1
|
Jaramillo-Ramirez GI, Budhwar S, Ford E, Parra-Henao G, Cortes-Gonzalez LF, Saldarriaga-Gomez LA, Jones RT. Social perception and environmental risk factors for dengue in an endemic municipality in eastern Colombia: a mixed method study. Sci Rep 2025; 15:12736. [PMID: 40223152 PMCID: PMC11994818 DOI: 10.1038/s41598-025-96549-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/28/2025] [Indexed: 04/15/2025] Open
Abstract
With the climate changing and worsening rainfall patterns, dengue, and its vector, the Aedes spp. mosquito, are becoming an urgent matter both in Colombia and globally. The limited availability of vaccines for this arbovirus, combined with the risk of severe disease with each reinfection, means that dengue control primarily relies on targeted vector control tailored to specific areas. This study aims to analyze the social perceptions and environmental risk factors that affect mosquito presence and dengue acquisition in Restrepo, Meta, Colombia. A knowledge, attitudes and practices questionnaire, and focus groups were conducted in communities of Restrepo, and entomological indexes were calculated for the municipality. Quantitative and qualitative analysis were performed. Participants had good knowledge of arbovirus infections, but lacked specific knowledge about transmission and how best to protect themselves. Those knowledgeable of cleaning water tanks were 0.28 times as likely to have mosquitos trapped in their house than those who did not. By contrast, those that reported using bed nets were more likely to have mosquitoes in their house than those who did not, potentially due to an overestimated sense of protection or need to use a net because of their presence. There was little reported community organization to control Aedes mosquitos, and social stratum was determined to be a risk factor for mosquito presence. Participants were in favor of interventions by the Health Secretariat, especially insecticide spraying. Our findings identify areas of need for education and engagement initiatives: encouraging community responsibility and day-time bite prevention measures may empower residents to protect themselves better. This can help the Health Secretariat to guide promotion and prevention strategies by knowing the sociodemographic characteristics and popular knowledge of the inhabitants of the city of Restrepo.
Collapse
Affiliation(s)
| | - Simran Budhwar
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Emily Ford
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Gabriel Parra-Henao
- Medicine Faculty, Centro de Investigacion en Salud para el Tropico, Universidad Cooperativa de Colombia, Santa Marta, Colombia
| | | | | | - Robert T Jones
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
2
|
Mbaoma OC, Thomas SM, Beierkuhnlein C. Significance of vertical transmission of arboviruses in mosquito-borne disease epidemiology. Parasit Vectors 2025; 18:137. [PMID: 40205559 PMCID: PMC11983947 DOI: 10.1186/s13071-025-06761-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/11/2025] [Indexed: 04/11/2025] Open
Abstract
Mosquito-borne diseases (MBDs) are increasingly prevalent due to the resultant impact of global change with significant health and economic impacts worldwide. Dengue virus (DENV), chikungunya virus (CHIKV), Zika virus (ZIKV), yellow fever virus (YFV), Japanese encephalitis (JEV), and West Nile virus (WNV) transmitted by Aedes and Culex species have been identified as arboviruses of public health interest. The vertical transmission (VT) refers to the process where infected mosquitoes transmit viruses to their offspring; this has been often overlooked in MBD epidemiology. We conducted a systematic review to evaluate the role of VT in the occurrence, prevalence, and spread of MBDs, focusing on study types, mosquito species, and virus genera. In total, 73 studies from 2005 to 2024 relating to VT in the mosquito population were reviewed. Findings revealed the occurrence of VT across multiple mosquito species in natural and experimental settings, with significant variation in VT rates depending on vector species, virus genus, and study location. Aedes aegypti, Aedes albopictus, Aedes vexans, Culex pipiens, Culex tarsalis, and Culex quinquefasciatus were identified as mosquito species that support VT, while pathogens identified to be transmitted vertically were DENV, ZIKV, WNV, CHIKV, YFV, Sindbis virus (SINV), Ross River virus (RRV), and Mayaro virus (MAYV). VT rates were reported as minimum, and infection rate (MIR) varied across species, study type and location. Also, a high VT rate may precede a mosquito-borne disease outbreak. These findings indicate that VT, though often overlooked, contributes to the dynamics of MBD transmission and could influence disease outbreaks and endemism, especially under changing climatic conditions, highlighting the need for incorporating VT in mathematical models, experimental studies, and control strategies to understand dynamics of MBDs, given its potential role in sustaining arbovirus transmission and influencing outbreak dynamics.
Collapse
Affiliation(s)
| | - Stephanie Margarete Thomas
- Department of Biogeography, University of Bayreuth, Bayreuth, Germany
- Center of Ecology and Environmental Research, BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Carl Beierkuhnlein
- Department of Biogeography, University of Bayreuth, Bayreuth, Germany
- Center of Ecology and Environmental Research, BayCEER, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
3
|
Seid M, Aklilu E, Negash Y, H Alemayehu D, Melaku K, Mulu A, Animut A. Resting habitat, blood meal source and viral infection rate of Aedes aegypti (Diptera: Culicidae) in the Southern Afar Region of Ethiopia. BMC Infect Dis 2025; 25:346. [PMID: 40075348 PMCID: PMC11899455 DOI: 10.1186/s12879-025-10748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/04/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Knowledge of Aedes species distribution, preference to feed on humans, and susceptibility to viruses is crucial in preventing transmission of Aedes-transmitted viruses. This study aimed to determine resting behavior, blood sources, and viral infection status of Aedes aegypti in Awash Sebat, Awash Arba, and Werer towns of Afar Region. METHODS Adult mosquitoes were collected using a Prokopack aspirator between 8:00-14:00 and 15:00-18:00 h both indoor and outdoor of the house. The mosquitoes were sorted by sex, date of collection, collection places, and abdominal status and identified by species/genus using standard keys. Blood meal sources and dengue virus and chikungunya virus infection status of Ae. aegypti were determined using ELISA and RT-qPCR respectively. RESULT A total of 2,745 adult mosquitoes comprising the genera Aedes (1433; 52.2%) Culex (1292; 47.1%) and Anopheles (20; 0.7%) were collected. The proportion of female Ae. aegypti in Awash Sebat (611; 36%) was highest as compared to females Ae. aegypti in Awash Arba (172; 33.8%), and in Werer (59; 11%). A higher proportion of outdoor resting of Ae. aegypti was caught from tyres rather than other indoor and outdoor locations (314; 37.29%) (X2 27.374, df = 12; p = 0.007). Seasonal and monthly variation was observed in Ae. aegypti collection, where the wet season and the months of August 2022, September 2022, and October 2022 had high Ae aegypti density. The overall human blood and bovine blood indices of Ae. aegypti were 53/145 (36.6%) and 18/145 (12.4%), respectively. Furthermore, dengue and chikungunya viruses were not detected from the Ae. aegypti examined. CONCLUSION The majority of Ae. aegypti collections were made during the wet season from outdoor resting sites, particularly from tyres. Thus, outdoor targeted management of Ae. aegypti is recommended as a strategy particularly tyre removal during the wet season, to reduce resting and proliferation of Ae. aegypti and hence prevent the risks of Aedes-borne disease transmission.
Collapse
Affiliation(s)
- Mohammed Seid
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
- Department of Biology, College of Natural and Computational Science, Mattu University, Mattu, Ethiopia.
| | - Esayas Aklilu
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Yohannes Negash
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | | | | | | | - Abebe Animut
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
4
|
Jemberie W, Dugassa S, Animut A. Biting Hour and Host Seeking Behavior of Aedes Species in Urban Settings, Metema District, Northwest Ethiopia. Trop Med Infect Dis 2025; 10:38. [PMID: 39998042 PMCID: PMC11860606 DOI: 10.3390/tropicalmed10020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/09/2025] [Accepted: 01/26/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Aedes species transmit arboviral diseases, such as dengue, chikungunya, yellow fever, and Zika. The diseases cause severe sickness, mortality, and economic losses. This study describes the biting hour and host-seeking behavior of Ae. aegypti and Ae. vittatus in three towns. Recently, chikungunya and dengue infections were reported in the study sites. METHODS Biting hour and host-seeking behaviors of Ae. aegypti and Ae. vittatus were studied from June to September 2023, in Genda-Wuha, Kokit, and Metema-Yohannes towns, Metema district, Northwest Ethiopia. CDC-LT traps were set running indoors and outdoors for 24 h closer to humans sleeping inside unimpregnated mosquito nets. At the same time, CDC-LT traps were set running overnight closer to domestic animals' shelters located within a 50-m radius of the main residence. Mosquitoes trapped in CDC-LT were collected every hour. The study was conducted four times in each town during the wet season. A chi-square test was employed to examine biting hour and host-seeking behavior. RESULTS Aedes aegypti was observed to be highly exophilic and active during the daylight hours. Aedes aegypti exhibited a peak biting rate between 07:00 and 08:00 with the biting rate of 4.5/person/hour followed by from 17:00 pm to 18:00 pm with the biting rate of 3.75/person/hour. The hourly biting rate of Ae. aegypti differed significantly. Its peak indoor biting rate was from 19:00 to 20:00 with the rate of 2.00 bites/person/hour followed by from 08:00 to 09:00 with the rate of 1.50 bites/person/hour and the biting rates differed significantly across the hours (F = 240.046; p = 0.001). Aedes vittatus also exhibited a biting rate similar to that of Ae. aegypti. Both Ae. aegypti and Ae. vittatus were abundantly collected from nearby human sleeping arrangements than from the shelters of cattle, sheep, goats, and donkeys. The highest proportions of Ae. aegypti (91.21%) and Ae. vittatus (89.87%) were unfed. CONCLUSIONS Aedes aegypti and Ae. vittatus exhibited peak biting rates during morning and early night hours that aligned with the active daily routine practices of the local community. This could potentially expose the inhabitants to viral diseases transmitted by Ae. aegypti and Ae. vittatus.
Collapse
Affiliation(s)
- Wondmeneh Jemberie
- Vector Biology & Control Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (S.D.); (A.A.)
- Department of Biology, College of Natural and Computational Sciences, University of Gondar, Gondar P.O. Box 196, Ethiopia
| | - Sisay Dugassa
- Vector Biology & Control Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (S.D.); (A.A.)
| | - Abebe Animut
- Vector Biology & Control Research Unit, Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia; (S.D.); (A.A.)
| |
Collapse
|
5
|
Sukupayo PR, Poudel RC, Ghimire TR. Entomological surveillance of container-breeding mosquitoes focusing on Aedes (Stegomyia) (Diptera: Culicidae) vectors along altitudinal range in Nepal. JOURNAL OF MEDICAL ENTOMOLOGY 2025; 62:207-219. [PMID: 39504577 DOI: 10.1093/jme/tjae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024]
Abstract
Mosquitoes are a significant public health concern due to their role in transmitting various diseases. This study aimed to investigate mosquitoes' diversity, abundance, and ecological aspects, mainly focusing on Aedes (Diptera: Culicidae) mosquitoes, in central Nepal. The research explored variations across regions, seasons, altitudes, and years. Fieldwork for mosquito collection was conducted between May 2022 and October 2023. Dipping and pipetting methods were employed to collect larvae and pupae, whereas Biogents-Mosquitaire trap captured adult mosquitoes. A total of 7,223 (3,640 larvae and 3,583 adults) mosquitoes, belonging to 8 genera and 18 species, were collected and analyzed. Additionally, a survey examined 5,941 wet containers of 20 different types to assess potential breeding sites. The study revealed Culex pipiens (Linnaeus, 1758) (34.13%) and Aedes albopictus (Skuse, 1895) (27.36%) as the most abundant species. Interestingly, larvae were predominantly Aedes spp. (66.13%), whereas only 13.76% of adults belonged to this genus. Mosquito abundance varied across locations and altitudes, with Siwalik region (331-700 m asl) exhibiting the highest numbers. The monsoon season showed the highest overall abundance (1,492). Used tires were identified as significant breeding sites for Aedes mosquitoes, and infestation rates were higher in shaded containers. Seasonal analysis showed the House Index (HI) reaching its peak (10.92%) and the Breteau Index (BI) reaching 23.08% during the monsoon. Conversely, the Container Index (CI) reached its highest point (37.67%) in the post-monsoon season. The results emphasize the need for comprehensive disease prevention strategies at local and national levels, including public awareness campaigns, to address mosquito-borne illnesses in this famous tourist region.
Collapse
Affiliation(s)
- Punya Ram Sukupayo
- Department of Zoology, Bhaktapur Multiple Campus, Tribhuvan University, Bhaktapur, Nepal
- Central Department of Zoology, Tribhuvan University, Kathmandu, Nepal
| | - Ram Chandra Poudel
- Molecular Biotechnology Unit, Nepal Academy of Science and Technology (NAST), Lalitpur, Nepal
| | - Tirth Raj Ghimire
- Department of Zoology, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal
| |
Collapse
|
6
|
Ngangue-Siewe IN, Ndjeunia-Mbiakop P, Barembaye Sagna A, Mamadou Maïga AA, Bamou R, Sanon A, Tombi J, Mbida Mbida JA, Antonio-Nkondjio C, Remoue F, Badolo A. Characterization of human exposure to Anopheles and Aedes bites using antibody-based biomarkers in rural zone of Cameroon. PLoS One 2024; 19:e0314709. [PMID: 39637118 PMCID: PMC11620597 DOI: 10.1371/journal.pone.0314709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Malaria and Aedes-borne diseases remain major causes of mortality, morbidity, and disability in most developing countries. Surveillance of transmission patterns associated with vector control remains strategic for combating these diseases. Due to the limitions of current surveillance tools used to assess human exposure to mosquito bites, human antibody (Ab) responses to salivary peptides from Anopheles (gSG6-P1) and Aedes (Nterm-34kDa) are increasingly being used to measure direct human-Anopheles or Aedes contact. This study reports on the assessment of Human IgG Ab responses to gSG6-P1 and Nterm-34-kDa salivary peptides as biomarkers to track exposure to Anopheles and Aedes bites, in rural localities of Cameroon. Blood samples were collected between October and November 2022 from 173 individuals residing in four villages: Njombe, Kekem, Belabo, and Ouami. Sociodemographic characteristics and information regarding Long Lasting Insecticide Net (LLIN) ownership, use, and net characteristics were recorded using a questionnaire. The measurement of human IgG levels to gSG6-P1 and Nterm-34kDa peptides was conducted in blood samples using ELISA. The levels of IgG responses to Anopheles gSG6-P1 and Aedes Nterm-34kDa salivary peptides varied significantly across villages (all p<0.05). IgG responses to Anopheles gSG6-P1 were higher in Njombe compared to Belabo and Ouami (all p<0.01), while IgG responses to Aedes Nterm-34kDa were higher in Kekem compared to the other villages (all p<0.0001). Aweak correlation was observed between IgG responses to Anopheles and Aedes salivary peptides (Spearman r = 0.2689, p = 0.0003). However, the median level of IgG to Anopheles gSG6-P1 was higher than IgG to Aedes Nterm-34kDa in Njombé, Belabo, and Ouami. Individuals not using their LLIN, those using damaged bed nets, and those who reported vegetation around their houses developed higher IgG responses to gSG6-P1 and Nterm-34 kDa compared to those who did not (all p<0.05). The immune-epidemiological biomarkers have shown promising potential as indicators for monitoring human exposure to various mosquito bites and their heterogeneity in the same site. However, additional research is needed to validate the efficacy of this technique for surveillance purposes and to assess the effectiveness of vector control interventions.
Collapse
Affiliation(s)
- Idriss Nasser Ngangue-Siewe
- Faculty of Science, Department of Animal Biology and Physiology, The University of Douala, Douala, Cameroon
- Malaria Research Laboratory, Organisation de Coordination pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
- Laboratory of Fundamental and Applied Entomology, University Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Paulette Ndjeunia-Mbiakop
- Malaria Research Laboratory, Organisation de Coordination pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
- Faculty of Science, Department of Animal Biology and Physiology, The University of Yaoundé, Yaoundé, Cameroon
| | - André Barembaye Sagna
- Institut de Recherche Pour le Développement (IRD), MIVEGEC Unit, University of Montpellier, IRD, CNRS, DR Occitanie, Montpellier, France
| | - Abdoul-Aziz Mamadou Maïga
- Laboratory of Fundamental and Applied Entomology, University Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Roland Bamou
- Malaria Research Laboratory, Organisation de Coordination pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Health (NIH), Rockville, Maryland, United States of America
| | - Antoine Sanon
- Laboratory of Fundamental and Applied Entomology, University Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Jeannette Tombi
- Faculty of Science, Department of Animal Biology and Physiology, The University of Yaoundé, Yaoundé, Cameroon
| | - Jean Arthur Mbida Mbida
- Faculty of Science, Department of Animal Biology and Physiology, The University of Douala, Douala, Cameroon
| | - Christophe Antonio-Nkondjio
- Malaria Research Laboratory, Organisation de Coordination pour la Lutte Contre les Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
- Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Franck Remoue
- Institut de Recherche Pour le Développement (IRD), MIVEGEC Unit, University of Montpellier, IRD, CNRS, DR Occitanie, Montpellier, France
| | - Athanase Badolo
- Laboratory of Fundamental and Applied Entomology, University Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| |
Collapse
|
7
|
Adjobi CN, Zahouli JZB, Guindo-Coulibaly N, Ouattara AF, Vavassori L, Adja MA. Assessing the ecological patterns of Aedes aegypti in areas with high arboviral risks in the large city of Abidjan, Côte d'Ivoire. PLoS Negl Trop Dis 2024; 18:e0012647. [PMID: 39556613 DOI: 10.1371/journal.pntd.0012647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 10/23/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND The city of Abidjan, Côte d'Ivoire has increasingly faced multiple outbreaks of Aedes mosquito-borne arboviral diseases (e.g., dengue (DEN) and yellow fever (YF)) during the recent years, 2017-2023. Thus, we assessed and compared Aedes aegypti larval and adult population dynamics and Stegomyia indices in four urbanized areas with differential arboviral incidences in Abidjan, Côte d'Ivoire. METHODS From August 2019 to July 2020, we sampled Aedes mosquito immatures (larvae and pupae), adults and breeding habitats in Anono and Gbagba with high arboviral incidences and Ayakro and Entente with low arboviral incidences in the Abidjan city, using standardized methods. Sampling was conducted in the peridomestic and domestic (indoors and outdoors) premises during short dry season (SDS), short rainy season (SRS), long dry season (LDS) and long rainy season (LRS). The abdomens and ovaries of Ae. aegypti females were examined to determine their blood-meal and parity statuses. Stegomyia indices (container index: CI, house index: HI and Breteau index: BI), blood-meal status and parity rates were compared by study sites and seasons and with the World Health Organization (WHO)-established epidemic thresholds. RESULTS Overall, Aedes and arboviral risk indices were high and similar between the four study areas. In total, 86,796 mosquitoes were identified and dominated by Ae. aegypti species (97.14%, 84,317/86,796). The most productive larval breeding habitats were tires, discarded containers and water storage containers. CI, HI, and BI in Anono (22.4%, 33.5% and 89.5), Ayakro (23.1%, 43.8% and 91.0), Entente (15.9%, 24.8% and 48.5) and Gbagba (23.3%, 43.0% and 102.0) were high in the respective study sites. Stegomyia indices were higher than the WHO-established epidemic thresholds during any seasons for DEN, and LRS and SRS for YF. The numbers of Ae. aegypti-positive breeding sites were higher in the domestic premises (68.0%, 900/1,324) than in the peridomestic premises (32.0%, 424/1,324). In the domestic premises, Ae. aegypti-positive breeding sites (94.6%, 851/4,360) and adult individuals (93.4%, 856/916) were mostly found outdoors of houses. Aedes aegypti adult females were mostly unfed (51.3%, 203/396), followed by blood-fed (22.2%, 88/396), gravid (13.9%, 55/396) and half-gravid (12.6%, 50/396), and had parity rate of 49.7% (197/396) that was comparable between the study sites. CONCLUSIONS The city of Abidjan, Côte d'Ivoire is highly infested with Ae. aegypti which showed comparable ecological patterns across study sites and seasons. Thus, the local communities are exposed to high and permanent risks of transmission of DEN and YF viruses that were above the WHO-established epidemic thresholds throughout. The results provide a baseline for future vector studies needed to further characterize the observed patterns of local Ae. aegypti abundances and behaviors, and risks of transmission of these arboviruses. Community-based larval source management of identified productive containers might reduce Ae. aegypti numbers and risks of transmission of Aedes-borne arboviruses in Abidjan, and other sub-Saharan African cities.
Collapse
Affiliation(s)
- Claver N Adjobi
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Julien Z B Zahouli
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- Centre d'Entomologie Médicale et Vétérinaire, Université Alassane Ouattara, Bouaké, Côte d'Ivoire
| | - Négnorogo Guindo-Coulibaly
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Allassane F Ouattara
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- Unité de Formation et de Recherche Sciences de la Nature, Université Nangui-Abrogoua, Abidjan, Côte d'Ivoire
| | - Laura Vavassori
- Swiss Tropical and Public Health Institute, Allschwill, Switzerland
- University of Basel, Basel, Switzerland
| | - Maurice A Adja
- Laboratoire de Biologie et Santé, UFR Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| |
Collapse
|
8
|
Seid M, Aklilu E, Animut A. Susceptibility status of Aedes aegypti (Diptera: Culicidae) to public health insecticides in Southern Afar Region, Ethiopia. PLoS One 2024; 19:e0309335. [PMID: 39178289 PMCID: PMC11343450 DOI: 10.1371/journal.pone.0309335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/09/2024] [Indexed: 08/25/2024] Open
Abstract
Mosquito-borne viral diseases such as dengue fever, chikungunya, and yellow fever have been documented in Ethiopia since the 1960s. However, the efficacy of public health insecticides against Aedes aegypti that transmits these viruses remains poorly understood in the country, particularly in the Afar Region. Thus, the aim of the study was to assess the susceptibility status of Ae. aegypti to deltamethrin, permethrin, alpha-cypermethrin, pirimiphos-methyl, bendiocarb, and propoxur insecticides. Larvae and pupae of Aedes species were collected from Awash Arba, Awash Sebat, and Werer towns of the Afar Region of Ethiopia during July-October 2022, brought to the Aklilu Lemma Institute of Pathobiology, insectary and reared to adults. Non-blood-fed, 3-5 days-old females Ae. aegypti were exposed to pyrethroid, carbamate, and organophosphate insecticide impregnated papers in tube test following the standard guidelines. Knockdown rates were noted at 10 minutes interval until one hour. The mortality in mosquitoes was recorded 24 hours after 60 minutes of exposure. The mortality rates of Ae. aegypti exposed to propoxur were 87% in all the study towns. Similarly, 88% mortality in Ae. aegypti was recorded when tested with bendiocarb in Awash Sebat and Awash Arba towns. Suspected resistance of Ae. aegypti (95% mortality) to alpha-cypermethrin was observed in Awash Arba town. However, Ae. aegypti collected from all the three sites was observed to be susceptible to deltamethrin, permethrin, and pirimiphos-methyl. Ae. aegypti was resistant to 0.1% bendiocarb and 0.1% propoxur and possibly resistant to 0.05% alpha-cypermethrin. On the other hand, it was susceptible to 0.05% deltamethrin, 0.75% permethrin, and 0.25% pirimiphos-methyl. Thus, vector control products with deltamethrin, permethrin, and pirimiphos-methyl can be used in the control of adult Ae. aegypti in the Afar Region of Ethiopia. However, further studies should be carried out to evaluate the susceptibility status of Ae. aegypti to alpha-cypermethrin in the Awash Arba area.
Collapse
Affiliation(s)
- Mohammed Seid
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Biology, College of Natural and Computational Sciences, Mattu University, Mattu, Ethiopia
| | - Esayas Aklilu
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abebe Animut
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
9
|
Seid M, Aklilu E, Animut A. Spatio-temporal occurrence and habitat characteristics of Aedes aegypti (Diptera: Culicidae) larvae in Southern Afar region, Ethiopia. Trop Med Health 2024; 52:51. [PMID: 39095931 PMCID: PMC11295501 DOI: 10.1186/s41182-024-00612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/28/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Describing spatio-temporal occurrence and habitat characteristics of Aedes mosquito larvae is crucial for the control of Aedes borne viral diseases. This study assessed spatio-temporal abundance and habitat characteristics of Aedes larvae in the Southern Afar Region, Ethiopia. METHODS Immature mosquitoes were surveyed in Awash Sebat, Awash Arba, and Werer towns of the Southern Afar Region once per month from May 2022 to April 2023. Larvae and pupae surveys were carried out along the available water-holding containers. The collected larvae/pupae were reared to adults and identified by species/genus morphologically. The physical and chemical properties of the habitats were also characterized. RESULTS A total of 9099 Aedes larvae/pupae were collected, of which 53.6% (4875) were from Awash Sebat, 29.5% (2687) from Awash Arba and 16.9% (1537) from Werer. Water-holding tyres harboured the highest number of Aedes larvae/pupae followed by water-storage drums. All the Aedes larvae/pupae reared to adults were morphologically identified as Aedes aegypti. The overall Container Index was 47.28%, House Index 18.19%, Breteau Index 59.94% and Pupal Index 171.94. Significant positive relations were observed in the occurrences of Ae. aegypti larvae/pupae with water-holding tyre (AOR = 15.89, CI = 3.55-71.09, p < 0.001), water storage drums (AOR = 19.84, CI = 4.64-84.89, p < 0.001), domestic habitat (AOR = 3.76, CI = 1.27-11.12, p = 0.017), and significant negative relations were observed with Ae. aegypti larvae/pupae occurrence and tap water source (AOR = 0.08, CI = 0.02-0.31, p = 0.001). Ae. aegypti larvae/pupae densities showed positive relations with dissolved oxygen (β = 0.523, p < 0.001) and total hardness (β = 0.475, p = 0.034) of water. CONCLUSIONS Diverse types of artificial water-holding containers were positive for Ae. aegypti larvae/pupae. Ae. aegypti larvae/pupae were abundant in used water-holding tyres, water storage drums, and cement tanks in Awash Sebat, Awash Arba, and Werer towns. This could put the residents of the towns at high risk of infections with Ae. aegypti transmitted viral diseases such as chikungunya and dengue outbreaks. Thus, we recommend artificial water-holding container management as a strategy to control Ae. aegypti and hence the arboviral diseases transmission.
Collapse
Affiliation(s)
- Mohammed Seid
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
- Department of Biology, College of Natural and Computational Sciences, Mattu University, Mattu, Ethiopia.
| | - Esayas Aklilu
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Abebe Animut
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
10
|
Kronen J, Leuchner M, Küpper T. Zika and Chikungunya in Europe 2100 - A GIS based model for risk estimation. Travel Med Infect Dis 2024; 60:102737. [PMID: 38996856 DOI: 10.1016/j.tmaid.2024.102737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 10/27/2023] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
BACKGROUND The spread of vector-borne infectious diseases is determined, among other things, by temperature. Thus, climate change will have an influence on their global distribution. In the future, Europe will approach the temperature optimum for the transmission of ZIKV and CHIKV. Climate scenarios and climate models can be used to depict future climatic changes and to draw conclusions about future risk areas for vector-borne infectious diseases. METHODS Based on the RCP 4.5 and RCP 8.5 climate scenarios, a geospatial analysis was carried out for the future temperature suitability of ZIKV and CHIKV in Europe. The results were presented in maps and the percentage of the affected areas calculated. RESULTS Due to rising temperatures, the risk areas for transmission of ZIKV and CHIKV spread in both RCP scenarios. For CHIKV transmission, Spain, Portugal, the Mediterranean coast and areas near the Black Sea are mainly affected. Due to high temperatures, large areas throughout Europe are at risk for ZIKV and CHIKV transmission. CONCLUSION Temperature is only one of many factors influencing the spread of vector-borne infectious diseases. Nevertheless, the representation of risk areas on the basis of climate scenarios allows an assessment of future risk development. Monitoring and adaptation strategies are indispensable for coping with and containing possible future autochthonous transmissions and epidemics in Europe.
Collapse
Affiliation(s)
- J Kronen
- Physical Geography and Climatology, Institute of Geography, RWTH Aachen University, Aachen, Germany.
| | - M Leuchner
- Physical Geography and Climatology, Institute of Geography, RWTH Aachen University, Aachen, Germany
| | - T Küpper
- Inst. of Occupational, Social & Environmental Medicine, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
11
|
Sarker R, Roknuzzaman ASM, Emon FA, Dewan SMR, Hossain MJ, Islam MR. A perspective on the worst ever dengue outbreak 2023 in Bangladesh: What makes this old enemy so deadly, and how can we combat it? Health Sci Rep 2024; 7:e2077. [PMID: 38725559 PMCID: PMC11079431 DOI: 10.1002/hsr2.2077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/22/2023] [Accepted: 04/11/2024] [Indexed: 05/12/2024] Open
Abstract
Background and Aims Bangladesh has been going through outbreaks of dengue fever cases every year since 2000. Yet this year's (2023) episode of dengue fever has crossed every line concerning fatality. Symptoms of the fever range from high fever, headaches, and muscle aches to deadly dengue hemorrhagic fever (DHF). The present review aims to assess the current pathogenicity and associated risk factors of recent dengue outbreaks in Bangladesh. Methods To perform this review work, we extracted relevant information from published articles available in PubMed, Scopus, and Google Scholar. We used dengue virus, dengue fever, and dengue outbreaks as keywords while searching for information. Results This Aedes mosquito-transmitted viral fever is more common in Bangladesh because of the tropical nature and immense burden of populations, resulting in convenient conditions for the reproduction of the vector. The rapid genetic transformation of this RNA virus and the resistance of its vector against insecticides have intensified the situation. The number of hospitalized patients has increased, and the case fatality rate has risen to 0.47%. Inadequate mosquito control measures, plenty of vector breeding sites, and a lack of public awareness have worsened the situation. Routine spraying of effective insecticides in high-risk zones, regular inspection of potential mosquito breeding sites, and public awareness campaigns are the keys to limiting the spread of this virus. Also, the availability of detection kits, improved hospital settings, and trained health professionals are mandatory to keep disease fatalities under control. Conclusion Dengue fever is a preventable disease. The successful development of a competent vaccine is now a prime need for preventing any future upsurge of the disease. Also, we recommend public awareness, vector control activities, and global collaboration to prevent spread.
Collapse
Affiliation(s)
- Rapty Sarker
- Department of PharmacyUniversity of Asia PacificDhakaBangladesh
| | | | | | | | | | | |
Collapse
|
12
|
Nwangwu UC, Oguzie JU, Nwachukwu WE, Onwude CO, Dogunro FA, Diallo M, Ezihe CK, Agashi NO, Eloy EI, Anokwu SO, Anioke CC, Ikechukwu LC, Nwosu CM, Nwaogo ON, Ngwu IM, Onyeanusi RN, Okoronkwo AI, Orizu FU, Etiki MO, Onuora EN, Adeorike ST, Okeke PC, Chukwuekezie OC, Ochu JC, Ibrahim SS, Ifedayo A, Ihekweazu C, Happi CT. Nationwide surveillance identifies yellow fever and chikungunya viruses transmitted by various species of Aedes mosquitoes in Nigeria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575625. [PMID: 38293180 PMCID: PMC10827097 DOI: 10.1101/2024.01.15.575625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Background Since its reemergence in 2017, yellow fever (YF) has been active in Nigeria. The Nigeria Centre for Disease Control (NCDC) has coordinated responses to the outbreaks with the support of the World Health Organization (WHO). The National Arbovirus and Vectors Research Centre (NAVRC) handles the vector component of these responses. This study sought to identify the vectors driving YF transmission and any of the targeted arboviruses and their distribution across states. Methods Eggs, larvae and pupae as well as adult mosquitoes were collected in observational, analytical, and cross-sectional surveys conducted in sixteen YF outbreak states between 2017 and 2020. Adult mosquitoes (field-collected or reared from immature stages) were morphologically identified, and arboviruses were detected using RT-qPCR at the African Centre of Excellence for Genomics of Infectious Diseases (ACEGID). Results Aedes mosquitoes were collected in eleven of the sixteen states surveyed and the mosquitoes in nine states were found infected with arboviruses. A total of seven Aedes species were collected from different parts of the country. Aedes aegypti was the most dominant (51%) species, whereas Aedes africanus was the least (0.2%). Yellow fever virus (YFV) was discovered in 33 (~26%) out of the 127 Aedes mosquito pools. In addition to YFV, the Chikungunya virus (CHIKV) was found in nine pools. Except for Ae. africanus, all the Aedes species tested positive for at least one arbovirus. YFV-positive pools were found in six (6) Aedes species while CHIKV-positive pools were only recorded in two Aedes species. Edo State had the most positive pools (16), while Nasarawa, Imo, and Anambra states had the least (1 positive pool). Breteau and house indices were higher than normal transmission thresholds in all but one state. Conclusion In Nigeria, there is a substantial risk of arbovirus transmission by Aedes mosquitoes, with YFV posing the largest threat at the moment. This risk is heightened by the fact that YFV and CHIKV have been detected in vectors across outbreak locations. Hence, there is an urgent need to step up arbovirus surveillance and control activities in the country.
Collapse
Affiliation(s)
- Udoka C. Nwangwu
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Nigeria
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Judith U. Oguzie
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun State, Nigeria
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun State, Nigeria
| | | | - Cosmas O. Onwude
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Nigeria
| | - Festus A. Dogunro
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Nigeria
| | - Mawlouth Diallo
- Medical Zoology Center, Institut Pasteur de Dakar, Dakar, Senegal
| | - Chukwuebuka K. Ezihe
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Nigeria
- Malaria Consortium, Nigeria
| | - Nneka O. Agashi
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Nigeria
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Emelda I. Eloy
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Nigeria
| | - Stephen O. Anokwu
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Nigeria
| | | | | | | | - Oscar N. Nwaogo
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Nigeria
| | - Ifeoma M. Ngwu
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Nigeria
| | - Rose N. Onyeanusi
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Nigeria
| | | | - Francis U. Orizu
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Nigeria
| | - Monica O. Etiki
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Nigeria
| | - Esther N. Onuora
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Nigeria
| | - Sobajo Tope Adeorike
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun State, Nigeria
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun State, Nigeria
| | - Peter C. Okeke
- Department of Zoology and Environmental Biology, University of Nigeria, Nsukka, Enugu State, Nigeria
| | | | - Josephine C. Ochu
- National Arbovirus and Vectors Research Centre (NAVRC), Enugu, Nigeria
| | - Sulaiman S. Ibrahim
- Department of Biochemistry, Bayero University, Kano, Kano State, Nigeria
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | | | | | - Christian T. Happi
- Department of Biological Sciences, Faculty of Natural Sciences, Redeemer’s University, Ede, Osun State, Nigeria
- African Centre of Excellence for Genomics of Infectious Diseases (ACEGID), Redeemer’s University, Ede, Osun State, Nigeria
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| |
Collapse
|
13
|
Yared S, Gebressilasie A, Worku A, Mohammed A, Gunarathna I, Rajamanickam D, Waymire E, Balkew M, Carter TE. Breeding habitats, bionomics and phylogenetic analysis of Aedes aegypti and first detection of Culiseta longiareolata, and Ae. hirsutus in Somali Region, eastern Ethiopia. PLoS One 2024; 19:e0296406. [PMID: 38165914 PMCID: PMC10760653 DOI: 10.1371/journal.pone.0296406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 12/12/2023] [Indexed: 01/04/2024] Open
Abstract
INTRODUCTION Arboviral diseases, such as dengue, chikungunya, yellow fever, and Zika, are caused by viruses that are transmitted to humans through mosquito bites. However, the status of arbovirus vectors in eastern Ethiopia is unknown. The aim of this study was to investigate distribution, breeding habitat, bionomics and phylogenetic relationship of Aedes aegypti mosquito species in Somali Regional State, Eastern Ethiopia. METHODS Entomological surveys were conducted in four sites including Jigjiga, Degehabur, Kebridehar and Godey in 2018 (October to December) to study the distribution of Ae. aegypti and with a follow-up collection in 2020 (July-December). In addition, an investigation into the seasonality and bionomics of Ae. aegypti was conducted in 2021 (January-April) in Kebridehar town. Adult mosquitoes were collected from indoor and outdoor locations using CDC light traps (LTs), pyrethrum spray collection (PSCs), and aspirators. Larvae and pupae were also collected from a total of 169 water-holding containers using a dipper between October and November 2020 (rainy season) in Kebridehar town. The species identification of wild caught and reared adults was conducted using a taxonomic key. In addition, species identification using mitochondrial and nuclear genes maximum likelihood-based phylogenetic analysis was performed. RESULTS In the 2018 collection, Ae. aegypti was found in all study sites (Jigjiga, Degahabour, Kebridehar and Godey). In the 2020-2021 collection, a total of 470 (Female = 341, Male = 129) wild caught adult Ae. aegypti mosquitoes were collected, mostly during the rainy season with the highest frequency in November (n = 177) while the lowest abundance was in the dry season (n = 14) for both February and March. The majority of Ae. aegypt were caught using PSC (n = 365) followed by CDC LT (n = 102) and least were collected by aspirator from an animal shelter (n = 3). Aedes aegypti larval density was highest in tires (0.97 larvae per dip) followed by cemented cisterns (0.73 larvae per dip) and the Relative Breeding Index (RBI) was 0.87 and Container Index (CI) was 0.56. Genetic analysis of ITS2 and COI revealed one and 18 haplotypes, respectively and phylogenetic analysis confirmed species identification. The 2022 collection revealed no Ae. aegpti, but two previously uncharacterized species to that region. Phylogenetic analysis of these two species revealed their identities as Ae. hirsutus and Culiseta longiareolata. CONCLUSION Data from our study indicate that, Ae. aegypti is present both during the wet and dry seasons due to the availability of breeding habitats, including water containers like cemented cisterns, tires, barrels, and plastic containers. This study emphasizes the necessity of establishing a national entomological surveillance program for Aedes in Somali region.
Collapse
Affiliation(s)
- Solomon Yared
- Department of Biology, Jigjiga University, Jigjiga, Ethiopia
| | - Araya Gebressilasie
- Department of Zoological Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Amha Worku
- Department of Biology, Jigjiga University, Jigjiga, Ethiopia
| | - Abas Mohammed
- Department of Biology, Jigjiga University, Jigjiga, Ethiopia
| | - Isuru Gunarathna
- Department of Biology, College of Arts and Sciences, Baylor University, Waco, TX, United States of America
| | - Dhivya Rajamanickam
- Department of Biology, College of Arts and Sciences, Baylor University, Waco, TX, United States of America
| | - Elizabeth Waymire
- Department of Biology, College of Arts and Sciences, Baylor University, Waco, TX, United States of America
| | - Meshesha Balkew
- Abt Associates, PMI VectorLink Ethiopia Project, Addis Ababa, Ethiopia
| | - Tamar E. Carter
- Department of Biology, College of Arts and Sciences, Baylor University, Waco, TX, United States of America
| |
Collapse
|
14
|
Akyea-Bobi NE, Akorli J, Opoku M, Akporh SS, Amlalo GK, Osei JHN, Frempong KK, Pi-Bansa S, Boakye HA, Abudu M, Akorli EA, Acquah-Baidoo D, Pwalia R, Bonney JHK, Quansah R, Dadzie SK. Entomological risk assessment for transmission of arboviral diseases by Aedes mosquitoes in a domestic and forest site in Accra, Ghana. PLoS One 2023; 18:e0295390. [PMID: 38060554 PMCID: PMC10703219 DOI: 10.1371/journal.pone.0295390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Dengue, Zika and chikungunya are Aedes-borne viral diseases that have become great global health concerns in the past years. Several countries in Africa have reported outbreaks of these diseases and despite Ghana sharing borders with some of these countries, such outbreaks are yet to be detected. Viral RNA and antibodies against dengue serotype-2 have recently been reported among individuals in some localities in the regional capital of Ghana. This is an indication of a possible silent transmission ongoing in the population. This study, therefore, investigated the entomological transmission risk of dengue, Zika and chikungunya viruses in a forest and domestic population in the Greater Accra Region, Ghana. All stages of the Aedes mosquito (egg, larvae, pupae and adults) were collected around homes and in the forest area for estimation of risk indices. All eggs were hatched and reared to larvae or adults for morphological identification together with larvae and adults collected from the field. The forest population had higher species richness with 7 Aedes species. The predominant species of Aedes mosquitoes identified from both sites was Aedes aegypti (98%). Aedes albopictus, an important arbovirus vector, was identified only in the peri-domestic population at a prevalence of 1.5%, significantly higher than previously reported. All risk indices were above the WHO threshold except the House Index for the domestic site which was moderate (19.8). The forest population recorded higher Positive Ovitrap (34.2% vs 26.6%) and Container (67.9% vs 36.8%) Indices than the peri-domestic population. Although none of the mosquito pools showed the presence of dengue, chikungunya or Zika viruses, all entomological risk indicators showed that both sites had a high potential arboviral disease transmission risk should any of these viruses be introduced. Continuous surveillance is recommended in these and other sites in the Metropolis to properly map transmission risk areas to inform outbreak preparedness strategies.
Collapse
Affiliation(s)
- Nukunu Etornam Akyea-Bobi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Jewelna Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Millicent Opoku
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Samuel Sowah Akporh
- Vestergaard NMIMR Vector Labs, Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Godwin Kwame Amlalo
- Vestergaard NMIMR Vector Labs, Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Joseph Harold Nyarko Osei
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Kwadwo Kyereme Frempong
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Sellase Pi-Bansa
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Helena Anokyewaa Boakye
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Mufeez Abudu
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Esinam Abla Akorli
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Dominic Acquah-Baidoo
- Vestergaard NMIMR Vector Labs, Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | - Rebecca Pwalia
- Vestergaard NMIMR Vector Labs, Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| | | | - Reginald Quansah
- Department of Biological, Environmental and Occupational Health, School of Public Health, University of Ghana, Legon, Accra
| | - Samuel Kweku Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra
| |
Collapse
|
15
|
Klafke F, Barros VG, Henning E. Solid waste management and Aedes aegypti infestation interconnections: A regression tree application. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:1684-1696. [PMID: 37013436 DOI: 10.1177/0734242x231164318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Public health is at the core of all environmental and anthropic impacts. Urban and territorial planners should include public health concerns in their plans. Basic sanitation infrastructure is essential to maintaining public health and social and economic development. This infrastructure deficiency causes diseases, death and economic losses in developing countries. Framing interconnections among health, sanitation, urbanization and circular economy will assist sustainable development goal achievements. This study aims to identify the relationships between solid waste management indicators in Brazil and the Aedes aegypti mosquito infestation index. Regression trees were employed for modelling due to the complexity and characteristics of the data. The analyses were performed separately from data collected from 3501 municipalities and 42 indicators from the country's five regions. Results show that expenses and personnel indicators were the most critical indicators (in the mid-western, southeastern and southern regions), operational (northeastern (NE) region) and management (northern region). The mean absolute errors ranged from 0.803 (southern region) to 2.507 (NE region). Regional analyses indicate that the municipalities with better SWM results display lower infestation rates in buildings and residences. This research is innovative as it analyses infestation rates rather than dengue prevalence, using a machine learning method, in a multidisciplinary research field that needs further study.
Collapse
Affiliation(s)
- Fernanda Klafke
- Department of Civil Engineering, Santa Catarina State University (UDESC), Joinville, SC, Brazil
| | - Virgínia Grace Barros
- Risk and Disaster Management Coordinated Group (CEPED), Department of Civil Engineering, Laboratory of Hydrology, Santa Catarina State University (UDESC), Joinville, SC, Brazil
| | - Elisa Henning
- Department of Mathematics, Santa Catarina State University (UDESC), Joinville, SC, Brazil
| |
Collapse
|
16
|
Kulkarni A, Delgadillo FM, Gayathrinathan S, Grajeda BI, Roy S. Current Status of Omics Studies Elucidating the Features of Reproductive Biology in Blood-Feeding Insects. INSECTS 2023; 14:802. [PMID: 37887814 PMCID: PMC10607566 DOI: 10.3390/insects14100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
Female insects belonging to the genera Anopheles, Aedes, Glossina, and Rhodnius account for the majority of global vector-borne disease mortality. In response to mating, these female insects undergo several molecular, physiological, and behavioral changes. Studying the dynamic post-mating molecular responses in these insects that transmit human diseases can lead to the identification of potential targets for the development of novel vector control methods. With the continued advancements in bioinformatics tools, we now have the capability to delve into various physiological processes in these insects. Here, we discuss the availability of multiple datasets describing the reproductive physiology of the common blood-feeding insects at the molecular level. Additionally, we compare the male-derived triggers transferred during mating to females, examining both shared and species-specific factors. These triggers initiate post-mating genetic responses in female vectors, affecting not only their reproductive success but also disease transmission.
Collapse
Affiliation(s)
- Aditi Kulkarni
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (A.K.); (F.M.D.); (S.G.); (B.I.G.)
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Frida M. Delgadillo
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (A.K.); (F.M.D.); (S.G.); (B.I.G.)
- Environmental Science and Engineering Ph.D. Program, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sharan Gayathrinathan
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (A.K.); (F.M.D.); (S.G.); (B.I.G.)
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Brian I. Grajeda
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (A.K.); (F.M.D.); (S.G.); (B.I.G.)
- Biosciences Ph.D. Program, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Sourav Roy
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA; (A.K.); (F.M.D.); (S.G.); (B.I.G.)
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
17
|
Jobe NB, Huijben S, Paaijmans KP. Non-target effects of chemical malaria vector control on other biological and mechanical infectious disease vectors. Lancet Planet Health 2023; 7:e706-e717. [PMID: 37558351 DOI: 10.1016/s2542-5196(23)00136-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 06/09/2023] [Accepted: 06/17/2023] [Indexed: 08/11/2023]
Abstract
Public health insecticides play a crucial role in malaria control and elimination programmes. Many other arthropods, including mechanical and biological vectors of infectious diseases, have similar indoor feeding or resting behaviours, or both, as malaria mosquitoes, and could be exposed to the same insecticides. In this Personal View, we show that little is known about the insecticide susceptibility status and the extent of exposure to malaria interventions of other arthropod species. We highlight that there is an urgent need to better understand the selection pressure for insecticide resistance in those vectors, to ensure current and future active ingredients remain effective in targeting a broad range of arthropod species, allowing us to prevent and control future outbreaks of infectious diseases other than malaria.
Collapse
Affiliation(s)
- Ndey Bassin Jobe
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Silvie Huijben
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA; Simon A Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ, USA
| | - Krijn P Paaijmans
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, AZ, USA; Simon A Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, AZ, USA; The Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, USA; ISGlobal, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.
| |
Collapse
|
18
|
Chen YX, Pan CY, Chen BY, Jeng SW, Chen CH, Huang JJ, Chen CD, Liu WL. Use of unmanned ground vehicle systems in urbanized zones: A study of vector Mosquito surveillance in Kaohsiung. PLoS Negl Trop Dis 2023; 17:e0011346. [PMID: 37289665 DOI: 10.1371/journal.pntd.0011346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 04/29/2023] [Indexed: 06/10/2023] Open
Abstract
Dengue fever is a vector-borne disease that has become a serious global public health problem over the past decade. An essential aspect of controlling and preventing mosquito-borne diseases is reduction of mosquito density. Through the process of urbanization, sewers (ditches) have become easy breeding sources of vector mosquitoes. In this study, we, for the first time, used unmanned ground vehicle systems (UGVs) to enter ditches in urban areas to observe vector mosquito ecology. We found traces of vector mosquitoes in ~20.7% of inspected ditches, suggesting that these constitute viable breeding sources of vector mosquitoes in urban areas. We also analyzed the average gravitrap catch of five administrative districts in Kaohsiung city from May to August 2018. The gravitrap indices of Nanzi and Fengshan districts were above the expected average (3.26), indicating that the vector mosquitoes density in these areas is high. Using the UGVs to detect positive ditches within the five districts followed by insecticide application generally yielded good control results. Further improving the high-resolution digital camera and spraying system of the UGVs may be able to effectively and instantly monitor vector mosquitoes and implement spraying controls. This approach may be suitable to solve the complex and difficult task of detecting mosquito breeding sources in urban ditches.
Collapse
Affiliation(s)
- Yu-Xuan Chen
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli, Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Ying Pan
- Department of Health, Kaohsiung City Government, Kaohsiung, Taiwan
- Graduate Institute of Science Education & Environmental Education, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Bo-Yu Chen
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Shu-Wen Jeng
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Chun-Hong Chen
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Joh-Jong Huang
- Department of Health, Kaohsiung City Government, Kaohsiung, Taiwan
- Department of Medical Humanity and Education, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chaur-Dong Chen
- Department of Health, Kaohsiung City Government, Kaohsiung, Taiwan
- Sanmin District Public Health Center, Department of Health, Kaohsiung City Government, Kaohsiung, Taiwan
| | - Wei-Liang Liu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
19
|
Anish TS, Valamparampil MJ, Rahul A, Saini P, Prajitha KC, Suresh MM, Reghukumar A, Kumar NP. Region-specific improvisation on WHO case definition and environmental risk factors associated with dengue: a case-control analysis from Kerala, India. Trans R Soc Trop Med Hyg 2023; 117:205-211. [PMID: 36326789 DOI: 10.1093/trstmh/trac102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/30/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Region-specific variations may occur in symptomatic manifestations that need to be addressed by dynamic case definitions. Environmental risk factors for dengue also vary widely across geographic settings. Our aim was to study the test positivity rate of the World Health Organization (WHO) 2009 probable dengue case definition and to suggest region-specific improvisations to it. The study also analyses the sociodemographic and environmental risk factors of dengue fever in South Kerala, India. METHODS A case-control study was conducted in South Kerala from 2017 to 2019. Dengue reverse transcription polymerase chain reaction (RT-PCR)-positive and RT-PCR-negative 'probable dengue' patients were compared to identify significant symptoms for a modified definition of dengue. A group of afebrile community controls was compared with RT-PCR-positive dengue cases to study the environmental and behavioural risk factors. RESULTS Arthralgia, palmar erythema and rashes have high discriminatory power (odds ratio [OR] >3) for identifying dengue. Redness of eyes, altered consciousness, abdominal distension and chills were found to moderately discriminate (OR 2-3) dengue. The adjusted analysis showed the presence of mosquito breeding sites (indoor p=0.02, outdoor p=0.03), solid waste dumping (p<0.001) and open water drainage in the compound (p=0.007) as significant predictors. CONCLUSIONS Regional modifications should be considered when using the WHO definition in endemic settings. Control of mosquito breeding at the household level is the key towards dengue prevention.
Collapse
Affiliation(s)
- Thekkumkara Surendran Anish
- Department of Community Medicine, Government Medical College, Thiruvananthapuram, India.,Kerala University of Health Sciences, Kerala, India
| | | | - Arya Rahul
- Indian Council of Medical Research-Vector Control Research Centre, Puducherry, India
| | - Prasanta Saini
- Indian Council of Medical Research-Vector Control Research Centre (field station), Kottayam, Kerala, India and
| | | | | | - Aravind Reghukumar
- Department of Infectious Diseases, Government Medical College, Thiruvanananthapuram, Kerala University of Health Sciences, Kerala, India
| | - N Pradeep Kumar
- Indian Council of Medical Research-Vector Control Research Centre (field station), Kottayam, Kerala, India and
| |
Collapse
|
20
|
Zerfu B, Kassa T, Legesse M. Epidemiology, biology, pathogenesis, clinical manifestations, and diagnosis of dengue virus infection, and its trend in Ethiopia: a comprehensive literature review. Trop Med Health 2023; 51:11. [PMID: 36829222 PMCID: PMC9950709 DOI: 10.1186/s41182-023-00504-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/15/2023] [Indexed: 02/26/2023] Open
Abstract
Dengue fever is a dengue virus infection, emerging rapidly and posing public health threat worldwide, primarily in tropical and subtropical countries. Nearly half of the world's population is now at risk of contracting the dengue virus, including new countries with no previous history-like Ethiopia. However, little is known about the epidemiology and impact of the disease in different countries. This is especially true in countries, where cases have recently begun to be reported. This review aims to summarize epidemiology, biology, pathogenesis, clinical manifestations, and diagnosis of dengue virus infection and its trend in Ethiopia. It may help countries, where dengue fever is not yet on the public health list-like Ethiopia to alert healthcare workers to consider the disease for diagnosis and treatment. The review retrieved and incorporated 139 published and organizational reports showing approximately 390 million new infections. About 100 million of these infections develop the clinical features of dengue, and thousands of people die annually from severe dengue fever in 129 countries. It is caused by being bitten by a dengue virus-infected female mosquito, primarily Aedes aegypti and, lesser, Ae. albopictus. Dengue virus is a member of the Flavivirus genus of the Flaviviridae family and has four independent but antigen-related single-stranded positive-sense RNA virus serotypes. The infection is usually asymptomatic but causes illnesses ranging from mild febrile illness to fatal dengue hemorrhagic fever or shock syndrome. Diagnosis can be by detecting the virus genome using nucleic acids amplification tests or testing NS1 antigen and/or anti-dengue antibodies from serum, plasma, circulating blood cells, or other tissues. Dengue cases and outbreaks have increased in recent decades, with a significant public health impact. Ethiopia has had nearly annual outbreaks since 2013, devastating an already fragmented health system and economy. Standardization of medication, population-level screening for early diagnosis and prompt treatment, and minimization of mosquito bites reduce overall infection and mortality rates.
Collapse
Affiliation(s)
- Biruk Zerfu
- Department of Medical Laboratory Science, College of Health Science, Addis Ababa University, Addis Ababa, Ethiopia. .,Aklilu Lema Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Tesfu Kassa
- grid.7123.70000 0001 1250 5688Aklilu Lema Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Mengistu Legesse
- grid.7123.70000 0001 1250 5688Aklilu Lema Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
21
|
Bosly HAEK, Salah N, Salama SA, Pashameah RA, Saeed A. Oil fly ash as a promise larvicide against the Aedes aegypti mosquitoes. Acta Trop 2023; 237:106735. [DOI: 10.1016/j.actatropica.2022.106735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/01/2022]
|
22
|
Ouédraogo WM, Toé KH, Sombié A, Viana M, Bougouma C, Sanon A, Weetman D, McCall PJ, Kanuka H, Badolo A. Impact of physicochemical parameters of Aedes aegypti breeding habitats on mosquito productivity and the size of emerged adult mosquitoes in Ouagadougou City, Burkina Faso. Parasit Vectors 2022; 15:478. [PMID: 36539816 PMCID: PMC9768987 DOI: 10.1186/s13071-022-05558-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Outbreaks of dengue fever caused by viruses transmitted by Aedes aegypti mosquitoes are repeated occurrences in West Africa. In recent years, Burkina Faso has experienced major dengue outbreaks, most notably in 2016 and 2017 when 80% of cases were recorded in Ouagadougou City (Central Health Region). In order to better understand the ecology of this vector and to provide information for use in developing control measures, a study on the characteristics of Aedes container breeding sites and the productivity of such sites, as measured by the abundance of immature stages and resultant adult body size, was undertaken in three health districts (Baskuy, Bogodogo and Nongremassom) of Ouagadougou. METHODS Adult mosquitoes were collected indoors and outdoors in 643 households during the rainy season from August to October 2018. The presence of water containers was systematically recorded and the containers examined for the presence or absence of larvae. Characteristics of the container breeding sites, including size of the container and temperature, pH and conductivity of the water contained within, were recorded as well as the volume of water. Traditional Stegomyia indices were calculated as quantitative indicators of the risk of dengue outbreaks; generalised mixed models were fitted to larval and pupal densities, and the contribution of each covariate to the model was evaluated by the Z-value and associated P-value. RESULTS A total of 1061 container breeding sites were inspected, of which 760 contained immature stages of Ae. aegypti ('positive' containers). The most frequent container breeding sites found in each health district were tyres and both medium (buckets/cans/pots) and large (bins/barrels/drums) containers; these containers were also the most productive larval habitats and the types that most frequently tested positive. Of the Stegomyia indices, the Breteau, House and Container indices exceeded WHO dengue risk thresholds. Generalised linear mixed models showed that larval and pupal abundances were associated with container type, physicochemical characteristics of the water and collection month, but there were significant differences among container types and among health districts. Aedes aegypti body size was positively associated with type and diameter of the container, as well as with electrical conductivity of the water, and negatively associated with pH and temperature of the water and with the level of exposure of the container to sunlight. CONCLUSION This study provides data on putative determinants of the productivity of habitats regarding Ae. aegypti immature stages. These data are useful to better understand Ae. aegypti proliferation. The results suggest that identifying and targeting the most productive container breeding sites could contribute to dengue vector control strategies in Burkina Faso.
Collapse
Affiliation(s)
- Wendegoudi Mathias Ouédraogo
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso ,grid.491199.dProgramme National de Lutte Contre Les Maladies Tropicales Négligées, Ministère de la Santé, Ouagadougou, Burkina Faso
| | - Kobié Hyacinthe Toé
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso ,grid.507461.10000 0004 0413 3193Institut National de Santé Publique, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Aboubacar Sombié
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Mafalda Viana
- grid.8756.c0000 0001 2193 314XSchool of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Clarisse Bougouma
- grid.491199.dProgramme National de Lutte Contre Les Maladies Tropicales Négligées, Ministère de la Santé, Ouagadougou, Burkina Faso
| | - Antoine Sanon
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - David Weetman
- grid.48004.380000 0004 1936 9764Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Philip J. McCall
- grid.48004.380000 0004 1936 9764Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Hirotaka Kanuka
- grid.411898.d0000 0001 0661 2073Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Athanase Badolo
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| |
Collapse
|
23
|
Sharma Y, Bennett JB, Rašić G, Marshall JM. Close-kin mark-recapture methods to estimate demographic parameters of mosquitoes. PLoS Comput Biol 2022; 18:e1010755. [PMID: 36508463 PMCID: PMC9779664 DOI: 10.1371/journal.pcbi.1010755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 12/22/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022] Open
Abstract
Close-kin mark-recapture (CKMR) methods have recently been used to infer demographic parameters such as census population size and survival for fish of interest to fisheries and conservation. These methods have advantages over traditional mark-recapture methods as the mark is genetic, removing the need for physical marking and recapturing that may interfere with parameter estimation. For mosquitoes, the spatial distribution of close-kin pairs has been used to estimate mean dispersal distance, of relevance to vector-borne disease transmission and novel biocontrol strategies. Here, we extend CKMR methods to the life history of mosquitoes and comparable insects. We derive kinship probabilities for mother-offspring, father-offspring, full-sibling and half-sibling pairs, where an individual in each pair may be a larva, pupa or adult. A pseudo-likelihood approach is used to combine the marginal probabilities of all kinship pairs. To test the effectiveness of this approach at estimating mosquito demographic parameters, we develop an individual-based model of mosquito life history incorporating egg, larva, pupa and adult life stages. The simulation labels each individual with a unique identification number, enabling close-kin relationships to be inferred for sampled individuals. Using the dengue vector Aedes aegypti as a case study, we find the CKMR approach provides unbiased estimates of adult census population size, adult and larval mortality rates, and larval life stage duration for logistically feasible sampling schemes. Considering a simulated population of 3,000 adult mosquitoes, estimation of adult parameters is accurate when ca. 40 adult females are sampled biweekly over a three month period. Estimation of larval parameters is accurate when adult sampling is supplemented with ca. 120 larvae sampled biweekly over the same period. The methods are also effective at detecting intervention-induced increases in adult mortality and decreases in population size. As the cost of genome sequencing declines, CKMR holds great promise for characterizing the demography of mosquitoes and comparable insects of epidemiological and agricultural significance.
Collapse
Affiliation(s)
- Yogita Sharma
- Divisions of Biostatistics and Epidemiology, School of Public Health, University of California, Berkeley, California, United States of America
- Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada
| | - Jared B. Bennett
- Biophysics Graduate Group, Division of Biological Sciences, College of Letters and Science, University of California, Berkeley, California, United States of America
| | - Gordana Rašić
- Mosquito Genomics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - John M. Marshall
- Divisions of Biostatistics and Epidemiology, School of Public Health, University of California, Berkeley, California, United States of America
- Innovative Genomics Institute, University of California, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
24
|
Montalbo FJP. Machine-based mosquito taxonomy with a lightweight network-fused efficient dual ConvNet with residual learning and Knowledge Distillation. Appl Soft Comput 2022. [DOI: 10.1016/j.asoc.2022.109913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
25
|
Kassam NA, Laswai D, Kulaya N, Kaaya RD, Kajeguka DC, Schmiegelow C, Wang CW, Alifrangis M, Kavishe RA. Human IgG responses to Aedes mosquito salivary peptide Nterm-34kDa and its comparison to Anopheles salivary antigen (gSG6-P1) IgG responses measured among individuals living in Lower Moshi, Tanzania. PLoS One 2022; 17:e0276437. [PMID: 36301860 PMCID: PMC9612500 DOI: 10.1371/journal.pone.0276437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 09/13/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND The level of human exposure to arbovirus vectors, the Aedes mosquitoes, is mainly assessed by entomological methods which are labour intensive, difficult to sustain at a large scale and are affected if transmission and exposure levels are low. Alternatively, serological biomarkers which detect levels of human exposure to mosquito bites may complement the existing epidemiologic tools as they seem cost-effective, simple, rapid, and sensitive. This study explored human IgG responses to an Aedes mosquito salivary gland peptide Nterm-34kDa in Lower Moshi, a highland area with evidence of circulating arboviruses and compared the Aedes IgG responses to Anopheles mosquitoes' salivary antigen (GSG6-P1) IgG responses. METHODS Three cross-sectional surveys were conducted in 2019: during the first dry season in March, at the end of the rainy season in June and during the second dry season in September in five villages located in Lower Moshi. Blood samples were collected from enrolled participants above six months of age (age span: 7 months to 94 years) and analysed for the presence of anti-Nterm-34kDa IgG antibodies. Possible associations between Nterm-34kDa seroprevalence and participants' characteristics were determined. Levels of IgG responses and seroprevalence were correlated and compared to the already measured IgG responses and seroprevalence of Anopheles mosquitoes' salivary antigen, GSG6-P1. RESULTS During the first dry season, Nterm-34kDa seroprevalence was 34.1% and significantly increased at the end of the rainy season to 45.3% (Chi square (χ2) = 6.42 p = 0.011). During the second dry season, the seroprevalence significantly declined to 26.5% (χ2 = 15.12 p<0.001). During the rainy season, seroprevalence was significantly higher among residents of Oria village (adjusted odds ratio (AOR) = 2.86; 95% CI = 1.0-7.8; p = 0.041) compared to Newland. Moreover, during the rainy season, the risk of exposure was significantly lower among individuals aged between 16 and 30 years (AOR = 0.25; 95% CI = 0.1 = 0.9; p = 0.036) compared to individuals aged between 0 and 5 years. There was weak to moderate negative correlation between N-term 34kDa IgG and gSG6-P1 antigens. N-term 34kDa seroprevalence were higher compared to gSG6-P1 seroprevalence. CONCLUSION The findings of this study support that IgG antibody responses towards the Aedes mosquito salivary peptide Nterm-34kDa are detectable among individuals living in lower Moshi and vary with season and geographical area. More individuals are exposed to Aedes mosquito bites than Anopheles mosquito and those exposed to Aedes bites are not necessarily exposed to Anopheles mosquitoes.
Collapse
Affiliation(s)
- Nancy A. Kassam
- Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
- * E-mail:
| | - Daniel Laswai
- Muhimbili University of Health and Allied Sciences (MUHAS), Dar es Salaam, Tanzania
| | - Neema Kulaya
- Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Robert D. Kaaya
- Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
- Pan-African Malaria Vector Research Consortium, Moshi, Tanzania
| | - Debora C. Kajeguka
- Kilimanjaro Christian Medical University College (KCMUCo), Moshi, Tanzania
| | - Christentze Schmiegelow
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Christian W. Wang
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | | |
Collapse
|
26
|
Jaleta MB, Tefera M, Negussie H, Mulatu T, Berhe T, Belete F, Yalew B, Gizaw O, Dabasa G, Abunna F, Regassa F, Amenu K, Leta S. Entomological survey of the potential vectors of Rift Valley fever virus and absence of detection of the virus genome from the vectors in various niches in the southern half of the Great Rift Valley of Ethiopia. Vet Med Sci 2022; 8:2716-2725. [DOI: 10.1002/vms3.941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Megarsa Bedasa Jaleta
- College of Veterinary Medicine and Agriculture Addis Ababa University Bishoftu Ethiopia
| | - Mehari Tefera
- College of Veterinary Medicine and Agriculture Addis Ababa University Bishoftu Ethiopia
| | - Haileleul Negussie
- College of Veterinary Medicine and Agriculture Addis Ababa University Bishoftu Ethiopia
| | | | - Tsega Berhe
- College of Veterinary Medicine and Agriculture Addis Ababa University Bishoftu Ethiopia
| | - Fasika Belete
- College of Veterinary Medicine and Agriculture Jimma University Jimma Ethiopia
| | - Bekele Yalew
- Animal Health Institute Entomology Unit Sebeta Ethiopia
| | - Oda Gizaw
- College of Veterinary Medicine and Agriculture Addis Ababa University Bishoftu Ethiopia
| | - Golo Dabasa
- College of Veterinary Medicine and Agriculture Addis Ababa University Bishoftu Ethiopia
| | - Fufa Abunna
- College of Veterinary Medicine and Agriculture Addis Ababa University Bishoftu Ethiopia
| | - Fikru Regassa
- College of Veterinary Medicine and Agriculture Addis Ababa University Bishoftu Ethiopia
- Ministry of Agriculture Livestock and Fishery Addis Ababa Ethiopia
| | - Kebede Amenu
- College of Veterinary Medicine and Agriculture Addis Ababa University Bishoftu Ethiopia
| | - Samson Leta
- College of Veterinary Medicine and Agriculture Addis Ababa University Bishoftu Ethiopia
| |
Collapse
|
27
|
Ruairuen W, Amnakmanee K, Primprao O, Boonrod T. Effect of ecological factors and breeding habitat types on Culicine larvae occurrence and abundance in residential areas Southern Thailand. Acta Trop 2022; 234:106630. [DOI: 10.1016/j.actatropica.2022.106630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/30/2022] [Accepted: 07/30/2022] [Indexed: 11/01/2022]
|
28
|
Ramadan OPC, Berta KK, Wamala JF, Maleghemi S, Rumunu J, Ryan C, Ladu AI, Joseph JLK, Abenego AA, Ndenzako F, Olu OO. Analysis of the 2017-2018 Rift valley fever outbreak in Yirol East County, South Sudan: a one health perspective. Pan Afr Med J 2022; 42:5. [PMID: 36158935 PMCID: PMC9474954 DOI: 10.11604/pamj.supp.2022.42.1.33769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/30/2022] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION the emergence and re-emergence of zoonotic diseases have threatened both human and animal health globally since their identification in the 20th century. Rift Valley fever (RVF) virus is a recurrent zoonotic disease in South Sudan, with the earliest RVF cases confirmed in 2007 in Kapoeta North County, Eastern Equatoria state. METHODS we analyzed national RVF outbreak data to describe the epidemiological pattern of the RVF outbreak in Yirol East county in Lakes State. The line list of cases (confirmed, probable, suspected, and non-cases) was used to describe the pattern and risk factors associated with the outbreak. The animal and human blood samples were tested using Enzyme-Linked Immunosorbent Assay (ELISA) (Immunoglobulin IgG and IgM) and Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR). Qualitative data were collected from weekly RVF situation reports, and national guidelines and policies. RESULTS between December 2017 and December 2018, 58 suspected human RVF cases were reported. The cases were reclassified based on laboratory and investigations results, such that as of 16th December 2018, there were a total of six (10.3%) laboratory-confirmed, three (5.2%) probable, one (1.7%) suspected, and 48 (82.8%) non-cases were reported. A total of four deaths were reported during the outbreak (case fatality rate (CFR) 6.8% (4/58). A total of 28 samples were collected from animals; of these, six tested positives for RVF (positivity rate of 32.1% (9/28). The outbreak was announced in March 2018, after four months of the first reported suspected RVF case. Several factors were attributed to the delayed notification and outbreak announcement such as lack of multi-sectorial coordination at the state and county level, multi-sectoral coordination at national level mostly attended by public health experts from human health, inadequate animal health surveillance, poor coordination between livestock disease surveillance and public health surveillance, limited in-country laboratory diagnostic capacity, the laboratory results for the animal health took longer than expected, and lack of a national One Health approach strategy. CONCLUSION the outbreak demonstrated gaps to investigate and respond to zoonotic disease outbreaks in South Sudan.
Collapse
Affiliation(s)
- Otim Patrick Cossy Ramadan
- World Health Organization, East and South Africa, Sub Regional Office, Nairobi, Kenya,,Corresponding author Kibebu Kinfu, World Health Organization, Country Office, Juba, South Sudan.
| | | | | | | | - John Rumunu
- Ministry of Health, Juba, Republic of South Sudan
| | - Caroline Ryan
- World Health Organization, East and South Africa, Sub Regional Office, Nairobi, Kenya
| | - Alice Igale Ladu
- World Health Organization (WHO), WHO Country Office, Juba, South Sudan
| | | | | | - Fabian Ndenzako
- World Health Organization (WHO), WHO Country Office, Juba, South Sudan
| | - Olushayo Oluseun Olu
- World Health Organization, East and South Africa, Sub Regional Office, Nairobi, Kenya
| |
Collapse
|
29
|
Phuyal P, Kramer IM, Kuch U, Magdeburg A, Groneberg DA, Lamichhane Dhimal M, Montag D, Harapan H, Wouters E, Jha AK, Dhimal M, Müller R. The knowledge, attitude and practice of community people on dengue fever in Central Nepal: a cross-sectional study. BMC Infect Dis 2022; 22:454. [PMID: 35549884 PMCID: PMC9096776 DOI: 10.1186/s12879-022-07404-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 04/11/2022] [Indexed: 11/29/2022] Open
Abstract
Background Since 2006, Nepal has experienced frequent Dengue fever (DF) outbreaks. Up to now, there have been no knowledge, attitude and practice (KAP) studies carried out on DF in Nepal that have included qualitative in-depth and quantitative data. Thus, we aimed to explore and compare the KAP of people residing in the lowland (< 1500 m) and highland (> 1500 m) areas of Nepal.
Methods A cross-sectional mixed-method study was conducted in six districts of central Nepal in September–October 2018 including both quantitative (660 household surveys) and qualitative data (12 focus group discussions and 27 in-depth interviews). The KAP assessment was executed using a scoring system and defined as high or low based on 80% cut-off point. Logistic regression was used to investigate the associated factors, in quantitative analysis. The deductive followed by inductive approach was adopted to identify the themes in the qualitative data. Results The study revealed that both the awareness about DF and prevention measures were low. Among the surveyed participants, 40.6% had previously heard about DF with a significantly higher number in the lowland areas. Similarly, IDI and FGD participants from the lowland areas were aware about DF, and it’s associated symptoms, hence they were adopting better preventive practices against DF. The findings of both the qualitative and quantitative data indicate that people residing in the lowland areas had better knowledge on DF compared to people in highland areas. All IDI participants perceived a higher chance of increasing future dengue outbreaks due to increasing temperature and the mobility of infected people from endemic to non-endemic areas. The most quoted sources of information were the television (71.8%) and radio (51.5%). Overall, only 2.3% of the HHS participants obtained high knowledge scores, 74.1% obtained high attitude scores and 21.2% obtained high preventive practice scores on DF. Among the socio-demographic variables, the area of residence, educational level, age, monthly income, SES and occupation were independent predictors of knowledge level, while the education level of the participants was an independent predictor of the attitude level. Conclusions Our study found a very low level of knowledge and insufficient preventive practices. This highlights an urgent need for extensive dengue prevention programs in both highland and lowland communities of Nepal. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07404-4.
Collapse
Affiliation(s)
- Parbati Phuyal
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, Frankfurt am Main, Germany. .,Institute of Environment and Sustainable Development, University of Antwerp, Antwerp, Belgium.
| | - Isabelle Marie Kramer
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, Frankfurt am Main, Germany
| | - Ulrich Kuch
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, Frankfurt am Main, Germany
| | - Axel Magdeburg
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, Frankfurt am Main, Germany
| | - David A Groneberg
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, Frankfurt am Main, Germany
| | - Mandira Lamichhane Dhimal
- Policy Research Institute (PRI), Kathmandu, Nepal.,Global Institute for Interdisciplinary Studies (GIIS), Kathmandu, Nepal
| | - Doreen Montag
- Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Harapan Harapan
- Medical Research Unit, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia.,Tropical Disease Centre, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia.,Department of Microbiology, School of Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia
| | - Edwin Wouters
- Department of Sociology, University of Antwerp, Antwerp, Belgium
| | | | - Meghnath Dhimal
- Nepal Health Research Council, Ramshah Path, Kathmandu, Nepal
| | - Ruth Müller
- Institute of Occupational Medicine, Social Medicine and Environmental Medicine, Goethe University, Frankfurt am Main, Germany.,Unit Entomology, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
30
|
Bacha AUR, Nabi I, Zhang L. Mechanisms and the Engineering Approaches for the Degradation of Microplastics. ACS ES&T ENGINEERING 2021; 1:1481-1501. [DOI: 10.1021/acsestengg.1c00216] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Affiliation(s)
- Aziz-Ur-Rahim Bacha
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples’ Republic of China
| | - Iqra Nabi
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples’ Republic of China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples’ Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, Peoples’ Republic of China
| |
Collapse
|
31
|
Tunali M, Radin AA, Başıbüyük S, Musah A, Borges IVG, Yenigun O, Aldosery A, Kostkova P, dos Santos WP, Massoni T, Dutra LMM, Moreno GMM, de Lima CL, da Silva ACG, Ambrizzi T, da Rocha RP, Jones KE, Campos LC. A review exploring the overarching burden of Zika virus with emphasis on epidemiological case studies from Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55952-55966. [PMID: 34495471 PMCID: PMC8500866 DOI: 10.1007/s11356-021-15984-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/11/2021] [Indexed: 05/13/2023]
Abstract
This paper explores the main factors for mosquito-borne transmission of the Zika virus by focusing on environmental, anthropogenic, and social risks. A literature review was conducted bringing together related information from this genre of research from peer-reviewed publications. It was observed that environmental conditions, especially precipitation, humidity, and temperature, played a role in the transmission. Furthermore, anthropogenic factors including sanitation, urbanization, and environmental pollution promote the transmission by affecting the mosquito density. In addition, socioeconomic factors such as poverty as well as social inequality and low-quality housing have also an impact since these are social factors that limit access to certain facilities or infrastructure which, in turn, promote transmission when absent (e.g., piped water and screened windows). Finally, the paper presents short-, mid-, and long-term preventative solutions together with future perspectives. This is the first review exploring the effects of anthropogenic aspects on Zika transmission with a special emphasis in Brazil.
Collapse
Affiliation(s)
- Merve Tunali
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342 Istanbul, Turkey
| | | | - Selma Başıbüyük
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342 Istanbul, Turkey
| | - Anwar Musah
- UCL Centre for Digital Public Health in Emergencies, Institute for Risk and Disaster Reduction, University College London, London, WC1E 6BT, London, UK
| | - Iuri Valerio Graciano Borges
- Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, SP 05508-090 Brazil
| | - Orhan Yenigun
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342 Istanbul, Turkey
- School of Engineering, European University of Lefke, Lefke, North Cyprus, Turkey
| | - Aisha Aldosery
- UCL Centre for Digital Public Health in Emergencies, Institute for Risk and Disaster Reduction, University College London, London, WC1E 6BT, London, UK
| | - Patty Kostkova
- UCL Centre for Digital Public Health in Emergencies, Institute for Risk and Disaster Reduction, University College London, London, WC1E 6BT, London, UK
| | - Wellington P. dos Santos
- Department of Biomedical Engineering, Federal University of Pernambuco, Recife, PE 50740-550 Brazil
| | - Tiago Massoni
- Department Systems and Computing, Federal University of Campina Grande, Campina Grande, PB 58429-900 Brazil
| | - Livia Marcia Mosso Dutra
- Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, SP 05508-090 Brazil
| | - Giselle Machado Magalhaes Moreno
- Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, SP 05508-090 Brazil
| | - Clarisse Lins de Lima
- Polytechnic School of Pernambuco, University of Pernambuco (Poli-UPE), Recife, PE 50720-001 Brazil
| | - Ana Clara Gomes da Silva
- Department of Biomedical Engineering, Federal University of Pernambuco, Recife, PE 50740-550 Brazil
| | - Tércio Ambrizzi
- Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, SP 05508-090 Brazil
| | - Rosmeri Porfirio da Rocha
- Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, São Paulo, SP 05508-090 Brazil
| | - Kate E. Jones
- Department of Genetics, Evolution and Environment, Centre for Biodiversity and Environment Research, University College London, WC1E 6BT, London, UK
| | - Luiza C. Campos
- Department of Civil, Environmental and Geomatic Engineering, University College London, WC1E 6BT, London, UK
| |
Collapse
|
32
|
Jiao J, Suarez GP, Fefferman NH. How public reaction to disease information across scales and the impacts of vector control methods influence disease prevalence and control efficacy. PLoS Comput Biol 2021; 17:e1008762. [PMID: 34181645 PMCID: PMC8270472 DOI: 10.1371/journal.pcbi.1008762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/09/2021] [Accepted: 05/28/2021] [Indexed: 11/10/2022] Open
Abstract
With the development of social media, the information about vector-borne disease incidence over broad spatial scales can cause demand for local vector control before local risk exists. Anticipatory intervention may still benefit local disease control efforts; however, infection risks are not the only focal concerns governing public demand for vector control. Concern for environmental contamination from pesticides and economic limitations on the frequency and magnitude of control measures also play key roles. Further, public concern may be focused more on ecological factors (i.e., controlling mosquito populations) or on epidemiological factors (i.e., controlling infection-carrying mosquitoes), which may lead to very different control outcomes. Here we introduced a generic Ross-MacDonald model, incorporating these factors under three spatial scales of disease information: local, regional, and global. We tailored and parameterized the model for Zika virus transmitted by Aedes aegypti mosquito. We found that sensitive reactivity caused by larger-scale incidence information could decrease average human infections per patch breeding capacity, however, the associated increase in total control effort plays a larger role, which leads to an overall decrease in control efficacy. The shift of focal concerns from epidemiological to ecological risk could relax the negative effect of the sensitive reactivity on control efficacy when mosquito breeding capacity populations are expected to be large. This work demonstrates that, depending on expected total mosquito breeding capacity population size, and weights of different focal concerns, large-scale disease information can reduce disease infections without lowering control efficacy. Our findings provide guidance for vector-control strategies by considering public reaction through social media.
Collapse
Affiliation(s)
- Jing Jiao
- National Institute for Mathematical and Biological Synthesis, The University of Tennessee, Knoxville, Tennessee, United States of America
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Gonzalo P. Suarez
- Department of Agriculture and Biological Engineering, University of Florida, Gainesville, Florida, United States of America
| | - Nina H. Fefferman
- National Institute for Mathematical and Biological Synthesis, The University of Tennessee, Knoxville, Tennessee, United States of America
- Ecology & Evolutionary Biology, The University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|
33
|
Wat'senga Tezzo F, Fasine S, Manzambi Zola E, Marquetti MDC, Binene Mbuka G, Ilombe G, Mundeke Takasongo R, Smitz N, Bisset JA, Van Bortel W, Vanlerberghe V. High Aedes spp. larval indices in Kinshasa, Democratic Republic of Congo. Parasit Vectors 2021; 14:92. [PMID: 33522947 PMCID: PMC7852359 DOI: 10.1186/s13071-021-04588-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Dengue, yellow fever, chikungunya and Zika are among the most important emerging infectious vector-borne diseases worldwide. In the Democratic Republic of Congo (DRC), increases in cases of dengue and outbreaks of yellow fever and chikungunya have been reported since 2010. The main vectors of these arboviruses, Aedes aegypti and Aedes albopictus, have been reported in DRC, but there is a lack of detailed information on their presence and spread to guide disease control efforts. METHODS In 2018, two cross-sectional surveys were conducted in Kinshasa province (DRC), one in the rainy (January/February) and one in the dry season (July). Four hundred houses were visited in each of the four selected communes (N'Djili, Mont Ngafula, Lingwala and Kalamu). Within the peri-domestic area of each household, searches were conducted for larval habitats, which were then surveyed for the presence of Aedes larvae and pupae. A subset of the immature specimens were reared to adults for morphological identification followed by DNA barcoding of the specimens to validate identifications. RESULTS The most rural commune (Mont Ngafula) had the highest pupal index (number of Aedes spp. pupae per 100 inspected houses) at 246 (20) pupae/100 houses, and Breteau index (BI; number of containers positive for immature stages of Aedes spp. per 100 households) at 82.2 (19.5) positive containers/100 houses for the rainy (and dry) season, respectively. The BI was 21.5 (4.7), 36.7 (9.8) and 41.7 (7.5) in Kalamu, Lingwala and N'Djili in the rainy (and dry) season, respectively. The house index (number of houses positive for at least one container with immature stages of Aedes spp. per 100 inspected houses) was, on average, across all communes, 27.5% (7.6%); and the container index (number of containers positive for immature stages of Aedes spp. per 100 inspected containers) was 15.0% (10.0%) for the rainy (and dry) season, respectively. The vast majority of Aedes-positive containers were found outside the houses [adjusted odds ratio 27.4 (95% confidence interval 14.9-50.1)]. During the dry season, the most productive containers were the ones used for water storage, whereas in the rainy season rubbish and tires constituted key habitats. Both Ae. aegypti and Ae. albopictus were found. Anopheles larvae were found in different types of Aedes larval habitats, especially during the rainy season. CONCLUSIONS In both surveys and in all communes, the larval indices (BI) were higher than the arbovirus transmission threshold values established by the World Health Organization. Management strategies for controlling Aedes in Kinshasa need to target the key types of containers for Aedes larvae, which are mainly located in outdoor spaces, for larval habitat destruction or reduction.
Collapse
Affiliation(s)
- Francis Wat'senga Tezzo
- Unit of Entomology, Department of Parasitology, National Institute of Biomedical Research, 5345 Avenue De la Démocratie, Gombe, Kinshasa, Democratic Republic of the Congo
| | - Sylvie Fasine
- Unit of Entomology, Department of Parasitology, National Institute of Biomedical Research, 5345 Avenue De la Démocratie, Gombe, Kinshasa, Democratic Republic of the Congo
| | - Emile Manzambi Zola
- Unit of Entomology, Department of Parasitology, National Institute of Biomedical Research, 5345 Avenue De la Démocratie, Gombe, Kinshasa, Democratic Republic of the Congo
| | - Maria Del Carmen Marquetti
- Department of Vector Control, Instituto Medicina Tropical Pedro Kourí (IPK), Avenida Novia del Mediodía, KM 6 1/2, La Lisa, Havana, Cuba
| | - Guillaume Binene Mbuka
- Unit of Entomology, Department of Parasitology, National Institute of Biomedical Research, 5345 Avenue De la Démocratie, Gombe, Kinshasa, Democratic Republic of the Congo
| | - Gillon Ilombe
- Unit of Entomology, Department of Parasitology, National Institute of Biomedical Research, 5345 Avenue De la Démocratie, Gombe, Kinshasa, Democratic Republic of the Congo
| | - Richard Mundeke Takasongo
- Unit of Entomology, Department of Parasitology, National Institute of Biomedical Research, 5345 Avenue De la Démocratie, Gombe, Kinshasa, Democratic Republic of the Congo
| | - Nathalie Smitz
- Department of Biology, Royal Museum for Central Africa (BopCo), Leuvensesteenweg 13-17, Tervuren, Belgium
| | - Juan Andre Bisset
- Department of Vector Control, Instituto Medicina Tropical Pedro Kourí (IPK), Avenida Novia del Mediodía, KM 6 1/2, La Lisa, Havana, Cuba
| | - Wim Van Bortel
- Outbreak Research Team, Institute of Tropical Medicine (ITM), Nationalestraat 155, Antwerp, Belgium
- Unit of Entomology, Biomedical Science Department, Institute of Tropical Medicine (ITM), Nationalestraat 155, Antwerp, Belgium
| | - Veerle Vanlerberghe
- Tropical Infectious Disease Group, Public Health Department, Institute of Tropical Medicine (ITM), Nationalestraat 155, Antwerp, Belgium.
| |
Collapse
|
34
|
Gutu MA, Bekele A, Seid Y, Mohammed Y, Gemechu F, Woyessa AB, Tayachew A, Dugasa Y, Gizachew L, Idosa M, Tokarz RE, Sugerman D. Another dengue fever outbreak in Eastern Ethiopia-An emerging public health threat. PLoS Negl Trop Dis 2021; 15:e0008992. [PMID: 33465086 PMCID: PMC7845954 DOI: 10.1371/journal.pntd.0008992] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 01/29/2021] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Dengue Fever (DF) is a viral disease primarily transmitted by Aedes (Ae.) aegypti mosquitoes. Outbreaks in Eastern Ethiopia were reported during 2014-2016. In May 2017, we investigated the first suspected DF outbreak from Kabridahar Town, Somali region (Eastern Ethiopia) to describe its magnitude, assess risk factors, and implement control measures. METHODS Suspected DF cases were defined as acute febrile illness plus ≥2 symptoms (headache, fever, retro-orbital pain, myalgia, arthralgia, rash, or hemorrhage) in Kabridahar District residents. All reported cases were identified through medical record review and active searches. Severe dengue was defined as DF with severe organ impairment, severe hemorrhage, or severe plasma leakage. We conducted a neighborhood-matched case-control study using a subset of suspected cases and conveniently-selected asymptomatic community controls and interviewed participants to collect demographic and risk factor data. We tested sera by RT-PCR to detect dengue virus (DENV) and identify serotypes. Entomologists conducted mosquito surveys at community households to identify species and estimate larval density using the house index (HI), container index (CI) and Breteau index (BI), with BI≥20 indicating high density. RESULTS We identified 101 total cases from May 12-31, 2017, including five with severe dengue (one death). The attack rate (AR) was 17/10,000. Of 21 tested samples, 15 (72%) were DENV serotype 2 (DENV 2). In the case-control study with 50 cases and 100 controls, a lack of formal education (AOR [Adjusted Odds Ratio] = 4.2, 95% CI [Confidence Interval] 1.6-11.2) and open water containers near the home (AOR = 3.0, 95% CI 1.2-7.5) were risk factors, while long-lasting insecticide treated-net (LLITN) usage (AOR = 0.21, 95% CI 0.05-0.79) was protective. HI and BI were 66/136 (49%) and 147 per 100 homes (147%) respectively, with 151/167 (90%) adult mosquitoes identified as Ae. aegypti. CONCLUSION The epidemiologic, entomologic, and laboratory investigation confirmed a DF outbreak. Mosquito indices were far above safe thresholds, indicating inadequate vector control. We recommended improved vector surveillance and control programs, including best practices in preserving water and disposal of open containers to reduce Aedes mosquito density.
Collapse
Affiliation(s)
| | | | - Yimer Seid
- Addis Ababa University, Addis Ababa, Ethiopia
| | - Yusuf Mohammed
- World Health Organization Country Office for Ethiopia, Addis Ababa, Ethiopia
| | - Fekadu Gemechu
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | - Adamu Tayachew
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Yohanis Dugasa
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Lehageru Gizachew
- Ethiopian Field Epidemiology Training Program, Addis Ababa, Ethiopia
| | - Moti Idosa
- Ethiopian Field Epidemiology Training Program, Addis Ababa, Ethiopia
| | - Ryan E. Tokarz
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - David Sugerman
- Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
35
|
Hussen MO, Sayed ASM, Abushahba MFN. Sero-epidemiological study on Dengue fever virus in humans and camels at Upper Egypt. Vet World 2020; 13:2618-2624. [PMID: 33487979 PMCID: PMC7811540 DOI: 10.14202/vetworld.2020.2618-2624] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/02/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND AIM Dengue fever (DF) is an important mosquito-borne viral zoonosis affecting over 100 countries worldwide and putting about 3.9 billion people at risk of infection. The disease has re-emerged in Egypt since 2011; however, there is a paucity of recent epidemiological data available. Therefore, in this study, we employed a cross-sectional study to determine DF prevalence in humans and camels in Asyut and Sohag Governorates, Egypt, during 2019. MATERIALS AND METHODS A total of 91 humans and a similar number of dromedary camels were utilized in this study. Sera were obtained and analyzed for the presence of specific antibodies against DF virus using enzyme-linked immunosorbent assay. Related epidemiological data affecting the disease spread in humans and camels were recorded and statistically analyzed. RESULTS The seroprevalence of DF in humans and camels was 12.09% and 3.3%, respectively. The disease varied significantly by the species examined as humans were found to be at a higher risk of acquiring the infection compared to camels. Nearly equal odds of exposure (odds ratio [OR]) were seen in the individuals with close contact with camels compared to those without; however, individuals exposed to mosquitoes were at approximately 3 times higher risk of infection (OR=2.95 [95% confidence interval [CI], 0.73-11.93]) compared to individuals who were not exposed to mosquitoes (OR=0.033 [95% CI, 0.084-1.37]). Interestingly, DF seropositivity in camels was significantly related to the presence or absence of symptoms within 2 weeks before sampling (p=0.02) where symptomatic animals had higher odds of exposure (OR=19.51 [95%, 0.97-392.3]) compared to asymptomatic ones (OR=0.05 [95%, 0.002-1.03]). CONCLUSION The current study reports the presence of specific antibodies against dengue virus (DENV) in humans residing within Asyut and Sohag Governorates, Egypt. Furthermore, it provides the first serological evidence of DENV circulation in camels which is alarming. A more comprehensive study is needed; however, this baseline investigation underscores the urgent need for increasing awareness among people residing in the area as well as application of the appropriate mosquito control measures to avoid further spread of the disease.
Collapse
Affiliation(s)
| | - Amal S. M. Sayed
- Department of Zoonoses, Faculty of Veterinary Medicine, Assiut University, Asyut 71526, Egypt
| | - Mostafa F. N. Abushahba
- Department of Zoonoses, Faculty of Veterinary Medicine, Assiut University, Asyut 71526, Egypt
| |
Collapse
|
36
|
Elumalai K, Mahboob S, Al-Ghanim KA, Al-Misned F, Pandiyan J, Baabu PMK, Krishnappa K, Govindarajan M. Entomofaunal survey and larvicidal activity of greener silver nanoparticles: A perspective for novel eco-friendly mosquito control. Saudi J Biol Sci 2020; 27:2917-2928. [PMID: 33100847 PMCID: PMC7569148 DOI: 10.1016/j.sjbs.2020.08.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/22/2020] [Accepted: 08/30/2020] [Indexed: 11/19/2022] Open
Abstract
The entomofaunal survey and its toxicity of Blumea mollis (Asteraceae) leaf aqueous extract-mediated (Bm-LAE) silver nanoparticles (AgNPs) were assessed against selected human vector mosquitoes (HVMs). A total of 1800 individuals of 29 species belongs to 7 genera were identified. Month-wise and Genus-wise abundance of HVMs larval diversity were calculated and one-way ANOVA statistically analyzed the average physico-chemical characteristics. The relationship between physicochemical characteristics and HVMs larvae in KWS was interpreted. The total larval density and container index were 23530.18 and 1961.85 examined against 10 different containers. Various spectroscopic and microscopic investigation characterized Bm-AgNPs. The Bm- AgNPs tested against HVMs larvae, the predominant LC50/LC90 values of 18.17/39.56, 23.45/42.49 and 21.82/40.43 μg/mL were observed on An. subpictus Cx. vishnui and Ae. vittatus, respectively. The findings of this investigation, improperly maintained drainages, containers and unused things in study sites, are engaged to HVMs development. This will be essential for designing and implementing HVMs control. The larval toxic potentiality of Bm- AgNPs had a prompt, inexpensive and compelling synthesis of multi-disperse action against HVMs.
Collapse
Affiliation(s)
- Kuppusamy Elumalai
- Department of Advanced Zoology & Biotechnology, Government Arts College for Men (Autonomous), Chennai 600035, Tamil Nadu, India
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid A. Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahad Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jeganathan Pandiyan
- Department of Zoology and Wildlife Biology, A.V.C. College (Autonomous), Mannampandal, Mayiladuthurai 609305, India
| | | | - Kaliyamoorthy Krishnappa
- Department of Zoology and Wildlife Biology, A.V.C. College (Autonomous), Mannampandal, Mayiladuthurai 609305, India
| | - Marimuthu Govindarajan
- Unit of Vector Control, Phytochemistry and Nanotechnology, Department of Zoology, Annamalai University, Annamalainagar, 608 002 Tamil Nadu, India
- Department of Zoology, Government College for Women (Autonomous), Kumbakonam 612 001, Tamil Nadu, India
| |
Collapse
|
37
|
Chaiphongpachara T, Laojun S. Comparative efficacy of commercial ylang-ylang ( Cananga odorata) essential oils from India and Thailand against larval Aedes aegypti (L.) (Diptera: Culicidae). J Adv Vet Anim Res 2020; 7:391-396. [PMID: 33005663 PMCID: PMC7521804 DOI: 10.5455/javar.2020.g433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/04/2020] [Accepted: 05/12/2020] [Indexed: 11/06/2022] Open
Abstract
Objective: The objective of this study was to determine the comparative larvicidal efficacy of commercial ylang-ylang (Cananga odorata) essential oils from India and Thailand against the Aedes aegypti mosquito to be used as a guideline for Aedes mosquito control. Materials and Methods: The bioassay for the larvicidal activity of commercial ylang-ylang essential oils in this experiment was modified from the World Health Organization standard protocols. The concentration ranges at 0.025, 0.050, 0.075, 0.100, 0.125, and 0.150 ppm in each treatment were used for testing, and four replicates were used per concentration. The larval mortality was observed and recorded 24- and 48-h after exposure. Results: The results of this study clearly revealed that commercial ylang-ylang essential oils from India and Thailand were highly toxic to the larvae of the dengue vector Ae. aegypti, and Indian ylang-ylang had an LC50 value of 0.064 ppm, whereas Thai ylang-ylang had an LC50 value of 0.042 ppm after 24-h exposure. Conclusion: This study revealed the efficacy of commercial Indian and Thai ylang-ylang essential oils as natural vector control for the larval stage of the dengue vector Ae. aegypti. Usually, natural larvicide products are not commonly found in the market due to complex production processes. The results of this research support the use of commercial essential oils to aid in further control of Aedes mosquito larvae populations in the community.
Collapse
Affiliation(s)
- Tanawat Chaiphongpachara
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Bangkok, Thailand
| | - Sedthapong Laojun
- Department of Public Health and Health Promotion, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Bangkok, Thailand
| |
Collapse
|
38
|
Ngugi HN, Nyathi S, Krystosik A, Ndenga B, Mbakaya JO, Aswani P, Musunzaji PS, Irungu LW, Bisanzio D, Kitron U, Desiree LaBeaud A, Mutuku F. Risk factors for Aedes aegypti household pupal persistence in longitudinal entomological household surveys in urban and rural Kenya. Parasit Vectors 2020; 13:499. [PMID: 33004074 PMCID: PMC7528257 DOI: 10.1186/s13071-020-04378-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/23/2020] [Indexed: 12/31/2022] Open
Abstract
Background Aedes aegypti is an efficient vector of several arboviruses of public health importance, including Zika and dengue. Currently vector management is the only available avenue for disease control. Development of efficient vector control strategies requires a thorough understanding of vector ecology. In this study, we identified households that are consistently productive for Ae. aegypti pupae and determined the ecological and socio-demographic factors associated with the persistence and abundance of pupae in households in rural and urban Kenya. Methods We collected socio-demographic, environmental and entomological data monthly from July 2014 to June 2018 from 80 households across four sites in Kenya. Pupae count data were collected via entomological surveillance of households and paired with socio-demographic and environmental data. We calculated pupal persistence within a household as the number of months of pupal presence within a year. We used spatially explicit generalized additive mixed models (GAMMs) to identify the risk factors for pupal abundance, and a logistic regression to identify the risk factors for pupal persistence in households. Results The median number of months of pupal presence observed in households was 4 and ranged from 0 to 35 months. We identified pupal persistence in 85 house-years. The strongest risk factors for high pupal abundance were the presence of bushes or tall grass in the peri-domicile area (OR: 1.60, 95% CI: 1.13–2.28), open eaves (OR: 2.57, 95% CI: 1.33–4.95) and high habitat counts (OR: 1.42, 95% CI: 1.21–1.66). The main risk factors for pupal persistence were the presence of bushes or tall grass in the peri-domicile (OR: 4.20, 95% CI: 1.42–12.46) and high number of breeding sites (OR: 2.17, 95% CI: 1.03–4.58). Conclusions We observed Ae. aegypti pupal persistence at the household level in urban and rural and in coastal and inland Kenya. High counts of potential breeding containers, vegetation in the peri-domicile area and the presence of eaves were strongly associated with increased risk of pupal persistence and abundance. Targeting households that exhibit pupal persistence alongside the risk factors for pupal abundance in vector control interventions may result in more efficient use of limited resources.![]()
Collapse
Affiliation(s)
- Harun N Ngugi
- School of Biological Sciences, Department of Zoology, University of Nairobi, Nairobi, Kenya.,Department of Biological Sciences, Chuka University, Chuka, Kenya
| | - Sindiso Nyathi
- Department of Epidemiology and Population Health, School of Medicine, Stanford University, Stanford, CA, USA
| | - Amy Krystosik
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, USA
| | - Bryson Ndenga
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Joel O Mbakaya
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Peter Aswani
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Lucy W Irungu
- School of Biological Sciences, Department of Zoology, University of Nairobi, Nairobi, Kenya
| | - Donal Bisanzio
- RTI International, Washington, DC, USA.,Epidemiology and Public Health Division, School of Medicine, University of Nottingham, Nottingham, UK
| | - Uriel Kitron
- Department of Environmental Sciences, Emory University, Atlanta, GA, USA
| | - A Desiree LaBeaud
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Stanford University, Stanford, CA, USA
| | - Francis Mutuku
- Department of Environment and Health Sciences, Technical University of Mombasa, Mombasa, Kenya.
| |
Collapse
|
39
|
González MA, Rodríguez-Sosa MA, Vásquez-Bautista YE, Rosario EDC, Durán-Tiburcio JC, Alarcón-Elbal PM. A survey of tire-breeding mosquitoes (Diptera: Culicidae) in the Dominican Republic: Considerations about a pressing issue. BIOMEDICA : REVISTA DEL INSTITUTO NACIONAL DE SALUD 2020; 40:507-515. [PMID: 33030829 PMCID: PMC7666857 DOI: 10.7705/biomedica.5200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/17/2020] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Discarded vehicle tires represent a serious threat both to the environment and to public health as they have the potential to harbor important mosquito (Diptera: Culicidae) vectors. OBJECTIVE To assess the importance of used vehicle tires as larval habitats for mosquito fauna that colonize these artificial reservoirs in Jarabacoa, Dominican Republic. MATERIALS AND METHODS Used tires were sampled with pipettes at specialized tire fitting shops and scattered stockpiles of tires between June and August, 2018. RESULTS We sampled 396 tires; 57 (Container Index=14.4%) were positive for immature stages and contained 2,400 specimens, 11 species, and four genera (Anopheles, Aedes, Culex, and Toxorhynchites). The most abundant species was Aedes albopictus (42.3%) followed by Aedes aegypti (34.3%), and Culex quinquefasciatus (14.0%) while other species (9.4%) were less abundant. The container index varied significantly among the different tire sizes (χ2=13.4; p≤0.05). The highest infestation levels were found in the largest tires. A low positive correlation (r=0.38, n=396; p≤0.001) between the tire size and the prevalence of immature stages was recorded. The presence of organic matter had an overall positive effect on the infestation levels (U=11,430.0; p≤0.001). CONCLUSIONS These rubber residues, usually located nearby human populations, represent suitable breeding sites for arboviruses vectors such as dengue, chikungunya, Zika, and West Nile.
Collapse
Affiliation(s)
- Mikel A González
- Departamento de Sanidad Animal, NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Bizkaia, España.
| | | | | | - Elizabeth Del Carmen Rosario
- Laboratorio de Entomología, Universidad Agroforestal Fernando Arturo de Meriño (UAFAM), Jarabacoa, República Dominicana.
| | - Jesús Confesor Durán-Tiburcio
- Laboratorio de Entomología, Universidad Agroforestal Fernando Arturo de Meriño (UAFAM), Jarabacoa, República Dominicana.
| | - Pedro María Alarcón-Elbal
- Laboratorio de Entomología, Universidad Agroforestal Fernando Arturo de Meriño (UAFAM), Jarabacoa, República Dominicana.
| |
Collapse
|
40
|
Withanage GP, Hapuarachchi HC, Viswakula SD, Gunawardena YINS, Hapugoda M. Entomological surveillance with viral tracking demonstrates a migrated viral strain caused dengue epidemic in July, 2017 in Sri Lanka. PLoS One 2020; 15:e0231408. [PMID: 32374725 PMCID: PMC7202666 DOI: 10.1371/journal.pone.0231408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/23/2020] [Indexed: 12/03/2022] Open
Abstract
Dengue is the most important mosquito-borne viral infection disease in Sri Lanka triggering extensive economic and social burden in the country. Even after numerous source reduction programmes, more than 30,000 incidences are reporting in the country every year. The last and greatest dengue epidemic in the country was reported in July, 2017 with more than 300 dengue related deaths and the highest number of dengue incidences were reported from the District of Gampaha. There is no Dengue Virus (DENV) detection system in field specimens in the district yet and therefore the aim of the study is development of entomological surveillance approach through vector survey programmes together with molecular and phylogenetic methods to identify detection of DENV serotypes circulation in order to minimize adverse effects of imminent dengue outbreaks. Entomological surveys were conducted in five study areas in the district for 36 months and altogether, 10,616 potential breeding places were investigated and 423 were positive for immature stages of dengue vector mosquitoes. During adult collections, 2,718 dengue vector mosquitoes were collected and 4.6% (n = 124) were Aedes aegypti. While entomological indices demonstrate various correlations with meteorological variables and reported dengue incidences, the mosquito pools collected during the epidemic in 2017 were positive for DENV. The results of the phylogenetic analysis illustrated that Envelope (E) gene sequences derived from the isolated DENV belongs to the Clade Ib of Cosmopolitan genotype of the DENV serotype 2 which has been the dominant stain in South-East Asian evidencing that a recent migration of DENV strain to Sri Lanka.
Collapse
Affiliation(s)
- Gayan P. Withanage
- Molecular Medicine Unit, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| | | | - Sameera D. Viswakula
- Department of Statistics, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | | | - Menaka Hapugoda
- Molecular Medicine Unit, Faculty of Medicine, University of Kelaniya, Ragama, Sri Lanka
| |
Collapse
|
41
|
Cavalcante ACP, de Olinda RA, Gomes A, Traxler J, Smith M, Santos S. Spatial modelling of the infestation indices of Aedes aegypti: an innovative strategy for vector control actions in developing countries. Parasit Vectors 2020; 13:197. [PMID: 32299496 PMCID: PMC7164210 DOI: 10.1186/s13071-020-04070-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/09/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Larval indices such as the house index (HI), Breteau index (BI) and container index (CI) are widely used to interpret arbovirus vector density in surveillance programmes. However, the use of such data as an alarm signal is rarely considered consciously when planning programmes. The present study aims to investigate the spatial distribution pattern of the infestation of Aedes aegypti, considering the data available in the Ae. aegypti Infestation Index Rapid Survey (LIRAa) for the city of Campina Grande, Paraíba State in Brazil. METHODS The global and local Moran's indices were used in spatial analysis to measure the effects of spatial dependencies between neighbourhoods, using secondary data related to HI and BI gathered from surveillance service. RESULTS Our analysis shows that there is a predominance of high rates of mosquito infestation, placing Campina Grande at a near-constant risk of arbovirus outbreaks and epidemics. A highly significant Moran's index value (P < 0.001) was observed, indicating a positive spatial dependency between the neighbourhoods in Campina Grande. Using the Moran mapping and LISA mapping, the autocorrelation patterns of Ae. aegypti infestation rates among neighbourhoods have revealed hotpots that should be considered a priority to preventive actions of the entomological surveillance services. Predominance of high infestation rates and clearer relationships of these between neighbourhoods were observed between the months of May and July, the period with the highest rainfall in the city. CONCLUSIONS This analysis is an innovative strategy capable of providing detailed information on infestation locations to the relevant public health authorities, which will enable a more efficient allocation of resources, particularly for arbovirus prevention.
Collapse
Affiliation(s)
| | - Ricardo Alves de Olinda
- Public Health Program, Universidade Estadual da Paraíba, Campina Grande, Paraíba, CEP 58429-500, Brazil
| | - Alexandrino Gomes
- Public Health Program, Universidade Estadual da Paraíba, Campina Grande, Paraíba, CEP 58429-500, Brazil
| | - John Traxler
- University of Wolverhampton, Institute of Education, Walsall Campus, Gorway Road, Walsall, WS1 3BD, UK
| | - Matt Smith
- University of Wolverhampton, Institute of Education, Walsall Campus, Gorway Road, Walsall, WS1 3BD, UK
| | - Silvana Santos
- Public Health Program, Universidade Estadual da Paraíba, Campina Grande, Paraíba, CEP 58429-500, Brazil.
| |
Collapse
|
42
|
Leal SDV, Fernandes Varela IB, Lopes Gonçalves AA, Sousa Monteiro DD, Ramos de Sousa CM, Lima Mendonça MDL, De Pina AJ, Alves MJ, Osório HC. Abundance and Updated Distribution of Aedes aegypti (Diptera: Culicidae) in Cabo Verde Archipelago: A Neglected Threat to Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E1291. [PMID: 32079356 PMCID: PMC7068338 DOI: 10.3390/ijerph17041291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/06/2019] [Accepted: 12/08/2019] [Indexed: 12/03/2022]
Abstract
BACKGROUND Mosquito-borne viruses, such as Zika, dengue, yellow fever, and chikungunya, are important causes of human diseases nearly worldwide. The greatest health risk for arboviral disease outbreaks is the presence of the most competent and highly invasive domestic mosquito, Aedes aegypti. In Cabo Verde, two recent arbovirus outbreaks were reported, a dengue outbreak in 2009, followed by a Zika outbreak in 2015. This study is the first entomological survey for Ae. aegypti that includes all islands of Cabo Verde archipelago, in which we aim to evaluate the actual risk of vector-borne arboviruses as a continuous update of the geographical distribution of this species. METHODS In order to assess its current distribution and abundance, we undertook a mosquito larval survey in the nine inhabited islands of Cabo Verde from November 2018 to May 2019. Entomological larval survey indices were calculated, and the abundance analyzed. We collected and identified 4045 Ae. aegypti mosquitoes from 264 positive breeding sites in 22 municipalities and confirmed the presence of Ae. aegypti in every inhabited island. Results: Water drums were found to be the most prevalent containers (n = 3843; 62.9%), but puddles (n = 27; 0.4%) were the most productive habitats found. The overall average of the House, Container, and Breteau larval indices were 8.4%, 4.4%, and 10.9, respectively. However, 15 out of the 22 municipalities showed that the Breteau Index was above the epidemic risk threshold. CONCLUSION These results suggest that if no vector control measures are considered to be in place, the risk of new arboviral outbreaks in Cabo Verde is high. The vector control strategy adopted must include measures of public health directed to domestic water storage and management.
Collapse
Affiliation(s)
- Silvânia Da Veiga Leal
- Laboratório de Entomologia Médica, Instituto Nacional de Saúde Pública, Largo do Desastre da Assistência, Chã de Areia, Praia 719, Cabo Verde; (I.B.F.V.); (A.A.L.G.); (D.D.S.M.); (C.M.R.d.S.); (M.d.L.L.M.)
| | - Isaias Baptista Fernandes Varela
- Laboratório de Entomologia Médica, Instituto Nacional de Saúde Pública, Largo do Desastre da Assistência, Chã de Areia, Praia 719, Cabo Verde; (I.B.F.V.); (A.A.L.G.); (D.D.S.M.); (C.M.R.d.S.); (M.d.L.L.M.)
| | - Aderitow Augusto Lopes Gonçalves
- Laboratório de Entomologia Médica, Instituto Nacional de Saúde Pública, Largo do Desastre da Assistência, Chã de Areia, Praia 719, Cabo Verde; (I.B.F.V.); (A.A.L.G.); (D.D.S.M.); (C.M.R.d.S.); (M.d.L.L.M.)
| | - Davidson Daniel Sousa Monteiro
- Laboratório de Entomologia Médica, Instituto Nacional de Saúde Pública, Largo do Desastre da Assistência, Chã de Areia, Praia 719, Cabo Verde; (I.B.F.V.); (A.A.L.G.); (D.D.S.M.); (C.M.R.d.S.); (M.d.L.L.M.)
| | - Celivianne Marisia Ramos de Sousa
- Laboratório de Entomologia Médica, Instituto Nacional de Saúde Pública, Largo do Desastre da Assistência, Chã de Areia, Praia 719, Cabo Verde; (I.B.F.V.); (A.A.L.G.); (D.D.S.M.); (C.M.R.d.S.); (M.d.L.L.M.)
| | - Maria da Luz Lima Mendonça
- Laboratório de Entomologia Médica, Instituto Nacional de Saúde Pública, Largo do Desastre da Assistência, Chã de Areia, Praia 719, Cabo Verde; (I.B.F.V.); (A.A.L.G.); (D.D.S.M.); (C.M.R.d.S.); (M.d.L.L.M.)
| | - Adilson José De Pina
- Programa de Pré-Eliminação do Paludismo, CCS-SIDA, Ministério da Saúde e da Segurança Social, Varzea, Praia 855, Cabo Verde;
| | - Maria João Alves
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Centro de Estudos de Vectores e Doenças Infecciosas, Avenida da Liberdade 5, 2965-575 Águas de Moura, Portugal; (M.J.A.); (H.C.O.)
- Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, Ed. Egas Moniz, Piso 0, Ala C, 1649-028 Lisboa, Portugal
| | - Hugo Costa Osório
- Instituto Nacional de Saúde Doutor Ricardo Jorge, Centro de Estudos de Vectores e Doenças Infecciosas, Avenida da Liberdade 5, 2965-575 Águas de Moura, Portugal; (M.J.A.); (H.C.O.)
- Instituto de Saúde Ambiental, Faculdade de Medicina da Universidade de Lisboa, Av. Prof. Egas Moniz, Ed. Egas Moniz, Piso 0, Ala C, 1649-028 Lisboa, Portugal
| |
Collapse
|