1
|
Zimna M, Krol E. Leishmania tarentolae as a platform for the production of vaccines against viral pathogens. NPJ Vaccines 2024; 9:212. [PMID: 39505865 PMCID: PMC11541885 DOI: 10.1038/s41541-024-01005-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
Infectious diseases remain a persistent public health problem and a leading cause of morbidity and mortality in both humans and animals. The most effective method of combating viral infections is the widespread use of prophylactic vaccinations, which are administered to both people at risk of disease and animals that may serve as significant sources of infection. Therefore, it is crucial to develop technologies for the production of vaccines that are highly effective, easy to transport and store, and cost-effective. The protein expression system based on the protozoan Leishmania tarentolae offers several advantages, validated by numerous studies, making it a good platform for producing vaccine antigens. This review provides a comprehensive overview into the potential applications of L. tarentolae for the safe production of effective viral antigens.
Collapse
Affiliation(s)
- Marta Zimna
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland
| | - Ewelina Krol
- Department of Recombinant Vaccines, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307, Gdansk, Poland.
| |
Collapse
|
2
|
Brisse M, Ly H. Langat virus, a prototypic tick-borne encephalitis virus, impacts IL-6 signaling by downregulating gp130 expression. J Med Virol 2024; 96:e29572. [PMID: 38533946 DOI: 10.1002/jmv.29572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/28/2024]
Affiliation(s)
- Morgan Brisse
- Viral Immunity and Pathogenesis Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Hinh Ly
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
3
|
Nepveu-Traversy ME, Fausther-Bovendo H, Babuadze G(G. Human Tick-Borne Diseases and Advances in Anti-Tick Vaccine Approaches: A Comprehensive Review. Vaccines (Basel) 2024; 12:141. [PMID: 38400125 PMCID: PMC10891567 DOI: 10.3390/vaccines12020141] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
This comprehensive review explores the field of anti-tick vaccines, addressing their significance in combating tick-borne diseases of public health concern. The main objectives are to provide a brief epidemiology of diseases affecting humans and a thorough understanding of tick biology, traditional tick control methods, the development and mechanisms of anti-tick vaccines, their efficacy in field applications, associated challenges, and future prospects. Tick-borne diseases (TBDs) pose a significant and escalating threat to global health and the livestock industries due to the widespread distribution of ticks and the multitude of pathogens they transmit. Traditional tick control methods, such as acaricides and repellents, have limitations, including environmental concerns and the emergence of tick resistance. Anti-tick vaccines offer a promising alternative by targeting specific tick proteins crucial for feeding and pathogen transmission. Developing vaccines with antigens based on these essential proteins is likely to disrupt these processes. Indeed, anti-tick vaccines have shown efficacy in laboratory and field trials successfully implemented in livestock, reducing the prevalence of TBDs. However, some challenges still remain, including vaccine efficacy on different hosts, polymorphisms in ticks of the same species, and the economic considerations of adopting large-scale vaccine strategies. Emerging technologies and approaches hold promise for improving anti-tick vaccine development and expanding their impact on public health and agriculture.
Collapse
Affiliation(s)
| | - Hugues Fausther-Bovendo
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 75550, USA;
| | - George (Giorgi) Babuadze
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 75550, USA;
| |
Collapse
|
4
|
Worku DA. Tick-Borne Encephalitis (TBE): From Tick to Pathology. J Clin Med 2023; 12:6859. [PMID: 37959323 PMCID: PMC10650904 DOI: 10.3390/jcm12216859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/15/2023] Open
Abstract
Tick-borne encephalitis (TBE) is a viral arthropod infection, endemic to large parts of Europe and Asia, and is characterised by neurological involvement, which can range from mild to severe, and in 33-60% of cases, it leads to a post-encephalitis syndrome and long-term morbidity. While TBE virus, now identified as Orthoflavivirus encephalitidis, was originally isolated in 1937, the pathogenesis of TBE is not fully appreciated with the mode of transmission (blood, tick, alimentary), viral strain, host immune response, and age, likely helping to shape the disease phenotype that we explore in this review. Importantly, the incidence of TBE is increasing, and due to global warming, its epidemiology is evolving, with new foci of transmission reported across Europe and in the UK. As such, a better understanding of the symptomatology, diagnostics, treatment, and prevention of TBE is required to inform healthcare professionals going forward, which this review addresses in detail. To this end, the need for robust national surveillance data and randomised control trial data regarding the use of various antivirals (e.g., Galidesivir and 7-deaza-2'-CMA), monoclonal antibodies, and glucocorticoids is required to improve the management and outcomes of TBE.
Collapse
Affiliation(s)
- Dominic Adam Worku
- Infectious Diseases, Morriston Hospital, Heol Maes Eglwys, Morriston, Swansea SA6 6NL, UK;
- Public Health Wales, 2 Capital Quarter, Cardiff CF10 4BZ, UK
| |
Collapse
|
5
|
Chiffi G, Grandgirard D, Leib SL, Chrdle A, Růžek D. Tick-borne encephalitis: A comprehensive review of the epidemiology, virology, and clinical picture. Rev Med Virol 2023; 33:e2470. [PMID: 37392370 DOI: 10.1002/rmv.2470] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/31/2023] [Accepted: 06/12/2023] [Indexed: 07/03/2023]
Abstract
Tick-borne encephalitis virus (TBEV) is a flavivirus commonly found in at least 27 European and Asian countries. It is an emerging public health problem, with steadily increasing case numbers over recent decades. Tick-borne encephalitis virus affects between 10,000 and 15,000 patients annually. Infection occurs through the bite of an infected tick and, much less commonly, through infected milk consumption or aerosols. The TBEV genome comprises a positive-sense single-stranded RNA molecule of ∼11 kilobases. The open reading frame is > 10,000 bases long, flanked by untranslated regions (UTR), and encodes a polyprotein that is co- and post-transcriptionally processed into three structural and seven non-structural proteins. Tick-borne encephalitis virus infection results in encephalitis, often with a characteristic biphasic disease course. After a short incubation time, the viraemic phase is characterised by non-specific influenza-like symptoms. After an asymptomatic period of 2-7 days, more than half of patients show progression to a neurological phase, usually characterised by central and, rarely, peripheral nervous system symptoms. Mortality is low-around 1% of confirmed cases, depending on the viral subtype. After acute tick-borne encephalitis (TBE), a minority of patients experience long-term neurological deficits. Additionally, 40%-50% of patients develop a post-encephalitic syndrome, which significantly impairs daily activities and quality of life. Although TBEV has been described for several decades, no specific treatment exists. Much remains unknown regarding the objective assessment of long-lasting sequelae. Additional research is needed to better understand, prevent, and treat TBE. In this review, we aim to provide a comprehensive overview of the epidemiology, virology, and clinical picture of TBE.
Collapse
Affiliation(s)
- Gabriele Chiffi
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Denis Grandgirard
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stephen L Leib
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Aleš Chrdle
- Department of Infectious Diseases, Hospital Ceske Budejovice, Ceske Budejovice, Czech Republic
- Faculty of Health and Social Sciences, University of South Bohemia, Ceske Budejovice, Czech Republic
- Royal Liverpool University Hospital, Liverpool, UK
| | - Daniel Růžek
- Veterinary Research Institute, Emerging Viral Diseases, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| |
Collapse
|
6
|
Kubinski M, Beicht J, Zdora I, Saletti G, Kircher M, Petry-Gusmag M, Steffen I, Puff C, Jung K, Baumgärtner W, Rimmelzwaan GF, Osterhaus ADME, Prajeeth CK. Cross-reactive antibodies against Langat virus protect mice from lethal tick-borne encephalitis virus infection. Front Immunol 2023; 14:1134371. [PMID: 36926332 PMCID: PMC10011100 DOI: 10.3389/fimmu.2023.1134371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction Naturally attenuated Langat virus (LGTV) and highly pathogenic tick-borne encephalitis virus (TBEV) share antigenically similar viral proteins and are grouped together in the same flavivirus serocomplex. In the early 1970s, this has encouraged the usage of LGTV as a potential live attenuated vaccine against tick-borne encephalitis (TBE) until cases of encephalitis were reported among vaccinees. Previously, we have shown in a mouse model that immunity induced against LGTV protects mice against lethal TBEV challenge infection. However, the immune correlates of this protection have not been studied. Methods We used the strategy of adoptive transfer of either serum or T cells from LGTV infected mice into naïve recipient mice and challenged them with lethal dose of TBEV. Results We show that mouse infection with LGTV induced both cross-reactive antibodies and T cells against TBEV. To identify correlates of protection, Monitoring the disease progression in these mice for 16 days post infection, showed that serum from LGTV infected mice efficiently protected from developing severe disease. On the other hand, adoptive transfer of T cells from LGTV infected mice failed to provide protection. Histopathological investigation of infected brains suggested a possible role of microglia and T cells in inflammatory processes within the brain. Discussion Our data provide key information regarding the immune correlates of protection induced by LGTV infection of mice which may help design better vaccines against TBEV.
Collapse
Affiliation(s)
- Mareike Kubinski
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jana Beicht
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Isabel Zdora
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center of Systems Neuroscience, Hannover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hannover, Germany
| | - Giulietta Saletti
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Magdalena Kircher
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Monique Petry-Gusmag
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Imke Steffen
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Institute for Biochemistry, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Christina Puff
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Klaus Jung
- Institute for Animal Breeding and Genetics, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center of Systems Neuroscience, Hannover Graduate School for Neurosciences, Infection Medicine, and Veterinary Sciences (HGNI), Hannover, Germany
| | - Guus F. Rimmelzwaan
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Albert D. M. E. Osterhaus
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Chittappen Kandiyil Prajeeth
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
7
|
Du Y, Mi Z, Xie Y, Lu D, Zheng H, Sun H, Zhang M, Niu Y. Insights into the molecular basis of tick-borne encephalitis from multiplatform metabolomics. PLoS Negl Trop Dis 2021; 15:e0009172. [PMID: 33690602 PMCID: PMC7984639 DOI: 10.1371/journal.pntd.0009172] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 03/22/2021] [Accepted: 01/23/2021] [Indexed: 12/30/2022] Open
Abstract
Background Tick-borne encephalitis virus (TBEV) is the most prevalent arbovirus, with a tentative estimate of 10,000 to 10,500 infections occurring in Europe and Asia every year. Endemic in Northeast China, tick-borne encephalitis (TBE) is emerging as a major threat to public health, local economies and tourism. The complicated array of host physiological changes has hampered elucidation of the molecular mechanisms underlying the pathogenesis of this disease. Methodology/Principle findings System-level characterization of the serum metabolome and lipidome of adult TBEV patients and a healthy control group was performed using liquid chromatography tandem mass spectrometry. By tracking metabolic and lipid changes during disease progression, crucial physiological changes that coincided with disease stages could be identified. Twenty-eight metabolites were significantly altered in the sera of TBE patients in our metabolomic analysis, and 14 lipids were significantly altered in our lipidomics study. Among these metabolites, alpha-linolenic acid, azelaic acid, D-glutamine, glucose-1-phosphate, L-glutamic acid, and mannose-6-phosphate were altered compared to the control group, and PC(38:7), PC(28:3;1), TAG(52:6), etc. were altered based on lipidomics. Major perturbed metabolic pathways included amino acid metabolism, lipid and oxidative stress metabolism (lipoprotein biosynthesis, arachidonic acid biosynthesis, leukotriene biosynthesis and sphingolipid metabolism), phospholipid metabolism and triglyceride metabolism. These metabolites were significantly perturbed during disease progression, implying their latent utility as prognostic markers. Conclusions/Significance TBEV infection causes distinct temporal changes in the serum metabolome and lipidome, and many metabolites are potentially involved in the acute inflammatory response and immune regulation. Our global analysis revealed anti- and pro-inflammatory processes in the host and changes to the entire metabolic profile. Relationships between metabolites and pathologies were established. This study provides important insight into the pathology of TBE, including its pathology, and lays the foundation for further research into putative markers of TBE disease. Tick-borne encephalitis virus (TBEV) with extreme contagiousness is a key danger to public health systems in Europe and Asia. To date, little information is obtained about the molecular mechanism underlying infection, and although commercial vaccines against TBEV exist, there is no specific treatment for the disease. Metabolomics and lipidomics offer multiple-visions of metabolome and lipidome sights and help elucidating metabolic to disease phenotype. Serum metabolism and lipidome analysis were performed based on mass spectrometer (MS) platform on a cohort of TBEV patients. About 400 metabolites performed crucial shifts in TBEV patients compared with healthy subjects. This study revealed that in the stage of infection, the host metabolome is tightly regulated, with anti-inflammatory processes modulating pro-inflammatory processes implying the self-limiting phenotype of TBEV and the inherent regulation in humans. The crucial perturbed metabolic pathways contained amino acid metabolism, fatty acid metabolism and phospholipid metabolism. This study provides a powerful and new approach to decipher the interactions between host and virus. These potential metabolites provide high sensitivity and specificity and have the capacity to function as biomarkers for disease surveillance and estimation of therapeutic interventions.
Collapse
Affiliation(s)
- YanDan Du
- Department of Clinical Laboratory, Inner Mongolia Forestry General Hospital (The second Clinical Medical School of Inner Mongolia, University for the Nationalities), Hulunbuir, Inner Mongolia, China
| | - ZhiHui Mi
- Inner Mongolia Di An Feng Xin Medical Technology Co., LTD, Huhhot, Inner Mongolia, China
| | - YaPing Xie
- SCIEX China Technology Co., Beijing, China
| | - DeSheng Lu
- Department of Clinical Laboratory, Inner Mongolia Forestry General Hospital (The second Clinical Medical School of Inner Mongolia, University for the Nationalities), Hulunbuir, Inner Mongolia, China
| | - HaiJun Zheng
- Department of Clinical Laboratory, Inner Mongolia Forestry General Hospital (The second Clinical Medical School of Inner Mongolia, University for the Nationalities), Hulunbuir, Inner Mongolia, China
| | - Hui Sun
- Department of Clinical Laboratory, Inner Mongolia Forestry General Hospital (The second Clinical Medical School of Inner Mongolia, University for the Nationalities), Hulunbuir, Inner Mongolia, China
| | - Meng Zhang
- Inner Mongolia Di An Feng Xin Medical Technology Co., LTD, Huhhot, Inner Mongolia, China
- * E-mail: (MZ); (YQN)
| | - YiQing Niu
- Department of Clinical Laboratory, Inner Mongolia Forestry General Hospital (The second Clinical Medical School of Inner Mongolia, University for the Nationalities), Hulunbuir, Inner Mongolia, China
- * E-mail: (MZ); (YQN)
| |
Collapse
|
8
|
Dussupt V, Modjarrad K, Krebs SJ. Landscape of Monoclonal Antibodies Targeting Zika and Dengue: Therapeutic Solutions and Critical Insights for Vaccine Development. Front Immunol 2021; 11:621043. [PMID: 33664734 PMCID: PMC7921836 DOI: 10.3389/fimmu.2020.621043] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/14/2020] [Indexed: 01/23/2023] Open
Abstract
The unprecedented 2015-2016 Zika outbreak in the Americas sparked global concern and drove the rapid deployment of vaccine and therapeutic countermeasures against this re-emerging pathogen. Alongside vaccine development, a number of potent neutralizing antibodies against Zika and related flaviviruses have been identified in recent years. High-throughput antibody isolation approaches have contributed to a better understanding of the B cell responses elicited following infection and/or vaccination. Structure-based approaches have illuminated species-specific and cross-protective epitopes of therapeutic value. This review will highlight previously described monoclonal antibodies with the best therapeutic potential against ZIKV and related flaviviruses, and discuss their implications for the rational design of better vaccine strategies.
Collapse
Affiliation(s)
- Vincent Dussupt
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Shelly J. Krebs
- Emerging Infectious Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| |
Collapse
|
9
|
[Arthropod-borne viruses (arboviruses)]. Uirusu 2020; 70:3-14. [PMID: 33967110 DOI: 10.2222/jsv.70.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
"Arbovirus" is a term for a virus transmitted to mammals by hematophagous arthropods; arboviruses; replicate in both mammals and arthropods. Since the life cycle of arboviruses is highly dependent on arthropods, control of the arthropods (vectors) is generally considered important for the control of arbovirus infection. Various pathogens that cause diseases in the medical and veterinary fields are grouped into arboviruses with a history of their discoveries since the early 20th century. Furthermore, because of recent advances in sequencing technology, new arboviruses have been discovered one after another. Here we would like to overview the known arboviruses and their infections.
Collapse
|
10
|
Ignatieva EV, Yurchenko AA, Voevoda MI, Yudin NS. Exome-wide search and functional annotation of genes associated in patients with severe tick-borne encephalitis in a Russian population. BMC Med Genomics 2019; 12:61. [PMID: 31122248 PMCID: PMC6533173 DOI: 10.1186/s12920-019-0503-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Tick-borne encephalitis (TBE) is a viral infectious disease caused by tick-borne encephalitis virus (TBEV). TBEV infection is responsible for a variety of clinical manifestations ranging from mild fever to severe neurological illness. Genetic factors involved in the host response to TBEV that may potentially play a role in the severity of the disease are still poorly understood. In this study, using whole-exome sequencing, we aimed to identify genetic variants and genes associated with severe forms of TBE as well as biological pathways through which the identified variants may influence the severity of the disease. Results Whole-exome sequencing data analysis was performed on 22 Russian patients with severe forms of TBE and 17 Russian individuals from the control group. We identified 2407 candidate genes harboring rare, potentially pathogenic variants in exomes of patients with TBE and not containing any rare, potentially pathogenic variants in exomes of individuals from the control group. According to DAVID tool, this set of 2407 genes was enriched with genes involved in extracellular matrix proteoglycans pathway and genes encoding proteins located at the cell periphery. A total of 154 genes/proteins from these functional groups have been shown to be involved in protein-protein interactions (PPIs) with the known candidate genes/proteins extracted from TBEVHostDB database. By ranking these genes according to the number of rare harmful minor alleles, we identified two genes (MSR1 and LMO7), harboring five minor alleles, and three genes (FLNA, PALLD, PKD1) harboring four minor alleles. When considering genes harboring genetic variants associated with severe forms of TBE at the suggestive P-value < 0.01, 46 genes containing harmful variants were identified. Out of these 46 genes, eight (MAP4, WDFY4, ACTRT2, KLHL25, MAP2K3, MBD1, OR10J1, and OR2T34) were additionally found among genes containing rare pathogenic variants identified in patients with TBE; and five genes (WDFY4,ALK, MAP4, BNIPL, EPPK1) were found to encode proteins that are involved in PPIs with proteins encoded by genes from TBEVHostDB. Three genes out of five (MAP4, EPPK1, ALK) were found to encode proteins located at cell periphery. Conclusions Whole-exome sequencing followed by systems biology approach enabled to identify eight candidate genes (MAP4, WDFY4, ACTRT2, KLHL25, MAP2K3, MBD1, OR10J1, and OR2T34) that can potentially determine predisposition to severe forms of TBE. Analyses of the genetic risk factors for severe forms of TBE revealed a significant enrichment with genes controlling extracellular matrix proteoglycans pathway as well as genes encoding components of cell periphery. Electronic supplementary material The online version of this article (10.1186/s12920-019-0503-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena V Ignatieva
- Laboratory of Evolutionary Bioinformatics and Theoretical Genetics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Andrey A Yurchenko
- Laboratory of Infectious Disease Genomics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Mikhail I Voevoda
- Novosibirsk State University, Novosibirsk, 630090, Russia.,Research Institute of Internal and Preventive Medicine-Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, 630004, Russia
| | - Nikolay S Yudin
- Laboratory of Infectious Disease Genomics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
11
|
Rego ROM, Trentelman JJA, Anguita J, Nijhof AM, Sprong H, Klempa B, Hajdusek O, Tomás-Cortázar J, Azagi T, Strnad M, Knorr S, Sima R, Jalovecka M, Fumačová Havlíková S, Ličková M, Sláviková M, Kopacek P, Grubhoffer L, Hovius JW. Counterattacking the tick bite: towards a rational design of anti-tick vaccines targeting pathogen transmission. Parasit Vectors 2019; 12:229. [PMID: 31088506 PMCID: PMC6518728 DOI: 10.1186/s13071-019-3468-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/29/2019] [Indexed: 02/07/2023] Open
Abstract
Hematophagous arthropods are responsible for the transmission of a variety of pathogens that cause disease in humans and animals. Ticks of the Ixodes ricinus complex are vectors for some of the most frequently occurring human tick-borne diseases, particularly Lyme borreliosis and tick-borne encephalitis virus (TBEV). The search for vaccines against these diseases is ongoing. Efforts during the last few decades have primarily focused on understanding the biology of the transmitted viruses, bacteria and protozoans, with the goal of identifying targets for intervention. Successful vaccines have been developed against TBEV and Lyme borreliosis, although the latter is no longer available for humans. More recently, the focus of intervention has shifted back to where it was initially being studied which is the vector. State of the art technologies are being used for the identification of potential vaccine candidates for anti-tick vaccines that could be used either in humans or animals. The study of the interrelationship between ticks and the pathogens they transmit, including mechanisms of acquisition, persistence and transmission have come to the fore, as this knowledge may lead to the identification of critical elements of the pathogens' life-cycle that could be targeted by vaccines. Here, we review the status of our current knowledge on the triangular relationships between ticks, the pathogens they carry and the mammalian hosts, as well as methods that are being used to identify anti-tick vaccine candidates that can prevent the transmission of tick-borne pathogens.
Collapse
Affiliation(s)
- Ryan O. M. Rego
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Jos J. A. Trentelman
- Amsterdam UMC, Location AMC, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands
| | - Juan Anguita
- CIC bioGUNE, 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48012 Bilbao, Spain
| | - Ard M. Nijhof
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Hein Sprong
- Centre for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Boris Klempa
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ondrej Hajdusek
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | | | - Tal Azagi
- Centre for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Martin Strnad
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Sarah Knorr
- Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Radek Sima
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Marie Jalovecka
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Sabína Fumačová Havlíková
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martina Ličková
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Sláviková
- Institute of Virology, Biomedical Research Center of the Slovak Academy of Sciences, Bratislava, Slovakia
| | - Petr Kopacek
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Libor Grubhoffer
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 37005 Ceske Budejovice, Czech Republic
| | - Joppe W. Hovius
- Amsterdam UMC, Location AMC, Center for Experimental and Molecular Medicine, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Stable and Highly Immunogenic MicroRNA-Targeted Single-Dose Live Attenuated Vaccine Candidate against Tick-Borne Encephalitis Constructed Using Genetic Backbone of Langat Virus. mBio 2019; 10:mBio.02904-18. [PMID: 31015334 PMCID: PMC6479010 DOI: 10.1128/mbio.02904-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is one of the most medically important tick-borne pathogens of the Old World. Despite decades of active research, efforts to develop of TBEV live attenuated virus (LAV) vaccines with acceptable safety and immunogenicity characteristics have not been successful. Here we report the development and evaluation of a highly attenuated and immunogenic microRNA-targeted TBEV LAV. Tick-borne encephalitis virus (TBEV), a member of the genus Flavivirus, is one of the most medically important tick-borne pathogens of the Old World. Despite decades of active research, attempts to develop of a live attenuated virus (LAV) vaccine against TBEV with acceptable safety and immunogenicity characteristics have not been successful. To overcome this impasse, we generated a chimeric TBEV that was highly immunogenic in nonhuman primates (NHPs). The chimeric virus contains the prM/E genes of TBEV, which are expressed in the genetic background of an antigenically closely related, but less pathogenic member of the TBEV complex—Langat virus (LGTV), strain T-1674. The neurovirulence of this chimeric virus was subsequently controlled by robust targeting of the viral genome with multiple copies of central nervous system-enriched microRNAs (miRNAs). This miRNA-targeted T/1674-mirV2 virus was highly stable in Vero cells and was not pathogenic in various mouse models of infection or in NHPs. Importantly, in NHPs, a single dose of the T/1674-mirV2 virus induced TBEV-specific neutralizing antibody (NA) levels comparable to those seen with a three-dose regimen of an inactivated TBEV vaccine, currently available in Europe. Moreover, our vaccine candidate provided complete protection against a stringent wild-type TBEV challenge in mice and against challenge with a parental (not miRNA-targeted) chimeric TBEV/LGTV in NHPs. Thus, this highly attenuated and immunogenic T/1674-mirV2 virus is a promising LAV vaccine candidate against TBEV and warrants further preclinical evaluation of its neurovirulence in NHPs prior to entering clinical trials in humans.
Collapse
|
13
|
Blom K, Cuapio A, Sandberg JT, Varnaite R, Michaëlsson J, Björkström NK, Sandberg JK, Klingström J, Lindquist L, Gredmark Russ S, Ljunggren HG. Cell-Mediated Immune Responses and Immunopathogenesis of Human Tick-Borne Encephalitis Virus-Infection. Front Immunol 2018; 9:2174. [PMID: 30319632 PMCID: PMC6168641 DOI: 10.3389/fimmu.2018.02174] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 09/03/2018] [Indexed: 12/15/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a flavivirus that belongs to the Flaviviridae family. TBEV is transmitted to humans primarily from infected ticks. The virus causes tick-borne encephalitis (TBE), an acute viral disease that affects the central nervous system (CNS). Infection can lead to acute neurological symptoms of significant severity due to meningitis or meningo(myelo)encephalitis. TBE can cause long-term suffering and has been recognized as an increasing public health problem. TBEV-affected areas currently include large parts of central and northern Europe as well as northern Asia. Infection with TBEV triggers a humoral as well as a cell-mediated immune response. In contrast to the well-characterized humoral antibody-mediated response, the cell-mediated immune responses elicited to natural TBEV-infection have been poorly characterized until recently. Here, we review recent progress in our understanding of the cell-mediated immune response to human TBEV-infection. A particular emphasis is devoted to studies of the response mediated by natural killer (NK) cells and CD8 T cells. The studies described include results revealing the temporal dynamics of the T cell- as well as NK cell-responses in relation to disease state and functional characterization of these cells. Additionally, we discuss specific immunopathological aspects of TBEV-infection in the CNS.
Collapse
Affiliation(s)
- Kim Blom
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Angelica Cuapio
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - J. Tyler Sandberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Renata Varnaite
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jakob Michaëlsson
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K. Björkström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Johan K. Sandberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jonas Klingström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Lindquist
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Unit of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sara Gredmark Russ
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Pulkkinen LIA, Butcher SJ, Anastasina M. Tick-Borne Encephalitis Virus: A Structural View. Viruses 2018; 10:v10070350. [PMID: 29958443 PMCID: PMC6071267 DOI: 10.3390/v10070350] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 06/25/2018] [Accepted: 06/27/2018] [Indexed: 12/11/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is a growing health concern. It causes a severe disease that can lead to permanent neurological complications or death and the incidence of TBEV infections is constantly rising. Our understanding of TBEV’s structure lags behind that of other flaviviruses, but has advanced recently with the publication of a high-resolution structure of the TBEV virion. The gaps in our knowledge include: aspects of receptor binding, replication and virus assembly. Furthermore, TBEV has mostly been studied in mammalian systems, even though the virus’ interaction with its tick hosts is a central part of its life cycle. Elucidating these aspects of TBEV biology are crucial for the development of TBEV antivirals, as well as the improvement of diagnostics. In this review, we summarise the current structural knowledge on TBEV, bringing attention to the current gaps in our understanding, and propose further research that is needed to truly understand the structural-functional relationship of the virus and its hosts.
Collapse
Affiliation(s)
- Lauri I A Pulkkinen
- HiLIFE-Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland.
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland.
| | - Sarah J Butcher
- HiLIFE-Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland.
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland.
| | - Maria Anastasina
- HiLIFE-Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland.
- Faculty of Biological and Environmental Sciences, University of Helsinki, 00790 Helsinki, Finland.
| |
Collapse
|
15
|
Grabowski JM, Offerdahl DK, Bloom ME. The Use of Ex Vivo Organ Cultures in Tick-Borne Virus Research. ACS Infect Dis 2018; 4:247-256. [PMID: 29473735 DOI: 10.1021/acsinfecdis.7b00274] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Each year there are more than 15 000 cases of human disease caused by infections with tick-borne viruses (TBVs). These illnesses occur worldwide and can range from very mild illness to severe encephalitis and hemorrhagic fever. Although TBVs are currently identified as neglected vector-borne pathogens and receive less attention than mosquito-borne viruses, TBVs are expanding into new regions, and infection rates are increasing. Furthermore, effective vaccines, diagnostic tools, and other countermeasures are limited. The application of contemporary technologies to TBV infections presents an excellent opportunity to develop improved, effective countermeasures. Experimental tick and mammal models of infection can be used to characterize determinants of infection, transmission, and virulence and to test candidate countermeasures. The use of ex vivo tick cultures in TBV research provides a unique way to look at infection in specific tick organs. Mammal ex vivo organ slice and, more recently, organoid cultures are additional models that can be used to elucidate direct tissue-specific responses to infection. These ex vivo model systems are convenient for testing methods involving transcript knockdown and small molecules under tightly controlled conditions. They can also be combined with in vitro and in vivo studies to tease out possible host factors and potential vaccine or therapeutic candidates. In this brief perspective, we describe how ex vivo cultures can be combined with modern technologies to advance research on TBV infections.
Collapse
Affiliation(s)
- Jeffrey M. Grabowski
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, 903 South Fourth Street, Hamilton, Montana 59840, United States
| | - Danielle K. Offerdahl
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, 903 South Fourth Street, Hamilton, Montana 59840, United States
| | - Marshall E. Bloom
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, NIAID/NIH, 903 South Fourth Street, Hamilton, Montana 59840, United States
| |
Collapse
|
16
|
Tick-Borne Encephalitis Virus Vaccine-Induced Human Antibodies Mediate Negligible Enhancement of Zika Virus Infection InVitro and in a Mouse Model. mSphere 2018; 3:mSphere00011-18. [PMID: 29435494 PMCID: PMC5806211 DOI: 10.1128/mspheredirect.00011-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 01/13/2018] [Indexed: 12/30/2022] Open
Abstract
Recent reports in the scientific literature have suggested that anti-dengue virus (DENV) and anti-West Nile virus (WNV) immunity exacerbates Zika virus (ZIKV) pathogenesis in vitro and in vivo in mouse models. Large populations of immune individuals exist for a related flavivirus (tick-borne encephalitis virus [TBEV]), due to large-scale vaccination campaigns and endemic circulation throughout most of northern Europe and the southern Russian Federation. As a result, the question of whether anti-TBEV immunity can affect Zika virus pathogenesis is a pertinent one. For this study, we obtained 50 serum samples from individuals vaccinated with the TBEV vaccine FSME-IMMUN (Central European/Neudörfl strain) and evaluated their enhancement capacity in vitro using K562 human myeloid cells expressing CD32 and in vivo using a mouse model of ZIKV pathogenesis. Among the 50 TBEV vaccinee samples evaluated, 29 had detectable reactivity against ZIKV envelope (E) protein by enzyme-linked immunosorbent assay (ELISA), and 36 showed enhancement of ZIKV infection in vitro. A pool of the most highly reacting and enhanced samples resulted in no significant change in the morbidity/mortality of ZIKV disease in immunocompromised Stat2-/- mice. Our results suggest that humoral immunity against TBEV is unlikely to enhance Zika virus pathogenesis in humans. No clinical reports indicating that TBEV vaccinees experiencing enhanced ZIKV disease have been published so far, and though the epidemiological data are sparse, our findings suggest that there is little reason for concern. This study also displays a clear relationship between the phylogenetic distance between two flaviviruses and their capacity for pathogenic enhancement. IMPORTANCE The relationship between serial infections of two different serotypes of dengue virus and more severe disease courses is well-documented in the literature, driven by so-called antibody-dependent enhancement (ADE). Recently, studies have shown the possibility of ADE in cells exposed to anti-DENV human plasma and then infected with ZIKV and also in mouse models of ZIKV pathogenesis after passive transfer of anti-DENV human plasma. In this study, we evaluated the extent to which this phenomenon occurs using sera from individuals immunized against tick-borne encephalitis virus (TBEV). This is highly relevant, since large proportions of the European population are vaccinated against TBEV or otherwise seropositive.
Collapse
|
17
|
Remoli ME, Fiorentini C, Marchi A, Di Renzi S, Vonesch N, Peri MV, Bastianini L, Rossi S, Bartoccini G, Kuttappasery ML, Ciufolini MG, Tomao P. Seroprevalence survey of arboviruses in workers from Tuscany, Italy. LA MEDICINA DEL LAVORO 2018; 109:125-131. [PMID: 29701628 PMCID: PMC7682178 DOI: 10.23749/mdl.v109i2.5024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/17/2018] [Indexed: 12/12/2022]
Abstract
Background: Arthropod-borne viruses (Arbovirus) play an important role among emerging and re-emerging infectious diseases and in the spreading of infections in new geographic areas. Although some arboviral infections may be asymptomatic or mild flu-like illnesses, many occur as severe forms of meningitis and meningoencephalitis. Objectives: To assess whether arboviral infections may be associated with occupational risk, in a population of agricultural and forestry workers potentially at high risk for arthropods bite and sting. Methods: A seroprevalence survey for arboviruses belonging to the genera Flaviviruses (West Nile, Tick-borne encephalitis and Usutu viruses) and Phlebovirus (Toscana virus) was carried out in Grosseto province (Tuscany, Italy). One hundred and one serum samples of occupationally exposed workers and 100 serum samples of not exposed workers were analyzed using commercial and home-made serological assays. Serological data were obtained in 2012 and analyzed according to demographic characteristics, recollection of insect-bites, and time spent in outdoor activities. Results: A total seropositivity of 10% (21/201) was observed for Toscana virus. No difference in seroprevalence for Toscana virus was observed among the exposed (10/101) versus the not exposed (11/100) workers. No seropositivity for West Nile, Usutu and Tick-borne encephalitis viruses was detected. Conclusions: Although circulation of Toscana virus is recognized in the study area, our results did not reveal a higher risk for workers exposed to arthropods bite and sting. Health surveillance programs remain useful to monitor the potential emergence of arboviruses.
Collapse
Affiliation(s)
- Maria Elena Remoli
- ISTITUTO SUPERIORE DI SANITÀ, Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Roma, Italy.
| | - Cristiano Fiorentini
- ISTITUTO SUPERIORE DI SANITÀ, Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Roma, Italy.
| | - Antonella Marchi
- ISTITUTO SUPERIORE DI SANITÀ, Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Roma, Italy.
| | - Simona Di Renzi
- INAIL, Dipartimento di Medicina, Epidemiologia, Igiene del Lavoro e Ambientale, Monteporzio Catone (Rome), Italy;.
| | - Nicoletta Vonesch
- INAIL, Dipartimento di Medicina, Epidemiologia, Igiene del Lavoro e Ambientale, Monteporzio Catone (Rome), Italy;.
| | - Maria Vittoria Peri
- INAIL, Dipartimento di Medicina, Epidemiologia, Igiene del Lavoro e Ambientale, Monteporzio Catone (Rome), Italy;.
| | - Lucia Bastianini
- AZIENDA SANITARIA LOCALE, Dipartimento di Prevenzione, Grosseto, Italy..
| | - Sonia Rossi
- AZIENDA SANITARIA LOCALE, Dipartimento di Prevenzione, Grosseto, Italy..
| | - Giulia Bartoccini
- AZIENDA SANITARIA LOCALE, Dipartimento di Prevenzione, Grosseto, Italy..
| | - Maya Lissa Kuttappasery
- INAIL, Dipartimento di Medicina, Epidemiologia, Igiene del Lavoro e Ambientale, Monteporzio Catone (Rome), Italy;.
| | - Maria Grazia Ciufolini
- ISTITUTO SUPERIORE DI SANITÀ, Dipartimento di Malattie Infettive, Parassitarie e Immunomediate, Roma, Italy.
| | - Paola Tomao
- INAIL, Dipartimento di Medicina, Epidemiologia, Igiene del Lavoro e Ambientale, Monteporzio Catone (Rome), Italy;.
| |
Collapse
|
18
|
Development and Validation of a Serologic Test Panel for Detection of Powassan Virus Infection in U.S. Patients Residing in Regions Where Lyme Disease Is Endemic. mSphere 2018; 3:mSphere00467-17. [PMID: 29359181 PMCID: PMC5760746 DOI: 10.1128/msphere.00467-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/11/2017] [Indexed: 11/20/2022] Open
Abstract
Powassan virus (POWV) is an emerging tick-borne arbovirus presenting a public health threat in North America. POWV lineage II, also known as deer tick virus, is the strain of the virus most frequently found in Ixodes scapularis ticks and is implicated in most cases of POWV encephalitis in the United States. Currently, no commercial tests are available to detect POWV exposure in tick-borne disease (TBD) patients. We describe here the development and analytical validation of a serologic test panel to detect POWV infections. The panel uses an indirect enzyme immunoassay (EIA) to screen. EIA-positive samples reflex to a laboratory-developed, POWV-specific immunofluorescence assay (IFA). The analytical sensitivity of the test panel was 89%, and the limit of detection was a plaque reduction neutralization test (PRNT) titer of 1:20. The analytical specificity was 100% for the IgM assay and 65% for the IgG assay when heterologous-flavivirus-positive samples were tested. On samples collected from regions where Lyme disease is endemic, seroprevalence for POWV in TBD samples was 9.4% (10 of 106) versus 2% when tested with non-TBD samples (2 of 100, P = 0.034). No evidence of POWV infection was seen in samples collected from a region where Lyme disease was not endemic (0 of 22). This test panel provides a sensitive and specific platform for detecting a serologic response to POWV early in the course of infection when neutralizing antibodies may not be detectable. Combined with clinical history, the panel is an effective tool for identifying acute POWV infection. IMPORTANCE Approximately 100 cases of POWV disease were reported in the United States over the past 10 years. Most cases have occurred in the Northeast (52) and Great Lakes (45) regions (https://www.cdc.gov/powassan/statistics.html). The prevalence of POWV in ticks and mammals is increasing, and POWV poses an increasing threat in a greater geographical range. In areas of the Northeast and Midwest where Lyme disease is endemic, POWV testing is recommended for patients with a recent tick bite, patients with Lyme disease who have been treated with antibiotics, or patients with a tick exposure who have tested negative for Lyme disease or other tick-borne illnesses and have persistent symptoms consistent with posttreatment Lyme disease. Testing could also benefit patients with tick exposure and unexplained neurologic symptoms and chronic fatigue syndrome (CFS) patients with known tick exposure. Until now, diagnostic testing for Powassan virus has not been commercially available and has been limited to patients presenting with severe, neurologic complications. The lack of routine testing for Powassan virus in patients with suspected tick-borne disease means that little information is available regarding the overall prevalence of the virus and the full spectrum of clinical symptoms associated with infection. As Ixodes scapularis is the tick vector for Powassan virus and multiple other tick-borne pathogens, including the Lyme disease bacterium, Borrelia burgdorferi, the clinical presentations and long-term outcomes of Powassan virus infection and concurrent infection with other tick-borne disease pathogens remain unknown.
Collapse
|
19
|
Ignatieva EV, Igoshin AV, Yudin NS. A database of human genes and a gene network involved in response to tick-borne encephalitis virus infection. BMC Evol Biol 2017; 17:259. [PMID: 29297316 PMCID: PMC5751789 DOI: 10.1186/s12862-017-1107-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND Tick-borne encephalitis is caused by the neurotropic, positive-sense RNA virus, tick-borne encephalitis virus (TBEV). TBEV infection can lead to a variety of clinical manifestations ranging from slight fever to severe neurological illness. Very little is known about genetic factors predisposing to severe forms of disease caused by TBEV. The aims of the study were to compile a catalog of human genes involved in response to TBEV infection and to rank genes from the catalog based on the number of neighbors in the network of pairwise interactions involving these genes and TBEV RNA or proteins. RESULTS Based on manual review and curation of scientific publications a catalog comprising 140 human genes involved in response to TBEV infection was developed. To provide access to data on all genes, the TBEVhostDB web resource ( http://icg.nsc.ru/TBEVHostDB/ ) was created. We reconstructed a network formed by pairwise interactions between TBEV virion itself, viral RNA and viral proteins and 140 genes/proteins from TBEVHostDB. Genes were ranked according to the number of interactions in the network. Two genes/proteins (CCR5 and IFNAR1) that had maximal number of interactions were revealed. It was found that the subnetworks formed by CCR5 and IFNAR1 and their neighbors were a fragments of two key pathways functioning during the course of tick-borne encephalitis: (1) the attenuation of interferon-I signaling pathway by the TBEV NS5 protein that targeted peptidase D; (2) proinflammation and tissue damage pathway triggered by chemokine receptor CCR5 interacting with CD4, CCL3, CCL4, CCL2. Among nine genes associated with severe forms of TBEV infection, three genes/proteins (CCR5, IL10, ARID1B) were found to have protein-protein interactions within the network, and two genes/proteins (IFNL3 and the IL10, that was just mentioned) were up- or down-regulated in response to TBEV infection. Based on this finding, potential mechanisms for participation of CCR5, IL10, ARID1B, and IFNL3 in the host response to TBEV infection were suggested. CONCLUSIONS A database comprising 140 human genes involved in response to TBEV infection was compiled and the TBEVHostDB web resource, providing access to all genes was created. This is the first effort of integrating and unifying data on genetic factors that may predispose to severe forms of diseases caused by TBEV. The TBEVHostDB could potentially be used for assessment of risk factors for severe forms of tick-borne encephalitis and for the design of personalized pharmacological strategies for the treatment of TBEV infection.
Collapse
Affiliation(s)
- Elena V Ignatieva
- Laboratory of Evolutionary Bioinformatics and Theoretical Genetics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Center for Brain Neurobiology and Neurogenetics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Alexander V Igoshin
- Laboratory of Infectious Disease Genomics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Nikolay S Yudin
- Laboratory of Infectious Disease Genomics, The Federal Research Center Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
20
|
Taba P, Schmutzhard E, Forsberg P, Lutsar I, Ljøstad U, Mygland Å, Levchenko I, Strle F, Steiner I. EAN consensus review on prevention, diagnosis and management of tick‐borne encephalitis. Eur J Neurol 2017; 24:1214-e61. [DOI: 10.1111/ene.13356] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 06/01/2017] [Indexed: 12/30/2022]
Affiliation(s)
- P. Taba
- Department of Neurology and Neurosurgery University of Tartu Tartu Estonia
| | - E. Schmutzhard
- Department of Neurology Medical University Innsbruck Innsbruck Austria
| | - P. Forsberg
- Department of Clinical and Experimental Medicine and Department of Infectious Diseases Linköping University Linköping Sweden
| | - I. Lutsar
- Department of Microbiology University of Tartu Tartu Estonia
| | - U. Ljøstad
- Department of Neurology Sørlandet Hospital Kristiansand Norway
- Department of Clinical Medicine University of Bergen Bergen Norway
| | - Å. Mygland
- Department of Neurology Sørlandet Hospital Kristiansand Norway
- Department of Clinical Medicine University of Bergen Bergen Norway
| | - I. Levchenko
- Institute of Neurology Psychiatry and Narcology of the National Academy of Medical Sciences of Ukraine Kharkiv Ukraine
| | - F. Strle
- Department of Infectious Diseases University Medical Centre Ljubljana Ljubljana Slovenia
| | - I. Steiner
- Department of Neurology Rabin Medical Center Petach Tikva Israel
| |
Collapse
|
21
|
Talactac MR, Yoshii K, Hernandez EP, Kusakisako K, Galay RL, Fujisaki K, Mochizuki M, Tanaka T. Synchronous Langat Virus Infection of Haemaphysalis longicornis Using Anal Pore Microinjection. Viruses 2017; 9:v9070189. [PMID: 28714929 PMCID: PMC5537681 DOI: 10.3390/v9070189] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/06/2017] [Accepted: 07/06/2017] [Indexed: 11/16/2022] Open
Abstract
The tick-borne encephalitis virus (TBEV) serocomplex of flaviviruses consists of arboviruses that cause important diseases in animals and humans. The transmission of this group of viruses is commonly associated with tick species such as Ixodes spp., Dermacentor spp., and Hyalomma spp. In the case of Haemaphysalis longicornis, the detection and isolation of flaviviruses have been previously reported. However, studies showing survival dynamics of any tick-borne flavivirus in H. longicornis are still lacking. In this study, an anal pore microinjection method was used to infect adult H. longicornis with Langat virus (LGTV), a naturally attenuated member of the TBEV serocomplex. LGTV detection in ticks was done by real-time PCR, virus isolation, and indirect immunofluorescent antibody test. The maximum viral titer was recorded at 28 days post-inoculation, and midgut cells were shown to be the primary replication site. The tick can also harbor the virus for at least 120 days and can successfully transmit LGTV to susceptible mice as confirmed by detection of LGTV antibodies. However, no transovarial transmission was observed from the egg and larval samples. Taken together, our results highly suggest that anal pore microinjection can be an effective method in infecting adult H. longicornis, which can greatly assist in our efforts to study tick and virus interactions.
Collapse
Affiliation(s)
- Melbourne Rio Talactac
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan.
- Department of Clinical and Population Health, College of Veterinary Medicine and Biomedical Sciences, Cavite State University, Cavite 4122, Philippines.
| | - Kentaro Yoshii
- Laboratory of Public Health, Faculty of Veterinary Medicine, Hokkaido University, Kita-ku Kita-18 Nishi-9, Sapporo, Hokkaido 060-0818, Japan.
| | - Emmanuel Pacia Hernandez
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan.
| | - Kodai Kusakisako
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan.
| | - Remil Linggatong Galay
- Department of Veterinary Paraclinical Sciences, College of Veterinary Medicine, University of the Philippines Los Baños, Los Baños, Laguna 4031, Philippines.
| | - Kozo Fujisaki
- National Agriculture and Food Research Organization, 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan.
| | - Masami Mochizuki
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan.
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan.
- Department of Pathological and Preventive Veterinary Science, The United Graduate School of Veterinary Science, Yamaguchi University, Yoshida, Yamaguchi 753-8515, Japan.
| |
Collapse
|
22
|
McArthur MA. Zika Virus: Recent Advances towards the Development of Vaccines and Therapeutics. Viruses 2017; 9:v9060143. [PMID: 28608813 PMCID: PMC5490820 DOI: 10.3390/v9060143] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/02/2017] [Accepted: 06/08/2017] [Indexed: 12/11/2022] Open
Abstract
Zika is a rapidly emerging public health threat. Although clinical infection is frequently mild, significant neurological manifestations have been demonstrated in infants born to Zika virus (ZIKV) infected mothers. Due to the substantial ramifications of intrauterine infection, effective counter-measures are urgently needed. In order to develop effective anti-ZIKV vaccines and therapeutics, improved animal models and a better understanding of immunological correlates of protection against ZIKV are required. This review will summarize what is currently known about ZIKV, the clinical manifestations and epidemiology of Zika as well as, the development of animal models to study ZIKV infection, host immune responses against ZIKV, and the current state of development of vaccines and therapeutics against ZIKV.
Collapse
Affiliation(s)
- Monica A McArthur
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
23
|
Cheng NM, Sy CL, Chen BC, Huang TS, Lee SSJ, Chen YS. Isolation of dengue virus from the upper respiratory tract of four patients with dengue fever. PLoS Negl Trop Dis 2017; 11:e0005520. [PMID: 28379967 PMCID: PMC5403165 DOI: 10.1371/journal.pntd.0005520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 04/24/2017] [Accepted: 03/22/2017] [Indexed: 11/18/2022] Open
Abstract
Background Dengue fever is an important arboviral disease. The clinical manifestations vary from a mild non-specific febrile syndrome to severe life-threatening illness. The virus can usually be detected in the blood during the early stages of the disease. Dengue virus has also been found in isolated cases in the cerebrospinal fluid, urine, nasopharyngeal sections and saliva. In this report, we describe the isolation of dengue virus from the upper respiratory tract of four confirmed cases of dengue. Methods We reviewed all laboratory reports of the isolation of dengue virus from respiratory specimens at the clinical microbiology laboratory of the Kaohsiung Veterans General Hospital during 2007 to 2015. We then examined the medical records of the cases from whom the virus was isolated to determine their demographic characteristics, family contacts, clinical signs and symptoms, course of illness and laboratory findings. Results Dengue virus was identified in four patients from a nasopharyngeal or throat culture. Two were classified as group A dengue (dengue without warning signs), one as group B (dengue with warning signs) and one as group C (severe dengue). All had respiratory symptoms. Half had family members with similar respiratory symptoms during the period of their illnesses. All of the patients recovered uneventfully. Conclusions The isolation of dengue virus from respiratory specimens of patients with cough, rhinorrhea and nasal congestion, although rare, raises the possibility that the virus is capable of transmission by the aerosol route among close contacts. This concept is supported by studies that show that the virus can replicate in cultures of respiratory epithelium and can be transmitted through mucocutaneous exposure to blood from infected patients. However, current evidence is insufficient to prove the hypothesis of transmission through the respiratory route. Further studies will be needed to determine the frequency of respiratory colonization, viable virus titers in respiratory secretions and molecular genetic evidence of transmission among close contacts. Dengue virus is rarely identified in respiratory specimens. We retrospectively identified four patients with dengue fever who had the virus isolated from their nose or throat. All the patients had respiratory signs or symptoms. Half had family members who also had respiratory symptoms. Further studies are needed to evaluate the possibility of respiratory transmission of this virus.
Collapse
Affiliation(s)
- Nai-Ming Cheng
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Cheng Len Sy
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- * E-mail:
| | - Bao-Chen Chen
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Tsi-Shu Huang
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Susan Shin-Jung Lee
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yao-Shen Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
24
|
Mlera L, Melik W, Offerdahl DK, Dahlstrom E, Porcella SF, Bloom ME. Analysis of the Langat Virus Genome in Persistent Infection of an Ixodes scapularis Cell Line. Viruses 2016; 8:v8090252. [PMID: 27626437 PMCID: PMC5035966 DOI: 10.3390/v8090252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/30/2016] [Accepted: 09/07/2016] [Indexed: 12/30/2022] Open
Abstract
Tick-borne flaviviruses (TBFVs) cause a broad spectrum of disease manifestations ranging from asymptomatic to mild febrile illness and life threatening encephalitis. These single-stranded positive-sense (ss(+)) RNA viruses are naturally maintained in a persistent infection of ixodid ticks and small-medium sized mammals. The development of cell lines from the ixodid ticks has provided a valuable surrogate system for studying the biology of TBFVs in vitro. When we infected ISE6 cells, an Ixodes scapularis embryonic cell line, with Langat virus (LGTV) we observed that the infection proceeded directly into persistence without any cytopathic effect. Analysis of the viral genome at selected time points showed that no defective genomes were generated during LGTV persistence by 10 weeks of cell passage. This was in contrast to LGTV persistence in 293T cells in which defective viral genomes are detectable by five weeks of serial cell passage. We identified two synonymous nucleotide changes i.e., 1893A→C (29% of 5978 reads at 12 h post infection (hpi)) and 2284T→A (34% of 4191 reads at 12 hpi) in the region encoding for the viral protein E. These results suggested that the mechanisms supporting LGTV persistence are different between tick and mammalian cells.
Collapse
Affiliation(s)
- Luwanika Mlera
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, National Institutes of Health, Hamilton, MT 59840, USA.
| | - Wessam Melik
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, National Institutes of Health, Hamilton, MT 59840, USA.
| | - Danielle K Offerdahl
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, National Institutes of Health, Hamilton, MT 59840, USA.
| | - Eric Dahlstrom
- Genomics Unit, Research Technologies Branch, Hamilton, MT 59840, USA.
| | | | - Marshall E Bloom
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, National Institutes of Health, Hamilton, MT 59840, USA.
| |
Collapse
|
25
|
Kunze U. Tick-borne encephalitis—still on the map. Ticks Tick Borne Dis 2016; 7:911-914. [DOI: 10.1016/j.ttbdis.2016.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 04/14/2016] [Accepted: 04/16/2016] [Indexed: 11/25/2022]
|
26
|
Offerdahl DK, Clancy NG, Bloom ME. Stability of a Tick-Borne Flavivirus in Milk. Front Bioeng Biotechnol 2016; 4:40. [PMID: 27243000 PMCID: PMC4862983 DOI: 10.3389/fbioe.2016.00040] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/25/2016] [Indexed: 12/30/2022] Open
Abstract
The tick-borne flaviviruses (TBFV) occur worldwide and the tick-borne encephalitis virus (TBEV) members of the group often cause severe, debilitating neurological disease in humans. Although the primary route of infection is through the bite of an infected tick, alimentary infection through the consumption of TBEV-contaminated dairy products is also well-documented and is responsible for some disease in endemic areas. Experimental infection of goats, cattle, and sheep with TBEV shows that the virus can be excreted in the milk of infected animals. Additionally, the virus remains infectious after exposure to low pH levels, similar to those found in the stomach. To evaluate the survival of virus in milk, we studied the stability of the BSL-2 TBFV, Langat virus, in unpasteurized goat milk over time and after different thermal treatments. Virus was stable in milk maintained under refrigeration conditions; however, there was a marked reduction in virus titer after incubation at room temperature. High temperature, short time pasteurization protocols completely inactivated the virus. Interestingly, simulation of a typical thermal regime utilized for cheese did not completely inactivate the virus in milk. These findings stress the importance of proper milk handling and pasteurization processes in areas endemic for TBEV.
Collapse
Affiliation(s)
- Danielle K. Offerdahl
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, USA
| | - Niall G. Clancy
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, USA
| | - Marshall E. Bloom
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, USA
| |
Collapse
|
27
|
de Fabritus L, Nougairède A, Aubry F, Gould EA, de Lamballerie X. Attenuation of tick-borne encephalitis virus using large-scale random codon re-encoding. PLoS Pathog 2015; 11:e1004738. [PMID: 25734338 PMCID: PMC4348424 DOI: 10.1371/journal.ppat.1004738] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/09/2015] [Indexed: 12/20/2022] Open
Abstract
Large-scale codon re-encoding (i.e. introduction of a large number of synonymous mutations) is a novel method of generating attenuated viruses. Here, it was applied to the pathogenic flavivirus, tick-borne encephalitis virus (TBEV) which causes febrile illness and encephalitis in humans in forested regions of Europe and Asia. Using an infectious clone of the Oshima 5–10 strain ("wild-type virus"), a cassette of 1.4kb located in the NS5 coding region, was modified by randomly introducing 273 synonymous mutations ("re-encoded virus"). Whilst the in cellulo replicative fitness of the re-encoded virus was only slightly reduced, the re-encoded virus displayed an attenuated phenotype in a laboratory mouse model of non-lethal encephalitis. Following intra-peritoneal inoculation of either 2.105 or 2.106 TCID50 of virus, the frequency of viraemia, neurovirulence (measured using weight loss and appearance of symptoms) and neuroinvasiveness (detection of virus in the brain) were significantly decreased when compared with the wild-type virus. Mice infected by wild-type or re-encoded viruses produced comparable amounts of neutralising antibodies and results of challenge experiments demonstrated that mice previously infected with the re-encoded virus were protected against subsequent infection by the wild-type virus. This constitutes evidence that a mammalian species can be protected against infection by a virulent wild-type positive-stranded RNA virus following immunisation with a derived randomly re-encoded strain. Our results demonstrate that random codon re-encoding is potentially a simple and effective method of generating live-attenuated vaccine candidates against pathogenic flaviviruses. The arbovirus Tick-borne encephalitis virus (TBEV; genus Flavivirus) is transmitted by ticks of the Ixodes genus. TBEV causes febrile illness and encephalitis in humans in forested regions of Europe and Asia. The incidence of TBE is increasing across Central and Eastern European countries despite the availability of several licensed inactivated vaccines and appropriate vaccination programmes. Large-scale codon re-encoding, a recently developed attenuation method that modifies viral RNA nucleotide composition of large coding regions without alteration of the encoded proteins, has been successfully applied to a variety of RNA viruses. In contrast with previous empirical methods of generating live attenuated vaccines, large-scale codon re-encoding facilitates rapid generation of vaccine candidates using reverse genetics methods, by direct control of the attenuation phenotype. Additional benefits include reduced costs and induction of long-term immunity. Here, we have applied the large-scale codon re-encoding method to the TBEV to demonstrate the principle of developing a live attenuated virus vaccine which protects mice against subsequent infection with the wild type virulent virus. This study therefore illustrates that codon re-encoding is potentially an easily derived and effective method of producing live attenuated vaccine candidates against positive-stranded RNA viruses.
Collapse
Affiliation(s)
- Lauriane de Fabritus
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 “Emergence des Pathologies Virales”, Marseille, France
- * E-mail:
| | - Antoine Nougairède
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 “Emergence des Pathologies Virales”, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Fabien Aubry
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 “Emergence des Pathologies Virales”, Marseille, France
| | - Ernest A Gould
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 “Emergence des Pathologies Virales”, Marseille, France
| | - Xavier de Lamballerie
- Aix Marseille Université, IRD French Institute of Research for Development, EHESP French School of Public Health, EPV UMR_D 190 “Emergence des Pathologies Virales”, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| |
Collapse
|