1
|
Ali RH, Almanabri M, Ali NY, Alsaber AR, Khalifa NM, Hussein R, Alateeqi M, Mohammed EMA, Jama H, Almarzooq A, Benobaid N, Alqallaf Z, Ahmed AA, Bahzad S, Almurshed M. Clinicopathological analysis of BRAF and non-BRAF MAPK pathway-altered gliomas in paediatric and adult patients: a single-institution study of 40 patients. J Clin Pathol 2025; 78:177-186. [PMID: 38195220 PMCID: PMC11874301 DOI: 10.1136/jcp-2023-209318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 12/28/2023] [Indexed: 01/11/2024]
Abstract
AIMS Mitogen-activated protein kinase (MAPK) pathway alteration is a major oncogenic driver in paediatric low-grade gliomas (LGG) and some adult gliomas, encompassing BRAF (most common) and non-BRAF alterations. The aim was to determine the frequency, molecular spectrum and clinicopathological features of MAPK-altered gliomas in paediatric and adult patients at our neuropathology site in Kuwait. METHODS We retrospectively searched the data of molecularly sequenced gliomas between 2018 and 2023 for MAPK alterations, revised the pathology in view of the 2021 WHO classification and evaluated the clinicopathological data for possible correlations. RESULTS Of 272 gliomas, 40 (15%) harboured a MAPK pathway alteration in 19 paediatric (median 9.6 years; 1.2-17.6) and 21 adult patients (median 37 years; 18.9-89.2), comprising 42% and 9% of paediatric and adult cases, respectively. Pilocytic astrocytoma and glioblastoma were the most frequent diagnoses in children (47%) and adults (43%), respectively. BRAF V600E (n=17, 43%) showed a wide distribution across age groups, locations and pathological diagnoses while KIAA1549::BRAF fusion (n=8, 20%) was spatially and histologically restricted to cerebellar paediatric LGGs. Non-V600E variants and BRAF amplifications accompanied other molecular aberrations in high-grade tumours. Non-BRAF MAPK alterations (n=8) included mutations and gene fusions involving FGFR1, NTRK2, NF1, ROS1 and MYB. Fusions included KANK1::NTRK2, GOPC::ROS1 (both infant hemispheric gliomas), FGFR1::TACC1 (diffuse LGG), MYB::QKI (angiocentric glioma) and BCR::NTRK2 (glioblastoma). Paradoxical H3 K27M/MAPK co-mutations were observed in two LGGs. CONCLUSION The study provided insights into MAPK-altered gliomas in Kuwait highlighting the differences among paediatric and adult patients and providing a framework for planning therapeutic polices.
Collapse
Affiliation(s)
- Rola H Ali
- Department of Pathology, College of Medicine, Kuwait University, Jabriya, Hawalli, Kuwait
- Department of Histopathology, Al Sabah Hospital, Shuwaikh, Al Asimah, Kuwait
| | - Mohamad Almanabri
- Department of Neurosurgery, Ibn Sina Hospital, Shuwaikh, Al Asimah, Kuwait
| | - Nawal Y Ali
- Department of Radiology, Ibn Sina Hospital, Shuwaikh, Al Asimah, Kuwait
| | - Ahmad R Alsaber
- Department of Management, College of Business and Economics, American University of Kuwait, Salmiya, Hawalli, Kuwait
| | - Nisreen M Khalifa
- Department of Pediatric Hematology/Oncology, NBK Children's Hospital, Shuwaikh, Al Asimah, Kuwait
| | - Rania Hussein
- Department of Radiation Oncology, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Mona Alateeqi
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Eiman M A Mohammed
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Hiba Jama
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Ammar Almarzooq
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Noelle Benobaid
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Zainab Alqallaf
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Amir A Ahmed
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Shakir Bahzad
- Molecular Genetics Laboratory, Kuwait Cancer Control Center, Shuwaikh, Al Asimah, Kuwait
| | - Maryam Almurshed
- Department of Histopathology, Al Sabah Hospital, Shuwaikh, Al Asimah, Kuwait
| |
Collapse
|
2
|
Hashem O, Shahin AI, Al Hindawi MA, Fageeri MF, Al-Sbbagh SA, Tarazi H, El-Gamal MI. An overview of RAF kinases and their inhibitors (2019-2023). Eur J Med Chem 2024; 275:116631. [PMID: 38954961 DOI: 10.1016/j.ejmech.2024.116631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024]
Abstract
Protein kinases (PKs) including RAF, perform a principal role in regulating countless cellular events such as cell growth, differentiation, and angiogenesis. Overexpression and mutation of RAF kinases are significant contributors to the development and spread of cancer. Therefore, RAF kinase inhibitors show promising outcomes as anti-cancer small molecules by suppressing the expression of RAF protein, blocking RAS/RAF interaction, or inhibiting RAF enzymes. Currently, there are insufficient reports about approving drugs with minimal degree of toxicity. Therefore, it is an urgent need to develop new RAF kinase inhibitors correlated with increased anticancer activity and lower cytotoxicity. This review outlines reported RAF kinase inhibitors for cancer treatment in patents and literature from 2019 to 2023. It highlights the available inhibitors by shedding light on their chemical structures, biochemical profiles, and current status. Additionally, we highlighted the hinge region-binding moiety of the reported compounds by showing the hydrogen bond patterns of representative inhibitors with the hinge region for each class. In recent years, RAF kinase inhibitors have gained considerable attention in cancer research and drug development due to their potential to be studied under clinical trials and their demonstration of various degrees of efficacy and safety profiles across different cancer types. However, addressing challenges related to drug resistance and safety represents a major avenue for the optimization and enhancement of RAF kinase inhibitors. Strategies to overcome such obstacles were discussed such as developing novel pan-RAF inhibitors, RAF dimer inhibitors, and combination treatments.
Collapse
Affiliation(s)
- Omar Hashem
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Afnan I Shahin
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Manar A Al Hindawi
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mohamed F Fageeri
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Saif A Al-Sbbagh
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hamadeh Tarazi
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Mohammed I El-Gamal
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
3
|
Jeon H, Tkacik E, Eck MJ. Signaling from RAS to RAF: The Molecules and Their Mechanisms. Annu Rev Biochem 2024; 93:289-316. [PMID: 38316136 DOI: 10.1146/annurev-biochem-052521-040754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
RAF family protein kinases are a key node in the RAS/RAF/MAP kinase pathway, the signaling cascade that controls cellular proliferation, differentiation, and survival in response to engagement of growth factor receptors on the cell surface. Over the past few years, structural and biochemical studies have provided new understanding of RAF autoregulation, RAF activation by RAS and the SHOC2 phosphatase complex, and RAF engagement with HSP90-CDC37 chaperone complexes. These studies have important implications for pharmacologic targeting of the pathway. They reveal RAF in distinct regulatory states and show that the functional RAF switch is an integrated complex of RAF with its substrate (MEK) and a 14-3-3 dimer. Here we review these advances, placing them in the context of decades of investigation of RAF regulation. We explore the insights they provide into aberrant activation of the pathway in cancer and RASopathies (developmental syndromes caused by germline mutations in components of the pathway).
Collapse
Affiliation(s)
- Hyesung Jeon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Emre Tkacik
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Systems, Synthetic, and Quantitative Biology PhD Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Maisonneuve P, Sahmi M, Bergeron-Labrecque F, Ma XI, Queguiner J, Arseneault G, Lefrançois M, Kurinov I, Fronzes R, Sicheri F, Therrien M. The CNK-HYP scaffolding complex promotes RAF activation by enhancing KSR-MEK interaction. Nat Struct Mol Biol 2024; 31:1028-1038. [PMID: 38388830 PMCID: PMC11257983 DOI: 10.1038/s41594-024-01233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 01/29/2024] [Indexed: 02/24/2024]
Abstract
The RAS-MAPK pathway regulates cell proliferation, differentiation and survival, and its dysregulation is associated with cancer development. The pathway minimally comprises the small GTPase RAS and the kinases RAF, MEK and ERK. Activation of RAF by RAS is notoriously intricate and remains only partially understood. There are three RAF isoforms in mammals (ARAF, BRAF and CRAF) and two related pseudokinases (KSR1 and KSR2). RAS-mediated activation of RAF depends on an allosteric mechanism driven by the dimerization of its kinase domain. Recent work on human RAFs showed that MEK binding to KSR1 promotes KSR1-BRAF heterodimerization, which leads to the phosphorylation of free MEK molecules by BRAF. Similar findings were made with the single Drosophila RAF homolog. Here we show that the fly scaffold proteins CNK and HYP stabilize the KSR-MEK interaction, which in turn enhances RAF-KSR heterodimerization and RAF activation. The cryogenic electron microscopy structure of the minimal KSR-MEK-CNK-HYP complex reveals a ring-like arrangement of the CNK-HYP complex allowing CNK to simultaneously engage KSR and MEK, thus stabilizing the binary interaction. Together, these results illuminate how CNK contributes to RAF activation by stimulating the allosteric function of KSR and highlight the diversity of mechanisms impacting RAF dimerization as well as the regulatory potential of the KSR-MEK interaction.
Collapse
Affiliation(s)
- Pierre Maisonneuve
- Université de Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, IECB, F-33600, Pessac, France.
- Center for Molecular, Cell and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.
| | - Malha Sahmi
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Quebec, Canada
| | - Fanny Bergeron-Labrecque
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Quebec, Canada
| | - Xianjie Iris Ma
- Center for Molecular, Cell and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada
| | - Juliette Queguiner
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Quebec, Canada
| | - Geneviève Arseneault
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Quebec, Canada
| | - Martin Lefrançois
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Quebec, Canada
| | - Igor Kurinov
- Department of Chemistry and Chemical Biology, Cornell University, NE-CAT, Argonne, IL, USA
| | - Rémi Fronzes
- Institut Européen de Chimie et Biologie, Université de Bordeaux-CNRS (UMR 5234), Pessac, France
| | - Frank Sicheri
- Center for Molecular, Cell and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario, Canada.
- Departments of Molecular Genetics and Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| | - Marc Therrien
- Institute for Research in Immunology and Cancer, Laboratory of Intracellular Signaling, Université de Montréal, Montréal, Quebec, Canada.
- Département de pathologie et biologie cellulaire, Université de Montréal, Montréal, Quebec, Canada.
| |
Collapse
|
5
|
Spencer-Smith R, Morrison DK. Regulation of RAF family kinases: new insights from recent structural and biochemical studies. Biochem Soc Trans 2024; 52:1061-1069. [PMID: 38695730 PMCID: PMC11346419 DOI: 10.1042/bst20230552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 06/27/2024]
Abstract
The RAF kinases are required for signal transduction through the RAS-RAF-MEK-ERK pathway, and their activity is frequently up-regulated in human cancer and the RASopathy developmental syndromes. Due to their complex activation process, developing drugs that effectively target RAF function has been a challenging endeavor, highlighting the need for a more detailed understanding of RAF regulation. This review will focus on recent structural and biochemical studies that have provided 'snapshots' into the RAF regulatory cycle, revealing structures of the autoinhibited BRAF monomer, active BRAF and CRAF homodimers, as well as HSP90/CDC37 chaperone complexes containing CRAF or BRAFV600E. In addition, we will describe the insights obtained regarding how BRAF transitions between its regulatory states and examine the roles that various BRAF domains and 14-3-3 dimers play in both maintaining BRAF as an autoinhibited monomer and in facilitating its transition to an active dimer. We will also address the function of the HSP90/CDC37 chaperone complex in stabilizing the protein levels of CRAF and certain oncogenic BRAF mutants, and in serving as a platform for RAF dephosphorylation mediated by the PP5 protein phosphatase. Finally, we will discuss the regulatory differences observed between BRAF and CRAF and how these differences impact the function of BRAF and CRAF as drivers of human disease.
Collapse
Affiliation(s)
- Russell Spencer-Smith
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, U.S.A
| | - Deborah K. Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, U.S.A
| |
Collapse
|
6
|
Scardaci R, Berlinska E, Scaparone P, Vietti Michelina S, Garbo E, Novello S, Santamaria D, Ambrogio C. Novel RAF-directed approaches to overcome current clinical limits and block the RAS/RAF node. Mol Oncol 2024; 18:1355-1377. [PMID: 38362705 PMCID: PMC11161739 DOI: 10.1002/1878-0261.13605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/30/2023] [Accepted: 01/30/2024] [Indexed: 02/17/2024] Open
Abstract
Mutations in the RAS-RAF-MEK-ERK pathway are frequent alterations in cancer and RASopathies, and while RAS oncogene activation alone affects 19% of all patients and accounts for approximately 3.4 million new cases every year, less frequent alterations in the cascade's downstream effectors are also involved in cancer etiology. RAS proteins initiate the signaling cascade by promoting the dimerization of RAF kinases, which can act as oncoproteins as well: BRAFV600E is the most common oncogenic driver, mutated in the 8% of all malignancies. Research in this field led to the development of drugs that target the BRAFV600-like mutations (Class I), which are now utilized in clinics, but cause paradoxical activation of the pathway and resistance development. Furthermore, they are ineffective against non-BRAFV600E malignancies that dimerize and could be either RTK/RAS independent or dependent (Class II and III, respectively), which are still lacking an effective treatment. This review discusses the recent advances in anti-RAF therapies, including paradox breakers, dimer-inhibitors, immunotherapies, and other novel approaches, critically evaluating their efficacy in overcoming the therapeutic limitations, and their putative role in blocking the RAS pathway.
Collapse
Affiliation(s)
- Rossella Scardaci
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Ewa Berlinska
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Pietro Scaparone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Sandra Vietti Michelina
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| | - Edoardo Garbo
- Department of OncologyUniversity of Torino, San Luigi HospitalOrbassanoItaly
| | - Silvia Novello
- Department of OncologyUniversity of Torino, San Luigi HospitalOrbassanoItaly
| | - David Santamaria
- Centro de Investigación del CáncerCSIC‐Universidad de SalamancaSpain
| | - Chiara Ambrogio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology CenterUniversity of TorinoItaly
| |
Collapse
|
7
|
Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther 2023; 8:455. [PMID: 38105263 PMCID: PMC10725898 DOI: 10.1038/s41392-023-01705-z] [Citation(s) in RCA: 203] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 12/19/2023] Open
Abstract
Metastatic dissemination of solid tumors, a leading cause of cancer-related mortality, underscores the urgent need for enhanced insights into the molecular and cellular mechanisms underlying metastasis, chemoresistance, and the mechanistic backgrounds of individuals whose cancers are prone to migration. The most prevalent signaling cascade governed by multi-kinase inhibitors is the mitogen-activated protein kinase (MAPK) pathway, encompassing the RAS-RAF-MAPK kinase (MEK)-extracellular signal-related kinase (ERK) pathway. RAF kinase is a primary mediator of the MAPK pathway, responsible for the sequential activation of downstream targets, such as MEK and the transcription factor ERK, which control numerous cellular and physiological processes, including organism development, cell cycle control, cell proliferation and differentiation, cell survival, and death. Defects in this signaling cascade are associated with diseases such as cancer. RAF inhibitors (RAFi) combined with MEK blockers represent an FDA-approved therapeutic strategy for numerous RAF-mutant cancers, including melanoma, non-small cell lung carcinoma, and thyroid cancer. However, the development of therapy resistance by cancer cells remains an important barrier. Autophagy, an intracellular lysosome-dependent catabolic recycling process, plays a critical role in the development of RAFi resistance in cancer. Thus, targeting RAF and autophagy could be novel treatment strategies for RAF-mutant cancers. In this review, we delve deeper into the mechanistic insights surrounding RAF kinase signaling in tumorigenesis and RAFi-resistance. Furthermore, we explore and discuss the ongoing development of next-generation RAF inhibitors with enhanced therapeutic profiles. Additionally, this review sheds light on the functional interplay between RAF-targeted therapies and autophagy in cancer.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea.
| |
Collapse
|
8
|
Batsi Y, Antonopoulou G, Fotopoulou T, Koumaki K, Kritsi E, Potamitis C, Goulielmaki M, Skarmalioraki S, Papalouka C, Poulou-Sidiropoulou E, Kosmidou V, Douna S, Vidali MS, Gkotsi EF, Chatziioannou A, Souliotis VL, Pletsa V, Papadodima O, Zoumpourlis V, Georgiadis P, Zervou M, Pintzas A, Kostas ID. Design and Synthesis of Novel 2-Acetamido, 6-Carboxamide Substituted Benzothiazoles as Potential BRAFV600E Inhibitors - In vitro Evaluation of their Antiproliferative Activity. ChemMedChem 2023; 18:e202300322. [PMID: 37792577 DOI: 10.1002/cmdc.202300322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023]
Abstract
The oncogenic BRAFV600E kinase leads to abnormal activation of the MAPK signaling pathway and thus, uncontrolled cellular proliferation and cancer development. Based on our previous virtual screening studies which issued 2-acetamido-1,3 benzothiazole-6-carboxamide scaffold as active pharmacophore displaying selectivity against the mutated BRAF, eleven new substituted benzothiazole derivatives were designed and synthesized by coupling of 2-acetamidobenzo[d]thiazole-6-carboxylic acid with the appropriate amines in an effort to provide even more efficient inhibitors and tackle drug resistance often developed during cancer treatment. All derived compounds bore the benzothiazole scaffold substituted at position-2 by an acetamido moiety and at position-6 by a carboxamide functionality, the NH moiety of which was further linked through an alkylene linker to a sulfonamido (or amino) aryl (or alkyl) functionality or a phenylene linker to a sulfonamido aromatic (or non-aromatic) terminal pharmacophore in the order -C6 H4 -NHSO2 -R or reversely -C6 H4 -SO2 N(H)-R. These analogs were subsequently biologically evaluated as potential BRAFV600E inhibitors and antiproliferative agents in several colorectal cancer and melanoma cell lines. In all assays applied, one analog, namely 2-acetamido-N-[3-(pyridin-2-ylamino)propyl]benzo[d]thiazole-6-carboxamide (22), provided promising results in view of its use in drug development.
Collapse
Affiliation(s)
- Yakinthi Batsi
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Georgia Antonopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Theano Fotopoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Kassandra Koumaki
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Eftichia Kritsi
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Constantinos Potamitis
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Maria Goulielmaki
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Salomi Skarmalioraki
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Chara Papalouka
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Eleni Poulou-Sidiropoulou
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Vivian Kosmidou
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Stavroula Douna
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Maria-Sofia Vidali
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Eleni-Fani Gkotsi
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Aristotelis Chatziioannou
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Vassilis L Souliotis
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Vasiliki Pletsa
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Olga Papadodima
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Vassilis Zoumpourlis
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Panagiotis Georgiadis
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Maria Zervou
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Alexander Pintzas
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| | - Ioannis D Kostas
- Institute of Chemical Biology, National Hellenic Research Foundation, Vas. Constantinou Ave. 48, 11635, Athens, Greece
| |
Collapse
|
9
|
Yu A, Nguyen DH, Nguyen TJ, Wang Z. A novel phosphorylation site involved in dissociating RAF kinase from the scaffolding protein 14-3-3 and disrupting RAF dimerization. J Biol Chem 2023; 299:105188. [PMID: 37625591 PMCID: PMC10520314 DOI: 10.1016/j.jbc.2023.105188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Rapidly accelerated fibrosarcoma (ARAF, BRAF, CRAF) kinase is central to the MAPK pathway (RAS-RAF-MEK-ERK). Inactive RAF kinase is believed to be monomeric, autoinhibited, and cytosolic, while activated RAF is recruited to the membrane via RAS-GTP, leading to the relief of autoinhibition, phosphorylation of key regulatory sites, and dimerization of RAF protomers. Although it is well known that active and inactive BRAF have differential phosphorylation sites that play a crucial role in regulating BRAF, key details are still missing. In this study, we report the characterization of a novel phosphorylation site, BRAFS732 (equivalent in CRAFS624), located in proximity to the C-terminus binding motif for the 14-3-3 scaffolding protein. At the C terminus, 14-3-3 binds to BRAFpS729 (CRAFpS621) and enhances RAF dimerization. We conducted mutational analysis of BRAFS732A/E and CRAFS624A/E and revealed that the phosphomimetic S→E mutant decreases 14-3-3 association and RAF dimerization. In normal cell signaling, dimerized RAF phosphorylates MEK1/2, which is observed in the phospho-deficient S→A mutant. Our results suggest that phosphorylation and dephosphorylation of this site fine-tune the association of 14-3-3 and RAF dimerization, ultimately impacting MEK phosphorylation. We further characterized the BRAF homodimer and BRAF:CRAF heterodimer and identified a correlation between phosphorylation of this site with drug sensitivity. Our work reveals a novel negative regulatory role for phosphorylation of BRAFS732 and CRAFS624 in decreasing 14-3-3 association, dimerization, and MEK phosphorylation. These findings provide insight into the regulation of the MAPK pathway and may have implications for cancers driven by mutations in the pathway.
Collapse
Affiliation(s)
- Alison Yu
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA
| | - Duc Huy Nguyen
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA
| | - Thomas Joseph Nguyen
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA
| | - Zhihong Wang
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA.
| |
Collapse
|
10
|
Singh A, Sonawane P, Kumar A, Singh H, Naumovich V, Pathak P, Grishina M, Khalilullah H, Jaremko M, Emwas AH, Verma A, Kumar P. Challenges and Opportunities in the Crusade of BRAF Inhibitors: From 2002 to 2022. ACS OMEGA 2023; 8:27819-27844. [PMID: 37576670 PMCID: PMC10413849 DOI: 10.1021/acsomega.3c00332] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/27/2023] [Indexed: 08/15/2023]
Abstract
Serine/threonine-protein kinase B-Raf (BRAF; RAF = rapidly accelerated fibrosarcoma) plays an important role in the mitogen-activated protein kinase (MAPK) signaling cascade. Somatic mutations in the BRAF gene were first discovered in 2002 by Davies et al., which was a major breakthrough in cancer research. Subsequently, three different classes of BRAF mutants have been discovered. This class includes class I monomeric mutants (BRAFV600), class II BRAF homodimer mutants (non-V600), and class III BRAF heterodimers (non-V600). Cancers caused by these include melanoma, thyroid cancer, ovarian cancer, colorectal cancer, nonsmall cell lung cancer, and others. In this study, we have highlighted the major binding pockets in BRAF protein, their active and inactive conformations with inhibitors, and BRAF dimerization and its importance in paradoxical activation and BRAF mutation. We have discussed the first-, second-, and third-generation drugs approved by the Food and Drug Administration and drugs under clinical trials with all four different binding approaches with DFG-IN/OUT and αC-IN/OUT for BRAF protein. We have investigated particular aspects and difficulties with all three generations of inhibitors. Finally, this study has also covered recent developments in synthetic BRAF inhibitors (from their discovery in 2002 to 2022), their unique properties, and importance in inhibiting BRAF mutants.
Collapse
Affiliation(s)
- Ankit
Kumar Singh
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Pankaj Sonawane
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Adarsh Kumar
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Harshwardhan Singh
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| | - Vladislav Naumovich
- Laboratory
of Computational Modeling of Drugs, Higher Medical and Biological
School, South Ural State University, Chelyabinsk 454008, Russia
| | - Prateek Pathak
- Laboratory
of Computational Modeling of Drugs, Higher Medical and Biological
School, South Ural State University, Chelyabinsk 454008, Russia
| | - Maria Grishina
- Laboratory
of Computational Modeling of Drugs, Higher Medical and Biological
School, South Ural State University, Chelyabinsk 454008, Russia
| | - Habibullah Khalilullah
- Department
of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of
Pharmacy, Qassim University, Unayzah 51911, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health
Initiative and Red Sea Research Center, Division of Biological and
Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core
Laboratories, King Abdullah University of
Science and Technology, Thuwal 23955-6900, Saudi
Arabia
| | - Amita Verma
- Bioorganic
and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical
Sciences, Sam Higginbottom University of
Agriculture, Technology and Sciences, Prayagraj 211007, India
| | - Pradeep Kumar
- Department
of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Ghudda, Bathinda 151401, India
| |
Collapse
|
11
|
Cipri S, Del Baldo G, Fabozzi F, Boccuto L, Carai A, Mastronuzzi A. Unlocking the power of precision medicine for pediatric low-grade gliomas: molecular characterization for targeted therapies with enhanced safety and efficacy. Front Oncol 2023; 13:1204829. [PMID: 37397394 PMCID: PMC10311254 DOI: 10.3389/fonc.2023.1204829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/01/2023] [Indexed: 07/04/2023] Open
Abstract
In the past decade significant advancements have been made in the discovery of targetable lesions in pediatric low-grade gliomas (pLGGs). These tumors account for 30-50% of all pediatric brain tumors with generally a favorable prognosis. The latest 2021 WHO classification of pLGGs places a strong emphasis on molecular characterization for significant implications on prognosis, diagnosis, management, and the potential target treatment. With the technological advances and new applications in molecular diagnostics, the molecular characterization of pLGGs has revealed that tumors that appear similar under a microscope can have different genetic and molecular characteristics. Therefore, the new classification system divides pLGGs into several distinct subtypes based on these characteristics, enabling a more accurate strategy for diagnosis and personalized therapy based on the specific genetic and molecular abnormalities present in each tumor. This approach holds great promise for improving outcomes for patients with pLGGs, highlighting the importance of the recent breakthroughs in the discovery of targetable lesions.
Collapse
Affiliation(s)
- Selene Cipri
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Giada Del Baldo
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Francesco Fabozzi
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Luigi Boccuto
- Healthcare Genetics Program, School of Nursing, College of Behavioral, Social and Health Sciences, Clemson University, Clemson, SC, United States
| | - Andrea Carai
- Department of Neurosciences, Neurosurgery Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Hematology/Oncology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
12
|
Liu C, Ye D, Yang H, Chen X, Su Z, Li X, Ding M, Liu Y. RAS-targeted cancer therapy: Advances in drugging specific mutations. MedComm (Beijing) 2023; 4:e285. [PMID: 37250144 PMCID: PMC10225044 DOI: 10.1002/mco2.285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 04/06/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Rat sarcoma (RAS), as a frequently mutated oncogene, has been studied as an attractive target for treating RAS-driven cancers for over four decades. However, it is until the recent success of kirsten-RAS (KRAS)G12C inhibitor that RAS gets rid of the title "undruggable". It is worth noting that the therapeutic effect of KRASG12C inhibitors on different RAS allelic mutations or even different cancers with KRASG12C varies significantly. Thus, deep understanding of the characteristics of each allelic RAS mutation will be a prerequisite for developing new RAS inhibitors. In this review, the structural and biochemical features of different RAS mutations are summarized and compared. Besides, the pathological characteristics and treatment responses of different cancers carrying RAS mutations are listed based on clinical reports. In addition, the development of RAS inhibitors, either direct or indirect, that target the downstream components in RAS pathway is summarized as well. Hopefully, this review will broaden our knowledge on RAS-targeting strategies and trigger more intensive studies on exploiting new RAS allele-specific inhibitors.
Collapse
Affiliation(s)
- Cen Liu
- Beijing University of Chinese MedicineBeijingChina
| | - Danyang Ye
- Beijing University of Chinese MedicineBeijingChina
| | - Hongliu Yang
- Beijing University of Chinese MedicineBeijingChina
| | - Xu Chen
- Beijing University of Chinese MedicineBeijingChina
| | - Zhijun Su
- Beijing University of Chinese MedicineBeijingChina
| | - Xia Li
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Mei Ding
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Yonggang Liu
- Beijing University of Chinese MedicineBeijingChina
| |
Collapse
|
13
|
Computational analysis of natural product B-Raf inhibitors. J Mol Graph Model 2023; 118:108340. [PMID: 36208592 DOI: 10.1016/j.jmgm.2022.108340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/20/2022]
Abstract
B-Raf protein is a serine-threonine kinase and an important signal transduction molecule of the MAPK signaling pathway that mediates signals from RAS to MEK, ultimately promoting various essential cellular functions. The B-Raf kinase domain is divided into two subdomains: a small N-terminal lobe and a large C-terminal lobe, with a deep catalytic cleft between them. The N-terminal lobe contains a phosphate-binding loop (P-loop) and nucleotide-binding pocket, while the C-terminal lobe binds the protein substrates and contains the catalytic loop. The ligand pharmacophore was generated by using 17 different natural products and the receptor pharmacophore was generated by using protein structures. The reported natural product B-Raf inhibitors were analyzed according to the pharmacophore analysis (HipHop fit), virtual screening tools by Lipinski's rule of five. Thirteen out of seventeen molecules share the best ligand based pharmacophoric model (HipHop_5). The best receptor based pharmacophoric model came as AADHR. The compounds were docked against the B-Raf receptors (PDB ID: 3OG7, 4XV2, 5C9C). The compound DHSilB with cDOCKER interaction energy of -62.7 kcal/mol, -83.3 kcal/mol, -73.6 kcal/mol as well as the compound DHSilA with cDOCKER interaction energy of -63.9 kcal/mol, -63.2 kcal/mol, -74.7 kcal/mol showed satisfactory interaction with the respective receptors. Finally, the MD simulation was run for 100 ns for the top docked compounds DHSilA and DHSilB with the B-Raf proteins (PDB ID: 3OG7, 4XV2 and 5C9C). After the MD simulation run for 100 ns, the ligand 2,3-dehydrosilybin A (DHSilA) was found to be more stable in terms of the trajectories of RMSD, RMSF, Rg and H-bonds.
Collapse
|
14
|
Nguyen K, López CA, Neale C, Van QN, Carpenter TS, Di Natale F, Travers T, Tran TH, Chan AH, Bhatia H, Frank PH, Tonelli M, Zhang X, Gulten G, Reddy T, Burns V, Oppelstrup T, Hengartner N, Simanshu DK, Bremer PT, Chen D, Glosli JN, Shrestha R, Turbyville T, Streitz FH, Nissley DV, Ingólfsson HI, Stephen AG, Lightstone FC, Gnanakaran S. Exploring CRD mobility during RAS/RAF engagement at the membrane. Biophys J 2022; 121:3630-3650. [PMID: 35778842 PMCID: PMC9617161 DOI: 10.1016/j.bpj.2022.06.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/21/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
During the activation of mitogen-activated protein kinase (MAPK) signaling, the RAS-binding domain (RBD) and cysteine-rich domain (CRD) of RAF bind to active RAS at the plasma membrane. The orientation of RAS at the membrane may be critical for formation of the RAS-RBDCRD complex and subsequent signaling. To explore how RAS membrane orientation relates to the protein dynamics within the RAS-RBDCRD complex, we perform multiscale coarse-grained and all-atom molecular dynamics (MD) simulations of KRAS4b bound to the RBD and CRD domains of RAF-1, both in solution and anchored to a model plasma membrane. Solution MD simulations describe dynamic KRAS4b-CRD conformations, suggesting that the CRD has sufficient flexibility in this environment to substantially change its binding interface with KRAS4b. In contrast, when the ternary complex is anchored to the membrane, the mobility of the CRD relative to KRAS4b is restricted, resulting in fewer distinct KRAS4b-CRD conformations. These simulations implicate membrane orientations of the ternary complex that are consistent with NMR measurements. While a crystal structure-like conformation is observed in both solution and membrane simulations, a particular intermolecular rearrangement of the ternary complex is observed only when it is anchored to the membrane. This configuration emerges when the CRD hydrophobic loops are inserted into the membrane and helices α3-5 of KRAS4b are solvent exposed. This membrane-specific configuration is stabilized by KRAS4b-CRD contacts that are not observed in the crystal structure. These results suggest modulatory interplay between the CRD and plasma membrane that correlate with RAS/RAF complex structure and dynamics, and potentially influence subsequent steps in the activation of MAPK signaling.
Collapse
Affiliation(s)
- Kien Nguyen
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Cesar A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Chris Neale
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Que N Van
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Timothy S Carpenter
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Francesco Di Natale
- Applications, Simulations, and Quality, Lawrence Livermore National Laboratory, Livermore, California
| | | | - Timothy H Tran
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Albert H Chan
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Harsh Bhatia
- Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California
| | - Peter H Frank
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Marco Tonelli
- National Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin
| | - Xiaohua Zhang
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Gulcin Gulten
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Tyler Reddy
- CCS-7, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Violetta Burns
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Tomas Oppelstrup
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Nick Hengartner
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Dhirendra K Simanshu
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Peer-Timo Bremer
- Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, California
| | - De Chen
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - James N Glosli
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Rebika Shrestha
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Thomas Turbyville
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Frederick H Streitz
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Dwight V Nissley
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Helgi I Ingólfsson
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Andrew G Stephen
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Felice C Lightstone
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California
| | - Sandrasegaram Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico.
| |
Collapse
|
15
|
Talloa D, Triarico S, Agresti P, Mastrangelo S, Attinà G, Romano A, Maurizi P, Ruggiero A. BRAF and MEK Targeted Therapies in Pediatric Central Nervous System Tumors. Cancers (Basel) 2022; 14:4264. [PMID: 36077798 PMCID: PMC9454417 DOI: 10.3390/cancers14174264] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
BRAF is a component of the MAPK and PI3K/AKT/mTOR pathways that play a crucial role in cellular proliferation, differentiation, migration, and angiogenesis. Pediatric central nervous system tumors very often show mutations of the MAPK pathway, as demonstrated by next-generation sequencing (NGS), which now has an increasing role in cancer diagnostics. The MAPK mutated pathway in pediatric CNS tumors is the target of numerous drugs, approved or under investigation in ongoing clinical trials. In this review, we describe the main aspects of MAPK and PI3K/AKT/mTOR signaling pathways, with a focus on the alterations commonly involved in tumorigenesis. Furthermore, we reported the main available data about current BRAF and MEK targeted therapies used in pediatric low-grade gliomas (pLLGs), pediatric high-grade gliomas (pHGGs), and other CNS tumors that often present BRAF or MEK mutations. Further molecular stratification and clinical trial design are required for the treatment of pediatric CNS tumors with BRAF and MEK inhibitors.
Collapse
Affiliation(s)
- Dario Talloa
- Scuola di Specializzazione in Pediatria, Università Cattolica del Sacro Cuore, Largo F.sco Vito 1, 00168 Rome, Italy
| | - Silvia Triarico
- UOSD di Oncologia Pediatrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Argo A. Gemelli 8, 00168 Rome, Italy
| | - Pierpaolo Agresti
- Scuola di Specializzazione in Pediatria, Università Cattolica del Sacro Cuore, Largo F.sco Vito 1, 00168 Rome, Italy
| | - Stefano Mastrangelo
- UOSD di Oncologia Pediatrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Argo A. Gemelli 8, 00168 Rome, Italy
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo F.sco Vito 1, 00168 Rome, Italy
| | - Giorgio Attinà
- UOSD di Oncologia Pediatrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Argo A. Gemelli 8, 00168 Rome, Italy
| | - Alberto Romano
- UOSD di Oncologia Pediatrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Argo A. Gemelli 8, 00168 Rome, Italy
| | - Palma Maurizi
- UOSD di Oncologia Pediatrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Argo A. Gemelli 8, 00168 Rome, Italy
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo F.sco Vito 1, 00168 Rome, Italy
| | - Antonio Ruggiero
- UOSD di Oncologia Pediatrica, Dipartimento di Scienze della Salute della Donna, del Bambino e di Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Argo A. Gemelli 8, 00168 Rome, Italy
- Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Largo F.sco Vito 1, 00168 Rome, Italy
| |
Collapse
|
16
|
Kaur N, Lum M, Lewis RE, Black AR, Black JD. A novel anti-proliferative PKCα-Ras-ERK signaling axis in intestinal epithelial cells. J Biol Chem 2022; 298:102121. [PMID: 35697074 PMCID: PMC9270260 DOI: 10.1016/j.jbc.2022.102121] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/05/2022] [Accepted: 05/31/2022] [Indexed: 01/02/2023] Open
Abstract
We have previously shown that the serine/threonine kinase PKCα triggers MAPK/ERK kinase (MEK)-dependent G1→S cell cycle arrest in intestinal epithelial cells, characterized by downregulation of cyclin D1 and inhibitor of DNA-binding protein 1 (Id1) and upregulation of the cyclin-dependent kinase inhibitor p21Cip1. Here, we use pharmacological inhibitors, genetic approaches, siRNA-mediated knockdown, and immunoprecipitation to further characterize anti-proliferative ERK signaling in intestinal cells. We show that PKCα signaling intersects the Ras-Raf-MEK-ERK kinase cascade at the level of Ras small GTPases, and that anti-proliferative effects of PKCα require active Ras, Raf, MEK and ERK, core ERK pathway components that are also essential for pro-proliferative ERK signaling induced by epidermal growth factor (EGF). However, PKCα-induced anti-proliferative signaling differs from EGF signaling in that it is independent of the Ras guanine nucleotide exchange factors (Ras-GEFs), SOS1/2, and involves prolonged rather than transient ERK activation. PKCα forms complexes with A-Raf, B-Raf and C-Raf that dissociate upon pathway activation, and all three Raf isoforms can mediate PKCα-induced anti-proliferative effects. At least two PKCα-ERK pathways that collaborate to promote growth arrest were identified: one pathway requiring the Ras-GEF, RasGRP3, and H-Ras, leads to p21Cip1 upregulation, while additional pathway(s) mediate PKCα-induced cyclin D1 and Id1 downregulation. PKCα also induces ERK-dependent SOS1 phosphorylation, indicating possible negative crosstalk between anti-proliferative and growth-promoting ERK signaling. Importantly, the spatio-temporal activation of PKCα and ERK in the intestinal epithelium in vivo supports the physiological relevance of these pathways and highlights the importance of anti-proliferative ERK signaling to tissue homeostasis in the intestine.
Collapse
Affiliation(s)
- Navneet Kaur
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Michelle Lum
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Robert E Lewis
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
17
|
Rajkumar S, Berry D, Heney KA, Strong C, Ramsay L, Lajoie M, Alkallas R, Nguyen TT, Thomson C, Ahanfeshar-Adams M, Dankner M, Petrella T, Rose AAN, Siegel PM, Watson IR. Melanomas with concurrent BRAF non-p.V600 and NF1 loss-of-function mutations are targetable by BRAF/MEK inhibitor combination therapy. Cell Rep 2022; 39:110634. [PMID: 35385748 DOI: 10.1016/j.celrep.2022.110634] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 12/15/2021] [Accepted: 03/16/2022] [Indexed: 02/08/2023] Open
Abstract
Although combination BRAF/MEK inhibition has produced significant survival benefits for BRAF p.V600 mutant melanomas, targeted therapies approved for BRAF non-p.V600 mutant melanomas remain limited. Through the analysis of 772 cutaneous melanoma exomes, we reveal that BRAF non-p.V600 mutations co-occurs more frequently with NF1 loss, but not with oncogenic NRAS mutations, than expected by chance. We present cell signaling data, which demonstrate that BRAF non-p.V600 mutants can signal as monomers and dimers within an NF1 loss context. Concordantly, BRAF inhibitors that inhibit both monomeric and dimeric BRAF synergize with MEK inhibition to significantly reduce cell viability in vitro and tumor growth in vivo in BRAF non-p.V600 mutant melanomas with co-occurring NF1 loss-of-function mutations. Our data suggest that patients harboring BRAF non-p.V600 mutant melanomas may benefit from current FDA-approved BRAF/MEK inhibitor combination therapy currently reserved for BRAF p.V600 mutant patients.
Collapse
Affiliation(s)
- Shivshankari Rajkumar
- Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Diana Berry
- Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Kayla A Heney
- Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada
| | - Colton Strong
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - LeeAnn Ramsay
- Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| | - Mathieu Lajoie
- Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| | - Rached Alkallas
- Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Human Genetics, McGill University, Montréal, QC H3A 0C7, Canada
| | - Tan-Trieu Nguyen
- Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada
| | - Cameron Thomson
- University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | | | - Matthew Dankner
- Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Teresa Petrella
- Odette Cancer Centre, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - April A N Rose
- Department of Oncology, McGill University, Montréal, QC H4A 3T2, Canada; Lady Davis Institute, Segal Cancer Centre, Jewish General Hospital, Montréal, QC H3T 1E2, Canada
| | - Peter M Siegel
- Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada; Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| | - Ian R Watson
- Goodman Cancer Institute, McGill University, Montréal, QC H3A 1A3, Canada; Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada; Research Institute of the McGill University Health Centre, Montréal, QC H3H 2R9, Canada.
| |
Collapse
|
18
|
Simanshu DK, Morrison DK. A Structure is Worth a Thousand Words: New Insights for RAS and RAF Regulation. Cancer Discov 2022; 12:899-912. [PMID: 35046094 PMCID: PMC8983508 DOI: 10.1158/2159-8290.cd-21-1494] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Abstract
The RAS GTPases are frequently mutated in human cancer, with KRAS being the predominant tumor driver. For many years, it has been known that the structure and function of RAS are integrally linked, as structural changes induced by GTP binding or mutational events determine the ability of RAS to interact with regulators and effectors. Recently, a wealth of information has emerged from structures of specific KRAS mutants and from structures of multiprotein complexes containing RAS and/or RAF, an essential effector of RAS. These structures provide key insights regarding RAS and RAF regulation as well as promising new strategies for therapeutic intervention. SIGNIFICANCE The RAS GTPases are major drivers of tumorigenesis, and for RAS proteins to exert their full oncogenic potential, they must interact with the RAF kinases to initiate ERK cascade signaling. Although binding to RAS is typically a prerequisite for RAF to become an activated kinase, determining the molecular mechanisms by which this interaction results in RAF activation has been a challenging task. A major advance in understanding this process and RAF regulation has come from recent structural studies of various RAS and RAF multiprotein signaling complexes, revealing new avenues for drug discovery.
Collapse
Affiliation(s)
- Dhirendra K. Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Deborah K. Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| |
Collapse
|
19
|
Han Q, He X, Cui L, Qiu Y, Li Y, Chen H, Zhang H. Case Report: Early Distant Metastatic Inflammatory Myofibroblastic Tumor Harboring EML4-ALK Fusion Gene: Study of Two Typical Cases and Review of Literature. Front Med (Lausanne) 2022; 9:826705. [PMID: 35280868 PMCID: PMC8907662 DOI: 10.3389/fmed.2022.826705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory myofibroblastic tumor (IMT) is a distinctive neoplasm that frequently arises in the lung and accounts for ~1% of lung tumors. Distant metastatic IMT is extremely rare and has been poorly investigated. This analysis was specifically performed to explore the clinicopathological and genetic features of early distant metastatic IMT. Two typical patients with distant metastatic IMTs were selected, which accounted for 1.13% of all diagnosed IMTs in the last 5 years. One patient was a 55 year-old male, and the other patient was a 56 year-old female. Both primary tumors arose from the lung, and the initial clinical symptoms of the two patients involved coughing. Both of the imaging examinations showed low-density nodular shadows in the lungs with enhancement around the mass. Microscopically, dense arranged tumor cells, prominent cellular atypia, and high mitotic activity with atypical form were more prominent in the metastatic lesions than in the primary lesions. All of the primary and metastatic tumors in both cases showed positive anaplastic lymphoma kinase (ALK) immunostaining and ALK rearrangement via fluorescence in situ hybridization. The EML4 (exon 6)-ALK (exon 20) fusion variant (v3a/b) was identified by using next-generation sequencing (NGS) and was verified by using reverse transcription polymerase chain reaction (RT-PCR). Furthermore, intronic variants of NOTCH1 and synonymous variants of ARAF were also detected via NGS in one IMT for the first time and were verified in all of the primary and metastatic lesions via PCR. Distant metastasis occurred during a short period of time (1 and 2 months) after the first surgery. One patient presented with multiple metastases to the subcutaneous tissue and bone that responded to ALK inhibitor alectinib therapy, and the tumor was observed to regress 10 months after the initial ALK inhibitor therapy. In contrast, the other patient presented with subcutaneous neck metastasis without ALK inhibitor treatment and succumbed to the disease within 3 months after the surgery. This study demonstrated the possible role of EML4-ALKv3a/b in the malignant progression of IMT and proposed certain therapeutic effects of ALK inhibitors on multiple metastatic IMTs.
Collapse
Affiliation(s)
- Qianqian Han
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Xin He
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Lijuan Cui
- Department of Pathology, Suining Central Hospital, Suining, China
| | - Yan Qiu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuli Li
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Huijiao Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Hongying Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Hongying Zhang
| |
Collapse
|
20
|
Khan I, Koide A, Zuberi M, Ketavarapu G, Denbaum E, Teng KW, Rhett JM, Spencer-Smith R, Hobbs GA, Camp ER, Koide S, O'Bryan JP. Identification of the nucleotide-free state as a therapeutic vulnerability for inhibition of selected oncogenic RAS mutants. Cell Rep 2022; 38:110322. [PMID: 35139380 PMCID: PMC8936000 DOI: 10.1016/j.celrep.2022.110322] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/12/2021] [Accepted: 01/10/2022] [Indexed: 11/16/2022] Open
Abstract
RAS guanosine triphosphatases (GTPases) are mutated in nearly 20% of human tumors, making them an attractive therapeutic target. Following our discovery that nucleotide-free RAS (apo RAS) regulates cell signaling, we selectively target this state as an approach to inhibit RAS function. Here, we describe the R15 monobody that exclusively binds the apo state of all three RAS isoforms in vitro, regardless of the mutation status, and captures RAS in the apo state in cells. R15 inhibits the signaling and transforming activity of a subset of RAS mutants with elevated intrinsic nucleotide exchange rates (i.e., fast exchange mutants). Intracellular expression of R15 reduces the tumor-forming capacity of cancer cell lines driven by select RAS mutants and KRAS(G12D)-mutant patient-derived xenografts (PDXs). Thus, our approach establishes an opportunity to selectively inhibit a subset of RAS mutants by targeting the apo state with drug-like molecules. Khan et al. develop a high-affinity monobody to nucleotide-free RAS that, when expressed intracellularly, inhibits oncogenic RAS-mediated signaling and tumorigenesis. This study reveals the feasibility of targeting the nucleotide-free state to inhibit tumors driven by oncogenic RAS mutants that possess elevated nucleotide exchange activity.
Collapse
Affiliation(s)
- Imran Khan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Akiko Koide
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA; Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Mariyam Zuberi
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Gayatri Ketavarapu
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Eric Denbaum
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Kai Wen Teng
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - J Matthew Rhett
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Russell Spencer-Smith
- Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - G Aaron Hobbs
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ernest Ramsay Camp
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA
| | - Shohei Koide
- Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC 29425, USA; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, USA; Department of Pharmacology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
21
|
Ozdemir ES, Koester AM, Nan X. Ras Multimers on the Membrane: Many Ways for a Heart-to-Heart Conversation. Genes (Basel) 2022; 13:219. [PMID: 35205266 PMCID: PMC8872464 DOI: 10.3390/genes13020219] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/31/2022] Open
Abstract
Formation of Ras multimers, including dimers and nanoclusters, has emerged as an exciting, new front of research in the 'old' field of Ras biomedicine. With significant advances made in the past few years, we are beginning to understand the structure of Ras multimers and, albeit preliminary, mechanisms that regulate their formation in vitro and in cells. Here we aim to synthesize the knowledge accrued thus far on Ras multimers, particularly the presence of multiple globular (G-) domain interfaces, and discuss how membrane nanodomain composition and structure would influence Ras multimer formation. We end with some general thoughts on the potential implications of Ras multimers in basic and translational biology.
Collapse
Affiliation(s)
- E. Sila Ozdemir
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Ave., Portland, OR 97201, USA;
| | - Anna M. Koester
- Program in Quantitative and Systems Biology, Department of Biomedical Engineering, Oregon Health & Science University, 2730 S Moody Ave., Portland, OR 97201, USA;
| | - Xiaolin Nan
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Ave., Portland, OR 97201, USA;
- Program in Quantitative and Systems Biology, Department of Biomedical Engineering, Oregon Health & Science University, 2730 S Moody Ave., Portland, OR 97201, USA;
| |
Collapse
|
22
|
Inam H, Sokirniy I, Rao Y, Shah A, Naeemikia F, O'Brien E, Dong C, McCandlish DM, Pritchard JR. Genomic and experimental evidence that ALK ATI does not predict single agent sensitivity to ALK inhibitors. iScience 2021; 24:103343. [PMID: 34825133 PMCID: PMC8603052 DOI: 10.1016/j.isci.2021.103343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 06/17/2021] [Accepted: 10/22/2021] [Indexed: 12/01/2022] Open
Abstract
Genomic data can facilitate personalized treatment decisions by enabling therapeutic hypotheses in individual patients. Mutual exclusivity has been an empirically useful signal for identifying activating mutations that respond to single agent targeted therapies. However, a low mutation frequency can underpower this signal for rare variants. We develop a resampling based method for the direct pairwise comparison of conditional selection between sets of gene pairs. We apply this method to a transcript variant of anaplastic lymphoma kinase (ALK) in melanoma, termed ALKATI that was suggested to predict sensitivity to ALK inhibitors and we find that it is not mutually exclusive with key melanoma oncogenes. Furthermore, we find that ALKATI is not likely to be sufficient for cellular transformation or growth, and it does not predict single agent therapeutic dependency. Our work strongly disfavors the role of ALKATI as a targetable oncogenic driver that might be sensitive to single agent ALK treatment.
Collapse
Affiliation(s)
- Haider Inam
- Department of Biomedical Engineering, 211 Wartik Lab, The Pennsylvania State University, University Park, PA 16802, USA
| | - Ivan Sokirniy
- The Huck Institute for the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yiyun Rao
- The Huck Institute for the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Anushka Shah
- Department of Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Farnaz Naeemikia
- Department of Biomedical Engineering, 211 Wartik Lab, The Pennsylvania State University, University Park, PA 16802, USA
| | - Edward O'Brien
- Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| | - Cheng Dong
- Department of Biomedical Engineering, 211 Wartik Lab, The Pennsylvania State University, University Park, PA 16802, USA
| | - David M. McCandlish
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Justin R. Pritchard
- Department of Biomedical Engineering, 211 Wartik Lab, The Pennsylvania State University, University Park, PA 16802, USA
- The Huck Institute for the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
23
|
Bekele RT, Samant AS, Nassar AH, So J, Garcia EP, Curran CR, Hwang JH, Mayhew DL, Nag A, Thorner AR, Börcsök J, Sztupinszki Z, Pan CX, Bellmunt J, Kwiatkowski DJ, Sonpavde GP, Van Allen EM, Mouw KW. RAF1 amplification drives a subset of bladder tumors and confers sensitivity to MAPK-directed therapeutics. J Clin Invest 2021; 131:147849. [PMID: 34554931 DOI: 10.1172/jci147849] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
Bladder cancer is a genetically heterogeneous disease, and novel therapeutic strategies are needed to expand treatment options and improve clinical outcomes. Here, we identified a unique subset of urothelial tumors with focal amplification of the RAF1 (CRAF) kinase gene. RAF1-amplified tumors had activation of the RAF/MEK/ERK signaling pathway and exhibited a luminal gene expression pattern. Genetic studies demonstrated that RAF1-amplified tumors were dependent upon RAF1 activity for survival, and RAF1-activated cell lines and patient-derived models were sensitive to available and emerging RAF inhibitors as well as combined RAF plus MEK inhibition. Furthermore, we found that bladder tumors with HRAS- or NRAS-activating mutations were dependent on RAF1-mediated signaling and were sensitive to RAF1-targeted therapy. Together, these data identified RAF1 activation as a dependency in a subset making up nearly 20% of urothelial tumors and suggested that targeting RAF1-mediated signaling represents a rational therapeutic strategy.
Collapse
Affiliation(s)
- Raie T Bekele
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Amruta S Samant
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Amin H Nassar
- Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medical Oncology and
| | | | | | | | - Justin H Hwang
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Department of Medical Oncology and
| | - David L Mayhew
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Department of Medical Oncology and
| | - Anwesha Nag
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Aaron R Thorner
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Judit Börcsök
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | - Chong-Xian Pan
- VA Boston Healthcare System, Harvard Medical School, West Roxbury, Massachusetts, USA
| | - Joaquim Bellmunt
- Division of Hematology and Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - David J Kwiatkowski
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | - Eliezer M Van Allen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Department of Medical Oncology and
| | - Kent W Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
24
|
Garcia N, Del Pozo V, Yohe ME, Goodwin CM, Shackleford TJ, Wang L, Baxi K, Chen Y, Rogojina AT, Zimmerman SM, Peer CJ, Figg WD, Ignatius MS, Wood KC, Houghton PJ, Vaseva AV. Vertical Inhibition of the RAF-MEK-ERK Cascade Induces Myogenic Differentiation, Apoptosis and Tumor Regression in H/NRAS Q61X-mutant Rhabdomyosarcoma. Mol Cancer Ther 2021; 21:170-183. [PMID: 34737198 PMCID: PMC8742779 DOI: 10.1158/1535-7163.mct-21-0194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/18/2021] [Accepted: 11/02/2021] [Indexed: 11/16/2022]
Abstract
Oncogenic RAS signaling is an attractive target for fusion-negative rhabdomyosarcoma (FN-RMS). Our study validates the role of the ERK MAPK effector pathway in mediating RAS dependency in a panel of H/NRASQ61X-mutant RMS cells and correlates in vivo efficacy of the MEK inhibitor trametinib with pharmacodynamics of ERK activity. A screen is used to identify trametinib-sensitizing targets and combinations are evaluated in cells and tumor xenografts. We find that the ERK MAPK pathway is central to H/NRASQ61X-dependency in RMS cells, however there is poor in vivo response to clinically relevant exposures with trametinib, which correlates with inefficient suppression of ERK activity. CRISPR screening points to vertical inhibition of the RAF-MEK-ERK cascade by co-suppression of MEK and either CRAF or ERK. CRAF is central to rebound pathway activation following MEK or ERK inhibition. Concurrent CRAF suppression and MEK or ERK inhibition, or concurrent pan-RAF and MEK/ERK inhibition (pan-RAFi + MEKi/ERKi), or concurrent MEK and ERK inhibition (MEKi + ERKi) all synergistically block ERK activity and induce myogenic differentiation and apoptosis. In vivo assessment of pan-RAFi + ERKi or MEKi + ERKi potently suppress growth of H/NRASQ61X RMS tumor xenografts, with pan-RAFi + ERKi being more effective and better tolerated. We conclude that CRAF reactivation limits the activity of single agent MEK/ERK inhibitors in FN-RMS. Vertical targeting of the RAF-MEK-ERK cascade, and particularly co-targeting of CRAF and MEK or ERK, or the combination of pan-RAF inhibitors with MEK or ERK inhibitors, have synergistic activity and potently suppress H/NRASQ61X-mutant RMS tumor growth.
Collapse
Affiliation(s)
| | | | | | - Craig M Goodwin
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | | | - Long Wang
- Cancer Therapy & Research Center, The University of Texas Health Science Center
| | - Kunal Baxi
- Greehey Children's Cancer Research Institute, UTHSCSA
| | - Yidong Chen
- Department of Population Health Sciences, The University of Texas Health Science Center at San Antonio
| | | | | | - Cody J Peer
- Clinical Pharmacology Program, National Cancer Institute
| | - William D Figg
- Clinical Pharmacology Program and Genitourinary Malignancies Branch, National Cancer Institute
| | | | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University
| | - Peter J Houghton
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio
| | | |
Collapse
|
25
|
Al Shahrani M, Abohassan M, Y Alshahrani M, Hakami AR, Rajagopalan P. High-throughput virtual screening and preclinical analysis identifies CB-1, a novel potent dual B-Raf/c-Raf inhibitor, effective against wild and mutant variants of B-Raf expression in colorectal carcinoma. J Comput Aided Mol Des 2021; 35:1165-1176. [PMID: 34727304 DOI: 10.1007/s10822-021-00426-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/20/2021] [Indexed: 01/07/2023]
Abstract
Paradoxical Raf activation via Raf dimerization is a major drawback of wild/mutant B-Raf inhibitors. Herein, we report that CB-1 a novel, potent B-Raf/c-Raf dual inhibitor, effective against colon cancer cells, irrespective of their genetic status. High-throughput virtual screening of the ChemBridge library against wild B-Raf (B-RafWT), mutant B-Raf (B-RafV600E), and c-Raf was performed using an automated protocol with the AutoDock-VINA. Caco-2 and HT-29 cells were used. Of the 23,365 compounds screened computationally, CB-1 showed the highest binding energy towards B-RafWT with a ΔGbinding score of - 13.0 kcal/mol. The compound was also predicted to be effective against B-RafV600E and c-Raf molecules with ΔGbinding energies of - 10.6 and - 10.1 kcal/mol, respectively. The compound inhibited B-RafWT, B-RafV600E and c-Raf kinases with IC50 values of 27.13, 51.70, and 40.23 nM, respectively. The GI50 value of CB-1 was 247.9 nM in B-RafWT-expressing Caco-2 cells and 352.4 nM in B-RafV600E-expressing HT-29 cells. Dose-dependent increases in total apoptosis and G1 cell cycle phase arrest was observed in CB-1-treated colon cancer cells. The compound decreased B-Raf expression in both wild and mutant colon cancer cells. CB-1, a novel, potent dual B-Raf/c-Raf inhibitor was effective against colon cancer cells bearing wild-type and mutant variants of B-Raf expression.
Collapse
Affiliation(s)
- Mesfer Al Shahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Abohassan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Abdulrahim R Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Prasanna Rajagopalan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
- Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia.
| |
Collapse
|
26
|
RAS Dimers: The Novice Couple at the RAS-ERK Pathway Ball. Genes (Basel) 2021; 12:genes12101556. [PMID: 34680951 PMCID: PMC8535645 DOI: 10.3390/genes12101556] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023] Open
Abstract
Signals conveyed through the RAS-ERK pathway constitute a pivotal regulatory element in cancer-related cellular processes. Recently, RAS dimerization has been proposed as a key step in the relay of RAS signals, critically contributing to RAF activation. RAS clustering at plasma membrane microdomains and endomembranes facilitates RAS dimerization in response to stimulation, promoting RAF dimerization and subsequent activation. Remarkably, inhibiting RAS dimerization forestalls tumorigenesis in cellular and animal models. Thus, the pharmacological disruption of RAS dimers has emerged as an additional target for cancer researchers in the quest for a means to curtail aberrant RAS activity.
Collapse
|
27
|
Nussinov R, Zhang M, Maloney R, Jang H. Ras isoform-specific expression, chromatin accessibility, and signaling. Biophys Rev 2021; 13:489-505. [PMID: 34466166 PMCID: PMC8355297 DOI: 10.1007/s12551-021-00817-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
The anchorage of Ras isoforms in the membrane and their nanocluster formations have been studied extensively, including their detailed interactions, sizes, preferred membrane environments, chemistry, and geometry. However, the staggering challenge of their epigenetics and chromatin accessibility in distinct cell states and types, which we propose is a major factor determining their specific expression, still awaits unraveling. Ras isoforms are distinguished by their C-terminal hypervariable region (HVR) which acts in intracellular transport, regulation, and membrane anchorage. Here, we review some isoform-specific activities at the plasma membrane from a structural dynamic standpoint. Inspired by physics and chemistry, we recognize that understanding functional specificity requires insight into how biomolecules can organize themselves in different cellular environments. Within this framework, we suggest that isoform-specific expression may largely be controlled by the chromatin density and physical compaction, which allow (or curb) access to "chromatinized DNA." Genes are preferentially expressed in tissues: proteins expressed in pancreatic cells may not be equally expressed in lung cells. It is the rule-not an exception, and it can be at least partly understood in terms of chromatin organization and accessibility state. Genes are expressed when they can be sufficiently exposed to the transcription machinery, and they are less so when they are persistently buried in dense chromatin. Notably, chromatin accessibility can similarly determine expression of drug resistance genes.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism National Cancer Institute, 1050 Boyles St, Frederick, MD 21702 USA
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine Tel Aviv University, 69978 Tel Aviv, Israel
| | - Mingzhen Zhang
- Computational Structural Biology Section Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism National Cancer Institute, 1050 Boyles St, Frederick, MD 21702 USA
| | - Ryan Maloney
- Computational Structural Biology Section Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism National Cancer Institute, 1050 Boyles St, Frederick, MD 21702 USA
| | - Hyunbum Jang
- Computational Structural Biology Section Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism National Cancer Institute, 1050 Boyles St, Frederick, MD 21702 USA
| |
Collapse
|
28
|
ERK1/2: An Integrator of Signals That Alters Cardiac Homeostasis and Growth. BIOLOGY 2021; 10:biology10040346. [PMID: 33923899 PMCID: PMC8072600 DOI: 10.3390/biology10040346] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/24/2022]
Abstract
Integration of cellular responses to extracellular cues is essential for cell survival and adaptation to stress. Extracellular signal-regulated kinase (ERK) 1 and 2 serve an evolutionarily conserved role for intracellular signal transduction that proved critical for cardiomyocyte homeostasis and cardiac stress responses. Considering the importance of ERK1/2 in the heart, understanding how these kinases operate in both normal and disease states is critical. Here, we review the complexity of upstream and downstream signals that govern ERK1/2-dependent regulation of cardiac structure and function. Particular emphasis is given to cardiomyocyte hypertrophy as an outcome of ERK1/2 activation regulation in the heart.
Collapse
|
29
|
Morgan CW, Dale IL, Thomas AP, Hunt J, Chin JW. Selective CRAF Inhibition Elicits Transactivation. J Am Chem Soc 2021; 143:4600-4606. [PMID: 33750116 PMCID: PMC8041278 DOI: 10.1021/jacs.0c11958] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
Discovering molecules that regulate
closely related protein isoforms
is challenging, and in many cases the consequences of isoform-specific
pharmacological regulation remains unknown. RAF isoforms are commonly
mutated oncogenes that serve as effector kinases in MAP kinase signaling.
BRAF/CRAF heterodimers are believed to be the primary RAF signaling
species, and many RAF inhibitors lead to a “paradoxical activation”
of RAF kinase activity through transactivation of the CRAF protomer;
this leads to resistance mechanisms and secondary tumors. It has been
hypothesized that CRAF-selective inhibition might bypass paradoxical
activation, but no CRAF-selective inhibitor has been reported and
the consequences of pharmacologically inhibiting CRAF have remained
unknown. Here, we use bio-orthogonal ligand tethering (BOLT) to selectively
target inhibitors to CRAF. Our results suggest that selective CRAF
inhibition promotes paradoxical activation and exemplify how BOLT
may be used to triage potential targets for drug discovery before
any target-selective small molecules are known.
Collapse
Affiliation(s)
- Charles W Morgan
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Ian L Dale
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - Andrew P Thomas
- Medicinal Chemistry, Oncology R&D, AstraZeneca, Cambridge CB4 0WG, United Kingdom
| | - James Hunt
- Antibody Discovery & Protein Engineering, R&D, AstraZeneca, Cambridge CB21 6GH, United Kingdom
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
30
|
Van QN, Prakash P, Shrestha R, Balius TE, Turbyville TJ, Stephen AG. RAS Nanoclusters: Dynamic Signaling Platforms Amenable to Therapeutic Intervention. Biomolecules 2021; 11:377. [PMID: 33802474 PMCID: PMC8000715 DOI: 10.3390/biom11030377] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 01/18/2023] Open
Abstract
RAS proteins are mutated in approximately 20% of all cancers and are generally associated with poor clinical outcomes. RAS proteins are localized to the plasma membrane and function as molecular switches, turned on by partners that receive extracellular mitogenic signals. In the on-state, they activate intracellular signal transduction cascades. Membrane-bound RAS molecules segregate into multimers, known as nanoclusters. These nanoclusters, held together through weak protein-protein and protein-lipid associations, are highly dynamic and respond to cellular input signals and fluctuations in the local lipid environment. Disruption of RAS nanoclusters results in downregulation of RAS-mediated mitogenic signaling. In this review, we discuss the propensity of RAS proteins to display clustering behavior and the interfaces that are associated with these assemblies. Strategies to therapeutically disrupt nanocluster formation or the stabilization of signaling incompetent RAS complexes are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrew G. Stephen
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, National Cancer Institute RAS Initiative, Inc., Frederick, MD 21702, USA; (Q.N.V.); (P.P.); (R.S.); (T.E.B.); (T.J.T.)
| |
Collapse
|
31
|
Yakovian O, Sajman J, Arafeh R, Neve-Oz Y, Alon M, Samuels Y, Sherman E. MEK Inhibition Reverses Aberrant Signaling in Melanoma Cells through Reorganization of NRas and BRAF in Self Nanoclusters. Cancer Res 2021; 81:1279-1292. [PMID: 33355187 PMCID: PMC7617077 DOI: 10.1158/0008-5472.can-20-1205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 07/29/2020] [Accepted: 12/14/2020] [Indexed: 11/16/2022]
Abstract
Hotspot mutations of the oncogenes BRAF and NRas are the most common genetic alterations in cutaneous melanoma. Still, the nanoscale organization and signal coupling of these proteins remain incompletely understood, particularly upon expression of oncogenic NRas mutants. Here we employed single-molecule localization microscopy to study the nanoscale organization of NRas and BRAF at the plasma membrane (PM) of melanoma cells. NRas and BRAF resided in self-clusters that did not associate well in resting cells. In EGF-activated cells, NRas clusters became more diffused while overall protein levels at the PM increased; thus allowing enhanced association of NRas and BRAF and downstream signaling. In multiple melanoma cell lines, mutant NRas resided in more pronounced self-clusters relative to wild-type (WT) NRas yet associated more with the clustered and more abundant BRAF. In cells resistant to trametinib, a clinical MEK inhibitor (MEKi), a similar coclustering of NRas and BRAF was observed upon EGF activation. Strikingly, treatment of cells expressing mutant NRas with trametinib reversed the effect of mutant NRas expression by restoring the nonoverlapping self-clusters of NRas and BRAF and by reducing their PM levels and elevated pERK levels caused by mutant NRas. Our results indicate a new mechanism for signal regulation of NRas in melanoma through its nanoscale dynamic organization and a new mechanism for MEKi function in melanoma cells carrying NRas mutations but lacking MEK mutations. SIGNIFICANCE: Nanoscale dynamic organization of WT and mutant NRas relative to BRAF serves as a regulatory mechanism for NRas signaling and may be a viable therapeutic target for its sensitivity to MEKi.
Collapse
Affiliation(s)
- Oren Yakovian
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
| | - Julia Sajman
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
| | - Rand Arafeh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yair Neve-Oz
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
| | - Michal Alon
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Yardena Samuels
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Eilon Sherman
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel.
| |
Collapse
|
32
|
Koumaki K, Kontogianni G, Kosmidou V, Pahitsa F, Kritsi E, Zervou M, Chatziioannou A, Souliotis VL, Papadodima O, Pintzas A. BRAF paradox breakers PLX8394, PLX7904 are more effective against BRAFV600Ε CRC cells compared with the BRAF inhibitor PLX4720 and shown by detailed pathway analysis. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166061. [PMID: 33385518 DOI: 10.1016/j.bbadis.2020.166061] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022]
Abstract
PLX7904 and PLX8394 are novel BRAFV600E inhibitors-BRAFi that are designed to evade the paradoxical MAPK activation, a trait for the name "paradox breakers"-PB. Current FDA approved inhibitors (Vemurafenib, Dabrafenib, Encorafenib) although improved progression-free survival of mtBRAF melanoma patients suffer from this treatment related side effect. mtBRAF Colorectal Cancer (CRC) is resistant to the approved BRAF inhibitors, although combinatorial treatment co-targeting BRAF and EGFR/MEK is offering a promising prospect. In an effort to explore the potential of the novel BRAF inhibitors-PB to impede CRC cell proliferation, they were tested on RKO, HT29 and Colo-205 cells, bearing the BRAFV600E mutation. This study shows that the BRAF paradox breakers PLX7904 and PLX8394 cause a more prolonged MAPK pathway inhibition and achieve a stronger blockage of proliferation and reduced viability than PLX4720, the sister compound of Vemurafenib. In some treatment conditions, cells can undergo apoptosis. Genomic analysis on the more resistant RKO cells treated with PLX7904, PLX8394 and PLX4720 showed similar gene expression pattern, but the alterations imposed by the PB were more intense. Bioinformatic analysis resulted in a short list of genes representing potential master regulators of the cellular response to BRAF inhibitors' treatments. From our results, it is clear that the BRAF paradox breakers present a notable differential regulation of major pathways, like MAPK signalling, apoptosis, cell cycle, or developmental signalling pathways. Combinatorial treatments of BRAFi with Mcl-1 and Notch modulators show a better effect than mono-treatments. Additional pathways could be further exploited in novel efficient combinatorial treatment protocols with BRAFi.
Collapse
Affiliation(s)
- Kassandra Koumaki
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Georgia Kontogianni
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Vivian Kosmidou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Fani Pahitsa
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Eftichia Kritsi
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Maria Zervou
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | | | - Vassilis L Souliotis
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Olga Papadodima
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | - Alexander Pintzas
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece.
| |
Collapse
|
33
|
The 14-3-3 Proteins as Important Allosteric Regulators of Protein Kinases. Int J Mol Sci 2020; 21:ijms21228824. [PMID: 33233473 PMCID: PMC7700312 DOI: 10.3390/ijms21228824] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
Phosphorylation by kinases governs many key cellular and extracellular processes, such as transcription, cell cycle progression, differentiation, secretion and apoptosis. Unsurprisingly, tight and precise kinase regulation is a prerequisite for normal cell functioning, whereas kinase dysregulation often leads to disease. Moreover, the functions of many kinases are regulated through protein–protein interactions, which in turn are mediated by phosphorylated motifs and often involve associations with the scaffolding and chaperon protein 14-3-3. Therefore, the aim of this review article is to provide an overview of the state of the art on 14-3-3-mediated kinase regulation, focusing on the most recent mechanistic insights into these important protein–protein interactions and discussing in detail both their structural aspects and functional consequences.
Collapse
|
34
|
Clark ME, Rizos H, Pereira MR, McEvoy AC, Marsavela G, Calapre L, Meehan K, Ruhen O, Khattak MA, Meniawy TM, Long GV, Carlino MS, Menzies AM, Millward M, Ziman M, Gray ES. Detection of BRAF splicing variants in plasma-derived cell-free nucleic acids and extracellular vesicles of melanoma patients failing targeted therapy therapies. Oncotarget 2020; 11:4016-4027. [PMID: 33216826 PMCID: PMC7646833 DOI: 10.18632/oncotarget.27790] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022] Open
Abstract
The analysis of plasma circulating tumour nucleic acids provides a non-invasive approach to assess disease burden and the genetic evolution of tumours in response to therapy. BRAF splicing variants are known to confer melanoma resistance to BRAF inhibitors. We developed a test to screen cell-free RNA (cfRNA) for the presence of BRAF splicing variants. Custom droplet digital PCR assays were designed for the detection of BRAF splicing variants p61, p55, p48 and p41 and then validated using RNA from cell lines carrying these variants. Evaluation of plasma from patients with reported objective response to BRAF/MEK inhibition followed by disease progression was revealed by increased circulating tumour DNA (ctDNA) in 24 of 38 cases at the time of relapse. Circulating BRAF splicing variants were detected in cfRNA from 3 of these 38 patients; two patients carried the BRAF p61 variant and one the p55 variant. In all three cases the presence of the splicing variant was apparent only at the time of progressive disease. BRAF p61 was also detectable in plasma of one of four patients with confirmed BRAF splicing variants in their progressing tumours. Isolation and analysis of RNA from extracellular vesicles (EV) from resistant cell lines and patient plasma demonstrated that BRAF splicing variants are associated with EVs. These findings indicate that in addition to plasma ctDNA, RNA carried by EVs can provide important tumour specific information.
Collapse
Affiliation(s)
- Michael E. Clark
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Biomedical Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Helen Rizos
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
- Westmead Institute for Cancer Research, The University of Sydney, Sydney, New South Wales, Australia
- Melanoma Institute Australia, Sydney, New South Wales, Australia
| | - Michelle R. Pereira
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Ashleigh C. McEvoy
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Gabriela Marsavela
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Leslie Calapre
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Katie Meehan
- Department of Otorhinolaryngology, Head and Neck Surgery, Chinese University of Hong Kong, Hong Kong
| | - Olivia Ruhen
- School of Biomedical Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Muhammad A. Khattak
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medicine, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Medical Oncology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Tarek M. Meniawy
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medicine, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Georgina V. Long
- Melanoma Institute Australia, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Mater Hospital, North Sydney, New South Wales, Australia
| | - Matteo S. Carlino
- Westmead Institute for Cancer Research, The University of Sydney, Sydney, New South Wales, Australia
- Melanoma Institute Australia, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
| | - Alexander M. Menzies
- Melanoma Institute Australia, Sydney, New South Wales, Australia
- Sydney Medical School, The University of Sydney, Sydney, New South Wales, Australia
- Mater Hospital, North Sydney, New South Wales, Australia
| | - Michael Millward
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Medicine, The University of Western Australia, Crawley, Western Australia, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Melanie Ziman
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
- School of Biomedical Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Elin S. Gray
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Western Australia, Australia
| |
Collapse
|
35
|
Abstract
BRAF kinase, a critical effector of the ERK signaling pathway, is hyperactivated in many cancers. Oncogenic BRAFV600E signals as an active monomer in the absence of active RAS, however, in many tumors BRAF dimers mediate ERK signaling. FDA-approved RAF inhibitors poorly inhibit BRAF dimers, which leads to tumor resistance. We found that Ponatinib, an FDA-approved drug, is an effective inhibitor of BRAF monomers and dimers. Ponatinib binds the BRAF dimer and stabilizes a distinct αC-helix conformation through interaction with a previously unrevealed allosteric site. Using these structural insights, we developed PHI1, a BRAF inhibitor that fully uncovers the allosteric site. PHI1 exhibits discrete cellular selectivity for BRAF dimers, with enhanced inhibition of the second protomer when the first protomer is occupied, comprising a novel class of dimer selective inhibitors. This work shows that Ponatinib and BRAF dimer selective inhibitors will be useful in treating BRAF-dependent tumors. FDA-approved RAF inhibitors poorly inhibit BRAF dimers, which limits their clinical efficacy in tumors expressing BRAFV600E mutant monomers. Here the authors identify FDA-approved Ponatinib as an effective inhibitor of BRAF monomers and dimers and designed PHI1, an inhibitor with a unique mode of action and selectivity for oncogenic BRAF dimers.
Collapse
|
36
|
Making NSCLC Crystal Clear: How Kinase Structures Revolutionized Lung Cancer Treatment. CRYSTALS 2020. [DOI: 10.3390/cryst10090725] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The parallel advances of different scientific fields provide a contemporary scenario where collaboration is not a differential, but actually a requirement. In this context, crystallography has had a major contribution on the medical sciences, providing a “face” for targets of diseases that previously were known solely by name or sequence. Worldwide, cancer still leads the number of annual deaths, with 9.6 million associated deaths, with a major contribution from lung cancer and its 1.7 million deaths. Since the relationship between cancer and kinases was unraveled, these proteins have been extensively explored and became associated with drugs that later attained blockbuster status. Crystallographic structures of kinases related to lung cancer and their developed and marketed drugs provided insight on their conformation in the absence or presence of small molecules. Notwithstanding, these structures were also of service once the initially highly successful drugs started to lose their effectiveness in the emergence of mutations. This review focuses on a subclassification of lung cancer, non-small cell lung cancer (NSCLC), and major oncogenic driver mutations in kinases, and how crystallographic structures can be used, not only to provide awareness of the function and inhibition of these mutations, but also how these structures can be used in further computational studies aiming at addressing these novel mutations in the field of personalized medicine.
Collapse
|
37
|
Kattan WE, Hancock JF. RAS Function in cancer cells: translating membrane biology and biochemistry into new therapeutics. Biochem J 2020; 477:2893-2919. [PMID: 32797215 PMCID: PMC7891675 DOI: 10.1042/bcj20190839] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/20/2020] [Accepted: 07/22/2020] [Indexed: 02/07/2023]
Abstract
The three human RAS proteins are mutated and constitutively activated in ∼20% of cancers leading to cell growth and proliferation. For the past three decades, many attempts have been made to inhibit these proteins with little success. Recently; however, multiple methods have emerged to inhibit KRAS, the most prevalently mutated isoform. These methods and the underlying biology will be discussed in this review with a special focus on KRAS-plasma membrane interactions.
Collapse
Affiliation(s)
- Walaa E. Kattan
- Department of Integrative Biology and Pharmacology, McGovern Medical School University of Texas Health Science Center at Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, TX 77030, USA
| | - John F. Hancock
- Department of Integrative Biology and Pharmacology, McGovern Medical School University of Texas Health Science Center at Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, TX 77030, USA
| |
Collapse
|
38
|
Nussinov R, Jang H, Zhang M, Tsai CJ, Sablina AA. The Mystery of Rap1 Suppression of Oncogenic Ras. Trends Cancer 2020; 6:369-379. [PMID: 32249186 PMCID: PMC7211489 DOI: 10.1016/j.trecan.2020.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
Decades ago, Rap1, a small GTPase very similar to Ras, was observed to suppress oncogenic Ras phenotype, reverting its transformation. The proposed reason, persisting since, has been competition between Ras and Rap1 for a common target. Yet, none was found. There was also Rap1's puzzling suppression of Raf-1 versus activation of BRAF. Reemerging interest in Rap1 envisages capturing its Ras suppression action by inhibitors. Here, we review the literature and resolve the enigma. In vivo oncogenic Ras exists in isoform-distinct nanoclusters. The presence of Rap1 within the nanoclusters reduces the number of the clustered oncogenic Ras molecules, thus suppressing Raf-1 activation and mitogen-activated protein kinase (MAPK) signaling. Nanoclustering suggests that Rap1 suppression is Ras isoform dependent. Altogether, a potent Rap1-like inhibitor appears unlikely.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Anna A Sablina
- VIB Center for the Biology of Disease and KU Leuven Department of Oncology, Leuven Cancer Institute, Leuven, Belgium
| |
Collapse
|
39
|
Muratcioglu S, Aydin C, Odabasi E, Ozdemir ES, Firat-Karalar EN, Jang H, Tsai CJ, Nussinov R, Kavakli IH, Gursoy A, Keskin O. Oncogenic K-Ras4B Dimerization Enhances Downstream Mitogen-activated Protein Kinase Signaling. J Mol Biol 2020; 432:1199-1215. [PMID: 31931009 PMCID: PMC8533050 DOI: 10.1016/j.jmb.2020.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
Ras recruits and activates effectors that transmit receptor-initiated signals. Monomeric Ras can bind Raf; however, Raf's activation requires dimerization, which can be facilitated by Ras dimerization. Previously, we showed that active K-Ras4B dimerizes in silico and in vitro through two major interfaces: (i) β-interface, mapped to Switch I and effector-binding regions, (ii) α-interface at the allosteric lobe. Here, we chose constitutively active K-Ras4B as our control and two double mutants (K101D and R102E; and R41E and K42D) in the α- and β-interfaces. Two of the mutations are from The Cancer Genome Atlas (TCGA) and the Catalogue Of Somatic Mutations In Cancer (COSMIC) data sets. R41 and R102 are found in several adenocarcinomas in Ras isoforms. We performed site-directed mutagenesis, cellular localization experiments, and molecular dynamics (MD) simulations to assess the impact of the mutations on K-Ras4B dimerization and function. α-interface K101D/R102E double mutations reduced dimerization but only slightly reduced downstream phosphorylated extracellular signal-regulated kinase (ERK) (pERK) levels. While β-interface R41E/K42D double mutations did not interfere with dimerization, they almost completely blocked K-Ras4B-mediated ERK phosphorylation. Both double mutations increased downstream phosphorylated Akt (pAkt) levels in cells. Changes in pERK and pAkt levels altered ERK- and Akt-regulated gene expressions, such as EGR1, JUN, and BCL2L11. These results underscore the role of the α-interface in K-Ras4B homodimerization and the β-surface in effector binding. MD simulations highlight that the membrane and hypervariable region (HVR) interact with both α- and β-interfaces of K-Ras4B mutants, respectively, inhibiting homodimerization and probably effector binding. Mutations at both interfaces interfered with mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase signaling but in different forms and extents. We conclude that dimerization is not necessary but enhances downstream MAPK signaling.
Collapse
Affiliation(s)
- Serena Muratcioglu
- Departments of Chemical and Biological Engineering, Research Center for Translational Medicine, Koc University, Istanbul 34450, Turkey
| | - Cihan Aydin
- Departments of Chemical and Biological Engineering, Research Center for Translational Medicine, Koc University, Istanbul 34450, Turkey
| | - Ezgi Odabasi
- Departments of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - E Sila Ozdemir
- Departments of Chemical and Biological Engineering, Research Center for Translational Medicine, Koc University, Istanbul 34450, Turkey
| | | | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ibrahim Halil Kavakli
- Departments of Chemical and Biological Engineering, Research Center for Translational Medicine, Koc University, Istanbul 34450, Turkey; Departments of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Attila Gursoy
- Departments of Computer Engineering, Research Center for Translational Medicine, Koc University, Istanbul 34450, Turkey.
| | - Ozlem Keskin
- Departments of Chemical and Biological Engineering, Research Center for Translational Medicine, Koc University, Istanbul 34450, Turkey.
| |
Collapse
|
40
|
Negative regulation of RAF kinase activity by ATP is overcome by 14-3-3-induced dimerization. Nat Struct Mol Biol 2020; 27:134-141. [PMID: 31988522 DOI: 10.1038/s41594-019-0365-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/13/2019] [Indexed: 12/13/2022]
Abstract
The RAS-RAF-MEK-ERK signaling axis is frequently activated in human cancers. Physiological concentrations of ATP prevent formation of RAF kinase-domain (RAFKD) dimers that are critical for activity. Here we present a 2.9-Å-resolution crystal structure of human BRAFKD in complex with MEK and the ATP analog AMP-PCP, revealing interactions between BRAF and ATP that induce an inactive, monomeric conformation of BRAFKD. We also determine how 14-3-3 relieves the negative regulatory effect of ATP through a 2.5-Å-resolution crystal structure of the BRAFKD-14-3-3 complex, in which dimeric 14-3-3 enforces a dimeric BRAFKD assembly to increase BRAF activity. Our data suggest that most oncogenic BRAF mutations alter interactions with ATP and counteract the negative effects of ATP binding by lowering the threshold for RAF dimerization and pathway activation. Our study establishes a framework for rationalizing oncogenic BRAF mutations and provides new avenues for improved RAF-inhibitor discovery.
Collapse
|
41
|
Cope NJ, Novak B, Liu Z, Cavallo M, Gunderwala AY, Connolly M, Wang Z. Analyses of the oncogenic BRAF D594G variant reveal a kinase-independent function of BRAF in activating MAPK signaling. J Biol Chem 2020; 295:2407-2420. [PMID: 31929109 DOI: 10.1074/jbc.ra119.011536] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 01/07/2020] [Indexed: 12/19/2022] Open
Abstract
Class 3 mutations in B-Raf proto-oncogene, Ser/Thr kinase (BRAF), that result in kinase-impaired or kinase-dead BRAF have the highest mutation frequency in BRAF gene in lung adenocarcinoma. Several studies have reported that kinase-dead BRAF variants amplify mitogen-activated protein kinase (MAPK) signaling by dimerizing with and activating WT C-Raf proto-oncogene, Ser/Thr kinase (CRAF). However, the structural and functional principles underlying their activation remain elusive. Herein, using cell biology and various biochemical approaches, we established that variant BRAFD594G, a kinase-dead representative of class 3 mutation-derived BRAF variants, has a higher dimerization potential as compared with WT BRAF. Molecular dynamics simulations uncovered that the D594G substitution orients the αC-helix toward the IN position and extends the activation loop within the kinase domain, shifting the equilibrium toward the active, dimeric conformation, thus priming BRAFD594G as an effective allosteric activator of CRAF. We found that B/CRAF heterodimers are the most thermodynamically stable RAF dimers, suggesting that RAF heterodimers, and not homodimers, are the major players in determining the amplitude of MAPK signaling in cells. Additionally, we show that BRAFD594G:CRAF heterodimers bypass autoinhibitory P-loop phosphorylation, which might contribute to longer duration of MAPK pathway signaling in cancer cells. Last, we propose that the dimer interface of the BRAFD594G:CRAF heterodimer may represent a promising target in the design of novel anticancer therapeutics.
Collapse
Affiliation(s)
- Nicholas J Cope
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, Pennsylvania 19104
| | - Borna Novak
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, Pennsylvania 19104
| | - Zhiwei Liu
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, Pennsylvania 19104
| | - Maria Cavallo
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, Pennsylvania 19104
| | - Amber Y Gunderwala
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, Pennsylvania 19104
| | - Matthew Connolly
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, Pennsylvania 19104
| | - Zhihong Wang
- Department of Chemistry & Biochemistry, University of the Sciences, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
42
|
Cope N, Novak B, Candelora C, Wong K, Cavallo M, Gunderwala A, Liu Z, Li Y, Wang Z. Biochemical Characterization of Full-Length Oncogenic BRAF V600E together with Molecular Dynamics Simulations Provide Insight into the Activation and Inhibition Mechanisms of RAF Kinases. Chembiochem 2019; 20:2850-2861. [PMID: 31152574 DOI: 10.1002/cbic.201900266] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Indexed: 12/12/2022]
Abstract
The most prevalent BRAF mutation, V600E, occurs frequently in melanoma and other cancers. Although extensive progress has been made toward understanding the biology of RAF kinases, little in vitro characterization of full-length BRAFV600E is available. Herein, we show the successful purification of active, full-length BRAFV600E from mammalian cells for in vitro experiments. Our biochemical characterization of intact BRAFV600E together with molecular dynamics (MD) simulations of the BRAF kinase domain and cell-based assays demonstrate that BRAFV600E has several unique features that contribute to its tumorigenesis. Firstly, steady-state kinetic analyses reveal that purified BRAFV600E is more active than fully activated wild-type BRAF; this is consistent with the notion that elevated signaling output is necessary for transformation. Secondly, BRAFV600E has a higher potential to form oligomers, despite the fact that the V600E substitution confers constitutive kinase activation independent of an intact side-to-side dimer interface. Thirdly, BRAFV600E bypasses inhibitory P-loop phosphorylation to enforce the necessary elevated signaling output for tumorigenesis. Together, these results provide new insight into the biochemical properties of BRAFV600E , complementing the understanding of BRAF regulation under normal and disease conditions.
Collapse
Affiliation(s)
- Nicholas Cope
- Department of Chemistry and Biochemistry, University of the Sciences, Philadelphia, PA, 19104, USA
| | - Borna Novak
- Department of Chemistry and Biochemistry, University of the Sciences, Philadelphia, PA, 19104, USA
| | - Christine Candelora
- Department of Chemistry and Biochemistry, University of the Sciences, Philadelphia, PA, 19104, USA
| | - Kenneth Wong
- Department of Chemistry and Biochemistry, University of the Sciences, Philadelphia, PA, 19104, USA
| | - Maria Cavallo
- Department of Chemistry and Biochemistry, University of the Sciences, Philadelphia, PA, 19104, USA
| | - Amber Gunderwala
- Department of Chemistry and Biochemistry, University of the Sciences, Philadelphia, PA, 19104, USA
| | - Zhiwei Liu
- Department of Chemistry and Biochemistry, University of the Sciences, Philadelphia, PA, 19104, USA
| | - Yana Li
- Eukaryotic Tissue Culture Facility, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Zhihong Wang
- Department of Chemistry and Biochemistry, University of the Sciences, Philadelphia, PA, 19104, USA
| |
Collapse
|
43
|
Zaman A, Wu W, Bivona TG. Targeting Oncogenic BRAF: Past, Present, and Future. Cancers (Basel) 2019; 11:E1197. [PMID: 31426419 PMCID: PMC6721448 DOI: 10.3390/cancers11081197] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/13/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022] Open
Abstract
Identifying recurrent somatic genetic alterations of, and dependency on, the kinase BRAF has enabled a "precision medicine" paradigm to diagnose and treat BRAF-driven tumors. Although targeted kinase inhibitors against BRAF are effective in a subset of mutant BRAF tumors, resistance to the therapy inevitably emerges. In this review, we discuss BRAF biology, both in wild-type and mutant settings. We discuss the predominant BRAF mutations and we outline therapeutic strategies to block mutant BRAF and cancer growth. We highlight common mechanistic themes that underpin different classes of resistance mechanisms against BRAF-targeted therapies and discuss tumor heterogeneity and co-occurring molecular alterations as a potential source of therapy resistance. We outline promising therapy approaches to overcome these barriers to the long-term control of BRAF-driven tumors and emphasize how an extensive understanding of these themes can offer more pre-emptive, improved therapeutic strategies.
Collapse
Affiliation(s)
- Aubhishek Zaman
- Department of Medicine, University of California, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, CA 94143, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, CA 94143, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
44
|
Abstract
RAS genes are the most commonly mutated oncogenes in cancer, but effective therapeutic strategies to target RAS-mutant cancers have proved elusive. A key aspect of this challenge is the fact that direct inhibition of RAS proteins has proved difficult, leading researchers to test numerous alternative strategies aimed at exploiting RAS-related vulnerabilities or targeting RAS effectors. In the past few years, we have witnessed renewed efforts to target RAS directly, with several promising strategies being tested in clinical trials at different stages of completion. Important advances have also been made in approaches designed to indirectly target RAS by improving inhibition of RAS effectors, exploiting synthetic lethal interactions or metabolic dependencies, using therapeutic combination strategies or harnessing the immune system. In this Review, we describe historical and ongoing efforts to target RAS-mutant cancers and outline the current therapeutic landscape in the collective quest to overcome the effects of this crucial oncogene.
Collapse
|
45
|
Miyamoto K, Sawa M. Development of Highly Sensitive Biosensors of RAF Dimerization in Cells. Sci Rep 2019; 9:636. [PMID: 30679688 PMCID: PMC6345758 DOI: 10.1038/s41598-018-37213-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/30/2018] [Indexed: 12/19/2022] Open
Abstract
The BRAF inhibitors dabrafenib and vemurafenib induce remarkable clinical responses in patients with BRAF-mutated melanomas. However, adverse events, including the emergence of secondary tumors and drug resistance, have been reported. Studies have revealed that undesirable RAF dimerization induced by inhibitors promotes these adverse effects. Here, we developed highly sensitive biosensors of RAF dimerization in cells utilizing the split enhanced click beetle luciferase (Emerald Luc, ELuc) complementation technique. We demonstrated that our biosensor system works effectively for high-throughput screens in the microplate format. A comprehensive analysis of commercially available RAF inhibitors performed using this assay system revealed that the inhibitors exhibit various potencies in inducing the dimerization of RAF isoforms, and their dimerization potencies do not always correlate with the RAF enzyme inhibition. This sensitive assay system will become a powerful tool to discover next-generation BRAF inhibitors with safer profiles.
Collapse
Affiliation(s)
- Kyoko Miyamoto
- CarnaBio USA, Inc., 329 Oyster Point Boulevard, Suite 300, South San Francisco, CA, 94080, USA.
| | - Masaaki Sawa
- CarnaBio USA, Inc., 329 Oyster Point Boulevard, Suite 300, South San Francisco, CA, 94080, USA.,Carna Biosciences, Inc., 1-5-5 Minatojima-Minamimachi, BMA 3rd Floor, Chuo-ku, Kobe, 650-0047, Japan
| |
Collapse
|
46
|
Terrell EM, Morrison DK. Ras-Mediated Activation of the Raf Family Kinases. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033746. [PMID: 29358316 DOI: 10.1101/cshperspect.a033746] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The extracellular signal-regulated kinase (ERK) cascade comprised of the Raf, MEK, and ERK protein kinases constitutes a key effector cascade used by the Ras GTPases to relay signals regulating cell growth, survival, proliferation, and differentiation. Of the ERK cascade components, the regulation of the Raf kinases is by far the most complex, involving changes in subcellular localization, protein and lipid interactions, as well as alterations in the Raf phosphorylation state. The Raf kinases interact directly with active, membrane-localized Ras, and this interaction is often the first step in the Raf activation process, which ultimately results in ERK activation and the downstream phosphorylation of cellular targets that will specify a particular biological response. Here, we will examine our current understanding of how Ras promotes Raf activation, focusing on the molecular mechanisms that contribute to the Raf activation/inactivation cycle.
Collapse
Affiliation(s)
- Elizabeth M Terrell
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, Frederick, Maryland 21702
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, Frederick, Maryland 21702
| |
Collapse
|
47
|
Kang YW, Lee JE, Jung KH, Son MK, Shin SM, Kim SJ, Fang Z, Yan HH, Park JH, Han B, Cheon MJ, Woo MG, Lim JH, Kim YS, Hong SS. KRAS targeting antibody synergizes anti-cancer activity of gemcitabine against pancreatic cancer. Cancer Lett 2018; 438:174-186. [DOI: 10.1016/j.canlet.2018.09.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/03/2018] [Accepted: 09/02/2018] [Indexed: 12/13/2022]
|
48
|
Hymowitz SG, Malek S. Targeting the MAPK Pathway in RAS Mutant Cancers. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031492. [PMID: 29440321 DOI: 10.1101/cshperspect.a031492] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Despite decades of extensive drug discovery efforts, there are currently no targeted therapies approved to treat KRAS mutant cancers. In this review, we highlight the challenges and opportunities in targeting KRAS mutant tumors through inhibition of mitogen-activated protein kinase (MAPK) signaling with conformation-specific kinase inhibitors. Through structural analysis and mechanistic studies with BRAF and mitogen-activated protein kinase (MEK) inhibitors, we describe how kinase-dependent and -independent functions of MAPK signaling components regulate KRAS-driven tumorigenesis and how these insights can be used to treat RAS mutant cancers with small molecule kinase inhibitors.
Collapse
Affiliation(s)
- Sarah G Hymowitz
- Department of Structural Biology, Genentech Inc., South San Francisco, California 94080
| | - Shiva Malek
- Department of Discovery Oncology, Genentech Inc., South San Francisco, California 94080
| |
Collapse
|
49
|
Structural snapshots of RAF kinase interactions. Biochem Soc Trans 2018; 46:1393-1406. [PMID: 30381334 DOI: 10.1042/bst20170528] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 07/25/2018] [Accepted: 07/30/2018] [Indexed: 02/07/2023]
Abstract
RAF (rapidly accelerated fibrosarcoma) Ser/Thr kinases (ARAF, BRAF, and CRAF) link the RAS (rat sarcoma) protein family with the MAPK (mitogen-activated protein kinase) pathway and control cell growth, differentiation, development, aging, and tumorigenesis. Their activity is specifically modulated by protein-protein interactions, post-translational modifications, and conformational changes in specific spatiotemporal patterns via various upstream regulators, including the kinases, phosphatase, GTPases, and scaffold and modulator proteins. Dephosphorylation of Ser-259 (CRAF numbering) and dissociation of 14-3-3 release the RAF regulatory domains RAS-binding domain and cysteine-rich domain for interaction with RAS-GTP and membrane lipids. This, in turn, results in RAF phosphorylation at Ser-621 and 14-3-3 reassociation, followed by its dimerization and ultimately substrate binding and phosphorylation. This review focuses on structural understanding of how distinct binding partners trigger a cascade of molecular events that induces RAF kinase activation.
Collapse
|
50
|
Abstract
Data accumulated over more than three decades demonstrate that the assembly of macrocomplexes, mainly of dimers, is widespread among the members of the different tiers that constitute the RAS-ERK pathway. In this issue of Science Signaling, Yuan et al. report that MEK1 homodimerization is necessary for signal transduction through the RAF-ERK pathway and that cancer-related MEK1 mutations confer enhanced dimerization and resistance to MEK inhibitors. These findings endorse interference with RAS-ERK pathway-component dimerization as a potential therapeutic strategy in cancer patients.
Collapse
Affiliation(s)
- Eugenio Santos
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain
- Centro de Investigación del Cáncer-Instituto de Biología Molecular y Celular del Cáncer (CSIC-USAL), Salamanca 37007, Spain
| | - Piero Crespo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid 28029, Spain.
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Cantabria, Santander 39011, Spain
| |
Collapse
|