Daniela Sarnataro
- University of Naples "Federico II", Naples, Italy; Ceinge-Biotecnologie avanzate, s.c.a r.l., Naples, Italy.
| | - Anna Pepe
- University of Naples "Federico II", Naples, Italy; Unité de Trafic Membranaire et Pathogenese, Institut Pasteur, Paris, France
| | - Chiara Zurzolo
- University of Naples "Federico II", Naples, Italy; Unité de Trafic Membranaire et Pathogenese, Institut Pasteur, Paris, France
| |
Collapse
|
37
|
Prion-like mechanisms and potential therapeutic targets in neurodegenerative disorders. Pharmacol Ther 2017; 172:22-33. [DOI: 10.1016/j.pharmthera.2016.11.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Delage E, Cervantes DC, Pénard E, Schmitt C, Syan S, Disanza A, Scita G, Zurzolo C. Differential identity of Filopodia and Tunneling Nanotubes revealed by the opposite functions of actin regulatory complexes. Sci Rep 2016; 6:39632. [PMID: 28008977 PMCID: PMC5180355 DOI: 10.1038/srep39632] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/25/2016] [Indexed: 11/09/2022] Open
Abstract
Tunneling Nanotubes (TNTs) are actin enriched filopodia-like protrusions that play a pivotal role in long-range intercellular communication. Different pathogens use TNT-like structures as "freeways" to propagate across cells. TNTs are also implicated in cancer and neurodegenerative diseases, making them promising therapeutic targets. Understanding the mechanism of their formation, and their relation with filopodia is of fundamental importance to uncover their physiological function, particularly since filopodia, differently from TNTs, are not able to mediate transfer of cargo between distant cells. Here we studied different regulatory complexes of actin, which play a role in the formation of both these structures. We demonstrate that the filopodia-promoting CDC42/IRSp53/VASP network negatively regulates TNT formation and impairs TNT-mediated intercellular vesicle transfer. Conversely, elevation of Eps8, an actin regulatory protein that inhibits the extension of filopodia in neurons, increases TNT formation. Notably, Eps8-mediated TNT induction requires Eps8 bundling but not its capping activity. Thus, despite their structural similarities, filopodia and TNTs form through distinct molecular mechanisms. Our results further suggest that a switch in the molecular composition in common actin regulatory complexes is critical in driving the formation of either type of membrane protrusion.
Collapse
Affiliation(s)
- Elise Delage
- Unité Trafic Membranaire et Pathogenèse, Institut Pasteur, 25-28 Rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | - Diégo Cordero Cervantes
- Unité Trafic Membranaire et Pathogenèse, Institut Pasteur, 25-28 Rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | - Esthel Pénard
- Unité Trafic Membranaire et Pathogenèse, Institut Pasteur, 25-28 Rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | - Christine Schmitt
- Ultrapole, Institut Pasteur, 25-28 Rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | - Sylvie Syan
- Unité Trafic Membranaire et Pathogenèse, Institut Pasteur, 25-28 Rue du Docteur Roux, 75724 Paris CEDEX 15, France
| | - Andrea Disanza
- FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Giorgio Scita
- FIRC Institute of Molecular Oncology, 20139 Milan, Italy.,Dipartimento di Scienze della Salute, Università degli Studi di Milano, 20122 Milan, Italy
| | - Chiara Zurzolo
- Unité Trafic Membranaire et Pathogenèse, Institut Pasteur, 25-28 Rue du Docteur Roux, 75724 Paris CEDEX 15, France
| |
Collapse
|
39
|
Abounit S, Bousset L, Loria F, Zhu S, de Chaumont F, Pieri L, Olivo-Marin JC, Melki R, Zurzolo C. Tunneling nanotubes spread fibrillar α-synuclein by intercellular trafficking of lysosomes. EMBO J 2016; 35:2120-2138. [PMID: 27550960 DOI: 10.15252/embj.201593411] [Citation(s) in RCA: 282] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 07/22/2016] [Indexed: 12/25/2022] Open
Abstract
Synucleinopathies such as Parkinson's disease are characterized by the pathological deposition of misfolded α-synuclein aggregates into inclusions throughout the central and peripheral nervous system. Mounting evidence suggests that intercellular propagation of α-synuclein aggregates may contribute to the neuropathology; however, the mechanism by which spread occurs is not fully understood. By using quantitative fluorescence microscopy with co-cultured neurons, here we show that α-synuclein fibrils efficiently transfer from donor to acceptor cells through tunneling nanotubes (TNTs) inside lysosomal vesicles. Following transfer through TNTs, α-synuclein fibrils are able to seed soluble α-synuclein aggregation in the cytosol of acceptor cells. We propose that donor cells overloaded with α-synuclein aggregates in lysosomes dispose of this material by hijacking TNT-mediated intercellular trafficking. Our findings thus reveal a possible novel role of TNTs and lysosomes in the progression of synucleinopathies.
Collapse
Affiliation(s)
- Saïda Abounit
- Institut Pasteur, Unité Trafic Membranaire et Pathogénèse, Paris Cedex 15, France
| | - Luc Bousset
- Paris-Saclay Institute of Neuroscience, CNRS, Gif-sur-Yvette, France
| | - Frida Loria
- Institut Pasteur, Unité Trafic Membranaire et Pathogénèse, Paris Cedex 15, France
| | - Seng Zhu
- Institut Pasteur, Unité Trafic Membranaire et Pathogénèse, Paris Cedex 15, France
| | - Fabrice de Chaumont
- Laboratoire d'Analyse d'Images Quantitative, Institut Pasteur, Paris Cedex 15, France
| | - Laura Pieri
- Paris-Saclay Institute of Neuroscience, CNRS, Gif-sur-Yvette, France
| | | | - Ronald Melki
- Paris-Saclay Institute of Neuroscience, CNRS, Gif-sur-Yvette, France
| | - Chiara Zurzolo
- Institut Pasteur, Unité Trafic Membranaire et Pathogénèse, Paris Cedex 15, France
| |
Collapse
|
40
|
Glatzel M, Linsenmeier L, Dohler F, Krasemann S, Puig B, Altmeppen HC. Shedding light on prion disease. Prion 2016; 9:244-56. [PMID: 26186508 DOI: 10.1080/19336896.2015.1065371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Proteolytic processing regulates key processes in health and disease. The cellular prion protein (PrP(C)) is subject to at least 3 cleavage events, α-cleavage, β-cleavage and shedding. In contrast to α- and β-cleavage where there is an ongoing controversy on the identity of relevant proteases, the metalloprotease ADAM10 represents the only relevant PrP sheddase. Here we focus on the roles that ADAM10-mediated shedding of PrP(C) and its pathogenic isoform (PrP(Sc)) might play in regulating their physiological and pathogenic functions, respectively. As revealed by our recent study using conditional ADAM10 knockout mice (Altmeppen et al., 2015), shedding of PrP seems to be involved in key processes of prion diseases. These aspects and several open questions arising from them are discussed. Increased knowledge on this topic can shed new light on prion diseases and other neurodegenerative conditions as well.
Collapse
Affiliation(s)
- Markus Glatzel
- a Institute of Neuropathology; University Medical Center Hamburg-Eppendorf ; Hamburg , Germany
| | | | | | | | | | | |
Collapse
|
41
|
McCoy-Simandle K, Hanna SJ, Cox D. Exosomes and nanotubes: Control of immune cell communication. Int J Biochem Cell Biol 2015; 71:44-54. [PMID: 26704468 DOI: 10.1016/j.biocel.2015.12.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 12/01/2015] [Accepted: 12/10/2015] [Indexed: 12/19/2022]
Abstract
Cell-cell communication is critical to coordinate the activity and behavior of a multicellular organism. The cells of the immune system not only must communicate with similar cells, but also with many other cell types in the body. Therefore, the cells of the immune system have evolved multiple ways to communicate. Exosomes and tunneling nanotubes (TNTs) are two means of communication used by immune cells that contribute to immune functions. Exosomes are small membrane vesicles secreted by most cell types that can mediate intercellular communication and in the immune system they are proposed to play a role in antigen presentation and modulation of gene expression. TNTs are membranous structures that mediate direct cell-cell contact over several cell diameters in length (and possibly longer) and facilitate the interaction and/or the transfer of signals, material and other cellular organelles between connected cells. Recent studies have revealed additional, but sometimes conflicting, structural and functional features of both exosomes and TNTs. Despite the new and exciting information in exosome and TNT composition, origin and in vitro function, biologically significant functions are still being investigated and determined. In this review, we discuss the current field regarding exosomes and TNTs in immune cells providing evaluation and perspectives of the current literature.
Collapse
Affiliation(s)
- Kessler McCoy-Simandle
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY 10461, USA.
| | - Samer J Hanna
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY 10461, USA.
| | - Dianne Cox
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY 10461, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY 10461, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, 1300 Morris Park Ave, Gruss MRRC 306, Bronx, NY 10461, USA.
| |
Collapse
|
42
|
Sisakhtnezhad S, Khosravi L. Emerging physiological and pathological implications of tunneling nanotubes formation between cells. Eur J Cell Biol 2015; 94:429-43. [PMID: 26164368 DOI: 10.1016/j.ejcb.2015.06.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/20/2015] [Accepted: 06/23/2015] [Indexed: 12/21/2022] Open
Abstract
Cell-to-cell communication is a critical requirement to coordinate behaviors of the cells in a community and thereby achieve tissue homeostasis and conservation of the multicellular organisms. Tunneling nanotubes (TNTs), as a cell-to-cell communication over long distance, allow for bi- or uni-directional transfer of cellular components between cells. Identification of inducing agents and the cell and molecular mechanism underling the formation of TNTs and their structural and functional features may lead to finding new important roles for these intercellular bridges in vivo and in vitro. During the last decade, research has shown TNTs have different structural and functional properties, varying between and within cell systems. In this review, we will focus on TNTs and their cell and molecular mechanism of formation. Moreover, the latest findings into their functional roles in physiological and pathological processes, such as signal transduction, micro and nano-particles delivery, immune responses, embryogenesis, cellular reprogramming, apoptosis, cancer, and neurodegenerative diseases initiation and progression and pathogens transfer, will be discussed.
Collapse
Affiliation(s)
| | - Leila Khosravi
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
43
|
Abounit S, Delage E, Zurzolo C. Identification and Characterization of Tunneling Nanotubes for Intercellular Trafficking. ACTA ACUST UNITED AC 2015; 67:12.10.1-12.10.21. [PMID: 26061240 DOI: 10.1002/0471143030.cb1210s67] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Tunneling nanotubes (TNTs) are thin membranous channels providing direct cytoplasmic connection between remote cells. They are commonly observed in different cell cultures and increasing evidence supports their role in intercellular communication and pathogen transfer. However, the study of TNTs presents several pitfalls (e.g., difficulty in preserving such delicate structures, possible confusion with other protrusions, structural and functional heterogeneity, etc.) and therefore requires thoroughly designed approaches. The methods described in this unit represent a guideline for the characterization of TNTs (or TNT-like structures) in cell culture. Specifically, optimized protocols to (1) identify TNTs and the cytoskeletal elements present inside them; (2) evaluate TNT frequency in cell culture; (3) unambiguously distinguish them from other cellular connections or protrusions; and (4) monitor their formation in living cells are provided. Finally, this unit describes how to assess TNT-mediated cell-to-cell transfer of cellular components, which is a fundamental criterion for identifying functional TNTs.
Collapse
Affiliation(s)
- Saïda Abounit
- Unité de Traffic Membranaire et Pathogenèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, Paris, France.,These authors contributed equally to this work
| | - Elise Delage
- Unité de Traffic Membranaire et Pathogenèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, Paris, France.,These authors contributed equally to this work
| | - Chiara Zurzolo
- Unité de Traffic Membranaire et Pathogenèse, Département de Biologie Cellulaire et Infection, Institut Pasteur, Paris, France.,Corresponding author
| |
Collapse
|
44
|
Zhang L, Zhang Y. Tunneling nanotubes between rat primary astrocytes and C6 glioma cells alter proliferation potential of glioma cells. Neurosci Bull 2015; 31:371-8. [PMID: 25913038 DOI: 10.1007/s12264-014-1522-4] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/11/2015] [Indexed: 12/25/2022] Open
Abstract
The tunneling nanotube (TNT) is a newly discovered, long and thin tubular structure between cells. In this study, we established a co-culture system for rat primary astrocytes and C6 glioma cells and found that TNTs formed between them. Most of the TNTs initiated from astrocytes towards C6 glioma cells. The formation of TNTs depended on p53. In addition, hydrogen peroxide increased the number of TNTs in the co-culture system. Established TNTs reduced the proliferation of C6 glioma cells. Our data suggest that TNTs between astrocytes and glioma cells facilitate substance transfer and therefore alter the properties, including the proliferation potential, of glioma cells.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, 100871, China
| | | |
Collapse
|
45
|
Ranzinger J, Rustom A, Schwenger V. Membrane nanotubes between peritoneal mesothelial cells: functional connectivity and crucial participation during inflammatory reactions. Front Physiol 2014; 5:412. [PMID: 25386144 PMCID: PMC4208614 DOI: 10.3389/fphys.2014.00412] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 10/03/2014] [Indexed: 12/28/2022] Open
Abstract
Peritoneal dialysis (PD) has attained increased relevance as continuous renal replacement therapy over the past years. During this treatment, the peritoneum functions as dialysis membrane to eliminate diffusible waste products from the blood-stream. Success and efficacy of this treatment is dependent on the integrity of the peritoneal membrane. Chronic inflammatory conditions within the peritoneal cavity coincide with elevated levels of proinflammatory cytokines leading to the impairment of tissue integrity. High glucose concentrations and glucose metabolites in PD solutions contribute to structural and functional reorganization processes of the peritoneal membrane during long-term PD. The subsequent loss of ultrafiltration is causal for the treatment failure over time. It was shown that peritoneal mesothelial cells are functionally connected via Nanotubes (NTs) and that a correlation of NT-occurrence and defined pathophysiological conditions exists. Additionally, an important participation of NTs during inflammatory reactions was shown. Here, we will summarize recent developments of NT-related research and provide new insights into NT-mediated cellular interactions under physiological as well as pathophysiological conditions.
Collapse
Affiliation(s)
- Julia Ranzinger
- Department of Nephrology, University of Heidelberg Heidelberg, Germany
| | - Amin Rustom
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems Stuttgart, Germany
| | - Vedat Schwenger
- Department of Nephrology, University of Heidelberg Heidelberg, Germany
| |
Collapse
|
46
|
Prion protein-specific antibodies-development, modes of action and therapeutics application. Viruses 2014; 6:3719-37. [PMID: 25275428 PMCID: PMC4213558 DOI: 10.3390/v6103719] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 12/21/2022] Open
Abstract
Prion diseases or Transmissible Spongiform Encephalopathies (TSEs) are lethal neurodegenerative disorders involving the misfolding of the host encoded cellular prion protein, PrPC. This physiological form of the protein is expressed throughout the body, and it reaches the highest levels in the central nervous system where the pathology occurs. The conversion into the pathogenic isoform denoted as prion or PrPSc is the key event in prion disorders. Prominent candidates for the treatment of prion diseases are antibodies and their derivatives. Anti-PrPC antibodies are able to clear PrPSc from cell culture of infected cells. Furthermore, application of anti-PrPC antibodies suppresses prion replication in experimental animal models. Major drawbacks of immunotherapy are immune tolerance, the risks of neurotoxic side effects, limited ability of compounds to cross the blood-brain barrier and their unfavorable pharmacokinetic. The focus of this review is to recapitulate the current understanding of the molecular mechanisms for antibody mediated anti-prion activity. Although relevant for designing immunotherapeutic tools, the characterization of key antibody parameters shaping the molecular mechanism of the PrPC to PrPSc conversion remains elusive. Moreover, this review illustrates the various attempts towards the development of anti-PrP antibody compounds and discusses therapeutic candidates that modulate PrP expression.
Collapse
|
47
|
Jackson WS. Selective vulnerability to neurodegenerative disease: the curious case of Prion Protein. Dis Model Mech 2014; 7:21-9. [PMID: 24396151 PMCID: PMC3882045 DOI: 10.1242/dmm.012146] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The mechanisms underlying the selective targeting of specific brain regions by different neurodegenerative diseases is one of the most intriguing mysteries in medicine. For example, it is known that Alzheimer’s disease primarily affects parts of the brain that play a role in memory, whereas Parkinson’s disease predominantly affects parts of the brain that are involved in body movement. However, the reasons that other brain regions remain unaffected in these diseases are unknown. A better understanding of the phenomenon of selective vulnerability is required for the development of targeted therapeutic approaches that specifically protect affected neurons, thereby altering the disease course and preventing its progression. Prion diseases are a fascinating group of neurodegenerative diseases because they exhibit a wide phenotypic spectrum caused by different sequence perturbations in a single protein. The possible ways that mutations affecting this protein can cause several distinct neurodegenerative diseases are explored in this Review to highlight the complexity underlying selective vulnerability. The premise of this article is that selective vulnerability is determined by the interaction of specific protein conformers and region-specific microenvironments harboring unique combinations of subcellular components such as metals, chaperones and protein translation machinery. Given the abundance of potential contributory factors in the neurodegenerative process, a better understanding of how these factors interact will provide invaluable insight into disease mechanisms to guide therapeutic discovery.
Collapse
Affiliation(s)
- Walker S Jackson
- German Center for Neurodegenerative Diseases (DZNE), Sigmund-Freud-Str. 25, 53127-Bonn, Germany
| |
Collapse
|
48
|
Tosi G, Vilella A, Chhabra R, Schmeisser MJ, Boeckers TM, Ruozi B, Vandelli MA, Forni F, Zoli M, Grabrucker AM. Insight on the fate of CNS-targeted nanoparticles. Part II: Intercellular neuronal cell-to-cell transport. J Control Release 2014; 177:96-107. [DOI: 10.1016/j.jconrel.2014.01.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 12/23/2013] [Accepted: 01/02/2014] [Indexed: 01/01/2023]
|
49
|
Kalani A, Tyagi A, Tyagi N. Exosomes: mediators of neurodegeneration, neuroprotection and therapeutics. Mol Neurobiol 2013; 49:590-600. [PMID: 23999871 DOI: 10.1007/s12035-013-8544-1] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/19/2013] [Indexed: 12/17/2022]
Abstract
Exosomes have emerged as prominent mediators of neurodegenerative diseases where they have been shown to carry disease particles such as beta amyloid and prions from their cells of origin to other cells. Their simple structure and ability to cross the blood-brain barrier allow great opportunity to design a "makeup" with drugs and genetic elements, such as siRNA or miRNA, and use them as delivery vehicles for neurotherapeutics. Their role in neuroprotection is evident by the fact that they are involved in the regeneration of peripheral nerves and repair of neuronal injuries. This review is focused on the role of exosomes in mediating neurodegeneration and neuroprotection.
Collapse
Affiliation(s)
- Anuradha Kalani
- Department of Physiology and Biophysics, School of Medicine, Health Sciences Center, A-1201, University of Louisville, 500 South Preston Street, Louisville, KY, 40202, USA
| | | | | |
Collapse
|
50
|
Ranzinger J, Rustom A, Schwenger V. Potential role of nanotubes in context of clinical treatments? Commun Integr Biol 2013; 6:e22686. [PMID: 23802041 PMCID: PMC3689573 DOI: 10.4161/cib.22686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The recent awareness that eukaryotic cells can be linked and communicate via membranous nanotubes (NTs) has extended previous conceptions of cell-to-cell interaction. Apart from mediating functional connectivity between a broad range of cells, facilitating intercellular transmission of electric signals or various cellular components, there is strong evidence for participation of NTs in pathological processes of particular medical interest. In our recent study, we showed for the first time the existence of nanotubular connections between human primary peritoneal mesothelial cells (HPMCs) and provided insights to their actin/filopodia mediated building mechanism. Furthermore, we showed that tumor necrosis factor (TNF) significantly increased NT formation between HPMCs, pointing to a crucial role of NTs during inflammatory processes. Moreover, our study showed a strong correlation of NT occurrence and cellular cholesterol contents, demonstrating an interdependence of NT mediated cell communication, cytokine action and cholesterol homeostasis. Here, we further provide analysis on NT-formation processes.
Collapse
Affiliation(s)
- Julia Ranzinger
- Department of Nephrology; University of Heidelberg; Heidelberg, Germany
| | | | | |
Collapse
|