1
|
Zhou Y, Tang Y, Huang F, Wang Z, Wen Z, Fang Q, Wang C. The miR-1305/KLF5 negative regulatory loop affects pancreatic cancer cell proliferation and apoptosis. Hum Cell 2025; 38:51. [PMID: 39921786 DOI: 10.1007/s13577-025-01173-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/05/2025] [Indexed: 02/10/2025]
Abstract
Pancreatic cancer (PC) is characterized by a high relapse rate and unfavorable prognosis. Currently, the optimal treatment for PC is complete resection followed by adjuvant systemic chemotherapy. Nevertheless, tumor cell repopulation and subsequent tumor relapse and metastasis after chemotherapy result in a poor prognosis. Therefore, it is of great value to explore the potential molecular mechanisms underlying PC for developing novel treatment strategies. Herein, we aimed to investigate the potential regulatory mechanism of miR-1305 upon aerobic proliferation, metastasis, and apoptosis in PC. miR-1305 was downregulated in PC tissues and cell lines. miR-1305 overexpression prominently inhibited PC cell proliferation and metastasis promoted cell apoptosis in vitro, and alleviated PC formation in vivo. As predicted, KLF5 could directly bind to miR-1305. Silencing of KLF5 or KLF5 inhibitor (ML264) suppressed PC cell viability and cell invasion, and enhanced cell apoptosis. KLF5 restrained miR-1305 transcription and expression by binding to its promoter region. miR-1305 exerted a suppressive effect on PC cell proliferation and apoptosis via regulation of the KLF5-ERBB2 axis; KLF5 gene is a transcriptional regulator of miR-1305, promising to be a new target for the diagnosis and treatment of PC.
Collapse
Affiliation(s)
- Yufu Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, China
| | - Yulin Tang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, China
| | - Feizhou Huang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, China
| | - Zhichao Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, China
| | - Zhengbin Wen
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, China
| | - Qi Fang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, China
| | - Changfa Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, China.
| |
Collapse
|
2
|
Oyejobi GK, Yan X, Sliz P, Wang L. Regulating Protein-RNA Interactions: Advances in Targeting the LIN28/Let-7 Pathway. Int J Mol Sci 2024; 25:3585. [PMID: 38612395 PMCID: PMC11011352 DOI: 10.3390/ijms25073585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Originally discovered in C. elegans, LIN28 is an evolutionarily conserved zinc finger RNA-binding protein (RBP) that post-transcriptionally regulates genes involved in developmental timing, stem cell programming, and oncogenesis. LIN28 acts via two distinct mechanisms. It blocks the biogenesis of the lethal-7 (let-7) microRNA (miRNA) family, and also directly binds messenger RNA (mRNA) targets, such as IGF-2 mRNA, and alters downstream splicing and translation events. This review focuses on the molecular mechanism of LIN28 repression of let-7 and current strategies to overcome this blockade for the purpose of cancer therapy. We highlight the value of the LIN28/let-7 pathway as a drug target, as multiple oncogenic proteins that the pathway regulates are considered undruggable due to their inaccessible cellular location and lack of cavities for small molecule binding.
Collapse
Affiliation(s)
- Greater Kayode Oyejobi
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China; (G.K.O.); (X.Y.)
| | - Xiaodan Yan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China; (G.K.O.); (X.Y.)
| | - Piotr Sliz
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Longfei Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430072, China; (G.K.O.); (X.Y.)
| |
Collapse
|
3
|
Liu CY, Al-Ward H, Liu N, Mekontso FN, Chen W, Gao W, Zhang C, Murshed A, Yu ZR, Fan O, Sun YE, Xu H. The Role of Cystathionine-β-Synthase, H 2S, and miRNA-377 in Hypoxic-Ischemic Encephalopathy: Insights from Human and Animal Studies. J Mol Neurosci 2023; 73:921-931. [PMID: 37864623 DOI: 10.1007/s12031-023-02165-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/03/2023] [Indexed: 10/23/2023]
Abstract
We aimed to investigate the mechanism underlying the roles of miRNA-377, Cystathionine-β-synthase (CBS), and hydrogen sulfide (H2S) in the development of hypoxic-ischemic encephalopathy (HIE). We investigated the relationship between CBS, H2S, and miR-377 in both humans with HIE and animals with hypoxic-ischemic insult. An animal model of fetal rats with hypoxic-ischemic brain injury was established, and the fetal rats were randomly assigned to control and hypoxic-ischemic groups for 15 min (mild) and 30 min (moderate) groups. Human samples were collected from children diagnosed with HIE. Healthy or non-neurological disease children were selected as the control group. Hematoxylin-eosin (HE) staining, quantitative real-time polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), and western blot were used to conduct this study. Hypoxia-ischemia induced pathological alterations in brain tissue changes were more severe in groups with severe hypoxic insult. miRNA-377 expression levels were upregulated in brain tissue and serum of fetal rats and human samples with HIE compared to controls. Conversely, CBS and H2S expression levels were significantly decreased in both human and animal samples compared to controls. Our findings suggest that CBS is a target gene of miR-377 which may contribute to the development of HIE by regulating CBS/H2S. H2S has a protective effect against hypoxic damage in brain tissue. The study provides new insights into the potential mechanisms underlying the protective role of H2S in hypoxic brain damage and may contribute to the development of novel therapies for HIE.
Collapse
Affiliation(s)
- Chun-Yang Liu
- School of Medicine, AnKang University, Ankang, Shanxi Province, China
| | - Hisham Al-Ward
- School of Medicine, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Ning Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, China
| | | | - Wei Chen
- School of Medicine, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Wenxia Gao
- School of Medicine, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Chunxue Zhang
- School of Medicine, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Abduh Murshed
- Department of Clinical Laboratory, Shanghai 10Th People's Hospital of Tongji, University, Shanghai, China
| | - Zi-Rui Yu
- Huashan Hospital, Fudan University, Shanghai, China
| | - Orion Fan
- School of Medicine, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Yi Eve Sun
- School of Medicine, Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai East Hospital, Tongji University, Shanghai, China.
| | - Hui Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, China.
| |
Collapse
|
4
|
Liu J, Ye L, Lin K, Zhong T, Luo J, Wang T, Suo L, Mo Q, Li S, Chen Q, Yu Y. miR-4299 inhibits tumor progression in pancreatic cancer through targeting ADAM17. Mol Cell Biochem 2023; 478:1727-1742. [PMID: 36565360 DOI: 10.1007/s11010-022-04617-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 11/18/2022] [Indexed: 12/25/2022]
Abstract
Pancreatic cancer (PC) is one of the most aggressive malignant tumors in human beings. Tumor capacity of evading immune-mediated lysis is a critical step in PC malignant progression. We aimed to evaluate the underlying regulatory mechanism of miR-4299 in the proliferation, metastasis, apoptosis, and immune escape in PC. miR-4299 and ADAM17 expressions in PC tissues and cell lines were detected using qRT-PCR. MTT assay and flow cytometry were used to detect cell viability and apoptosis, respectively. A luciferase reporter gene assay was conducted to confirm the targeted relationship between miR-4299 and ADAM17. Xenograft tumors in nude mice were used to detect tumorigenesis in vivo. PC cells were co-cultured with NK cells for determining the immune escape ability. NKG2D-positive rate of NK cells was detected using flow cytometry; NK cell-killing ability was detected using MTT assay. miR-4299 was downregulated in PC tissues and cell lines. miR-4299 inhibited PC cell proliferation and invasion, promoted cell apoptosis, and reduced PC tumor growth in vivo. ADAM17 3'UTR directly bound to miR-4299. ADAM17 overexpression could reverse miR-4299 effects on PC cell viability, invasion, apoptosis, and immune escape. miR-4299 exerted suppressive effects on PC cell proliferation, invasion, and immune escape via targeting ADAM17 expression. This study revealed a novel miR-4299/ADAM17 axis-modulating PC progression and proposed to concern the immune regulatory mechanism of miRNAs in PC development.
Collapse
Affiliation(s)
- Junhong Liu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Lin Ye
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Kangqiang Lin
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Tieshan Zhong
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Jiguang Luo
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Tao Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Liya Suo
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Qingrong Mo
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Shuqun Li
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Qian Chen
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China
| | - Yaqun Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541002, China.
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, The Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China.
| |
Collapse
|
5
|
Ruivinho C, Gama-Carvalho M. Small non-coding RNAs encoded by RNA viruses: old controversies and new lessons from the COVID-19 pandemic. Front Genet 2023; 14:1216890. [PMID: 37415603 PMCID: PMC10322155 DOI: 10.3389/fgene.2023.1216890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023] Open
Abstract
The recurring outbreaks caused by emerging RNA viruses have fostered an increased interest in the research of the mechanisms that regulate viral life cycles and the pathological outcomes associated with infections. Although interactions at the protein level are well-studied, interactions mediated by RNA molecules are less explored. RNA viruses can encode small non-coding RNAs molecules (sncRNAs), including viral miRNAs (v-miRNAs), that play important roles in modulating host immune responses and viral replication by targeting viral or host transcripts. Starting from the analysis of public databases compiling the known repertoire of viral ncRNA molecules and the evolution of publications and research interests on this topic in the wake of the COVID-19 pandemic, we provide an updated view on the current knowledge on viral sncRNAs, with a focus on v-miRNAs encoded by RNA viruses, and their mechanisms of action. We also discuss the potential of these molecules as diagnostic and prognostic biomarkers for viral infections and the development of antiviral therapies targeting v-miRNAs. This review emphasizes the importance of continued research efforts to characterize sncRNAs encoded by RNA viruses, identifies the most relevant pitfalls in the study of these molecules, and highlights the paradigm changes that have occurred in the last few years regarding their biogenesis, prevalence and functional relevance in the context of host-pathogen interactions.
Collapse
|
6
|
Sheng P, Li L, Li T, Wang Y, Hiers NM, Mejia JS, Sanchez JS, Zhou L, Xie M. Screening of Drosophila microRNA-degradation sequences reveals Argonaute1 mRNA's role in regulating miR-999. Nat Commun 2023; 14:2108. [PMID: 37055443 PMCID: PMC10102002 DOI: 10.1038/s41467-023-37819-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/30/2023] [Indexed: 04/15/2023] Open
Abstract
MicroRNAs (miRNA) load onto AGO proteins to target mRNAs for translational repression or degradation. However, miRNA degradation can be triggered when extensively base-paired with target RNAs, which induces confirmational change of AGO and recruitment of ZSWIM8 ubiquitin ligase to mark AGO for proteasomal degradation. This target RNA-directed miRNA degradation (TDMD) mechanism appears to be evolutionarily conserved, but recent studies have focused on mammalian systems. Here, we performed AGO1-CLASH in Drosophila S2 cells, with Dora (ortholog of vertebrate ZSWIM8) knockout mediated by CRISPR-Cas9 to identify five TDMD triggers (sequences that can induce miRNA degradation). Interestingly, one trigger in the 3' UTR of AGO1 mRNA induces miR-999 degradation. CRISPR-Cas9 knockout of the AGO1 trigger in S2 cells and in Drosophila specifically elevates miR-999, with concurrent repression of the miR-999 targets. AGO1 trigger knockout flies respond poorly to hydrogen peroxide-induced stress, demonstrating the physiological importance of this TDMD event.
Collapse
Affiliation(s)
- Peike Sheng
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Lu Li
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA.
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.
| | - Tianqi Li
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Yuzhi Wang
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Nicholas M Hiers
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Jennifer S Mejia
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL, 32610, USA
| | - Jossie S Sanchez
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL, 32610, USA
| | - Lei Zhou
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.
- Department of Molecular Genetics & Microbiology, University of Florida, Gainesville, FL, 32610, USA.
- UF Genetics Institute, University of Florida, Gainesville, FL, 32610, USA.
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, 32610, USA.
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.
- UF Genetics Institute, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
7
|
The Role of MicroRNAs in Hyperlipidemia: From Pathogenesis to Therapeutical Application. Mediators Inflamm 2022; 2022:3101900. [PMID: 35757107 PMCID: PMC9232323 DOI: 10.1155/2022/3101900] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Hyperlipidemia is a common metabolic disorder with high morbidity and mortality, which brings heavy burden on social. Understanding its pathogenesis and finding its potential therapeutic targets are the focus of current research in this field. In recent years, an increasing number of studies have proved that miRNAs play vital roles in regulating lipid metabolism and were considered as promising therapeutic targets for hyperlipidemia and related diseases. It is demonstrated that miR-191, miR-222, miR-224, miR-27a, miR-378a-3p, miR-140-5p, miR-483, and miR-520d-5p were closely associated with the pathogenesis of hyperlipidemia. In this review, we provide brief overviews about advances in miRNAs in hyperlipidemia and its potential clinical application value.
Collapse
|
8
|
Askari H, Raeis-Abdollahi E, Abazari MF, Akrami H, Vakili S, Savardashtaki A, Tajbakhsh A, Sanadgol N, Azarnezhad A, Rahmati L, Abdullahi PR, Zare Karizi S, Safarpour AR. Recent findings on the role of microRNAs in genetic kidney diseases. Mol Biol Rep 2022; 49:7039-7056. [PMID: 35717474 DOI: 10.1007/s11033-022-07620-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND MicroRNAs (miRNAs) are non-coding, endogenous, single-stranded, small (21-25 nucleotides) RNAs. Various target genes at the post-transcriptional stage are modulated by miRNAs that are involved in the regulation of a variety of biological processes such as embryonic development, differentiation, proliferation, apoptosis, inflammation, and metabolic homeostasis. Abnormal miRNA expression is strongly associated with the pathogenesis of multiple common human diseases including cardiovascular diseases, cancer, hepatitis, and metabolic diseases. METHODS AND RESULTS Various signaling pathways including transforming growth factor-β, apoptosis, and Wnt signaling pathways have also been characterized to play an essential role in kidney diseases. Most importantly, miRNA-targeted pharmaceutical manipulation has represented a promising new therapeutic approach against kidney diseases. Furthermore, miRNAs such as miR-30e-5p, miR-98-5p, miR-30d-5p, miR-30a-5p, miR-194-5p, and miR-192-5p may be potentially employed as biomarkers for various human kidney diseases. CONCLUSIONS A significant correlation has also been found between some miRNAs and the clinical markers of renal function like baseline estimated glomerular filtration rate (eGFR). Classification of miRNAs in different genetic renal disorders may promote discoveries in developing innovative therapeutic interventions and treatment tools. Herein, the recent advances in miRNAs associated with renal pathogenesis, emphasizing genetic kidney diseases and development, have been summarized.
Collapse
Affiliation(s)
- Hassan Askari
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ehsan Raeis-Abdollahi
- Applied Physiology Research Center, Qom Medical Sciences, Islamic Azad University, Qom, Iran.,Department of Basic Medical Sciences, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran
| | - Mohammad Foad Abazari
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Akrami
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Vakili
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Savardashtaki
- Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nima Sanadgol
- Institute of Neuroanatomy, RWTH University Hospital Aachen, 52074, Aachen, Germany
| | - Asaad Azarnezhad
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Leila Rahmati
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Payman Raise Abdullahi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shohreh Zare Karizi
- Department of Biology, Varamin Pishva Branch, Islamic Azad University, Pishva, Varamin, Iran.
| | - Ali Reza Safarpour
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
9
|
Diallo I, Husseini Z, Guellal S, Vion E, Ho J, Kozak RA, Kobinger GP, Provost P. Ebola Virus Encodes Two microRNAs in Huh7-Infected Cells. Int J Mol Sci 2022; 23:ijms23095228. [PMID: 35563619 PMCID: PMC9106010 DOI: 10.3390/ijms23095228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 12/04/2022] Open
Abstract
MicroRNAs (miRNAs) are important gene regulatory molecules involved in a broad range of cellular activities. Although the existence and functions of miRNAs are clearly defined and well established in eukaryotes, this is not always the case for those of viral origin. Indeed, the existence of viral miRNAs is the subject of intense controversy, especially those of RNA viruses. Here, we characterized the miRNA transcriptome of cultured human liver cells infected or not with either of the two Ebola virus (EBOV) variants: Mayinga or Makona; or with Reston virus (RESTV). Bioinformatic analyses revealed the presence of two EBOV-encoded miRNAs, miR-MAY-251 and miR-MAK-403, originating from the EBOV Mayinga and Makona variants, respectively. From the miRDB database, miR-MAY-251 and miR-MAK-403 displayed on average more than 700 potential human host target candidates, 25% of which had a confidence score higher than 80%. By RT-qPCR and dual luciferase assays, we assessed the potential regulatory effect of these two EBOV miRNAs on selected host mRNA targets. Further analysis of Panther pathways unveiled that these two EBOV miRNAs, in addition to general regulatory functions, can potentially target genes involved in the hemorrhagic phenotype, regulation of viral replication and modulation of host immune defense.
Collapse
Affiliation(s)
- Idrissa Diallo
- Centre Hospitalier Universitaire de Québec Research Center/CHUL Pavilion, Quebec, QC G1V 4G2, Canada; (I.D.); (Z.H.); (S.G.); (E.V.); (J.H.)
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada
| | - Zeinab Husseini
- Centre Hospitalier Universitaire de Québec Research Center/CHUL Pavilion, Quebec, QC G1V 4G2, Canada; (I.D.); (Z.H.); (S.G.); (E.V.); (J.H.)
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada
| | - Sara Guellal
- Centre Hospitalier Universitaire de Québec Research Center/CHUL Pavilion, Quebec, QC G1V 4G2, Canada; (I.D.); (Z.H.); (S.G.); (E.V.); (J.H.)
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada
| | - Elodie Vion
- Centre Hospitalier Universitaire de Québec Research Center/CHUL Pavilion, Quebec, QC G1V 4G2, Canada; (I.D.); (Z.H.); (S.G.); (E.V.); (J.H.)
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada
| | - Jeffrey Ho
- Centre Hospitalier Universitaire de Québec Research Center/CHUL Pavilion, Quebec, QC G1V 4G2, Canada; (I.D.); (Z.H.); (S.G.); (E.V.); (J.H.)
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada
| | - Robert A. Kozak
- Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3B 3M9, Canada;
- Division of Microbiology, Department of Laboratory Medicine & Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Gary P. Kobinger
- Galveston National Laboratory, Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77550, USA;
| | - Patrick Provost
- Centre Hospitalier Universitaire de Québec Research Center/CHUL Pavilion, Quebec, QC G1V 4G2, Canada; (I.D.); (Z.H.); (S.G.); (E.V.); (J.H.)
- Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec, QC G1V 4G2, Canada
- Correspondence: ; Tel.: +1-418-525-4444 (ext. 48842)
| |
Collapse
|
10
|
Rabuma T, Gupta OP, Chhokar V. Recent advances and potential applications of cross-kingdom movement of miRNAs in modulating plant's disease response. RNA Biol 2022; 19:519-532. [PMID: 35442163 PMCID: PMC9037536 DOI: 10.1080/15476286.2022.2062172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In the recent past, cross-kingdom movement of miRNAs, small (20–25 bases), and endogenous regulatory RNA molecules has emerged as one of the major research areas to understand the potential implications in modulating the plant’s biotic stress response. The current review discussed the recent developments in the mechanism of cross-kingdom movement (long and short distance) and critical cross-talk between host’s miRNAs in regulating gene function in bacteria, fungi, viruses, insects, and nematodes, and vice-versa during host-pathogen interaction and their potential implications in crop protection. Moreover, cross-kingdom movement during symbiotic interaction, the emerging role of plant’s miRNAs in modulating animal’s gene function, and feasibility of spray-induced gene silencing (SIGS) in combating biotic stresses in plants are also critically evaluated. The current review article analysed the horizontal transfer of miRNAs among plants, animals, and microbes that regulates gene expression in the host or pathogenic organisms, contributing to crop protection. Further, it highlighted the challenges and opportunities to harness the full potential of this emerging approach to mitigate biotic stress efficiently.
Collapse
Affiliation(s)
- Tilahun Rabuma
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, INDIA.,Department of Biotechnology, College of Natural and Computational Science, Wolkite University, Wolkite, Ethiopia
| | - Om Prakash Gupta
- Division of Quality and Basic Sciences, ICAR-Indian Institute of Wheat and Barley Research, Karnal, INDIA
| | - Vinod Chhokar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, INDIA
| |
Collapse
|
11
|
Saiyed AN, Vasavada AR, Johar SRK. Recent trends in miRNA therapeutics and the application of plant miRNA for prevention and treatment of human diseases. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022; 8:24. [PMID: 35382490 PMCID: PMC8972743 DOI: 10.1186/s43094-022-00413-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/21/2022] [Indexed: 02/17/2023] Open
Abstract
Background Researchers now have a new avenue to investigate when it comes to miRNA-based therapeutics. miRNAs have the potential to be valuable biomarkers for disease detection. Variations in miRNA levels may be able to predict changes in normal physiological processes. At the epigenetic level, miRNA has been identified as a promising candidate for distinguishing and treating various diseases and defects. Main body In recent pharmacology, plants miRNA-based drugs have demonstrated a potential role in drug therapeutics. The purpose of this review paper is to discuss miRNA-based therapeutics, the role of miRNA in pharmacoepigenetics modulations, plant miRNA inter-kingdom regulation, and the therapeutic value and application of plant miRNA for cross-kingdom approaches. Target prediction and complementarity with host genes, as well as cross-kingdom gene interactions with plant miRNAs, are also revealed by bioinformatics research. We also show how plant miRNA can be transmitted from one species to another by crossing kingdom boundaries in this review. Despite several unidentified barriers to plant miRNA cross-transfer, plant miRNA-based gene regulation in trans-kingdom gene regulation may soon be valued as a possible approach in plant-based drug therapeutics. Conclusion This review summarised the biochemical synthesis of miRNAs, pharmacoepigenetics, drug therapeutics and miRNA transkingdom transfer.
Collapse
Affiliation(s)
- Atiyabanu N. Saiyed
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat India
- Ph.D. scholar of Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Abhay R. Vasavada
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat India
| | - S. R. Kaid Johar
- Department of Zoology, BMTC, Human Genetics, USSC, Gujarat University, Ahmedabad, Gujarat India
| |
Collapse
|
12
|
Liang C, Huang M, Li T, Li L, Sussman H, Dai Y, Siemann DW, Xie M, Tang X. Towards an integrative understanding of cancer mechanobiology: calcium, YAP, and microRNA under biophysical forces. SOFT MATTER 2022; 18:1112-1148. [PMID: 35089300 DOI: 10.1039/d1sm01618k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An increasing number of studies have demonstrated the significant roles of the interplay between microenvironmental mechanics in tissues and biochemical-genetic activities in resident tumor cells at different stages of tumor progression. Mediated by molecular mechano-sensors or -transducers, biomechanical cues in tissue microenvironments are transmitted into the tumor cells and regulate biochemical responses and gene expression through mechanotransduction processes. However, the molecular interplay between the mechanotransduction processes and intracellular biochemical signaling pathways remains elusive. This paper reviews the recent advances in understanding the crosstalk between biomechanical cues and three critical biochemical effectors during tumor progression: calcium ions (Ca2+), yes-associated protein (YAP), and microRNAs (miRNAs). We address the molecular mechanisms underpinning the interplay between the mechanotransduction pathways and each of the three effectors. Furthermore, we discuss the functional interactions among the three effectors in the context of soft matter and mechanobiology. We conclude by proposing future directions on studying the tumor mechanobiology that can employ Ca2+, YAP, and miRNAs as novel strategies for cancer mechanotheraputics. This framework has the potential to bring insights into the development of novel next-generation cancer therapies to suppress and treat tumors.
Collapse
Affiliation(s)
- Chenyu Liang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| | - Miao Huang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| | - Tianqi Li
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
| | - Lu Li
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
| | - Hayley Sussman
- Department of Radiation Oncology, COM, Gainesville, FL, 32611, USA
| | - Yao Dai
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- UF Genetics Institute (UFGI), University of Florida (UF), Gainesville, FL, 32611, USA
| | - Dietmar W Siemann
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- UF Genetics Institute (UFGI), University of Florida (UF), Gainesville, FL, 32611, USA
| | - Mingyi Xie
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
- Department of Biochemistry and Molecular Biology, College of Medicine (COM), Gainesville, FL, 32611, USA.
- Department of Biomedical Engineering, College of Engineering (COE), University of Delaware (UD), Newark, DE, 19716, USA
| | - Xin Tang
- Department of Mechanical & Aerospace Engineering, Herbert Wertheim College of Engineering (HWCOE), Gainesville, FL, 32611, USA.
- UF Health Cancer Center (UFHCC), Gainesville, FL, 32611, USA
| |
Collapse
|
13
|
Fields CJ, Li L, Hiers NM, Li T, Sheng P, Huda T, Shan J, Gay L, Gu T, Bian J, Kilberg MS, Renne R, Xie M. Sequencing of Argonaute-bound microRNA/mRNA hybrids reveals regulation of the unfolded protein response by microRNA-320a. PLoS Genet 2021; 17:e1009934. [PMID: 34914716 PMCID: PMC8675727 DOI: 10.1371/journal.pgen.1009934] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 11/08/2021] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNA) are short non-coding RNAs widely implicated in gene regulation. Most metazoan miRNAs utilize the RNase III enzymes Drosha and Dicer for biogenesis. One notable exception is the RNA polymerase II transcription start sites (TSS) miRNAs whose biogenesis does not require Drosha. The functional importance of the TSS-miRNA biogenesis is uncertain. To better understand the function of TSS-miRNAs, we applied a modified Crosslinking, Ligation, and Sequencing of Hybrids on Argonaute (AGO-qCLASH) to identify the targets for TSS-miRNAs in HCT116 colorectal cancer cells with or without DROSHA knockout. We observed that miR-320a hybrids dominate in TSS-miRNA hybrids identified by AGO-qCLASH. Targets for miR-320a are enriched for the eIF2 signaling pathway, a downstream component of the unfolded protein response. Consistently, in miR-320a mimic- and antagomir- transfected cells, differentially expressed gene products are associated with eIF2 signaling. Within the AGO-qCLASH data, we identified the endoplasmic reticulum (ER) chaperone calnexin as a direct miR-320a down-regulated target, thus connecting miR-320a to the unfolded protein response. During ER stress, but not amino acid deprivation, miR-320a up-regulates ATF4, a critical transcription factor for resolving ER stress. In summary, our study investigates the targetome of the TSS-miRNAs in colorectal cancer cells and establishes miR-320a as a regulator of unfolded protein response.
Collapse
Affiliation(s)
- Christopher J. Fields
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Lu Li
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Nicholas M. Hiers
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Tianqi Li
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Peike Sheng
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Taha Huda
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - Jixiu Shan
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Lauren Gay
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - Tongjun Gu
- Bioinformatics, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, United States of America
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, University of Florida, College of Medicine, Gainesville, Florida, United States of America
| | - Michael S. Kilberg
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
| | - Rolf Renne
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
- Department of Molecular Genetics and Microbiology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
- UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, University of Florida, College of Medicine, Gainesville, Florida, United States of America
- UF Health Cancer Center, University of Florida, Gainesville, Florida, United States of America
- UF Genetics Institute, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| |
Collapse
|
14
|
Barreñada O, Larriba E, Brieño-Enriquez MA, Mazo JD. piRNA-IPdb: a PIWI-bound piRNAs database to mining NGS sncRNA data and beyond. BMC Genomics 2021; 22:765. [PMID: 34702185 PMCID: PMC8549166 DOI: 10.1186/s12864-021-08071-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/10/2021] [Indexed: 11/10/2022] Open
Abstract
Background PIWI-interacting RNAs (piRNAs) are an abundant single-stranded type of small non-coding RNAs (sncRNAs), which initially were discovered in gonadal cells, with a role as defenders of genomic integrity in the germline, acting against the transposable elements. With a regular size range of 21-35 nt, piRNAs are associated with a PIWI-clade of Argonaute family proteins. The most widely accepted mechanisms of biogenesis for piRNAs involve the transcription of longer precursors of RNAs to be processed, by complexes of proteins, to functional size, preferentially accommodating uridine residues at the 5’ end and 3’ methylation to increase the stability of these molecules. piRNAs have also been detected in somatic cells, with diverse potential functions, indicating their high plasticity and pleiotropic activity. Discovered about two decades ago, piRNAs are a large and versatile type of sncRNA and that remain insufficiently identified and analyzed, through next-generation sequencing (NGS), to evaluate their processing, functions, and biogenesis in different cell types and during development. piRNAs’ distinction from other sncRNAs has led to controversial results and interpretation difficulties when using existing databases because of the heterogeneity of the criteria used in making the distinction. Description We present “piRNA-IPdb”, a database based uniquely on datasets obtaining after the defining characteristic of piRNAs: those small RNAs bound to PIWI proteins. We selected and analyzed sequences from piRBase that exclusively cover the binding to PIWI. We pooled a total of 18,821,815 sequences from RNA-seq after immunoprecipitation that included the binding to any of the mouse PIWI proteins (MILI, MIWI, or MIWI2). Conclusions In summary, we present the characteristics and potential use of piRNA-IPdb database for the analysis of bona fide piRNAs.
Collapse
Affiliation(s)
- Odei Barreñada
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Ramiro de Maeztu, 9, 28040, Madrid, Spain
| | - Eduardo Larriba
- Institute of Bioengineering, University "Miguel Hernández", 03202, Elche, Spain
| | - Miguel A Brieño-Enriquez
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Jesús Del Mazo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Ramiro de Maeztu, 9, 28040, Madrid, Spain.
| |
Collapse
|
15
|
Anti-Hepatocellular Carcinoma Biomolecules: Molecular Targets Insights. Int J Mol Sci 2021; 22:ijms221910774. [PMID: 34639131 PMCID: PMC8509806 DOI: 10.3390/ijms221910774] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/25/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022] Open
Abstract
This report explores the available curative molecules directed against hepatocellular carcinoma (HCC). Limited efficiency as well as other drawbacks of existing molecules led to the search for promising potential alternatives. Understanding of the cell signaling mechanisms propelling carcinogenesis and driven by cell proliferation, invasion, and angiogenesis can offer valuable information for the investigation of efficient treatment strategies. The complexity of the mechanisms behind carcinogenesis inspires researchers to explore the ability of various biomolecules to target specific pathways. Natural components occurring mainly in food and medicinal plants, are considered an essential resource for discovering new and promising therapeutic molecules. Novel biomolecules normally have an advantage in terms of biosafety. They are also widely diverse and often possess potent antioxidant, anti-inflammatory, and anti-cancer properties. Based on quantitative structure-activity relationship studies, biomolecules can be used as templates for chemical modifications that improve efficiency, safety, and bioavailability. In this review, we focus on anti-HCC biomolecules that have their molecular targets partially or completely characterized as well as having anti-cancer molecular mechanisms that are fairly described.
Collapse
|
16
|
Paul S, Bravo Vázquez LA, Uribe SP, Manzanero Cárdenas LA, Ruíz Aguilar MF, Chakraborty S, Sharma A. Roles of microRNAs in carbohydrate and lipid metabolism disorders and their therapeutic potential. Biochimie 2021; 187:83-93. [PMID: 34082043 DOI: 10.1016/j.biochi.2021.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are small (∼21 nucleotides), endogenous, non-coding RNA molecules implicated in the post-transcriptional gene regulation performed through target mRNA cleavage or translational inhibition. In recent years, several investigations have demonstrated that miRNAs are involved in regulating both carbohydrate and lipid homeostasis in humans and other organisms. Moreover, it has been observed that the dysregulation of these metabolism-related miRNAs leads to the development of several metabolic disorders, such as type 2 diabetes, obesity, nonalcoholic fatty liver, insulin resistance, and hyperlipidemia. Hence, in this current review, with the aim to impulse the research arena of the micro-transcriptome implications in vital metabolic pathways as well as to highlight the remarkable potential of miRNAs as therapeutic targets for metabolic disorders in humans, we provide an overview of the regulatory roles of metabolism-associated miRNAs in humans and murine models.
Collapse
Affiliation(s)
- Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc, San Pablo, CP 76130, Querétaro, Mexico.
| | - Luis Alberto Bravo Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc, San Pablo, CP 76130, Querétaro, Mexico
| | - Samantha Pérez Uribe
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc, San Pablo, CP 76130, Querétaro, Mexico
| | - Luis Aarón Manzanero Cárdenas
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Ciudad de Mexico, Calle del Puente, No. 222 Col. Ejidos de Huipulco, Tlalpan, CP 14380, Mexico City, Mexico
| | - María Fernanda Ruíz Aguilar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Ciudad de Mexico, Calle del Puente, No. 222 Col. Ejidos de Huipulco, Tlalpan, CP 14380, Mexico City, Mexico
| | - Samik Chakraborty
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, MA, 02115, USA
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc, San Pablo, CP 76130, Querétaro, Mexico.
| |
Collapse
|
17
|
Stribling D, Lei Y, Guardia CM, Li L, Fields CJ, Nowialis P, Opavsky R, Renne R, Xie M. A noncanonical microRNA derived from the snaR-A noncoding RNA targets a metastasis inhibitor. RNA (NEW YORK, N.Y.) 2021; 27:694-709. [PMID: 33795480 PMCID: PMC8127991 DOI: 10.1261/rna.078694.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/24/2021] [Indexed: 05/04/2023]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that function as critical posttranscriptional regulators in various biological processes. While most miRNAs are generated from processing of long primary transcripts via sequential Drosha and Dicer cleavage, some miRNAs that bypass Drosha cleavage can be transcribed as part of another small noncoding RNA. Here, we develop the target-oriented miRNA discovery (TOMiD) bioinformatic analysis method to identify Drosha-independent miRNAs from Argonaute crosslinking and sequencing of hybrids (Ago-CLASH) data sets. Using this technique, we discovered a novel miRNA derived from a primate specific noncoding RNA, the small NF90 associated RNA A (snaR-A). The miRNA derived from snaR-A (miR-snaR) arises independently of Drosha processing but requires Exportin-5 and Dicer for biogenesis. We identify that miR-snaR is concurrently up-regulated with the full snaR-A transcript in cancer cells. Functionally, miR-snaR associates with Ago proteins and targets NME1, a key metastasis inhibitor, contributing to snaR-A's role in promoting cancer cell migration. Our findings suggest a functional link between a novel miRNA and its precursor noncoding RNA.
Collapse
Affiliation(s)
- Daniel Stribling
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610, USA
- UF Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
- UF Informatics Institute, University of Florida, Gainesville, Florida 32611, USA
| | - Yi Lei
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, USA
| | - Casey M Guardia
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, USA
| | - Lu Li
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, USA
| | - Christopher J Fields
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, USA
| | - Pawel Nowialis
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, USA
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida 32610, USA
| | - Rene Opavsky
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, USA
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, Florida 32610, USA
| | - Rolf Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, Florida 32610, USA
- UF Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
- UF Informatics Institute, University of Florida, Gainesville, Florida 32611, USA
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, USA
| | - Mingyi Xie
- UF Genetics Institute, University of Florida, Gainesville, Florida 32610, USA
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, Florida 32610, USA
| |
Collapse
|
18
|
Cao P, Jin Q, Feng L, Li H, Qin G, Zhou G. Emerging roles and potential clinical applications of noncoding RNAs in hepatocellular carcinoma. Semin Cancer Biol 2020; 75:136-152. [PMID: 32931952 DOI: 10.1016/j.semcancer.2020.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma(HCC) is one of the most common forms of cancer, and accounts for a high proportion of cancer-associated deaths. Growing evidences have demonstrated that non- protein-coding regions of the genome could give rise to transcripts, termed noncoding RNA (ncRNA), that form novel functional layers of the cellular activity. ncRNAs are implicated in different molecular mechanisms and functions at transcriptional, translational and post-translational levels. An increasing number of studies have demonstrated a complex array of molecular and cellular functions of ncRNAs in different stages of the HCC tumorigenesis, either in an oncogenic or tumor-suppressive manner. As a result, several pre-clinical studies have highlighted the great potentials of ncRNAs as novel biomarkers for cancer diagnosis or therapeutics in targeting HCC progression. In this review, we briefly described the characteristics of several representative ncRNAs and summarized the latest findings of their roles and mechanisms in the development of HCC, in order to better understand the cancer biology and their potential clinical applications in this malignancy.
Collapse
Affiliation(s)
- Pengbo Cao
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Qian Jin
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lan Feng
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China
| | - Haibei Li
- Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin Institute of Environmental & Operational Medicine, Tianjin City, China
| | - Geng Qin
- State Key Laboratory of Rare Earth Resources Utilization and Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun City, China
| | - Gangqiao Zhou
- State Key Laboratory of Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, Beijing, China; Collaborative Innovation Center for Personalized Cancer Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing City, China; Medical College, Guizhou University, Guiyang City, China.
| |
Collapse
|
19
|
Song Y, Xu Z, Wang F. Genetically Encoded Reporter Genes for MicroRNA Imaging in Living Cells and Animals. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:555-567. [PMID: 32721876 PMCID: PMC7390858 DOI: 10.1016/j.omtn.2020.06.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/12/2020] [Accepted: 06/24/2020] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by base paring with the complementary sequences of the target mRNAs, and then exert their function through degrading mRNA or inhibiting protein translation. They play a significant role as a regulatory factor in biological processes of organism development, cell proliferation, differentiation, and cell death. Some of the traditional methods for studying miRNAs, such as northern blot, real-time PCR, or microarray, have been extensively used to investigate the biological properties and expression patterns of miRNAs. However, these methods often require considerable time, cell samples, and the design of effective primers or specific probes. Therefore, in order to gain a deeper understanding of the role of miRNAs in biological processes and accelerate the clinical application of miRNAs in the field of disease treatment, non-invasive, sensitive, and efficient imaging methods are needed to visualize the dynamic expression of miRNAs in living cells and animals. In this study, we reviewed the recent progress in the genetically encoded reporter genes for miRNA imaging.
Collapse
Affiliation(s)
- Yingzhuang Song
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Zhijing Xu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Fu Wang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, China.
| |
Collapse
|
20
|
Li J, Hou L, Sun Y, Xing J, Jiang Y, Kang L. Single nucleotide polymorphism rs737028527 (G>A) affect miR-1b-3p biogenesis and effects on chicken egg-laying traits. Anim Reprod Sci 2020; 218:106476. [PMID: 32507256 DOI: 10.1016/j.anireprosci.2020.106476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022]
Abstract
The abundance of miR-1b-3p in the chicken ovary is greater after sexual maturation. In the present study there was assessment of whether a single nucleotine polymorphism (SNP) led to an alteration in expression of reproductive traits. The miR-1b-3p abundance was greatest in ovarian follicles The SNP site of rs737028527 (G > A), located in the 734 bp upstream region of pre-miR-1b-3p, was identified in three different chicken breeds. Results from an association analysis of chicken egg-laying traits indicated the SNP was associated with age at first egg production (AFE) and egg number at 32 and 48 weeks (E32, E48; P < 0.01). Hens with genotype AA had an earlier AFE and greater E32 and E48 than hens with other genotypes. The abundance of mature miR-1b-3p in the hens with the GG genotype was larger than those with the AA genotype (P < 0.01), and the luciferase activity of GG genotype promoter was also greater in birds with the AA than GG genotype (P < 0.05). There was inhibition of the production of the transcription factor bound by the specificity protein 1 (Sp1) as a result of the G-to-A mutation, and the luciferase activity of the GG, but not AA, genotype was markedly increased by Sp1. In conclusion, the SNP, rs737028527 (G> A), affected the abundance of mature miR-1b-3p by Sp1 and was associated with chicken egg-laying traits. Data from the present study allow for an increased understanding of the functions and regulation of miR-1b-3p in ovarian follicle development of hens.
Collapse
Affiliation(s)
- Jianbo Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Li Hou
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Jinyi Xing
- School of Life Science, Linyi University, Linyi 276000, China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| | - Li Kang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
21
|
Withers JB, Mondol V, Pawlica P, Rosa-Mercado NA, Tycowski KT, Ghasempur S, Torabi SF, Steitz JA. Idiosyncrasies of Viral Noncoding RNAs Provide Insights into Host Cell Biology. Annu Rev Virol 2019; 6:297-317. [PMID: 31039329 PMCID: PMC6768742 DOI: 10.1146/annurev-virology-092818-015811] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Like their host cells, many viruses express noncoding RNAs (ncRNAs). Despite the technical challenge of ascribing function to ncRNAs, diverse biological roles for virally expressed ncRNAs have been described, including regulation of viral replication, modulation of host gene expression, host immune evasion, cellular survival, and cellular transformation. Insights into conserved interactions between viral ncRNAs and host cell machinery frequently lead to novel findings concerning host cell biology. In this review, we discuss the functions and biogenesis of ncRNAs produced by animal viruses. Specifically, we describe noncanonical pathways of microRNA (miRNA) biogenesis and novel mechanisms used by viruses to manipulate miRNA and messenger RNA stability. We also highlight recent advances in understanding the function of viral long ncRNAs and circular RNAs.
Collapse
Affiliation(s)
- Johanna B Withers
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Vanessa Mondol
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
| | - Paulina Pawlica
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
| | - Nicolle A Rosa-Mercado
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
| | - Kazimierz T Tycowski
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Salehe Ghasempur
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
| | - Seyed F Torabi
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| |
Collapse
|
22
|
Khan S, Ayub H, Khan T, Wahid F. MicroRNA biogenesis, gene silencing mechanisms and role in breast, ovarian and prostate cancer. Biochimie 2019; 167:12-24. [PMID: 31493469 DOI: 10.1016/j.biochi.2019.09.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/01/2019] [Indexed: 12/21/2022]
Abstract
Micro-ribonucleic acids (miRNAs) are important class of short regulatory RNA molecules involved in regulation of several essential biological processes. In addition to Dicer and Drosha, over the past few years several other gene products are discovered that regulates miRNA biogenesis pathways. Similarly, various models of molecular mechanisms underlying miRNA mediated gene silencing have been uncovered through which miRNA contribute in diverse physiological and pathological processes. Dysregulated miRNA expression has been reported in many cancers manifesting tumor suppressive or oncogenic role. In this review, critical overview of recent findings in miRNA biogenesis, silencing mechanisms and specifically the role of miRNA in breast, ovarian and prostate cancer will be described. Recent advancements in miRNA research summarized in this review will enhance the molecular understanding of miRNA biogenesis and mechanism of action. Also, role of miRNAs in pathogenesis of breast, ovarian and prostate cancer will provide the insights for the use of miRNAs as biomarker or therapeutic agents for the cancers.
Collapse
Affiliation(s)
- Sanna Khan
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Humaira Ayub
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Taous Khan
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan
| | - Fazli Wahid
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, 22060, Pakistan.
| |
Collapse
|
23
|
Ressel S, Rosca A, Gordon K, Buck AH. Extracellular RNA in viral-host interactions: Thinking outside the cell. WILEY INTERDISCIPLINARY REVIEWS. RNA 2019; 10:e1535. [PMID: 30963709 PMCID: PMC6617787 DOI: 10.1002/wrna.1535] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/15/2022]
Abstract
Small RNAs and their associated RNA interference (RNAi) pathways underpin diverse mechanisms of gene regulation and genome defense across all three kingdoms of life and are integral to virus-host interactions. In plants, fungi and many animals, an ancestral RNAi pathway exists as a host defense mechanism whereby viral double-stranded RNA is processed to small RNAs that enable recognition and degradation of the virus. While this antiviral RNAi pathway is not generally thought to be present in mammals, other RNAi mechanisms can influence infection through both viral- and host-derived small RNAs. Furthermore, a burgeoning body of data suggests that small RNAs in mammals can function in a non-cell autonomous manner to play various roles in cell-to-cell communication and disease through their transport in extracellular vesicles. While vesicular small RNAs have not been proposed as an antiviral defense pathway per se, there is increasing evidence that the export of host- or viral-derived RNAs from infected cells can influence various aspects of the infection process. This review discusses the current knowledge of extracellular RNA functions in viral infection and the technical challenges surrounding this field of research. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > RNAi: Mechanisms of Action.
Collapse
Affiliation(s)
- Sarah Ressel
- Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Adelina Rosca
- Department of VirologyCarol Davila University of Medicine and PharmacyBucharestRomania
| | - Katrina Gordon
- Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Amy H. Buck
- Institute of Immunology and Infection Research, School of Biological SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
24
|
Fuschi P, Maimone B, Gaetano C, Martelli F. Noncoding RNAs in the Vascular System Response to Oxidative Stress. Antioxid Redox Signal 2019; 30:992-1010. [PMID: 28683564 DOI: 10.1089/ars.2017.7229] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE Redox homeostasis plays a pivotal role in vascular cell function and its imbalance has a causal role in a variety of vascular diseases. Accordingly, the response of mammalian cells to redox cues requires precise transcriptional and post-transcriptional modulation of gene expression patterns. Recent Advances: Mounting evidence shows that nonprotein-coding RNAs (ncRNAs) are important for the functional regulation of most, if not all, cellular processes and tissues. Not surprisingly, a prominent role of ncRNAs has been identified also in the vascular system response to oxidative stress. CRITICAL ISSUES The highly heterogeneous family of ncRNAs has been divided into several groups. In this article we focus on two classes of regulatory ncRNAs: microRNAs and long ncRNAs (lncRNAs). Although knowledge in many circumstances, and especially for lncRNAs, is still fragmentary, ncRNAs are clinically interesting because of their diagnostic and therapeutic potential. We outline ncRNAs that are regulated by oxidative stress as well as ncRNAs that modulate reactive oxygen species production and scavenging. More importantly, we describe the role of these ncRNAs in vascular physiopathology and specifically in disease conditions wherein oxidative stress plays a crucial role, such as hypoxia and ischemia, ischemia reperfusion, inflammation, diabetes mellitus, and atherosclerosis. FUTURE DIRECTIONS The therapeutic potential of ncRNAs in vascular diseases and in redox homeostasis is discussed.
Collapse
Affiliation(s)
- Paola Fuschi
- 1 Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Milan, Italy
| | - Biagina Maimone
- 1 Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Milan, Italy
| | - Carlo Gaetano
- 2 Division of Cardiovascular Epigenetics, Department of Cardiology, Goethe University, Frankfurt am Main, Germany
| | - Fabio Martelli
- 1 Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Milan, Italy
| |
Collapse
|
25
|
Sheng P, Fields C, Aadland K, Wei T, Kolaczkowski O, Gu T, Kolaczkowski B, Xie M. Dicer cleaves 5'-extended microRNA precursors originating from RNA polymerase II transcription start sites. Nucleic Acids Res 2018; 46:5737-5752. [PMID: 29746670 PMCID: PMC6009592 DOI: 10.1093/nar/gky306] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/01/2018] [Accepted: 04/11/2018] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs) are approximately 22 nucleotide (nt) long and play important roles in post-transcriptional regulation in both plants and animals. In animals, precursor (pre-) miRNAs are ∼70 nt hairpins produced by Drosha cleavage of long primary (pri-) miRNAs in the nucleus. Exportin-5 (XPO5) transports pre-miRNAs into the cytoplasm for Dicer processing. Alternatively, pre-miRNAs containing a 5' 7-methylguanine (m7G-) cap can be generated independently of Drosha and XPO5. Here we identify a class of m7G-capped pre-miRNAs with 5' extensions up to 39 nt long. The 5'-extended pre-miRNAs are transported by Exportin-1 (XPO1). Unexpectedly, a long 5' extension does not block Dicer processing. Rather, Dicer directly cleaves 5'-extended pre-miRNAs by recognizing its 3' end to produce mature 3p miRNA and extended 5p miRNA both in vivo and in vitro. The recognition of 5'-extended pre-miRNAs by the Dicer Platform-PAZ-Connector (PPC) domain can be traced back to ancestral animal Dicers, suggesting that this previously unrecognized Dicer reaction mode is evolutionarily conserved. Our work reveals additional genetic sources for small regulatory RNAs and substantiates Dicer's essential role in RNAi-based gene regulation.
Collapse
Affiliation(s)
- Peike Sheng
- Department of Biochemistry and Molecular Biology
- UF Health Cancer Center
| | | | - Kelsey Aadland
- Department of Microbiology & Cell Science, Institute of Food and Agricultural Sciences
| | - Tianqi Wei
- Department of Biochemistry and Molecular Biology
| | - Oralia Kolaczkowski
- Department of Microbiology & Cell Science, Institute of Food and Agricultural Sciences
| | - Tongjun Gu
- Interdisciplinary Center for Biotechnology Research
| | - Bryan Kolaczkowski
- Department of Microbiology & Cell Science, Institute of Food and Agricultural Sciences
- UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology
- UF Health Cancer Center
- UF Genetics Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
26
|
The Involvement of MicroRNAs in Modulation of Innate and Adaptive Immunity in Systemic Lupus Erythematosus and Lupus Nephritis. J Immunol Res 2018; 2018:4126106. [PMID: 29854836 PMCID: PMC5964414 DOI: 10.1155/2018/4126106] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 04/03/2018] [Indexed: 12/20/2022] Open
Abstract
Noncoding RNAs (ncRNAs), including microRNAs (miRNAs), represent a family of RNA molecules that do not translate into protein. Nevertheless, they have the ability to regulate gene expression and play an essential role in immune cell differentiation and function. MicroRNAs were found to be differentially expressed in various tissues, and changes in their expression have been associated with several pathological processes. Yet, their roles in systemic lupus erythematosus (SLE) and lupus nephritis (LN) remain to be elucidated. Both SLE and LN are characterized by a complex dysfunction of the innate and adaptive immunity. Recently, significant findings have been made in understanding SLE through the use of genetic variant identification and expression pattern analysis and mouse models, as well as epigenetic analyses. Abnormalities in immune cell responses, cytokine and chemokine production, cell activation, and apoptosis have been linked to a unique expression pattern of a number of miRNAs that have been implicated in the immune pathogenesis of this autoimmune disease. The recent evidence that significantly increased the understanding of the pathogenesis of SLE drives a renewed interest in efficient therapy targets. This review aims at providing an overview of the current state of research on the expression and role of miRNAs in the immune pathogenesis of SLE and LN.
Collapse
|
27
|
Li S, Yao J, Xie M, Liu Y, Zheng M. Exosomal miRNAs in hepatocellular carcinoma development and clinical responses. J Hematol Oncol 2018; 11:54. [PMID: 29642941 PMCID: PMC5896112 DOI: 10.1186/s13045-018-0579-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/21/2018] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma remains the sixth most lethal malignancy in the world. While HCC is often diagnosed via current biomarkers at a late stage, early detection of HCC has proven to be very difficult. Recent studies have focused on using exosomal miRNAs in clinical diagnostics and therapeutics, because they have improved stability in exosomes than as free miRNAs themselves. Exosomal miRNAs act through novel mechanisms for inducing cellular responses in a variety of biological circumstances. Dysregulated expression of miRNAs in exosomes can also accelerate HCC progression, including cell proliferation and metastasis, via alteration of a network of genes. Growing evidence demonstrates that exosomal miRNAs can affect many aspects of physiological and pathological conditions in HCC and indicates that miRNAs in exosomes can not only serve as sensitive biomarkers for cancer diagnostics and recurrence but can also potentially be used as therapeutics to target HCC progression. In this review, we summarize the latest findings between exosomal miRNAs and HCC, in order to better comprehend the functions and applications in HCC. Moreover, we discuss critical issues to consider when developing anti-tumor exosomal miRNAs as a novel therapeutic strategy for treating HCC in the clinic.
Collapse
Affiliation(s)
- Shuangshuang Li
- Zhejiang University First Affiliated Hospital State Key Laboratory for Diagnosis and Treatment of Infectious Diseases,Clinical research center for hepatobiliary and pancreatic diseases of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jiping Yao
- Zhejiang University First Affiliated Hospital State Key Laboratory for Diagnosis and Treatment of Infectious Diseases,Clinical research center for hepatobiliary and pancreatic diseases of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Mingjie Xie
- Zhejiang University First Affiliated Hospital State Key Laboratory for Diagnosis and Treatment of Infectious Diseases,Clinical research center for hepatobiliary and pancreatic diseases of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Yanning Liu
- Zhejiang University First Affiliated Hospital State Key Laboratory for Diagnosis and Treatment of Infectious Diseases,Clinical research center for hepatobiliary and pancreatic diseases of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Min Zheng
- Zhejiang University First Affiliated Hospital State Key Laboratory for Diagnosis and Treatment of Infectious Diseases,Clinical research center for hepatobiliary and pancreatic diseases of Zhejiang Province, Zhejiang University, Hangzhou, China.
| |
Collapse
|
28
|
Abstract
RNA-targeted therapies represent a platform for drug discovery involving chemically modified oligonucleotides, a wide range of cellular RNAs, and a novel target-binding motif, Watson-Crick base pairing. Numerous hurdles considered by many to be impassable have been overcome. Today, four RNA-targeted therapies are approved for commercial use for indications as diverse as Spinal Muscular Atrophy (SMA) and reduction of low-density lipoprotein cholesterol (LDL-C) and by routes of administration including subcutaneous, intravitreal, and intrathecal delivery. The technology is efficient and supports approaching "undruggable" targets. Three additional agents are progressing through registration, and more are in clinical development, representing several chemical and structural classes. Moreover, progress in understanding the molecular mechanisms by which these drugs work has led to steadily better clinical performance and a wide range of mechanisms that may be exploited for therapeutic purposes. Here we summarize the progress, future challenges, and opportunities for this drug discovery platform.
Collapse
Affiliation(s)
- Stanley T Crooke
- Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA.
| | - Joseph L Witztum
- University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - C Frank Bennett
- Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Brenda F Baker
- Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| |
Collapse
|
29
|
Mongelli V, Saleh MC. Bugs Are Not to Be Silenced: Small RNA Pathways and Antiviral Responses in Insects. Annu Rev Virol 2017; 3:573-589. [PMID: 27741406 DOI: 10.1146/annurev-virology-110615-042447] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Like every other organism on Earth, insects are infected with viruses, and they rely on RNA interference (RNAi) mechanisms to circumvent viral infections. A remarkable characteristic of RNAi is that it is both broadly acting, because it is triggered by double-stranded RNA molecules derived from virtually any virus, and extremely specific, because it targets only the particular viral sequence that initiated the process. Reviews covering the different facets of the RNAi antiviral immune response in insects have been published elsewhere. In this review, we build a framework to guide future investigation. We focus on the remaining questions and avenues of research that need to be addressed to move the field forward, including issues such as the activity of viral suppressors of RNAi, comparative genomics, the development of detailed maps of the subcellular localization of viral replication complexes with the RNAi machinery, and the regulation of the antiviral RNAi response.
Collapse
Affiliation(s)
- Vanesa Mongelli
- Viruses and RNA Interference Unit, Department of Virology, CNRS UMR 3569, Institut Pasteur, 75724 Paris Cedex 15, France;
| | - Maria-Carla Saleh
- Viruses and RNA Interference Unit, Department of Virology, CNRS UMR 3569, Institut Pasteur, 75724 Paris Cedex 15, France;
| |
Collapse
|
30
|
Mechtler P, Johnson S, Slabodkin H, Cohanim AB, Brodsky L, Kandel ES. The evidence for a microRNA product of human DROSHA gene. RNA Biol 2017; 14:1508-1513. [PMID: 28665784 DOI: 10.1080/15476286.2017.1342934] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs are short RNA molecules that regulate function and stability of a large subset of eukaryotic mRNAs. In the main pathway of microRNA biogenesis, a short "hairpin" is excised from a primary transcript by ribonuclease DROSHA, followed by additional nucleolytic processing by DICER and inclusion of the mature microRNA into the RNA-induced silencing complex. We report that a microRNA-like molecule is encoded by human DROSHA gene within a predicted stem-loop element of the respective transcript. This putative mature microRNA is complementary to DROSHA transcript variant 1 and can attenuate expression of the corresponding protein. The findings suggest a possibility for a negative feedback loop, wherein DROSHA processes its own transcript and produces an inhibitor of its own biosynthesis.
Collapse
Affiliation(s)
- Peter Mechtler
- a Department of Cell Stress Biology, Roswell Park Cancer Institute , Elm and Carlton Streets, Buffalo , NY , USA
| | - Sydney Johnson
- a Department of Cell Stress Biology, Roswell Park Cancer Institute , Elm and Carlton Streets, Buffalo , NY , USA
| | - Hannah Slabodkin
- a Department of Cell Stress Biology, Roswell Park Cancer Institute , Elm and Carlton Streets, Buffalo , NY , USA
| | - Amir B Cohanim
- b Tauber Bioinformatics Research Center , University of Haifa , Mount Carmel , Haifa , Israel
| | - Leonid Brodsky
- b Tauber Bioinformatics Research Center , University of Haifa , Mount Carmel , Haifa , Israel
| | - Eugene S Kandel
- a Department of Cell Stress Biology, Roswell Park Cancer Institute , Elm and Carlton Streets, Buffalo , NY , USA
| |
Collapse
|
31
|
Antoniali G, Malfatti MC, Tell G. Unveiling the non-repair face of the Base Excision Repair pathway in RNA processing: A missing link between DNA repair and gene expression? DNA Repair (Amst) 2017. [DOI: 10.1016/j.dnarep.2017.06.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
32
|
Harden ME, Munger K. Perturbation of DROSHA and DICER expression by human papillomavirus 16 oncoproteins. Virology 2017; 507:192-198. [PMID: 28448850 DOI: 10.1016/j.virol.2017.04.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 02/07/2023]
Abstract
Many tumors, including cervical carcinoma, show dysregulated expression of the microRNA processing machinery, specifically DROSHA and DICER. Some cervical cancers exhibit chromosome 5p amplifications and DROSHA is the most significantly upregulated transcript and is observed in all tumors with 5p gain. DROSHA and DICER mRNA levels, however, are higher in HPV positive cancer lines than in an HPV negative cervical carcinoma line. We show that high-risk HPV E6/E7 expression in HPV negative C33A cervical carcinoma cells and primary human epithelial cell causes increased expression of DROSHA and DICER mRNA and protein. Most importantly, many DROSHA regulated microRNAs are dysregulated in HPV16 E6/E7 expressing cells. These results suggest that increased DROSHA levels contribute to HPV16 E6/E7 dysregulation of cellular microRNA expression.
Collapse
Affiliation(s)
- Mallory E Harden
- Program in Virology, Division of Medical Sciences, Harvard Medical School Boston, MA 02115, USA; Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Karl Munger
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
33
|
Burke JM, Sullivan CS. DUSP11 - An RNA phosphatase that regulates host and viral non-coding RNAs in mammalian cells. RNA Biol 2017; 14:1457-1465. [PMID: 28296624 PMCID: PMC5785229 DOI: 10.1080/15476286.2017.1306169] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dual-specificity phosphatase 11 (DUSP11) is a conserved protein tyrosine phosphatase (PTP) in metazoans. The cellular substrates and physiologic activities of DUSP11 remain largely unknown. In nematodes, DUSP11 is required for normal development and RNA interference against endogenous RNAs (endo-RNAi) via molecular mechanisms that are not well understood. However, mammals lack analogous endo-RNAi pathways and consequently, a role for DUSP11 in mammalian RNA silencing was unanticipated. Recent work from our laboratory demonstrated that DUSP11 activity alters the silencing potential of noncanonical viral miRNAs in mammalian cells. Our studies further uncovered direct cellular substrates of DUSP11 and suggest that DUSP11 is part of regulatory pathway that controls the abundance of select triphosphorylated noncoding RNAs. Here, we highlight recent findings and present new data that advance understanding of mammalian DUSP11 during gene silencing and discuss the emerging biological activities of DUSP11 in mammalian cells.
Collapse
Affiliation(s)
- James M Burke
- a The University of Texas at Austin , Center for Systems and Synthetic Biology, Center for Infectious Disease and Department of Molecular Biosciences , Austin , TX , USA
| | - Christopher S Sullivan
- a The University of Texas at Austin , Center for Systems and Synthetic Biology, Center for Infectious Disease and Department of Molecular Biosciences , Austin , TX , USA
| |
Collapse
|
34
|
Abstract
Over the last decades, it has become evident that highly complex networks of regulators govern post-transcriptional regulation of gene expression. A novel class of Argonaute (Ago)-associated RNA molecules, the agotrons, was recently shown to function in a Drosha- and Dicer-independent manner, hence bypassing the maturation steps required for canonical microRNA (miRNA) biogenesis. Agotrons are found in most mammals and associate with Ago as ∼100 nucleotide (nt) long RNA species. Here, we speculate on the functional and biological relevance of agotrons: (i) agotrons could serve as non-promiscuous miRNA-like regulators with reduced off-targeting or (ii) agotrons could encompass other putative functions, such as protecting Ago proteins from taking up aberrant short RNAs or by rescuing and stabilizing otherwise unloaded Ago-proteins from degradation. Collectively, agotrons have emerged as a novel class of interesting non-coding RNA molecules, but their full functional potential and biological impact still remain to be disclosed.
Collapse
Affiliation(s)
- Lotte V W Stagsted
- Department of Molecular Biology and Genetics (MBG), and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Iben Daugaard
- Department of Molecular Biology and Genetics (MBG), and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| | - Thomas B Hansen
- Department of Molecular Biology and Genetics (MBG), and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
| |
Collapse
|
35
|
Sorel O, Dewals BG. MicroRNAs in large herpesvirus DNA genomes: recent advances. Biomol Concepts 2017; 7:229-39. [PMID: 27544723 DOI: 10.1515/bmc-2016-0017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/18/2016] [Indexed: 12/26/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs (ncRNAs) that regulate gene expression. They alter mRNA translation through base-pair complementarity, leading to regulation of genes during both physiological and pathological processes. Viruses have evolved mechanisms to take advantage of the host cells to multiply and/or persist over the lifetime of the host. Herpesviridae are a large family of double-stranded DNA viruses that are associated with a number of important diseases, including lymphoproliferative diseases. Herpesviruses establish lifelong latent infections through modulation of the interface between the virus and its host. A number of reports have identified miRNAs in a very large number of human and animal herpesviruses suggesting that these short non-coding transcripts could play essential roles in herpesvirus biology. This review will specifically focus on the recent advances on the functions of herpesvirus miRNAs in infection and pathogenesis.
Collapse
|
36
|
Biogenesis and Function of Ago-Associated RNAs. Trends Genet 2017; 33:208-219. [PMID: 28174021 DOI: 10.1016/j.tig.2017.01.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 01/10/2017] [Indexed: 12/20/2022]
Abstract
Numerous sophisticated high-throughput sequencing technologies have been developed over the past decade, and these have enabled the discovery of a diverse catalog of small non-coding (nc)RNA molecules that function as regulatory entities by associating with Argonaute (Ago) proteins. MicroRNAs (miRNAs) are currently the best-described class of post-transcriptional regulators that follow a specific biogenesis pathway characterized by Drosha/DGCR8 and Dicer processing. However, more exotic miRNA-like species that bypass particular steps of the canonical miRNA biogenesis pathway continue to emerge, with one of the most recent additions being the agotrons, which escape both Drosha/DGCR8- and Dicer-processing. We review here the current knowledge and most recent discoveries relating to alternative functions and biogenesis strategies for Ago-associated RNAs in mammals.
Collapse
|
37
|
Dalgaard LT, Eliasson L. An 'alpha-beta' of pancreatic islet microribonucleotides. Int J Biochem Cell Biol 2017; 88:208-219. [PMID: 28122254 DOI: 10.1016/j.biocel.2017.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 01/16/2017] [Accepted: 01/18/2017] [Indexed: 11/17/2022]
Abstract
MicroRNAs (miRNAs) are cellular, short, non-coding ribonucleotides acting as endogenous posttranscriptional repressors following incorporation in the RNA-induced silencing complex. Despite being chemically and mechanistically very similar, miRNAs exert a multitude of different cellular effects by acting on mRNA species, whose gene-products partake in a wide array of processes. Here, the aim was to review the knowledge of miRNA expression and action in the islet of Langerhans. We have focused on: 1) physiological consequences of islet or beta cell specific inhibition of miRNA processing, 2) mechanisms regulating processing of miRNAs in islet cells, 3) presence and function of miRNAs in alpha versus beta cells - the two main cell types of islets, and 4) miRNA mediators of beta cell decompensation. It is clear that miRNAs regulate pancreatic islet development, maturation, and function in vivo. Moreover, processing of miRNAs appears to be altered by obesity, diabetes, and aging. A number of miRNAs (such as miR-7, miR-21, miR-29, miR-34a, miR-212/miR-132, miR-184, miR-200 and miR-375) are involved in mediating beta cell dysfunction and/or compensation induced by hyperglycemia, oxidative stress, cytotoxic cytokines, and in rodent models of fetal metabolic programming prediabetes and overt diabetes. Studies of human type 2 diabetic islets underline that these miRNA families could have important roles also in human type 2 diabetes. Furthermore, there is a genuine gap of knowledge regarding miRNA expression and function in pancreatic alpha cells. Progress in this area would be enhanced by improved in vitro alpha cell models and better tools for islet cell sorting.
Collapse
Affiliation(s)
| | - Lena Eliasson
- Lund University Diabetes Center, Department of Clinical Sciences Malmö, CRC, SUS, Malmö, Sweden.
| |
Collapse
|
38
|
Bhadra U, Patra P, Chhatai J, Pal-Bhadra M. Pigmy MicroRNA: surveillance cops in Therapies kingdom. Mol Med 2016; 22:759-775. [PMID: 27704139 PMCID: PMC5193465 DOI: 10.2119/molmed.2016.00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/13/2016] [Indexed: 11/06/2022] Open
Abstract
MicroRNAs (miRNAs) are well preserved in every animal. These pigmy sized non-coding RNAs (21-23 nt), scattered in genome, are responsible for micromanaging the versatile gene regulations. Involvement of miRNAs was surveillance cops in all human diseases including cardiovascular defects, tumor formation, reproductive pathways, and neurological and autoimmune disorders. The effective functional role of miRNA can be reduced by chemical entities of antisense oligonucleotides and versatile small molecules that support the views of novel therapy of different human diseases. In this study, we have updated our current understanding for designing and synthesizing miRNA-controlling therapeutic chemicals. We have also proposed various in-vivo delivery strategies and their ongoing challenges to combat the incorporation hurdles in live cells and animals. Lastly, we have demonstrated the current progress of miRNA modulation in the treatment of different human diseases that provides an alternative approach of gene therapy.
Collapse
Affiliation(s)
- Utpal Bhadra
- Functional Genomics and Gene Silencing Group, Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Pradipta Patra
- Functional Genomics and Gene Silencing Group, Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Jagamohan Chhatai
- Functional Genomics and Gene Silencing Group, Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, India
| | - Manika Pal-Bhadra
- Centre for Chemical Biology, Indian Institute of Chemical Technology, Uppal Road, Hyderabad, India
| |
Collapse
|
39
|
Onyido EK, Sweeney E, Nateri AS. Wnt-signalling pathways and microRNAs network in carcinogenesis: experimental and bioinformatics approaches. Mol Cancer 2016; 15:56. [PMID: 27590724 PMCID: PMC5010773 DOI: 10.1186/s12943-016-0541-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/26/2016] [Indexed: 02/02/2023] Open
Abstract
Over the past few years, microRNAs (miRNAs) have not only emerged as integral regulators of gene expression at the post-transcriptional level but also respond to signalling molecules to affect cell function(s). miRNAs crosstalk with a variety of the key cellular signalling networks such as Wnt, transforming growth factor-β and Notch, control stem cell activity in maintaining tissue homeostasis, while if dysregulated contributes to the initiation and progression of cancer. Herein, we overview the molecular mechanism(s) underlying the crosstalk between Wnt-signalling components (canonical and non-canonical) and miRNAs, as well as changes in the miRNA/Wnt-signalling components observed in the different forms of cancer. Furthermore, the fundamental understanding of miRNA-mediated regulation of Wnt-signalling pathway and vice versa has been significantly improved by high-throughput genomics and bioinformatics technologies. Whilst, these approaches have identified a number of specific miRNA(s) that function as oncogenes or tumour suppressors, additional analyses will be necessary to fully unravel the links among conserved cellular signalling pathways and miRNAs and their potential associated components in cancer, thereby creating therapeutic avenues against tumours. Hence, we also discuss the current challenges associated with Wnt-signalling/miRNAs complex and the analysis using the biomedical experimental and bioinformatics approaches.
Collapse
Affiliation(s)
- Emenike K Onyido
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Eloise Sweeney
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Abdolrahman Shams Nateri
- Cancer Genetics & Stem Cell Group, Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
40
|
TGF-β1/Smads and miR-21 in Renal Fibrosis and Inflammation. Mediators Inflamm 2016; 2016:8319283. [PMID: 27610006 PMCID: PMC5005604 DOI: 10.1155/2016/8319283] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/15/2016] [Accepted: 07/26/2016] [Indexed: 12/14/2022] Open
Abstract
Renal fibrosis, irrespective of its etiology, is a final common stage of almost all chronic kidney diseases. Increased apoptosis, epithelial-to-mesenchymal transition, and inflammatory cell infiltration characterize the injured kidney. On the molecular level, transforming growth factor-β1 (TGF-β1)-Smad3 signaling pathway plays a central role in fibrotic kidney disease. Recent findings indicate the prominent role of microRNAs, small noncoding RNA molecules that inhibit gene expression through the posttranscriptional repression of their target mRNAs, in different pathologic conditions, including renal pathophysiology. miR-21 was also shown to play a dynamic role in inflammatory responses and in accelerating injury responses to promote organ failure and fibrosis. Understanding the cellular and molecular bases of miR-21 involvement in the pathogenesis of kidney diseases, including inflammatory reaction, could be crucial for their early diagnosis. Moreover, the possibility of influencing miR-21 level by specific antagomirs may be considered as an approach for treatment of renal diseases.
Collapse
|
41
|
Letelier P, Riquelme I, Hernández AH, Guzmán N, Farías JG, Roa JC. Circulating MicroRNAs as Biomarkers in Biliary Tract Cancers. Int J Mol Sci 2016; 17:ijms17050791. [PMID: 27223281 PMCID: PMC4881607 DOI: 10.3390/ijms17050791] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/29/2016] [Accepted: 05/10/2016] [Indexed: 01/17/2023] Open
Abstract
Biliary tract cancers (BTCs) are a group of highly aggressive malignant tumors with a poor prognosis. The current diagnosis is based mainly on imaging and intraoperative exploration due to brush cytology havinga low sensitivity and the standard markers, such as carcinoembryonic antigen (CEA) and carbohydrate 19-9 (CA19-9), not having enough sensitivity nor specificity to be used in a differential diagnosis and early stage detection. Thus, better non-invasive methods that can distinguish between normal and pathological tissue are needed. MicroRNAs (miRNAs) are small, single-stranded non-coding RNA molecules of ~20–22 nucleotides that regulate relevant physiological mechanisms and can also be involved in carcinogenesis. Recent studies have demonstrated that miRNAs are detectable in multiple body fluids, showing great stability, either free or trapped in circulating microvesicles, such as exosomes. miRNAs are ideal biomarkers that may be used in screening and prognosis in biliary tract cancers, aiding also in the clinical decisions at different stages of cancer treatment. This review highlights the progress in the analysis of circulating miRNAs in serum, plasma and bile as potential diagnostic and prognostic markers of BTCs.
Collapse
Affiliation(s)
- Pablo Letelier
- School of Health Sciences, Universidad Católica de Temuco, Manuel Montt 56, 4813302 Temuco, Chile.
| | - Ismael Riquelme
- Molecular Pathology Laboratory, Department of Pathological Anatomy, School of Medicine, Universidad de La Frontera, Avenida Alemania 0458, 3rd Floor, 4810296 Temuco, Chile.
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 01145, Casilla, 54-D Temuco, Chile.
| | - Alfonso H Hernández
- School of Health Sciences, Universidad Católica de Temuco, Manuel Montt 56, 4813302 Temuco, Chile.
| | - Neftalí Guzmán
- School of Health Sciences, Universidad Católica de Temuco, Manuel Montt 56, 4813302 Temuco, Chile.
| | - Jorge G Farías
- Department of Chemical Engineering, Faculty of Engineering and Sciences, Universidad de La Frontera, 54-D Temuco, Chile.
| | - Juan Carlos Roa
- Department of Pathology, Centre for Investigational Oncology (CITO), Advanced Centre for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Marcoleta 377, 7rd Floor, 8330024 Santiago, Chile.
| |
Collapse
|
42
|
Role of MicroRNA in Governing Synaptic Plasticity. Neural Plast 2016; 2016:4959523. [PMID: 27034846 PMCID: PMC4808557 DOI: 10.1155/2016/4959523] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/06/2016] [Accepted: 02/14/2016] [Indexed: 12/21/2022] Open
Abstract
Although synaptic plasticity in neural circuits is orchestrated by an ocean of genes, molecules, and proteins, the underlying mechanisms remain poorly understood. Recently, it is well acknowledged that miRNA exerts widespread regulation over the translation and degradation of target gene in nervous system. Increasing evidence suggests that quite a few specific miRNAs play important roles in various respects of synaptic plasticity including synaptogenesis, synaptic morphology alteration, and synaptic function modification. More importantly, the miRNA-mediated regulation of synaptic plasticity is not only responsible for synapse development and function but also involved in the pathophysiology of plasticity-related diseases. A review is made here on the function of miRNAs in governing synaptic plasticity, emphasizing the emerging regulatory role of individual miRNAs in synaptic morphological and functional plasticity, as well as their implications in neurological disorders. Understanding of the way in which miRNAs contribute to synaptic plasticity provides rational clues in establishing the novel therapeutic strategy for plasticity-related diseases.
Collapse
|
43
|
Hartig SM, Hamilton MP, Bader DA, McGuire SE. The miRNA Interactome in Metabolic Homeostasis. Trends Endocrinol Metab 2015; 26:733-745. [PMID: 26492831 PMCID: PMC4673013 DOI: 10.1016/j.tem.2015.09.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/11/2015] [Accepted: 09/12/2015] [Indexed: 12/31/2022]
Abstract
Global expression analyses demonstrate that alterations in miRNA levels correlate with various metabolic diseases. miRNAs regulate central metabolic pathways and thus play vital roles in maintaining organismal energy balance and metabolic homeostasis. Here we highlight novel sequencing technologies used to comprehensively define the target spectrum of miRNAs in metabolic disease that complement recent literature reporting physiologic roles for miRNAs in the regulation of glucose and lipid metabolism in peripheral tissues of animal models of metabolic dysfunction. These emerging technologies help decipher the complexity of the miRNA interactome and enrich our understanding of how miRNAs mediate physiologic effects by targeting a spectrum of gene transcripts simultaneously. miRNA-based therapeutics emerge as a viable strategy for treating metabolic diseases.
Collapse
Affiliation(s)
- Sean M Hartig
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Mark P Hamilton
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - David A Bader
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sean E McGuire
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| |
Collapse
|
44
|
Xie M, Zhang W, Shu MD, Xu A, Lenis DA, DiMaio D, Steitz JA. The host Integrator complex acts in transcription-independent maturation of herpesvirus microRNA 3' ends. Genes Dev 2015. [PMID: 26220997 PMCID: PMC4526738 DOI: 10.1101/gad.266973.115] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study, Xie et al. identify a novel Integrator cleavage step in a noncanonical microRNA (miRNA) biogenesis pathway. They found that this cleavage step occurs at the 3′ ends of HVS pre-miRNAs, which is regulated by a specific 3′ end processing signal, the miRNA 3′ box. The findings here provide further insight into the structure and function of the Integrator complex. Herpesvirus saimiri (HVS) is an oncogenic γ-herpesvirus that produces microRNAs (miRNAs) by cotranscription of precursor miRNA (pre-miRNA) hairpins immediately downstream from viral small nuclear RNAs (snRNA). The host cell Integrator complex, which recognizes the snRNA 3′ end processing signal (3′ box), generates the 5′ ends of HVS pre-miRNA hairpins. Here, we identify a novel 3′ box-like sequence (miRNA 3′ box) downstream from HVS pre-miRNAs that is essential for miRNA biogenesis. In vivo knockdown and rescue experiments confirmed that the 3′ end processing of HVS pre-miRNAs also depends on Integrator activity. Interaction between Integrator and HVS primary miRNA (pri-miRNA) substrates that contain only the miRNA 3′ box was confirmed by coimmunoprecipitation and an in situ proximity ligation assay (PLA) that we developed to localize specific transient RNA–protein interactions inside cells. Surprisingly, in contrast to snRNA 3′ end processing, HVS pre-miRNA 3′ end processing by Integrator can be uncoupled from transcription, enabling new approaches to study Integrator enzymology.
Collapse
Affiliation(s)
- Mingyi Xie
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Wei Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Mei-Di Shu
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Acer Xu
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Diana A Lenis
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Daniel DiMaio
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Joan A Steitz
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| |
Collapse
|
45
|
Collino F, Bruno S, Incarnato D, Dettori D, Neri F, Provero P, Pomatto M, Oliviero S, Tetta C, Quesenberry PJ, Camussi G. AKI Recovery Induced by Mesenchymal Stromal Cell-Derived Extracellular Vesicles Carrying MicroRNAs. J Am Soc Nephrol 2015; 26:2349-60. [PMID: 25901032 DOI: 10.1681/asn.2014070710] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/09/2014] [Indexed: 12/21/2022] Open
Abstract
Phenotypic changes induced by extracellular vesicles have been implicated in mesenchymal stromal cell-promoted recovery of AKI. MicroRNAs are potential candidates for cell reprogramming toward a proregenerative phenotype. The aim of this study was to evaluate whether microRNA deregulation inhibits the regenerative potential of mesenchymal stromal cells and derived extracellular vesicles in a model of glycerol-induced AKI in severe combined immunodeficient mice. We generated mesenchymal stromal cells depleted of Drosha to alter microRNA expression. Drosha-knockdown cells produced extracellular vesicles that did not differ from those of wild-type cells in quantity, surface molecule expression, and internalization within renal tubular epithelial cells. However, these vesicles showed global downregulation of microRNAs. Whereas wild-type mesenchymal stromal cells and derived vesicles administered intravenously induced morphologic and functional recovery in AKI, the Drosha-knockdown counterparts were ineffective. RNA sequencing analysis showed that kidney genes deregulated after injury were restored by treatment with mesenchymal stromal cells and derived vesicles but not with Drosha-knockdown cells and vesicles. Gene ontology analysis showed in AKI an association of downregulated genes with fatty acid metabolism and upregulated genes with inflammation, matrix-receptor interaction, and cell adhesion molecules. These alterations reverted after treatment with wild-type mesenchymal stromal cells and extracellular vesicles but not after treatment with the Drosha-knockdown counterparts. In conclusion, microRNA depletion in mesenchymal stromal cells and extracellular vesicles significantly reduced their intrinsic regenerative potential in AKI, suggesting a critical role of microRNAs in recovery after AKI.
Collapse
Affiliation(s)
- Federica Collino
- Department of Medical Sciences, Translational Center of Regenerative Medicine, Fresenius Medical Care S.p.A
| | - Stefania Bruno
- Department of Molecular Biotechnology and Healthy Sciences, and
| | - Danny Incarnato
- Department of Life Sciences and System Biology and Human Genetics Foundation, University of Torino, Torino, Italy
| | - Daniela Dettori
- Department of Molecular Biotechnology and Healthy Sciences, and Department of Life Sciences and System Biology and Human Genetics Foundation, University of Torino, Torino, Italy
| | - Francesco Neri
- Department of Life Sciences and System Biology and Human Genetics Foundation, University of Torino, Torino, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology and Healthy Sciences, and Center for Translational Genomics and Bioinformatics, San Raffaele Scientific Institute, Milan, Italy; and
| | | | - Salvatore Oliviero
- Department of Life Sciences and System Biology and Human Genetics Foundation, University of Torino, Torino, Italy
| | - Ciro Tetta
- Translational Center of Regenerative Medicine, Fresenius Medical Care S.p.A., EMEA Fresenius Medical Care, Bad Homburg, Germany
| | - Peter J Quesenberry
- Department of Medicine, The Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | | |
Collapse
|
46
|
Loss of Dgcr8-mediated microRNA expression in the kidney results in hydronephrosis and renal malformation. BMC Nephrol 2015; 16:55. [PMID: 25881298 PMCID: PMC4445526 DOI: 10.1186/s12882-015-0053-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 04/07/2015] [Indexed: 11/10/2022] Open
Abstract
Background Small non-coding RNA molecules (miRNAs) play a pivotal role in regulating gene expression in development. miRNAs regulate key processes at the cellular level and thereby influence organismal and tissue development including kidney morphogenesis. A miRNA molecule is initially synthesized as a longer hairneedle-shaped RNA transcript and then processed through an enzymatic complex that contains the RNA-processing enzyme Drosha and its essential interactor Dgcr8. Resulting pre-miRNAs are then cleaved by Dicer. Recent data showed that loss of Dicer resulted in severe developmental kidney phenotypes. However, as Dicer has multiple miRNA-independent functions, it was not entirely clear whether the observed renal phenotypes could be exclusively attributed to a lack of miRNA expression. Methods We analyzed the role of miRNAs in kidney development by conditional gene deletion of Dgcr8 in the developing kidney using a transgenic mouse line that expresses Cre recombinase in the distal nephron and derivatives of the ureteric bud in kidney development. Results Animals with a gene deletion of Dgcr8 in these tissues developed severe hydronephrosis, kidney cysts, progressive renal failure and premature death within the first two months after birth, a phenotype strongly resembling Dicer deletion. Conclusions Here we show that conditional gene deletion of the essential miRNA-processing enzyme Dgcr8 in the developing renal tubular system results in severe developmental defects and kidney failure. These data confirm earlier findings obtained in Dicer knock-out animals and clearly illustrate the essential role of miRNAs in kidney development. The data suggests that miRNA dysregulation may play an important, yet ill-defined role in the pathogenesis of inborn defects of the genitourinary system and indicate that miRNA defects may be causative in the development of human disease. Electronic supplementary material The online version of this article (doi:10.1186/s12882-015-0053-1) contains supplementary material, which is available to authorized users.
Collapse
|
47
|
Abstract
Eukaryotic cells produce several classes of long and small noncoding RNA (ncRNA). Many DNA and RNA viruses synthesize their own ncRNAs. Like their host counterparts, viral ncRNAs associate with proteins that are essential for their stability, function, or both. Diverse biological roles--including the regulation of viral replication, viral persistence, host immune evasion, and cellular transformation--have been ascribed to viral ncRNAs. In this review, we focus on the multitude of functions played by ncRNAs produced by animal viruses. We also discuss their biogenesis and mechanisms of action.
Collapse
Affiliation(s)
- Kazimierz T Tycowski
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Yang Eric Guo
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Nara Lee
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Walter N Moss
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Tenaya K Vallery
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Mingyi Xie
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| |
Collapse
|
48
|
The potential of microRNAs in personalized medicine against cancers. BIOMED RESEARCH INTERNATIONAL 2014; 2014:642916. [PMID: 25243170 PMCID: PMC4163464 DOI: 10.1155/2014/642916] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 08/06/2014] [Indexed: 02/06/2023]
Abstract
MicroRNAs orchestrate the expression of the genome and impact many, if not all, cellular processes. Their deregulation is thus often causative of human malignancies, including cancers. Numerous studies have implicated microRNAs in the different steps of tumorigenesis including initiation, progression, metastasis, and resistance to chemo/radiotherapies. Thus, microRNAs constitute appealing targets for novel anticancer therapeutic strategies aimed at restoring their expression or function. As microRNAs are present in a variety of human cancer types, microRNA profiles can be used as tumor-specific signatures to detect various cancers (diagnosis), to predict their outcome (prognosis), and to monitor their treatment (theranosis). In this review, we present the different aspects of microRNA biology that make them remarkable molecules in the emerging field of personalized medicine against cancers and provide several examples of their industrial exploitation.
Collapse
|
49
|
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that function as guide molecules in RNA silencing. Targeting most protein-coding transcripts, miRNAs are involved in nearly all developmental and pathological processes in animals. The biogenesis of miRNAs is under tight temporal and spatial control, and their dysregulation is associated with many human diseases, particularly cancer. In animals, miRNAs are ∼22 nucleotides in length, and they are produced by two RNase III proteins--Drosha and Dicer. miRNA biogenesis is regulated at multiple levels, including at the level of miRNA transcription; its processing by Drosha and Dicer in the nucleus and cytoplasm, respectively; its modification by RNA editing, RNA methylation, uridylation and adenylation; Argonaute loading; and RNA decay. Non-canonical pathways for miRNA biogenesis, including those that are independent of Drosha or Dicer, are also emerging.
Collapse
|