1
|
Khan A, Sharma P, Dahiya S, Sharma B. Plexins: Navigating through the neural regulation and brain pathology. Neurosci Biobehav Rev 2025; 169:105999. [PMID: 39756719 DOI: 10.1016/j.neubiorev.2024.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 01/07/2025]
Abstract
Plexins are a family of transmembrane receptors known for their diverse roles in neural development, axon guidance, neuronal migration, synaptogenesis, and circuit formation. Semaphorins are a class of secreted and membrane proteins that act as primary ligands for plexin receptors. Semaphorins play a crucial role in central nervous system (CNS) development by regulating processes such as axonal growth, neuronal positioning, and synaptic connectivity. Various types of semaphorins like sema3A, sema4A, sema4C, sema4D, and many more have a crucial role in developing brain diseases. Likewise, various evidence suggests that plexin receptors are of four types: plexin A, plexin B, plexin C, and plexin D. Plexins have emerged as crucial regulators of neurogenesis and neuronal development and connectivity. When bound to semaphorins, these receptors trigger two major networking cascades, namely Rho and Ras GTPase networks. Dysregulation of plexin networking has been implicated in a myriad of brain disorders, including autism spectrum disorder (ASD), Schizophrenia, Alzheimer's disease (AD), Parkinson's disease (PD), and many more. This review synthesizes findings from molecular, cellular, and animal model studies to elucidate the mechanisms by which plexins contribute to the pathogenesis of various brain diseases.
Collapse
Affiliation(s)
- Ariba Khan
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Poonam Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India; Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, 201306 Uttar Pradesh, India.
| | - Sarthak Dahiya
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Noida, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, Gurugram University (A State Govt. University), Gurugram, Haryana, India.
| |
Collapse
|
2
|
Sabt A, Tawfik HO, Khaleel EF, Badi RM, Ibrahim HAA, Elkaeed EB, Eldehna WM. An overview of recent advancements in small molecules suppression of oncogenic signaling of K-RAS: an updated review. Mol Divers 2024; 28:4581-4608. [PMID: 38289431 DOI: 10.1007/s11030-023-10777-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2024]
Abstract
RAS (rat sarcoma) oncoproteins are crucial for the growth of some human cancers, including lung, colorectal, and pancreatic adenocarcinomas. The RAS family contains three known human isoforms H(Harvey)-RAS, N(Neuroblastoma)-RAS, and K(Kirsten)-RAS. Mutations in RAS proteins cause up to ~ 30% of cancer cases. For almost 30 years, mutant proteins druggable pockets remained undiscovered, they are nearly identical to their essential, wild-type counterparts and cause cancer. Recent research has increased our knowledge of RAS's structure, processing, and signaling pathways and revealed novel insights into how it works in cancer cells. We highlight several approaches that inhibit RAS activity with small compounds in this review: substances that blocked farnesyltransferase (FTase), isoprenylcysteine carboxyl methyltransferase (Icmt), and RAS-converting enzyme 1 (Rce1) three important enzymes required for RAS localization. Inhibitors block the son of sevenless (SOS) protein's role in nucleotide exchange activity, small molecules that interfered with the phosphodiesterase (PDEδ)-mediated intracellular RAS transport processes, substances that focused on inhibiting RAS-effector interactions. Inhibitors are made to suppress the oncogenic K-RAS G12C mutant only when the nucleophilic cysteine residue at codon 12 is present and many inhibitors with various mechanisms like breaking the organization membrane of K-RAS nano-clustering. So, this is a thorough analysis of the most recent advancements in K-RAS-targeted anticancer techniques, hopefully offering insight into the field's future.
Collapse
Affiliation(s)
- Ahmed Sabt
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Cairo, Egypt.
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| | - Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Rehab Mustafa Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | | | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, 13713, Riyadh, Saudi Arabia
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt.
| |
Collapse
|
3
|
Castillo-Castañeda A, Patiño LH, Muro A, López J, Manzano R, Ramírez JD. Characterizing Leishmania infantum-induced resistance to trivalent stibogluconate (SbIII) through deep proteomics. J Proteomics 2024; 309:105323. [PMID: 39349167 DOI: 10.1016/j.jprot.2024.105323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/02/2024]
Abstract
Leishmania infantum belongs to the L. donovani complex, which includes species associated with visceral leishmaniasis. Traditionally, antimonial compounds have served as the primary antiparasitic treatment for all clinical forms of leishmaniasis. However, the global spread of resistance to these compounds has posed a significant challenge in the treatment in some regions. In this study, we aimed to investigate resistance to trivalent sodium stibogluconate in vitro using promastigotes from a wild strain of L. infantum. We compared the growth rates and proteomic profiles of wild-type and resistant line conducting label-free quantitative mass spectrometry-based proteomic analyses. Statistical and bioinformatics analyses were employed to evaluate the significance of protein concentration changes, protein identity annotation, GO term analysis, biosynthetic pathways, and protein-protein interactions. Our findings revealed that the resistant line displayed a notable reduction in growth rate. Proteomic data unveiled similar protein concentrations per cell in both groups but with differing molecule copy numbers. We identified 165 proteins with increased concentration, these were associated with transcription and translation activities, lipid metabolism, energy metabolism, and peroxisome biogenesis. In the decreased protein groups were 56 proteins linked to metal acquisition and metabolism, particularly iron. These results suggest a novel perspective on antimonial resistance, highlighting the importance of post-transcriptional and post-translational regulation, alongside energy expenditure compensation and alterations in organelle membrane lipid composition in antimonial-resistant parasites. Overall, our study provides insights into the proteomic profile of stibogluconate-resistant strain, contributing to our general understanding of the complex landscape of antiparasitic resistance in L. infantum. SIGNIFICANCE: Species within the Leishmania donovani complex are implicated in cases of visceral leishmaniasis in the world. Leishmania infantum is a species that predominates in regions spanning the Mediterranean Basin, the Middle East, Central Asia, South and Central America. Antimonials were the first treatment for leishmaniasis, however in the last decades, the resistance has emerged in subregions like India, where it is not a therapeutic option. In contrast, sodium stibogluconate (SbIII) remains the first-line treatment in the Americas. Unfortunately, the emergence of resistance has outpaced the development of new therapeutic options, thereby becoming a critical point in the struggle against the disease. In this study we performed an in-depth proteomic analysis with liquid chromatography mass-mass spectrometry (LC-MS/MS) on L. infantum with Sb-induced resistance in vitro. Results showed a complex proteomic adaptation in the resistant line, involving transcriptional and translational proteins, energy compensation, and homeostasis maintenance. These insights contribute to understanding the molecular adaptation in the parasite and provide information to new investigations related to therapeutics development.
Collapse
Affiliation(s)
- Adriana Castillo-Castañeda
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain.
| | - Luz H Patiño
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain.
| | - Julio López
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain.
| | - Raúl Manzano
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain.
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia; Department of Pathology, Molecular and Cell-Based Medicine, Molecular Microbiology Laboratory, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
More KJ, Kaufman JGG, Dacks JB, Manna PT. Evolutionary origins of the lysosome-related organelle sorting machinery reveal ancient homology in post-endosome trafficking pathways. Proc Natl Acad Sci U S A 2024; 121:e2403601121. [PMID: 39418309 PMCID: PMC11513930 DOI: 10.1073/pnas.2403601121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/22/2024] [Indexed: 10/19/2024] Open
Abstract
The major organelles of the endomembrane system were in place by the time of the last eukaryotic common ancestor (LECA) (~1.5 billion years ago). Their acquisitions were defining milestones during eukaryogenesis. Comparative cell biology and evolutionary analyses show multiple instances of homology in the protein machinery controlling distinct interorganelle trafficking routes. Resolving these homologous relationships allows us to explore processes underlying the emergence of additional, distinct cellular compartments, infer ancestral states predating LECA, and explore the process of eukaryogenesis itself. Here, we undertake a molecular evolutionary analysis (including providing a transcriptome of the jakobid flagellate Reclinomonas americana), exploring the origins of the machinery responsible for the biogenesis of lysosome-related organelles (LROs), the Biogenesis of LRO Complexes (BLOCs 1,2, and 3). This pathway has been studied only in animals and is not considered a feature of the basic eukaryotic cell plan. We show that this machinery is present across the eukaryotic tree of life and was likely in place prior to LECA, making it an underappreciated facet of eukaryotic cellular organisation. Moreover, we resolve multiple points of ancient homology between all three BLOCs and other post-endosomal retrograde trafficking machinery (BORC, CCZ1 and MON1 proteins, and an unexpected relationship with the "homotypic fusion and vacuole protein sorting" (HOPS) and "Class C core vacuole/endosomal tethering" (CORVET) complexes), offering a mechanistic and evolutionary unification of these trafficking pathways. Overall, this study provides a comprehensive account of the rise of the LROs biogenesis machinery from before the LECA to current eukaryotic diversity, integrating it into the larger mechanistic framework describing endomembrane evolution.
Collapse
Affiliation(s)
- Kiran J. More
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB T6G 2N8, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, ABT6G 2N8, Canada
| | - Jonathan G. G. Kaufman
- Cambridge Institute for Medical Research, University of Cambridge, CambridgeCB2 0XY, United Kingdom
| | - Joel B. Dacks
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB T6G 2N8, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, ABT6G 2N8, Canada
- Department of Genetics, Evolution, and Environment, Centre for Life’s Origin and Evolution, University College, LondonWC1E 6BT, United Kingdom
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis)370 05, Czech Republic
| | - Paul T. Manna
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB T6G 2N8, Canada
- Department of Physiology, Gothenburg University, Gothenburg413 90, Sweden
| |
Collapse
|
5
|
Benavides-Nieto M, Adam F, Martin E, Boussard C, Lagresle-Peyrou C, Callebaut I, Kauskot A, Repérant C, Feng M, Bordet JC, Castelle M, Morelle G, Brouzes C, Zarhrate M, Panikulam P, Lambert N, Picard C, Bodet D, Rouger-Gaudichon J, Revy P, de Villartay JP, Moshous D. Somatic RAP1B gain-of-function variant underlies isolated thrombocytopenia and immunodeficiency. J Clin Invest 2024; 134:e169994. [PMID: 39225097 PMCID: PMC11364392 DOI: 10.1172/jci169994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 07/10/2024] [Indexed: 09/04/2024] Open
Abstract
The ubiquitously expressed small GTPase Ras-related protein 1B (RAP1B) acts as a molecular switch that regulates cell signaling, cytoskeletal remodeling, and cell trafficking and activates integrins in platelets and lymphocytes. The residue G12 in the P-loop is required for the RAP1B-GTPase conformational switch. Heterozygous germline RAP1B variants have been described in patients with syndromic thrombocytopenia. However, the causality and pathophysiological impact remained unexplored. We report a boy with neonatal thrombocytopenia, combined immunodeficiency, neutropenia, and monocytopenia caused by a heterozygous de novo single nucleotide substitution, c.35G>A (p.G12E) in RAP1B. We demonstrate that G12E and the previously described G12V and G60R were gain-of-function variants that increased RAP1B activation, talin recruitment, and integrin activation, thereby modifying late responses such as platelet activation, T cell proliferation, and migration. We show that in our patient, G12E was a somatic variant whose allele frequency decreased over time in the peripheral immune compartment, but remained stable in bone marrow cells, suggesting a differential effect in distinct cell populations. Allogeneic hematopoietic stem cell transplantation fully restored the patient's hemato-immunological phenotype. Our findings define monoallelic RAP1B gain-of-function variants as a cause for constitutive immunodeficiency and thrombocytopenia. The phenotypic spectrum ranged from isolated hematological manifestations in our patient with somatic mosaicism to complex syndromic features in patients with reported germline RAP1B variants.
Collapse
Affiliation(s)
- Marta Benavides-Nieto
- Université Paris Cité, Paris, France
- Imagine Institute, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Contre le Cancer, Ligue 2023, INSERM UMR 1163, Paris, France
- General Pediatrics–Infectious Diseases and Internal Medicine, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris (AP-HP) Nord, Paris, France
| | - Frédéric Adam
- INSERM UMR S 1176, Laboratory for Hemostasis, Inflammation and Thrombosis (HITh), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Emmanuel Martin
- Laboratory Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Charlotte Boussard
- Université Paris Cité, Paris, France
- Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
- Laboratory Immunogenetics of Pediatric Autoimmune Diseases, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Chantal Lagresle-Peyrou
- Biotherapy Clinical Investigation Center, AP-HP, Paris, France
- Laboratory Human Lymphohematopoiesis, INSERM UMR 1163, Imagine Institute, Paris, France
| | - Isabelle Callebaut
- Sorbonne University, Muséum National d’Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, Paris, France
| | - Alexandre Kauskot
- INSERM UMR S 1176, Laboratory for Hemostasis, Inflammation and Thrombosis (HITh), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Christelle Repérant
- INSERM UMR S 1176, Laboratory for Hemostasis, Inflammation and Thrombosis (HITh), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Miao Feng
- INSERM UMR S 1176, Laboratory for Hemostasis, Inflammation and Thrombosis (HITh), Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Jean-Claude Bordet
- Laboratoire d’Hémostase, Centre de Biologie Est, Hospices Civils de Lyon, Bron, France
| | - Martin Castelle
- Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| | - Guillaume Morelle
- Université Paris Cité, Paris, France
- Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| | - Chantal Brouzes
- Laboratory of Onco-Hematology, Necker-Enfants Malades University Hospital, AP-HP, Paris, France, and INSERM U1151, Institut Necker-Enfants Malades, Paris, France
| | - Mohammed Zarhrate
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163 and INSERM US24/CNRS UAR3633, Paris Descartes Sorbonne Paris Cité University, Paris, France
| | - Patricia Panikulam
- Université Paris Cité, Paris, France
- Laboratory “Molecular basis of altered immune homeostasis,” INSERM UMR 1163, Imagine Institute, Paris, France
| | - Nathalie Lambert
- Study Center for Primary Immunodeficiencies, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| | - Capucine Picard
- Université Paris Cité, Paris, France
- Laboratory Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Imagine Institute, Paris, France
- Study Center for Primary Immunodeficiencies, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
- Centre de Référence des Déficits Immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| | - Damien Bodet
- CHU de Caen Normandie, Onco-Immunohématologie Pédiatrique, Caen, France
| | | | - Patrick Revy
- Université Paris Cité, Paris, France
- Imagine Institute, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Contre le Cancer, Ligue 2023, INSERM UMR 1163, Paris, France
| | - Jean-Pierre de Villartay
- Université Paris Cité, Paris, France
- Imagine Institute, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Contre le Cancer, Ligue 2023, INSERM UMR 1163, Paris, France
| | - Despina Moshous
- Université Paris Cité, Paris, France
- Imagine Institute, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Contre le Cancer, Ligue 2023, INSERM UMR 1163, Paris, France
- Pediatric Immunology, Hematology and Rheumatology, Necker-Enfants Malades University Hospital, AP-HP, Paris, France
- Centre de Référence des Déficits Immunitaires Héréditaires (CEREDIH), Necker-Enfants Malades University Hospital, AP-HP, Paris, France
| |
Collapse
|
6
|
García-España A, Philips MR. Origin and Evolution of RAS Membrane Targeting. Oncogene 2023; 42:1741-1750. [PMID: 37031342 PMCID: PMC10413328 DOI: 10.1038/s41388-023-02672-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 04/10/2023]
Abstract
KRAS, HRAS and NRAS proto-oncogenes belong to a family of 40 highly homologous genes, which in turn are a subset of a superfamily of >160 genes encoding small GTPases. RAS proteins consist of a globular G-domain (aa1-166) and a 22-23 aa unstructured hypervariable region (HVR) that mediates membrane targeting. The evolutionary origins of the RAS isoforms, their HVRs and alternative splicing of the KRAS locus has not been explored. We found that KRAS is basal to the RAS proto-oncogene family and its duplication generated HRAS in the common ancestor of vertebrates. In a second round of duplication HRAS generated NRAS and KRAS generated an additional RAS gene we have designated KRASBL, absent in mammals and birds. KRAS4A arose through a duplication and insertion of the 4th exon of NRAS into the 3rd intron of KRAS. We found evolutionary conservation of a short polybasic region (PBR1) in HRAS, NRAS and KRAS4A, a second polybasic region (PBR2) in KRAS4A, two neutralized basic residues (NB) and a serine in KRAS4B and KRASBL, and a modification of the CaaX motif in vertebrates with farnesyl rather than geranylgeranyl polyisoprene lipids, suggesting that a less hydrophobic membrane anchor is critical to RAS protein function. The persistence of four RAS isoforms through >400 million years of evolution argues strongly for differential function.
Collapse
Affiliation(s)
| | - Mark R Philips
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
García-España A, Philips MR. Origin and evolution of RAS oncoprotein membrane targeting. RESEARCH SQUARE 2023:rs.3.rs-2485219. [PMID: 36711820 PMCID: PMC9882654 DOI: 10.21203/rs.3.rs-2485219/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
KRAS, HRAS and NRAS oncogenes belong to a family of 40 highly homologous genes, which in turn are a subset of a superfamily of >160 genes encoding small GTPases. RAS oncoproteins consist of a globular G-domain (aa1-166) and a 22-23aa unstructured hypervariable region (HVR) that mediates membrane targeting. The evolutionarily origins of the RAS isoforms, their HVRs and alternative splicing of the KRAS locus has not been explored. We found that KRAS is basal to the oncogene family and its duplication generated HRAS in the common ancestor of vertebrates. In a second round of duplication HRAS generated NRAS and KRAS generated an additional RAS gene we have designated KRASBL, absent in mammals and birds. KRAS4A arose through a duplication and insertion of the 4th exon of NRAS into the 3rd intron of KRAS. We found evolutionarily conservation of a short polybasic region (PBR1) in HRAS, NRAS and KRAS4A, a second polybasic region (PBR2) in KRAS4A, two neutralized basic residues (NB) and a serine in KRAS4B and KRASBL, and a modification of the CaaX motif in vertebrates with farnesyl rather than geranylgeranyl polyisoprene lipids, suggesting that a less hydrophobic membrane anchor is critical to RAS oncoprotein function. The persistence of four RAS isoforms through >400 MY of evolution argues strongly for differential function.
Collapse
Affiliation(s)
| | - Mark R Philips
- Perlmutter Cancer Center, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
8
|
Ghufran M, Khan HA, Ullah M, Ghufran S, Ayaz M, Siddiq M, Hassan SSU, Bungau S. In Silico Strategies for Designing of Peptide Inhibitors of Oncogenic K-Ras G12V Mutant: Inhibiting Cancer Growth and Proliferation. Cancers (Basel) 2022; 14:4884. [PMID: 36230807 PMCID: PMC9564332 DOI: 10.3390/cancers14194884] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/02/2022] [Accepted: 10/03/2022] [Indexed: 12/12/2022] Open
Abstract
Ras plays a pivotal function in cell proliferation and is an important protein in signal transduction pathways. Mutations in genes encoding the Ras protein drive the signaling cascades essential for malignant transformation, tumour angiogenesis, and metastasis and are responsible for above 30% of all human cancers. There is evidence that N-Ras, K-Ras, and H-Ras play significant roles in human cancer. The mutated K-Ras protein is typically observed in malignant growths. Mutant K-Ras is the most common in lung, colon, and pancreatic cancers. The purpose of this research was to create peptides that inhibit K-Ras G12V. The crystal structure of the mutant K-Ras G12V-H-REV107 complex was obtained from a protein data bank. Further, we used a residue scan approach to create unique peptides from the reference peptide (H-REV107). AMBER molecular dynamics simulations were used to test the stability of the top four proposed peptides (based on binding free energies). Our findings showed that the top four selected peptides had stronger interactions with K-Ras than the reference peptide and have the ability to block the activation function of K-Ras. Our extensive analyses of binding affinities showed that our designed peptide possesses the potential to inhibit K-Ras and to reduce the progression of cancer.
Collapse
Affiliation(s)
- Mehreen Ghufran
- Department of Pathology, Medical Teaching Institution Bacha Khan Medical College (BKMC) Mardan, Mardan 23200, Pakistan
| | - Haider Ali Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Mehran Ullah
- District Medical Officer, Sehat Sahulat Program (SSP), KPK, Mardan 23200, Pakistan
- District Headquarter (DHQ) Hospital Mardan, Mardan 23200, Pakistan
| | - Sabreen Ghufran
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Muhammad Ayaz
- Department of Pharmacy, Faculty of Biological Sciences, University of Malakand, Chakdara 18800, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Siddiq
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Syed Shams ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
9
|
Nishimura A, Ichikawa K, Nakazawa H, Tanahashi R, Morita F, Sitepu I, Boundy-Mills K, Fox G, Takagi H. The Cdc25/Ras/cAMP-dependent protein kinase A signaling pathway regulates proline utilization in wine yeast Saccharomyces cerevisiae under a wine fermentation model. Biosci Biotechnol Biochem 2022; 86:1318-1326. [PMID: 35749464 DOI: 10.1093/bbb/zbac100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/18/2022] [Indexed: 11/14/2022]
Abstract
Proline is a predominant amino acid in grape must, but it is poorly utilized by the yeast Saccharomyces cerevisiae in wine-making processes. This sometimes leads to a nitrogen deficiency during fermentation and proline accumulation in wine. In this study, we clarified that a glucose response is involved in an inhibitory mechanism of proline utilization in yeast. Our genetic screen showed that strains with a loss-of-function mutation on the CDC25 gene can utilize proline even under fermentation conditions. Cdc25 is a regulator of the glucose response consisting of the Ras/cAMP-dependent protein kinase A (PKA) pathway. Moreover, we found that activation of the Ras/PKA pathway is necessary for the inhibitory mechanism of proline utilization. The present data revealed that crosstalk exists between the carbon and proline metabolisms. Our study could hold promise for the development of wine yeast strains that can efficiently assimilate proline during the fermentation processes.
Collapse
Affiliation(s)
- Akira Nishimura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, Japan
| | - Kazuki Ichikawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, Japan
| | - Hayate Nakazawa
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, Japan
| | - Ryoya Tanahashi
- Division for Research Strategy, Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, Japan.,Phaff Yeast Culture Collection, Department of Food Science and Technology, University of California Davis, One Shields Ave, Davis, CA, USA
| | - Fumika Morita
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, Japan
| | - Irnayuli Sitepu
- Phaff Yeast Culture Collection, Department of Food Science and Technology, University of California Davis, One Shields Ave, Davis, CA, USA
| | - Kyria Boundy-Mills
- Phaff Yeast Culture Collection, Department of Food Science and Technology, University of California Davis, One Shields Ave, Davis, CA, USA
| | - Glen Fox
- Department of Food Science and Technology, University of California Davis, One Shields Ave, Davis, CA, USA
| | - Hiroshi Takagi
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, Japan
| |
Collapse
|
10
|
Cuevas-Navarro A, Rodriguez-Muñoz L, Grego-Bessa J, Cheng A, Rauen KA, Urisman A, McCormick F, Jimenez G, Castel P. Cross-species analysis of LZTR1 loss-of-function mutants demonstrates dependency to RIT1 orthologs. eLife 2022; 11:e76495. [PMID: 35467524 PMCID: PMC9068208 DOI: 10.7554/elife.76495] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 04/22/2022] [Indexed: 11/25/2022] Open
Abstract
RAS GTPases are highly conserved proteins involved in the regulation of mitogenic signaling. We have previously described a novel Cullin 3 RING E3 ubiquitin ligase complex formed by the substrate adaptor protein LZTR1 that binds, ubiquitinates, and promotes proteasomal degradation of the RAS GTPase RIT1. In addition, others have described that this complex is also responsible for the ubiquitination of classical RAS GTPases. Here, we have analyzed the phenotypes of Lztr1 loss-of-function mutants in both fruit flies and mice and have demonstrated a biochemical preference for their RIT1 orthologs. Moreover, we show that Lztr1 is haplosufficient in mice and that embryonic lethality of the homozygous null allele can be rescued by deletion of Rit1. Overall, our results indicate that, in model organisms, RIT1 orthologs are the preferred substrates of LZTR1.
Collapse
Affiliation(s)
- Antonio Cuevas-Navarro
- Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
| | - Laura Rodriguez-Muñoz
- Institute for Molecular Biology of Barcelona, Consejo Superior de Investigaciones CientíficasBarcelonaSpain
| | | | - Alice Cheng
- Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
| | - Katherine A Rauen
- UC Davis MIND Institute, University of California DavisSacramentoUnited States
- Department of Pediatrics, University of California DavisSacramentoUnited States
| | - Anatoly Urisman
- Department of Anatomic Pathology, University of California San FranciscoSan FranciscoUnited States
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California, San FranciscoSan FranciscoUnited States
| | - Gerardo Jimenez
- Institute for Molecular Biology of Barcelona, Consejo Superior de Investigaciones CientíficasBarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)BarcelonaSpain
| | - Pau Castel
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
11
|
Khan A, Ni W, Baltazar T, Lopez-Giraldez F, Pober JS, Pierce RW. ArhGEF12 activates Rap1A and not RhoA in human dermal microvascular endothelial cells to reduce tumor necrosis factor-induced leak. FASEB J 2022; 36:e22254. [PMID: 35294066 PMCID: PMC9103844 DOI: 10.1096/fj.202101873rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/31/2022]
Abstract
Overwhelming inflammation in the setting of acute critical illness induces capillary leak resulting in hypovolemia, edema, tissue dysoxia, organ failure and even death. The tight junction (TJ)-dependent capillary barrier is regulated by small GTPases, but the specific regulatory molecules most active in this vascular segment under such circumstances are not well described. We set out to identify GTPase regulatory molecules specific to endothelial cells (EC) that form TJs. Transcriptional profiling of confluent monolayers of TJ-forming human dermal microvascular ECs (HDMECs) and adherens junction only forming-human umbilical vein EC (HUVECs) demonstrate ARHGEF12 is basally expressed at higher levels and is only downregulated in HDMECs by junction-disrupting tumor necrosis factor (TNF). HDMECs depleted of ArhGEF12 by siRNA demonstrate a significantly exacerbated TNF-induced decrease in trans-endothelial electrical resistance and disruption of TJ continuous staining. ArhGEF12 is established as a RhoA-GEF in HUVECs and its knock down would be expected to reduce RhoA activity and barrier disruption. Pulldown of active GEFs from HDMECs depleted of ArhGEF12 and treated with TNF show decreased GTP-bound Rap1A after four hours but increased GTP-bound RhoA after 12 h. In cell-free assays, ArhGEF12 immunoprecipitated from HDMECs is able to activate both Rap1A and RhoA, but not act on Rap2A-C, RhoB-C, or even Rap1B which shares 95% sequence identity with Rap1A. We conclude that in TJ-forming HDMECs, ArhGEF12 selectively activates Rap1A to limit capillary barrier disruption in a mechanism independent of cAMP-mediated Epac1 activation.
Collapse
Affiliation(s)
- Alamzeb Khan
- Department of Pediatrics, Yale School of Medicine, Yale University
| | - Weiming Ni
- Department of Pediatrics, Yale School of Medicine, Yale University
| | - Tania Baltazar
- Department of Immunobiology, Yale School of Medicine, Yale University
| | | | - Jordan S. Pober
- Department of Immunobiology, Yale School of Medicine, Yale University
| | | |
Collapse
|
12
|
Forbes G, Schilde C, Lawal H, Kin K, Du Q, Chen ZH, Rivero F, Schaap P. Interactome and evolutionary conservation of Dictyostelid small GTPases and their direct regulators. Small GTPases 2022; 13:239-254. [PMID: 34565293 PMCID: PMC8923023 DOI: 10.1080/21541248.2021.1984829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
GTP binding proteins known as small GTPases make up one of the largest groups of regulatory proteins and control almost all functions of living cells. Their activity is under, respectively, positive and negative regulation by guanine nucleotide exchange factors (GEFs) and GTPase activating proteins (GAPs), which together with their upstream regulators and the downstream targets of the small GTPases form formidable signalling networks. While genomics has revealed the large size of the GTPase, GEF and GAP repertoires, only a small fraction of their interactions and functions have yet been experimentally explored. Dictyostelid social amoebas have been particularly useful in unravelling the roles of many proteins in the Rac-Rho and Ras-Rap families of GTPases in directional cell migration and regulation of the actin cytoskeleton. Genomes and cell-type specific and developmental transcriptomes are available for Dictyostelium species that span the 0.5 billion years of evolution of the group from their unicellular ancestors. In this work, we identified all GTPases, GEFs and GAPs from genomes representative of the four major taxon groups and investigated their phylogenetic relationships and evolutionary conservation and changes in their functional domain architecture and in their developmental and cell-type specific expression. We performed a hierarchical cluster analysis of the expression profiles of the ~2000 analysed genes to identify putative interacting sets of GTPases, GEFs and GAPs, which highlight sets known to interact experimentally and many novel combinations. This work represents a valuable resource for research into all fields of cellular regulation.
Collapse
Affiliation(s)
- Gillian Forbes
- School of Life Sciences, University of Dundee, Dundee, UK
| | | | - Hajara Lawal
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Koryu Kin
- School of Life Sciences, University of Dundee, Dundee, UK,CSIC-Universitat Pompeu Fabra, Institut de Biologia Evolutiva (Csic-universitat Pompeu Fabra), Barcelona, Spain
| | - Qingyou Du
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Zhi-hui Chen
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Francisco Rivero
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Faculty of Health Sciences, University of Hull, Hull, UK
| | - Pauline Schaap
- School of Life Sciences, University of Dundee, Dundee, UK,CONTACT Pauline Schaap ; School of Life Sciences, University of Dundee, Msi/wtb Complex, Dundee, DD15EH, UK
| |
Collapse
|
13
|
Herman EK, Greninger A, van der Giezen M, Ginger ML, Ramirez-Macias I, Miller HC, Morgan MJ, Tsaousis AD, Velle K, Vargová R, Záhonová K, Najle SR, MacIntyre G, Muller N, Wittwer M, Zysset-Burri DC, Eliáš M, Slamovits CH, Weirauch MT, Fritz-Laylin L, Marciano-Cabral F, Puzon GJ, Walsh T, Chiu C, Dacks JB. Genomics and transcriptomics yields a system-level view of the biology of the pathogen Naegleria fowleri. BMC Biol 2021; 19:142. [PMID: 34294116 PMCID: PMC8296547 DOI: 10.1186/s12915-021-01078-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/24/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The opportunistic pathogen Naegleria fowleri establishes infection in the human brain, killing almost invariably within 2 weeks. The amoeba performs piece-meal ingestion, or trogocytosis, of brain material causing direct tissue damage and massive inflammation. The cellular basis distinguishing N. fowleri from other Naegleria species, which are all non-pathogenic, is not known. Yet, with the geographic range of N. fowleri advancing, potentially due to climate change, understanding how this pathogen invades and kills is both important and timely. RESULTS Here, we report an -omics approach to understanding N. fowleri biology and infection at the system level. We sequenced two new strains of N. fowleri and performed a transcriptomic analysis of low- versus high-pathogenicity N. fowleri cultured in a mouse infection model. Comparative analysis provides an in-depth assessment of encoded protein complement between strains, finding high conservation. Molecular evolutionary analyses of multiple diverse cellular systems demonstrate that the N. fowleri genome encodes a similarly complete cellular repertoire to that found in free-living N. gruberi. From transcriptomics, neither stress responses nor traits conferred from lateral gene transfer are suggested as critical for pathogenicity. By contrast, cellular systems such as proteases, lysosomal machinery, and motility, together with metabolic reprogramming and novel N. fowleri proteins, are all implicated in facilitating pathogenicity within the host. Upregulation in mouse-passaged N. fowleri of genes associated with glutamate metabolism and ammonia transport suggests adaptation to available carbon sources in the central nervous system. CONCLUSIONS In-depth analysis of Naegleria genomes and transcriptomes provides a model of cellular systems involved in opportunistic pathogenicity, uncovering new angles to understanding the biology of a rare but highly fatal pathogen.
Collapse
Affiliation(s)
- Emily K Herman
- Division of Infectious Disease, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| | - Alex Greninger
- Laboratory Medicine and Medicine / Infectious Diseases, UCSF-Abbott Viral Diagnostics and Discovery Center, UCSF Clinical Microbiology Laboratory UCSF School of Medicine, San Francisco, USA
- Department of Laboratory Medicine, University of Washington Medical Center, Montlake, USA
| | - Mark van der Giezen
- Centre for Organelle Research, Department of Chemistry, Bioscience and Environmental Engineering, University of Stavanger, Stavanger, Norway
| | - Michael L Ginger
- School of Applied Sciences, Department of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, UK
| | - Inmaculada Ramirez-Macias
- Division of Infectious Disease, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Department of Cardiology, Hospital Clinico Universitario Virgen de la Arrixaca. Instituto Murciano de Investigación Biosanitaria. Centro de Investigación Biomedica en Red-Enfermedades Cardiovasculares (CIBERCV), Madrid, Spain
| | - Haylea C Miller
- CSIRO Land and Water, Centre for Environment and Life Sciences, Private Bag No.5, Wembley, Western Australia 6913, Australia
- CSIRO, Indian Oceans Marine Research Centre, Environomics Future Science Platform, Crawley, WA, Australia
| | - Matthew J Morgan
- CSIRO Land and Water, Black Mountain Laboratories, Canberra, Australia
| | | | - Katrina Velle
- Department of Biology, University of Massachusetts, Amherst, UK
| | - Romana Vargová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Kristína Záhonová
- Division of Infectious Disease, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
- Faculty of Science, Charles University, BIOCEV, Prague, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Sebastian Rodrigo Najle
- Institut de Biologia Evolutiva (UPF-CSIC), Barcelona, Spain
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08003, Barcelona, Catalonia, Spain
| | - Georgina MacIntyre
- Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Norbert Muller
- Institute of Parasitology, Vetsuisse Faculty Bern, University of Bern, Bern, Switzerland
| | - Mattias Wittwer
- Spiez Laboratory, Federal Office for Civil Protection, Austrasse, Spiez, Switzerland
| | - Denise C Zysset-Burri
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Claudio H Slamovits
- Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, Canada
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology and Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, USA
| | | | - Francine Marciano-Cabral
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Geoffrey J Puzon
- CSIRO Land and Water, Centre for Environment and Life Sciences, Private Bag No.5, Wembley, Western Australia 6913, Australia
| | - Tom Walsh
- CSIRO Land and Water, Black Mountain Laboratories, Canberra, Australia
| | - Charles Chiu
- Laboratory Medicine and Medicine / Infectious Diseases, UCSF-Abbott Viral Diagnostics and Discovery Center, UCSF Clinical Microbiology Laboratory UCSF School of Medicine, San Francisco, USA
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
- Department of Life Sciences, The Natural History Museum, London, UK.
| |
Collapse
|
14
|
Vargová R, Wideman JG, Derelle R, Klimeš V, Kahn RA, Dacks JB, Eliáš M. A Eukaryote-Wide Perspective on the Diversity and Evolution of the ARF GTPase Protein Family. Genome Biol Evol 2021; 13:6319025. [PMID: 34247240 PMCID: PMC8358228 DOI: 10.1093/gbe/evab157] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2021] [Indexed: 12/21/2022] Open
Abstract
The evolution of eukaryotic cellular complexity is interwoven with the extensive diversification of many protein families. One key family is the ARF GTPases that act in eukaryote-specific processes, including membrane traffic, tubulin assembly, actin dynamics, and cilia-related functions. Unfortunately, our understanding of the evolution of this family is limited. Sampling an extensive set of available genome and transcriptome sequences, we have assembled a data set of over 2,000 manually curated ARF family genes from 114 eukaryotic species, including many deeply diverged protist lineages, and carried out comprehensive molecular phylogenetic analyses. These reconstructed as many as 16 ARF family members present in the last eukaryotic common ancestor, nearly doubling the previously inferred ancient system complexity. Evidence for the wide occurrence and ancestral origin of Arf6, Arl13, and Arl16 is presented for the first time. Moreover, Arl17, Arl18, and SarB, newly described here, are absent from well-studied model organisms and as a result their function(s) remain unknown. Analyses of our data set revealed a previously unsuspected diversity of membrane association modes and domain architectures within the ARF family. We detail the step-wise expansion of the ARF family in the metazoan lineage, including discovery of several new animal-specific family members. Delving back to its earliest evolution in eukaryotes, the resolved relationship observed between the ARF family paralogs sets boundaries for scenarios of vesicle coat origins during eukaryogenesis. Altogether, our work fundamentally broadens the understanding of the diversity and evolution of a protein family underpinning the structural and functional complexity of the eukaryote cells.
Collapse
Affiliation(s)
- Romana Vargová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic
| | - Jeremy G Wideman
- Biodesign Center for Mechanisms of Evolution, School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Romain Derelle
- Station d'Ecologie Théorique et Expérimentale, UMR CNRS 5321, Moulis, France
| | - Vladimír Klimeš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Joel B Dacks
- Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Centre for Life's Origin and Evolution, Department of Genetics, Evolution and Environment, University College of London, United Kingdom
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Czech Republic
| |
Collapse
|
15
|
Dautt-Castro M, Rosendo-Vargas M, Casas-Flores S. The Small GTPases in Fungal Signaling Conservation and Function. Cells 2021; 10:cells10051039. [PMID: 33924947 PMCID: PMC8146680 DOI: 10.3390/cells10051039] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 12/28/2022] Open
Abstract
Monomeric GTPases, which belong to the Ras superfamily, are small proteins involved in many biological processes. They are fine-tuned regulated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Several families have been identified in organisms from different kingdoms. Overall, the most studied families are Ras, Rho, Rab, Ran, Arf, and Miro. Recently, a new family named Big Ras GTPases was reported. As a general rule, the proteins of all families have five characteristic motifs (G1–G5), and some specific features for each family have been described. Here, we present an exhaustive analysis of these small GTPase families in fungi, using 56 different genomes belonging to different phyla. For this purpose, we used distinct approaches such as phylogenetics and sequences analysis. The main functions described for monomeric GTPases in fungi include morphogenesis, secondary metabolism, vesicle trafficking, and virulence, which are discussed here. Their participation during fungus–plant interactions is reviewed as well.
Collapse
|
16
|
Apken LH, Oeckinghaus A. The RAL signaling network: Cancer and beyond. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 361:21-105. [PMID: 34074494 DOI: 10.1016/bs.ircmb.2020.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The RAL proteins RALA and RALB belong to the superfamily of small RAS-like GTPases (guanosine triphosphatases). RAL GTPases function as molecular switches in cells by cycling through GDP- and GTP-bound states, a process which is regulated by several guanine exchange factors (GEFs) and two heterodimeric GTPase activating proteins (GAPs). Since their discovery in the 1980s, RALA and RALB have been established to exert isoform-specific functions in central cellular processes such as exocytosis, endocytosis, actin organization and gene expression. Consequently, it is not surprising that an increasing number of physiological functions are discovered to be controlled by RAL, including neuronal plasticity, immune response, and glucose and lipid homeostasis. The critical importance of RAL GTPases for oncogenic RAS-driven cellular transformation and tumorigenesis still attracts most research interest. Here, RAL proteins are key drivers of cell migration, metastasis, anchorage-independent proliferation, and survival. This chapter provides an overview of normal and pathological functions of RAL GTPases and summarizes the current knowledge on the involvement of RAL in human disease as well as current therapeutic targeting strategies. In particular, molecular mechanisms that specifically control RAL activity and RAL effector usage in different scenarios are outlined, putting a spotlight on the complexity of the RAL GTPase signaling network and the emerging theme of RAS-independent regulation and relevance of RAL.
Collapse
Affiliation(s)
- Lisa H Apken
- Institute of Molecular Tumor Biology, Faculty of Medicine, University of Münster, Münster, Germany
| | - Andrea Oeckinghaus
- Institute of Molecular Tumor Biology, Faculty of Medicine, University of Münster, Münster, Germany.
| |
Collapse
|
17
|
Yang YY, Yu K, Li L, Huang M, Wang Y. Proteome-wide Interrogation of Small GTPases Regulated by N6-Methyladenosine Modulators. Anal Chem 2020; 92:10145-10152. [PMID: 32567849 DOI: 10.1021/acs.analchem.0c02203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
N6-Methyladenosine (m6A) in messenger RNA (mRNA) regulates its stability, splicing, and translation efficiency. Here, we explored how the expression levels of small GTPase proteins are regulated by m6A modulators. We employed a high-throughput scheduled multiple-reaction monitoring (MRM)-based targeted proteomic approach to quantify systemically the changes in expression of small GTPase proteins in cells upon genetic ablation of METTL3 (the catalytic subunit of the major m6A methyltransferase complex), m6A demethylases (ALKBH5 and FTO), or m6A reader proteins (YTHDF1, YTHDF2, and YTHDF3). Depletions of METTL3 and ALKBH5 resulted in substantially diminished and augmented expression, respectively, of a subset of small GTPase proteins, including RHOB and RHOC. Our results also revealed that the stability of RHOB mRNA is significantly increased in cells depleted of METTL3, suggesting an m6A-elicited destabilization of this mRNA. Those small GTPases that are targeted by METTL3 and/or ALKBH5 also displayed higher discrepancies between protein and mRNA expression in paired primary/metastatic melanoma or colorectal cancer cells than those that are not. Together, this is the first comprehensive analysis of the alterations in small GTPase proteome regulated by epitranscriptomic modulators of m6A, and our study suggests the potential of an alternative therapeutic approach to target the currently "undruggable" small GTPases.
Collapse
Affiliation(s)
- Yen-Yu Yang
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Kailin Yu
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Lin Li
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States
| | - Ming Huang
- Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| | - Yinsheng Wang
- Department of Chemistry, University of California, Riverside, California 92521-0403, United States.,Environmental Toxicology Graduate Program, University of California, Riverside, California 92521-0403, United States
| |
Collapse
|
18
|
Han CW, Jeong MS, Ha SC, Jang SB. A H-REV107 Peptide Inhibits Tumor Growth and Interacts Directly with Oncogenic KRAS Mutants. Cancers (Basel) 2020; 12:cancers12061412. [PMID: 32486141 PMCID: PMC7352977 DOI: 10.3390/cancers12061412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/12/2022] Open
Abstract
Kirsten-RAS (KRAS) has been the target of drugs because it is the most mutated gene in human cancers. Because of the low affinity of drugs for KRAS mutations, it was difficult to target these tumor genes directly. We found a direct interaction between KRAS G12V and tumor suppressor novel H-REV107 peptide with high binding affinity. We report the first crystal structure of an oncogenic mutant, KRAS G12V-H-REV107. This peptide was shown to interact with KRAS G12V in the guanosine diphosphate (GDP)-bound inactive state and to form a stable complex, blocking the activation function of KRAS. We showed that the peptide acted as an inhibitor of mutant KRAS targets by [α-32P] guanosine triphosphate (GTP) binding assay. The H-REV107 peptide inhibited pancreatic cancer and colon cancer cell lines in cell proliferation assay. Specially, the H-REV107 peptide can suppress pancreatic tumor growth by reduction of tumor volume and weight in xenotransplantation mouse models. Overall, the results presented herein will facilitate development of novel drugs for inhibition of KRAS mutations in cancer patients.
Collapse
Affiliation(s)
- Chang Woo Han
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea;
| | - Mi Suk Jeong
- Korea Nanobiotechnology Center, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea
- Correspondence: (M.S.J.); (S.B.J.); Tel.: +82-51-510-2523 (S.B.J.); Fax: +82-51-581-2544 (S.B.J.)
| | - Sung Chul Ha
- Pohang Accelarator Laboratory, Pohang University of Science and Technology, 80 Jigok-ro 127 beon-gil, Nam-gu, Gyeongsangbuk-do, Pohang-si 37673, Korea;
| | - Se Bok Jang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, 2, Busandaehak-ro 63 beon-gil, Geumjeong-gu, Busan 46241, Korea;
- Correspondence: (M.S.J.); (S.B.J.); Tel.: +82-51-510-2523 (S.B.J.); Fax: +82-51-581-2544 (S.B.J.)
| |
Collapse
|
19
|
Yang YY, Huang M, Wang Y. Targeted Proteomic Analysis of Small GTPases in Murine Adipogenesis. Anal Chem 2020; 92:6756-6763. [PMID: 32237738 DOI: 10.1021/acs.analchem.0c00974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Small GTPases are essential signaling molecules for regulating glucose uptake in adipose tissues upon insulin stimulation, and this regulation maintains an appropriate range of glycemia. The involvement of small GTPases in adipogenesis, however, has not been systemically investigated. In this study, we applied a high-throughput scheduled multiple-reaction monitoring (MRM) method, along with the use of synthetic stable isotope-labeled peptides, to identify differentially expressed small GTPase proteins during adipogenesis of cultured murine cells. We were able to quantify the relative levels of expression of 55 and 49 small GTPases accompanied by adipogenic differentiation in 3T3-L1 and C3H10T1/2 cells, respectively. When compared with analysis conducted in the data-dependent acquisition (DDA) mode, the MRM-based proteomic platform substantially increased the coverage of the small GTPase proteome. Western blot analysis further corroborated the MRM quantification results for selected small GTPases. Interestingly, overall a significant number of small GTPases were down-regulated during adipogenesis. Among them, the expression levels of Rab32 protein were consistently lower in differentiated adipocytes than the corresponding undifferentiated precursors in both cell lines. Overexpression of Rab32 in 3T3-L1 and C3H10T1/2 cells prior to adipogenesis induction suppressed their differentiation. Together, this is the first comprehensive analysis of the alterations in small GTPase proteome during adipogenesis, and we reveal a previously unrecognized role of Rab32 in adipogenic differentiation.
Collapse
|
20
|
Abstract
In macropinocytosis, cells take up micrometre-sized droplets of medium into internal vesicles. These vesicles are acidified and fused to lysosomes, their contents digested and useful compounds extracted. Indigestible contents can be exocytosed. Macropinocytosis has been known for approaching 100 years and is described in both metazoa and amoebae, but not in plants or fungi. Its evolutionary origin goes back to at least the common ancestor of the amoebozoa and opisthokonts, with apparent secondary loss from fungi. The primary function of macropinocytosis in amoebae and some cancer cells is feeding, but the conserved processing pathway for macropinosomes, which involves shrinkage and the retrieval of membrane to the cell surface, has been adapted in immune cells for antigen presentation. Macropinocytic cups are large actin-driven processes, closely related to phagocytic cups and pseudopods and appear to be organized around a conserved signalling patch of PIP3, active Ras and active Rac that directs actin polymerization to its periphery. Patches can form spontaneously and must be sustained by excitable kinetics with strong cooperation from the actin cytoskeleton. Growth-factor signalling shares core components with macropinocytosis, based around phosphatidylinositol 3-kinase (PI3-kinase), and we suggest that it evolved to take control of ancient feeding structures through a coupled growth factor receptor. This article is part of the Theo Murphy meeting issue 'Macropinocytosis'.
Collapse
Affiliation(s)
- Jason S. King
- Department of Biomedical Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Robert R. Kay
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
21
|
IQGAP-related protein IqgC suppresses Ras signaling during large-scale endocytosis. Proc Natl Acad Sci U S A 2019; 116:1289-1298. [PMID: 30622175 DOI: 10.1073/pnas.1810268116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Macropinocytosis and phagocytosis are evolutionarily conserved forms of bulk endocytosis used by cells to ingest large volumes of fluid and solid particles, respectively. Both processes are regulated by Ras signaling, which is precisely controlled by mechanisms involving Ras GTPase activating proteins (RasGAPs) responsible for terminating Ras activity on early endosomes. While regulation of Ras signaling during large-scale endocytosis in WT Dictyostelium has been, for the most part, attributed to the Dictyostelium ortholog of human RasGAP NF1, in commonly used axenic laboratory strains, this gene is mutated and inactive. Moreover, none of the RasGAPs characterized so far have been implicated in the regulation of Ras signaling in large-scale endocytosis in axenic strains. In this study, we establish, using biochemical approaches and complementation assays in live cells, that Dictyostelium IQGAP-related protein IqgC interacts with active RasG and exhibits RasGAP activity toward this GTPase. Analyses of iqgC - and IqgC-overexpressing cells further revealed participation of this GAP in the regulation of both types of large-scale endocytosis and in cytokinesis. Moreover, given the localization of IqgC to phagosomes and, most prominently, to macropinosomes, we propose IqgC acting as a RasG-specific GAP in large-scale endocytosis. The data presented here functionally distinguish IqgC from other members of the Dictyostelium IQGAP family and call for repositioning of this genuine RasGAP outside of the IQGAP group.
Collapse
|
22
|
Cross-species genomics identifies DLG2 as a tumor suppressor in osteosarcoma. Oncogene 2018; 38:291-298. [PMID: 30093633 PMCID: PMC6756098 DOI: 10.1038/s41388-018-0444-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 06/22/2018] [Accepted: 07/24/2018] [Indexed: 11/27/2022]
Abstract
Leveraging the conserved cancer genomes across mammals has the potential to transform driver gene discovery in orphan cancers. Here, we combine cross-species genomics with validation across human–dog–mouse systems to uncover a new bone tumor suppressor gene. Comparative genomics of spontaneous human and dog osteosarcomas (OS) expose Disks Large Homolog 2 (DLG2) as a tumor suppressor candidate. DLG2 copy number loss occurs in 42% of human and 56% of canine OS. Functional validation through pertinent human and canine OS DLG2-deficient cell lines identifies a regulatory role of DLG2 in cell division, migration and tumorigenesis. Moreover, osteoblast-specific deletion of Dlg2 in a clinically relevant genetically engineered mouse model leads to acceleration of OS development, establishing DLG2 as a critical determinant of OS. This widely applicable cross-species approach serves as a platform to expedite the search of cancer drivers in rare human malignancies, offering new targets for cancer therapy.
Collapse
|
23
|
Tørresen OK, Brieuc MSO, Solbakken MH, Sørhus E, Nederbragt AJ, Jakobsen KS, Meier S, Edvardsen RB, Jentoft S. Genomic architecture of haddock (Melanogrammus aeglefinus) shows expansions of innate immune genes and short tandem repeats. BMC Genomics 2018; 19:240. [PMID: 29636006 PMCID: PMC5894186 DOI: 10.1186/s12864-018-4616-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/22/2018] [Indexed: 02/06/2023] Open
Abstract
Background Increased availability of genome assemblies for non-model organisms has resulted in invaluable biological and genomic insight into numerous vertebrates, including teleosts. Sequencing of the Atlantic cod (Gadus morhua) genome and the genomes of many of its relatives (Gadiformes) demonstrated a shared loss of the major histocompatibility complex (MHC) II genes 100 million years ago. An improved version of the Atlantic cod genome assembly shows an extreme density of tandem repeats compared to other vertebrate genome assemblies. Highly contiguous assemblies are therefore needed to further investigate the unusual immune system of the Gadiformes, and whether the high density of tandem repeats found in Atlantic cod is a shared trait in this group. Results Here, we have sequenced and assembled the genome of haddock (Melanogrammus aeglefinus) – a relative of Atlantic cod – using a combination of PacBio and Illumina reads. Comparative analyses reveal that the haddock genome contains an even higher density of tandem repeats outside and within protein coding sequences than Atlantic cod. Further, both species show an elevated number of tandem repeats in genes mainly involved in signal transduction compared to other teleosts. A characterization of the immune gene repertoire demonstrates a substantial expansion of MCHI in Atlantic cod compared to haddock. In contrast, the Toll-like receptors show a similar pattern of gene losses and expansions. For the NOD-like receptors (NLRs), another gene family associated with the innate immune system, we find a large expansion common to all teleosts, with possible lineage-specific expansions in zebrafish, stickleback and the codfishes. Conclusions The generation of a highly contiguous genome assembly of haddock revealed that the high density of short tandem repeats as well as expanded immune gene families is not unique to Atlantic cod – but possibly a feature common to all, or most, codfishes. A shared expansion of NLR genes in teleosts suggests that the NLRs have a more substantial role in the innate immunity of teleosts than other vertebrates. Moreover, we find that high copy number genes combined with variable genome assembly qualities may impede complete characterization of these genes, i.e. the number of NLRs in different teleost species might be underestimates. Electronic supplementary material The online version of this article (10.1186/s12864-018-4616-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ole K Tørresen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.
| | - Marine S O Brieuc
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Monica H Solbakken
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | - Elin Sørhus
- Institute of Marine Research, Bergen, Norway
| | - Alexander J Nederbragt
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.,Biomedical Informatics Research Group, Department of Informatics, University of Oslo, Oslo, Norway
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway
| | | | | | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
24
|
Záhonová K, Petrželková R, Valach M, Yazaki E, Tikhonenkov DV, Butenko A, Janouškovec J, Hrdá Š, Klimeš V, Burger G, Inagaki Y, Keeling PJ, Hampl V, Flegontov P, Yurchenko V, Eliáš M. Extensive molecular tinkering in the evolution of the membrane attachment mode of the Rheb GTPase. Sci Rep 2018; 8:5239. [PMID: 29588502 PMCID: PMC5869587 DOI: 10.1038/s41598-018-23575-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/15/2018] [Indexed: 02/07/2023] Open
Abstract
Rheb is a conserved and widespread Ras-like GTPase involved in cell growth regulation mediated by the (m)TORC1 kinase complex and implicated in tumourigenesis in humans. Rheb function depends on its association with membranes via prenylated C-terminus, a mechanism shared with many other eukaryotic GTPases. Strikingly, our analysis of a phylogenetically rich sample of Rheb sequences revealed that in multiple lineages this canonical and ancestral membrane attachment mode has been variously altered. The modifications include: (1) accretion to the N-terminus of two different phosphatidylinositol 3-phosphate-binding domains, PX in Cryptista (the fusion being the first proposed synapomorphy of this clade), and FYVE in Euglenozoa and the related undescribed flagellate SRT308; (2) acquisition of lipidic modifications of the N-terminal region, namely myristoylation and/or S-palmitoylation in seven different protist lineages; (3) acquisition of S-palmitoylation in the hypervariable C-terminal region of Rheb in apusomonads, convergently to some other Ras family proteins; (4) replacement of the C-terminal prenylation motif with four transmembrane segments in a novel Rheb paralog in the SAR clade; (5) loss of an evident C-terminal membrane attachment mechanism in Tremellomycetes and some Rheb paralogs of Euglenozoa. Rheb evolution is thus surprisingly dynamic and presents a spectacular example of molecular tinkering.
Collapse
Affiliation(s)
- Kristína Záhonová
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Romana Petrželková
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Matus Valach
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada
| | - Euki Yazaki
- Institute for Biological Sciences, University of Tsukuba, Tsukuba, Japan
| | - Denis V Tikhonenkov
- Laboratory of Microbiology, Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Anzhelika Butenko
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jan Janouškovec
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Štěpánka Hrdá
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vladimír Klimeš
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Gertraud Burger
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada
| | - Yuji Inagaki
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Vladimír Hampl
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Flegontov
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Vyacheslav Yurchenko
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
25
|
Nakhaei-Rad S, Haghighi F, Nouri P, Rezaei Adariani S, Lissy J, Kazemein Jasemi NS, Dvorsky R, Ahmadian MR. Structural fingerprints, interactions, and signaling networks of RAS family proteins beyond RAS isoforms. Crit Rev Biochem Mol Biol 2018; 53:130-156. [PMID: 29457927 DOI: 10.1080/10409238.2018.1431605] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Saeideh Nakhaei-Rad
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Fereshteh Haghighi
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Parivash Nouri
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Soheila Rezaei Adariani
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Jana Lissy
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Neda S Kazemein Jasemi
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Radovan Dvorsky
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| | - Mohammad Reza Ahmadian
- a Institute of Biochemistry and Molecular Biology II, Medical Faculty , Heinrich-Heine University , Düsseldorf , Germany
| |
Collapse
|
26
|
Abstract
Our laboratory has studied Ras and Ras-like proteins since the discovery of the Ras oncogene 35 years ago. In this review, I will give an account of what we have done in these 35 years and indicate the main papers that have guided our research. Our efforts started with the early analysis of mutant Ras in human tumors followed by deciphering of the role of Ras in signal transduction pathways. In an attempt to interfere in Ras signaling we turned to Rap proteins. These proteins are the closest relatives of Ras and were initially identified as Ras antagonists. However, our studies revealed that the Rap signaling network primarily is involved in spatiotemporal control of cell adhesion, in part through regulation of the actin cytoskeleton. More recently we returned to Ras, trying to interfere in Ras signaling by combinatorial drug testing using the organoid technology.
Collapse
Affiliation(s)
- Johannes L Bos
- Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
27
|
Ramos CJ, Lin C, Liu X, Antonetti DA. The EPAC-Rap1 pathway prevents and reverses cytokine-induced retinal vascular permeability. J Biol Chem 2017; 293:717-730. [PMID: 29158262 DOI: 10.1074/jbc.m117.815381] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/15/2017] [Indexed: 12/31/2022] Open
Abstract
Increased retinal vascular permeability contributes to macular edema, a leading cause of vision loss in eye pathologies such as diabetic retinopathy, age-related macular degeneration, and central retinal vein occlusions. Pathological changes in vascular permeability are driven by growth factors such as VEGF and pro-inflammatory cytokines such as TNF-α. Identifying the pro-barrier mechanisms that block vascular permeability and restore the blood-retinal barrier (BRB) may lead to new therapies. The cAMP-dependent guanine nucleotide exchange factor (EPAC) exchange-protein directly activated by cAMP promotes exchange of GTP in the small GTPase Rap1. Rap1 enhances barrier properties in human umbilical endothelial cells by promoting adherens junction assembly. We hypothesized that the EPAC-Rap1 signaling pathway may regulate the tight junction complex of the BRB and may restore barrier properties after cytokine-induced permeability. Here, we show that stimulating EPAC or Rap1 activation can prevent or reverse VEGF- or TNF-α-induced permeability in cell culture and in vivo Moreover, EPAC activation inhibited VEGF receptor (VEGFR) signaling through the Ras/MEK/ERK pathway. We also found that Rap1B knockdown or an EPAC antagonist increases endothelial permeability and that VEGF has no additive effect, suggesting a common pathway. Furthermore, GTP-bound Rap1 promoted tight junction assembly, and loss of Rap1B led to loss of junctional border organization. Collectively, our results indicate that the EPAC-Rap1 pathway helps maintain basal barrier properties in the retinal vascular endothelium and activation of the EPAC-Rap1 pathway may therefore represent a potential therapeutic strategy to restore the BRB.
Collapse
Affiliation(s)
- Carla J Ramos
- From the Department of Ophthalmology and Visual Sciences, University of Michigan, Kellogg Eye Center, Ann Arbor, Michigan 48105
| | - Chengmao Lin
- From the Department of Ophthalmology and Visual Sciences, University of Michigan, Kellogg Eye Center, Ann Arbor, Michigan 48105
| | - Xuwen Liu
- From the Department of Ophthalmology and Visual Sciences, University of Michigan, Kellogg Eye Center, Ann Arbor, Michigan 48105
| | - David A Antonetti
- From the Department of Ophthalmology and Visual Sciences, University of Michigan, Kellogg Eye Center, Ann Arbor, Michigan 48105
| |
Collapse
|
28
|
Fructose-1,6-bisphosphate couples glycolytic flux to activation of Ras. Nat Commun 2017; 8:922. [PMID: 29030545 PMCID: PMC5640605 DOI: 10.1038/s41467-017-01019-z] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/14/2017] [Indexed: 12/12/2022] Open
Abstract
Yeast and cancer cells share the unusual characteristic of favoring fermentation of sugar over respiration. We now reveal an evolutionary conserved mechanism linking fermentation to activation of Ras, a major regulator of cell proliferation in yeast and mammalian cells, and prime proto-oncogene product. A yeast mutant (tps1∆) with overactive influx of glucose into glycolysis and hyperaccumulation of Fru1,6bisP, shows hyperactivation of Ras, which causes its glucose growth defect by triggering apoptosis. Fru1,6bisP is a potent activator of Ras in permeabilized yeast cells, likely acting through Cdc25. As in yeast, glucose triggers activation of Ras and its downstream targets MEK and ERK in mammalian cells. Biolayer interferometry measurements show that physiological concentrations of Fru1,6bisP stimulate dissociation of the pure Sos1/H-Ras complex. Thermal shift assay confirms direct binding to Sos1, the mammalian ortholog of Cdc25. Our results suggest that the Warburg effect creates a vicious cycle through Fru1,6bisP activation of Ras, by which enhanced fermentation stimulates oncogenic potency. Yeast and cancer cells both favor sugar fermentation in aerobic conditions. Here the authors describe a conserved mechanism from yeast to mammals where the glycolysis intermediate fructose-1,6-bisphosphate binds Cdc25/Sos1 and couples increased glycolytic flux to increased Ras proto-oncoprotein activity.
Collapse
|
29
|
Ramos CJ, Antonetti DA. The role of small GTPases and EPAC-Rap signaling in the regulation of the blood-brain and blood-retinal barriers. Tissue Barriers 2017. [PMID: 28632993 DOI: 10.1080/21688370.2017.1339768] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Maintenance and regulation of the vascular endothelial cell junctional complex is critical for proper barrier function of the blood-brain barrier (BBB) and the highly related blood-retinal barrier (BRB) that help maintain proper neuronal environment. Recent research has demonstrated that the junctional complex is actively maintained and can be dynamically regulated. Studies focusing on the mechanisms of barrier formation, maintenance, and barrier disruption have been of interest to understanding development of the BBB and BRB and identifying a means for therapeutic intervention for diseases ranging from brain tumors and dementia to blinding eye diseases. Research has increasingly revealed that small GTPases play a critical role in both barrier formation and disruption mechanisms. This review will summarize the current data on small GTPases in barrier regulation with an emphasis on the EPAC-Rap1 signaling pathway to Rho in endothelial barriers, as well as explore its potential involvement in paracellular flux and transcytosis regulation.
Collapse
Affiliation(s)
- Carla J Ramos
- a Department of Ophthalmology and Visual Sciences , University of Michigan , Ann Arbor , MI USA
| | - David A Antonetti
- a Department of Ophthalmology and Visual Sciences , University of Michigan , Ann Arbor , MI USA
| |
Collapse
|
30
|
The cornerstone K-RAS mutation in pancreatic adenocarcinoma: From cell signaling network, target genes, biological processes to therapeutic targeting. Crit Rev Oncol Hematol 2017; 111:7-19. [PMID: 28259298 DOI: 10.1016/j.critrevonc.2017.01.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/15/2016] [Accepted: 01/05/2017] [Indexed: 01/17/2023] Open
Abstract
RAS belongs to the super family of small G proteins and plays crucial roles in signal transduction from membrane receptors in the cell. Mutations of K-RAS oncogene lead to an accumulation of GTP-bound proteins that maintains an active conformation. In the pancreatic ductal adenocarcinoma (PDAC), one of the most deadly cancers in occidental countries, mutations of the K-RAS oncogene are nearly systematic (>90%). Moreover, K-RAS mutation is the earliest genetic alteration occurring during pancreatic carcinogenetic sequence. In this review, we discuss the central role of K-RAS mutations and their tremendous diversity of biological properties by the interconnected regulation of signaling pathways (MAPKs, NF-κB, PI3K, Ral…). In pancreatic ductal adenocarcinoma, transcriptome analysis and preclinical animal models showed that K-RAS mutation alters biological behavior of PDAC cells (promoting proliferation, migration and invasion, evading growth suppressors, regulating mucin pattern, and miRNA expression). K-RAS also impacts tumor microenvironment and PDAC metabolism reprogramming. Finally we discuss therapeutic targeting strategies of K-RAS that have been developed without significant clinical success so far. As K-RAS is considered as the undruggable target, targeting its multiple effectors and target genes should be considered as potential alternatives.
Collapse
|
31
|
Jiménez-Sánchez A. Coevolution of RAC Small GTPases and their Regulators GEF Proteins. Evol Bioinform Online 2016; 12:121-31. [PMID: 27226705 PMCID: PMC4872645 DOI: 10.4137/ebo.s38031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 03/31/2016] [Accepted: 04/03/2016] [Indexed: 01/16/2023] Open
Abstract
RAC proteins are small GTPases involved in important cellular processes in eukaryotes, and their deregulation may contribute to cancer. Activation of RAC proteins is regulated by DOCK and DBL protein families of guanine nucleotide exchange factors (GEFs). Although DOCK and DBL proteins act as GEFs on RAC proteins, DOCK and DBL family members are evolutionarily unrelated. To understand how DBL and DOCK families perform the same function on RAC proteins despite their unrelated primary structure, phylogenetic analyses of the RAC, DBL, and DOCK families were implemented, and interaction patterns that may suggest a coevolutionary process were searched. Interestingly, while RAC and DOCK proteins are very well conserved in humans and among eukaryotes, DBL proteins are highly divergent. Moreover, correlation analyses of the phylogenetic distances of RAC and GEF proteins and covariation analyses between residues in the interacting domains showed significant coevolution rates for both RAC–DOCK and RAC–DBL interactions.
Collapse
Affiliation(s)
- Alejandro Jiménez-Sánchez
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK.; Previously at Department of Biology, University of York, York, UK
| |
Collapse
|
32
|
Schmoll M, Dattenböck C, Carreras-Villaseñor N, Mendoza-Mendoza A, Tisch D, Alemán MI, Baker SE, Brown C, Cervantes-Badillo MG, Cetz-Chel J, Cristobal-Mondragon GR, Delaye L, Esquivel-Naranjo EU, Frischmann A, Gallardo-Negrete JDJ, García-Esquivel M, Gomez-Rodriguez EY, Greenwood DR, Hernández-Oñate M, Kruszewska JS, Lawry R, Mora-Montes HM, Muñoz-Centeno T, Nieto-Jacobo MF, Nogueira Lopez G, Olmedo-Monfil V, Osorio-Concepcion M, Piłsyk S, Pomraning KR, Rodriguez-Iglesias A, Rosales-Saavedra MT, Sánchez-Arreguín JA, Seidl-Seiboth V, Stewart A, Uresti-Rivera EE, Wang CL, Wang TF, Zeilinger S, Casas-Flores S, Herrera-Estrella A. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiol Mol Biol Rev 2016; 80:205-327. [PMID: 26864432 PMCID: PMC4771370 DOI: 10.1128/mmbr.00040-15] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.
Collapse
Affiliation(s)
- Monika Schmoll
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | - Christoph Dattenböck
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Doris Tisch
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Mario Ivan Alemán
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | - Scott E Baker
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher Brown
- University of Otago, Department of Biochemistry and Genetics, Dunedin, New Zealand
| | | | - José Cetz-Chel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - Luis Delaye
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | | | - Alexa Frischmann
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | - Monica García-Esquivel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - David R Greenwood
- The University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Miguel Hernández-Oñate
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | - Joanna S Kruszewska
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Robert Lawry
- Lincoln University, Bio-Protection Research Centre, Lincoln, Canterbury, New Zealand
| | | | | | | | | | | | | | - Sebastian Piłsyk
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aroa Rodriguez-Iglesias
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | | | - Chih-Li Wang
- National Chung-Hsing University, Department of Plant Pathology, Taichung, Taiwan
| | - Ting-Fang Wang
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan
| | - Susanne Zeilinger
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria University of Innsbruck, Institute of Microbiology, Innsbruck, Austria
| | | | - Alfredo Herrera-Estrella
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| |
Collapse
|
33
|
Klinger CM, Spang A, Dacks JB, Ettema TJG. Tracing the Archaeal Origins of Eukaryotic Membrane-Trafficking System Building Blocks. Mol Biol Evol 2016; 33:1528-41. [PMID: 26893300 DOI: 10.1093/molbev/msw034] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In contrast to prokaryotes, eukaryotic cells are characterized by a complex set of internal membrane-bound compartments. A subset of these, and the protein machineries that move material between them, define the membrane-trafficking system (MTS), the emergence of which represents a landmark in eukaryotic evolution. Unlike mitochondria and plastids, MTS organelles have autogenous origins. Much of the MTS machinery is composed of building blocks, including small GTPase, coiled-coil, beta-propeller + alpha-solenoid, and longin domains. Despite the identification of prokaryotic proteins containing these domains, only few represent direct orthologues, leaving the origins and early evolution of the MTS poorly understood. Here, we present an in-depth analysis of MTS building block homologues in the composite genome of Lokiarchaeum, the recently discovered archaeal sister clade of eukaryotes, yielding several key insights. We identify two previously unreported Eukaryotic Signature Proteins; orthologues of the Gtr/Rag family GTPases, involved in target of rapamycin complex signaling, and of the RLC7 dynein component. We could not identify golgin or SNARE (coiled-coil) or beta-propeller + alpha-solenoid orthologues, nor typical MTS domain fusions, suggesting that these either were lost from Lokiarchaeum or emerged later in eukaryotic evolution. Furthermore, our phylogenetic analyses of lokiarchaeal GTPases support a split into Ras-like and Arf-like superfamilies, with different prokaryotic antecedents, before the advent of eukaryotes. While no GTPase activating proteins or exchange factors were identified, we show that Lokiarchaeum encodes numerous roadblock domain proteins and putative longin domain proteins, confirming the latter's origin from Archaea. Altogether, our study provides new insights into the emergence and early evolution of the eukaryotic membrane-trafficking system.
Collapse
Affiliation(s)
| | - Anja Spang
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
| | - Thijs J G Ettema
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
34
|
A paneukaryotic genomic analysis of the small GTPase RABL2 underscores the significance of recurrent gene loss in eukaryote evolution. Biol Direct 2016; 11:5. [PMID: 26832778 PMCID: PMC4736243 DOI: 10.1186/s13062-016-0107-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/27/2016] [Indexed: 12/30/2022] Open
Abstract
Background The cilium (flagellum) is a complex cellular structure inherited from the last eukaryotic common ancestor (LECA). A large number of ciliary proteins have been characterized in a few model organisms, but their evolutionary history often remains unexplored. One such protein is the small GTPase RABL2, recently implicated in the assembly of the sperm tail in mammals. Results Using the wealth of currently available genome and transcriptome sequences, including data from our on-going sequencing projects, we systematically analyzed the phylogenetic distribution and evolutionary history of RABL2 orthologs. Our dense taxonomic sampling revealed the presence of RABL2 genes in nearly all major eukaryotic lineages, including small “obscure” taxa such as breviates, ancyromonads, malawimonads, jakobids, picozoans, or palpitomonads. The phyletic pattern of RABL2 genes indicates that it was present already in the LECA. However, some organisms lack RABL2 as a result of secondary loss and our present sampling predicts well over 30 such independent events during the eukaryote evolution. The distribution of RABL2 genes correlates with the presence/absence of cilia: not a single well-established cilium-lacking species has retained a RABL2 ortholog. However, several ciliated taxa, most notably nematodes, some arthropods and platyhelminths, diplomonads, and ciliated subgroups of apicomplexans and embryophytes, lack RABL2 as well, suggesting some simplification in their cilium-associated functions. On the other hand, several algae currently unknown to form cilia, e.g., the “prasinophytes” of the genus Prasinoderma or the ochrophytes Pelagococcus subviridis and Pinguiococcus pyrenoidosus, turned out to encode not only RABL2, but also homologs of some hallmark ciliary proteins, suggesting the existence of a cryptic flagellated stage in their life cycles. We additionally obtained insights into the evolution of the RABL2 gene architecture, which seems to have ancestrally consisted of eight exons subsequently modified not only by lineage-specific intron loss and gain, but also by recurrent loss of the terminal exon encoding a poorly conserved C-terminal extension. Conclusions Our comparative analysis supports the notion that RABL2 is an ancestral component of the eukaryotic cilium and underscores the still underappreciated magnitude of recurrent gene loss, or reductive evolution in general, in the history of eukaryotic genomes and cells. Reviewers This article was reviewed by Berend Snel and James O. McInerney. Electronic supplementary material The online version of this article (doi:10.1186/s13062-016-0107-8) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
Li J, Song CX, Li YP, Li L, Wei XH, Wang JL, Liu XS. Rab3 is involved in cellular immune responses of the cotton bollworm, Helicoverpa armigera. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 50:78-86. [PMID: 25662061 DOI: 10.1016/j.dci.2015.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 12/23/2014] [Accepted: 01/12/2015] [Indexed: 06/04/2023]
Abstract
Rab3, a member of the Rab GTPase family, has been found to be involved in innate immunity. However, the precise function of this GTPase in innate immunity remains unknown. In this study, we identified a Rab3 gene (Ha-Rab3) from the cotton bollworm, Helicoverpa armigera and studied its roles in innate immune responses. Expression of Ha-Rab3 was upregulated in the hemocytes of H. armigera larvae after the injection of Escherichia coli or chromatography beads. The dsRNA-mediated knockdown of Ha-Rab3 gene in H. armigera larval hemocytes led to significant reduction in the phagocytosis and nodulation activities of hemocytes against E. coli, significant increase in the bacterial load in larval hemolymph, and significant reduction in the encapsulation activities of hemocytes toward invading chromatography beads. Furthermore, Ha-Rab3 knockdown significantly suppressed spreading of plasmatocytes. These results suggest that Ha-Rab3 plays important roles in H. armigera cellular immune responses, possibly by mediating spreading of hemocytes.
Collapse
Affiliation(s)
- Jie Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Cai-Xia Song
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Yu-Ping Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Li Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Xiu-Hong Wei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China
| | - Jia-Lin Wang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Xu-Sheng Liu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| |
Collapse
|
36
|
Arkowitz RA, Bassilana M. Regulation of hyphal morphogenesis by Ras and Rho small GTPases. FUNGAL BIOL REV 2015. [DOI: 10.1016/j.fbr.2015.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
37
|
Bloomfield G, Traynor D, Sander SP, Veltman DM, Pachebat JA, Kay RR. Neurofibromin controls macropinocytosis and phagocytosis in Dictyostelium. eLife 2015; 4. [PMID: 25815683 PMCID: PMC4374526 DOI: 10.7554/elife.04940] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 03/06/2015] [Indexed: 02/06/2023] Open
Abstract
Cells use phagocytosis and macropinocytosis to internalise bulk material, which in phagotrophic organisms supplies the nutrients necessary for growth. Wildtype Dictyostelium amoebae feed on bacteria, but for decades laboratory work has relied on axenic mutants that can also grow on liquid media. We used forward genetics to identify the causative gene underlying this phenotype. This gene encodes the RasGAP Neurofibromin (NF1). Loss of NF1 enables axenic growth by increasing fluid uptake. Mutants form outsized macropinosomes which are promoted by greater Ras and PI3K activity at sites of endocytosis. Relatedly, NF1 mutants can ingest larger-than-normal particles using phagocytosis. An NF1 reporter is recruited to nascent macropinosomes, suggesting that NF1 limits their size by locally inhibiting Ras signalling. Our results link NF1 with macropinocytosis and phagocytosis for the first time, and we propose that NF1 evolved in early phagotrophs to spatially modulate Ras activity, thereby constraining and shaping their feeding structures. DOI:http://dx.doi.org/10.7554/eLife.04940.001 Dictyostelium amoebae are microbes that feed on bacteria living in the soil. They are unusual in that the amoebae can survive and grow in a single-celled form, but when food is scarce, many individual cells can gather together to form a simple multicellular organism. To feed on bacteria, the amoebae use a process called phagocytosis, which starts with the membrane that surrounds the cell growing outwards to completely surround the bacteria. This leads to the bacteria entering the amoeba within a membrane compartment called a vesicle, where they are broken down into small molecules by enzymes. The cells can also take up fluids and dissolved molecules using a similar process called macropinocytosis. With its short and relatively simple lifestyle, Dictyostelium is often used in research to study phagocytosis, cell movement and other processes that are also found in larger organisms. For example, some immune cells in animals use phagocytosis to capture and destroy invading microbes. Most studies using Dictyostelium as a model have used amoebae with genetic mutations that allow them to be grown in liquid cultures in the laboratory without needing to feed on bacteria. The mutations allow the ‘mutant’ amoebae to take up more liquid and dissolved nutrients by macropinocytosis, but it is not known where in the genome these mutations are. Here, Bloomfield et al. used genome sequencing to reveal that these mutations alter a gene that encodes a protein called Neurofibromin. The experiments show that the loss of Neurofibromin increases the amount of fluid taken up by the amoebae through macropinocytosis, and also enables the amoebae to take up larger-than-normal particles during phagocytosis. The experiments suggest that Neurofibromin controls both phagocytosis and macropinocytosis by inhibiting the activity of another protein called Ras. Neurofibromin is found in animals and many other organisms so Bloomfield et al. propose that it is an ancient protein that evolved in early single-celled organisms to control the size and shape of their feeding structures. In humans, mutations in the gene that encodes the Neurofibromin protein can lead to the development of a severe disorder—called Neurofibromatosis type 1—in which tumours form in the nervous system. Given that tumour cells can use phagocytosis and macropinocytosis to gain nutrients as they grow, understanding how this protein works in the Dictyostelium amoebae may help to inform future efforts to develop treatments for this human disease. DOI:http://dx.doi.org/10.7554/eLife.04940.002
Collapse
Affiliation(s)
| | - David Traynor
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Sophia P Sander
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Douwe M Veltman
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Justin A Pachebat
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Robert R Kay
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| |
Collapse
|
38
|
Hu A, Diener BL, Josephson MB, Grunstein MM. Constitutively active signaling by the G protein βγ-subunit mediates intrinsically increased phosphodiesterase-4 activity in human asthmatic airway smooth muscle cells. PLoS One 2015; 10:e0118712. [PMID: 25742624 PMCID: PMC4351001 DOI: 10.1371/journal.pone.0118712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 01/09/2015] [Indexed: 02/02/2023] Open
Abstract
Signaling by the Gβγ subunit of Gi protein, leading to downstream c-Src-induced activation of the Ras/c-Raf1/MEK-ERK1/2 signaling pathway and its upregulation of phosphodiesterase-4 (PDE4) activity, was recently shown to mediate the heightened contractility in proasthmatic sensitized isolated airway smooth muscle (ASM), as well as allergen-induced airway hyperresponsiveness and inflammation in an in vivo animal model of allergic asthma. This study investigated whether cultured human ASM (HASM) cells derived from asthmatic donor lungs exhibit constitutively increased PDE activity that is attributed to intrinsically upregulated Gβγ signaling coupled to c-Src activation of the Ras/MEK/ERK1/2 cascade. We show that, relative to normal cells, asthmatic HASM cells constitutively exhibit markedly increased intrinsic PDE4 activity coupled to heightened Gβγ-regulated phosphorylation of c-Src and ERK1/2, and direct co-localization of the latter with the PDE4D isoform. These signaling events and their induction of heightened PDE activity are acutely suppressed by treating asthmatic HASM cells with a Gβγ inhibitor. Importantly, along with increased Gβγ activation, asthmatic HASM cells also exhibit constitutively increased direct binding of the small Rap1 GTPase-activating protein, Rap1GAP, to the α-subunit of Gi protein, which serves to cooperatively facilitate Ras activation and, thereby, enable enhanced Gβγ-regulated ERK1/2-stimulated PDE activity. Collectively, these data are the first to identify that intrinsically increased signaling via the Gβγ subunit, facilitated by Rap1GAP recruitment to the α-subunit, mediates the constitutively increased PDE4 activity detected in asthmatic HASM cells. These new findings support the notion that interventions targeted at suppressing Gβγ signaling may lead to novel approaches to treat asthma.
Collapse
Affiliation(s)
- Aihua Hu
- Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Barry L. Diener
- Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Maureen B. Josephson
- Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
| | - Michael M. Grunstein
- Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, United States of America
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
39
|
Carvalho ATP, Szeler K, Vavitsas K, Åqvist J, Kamerlin SCL. Modeling the mechanisms of biological GTP hydrolysis. Arch Biochem Biophys 2015; 582:80-90. [PMID: 25731854 DOI: 10.1016/j.abb.2015.02.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 02/19/2015] [Accepted: 02/21/2015] [Indexed: 01/11/2023]
Abstract
Enzymes that hydrolyze GTP are currently in the spotlight, due to their molecular switch mechanism that controls many cellular processes. One of the best-known classes of these enzymes are small GTPases such as members of the Ras superfamily, which catalyze the hydrolysis of the γ-phosphate bond in GTP. In addition, the availability of an increasing number of crystal structures of translational GTPases such as EF-Tu and EF-G have made it possible to probe the molecular details of GTP hydrolysis on the ribosome. However, despite a wealth of biochemical, structural and computational data, the way in which GTP hydrolysis is activated and regulated is still a controversial topic and well-designed simulations can play an important role in resolving and rationalizing the experimental data. In this review, we discuss the contributions of computational biology to our understanding of GTP hydrolysis on the ribosome and in small GTPases.
Collapse
Affiliation(s)
- Alexandra T P Carvalho
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24 Uppsala, Sweden
| | - Klaudia Szeler
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24 Uppsala, Sweden
| | - Konstantinos Vavitsas
- Copenhagen Plant Science Centre (CPSC), Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Johan Åqvist
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24 Uppsala, Sweden
| | - Shina C L Kamerlin
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC Box 596, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
40
|
Swer PB, Bhadoriya P, Saran S. Analysis of Rheb in the cellular slime mold Dictyostelium discoideum: cellular localization, spatial expression and overexpression. J Biosci 2014; 39:75-84. [PMID: 24499792 DOI: 10.1007/s12038-013-9405-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Dictyostelium discoideum encodes a single Rheb protein showing sequence similarity to human homologues of Rheb. The DdRheb protein shares 52 percent identity and 100 percent similarity with the human Rheb1 protein. Fluorescence of Rheb yellow fluorescent protein fusion was detected in the D. discoideum cytoplasm. Reverse transcription-polymerase chain reaction and whole-mount in situ hybridization analyses showed that rheb is expressed at all stages of development and in prestalk cells in the multicellular structures developed. When the expression of rheb as a fusion with lacZ was driven under its own promoter, the beta-galactosidase activity was seen in the prestalk cells. D. discoideum overexpressing Rheb shows an increase in the size of the cell. Treatment of the overexpressing Rheb cells with rapamycin confirms its involvement in the TOR signalling pathway.
Collapse
Affiliation(s)
- Pynskhem Bok Swer
- School of Life Science, Jawaharlal Nehru University, New Delhi 110 067, India
| | | | | |
Collapse
|
41
|
Gentry LR, Martin TD, Reiner DJ, Der CJ. Ral small GTPase signaling and oncogenesis: More than just 15minutes of fame. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:2976-2988. [PMID: 25219551 DOI: 10.1016/j.bbamcr.2014.09.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 01/26/2023]
Abstract
Since their discovery in 1986, Ral (Ras-like) GTPases have emerged as critical regulators of diverse cellular functions. Ral-selective guanine nucleotide exchange factors (RalGEFs) function as downstream effectors of the Ras oncoprotein, and the RalGEF-Ral signaling network comprises the third best characterized effector of Ras-dependent human oncogenesis. Because of this, Ral GTPases as well as their effectors are being explored as possible therapeutic targets in the treatment of RAS mutant cancer. The two Ral isoforms, RalA and RalB, interact with a variety of downstream effectors and have been found to play key and distinct roles in both normal and neoplastic cell physiology including regulation of vesicular trafficking, migration and invasion, tumor formation, metastasis, and gene expression. In this review we provide an overview of Ral biochemistry and biology, and we highlight recent discoveries.
Collapse
Affiliation(s)
- Leanna R Gentry
- University of North Carolina at Chapel Hill, Department of Pharmacology, Chapel Hill, NC, USA
| | | | - David J Reiner
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - Channing J Der
- University of North Carolina at Chapel Hill, Department of Pharmacology, Chapel Hill, NC, USA; University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA.
| |
Collapse
|
42
|
Schmidt M, Dekker FJ, Maarsingh H. Exchange protein directly activated by cAMP (epac): a multidomain cAMP mediator in the regulation of diverse biological functions. Pharmacol Rev 2013; 65:670-709. [PMID: 23447132 DOI: 10.1124/pr.110.003707] [Citation(s) in RCA: 215] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Since the discovery nearly 60 years ago, cAMP is envisioned as one of the most universal and versatile second messengers. The tremendous feature of cAMP to tightly control highly diverse physiologic processes, including calcium homeostasis, metabolism, secretion, muscle contraction, cell fate, and gene transcription, is reflected by the award of five Nobel prizes. The discovery of Epac (exchange protein directly activated by cAMP) has ignited a new surge of cAMP-related research and has depicted novel cAMP properties independent of protein kinase A and cyclic nucleotide-gated channels. The multidomain architecture of Epac determines its activity state and allows cell-type specific protein-protein and protein-lipid interactions that control fine-tuning of pivotal biologic responses through the "old" second messenger cAMP. Compartmentalization of cAMP in space and time, maintained by A-kinase anchoring proteins, phosphodiesterases, and β-arrestins, contributes to the Epac signalosome of small GTPases, phospholipases, mitogen- and lipid-activated kinases, and transcription factors. These novel cAMP sensors seem to implement certain unexpected signaling properties of cAMP and thereby to permit delicate adaptations of biologic responses. Agonists and antagonists selective for Epac are developed and will support further studies on the biologic net outcome of the activation of Epac. This will increase our current knowledge on the pathophysiology of devastating diseases, such as diabetes, cognitive impairment, renal and heart failure, (pulmonary) hypertension, asthma, and chronic obstructive pulmonary disease. Further insights into the cAMP dynamics executed by the Epac signalosome will help to optimize the pharmacological treatment of these diseases.
Collapse
Affiliation(s)
- Martina Schmidt
- Department of Molecular Pharmacology, Groningen Research Institute for Pharmacy, University of Groningen, 9713 AV Groningen, The Netherlands.
| | | | | |
Collapse
|
43
|
Schlacht A, Mowbrey K, Elias M, Kahn RA, Dacks JB. Ancient complexity, opisthokont plasticity, and discovery of the 11th subfamily of Arf GAP proteins. Traffic 2013; 14:636-49. [PMID: 23433073 DOI: 10.1111/tra.12063] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 02/20/2013] [Accepted: 02/22/2013] [Indexed: 12/14/2022]
Abstract
The organelle paralogy hypothesis is one model for the acquisition of nonendosymbiotic organelles, generated from molecular evolutionary analyses of proteins encoding specificity in the membrane traffic system. GTPase activating proteins (GAPs) for the ADP-ribosylation factor (Arfs) GTPases are additional regulators of the kinetics and fidelity of membrane traffic. Here we describe molecular evolutionary analyses of the Arf GAP protein family. Of the 10 subfamilies previously defined in humans, we find that 5 were likely present in the last eukaryotic common ancestor. Of the 3 most recently derived subfamilies, 1 was likely present in the ancestor of opisthokonts (animals and fungi) and apusomonads (flagellates classified as the sister lineage to opisthokonts), while 2 arose in the holozoan lineage. We also propose to have identified a novel ancient subfamily (ArfGAPC2), present in diverse eukaryotes but which is lost frequently, including in the opisthokonts. Surprisingly few ancient domains accompanying the ArfGAP domain were identified, in marked contrast to the extensively decorated human Arf GAPs. Phylogenetic analyses of the subfamilies reveal patterns of single and multiple gene duplications specific to the Holozoa, to some degree mirroring evolution of Arf GAP targets, the Arfs. Conservation, and lack thereof, of various residues in the ArfGAP structure provide contextualization of previously identified functional amino acids and their application to Arf GAP biology in general. Overall, our results yield insights into current Arf GAP biology, reveal complexity in the ancient eukaryotic ancestor and integrate the Arf GAP family into a proposed mechanism for the evolution of nonendosymbiotic organelles.
Collapse
Affiliation(s)
- Alexander Schlacht
- Faculty of Medicine and Dentistry, Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
44
|
Gabernet-Castello C, O'Reilly AJ, Dacks JB, Field MC. Evolution of Tre-2/Bub2/Cdc16 (TBC) Rab GTPase-activating proteins. Mol Biol Cell 2013; 24:1574-83. [PMID: 23485563 PMCID: PMC3655817 DOI: 10.1091/mbc.e12-07-0557] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Small GTPases control many functions in cells, and the TBC GTPase-activating protein family modulates the activity of the largest G protein subfamily, Rabs. A reconstruction of the evolutionary history of TBC GAPs provides new insight into the evolution of eukaryotic cells. Rab GTPases serve as major control elements in the coordination and definition of specific trafficking steps and intracellular compartments. Rab activity is modulated in part by GTPase-activating proteins (GAPs), and many RabGAPs share a Tre-2/Bub2/Cdc16 (TBC)–domain architecture, although the majority of TBC proteins are poorly characterized. We reconstruct the evolutionary history of the TBC family using ScrollSaw, a method for the phylogenetic analysis of pan-eukaryotic data sets, and find a sophisticated, ancient TBC complement of at least 10 members. Significantly, the TBC complement is nearly always smaller than the Rab cohort in any individual genome but also suggests Rab/TBC coevolution. Further, TBC-domain architecture has been well conserved in modern eukaryotes. The reconstruction also shows conservation of ancestral TBC subfamilies, continuing evolution of new TBCs, and frequent secondary losses. These patterns give additional insights into the sculpting of the endomembrane system.
Collapse
|
45
|
Abstract
The evolutionary origin of the eukaryotic cell represents an enigmatic, yet largely incomplete, puzzle. Several mutually incompatible scenarios have been proposed to explain how the eukaryotic domain of life could have emerged. To date, convincing evidence for these scenarios in the form of intermediate stages of the proposed eukaryogenesis trajectories is lacking, presenting the emergence of the complex features of the eukaryotic cell as an evolutionary deus ex machina. However, recent advances in the field of phylogenomics have started to lend support for a model that places a cellular fusion event at the basis of the origin of eukaryotes (symbiogenesis), involving the merger of an as yet unknown archaeal lineage that most probably belongs to the recently proposed ‘TACK superphylum’ (comprising Thaumarchaeota, Aigarchaeota, Crenarchaeota and Korarchaeota) with an alphaproteobacterium (the protomitochondrion). Interestingly, an increasing number of so-called ESPs (eukaryotic signature proteins) is being discovered in recently sequenced archaeal genomes, indicating that the archaeal ancestor of the eukaryotic cell might have been more eukaryotic in nature than presumed previously, and might, for example, have comprised primitive phagocytotic capabilities. In the present paper, we review the evolutionary transition from archaeon to eukaryote, and propose a new model for the emergence of the eukaryotic cell, the ‘PhAT (phagocytosing archaeon theory)’, which explains the emergence of the cellular and genomic features of eukaryotes in the light of a transiently complex phagocytosing archaeon.
Collapse
|
46
|
Hota PK, Buck M. Plexin structures are coming: opportunities for multilevel investigations of semaphorin guidance receptors, their cell signaling mechanisms, and functions. Cell Mol Life Sci 2012; 69:3765-805. [PMID: 22744749 PMCID: PMC11115013 DOI: 10.1007/s00018-012-1019-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 01/13/2023]
Abstract
Plexin transmembrane receptors and their semaphorin ligands, as well as their co-receptors (Neuropilin, Integrin, VEGFR2, ErbB2, and Met kinase) are emerging as key regulatory proteins in a wide variety of developmental, regenerative, but also pathological processes. The diverse arenas of plexin function are surveyed, including roles in the nervous, cardiovascular, bone and skeletal, and immune systems. Such different settings require considerable specificity among the plexin and semaphorin family members which in turn are accompanied by a variety of cell signaling networks. Underlying the latter are the mechanistic details of the interactions and catalytic events at the molecular level. Very recently, dramatic progress has been made in solving the structures of plexins and of their complexes with associated proteins. This molecular level information is now suggesting detailed mechanisms for the function of both the extracellular as well as the intracellular plexin regions. Specifically, several groups have solved structures for extracellular domains for plexin-A2, -B1, and -C1, many in complex with semaphorin ligands. On the intracellular side, the role of small Rho GTPases has been of particular interest. These directly associate with plexin and stimulate a GTPase activating (GAP) function in the plexin catalytic domain to downregulate Ras GTPases. Structures for the Rho GTPase binding domains have been presented for several plexins, some with Rnd1 bound. The entire intracellular domain structure of plexin-A1, -A3, and -B1 have also been solved alone and in complex with Rac1. However, key aspects of the interplay between GTPases and plexins remain far from clear. The structural information is helping the plexin field to focus on key questions at the protein structural, cellular, as well as organism level that collaboratoria of investigations are likely to answer.
Collapse
Affiliation(s)
- Prasanta K. Hota
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Neuroscience, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Comprehensive Cancer Center, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| |
Collapse
|
47
|
Peschard P, McCarthy A, Leblanc-Dominguez V, Yeo M, Guichard S, Stamp G, Marshall CJ. Genetic deletion of RALA and RALB small GTPases reveals redundant functions in development and tumorigenesis. Curr Biol 2012; 22:2063-8. [PMID: 23063435 DOI: 10.1016/j.cub.2012.09.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 09/04/2012] [Accepted: 09/06/2012] [Indexed: 01/10/2023]
Abstract
RAL small GTPases, encoded by the Rala and Ralb genes, are members of the RAS superfamily of small GTPases and can act as downstream effectors of RAS [1]. Although highly similar, distinct functions have been identified for RALA and RALB: RALA has been implicated in epithelial cell polarity [2], insulin secretion [3], GLUT4 translocation [4, 5], neurite branching, and neuronal polarity [6, 7], and RALB in tumor cell survival [8], migration/invasion [9-12], TBK1 activation [13], and autophagy [14]. To investigate RAL GTPases in vivo, we generated null and conditional knockout mice. Ralb null mice are viable with no overt phenotype; the Rala null leads to exencephaly and embryonic lethality. The exencephaly phenotype is exacerbated in Rala(-/-);Ralb(+/-) embryos; embryos null for Rala and Ralb do not live past gastrulation. Using a Kras-driven non-small cell lung carcinoma mouse model, we found that either RALA or RALB is sufficient for tumor growth. However, deletion of both Ral genes blocks tumor formation. Either RALA or RALB is sufficient for cell proliferation, but cells lacking both fail to proliferate. These studies demonstrate functions of RAL proteins in development, tumorigenesis, and cell proliferation and show that RALA and RALB act in a redundant fashion.
Collapse
Affiliation(s)
- Pascal Peschard
- Oncogene Team, Division of Cancer Biology, Institute of Cancer Research, London SW3 6JB, UK
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Members of the Ras superfamily of small guanosine triphosphatases (GTPases) function as key nodes within signaling networks in a remarkable range of cellular processes, including cell proliferation, differentiation, growth, cell-cell adhesion and apoptosis. We recently described a novel role for the Ras-like small GTPases Rap1 and Ral in regulating cortical polarity and spindle orientation during asymmetric neuroblast division in Drosophila. The participation of these proteins in promoting cell polarization seems to be a common theme throughout evolution.
Collapse
Affiliation(s)
- Ana Carmena
- Instituto de Neurociencias, CSIC/UMH, 03550-Sant Joan d'Alacant, Alicante, Spain.
| |
Collapse
|
49
|
van Dam TJP, Zwartkruis FJT, Bos JL, Snel B. Evolution of the TOR pathway. J Mol Evol 2011; 73:209-20. [PMID: 22057117 PMCID: PMC3236823 DOI: 10.1007/s00239-011-9469-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/24/2011] [Indexed: 11/27/2022]
Abstract
The TOR kinase is a major regulator of growth in eukaryotes. Many components of the TOR pathway are implicated in cancer and metabolic diseases in humans. Analysis of the evolution of TOR and its pathway may provide fundamental insight into the evolution of growth regulation in eukaryotes and provide a practical framework on which experimental evidence can be compared between species. Here we performed phylogenetic analyses on the components of the TOR pathway and determined their point of invention. We find that the two TOR complexes and a large part of the TOR pathway originated before the Last Eukaryotic Common Ancestor and form a core to which new inputs have been added during animal evolution. In addition, we provide insight into how duplications and sub-functionalization of the S6K, RSK, SGK and PKB kinases shaped the complexity of the TOR pathway. In yeast we identify novel AGC kinases that are orthologous to the S6 kinase. These results demonstrate how a vital signaling pathway can be both highly conserved and flexible in eukaryotes.
Collapse
Affiliation(s)
- Teunis J P van Dam
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Padualaan 8, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
50
|
Williams MJ. Small GTPases. Small GTPases 2011; 2:189. [DOI: 10.4161/sgtp.2.4.18038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 09/05/2011] [Indexed: 11/19/2022] Open
|