1
|
Sanches PL, Vieira Carias RB, Alves GG, Catarino CM, Bosquetti B, De Castilho Costa MC, Di Pietro Micali A, Schuck DC, Granjeiro JM, Ribeiro AR. Pre-validation of a novel reconstructed skin equivalent model for skin irritation and nanoparticle risk assessment. NANOSCALE ADVANCES 2025; 7:1353-1367. [PMID: 39839224 PMCID: PMC11744681 DOI: 10.1039/d4na00804a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/15/2024] [Indexed: 01/23/2025]
Abstract
In alignment with the global movement toward reducing animal testing, several reconstructed human epidermis (RHE) models have been created for conducting skin irritation tests. These models have undergone development, verification, validation, and integration into OECD TG 439. Our team has introduced a novel in-house RHE named GB-RHE, and we adhere to OECD TG 439 to pre-validate the model and test its potential employment for nanoparticle irritation studies. GB-RHE exhibits morphological, biochemical, and physiological attributes equivalent to the human epidermis, featuring well-differentiated multilayered viable keratinocytes with a robust barrier function. The performance of the GB-RHE model was evaluated using ten reference chemicals, following the performance standard of OECD TG 439. The results demonstrated commendable predictive capacity and showed that titanium dioxide nanoparticles (TiO2 NPs) are 'non-irritant' to the human epidermis following the globally harmonized classification system. However, although the histological analysis did not show morphological changes, transmission electron micrographs demonstrated that TiO2 NPs can be internalized, reaching the external viable layers of the epidermis. This study demonstrates that in addition to the potential of the GB-RHE model to evaluate skin irritation, this model also has the potential to evaluate the skin toxicity of NPs and carry out cell internalization studies.
Collapse
Affiliation(s)
- Priscila Laviola Sanches
- Postgraduate Program in Translational Biomedicine, University of Grande Rio Duque de Caxias Brazil
- Directorate of Scientific, Industrial and Technology Metrology, National Institute of Metrology, Quality and Technology Duque de Caxias Brazil
| | | | - Gutember Gomes Alves
- Department of Molecular and Cell Biology, Institute of Biology, Fluminense Federal University Niterói Rio de Janeiro Brazil
- Clinical Research Unit, Antonio Pedro Hospital, Fluminense Federal University Niterói Brazil
| | | | - Bruna Bosquetti
- Product Safety Management, Grupo Boticário São José dos Pinhais Paraná Brazil
| | | | | | | | - José Mauro Granjeiro
- Postgraduate Program in Translational Biomedicine, University of Grande Rio Duque de Caxias Brazil
- Directorate of Scientific, Industrial and Technology Metrology, National Institute of Metrology, Quality and Technology Duque de Caxias Brazil
- School of Dentistry, Fluminense Federal University Niterói Brazil
| | - Ana R Ribeiro
- Nanosafety Group, International Iberian Nanotechnology Laboratory Braga Portugal
| |
Collapse
|
2
|
Shi SM, Hu B, Chi ZC, Qu LY, Liu LY, He YY, Jia GL, Li JH, Kong I, Jin YX, Yu XF. Role of MFN2 in bovine embryonic development and the mitigation of ER stress. Anim Reprod Sci 2025; 273:107664. [PMID: 39675305 DOI: 10.1016/j.anireprosci.2024.107664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024]
Abstract
This study investigated the role of mitochondrial fusion protein-2 (MFN2) in bovine embryonic development and its relationship with endoplasmic reticulum (ER) stress, aiming to increase the efficiency of in vitro embryo culture. Western blot analysis revealed that MFN2 expression peaked at the 2-cell stage, decreased at the 4-cell stage, and gradually increased from the 6-8-cell stage to the blastocyst stage. Inhibiting MFN2 at the zygote stage reduced blastocyst formation and proliferation, and this damage was partially reversed by the ER stress protective agent TUDCA. MFN2 inhibition also led to the decreased formation of the inner cell mass (ICM) and reduced expression of the totipotent genes CDX2 and SOX2. Additionally, reactive oxygen species (ROS) levels increased following MFN2 inhibition but decreased after TUDCA treatment. The expression of antioxidative stress-related genes (SOD and CAT) was downregulated after MFN2 inhibition but upregulated following TUDCA treatment. Furthermore, MFN2 inhibition reduced ER fluorescence intensity and increased the expression of UPR signaling markers (GRP78, XBP1, CHOP, IRE1, and ATF6), indicating increased ER stress. TUDCA administration reversed these effects, restoring MFN2 levels and reducing apoptosis. In conclusion, MFN2 is essential for bovine embryonic development because it regulates ER stress and maintains cell function, with MFN2 deficiency leading to developmental disorders and cell damage. ER stress protectors such as TUDCA can effectively mitigate these negative effects, highlighting a potential strategy for improving in vitro embryo culture efficiency.
Collapse
Affiliation(s)
- Shu-Ming Shi
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China
| | - Bing Hu
- Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Science, Jilin University, Changchun 130062, China
| | - Zhi-Chao Chi
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China
| | - Lin-Yi Qu
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China
| | - Li-Ying Liu
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China
| | - Yu-Yan He
- Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Science, Jilin University, Changchun 130062, China
| | - Guan-Lin Jia
- Animal Genome Editing Technology Innovation Center, Jilin Province, College of Animal Science, Jilin University, Changchun 130062, China
| | - Jing-Hang Li
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China
| | - Ilkeun Kong
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China; Department of Animal Science, Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yong-Xun Jin
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China.
| | - Xian-Feng Yu
- Jilin Provincial Key Laboratory of Animal Model, College of Animal Science, Jilin University, Changchun 130062, China.
| |
Collapse
|
3
|
Gallo MC, Elias A, Reynolds J, Ball JR, Lieberman JR. Regional Gene Therapy for Bone Tissue Engineering: A Current Concepts Review. Bioengineering (Basel) 2025; 12:120. [PMID: 40001640 PMCID: PMC11852166 DOI: 10.3390/bioengineering12020120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/20/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
The management of segmental bone defects presents a complex reconstruction challenge for orthopedic surgeons. Current treatment options are limited by efficacy across the spectrum of injury, morbidity, and cost. Regional gene therapy is a promising tissue engineering strategy for bone repair, as it allows for local implantation of nucleic acids or genetically modified cells to direct specific protein expression. In cell-based gene therapy approaches, a variety of different cell types have been described including mesenchymal stem cells (MSCs) derived from multiple sources-bone marrow, adipose, skeletal muscle, and umbilical cord tissue, among others. MSCs, in particular, have been well studied, as they serve as a source of osteoprogenitor cells in addition to providing a vehicle for transgene delivery. Furthermore, MSCs possess immunomodulatory properties, which may support the development of an allogeneic "off-the-shelf" gene therapy product. Identifying an optimal cell type is paramount to the successful clinical translation of cell-based gene therapy approaches. Here, we review current strategies for the management of segmental bone loss in orthopedic surgery, including bone grafting, bone graft substitutes, and operative techniques. We also highlight regional gene therapy as a tissue engineering strategy for bone repair, with a focus on cell types and cell sources suitable for this application.
Collapse
Affiliation(s)
- Matthew C. Gallo
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; (M.C.G.); (A.E.); (J.R.); (J.R.B.)
| | - Aura Elias
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; (M.C.G.); (A.E.); (J.R.); (J.R.B.)
| | - Julius Reynolds
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; (M.C.G.); (A.E.); (J.R.); (J.R.B.)
| | - Jacob R. Ball
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; (M.C.G.); (A.E.); (J.R.); (J.R.B.)
| | - Jay R. Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90033, USA; (M.C.G.); (A.E.); (J.R.); (J.R.B.)
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
4
|
Cañas-Arboleda M, Galindo CC, Cruz-Barrera M, Herrera K, Beltrán K, Rodríguez A, Rotter B, Camacho B, Salguero G. Comprehensive analysis of secretome and transcriptome stability of Wharton jelly mesenchymal stromal cells during good manufacturing practice-compliant production. Cytotherapy 2025; 27:107-120. [PMID: 39306795 DOI: 10.1016/j.jcyt.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 12/25/2024]
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) hold promise for cell-based therapies due to their ability to stimulate tissue repair and modulate immune responses. Umbilical cord-derived MSCs from Wharton jelly (WJ) offer advantages such as low immunogenicity and potent immune modulatory effects. However, ensuring consistent quality and safety throughout their manufacturing process remains critical. RNA sequencing (RNA-seq) emerges as a crucial tool for assessing genetic stability and expression dynamics in cell-based therapeutic products. METHODS We examined the secretome and transcriptome of WJ-MSC signatures throughout Good Manufacturing Practice (GMP) production, focusing on the performance of total RNA or Massive Analysis of cDNA Ends (MACE) sequencing. RESULTS Through extensive transcriptomic analysis, we demonstrated consistent stability of WJ-MSC expression signatures across different manufacturing stages. Notably, MACE-seq showed improved identification of key expression patterns related to senescence and immunomodulation. CONCLUSIONS These findings highlight the potential of MACE-seq as a quality assessment tool for WJ-MSC-based therapies, ensuring their efficacy and safety in clinical applications. Importantly, MACE-seq demonstrated its value in characterizing WJ-MSC-derived products, offering insights that traditional assays cannot provide.
Collapse
Affiliation(s)
- Mariana Cañas-Arboleda
- Advanced Therapy Unit, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, Bogotá, Colombia
| | - Cristian Camilo Galindo
- Advanced Therapy Unit, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, Bogotá, Colombia
| | - Monica Cruz-Barrera
- Advanced Therapy Unit, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, Bogotá, Colombia
| | - Katherine Herrera
- Advanced Therapy Unit, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, Bogotá, Colombia
| | - Karl Beltrán
- Advanced Therapy Unit, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, Bogotá, Colombia
| | | | | | - Bernardo Camacho
- Advanced Therapy Unit, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, Bogotá, Colombia
| | - Gustavo Salguero
- Advanced Therapy Unit, Instituto Distrital de Ciencia, Biotecnología e Innovación en Salud, Bogotá, Colombia.
| |
Collapse
|
5
|
Singer J, Knezic N, Gohring G, Fite O, Christiansen J, Huard J. Synovial mesenchymal stem cells. ORTHOBIOLOGICS 2025:141-154. [DOI: 10.1016/b978-0-12-822902-6.00005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Moratin H, Mache I, Goncalves M, Ehret Kasemo T, Stöth M, Meyer TJ, Hackenberg S, Scherzad A, Herrmann M. Preconditioning with Wound Fluid Enhances Immunosuppressive Properties of Mesenchymal Stromal Cells In Vitro. Int J Mol Sci 2024; 26:293. [PMID: 39796154 PMCID: PMC11719632 DOI: 10.3390/ijms26010293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
Immunosuppression is one key feature of mesenchymal stromal cells (MSCs) that has high expectations for therapeutic use. The influence of pro-inflammatory stimuli can modify the characteristics of MSCs and enhance immunosuppressive properties. The local postoperative environment contains cytokines, MSCs, and immune cells in high quantities, and their mutual influence is still unclear. Knowledge of in vivo processes is pivotal for potential therapeutic applications, and therefore, the aim of this study was to investigate the influence of wound fluid (WF) on the immunomodulatory potential of MSCs. CD4+ cells were co-cultured with native or WF-preconditioned MSCs for 5 days. CFSE staining revealed significant suppression of T cell proliferation after co-culture that was even more distinct in co-culture with WF-MSCs. The concentration of IDO-1, TGF-β1 and IFN-γ was higher while TNF-α was reduced in co-culture supernatants, indicating a transition to an anti-inflammatory milieu. In summary, the results provide evidence that the influence of WF alters the immunomodulatory potential of MSCs. These findings should serve as the basis for further investigations with a focus on T cell subpopulations.
Collapse
Affiliation(s)
- Helena Moratin
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Str. 11, D-97080 Wuerzburg, Germany
| | - Isabel Mache
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Str. 11, D-97080 Wuerzburg, Germany
| | - Miguel Goncalves
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Str. 11, D-97080 Wuerzburg, Germany
| | - Totta Ehret Kasemo
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Str. 11, D-97080 Wuerzburg, Germany
| | - Manuel Stöth
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Str. 11, D-97080 Wuerzburg, Germany
| | - Till Jasper Meyer
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Str. 11, D-97080 Wuerzburg, Germany
| | - Stephan Hackenberg
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Str. 11, D-97080 Wuerzburg, Germany
| | - Agmal Scherzad
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Str. 11, D-97080 Wuerzburg, Germany
| | - Marietta Herrmann
- IZKF Research Group Tissue Regeneration in Musculoskeletal Diseases, University Hospital Wuerzburg, D-97070 Wuerzburg, Germany
- Department of Orthopedics, Bernhard-Heine-Center for Locomotion Research, University of Wuerzburg, D-97074 Wuerzburg, Germany
| |
Collapse
|
7
|
Park SE, Kwon SJ, Kim SJ, Jeong JB, Kim MJ, Choi SJ, Oh SY, Ryu GH, Jeon HB, Chang JW. Anti-necroptotic effects of human Wharton's jelly-derived mesenchymal stem cells in skeletal muscle cell death model via secretion of GRO-α. PLoS One 2024; 19:e0313693. [PMID: 39621655 PMCID: PMC11611217 DOI: 10.1371/journal.pone.0313693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/29/2024] [Indexed: 01/06/2025] Open
Abstract
Human mesenchymal stem cells (hMSCs) have therapeutic applications and potential for use in regenerative medicine. However, the use of hMSCs in research and clinical medicine is limited by a lack of information pertaining to their donor-specific functional attributes. In this study, we compared the characteristics of same-donor derived placenta (PL) and Wharton's jelly (WJ)-derived hMSCs, we also compared their mechanism of action in a skeletal muscle disease in vitro model. The same-donor-derived hWJ- and hPL-MSCs exhibited typical hMSC characteristics. However, GRO-α was differentially expressed in hWJ- and hPL-MSCs. hWJ-MSCs, which secreted a high amount of GRO-α, displayed a higher ability to inhibit necroptosis in skeletal muscle cells than hPL-MSCs. This demonstrates the anti-necroptotic therapeutic effect of GRO-α in the skeletal muscle cell death model. Furthermore, GRO-α also exhibited the anti-necroptotic effect in a Duchenne muscular dystrophy (DMD) mouse model. Considering their potential to inhibit necroptosis in skeletal muscle cells, hWJ-MSCs and the derived GRO-α are novel treatment options for skeletal muscle diseases such as DMD.
Collapse
Affiliation(s)
- Sang Eon Park
- Cell and Gene Therapy Institute, ENCell Co. Ltd, Seoul, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Soo Jin Kwon
- Cell and Gene Therapy Institute, ENCell Co. Ltd, Seoul, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Sun Jeong Kim
- Cell and Gene Therapy Institute, ENCell Co. Ltd, Seoul, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Jang Bin Jeong
- Cell and Gene Therapy Institute, ENCell Co. Ltd, Seoul, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Min-Jeong Kim
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Suk-joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Seoul, Republic of Korea
| | - Soo-young Oh
- Department of Obstetrics and Gynecology, Samsung Medical Center, Seoul, Republic of Korea
| | - Gyu Ha Ryu
- Department of Medical Device Management and Research, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- The Office of R&D Strategy & Planning, Samsung Medical Center, Seoul, Republic of Korea
| | - Hong Bae Jeon
- Cell and Gene Therapy Institute, ENCell Co. Ltd, Seoul, Republic of Korea
| | - Jong Wook Chang
- Cell and Gene Therapy Institute, ENCell Co. Ltd, Seoul, Republic of Korea
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, Republic of Korea
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
8
|
Llewellyn J, Baratam R, Culig L, Beerman I. Cellular stress and epigenetic regulation in adult stem cells. Life Sci Alliance 2024; 7:e202302083. [PMID: 39348938 PMCID: PMC11443024 DOI: 10.26508/lsa.202302083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/16/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024] Open
Abstract
Stem cells are a unique class of cells that possess the ability to differentiate and self-renew, enabling them to repair and replenish tissues. To protect and maintain the potential of stem cells, the cells and the environment surrounding these cells (stem cell niche) are highly responsive and tightly regulated. However, various stresses can affect the stem cells and their niches. These stresses are both systemic and cellular and can arise from intrinsic or extrinsic factors which would have strong implications on overall aging and certain disease states. Therefore, understanding the breadth of drivers, namely epigenetic alterations, involved in cellular stress is important for the development of interventions aimed at maintaining healthy stem cells and tissue homeostasis. In this review, we summarize published findings of epigenetic responses to replicative, oxidative, mechanical, and inflammatory stress on various types of adult stem cells.
Collapse
Affiliation(s)
- Joey Llewellyn
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Rithvik Baratam
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Luka Culig
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Isabel Beerman
- Epigenetics and Stem Cell Unit, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| |
Collapse
|
9
|
Ebrahim N, Kondratyev N, Artyuhov A, Timofeev A, Gurskaya N, Andrianov A, Izrailov R, Volchkov E, Dyuzheva T, Kopantseva E, Kiseleva E, Golimbet V, Dashinimaev E. Human pancreatic islet-derived stromal cells reveal combined features of mesenchymal stromal cells and pancreatic stellate cells. Stem Cell Res Ther 2024; 15:351. [PMID: 39380125 PMCID: PMC11463112 DOI: 10.1186/s13287-024-03963-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Mesenchymal stromal cells (MSCs) are recognized for their potential in regenerative medicine, attributed to their multipotent differentiation capabilities and immunomodulatory properties. Despite this potential, the classification and detailed characterization of MSCs, especially those derived from specific tissues like the pancreas, remains challenging leading to a proliferation of terminology in the literature. This study aims to address these challenges by providing a thorough characterization of human pancreatic islets-derived mesenchymal stromal cells (hPD-MSCs). METHODS hPD-MSCs were isolated from donor islets using enzymatic digestion, immortalized through lentiviral transduction of human telomerase reverse transcriptase (hTERT). Cells were characterized by immunostaining, flow cytometry and multilineage differentiation potential into adipogenic and osteogenic lineages. Further a transcriptomic analysis was done to compare the gene expression profiles of hPD-MSCs with other mesenchymal cells. RESULTS We show that hPD-MSCs express the classical MSC features, including morphological characteristics, surface markers expression (CD90, CD73, CD105, CD44, and CD106) and the ability to differentiate into both adipogenic and osteogenic lineages. Furthermore, transcriptomic analysis revealed distinct gene expression profiles, showing notable similarities between hPD-MSCs and pancreatic stellate cells (PSCs). The study also identified specific genes that distinguish hPD-MSCs from MSCs of other origins, including genes associated with pancreatic function (e.g., ISL1) and neural development (e.g., NPTX1, ZNF804A). A novel gene with an unknown function (ENSG00000286190) was also discovered. CONCLUSIONS This study enhances the understanding of hPD-MSCs, demonstrating their unique characteristics and potential applications in therapeutic strategies. The identification of specific gene expression profiles differentiates hPD-MSCs from other mesenchymal cells and opens new avenues for research into their role in pancreatic function and neural development.
Collapse
Affiliation(s)
- Nour Ebrahim
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia, 117997
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia, 141701
| | | | - Alexander Artyuhov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia, 117997
- Research Institute of Molecular and Cellular Medicine, RUDN University, Moscow, Russia, 117198
| | - Alexei Timofeev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia, 117997
| | - Nadya Gurskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia, 117997
| | - Alexey Andrianov
- Loginov Moscow Clinical Scientific Center, Moscow, Russia, 111123
| | - Roman Izrailov
- Loginov Moscow Clinical Scientific Center, Moscow, Russia, 111123
| | - Egor Volchkov
- Research Institute of Molecular and Cellular Medicine, RUDN University, Moscow, Russia, 117198
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology (D. Rogachev, NMRCPHOI) of Ministry of Healthcare of the Russian Federation, 1, Samory Mashela St, Moscow, Russia, 117997
| | - Tatyana Dyuzheva
- Department of Hospital Surgery, Sklifosovsky Institute for Clinical Medicine, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia, 119435
| | - Elena Kopantseva
- Research Institute of Molecular and Cellular Medicine, RUDN University, Moscow, Russia, 117198
| | - Ekaterina Kiseleva
- Research Institute for Systems Biology and Medicine, Moscow, Russia, 117246
| | - Vera Golimbet
- Mental Health Research Center, Moscow, Russia, 115522
| | - Erdem Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow, Russia, 117997.
- Research Institute of Molecular and Cellular Medicine, RUDN University, Moscow, Russia, 117198.
- Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia, 141701.
- Institute of Medicine, Banzarov Buryat State University, Ulan-Ude, Russia, 670000.
| |
Collapse
|
10
|
El-Badawy MA, Badawy M, El Shahawy M. Bone marrow derived mesenchymal stem cells restored GLUT1 expression in the submandibular salivary glands of ovariectomized rats. Arch Oral Biol 2024; 166:106048. [PMID: 39002180 DOI: 10.1016/j.archoralbio.2024.106048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
OBJECTIVE Loss of ovarian function in menopause is commonly associated with salivary gland dysfunction. The aim is to study the possible therapeutic effect of bone marrow mesenchymal stem cells (BM-MSCs) on the altered structure of the submandibular salivary glands (SMGs) of ovariectomized rats. DESIGN Twenty-four female, adult, Wistar rats were used and distributed into three groups (8 rats/group). The control group included sham-operated rats. The ovariectomized group consisted of rats with removed ovaries. The third group consisted of ovariectomized rats received injections, via tail, of MSCs extracted from bone marrow of 3-weeks-old rat hind limb (BM-MSC group). Four weeks after BM-MSC transplantation, the bone mineral density (BMD) of the femur was detected. The SMG was dissected and processed for histological, immunohistochemical, and histomorphometric analyses. RESULTS The ovariectomized rats depicted low BMD in the femur. The SMG acini revealed atrophy. The ductal and acinar cells depicted vacuolization and abnormal nuclear histology. GLUT1 immunostaining was decreased in SMG ducts. The BM-MSC group resumed the normal SMG histology and GLUT1 immunolabelling. CONCLUSIONS BM-MSC therapy restored the normal SMG structure and GLUT1 immunostaining in the treated ovariectomized rats, suggesting improved glucose transporting function.
Collapse
Affiliation(s)
- Menna Abdulqader El-Badawy
- Demonstrator at Department of Oral Biology, Faculty of Dentistry, Assiut University, Assiut 71515, Egypt.
| | - Mohamed Badawy
- Department of Oral Biology, Faculty of Dentistry, Assiut University, Assiut 71515, Egypt.
| | - Maha El Shahawy
- Department of Oral Biology, Faculty of Dentistry, Minia University, Misr Aswan Road, Minia 61511, Egypt; Oral Biology Department, Faculty of Dentistry, Kafrelsheikh University, Elgiesh street, Kafrelsheikh 33516, Egypt.
| |
Collapse
|
11
|
Chatzianagnosti S, Dermitzakis I, Theotokis P, Kousta E, Mastorakos G, Manthou ME. Application of Mesenchymal Stem Cells in Female Infertility Treatment: Protocols and Preliminary Results. Life (Basel) 2024; 14:1161. [PMID: 39337944 PMCID: PMC11433628 DOI: 10.3390/life14091161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/28/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Infertility is a global phenomenon that impacts people of both the male and the female sex; it is related to multiple factors affecting an individual's overall systemic health. Recently, investigators have been using mesenchymal stem cell (MSC) therapy for female-fertility-related disorders such as polycystic ovarian syndrome (PCOS), premature ovarian failure (POF), endometriosis, preeclampsia, and Asherman syndrome (AS). Studies have shown promising results, indicating that MSCs can enhance ovarian function and restore fertility for affected individuals. Due to their regenerative effects and their participation in several paracrine pathways, MSCs can improve the fertility outcome. However, their beneficial effects are dependent on the methodologies and materials used from isolation to reimplantation. In this review, we provide an overview of the protocols and methods used in applications of MSCs. Moreover, we summarize the findings of published preclinical studies on infertility treatments and discuss the multiple properties of these studies, depending on the isolation source of the MSCs used.
Collapse
Affiliation(s)
- Sofia Chatzianagnosti
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eleni Kousta
- School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - George Mastorakos
- Department of Endocrinology, Diabetes Mellitus and Metabolism, Aretaieion Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
12
|
Mahmoud H, Badawy M, Mohammed SAN, El Shahawy M. Locally injected bone marrow-derived mesenchymal stem cells reverts the histopathological changes in the tongue of carbimazole-induced hypothyroidism of male rats. Arch Oral Biol 2024; 165:106010. [PMID: 38795432 DOI: 10.1016/j.archoralbio.2024.106010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/13/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024]
Abstract
OBJECTIVE To decipher the role of locally injected bone marrow mesenchymal stem cells (BM-MSCs) in the tongue of hypothyroid rats. DESIGN A total 24 male Wister rats were utilized and allocated into 3 groups (n = 8). As for the control group, rats received distilled water via oral gavage. In the hypothyroid group, rats administered carbimazole 5 mg/ 250 g/ day for 6 successive weeks, for hypothyroidism induction. The BM-MSC treated hypothyroid group (BM-MSC group); hypothyroid rats received local injection of 0.5 million BM-MSCs in tongue. Six weeks after BM-MSC injection, tongue samples were processed for Hematoxylin and eosin (H and E) staining, Ki67-immunohistochemistry and histomorphometric analysis. RESULTS The hypothyroid group revealed degenerative alterations in the lingual papillae, and apparent thinning of the inferior lingual epithelium compared to their controls. Tongues of the BM-MSC group depicted restoration of the normal tongue histology. The Ki67 immunoreaction was apparently decreased in the lingual epithelium of hypothyroid group compared to their controls, however the BM-MSC group regained Ki67 immunostaining. CONCLUSION Our data suggest that administration of BM-MSCs rescued the degenerative changes in the lingual mucosa and one of the possible underlying mechanisms could be the restoration of cellular proliferation in the lingual epithelium.
Collapse
Affiliation(s)
- Hebatallah Mahmoud
- Department of Oral Biology, Faculty of Dentistry, Assuit University, Assuit 71515, Egypt
| | - Mohamed Badawy
- Department of Oral Biology, Faculty of Dentistry, Assuit University, Assuit 71515, Egypt
| | | | - Maha El Shahawy
- Department of Oral Biology, Faculty of Dentistry, Misr Aswan Road, Minia University, Minia 61511, Egypt.
| |
Collapse
|
13
|
Ou H, Yang Q, Zhang Y, Tang X, Xiao M, Li S, Lei L, Xie Z. The role of cells and their derivatives in otorhinolaryngologic diseases treatment. Life Sci 2024; 352:122898. [PMID: 38997061 DOI: 10.1016/j.lfs.2024.122898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/23/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Otolaryngology is an important specialty in the field of surgery that deals with the diagnosis and treatment of the ear, nose, throat, trachea, as well as related anatomical structures. Various otolaryngological disorders are difficult to treat using established pharmacological and surgical approaches. The advent of molecular and cellular therapies led to further progress in this respect. This article reviews the therapeutic strategies of using stem cells, immune cells, and chondrocytes in otorhinolaryngology. As the most widely recognized cell derivatives, exosomes were also systematically reviewed for their therapeutic potential in head and neck cancer, otitis media, and allergic rhinitis. Finally, we summarize the limitations of stem cells, chondrocytes, and exosomes, as well as possible solutions, and provide an outlook on the future direction of cell- and derivative-based therapies in otorhinolaryngology, to offer a theoretical foundation for the clinical translation of this therapeutic modality.
Collapse
Affiliation(s)
- Haibo Ou
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Qian Yang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Yuming Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Xiaojun Tang
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Minna Xiao
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Shisheng Li
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China
| | - Lanjie Lei
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou 310015, Zhejiang, China.
| | - Zuozhong Xie
- Department of Otorhinolaryngology Head and Neck Surgery, the Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
14
|
Aghazadeh S, Peng Q, Dardmeh F, Hjortdal JØ, Zachar V, Alipour H. Immunophenotypical Characterization of Limbal Mesenchymal Stromal Cell Subsets during In Vitro Expansion. Int J Mol Sci 2024; 25:8684. [PMID: 39201371 PMCID: PMC11354999 DOI: 10.3390/ijms25168684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Limbal mesenchymal stromal cells (LMSCs) reside in the limbal niche, supporting corneal integrity and facilitating regeneration. While mesenchymal stem/stromal cells (MSCs) are used in regenerative therapies, there is limited knowledge about LMSC subpopulations and their characteristics. This study characterized human LMSC subpopulations through the flow cytometric assessment of fifteen cell surface markers, including MSC, wound healing, immune regulation, ASC, endothelial, and differentiation markers. Primary LMSCs were established from remnant human corneal transplant specimens and passaged eight times to observe changes during subculture. The results showed the consistent expression of typical MSC markers and distinct subpopulations with the passage-dependent expression of wound healing, immune regulation, and differentiation markers. High CD166 and CD248 expressions indicated a crucial role in ocular surface repair. CD29 expression suggested an immunoregulatory role. Comparable pigment-epithelial-derived factor (PEDF) expression supported anti-inflammatory and anti-angiogenic roles. Sustained CD201 expression indicated maintained differentiation capability, while VEGFR2 expression suggested potential endothelial differentiation. LMSCs showed higher VEGF expression than fibroblasts and endothelial cells, suggesting a potential contribution to ocular surface regeneration through the modulation of angiogenesis and inflammation. These findings highlight the heterogeneity and multipotent potential of LMSC subpopulations during in vitro expansion, informing the development of standardized protocols for regenerative therapies and improving treatments for ocular surface disorders.
Collapse
Affiliation(s)
- Sara Aghazadeh
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | - Qiuyue Peng
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | - Fereshteh Dardmeh
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | | | - Vladimir Zachar
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | - Hiva Alipour
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| |
Collapse
|
15
|
Cao Y, Boss AL, Bolam SM, Munro JT, Crawford H, Dalbeth N, Poulsen RC, Matthews BG. In Vitro Cell Surface Marker Expression on Mesenchymal Stem Cell Cultures does not Reflect Their Ex Vivo Phenotype. Stem Cell Rev Rep 2024; 20:1656-1666. [PMID: 38837115 PMCID: PMC11319515 DOI: 10.1007/s12015-024-10743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
Cell surface marker expression is one of the criteria for defining human mesenchymal stem or stromal cells (MSC) in vitro. However, it is unclear if expression of markers including CD73 and CD90 reflects the in vivo origin of cultured cells. We evaluated expression of 15 putative MSC markers in primary cultured cells from periosteum and cartilage to determine whether expression of these markers reflects either the differentiation state of cultured cells or the self-renewal of in vivo populations. Cultured cells had universal and consistent expression of various putative stem cell markers including > 95% expression CD73, CD90 and PDPN in both periosteal and cartilage cultures. Altering the culture surface with extracellular matrix coatings had minimal effect on cell surface marker expression. Osteogenic differentiation led to loss of CD106 and CD146 expression, however CD73 and CD90 were retained in > 90% of cells. We sorted freshly isolated periosteal populations capable of CFU-F formation on the basis of CD90 expression in combination with CD34, CD73 and CD26. All primary cultures universally expressed CD73 and CD90 and lacked CD34, irrespective of the expression of these markers ex vivo indicating phenotypic convergence in vitro. We conclude that markers including CD73 and CD90 are acquired in vitro in most 'mesenchymal' cells capable of expansion. Overall, we demonstrate that in vitro expression of many cell surface markers in plastic-adherent cultures is unrelated to their expression prior to culture.
Collapse
Affiliation(s)
- Ye Cao
- Department of Molecular Medicine and Pathology, University of Auckland, Private Bag 92-019, Auckland, 1142, New Zealand
| | - Anna L Boss
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Scott M Bolam
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | - Jacob T Munro
- Department of Surgery, University of Auckland, Auckland, New Zealand
| | | | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Raewyn C Poulsen
- Department of Pharmacology, University of Auckland, Auckland, New Zealand
| | - Brya G Matthews
- Department of Molecular Medicine and Pathology, University of Auckland, Private Bag 92-019, Auckland, 1142, New Zealand.
| |
Collapse
|
16
|
Liang J, Dai W, Xue S, Wu F, Cui E, Pan R. Recent progress in mesenchymal stem cell-based therapy for acute lung injury. Cell Tissue Bank 2024; 25:677-684. [PMID: 38466563 DOI: 10.1007/s10561-024-10129-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 01/24/2024] [Indexed: 03/13/2024]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are life-threatening diseases in critically ill patients. Although pathophysiology of ALI/ARDS has been investigated in many studies, effective therapeutic strategies are still limited. Mesenchymal stem cell (MSC)-based therapy is emerging as a promising therapeutic intervention for patients with ALI. During the last two decades, researchers have focused on the efficacy and mechanism of MSC application in ALI animal models. MSC derived from variant resources exhibited therapeutic effects in preclinical studies of ALI with different mechanisms. Based on this, clinical studies on MSC treatment in ALI/ARDS has been tried recently, especially in COVID-19 caused lung injury. Emerging clinical trials of MSCs in treating COVID-19-related conditions have been registered in past two years. The advantages and potential of MSCs in the defense against COVID-19-related ALI or ARDS have been confirmed. This review provides a brief overview of recent research progress in MSC-based therapies in preclinical study and clinical trials in ALI treatment, as well as the underlying mechanisms.
Collapse
Affiliation(s)
- Jinfeng Liang
- Zhejiang Center for Drug and Cosmetic Evaluation, Hangzhou, China
| | - Weiyou Dai
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Shihang Xue
- Xiangshan First People's Hospital Medical and Health Group, Ningbo, China
| | - Feifei Wu
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, No.181 Wuchang Road, Hangzhou, 311122, Zhejiang, People's Republic of China
| | - Enhai Cui
- Huzhou Central Hospital, Zhejiang University Huzhou Hospital, Huzhou, 313000, People's Republic of China.
| | - Ruolang Pan
- Key Laboratory of Cell-Based Drug and Applied Technology Development in Zhejiang Province, Hangzhou, China.
- Institute for Cell-Based Drug Development of Zhejiang Province, S-Evans Biosciences, No.181 Wuchang Road, Hangzhou, 311122, Zhejiang, People's Republic of China.
| |
Collapse
|
17
|
Cannon K, Gill S, Mercuri J. Mesenchymal stromal cell response to intervertebral disc-like pH is tissue source dependent. J Orthop Res 2024; 42:1303-1313. [PMID: 38084765 DOI: 10.1002/jor.25766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/30/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023]
Abstract
Intervertebral disc (IVD) degeneration (IVDD) has become increasingly prevalent and is a common contributing factor to low back pain. Current treatment options are limited to either symptom management or surgery. A promising treatment option being explored is intradiscal administration of mesenchymal stromal cells (MSCs). However, there remains a gap in knowledge as to whether MSCs from different tissue sources have similar responses to the low pH microenvironment of the IVD and the possible mechanisms governing these responses. To study this, MSCs from three different tissue sources: adipose (adipose-derived mesenchymal stem cell), bone marrow (bone marrow mesenchymal stem cells), and amnion (amniotic membrane mesenchymal stem cell) were cultured at low pHs representative of IVDD. MSCs were assessed for survival, senescence, apoptosis, metabolic activity, and cytokine release profile. Additionally, western blot was utilized to assess acid sensing ion channel 1 and 3 expression. The results of this study indicated that MSC viability, cell proliferation, senescence, and metabolic activity is negatively affected by low pH and alters MSC cytokine production. This study also demonstrated that MSCs behavior is dependent on tissue source. Understanding how MSC behavior is altered by pH will allow further research aimed at increasing the efficacy of MSC therapy to promote in situ IVD tissue regeneration to combat IVDD.
Collapse
Affiliation(s)
- Kyle Cannon
- Laboratory of Orthopaedic Tissue Regeneration and Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
| | - Sanjitpal Gill
- Department of Orthopaedic Surgery, The Steadman Clinic, Vail, Colorado, USA
- Department Spine & Neck, The Steadman Philippon Research Institute, Vail, Colorado, USA
| | - Jeremy Mercuri
- Laboratory of Orthopaedic Tissue Regeneration and Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina, USA
- Department of Bioengineering, Frank H. Stelling and C. Dayton Riddle, Orthopaedic Education and Research Laboratory, Clemson University Biomedical Engineering Innovation Campus, Greenville, South Carolina, USA
| |
Collapse
|
18
|
Nakamura Y, Niho S, Shimizu Y. Cell-Based Therapy for Fibrosing Interstitial Lung Diseases, Current Status, and Potential Applications of iPSC-Derived Cells. Cells 2024; 13:893. [PMID: 38891026 PMCID: PMC11172081 DOI: 10.3390/cells13110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Fibrosing interstitial lung diseases (FILDs), e.g., due to idiopathic pulmonary fibrosis (IPF), are chronic progressive diseases with a poor prognosis. The management of these diseases is challenging and focuses mainly on the suppression of progression with anti-fibrotic drugs. Therefore, novel FILD treatments are needed. In recent years, cell-based therapy with various stem cells has been investigated for FILD, and the use of mesenchymal stem cells (MSCs) has been widely reported and clinical studies are also ongoing. Induced pluripotent stem cells (iPSCs) have also been reported to have an anti-fibrotic effect in FILD; however, these have not been as well studied as MSCs in terms of the mechanisms and side effects. While MSCs show a potent anti-fibrotic effect, the possibility of quality differences between donors and a stable supply in the case of donor shortage or reduced proliferative capacity after cell passaging needs to be considered. The application of iPSC-derived cells has the potential to overcome these problems and may lead to consistent quality of the cell product and stable product supply. This review provides an overview of iPSCs and FILD, followed by the current status of cell-based therapy for FILD, and then discusses the possibilities and perspectives of FILD therapy with iPSC-derived cells.
Collapse
Affiliation(s)
- Yusuke Nakamura
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan; (Y.N.); (S.N.)
- Center of Regenerative Medicine, Dokkyo Medical University Hospital, Mibu 321-0293, Japan
| | - Seiji Niho
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan; (Y.N.); (S.N.)
| | - Yasuo Shimizu
- Department of Pulmonary Medicine and Clinical Immunology, Dokkyo Medical University School of Medicine, Mibu 321-0293, Japan; (Y.N.); (S.N.)
- Center of Regenerative Medicine, Dokkyo Medical University Hospital, Mibu 321-0293, Japan
- Respiratory Endoscopy Center, Dokkyo Medical University Hospital, Mibu 321-0293, Japan
| |
Collapse
|
19
|
Farzamfar S, Garcia LM, Rahmani M, Bolduc S. Navigating the Immunological Crossroads: Mesenchymal Stem/Stromal Cells as Architects of Inflammatory Harmony in Tissue-Engineered Constructs. Bioengineering (Basel) 2024; 11:494. [PMID: 38790361 PMCID: PMC11118848 DOI: 10.3390/bioengineering11050494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
In the dynamic landscape of tissue engineering, the integration of tissue-engineered constructs (TECs) faces a dual challenge-initiating beneficial inflammation for regeneration while avoiding the perils of prolonged immune activation. As TECs encounter the immediate reaction of the immune system upon implantation, the unique immunomodulatory properties of mesenchymal stem/stromal cells (MSCs) emerge as key navigators. Harnessing the paracrine effects of MSCs, researchers aim to craft a localized microenvironment that not only enhances TEC integration but also holds therapeutic promise for inflammatory-driven pathologies. This review unravels the latest advancements, applications, obstacles, and future prospects surrounding the strategic alliance between MSCs and TECs, shedding light on the immunological symphony that guides the course of regenerative medicine.
Collapse
Affiliation(s)
- Saeed Farzamfar
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (S.F.); (M.R.)
| | - Luciana Melo Garcia
- Department of Medicine, Université Laval, Québec, QC G1V 0A6, Canada;
- Hematology-Oncology Service, CHU de Québec—Université Laval, Québec, QC G1V 0A6, Canada
| | - Mahya Rahmani
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (S.F.); (M.R.)
| | - Stephane Bolduc
- Centre de Recherche en Organogénèse Expérimentale/LOEX, Regenerative Medicine Division, CHU de Québec-Université Laval Research Center, Québec, QC G1V 4G2, Canada; (S.F.); (M.R.)
- Department of Surgery, Faculty of Medicine, Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
20
|
Pignatti E, Maccaferri M, Pisciotta A, Carnevale G, Salvarani C. A comprehensive review on the role of mesenchymal stromal/stem cells in the management of rheumatoid arthritis. Expert Rev Clin Immunol 2024; 20:463-484. [PMID: 38163928 DOI: 10.1080/1744666x.2023.2299729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease with systemic manifestations. Although the success of immune modulatory drug therapy is considerable, about 40% of patients do not respond to treatment. Mesenchymal stromal/stem cells (MSCs) have been demonstrated to have therapeutic potential for inflammatory diseases. AREAS COVERED This review provides an update on RA disease and on pre-clinical and clinical studies using MSCs from bone marrow, umbilical cord, adipose tissue, and dental pulp, to regulate the immune response. Moreover, the clinical use, safety, limitations, and future perspective of MSCs in RA are discussed. Using the PubMed database and ClincalTrials.gov, peer-reviewed full-text papers, abstracts and clinical trials were identified from 1985 through to April 2023. EXPERT OPINION MSCs demonstrated a satisfactory safety profile and potential for clinical efficacy. However, it is mandatory to deepen the investigations on how MSCs affect the proinflammatory deregulated RA patients' cells. MSCs are potentially good candidates for severe RA patients not responding to conventional therapies but a long-term follow-up after stem cells treatment and standardized protocols are needed. Future research should focus on well-designed multicenter randomized clinical trials with adequate sample sizes and properly selected patients satisfying RA criteria for a valid efficacy evaluation.
Collapse
Affiliation(s)
- Elisa Pignatti
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Monia Maccaferri
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Pisciotta
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Salvarani
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Rheumatology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
21
|
Klimczak A. Mesenchymal Stem/Progenitor Cells and Their Derivates in Tissue Regeneration-Part II. Int J Mol Sci 2024; 25:4937. [PMID: 38732156 PMCID: PMC11084558 DOI: 10.3390/ijms25094937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 05/13/2024] Open
Abstract
During the last three decades, mesenchymal stem/stromal cells (MSCs) were extensively studied, and are mainly considered within the setting of their regenerative and immunomodulatory properties in tissue regeneration [...].
Collapse
Affiliation(s)
- Aleksandra Klimczak
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
22
|
Carmona-Luque MD, Ballesteros-Ribelles A, Millán-López A, Blanco A, Nogueras S, Herrera C. The Effect of Cell Culture Passage on the Efficacy of Mesenchymal Stromal Cells as a Cell Therapy Treatment. J Clin Med 2024; 13:2480. [PMID: 38731011 PMCID: PMC11084414 DOI: 10.3390/jcm13092480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Background/Objective: Mesenchymal Stromal Cells (MSCs) have been considered a promising treatment for several diseases, such as cardiac injuries. Many studies have analyzed their functional properties; however, few studies have characterized MSCs through successive culture passages. The main objective of this work was to analyze the phenotype and functionality of MSCs isolated from two different sources in five culture passages to determine if the culture passage might influence the efficacy of MSCs as a cell therapy treatment. Methods: Bone Marrow (BM)-MSCs were harvested from the femur of Wistar rats (n = 17) and Adipose Tissue(AT)-MSCs were isolated from inguinal fat (n = 17). MSCs were cultured for five culture passages, and the immunophenotype was analyzed by flow cytometry, the functionality was characterized by adipogenic, osteogenic, and chondrogenic differentiation assays, and cytokine secretion capacity was determined through the quantification of the Vascular Endothelial Growth-Factor, Fibroblast Growth-Factor2, and Transforming Growth-Factorβ1 in the cell supernatant. The ultrastructure of MSCs was analyzed by transmission electron microscopy. Results: BM-MSCs exhibited typical phenotypes in culture passages two, four, and five, and their differentiation capacity showed an irregular profile throughout the five culture passages analyzed. AT-MSCs showed a normal phenotype and differentiation capacity in all the culture passages. BM- and AT-MSCs did not modify their secretion ability or ultrastructural morphology. Conclusions: Throughout the culture passages, BM-MSCs, but not AT-MSCs, exhibited changes in their functional and phenotypic characteristic that might affect their efficacy as a cell therapy treatment. Therefore, the culture passage selected should be considered for the application of MSCs as a cell therapy treatment.
Collapse
Affiliation(s)
- MDolores Carmona-Luque
- Cell Therapy Group, Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain; (A.B.-R.); (A.M.-L.); (C.H.)
| | - Antonio Ballesteros-Ribelles
- Cell Therapy Group, Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain; (A.B.-R.); (A.M.-L.); (C.H.)
| | - Alejandro Millán-López
- Cell Therapy Group, Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain; (A.B.-R.); (A.M.-L.); (C.H.)
| | - Alfonso Blanco
- Anatomy and Comparative Pathology Department, University of Cordoba, 14014 Cordoba, Spain
| | - Sonia Nogueras
- Cell Therapy Group, Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain; (A.B.-R.); (A.M.-L.); (C.H.)
| | - Concha Herrera
- Cell Therapy Group, Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain; (A.B.-R.); (A.M.-L.); (C.H.)
- Department of Hematology, Reina Sofia University Hospital, University of Cordoba, 14014 Cordoba, Spain
| |
Collapse
|
23
|
Tanvir MAH, Khaleque MA, Kim GH, Yoo WY, Kim YY. The Role of Bioceramics for Bone Regeneration: History, Mechanisms, and Future Perspectives. Biomimetics (Basel) 2024; 9:230. [PMID: 38667241 PMCID: PMC11048714 DOI: 10.3390/biomimetics9040230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/11/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Osteoporosis is a skeletal disorder marked by compromised bone integrity, predisposing individuals, particularly older adults and postmenopausal women, to fractures. The advent of bioceramics for bone regeneration has opened up auspicious pathways for addressing osteoporosis. Research indicates that bioceramics can help bones grow back by activating bone morphogenetic protein (BMP), mitogen-activated protein kinase (MAPK), and wingless/integrated (Wnt)/β-catenin pathways in the body when combined with stem cells, drugs, and other supports. Still, bioceramics have some problems, such as not being flexible enough and prone to breaking, as well as difficulties in growing stem cells and discovering suitable supports for different bone types. While there have been improvements in making bioceramics better for healing bones, it is important to keep looking for new ideas from different areas of medicine to make them even better. By conducting a thorough scrutiny of the pivotal role bioceramics play in facilitating bone regeneration, this review aspires to propel forward the rapidly burgeoning domain of scientific exploration. In the end, this appreciation will contribute to the development of novel bioceramics that enhance bone regrowth and offer patients with bone disorders alternative treatments.
Collapse
Affiliation(s)
| | | | | | | | - Young-Yul Kim
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Daejeon 34943, Republic of Korea; (M.A.H.T.); (M.A.K.); (G.-H.K.); (W.-Y.Y.)
| |
Collapse
|
24
|
Wang Y, Liu X, Wang B, Sun H, Ren Y, Zhang H. Compounding engineered mesenchymal stem cell-derived exosomes: A potential rescue strategy for retinal degeneration. Biomed Pharmacother 2024; 173:116424. [PMID: 38471273 DOI: 10.1016/j.biopha.2024.116424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024] Open
Abstract
The prevalence of retinal degenerative diseases, including age-related macular degeneration and retinitis pigmentosa, has been increasing globally and is linked to the aging population and improved life expectancy. These diseases are characterized by chronic, progressive neuronal damage or depletion of the photoreceptor cells in the retina, and limited effective treatment options are currently available. Mesenchymal stem cell-derived exosomes (MSC-EXOs) containing cytokines, growth factors, lipids, mRNA, and miRNA, which act as mediators of intercellular communication transferring bioactive molecules to recipient cells, offer an appealing, non-cellular nanotherapeutic approach for retinal degenerative diseases. However, treatment specificity is compromised due to their high heterogeneity in size, content, functional effects, and parental cellular source. To improve this, engineered MSC-EXOs with increased drug-loading capacity, targeting ability, and resistance to bodily degradation and elimination have been developed. This review summarizes the recent advances in miRNAs of MSC-EXOs as a treatment for retinal degeneration, discussing the strategies and methods for engineering therapeutic MSC-EXOs. Notably, to address the single functional role of engineered MSC-EXOs, we propose a novel concept called "Compound Engineered MSC-EXOs (Co-E-MSC-EXOs)" along with its derived potential therapeutic approaches. The advantages and challenges of employing Co-E-MSC-EXOs for retinal degeneration in clinical applications, as well as the strategies and issues related to them, are also highlighted.
Collapse
Affiliation(s)
- Yao Wang
- Shaanxi Provincial Clinical Research Center for Ophthalmology Diseases, the First Affiliated Hospital of Northwest University, Xi'an No.1 hospital, Xi'an, Shaanxi, China; Shaanxi Key Laboratory of Ophthalmology, Shaanxi Institute of Ophthalmology, Xi'an, Shaanxi 710002, China.
| | - Xianning Liu
- Shaanxi Provincial Clinical Research Center for Ophthalmology Diseases, the First Affiliated Hospital of Northwest University, Xi'an No.1 hospital, Xi'an, Shaanxi, China; Shaanxi Key Laboratory of Ophthalmology, Shaanxi Institute of Ophthalmology, Xi'an, Shaanxi 710002, China
| | - Bei Wang
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Hanhan Sun
- The College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Yiqian Ren
- Shaanxi Provincial Clinical Research Center for Ophthalmology Diseases, the First Affiliated Hospital of Northwest University, Xi'an No.1 hospital, Xi'an, Shaanxi, China; Shaanxi Key Laboratory of Ophthalmology, Shaanxi Institute of Ophthalmology, Xi'an, Shaanxi 710002, China
| | - Hongbing Zhang
- Shaanxi Provincial Clinical Research Center for Ophthalmology Diseases, the First Affiliated Hospital of Northwest University, Xi'an No.1 hospital, Xi'an, Shaanxi, China; Shaanxi Key Laboratory of Ophthalmology, Shaanxi Institute of Ophthalmology, Xi'an, Shaanxi 710002, China.
| |
Collapse
|
25
|
Wu M, Mi J, Qu GX, Zhang S, Jian Y, Gao C, Cai Q, Liu J, Jiang J, Huang H. Role of Hedgehog Signaling Pathways in Multipotent Mesenchymal Stem Cells Differentiation. Cell Transplant 2024; 33:9636897241244943. [PMID: 38695366 PMCID: PMC11067683 DOI: 10.1177/09636897241244943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/09/2024] [Accepted: 03/14/2024] [Indexed: 05/05/2024] Open
Abstract
Multipotent mesenchymal stem cells (MSCs) have high self-renewal and multi-lineage differentiation potentials and low immunogenicity, so they have attracted much attention in the field of regenerative medicine and have a promising clinical application. MSCs originate from the mesoderm and can differentiate not only into osteoblasts, cartilage, adipocytes, and muscle cells but also into ectodermal and endodermal cell lineages across embryonic layers. To design cell therapy for replacement of damaged tissues, it is essential to understand the signaling pathways, which have a major impact on MSC differentiation, as this will help to integrate the signaling inputs to initiate a specific lineage. Hedgehog (Hh) signaling plays a vital role in the development of various tissues and organs in the embryo. As a morphogen, Hh not only regulates the survival and proliferation of tissue progenitor and stem populations but also is a critical moderator of MSC differentiation, involving tri-lineage and across embryonic layer differentiation of MSCs. This review summarizes the role of Hh signaling pathway in the differentiation of MSCs to mesodermal, endodermal, and ectodermal cells.
Collapse
Affiliation(s)
- Mengyu Wu
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Junwei Mi
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Guo-xin Qu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Shu Zhang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Yi Jian
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Chu Gao
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Qingli Cai
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Jing Liu
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| | - Jianxin Jiang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Hong Huang
- Department of Trauma Medical Center, Daping Hospital, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical University, Chongqing, China
| |
Collapse
|
26
|
Stricker PEF, de Oliveira NB, Mogharbel BF, Lührs L, Irioda AC, Abdelwahid E, Regina Cavalli L, Zotarelli-Filho IJ, de Carvalho KAT. Meta-analysis of the Mesenchymal Stem Cells Immortalization Protocols: A Guideline for Regenerative Medicine. Curr Stem Cell Res Ther 2024; 19:1009-1020. [PMID: 38221663 DOI: 10.2174/011574888x268464231016070900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND This systematic review describes the most common methodologies for immortalizing human and animal mesenchymal stem cells (MSCs). This study follows the rules of PRISMA and is registered in the Institutional Review Board of PROSPERO International of systematic reviews, numbered protocol code: CRD42020202465. METHOD The data search systematization was based on the words "mesenchymal stem cell" AND "immortalization." The search period for publications was between 2000 and 2022, and the databases used were SCOPUS, PUBMED, and SCIENCE DIRECT. The search strategies identified 384 articles: 229 in the SCOPUS database, 84 in PUBMED, and 71 in SCIENCE DIRECT. After screening by titles and abstracts, 285 articles remained. This review included thirty-nine articles according to the inclusion and exclusion criteria. RESULT In 28 articles, MSCs were immortalized from humans and 11 animals. The most used immortalization methodology was viral transfection. The most common immortalized cell type was the MSC from bone marrow, and the most used gene for immortalizing human and animal MSCs was hTERT (39.3%) and SV40T (54.5%), respectively. CONCLUSION Also, it was observed that although less than half of the studies performed tumorigenicity assays to validate the immortalized MSCs, other assays, such as qRT-PCR, colony formation in soft agar, karyotype, FISH, and cell proliferation, were performed in most studies on distinct MSC cell passages.
Collapse
Affiliation(s)
| | | | - Bassam Felipe Mogharbel
- Pelé Pequeno Príncipe Research Institute Research & Pequeno Príncipe Faculties, Curitiba, Brazil
| | - Larissa Lührs
- Pelé Pequeno Príncipe Research Institute Research & Pequeno Príncipe Faculties, Curitiba, Brazil
| | - Ana Carolina Irioda
- Pelé Pequeno Príncipe Research Institute Research & Pequeno Príncipe Faculties, Curitiba, Brazil
| | - Eltyeb Abdelwahid
- Feinberg School of Medicine, Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA
| | - Luciane Regina Cavalli
- Pelé Pequeno Príncipe Research Institute Research & Pequeno Príncipe Faculties, Curitiba, Brazil
| | - Idiberto José Zotarelli-Filho
- Pelé Pequeno Príncipe Research Institute Research & Pequeno Príncipe Faculties, Curitiba, Brazil
- ABRAN - Associação Brasileira de Nutrologia/Brazilian Association of Nutrology, Catanduva, Sao Paulo, Brazil
- College of Palliative Medicine of Sri Lanka, Colombo, Sri Lanka
| | | |
Collapse
|
27
|
Deszcz I. Stem Cell-Based Therapy and Cell-Free Therapy as an Alternative Approach for Cardiac Regeneration. Stem Cells Int 2023; 2023:2729377. [PMID: 37954462 PMCID: PMC10635745 DOI: 10.1155/2023/2729377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/21/2023] [Accepted: 10/10/2023] [Indexed: 11/14/2023] Open
Abstract
The World Health Organization reports that cardiovascular diseases (CVDs) represent 32% of all global deaths. The ineffectiveness of conventional therapies in CVDs encourages the development of novel, minimally invasive therapeutic strategies for the healing and regeneration of damaged tissue. The self-renewal capacity, multilineage differentiation, lack of immunogenicity, and immunosuppressive properties of mesenchymal stem cells (MSCs) make them a promising option for CVDs. However, growing evidence suggests that myocardial regeneration occurs through paracrine factors and extracellular vesicle (EV) secretion, rather than through differentiation into cardiomyocytes. Research shows that stem cells secrete or surface-shed into their culture media various cytokines, chemokines, growth factors, anti-inflammatory factors, and EVs, which constitute an MSC-conditioned medium (MSC-CM) or the secretome. The use of MSC-CM enhances cardiac repair through resident heart cell differentiation, proliferation, scar mass reduction, a decrease in infarct wall thickness, and cardiac function improvement comparable to MSCs without their side effects. This review highlights the limitations and benefits of therapies based on stem cells and their secretome as an innovative treatment of CVDs.
Collapse
Affiliation(s)
- Iwona Deszcz
- Department of Immunopathology and Molecular Biology, Wroclaw Medical University, Borowska 211, 50-556, Wroclaw, Poland
| |
Collapse
|
28
|
Xu X, Xu L, Xia J, Wen C, Liang Y, Zhang Y. Harnessing knee joint resident mesenchymal stem cells in cartilage tissue engineering. Acta Biomater 2023; 168:372-387. [PMID: 37481194 DOI: 10.1016/j.actbio.2023.07.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/26/2023] [Accepted: 07/17/2023] [Indexed: 07/24/2023]
Abstract
Osteoarthritis (OA) is a widespread clinical disease characterized by cartilage degeneration in middle-aged and elderly people. Currently, there is no effective treatment for OA apart from total joint replacement in advanced stages. Mesenchymal stem cells (MSCs) are a type of adult stem cell with diverse differentiation capabilities and immunomodulatory potentials. MSCs are known to effectively regulate the cartilage microenvironment, promote cartilage regeneration, and alleviate OA symptoms. As a result, they are promising sources of cells for OA therapy. Recent studies have revealed the presence of resident MSCs in synovial fluid, synovial membrane, and articular cartilage, which can be collected as knee joint-derived MSCs (KJD-MSC). Several preclinical and clinical studies have demonstrated that KJD-MSCs have great potential for OA treatment, whether applied alone, in combination with biomaterials, or as exocrine MSCs. In this article, we will review the characteristics of MSCs in the joints, including their cytological characteristics, such as proliferation, cartilage differentiation, and immunomodulatory abilities, as well as the biological function of MSC exosomes. We will also discuss the use of tissue engineering in OA treatment and introduce the concept of a new generation of stem cell-based tissue engineering therapy, including the use of engineering, gene therapy, and gene editing techniques to create KJD-MSCs or KJD-MSC derivative exosomes with improved functionality and targeted delivery. These advances aim to maximize the efficiency of cartilage tissue engineering and provide new strategies to overcome the bottleneck of OA therapy. STATEMENT OF SIGNIFICANCE: This research will provide new insights into the medicinal benefit of Joint resident Mesenchymal Stem Cells (MSCs), specifically on its cartilage tissue engineering ability. Through this review, the community will further realize promoting joint resident mesenchymal stem cells, especially cartilage progenitor/MSC-like progenitor cells (CPSC), as a preventive measure against osteoarthritis and cartilage injury. People and medical institutions may also consider cartilage derived MSC as an alternative approach against cartilage degeneration. Moreover, the discussion presented in this study will convey valuable information for future research that will explore the medicinal benefits of cartilage derived MSC.
Collapse
Affiliation(s)
- Xiao Xu
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China; Department of Orthopedics, the First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, China
| | - Limei Xu
- Department of Hematology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Jiang Xia
- Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Caining Wen
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China
| | - Yujie Liang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China; Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Yuanmin Zhang
- Department of Joint Surgery and Sports Medicine, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272029, China.
| |
Collapse
|
29
|
Gholami Farashah MS, Mohammadi A, Javadi M, Soleimani Rad J, Shakouri SK, Meshgi S, Roshangar L. Bone marrow mesenchymal stem cells' osteogenic potential: superiority or non-superiority to other sources of mesenchymal stem cells? Cell Tissue Bank 2023; 24:663-681. [PMID: 36622494 DOI: 10.1007/s10561-022-10066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/14/2022] [Indexed: 01/10/2023]
Abstract
Skeletal problems are an increasing issue due to the increase in the global aging population. Different statistics reports show that today, the global population is aging that results in skeletal problems, increased health system costs, and even higher mortality associated with skeletal problems. Common treatments such as surgery and bone grafts are not always effective and in some cases, they can even cause secondary problems such as infections or improper repair. Cell therapy is a method that can be utilized along with common treatments independently. Mesenchymal stem cells (MSCs) are a very important and efficient source in terms of different diseases, especially bone problems. These cells are present in different tissues such as bone marrow, adipose tissue, umbilical cord, placenta, dental pulp, peripheral blood, amniotic fluid and others. Among the types of MSCs, bone marrow mesenchymal stem cells (BMMSCs) are the most widely used source of these cells, which have appeared to be very effective and promising in terms of skeletal diseases, especially compared to the other sources of MSCs. This study focuses on the specific potential and content of BMMSCs from which the specific capacity of these cells originates, and compares their osteogenic potential with other types of MSCs, and also the future directions in the application of BMMSCs as a source for cell therapy.
Collapse
Affiliation(s)
- Mohammad Sadegh Gholami Farashah
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mohammadi
- Stem Cell and Regenerative Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Javadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Soleimani Rad
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Kazem Shakouri
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shahla Meshgi
- Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Roshangar
- Physical Medicine and Rehabilitation Research Center, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
30
|
Uzieliene I, Bialaglovyte P, Miksiunas R, Lebedis I, Pachaleva J, Vaiciuleviciute R, Ramanaviciene A, Kvederas G, Bernotiene E. Menstrual Blood-Derived Stem Cell Paracrine Factors Possess Stimulatory Effects on Chondrogenesis In Vitro and Diminish the Degradation of Articular Cartilage during Osteoarthritis. Bioengineering (Basel) 2023; 10:1001. [PMID: 37760103 PMCID: PMC10525204 DOI: 10.3390/bioengineering10091001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Articular cartilage is an avascular tissue with a limited capacity for self-regeneration, leading the tissue to osteoarthritis (OA). Mesenchymal stem cells (MSCs) are promising for cartilage tissue engineering, as they are capable of differentiating into chondrocyte-like cells and secreting a number of active molecules that are important for cartilage extracellular matrix (ECM) synthesis. The aim of this study was to evaluate the potential of easily accessible menstrual blood-derived MSC (MenSC) paracrine factors in stimulating bone marrow MSC (BMMSCs) chondrogenic differentiation and to investigate their role in protecting cartilage from degradation in vitro. MenSCs and BMMSCs chondrogenic differentiation was induced using four different growth factors: TGF-β3, activin A, BMP-2, and IGF-1. The chondrogenic differentiation of BMMSCs was stimulated in co-cultures with MenSCs and cartilage explants co-cultured with MenSCs for 21 days. The chondrogenic capacity of BMMSCs was analyzed by the secretion of four growth factors and cartilage oligomeric matrix protein, as well as the release and synthesis of cartilage ECM proteins, and chondrogenic gene expression in cartilage explants. Our results suggest that MenSCs stimulate chondrogenic response in BMMSCs by secreting activin A and TGF-β3 and may have protective effects on cartilage tissue ECM by decreasing the release of GAGs, most likely through the modulation of activin A related molecular pathway. In conclusion, paracrine factors secreted by MenSCs may turn out to be a promising therapeutical approach for cartilage tissue protection and repair.
Collapse
Affiliation(s)
- Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (P.B.); (R.M.); (I.L.); (J.P.); (R.V.); (E.B.)
| | - Paulina Bialaglovyte
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (P.B.); (R.M.); (I.L.); (J.P.); (R.V.); (E.B.)
| | - Rokas Miksiunas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (P.B.); (R.M.); (I.L.); (J.P.); (R.V.); (E.B.)
| | - Ignas Lebedis
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (P.B.); (R.M.); (I.L.); (J.P.); (R.V.); (E.B.)
| | - Jolita Pachaleva
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (P.B.); (R.M.); (I.L.); (J.P.); (R.V.); (E.B.)
| | - Raminta Vaiciuleviciute
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (P.B.); (R.M.); (I.L.); (J.P.); (R.V.); (E.B.)
| | - Almira Ramanaviciene
- Department of Immunology, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania;
- NanoTechnas—Center on Nanotechnology and Materials Sciences, Faculty of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
| | - Giedrius Kvederas
- The Clinic of Rheumatology, Traumatology Orthopaedics and Reconstructive Surgery, Institute of Clinical Medicine of the Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (P.B.); (R.M.); (I.L.); (J.P.); (R.V.); (E.B.)
- Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, VilniusTech, Vilnius Gediminas Technical University, 10223 Vilnius, Lithuania
| |
Collapse
|
31
|
Zhu X, Xu X, Shen M, Wang Y, Zheng T, Li H, Wang X, Meng J. Transcriptomic Heterogeneity of Human Mesenchymal Stem Cells Derived from Bone Marrow, Dental Pulp, Adipose Tissue, and Umbilical Cord. Cell Reprogram 2023; 25:162-170. [PMID: 37384924 DOI: 10.1089/cell.2023.0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
Compared with mesenchymal stem cells (MSCs) obtained from other tissue sources, those derived from umbilical cord (UC) tissue exhibit numerous advantages and vast potential for therapeutic applications. However, MSCs from different tissue sources are heterogeneous, and therefore, the therapeutic efficacy of UC-derived MSCs as a replacement for other tissue-derived MSCs needs to be studied. To better understand the distinctions between UC-derived MSCs and MSCs derived from other tissues, we conducted a transcriptome analysis of MSCs obtained from UC and three other tissues. Correlation analysis revealed the strongest correlation between UC-MSCs (UC-MSCs) and bone marrow-MSCs (BM-MSCs). Compared with UC-MSCs, the lower differentially expressed genes of BM-MSCs, dental pulp-MSCs (DP-MSCs), and adipose tissue-MSCs (AP-MSCs) were predominantly enriched in actin-related terms, while higher differentially expressed genes were predominantly enriched in immunological processes. We also analyzed the distribution of 34 frequently or highly expressed cell characterization molecules in BM-MSCs, DP-MSCs, AP-MSCs, and UC-MSCs. CD200 (FPKM >10) was only detected in UC-MSCs, while CD106 was detected in AD-MSCs and DP-MSCs (FPKM >10). The reliability of transcriptomic data analysis was verified by quantitative real-time PCR. Finally, we recommend the use of CD200, CD106, and other similar markers with unstable expression as benchmark molecules to monitor the proliferation and differentiation potential of MSCs. This study provides comprehensive insights into the heterogeneity between UC-MSCs and MSCs derived from other tissues, which can guide the therapeutic application of UC-MSCs.
Collapse
Affiliation(s)
- Xiaoxiao Zhu
- Xuzhou Central Hospital, Xuzhou, China
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Xinchen Xu
- Xuzhou Central Hospital, Xuzhou, China
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Mengyuan Shen
- Xuzhou Central Hospital, Xuzhou, China
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Yingying Wang
- Xuzhou Central Hospital, Xuzhou, China
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Tao Zheng
- Xuzhou Central Hospital, Xuzhou, China
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Huitao Li
- Xuzhou Central Hospital, Xuzhou, China
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Xing Wang
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
- Department of Stomatology, China Rehabilitation Center, Beijing, China
| | - Jian Meng
- Xuzhou Central Hospital, Xuzhou, China
- Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
32
|
Kahrizi MS, Mousavi E, Khosravi A, Rahnama S, Salehi A, Nasrabadi N, Ebrahimzadeh F, Jamali S. Recent advances in pre-conditioned mesenchymal stem/stromal cell (MSCs) therapy in organ failure; a comprehensive review of preclinical studies. Stem Cell Res Ther 2023; 14:155. [PMID: 37287066 DOI: 10.1186/s13287-023-03374-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs)-based therapy brings the reassuring capability to regenerative medicine through their self-renewal and multilineage potency. Also, they secret a diversity of mediators, which are complicated in moderation of deregulated immune responses, and yielding angiogenesis in vivo. Nonetheless, MSCs may lose biological performance after procurement and prolonged expansion in vitro. Also, following transplantation and migration to target tissue, they encounter a harsh milieu accompanied by death signals because of the lack of proper tensegrity structure between the cells and matrix. Accordingly, pre-conditioning of MSCs is strongly suggested to upgrade their performances in vivo, leading to more favored transplantation efficacy in regenerative medicine. Indeed, MSCs ex vivo pre-conditioning by hypoxia, inflammatory stimulus, or other factors/conditions may stimulate their survival, proliferation, migration, exosome secretion, and pro-angiogenic and anti-inflammatory characteristics in vivo. In this review, we deliver an overview of the pre-conditioning methods that are considered a strategy for improving the therapeutic efficacy of MSCs in organ failures, in particular, renal, heart, lung, and liver.
Collapse
Affiliation(s)
| | - Elnaz Mousavi
- Department of Endodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Iran
| | - Armin Khosravi
- Department of Periodontics, Dental School, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Sara Rahnama
- Department of Pediatric Dentistry, School of Dentistry, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Salehi
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Iran
| | - Navid Nasrabadi
- Department of Endodontics, School of Dentistry, Birjand University of Medical Sciences, Birjand, Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Samira Jamali
- Department of Endodontics, Stomatological Hospital, College of Stomatology, Xi'an Jiaotong University, Shaanxi, People's Republic of China.
| |
Collapse
|
33
|
Peshkova M, Korneev A, Suleimanov S, Vlasova II, Svistunov A, Kosheleva N, Timashev P. MSCs' conditioned media cytokine and growth factor profiles and their impact on macrophage polarization. Stem Cell Res Ther 2023; 14:142. [PMID: 37231519 DOI: 10.1186/s13287-023-03381-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND There is a growing body of evidence that multipotent mesenchymal stromal cells' (MSCs') remarkable therapeutic potential is attributed not only to their differentiation and regenerative capacity, but also to the paracrine effect, underlying their immunomodulatory properties. MSCs' secretome (i.e., cytokines, growth factors, and extracellular vesicles) is therefore increasingly discussed in the context of their ability to modulate inflammatory response and promote regeneration. There is evidence that 2D or 3D culturing conditions have an impact on the cells' secretome, and here we aimed to compare the secretion of cytokines and growth factors in human MSCs from different sources cultured in 2D and 3D conditions and assess their effect on human macrophages polarization in vitro. METHODS MSCs were derived from human adipose tissue, bone marrow, gingiva, placenta, and umbilical cord, cultured as monolayers or as cell spheroids. Their cytokine profiles were analyzed, and data standardization was carried out using a z-score. Human peripheral blood mononuclear cells-derived macrophages were then treated with umbilical cord-derived MSCs' conditioned media and their effect on macrophages polarization was assessed. RESULTS Our findings suggest that umbilical cord-derived MSCs' conditioned media demonstrated the highest cytokine and growth factor levels and despite mostly pro-inflammatory cytokine profile were able to promote anti-inflammatory macrophage polarization. CONCLUSIONS Umbilical cord-derived MSCs' conditioned media hold great potential for therapeutic use, demonstrating significant anti-inflammatory effect on human macrophages.
Collapse
Affiliation(s)
- Maria Peshkova
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia, 119991
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia, 119991
- Laboratory of Clinical Smart Nanotechnologies, Sechenov University, Moscow, Russia, 119991
| | - Alexander Korneev
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia, 119991
- Laboratory of Clinical Smart Nanotechnologies, Sechenov University, Moscow, Russia, 119991
- Laboratory of the Polymers Synthesis for Medical Applications, Sechenov University, Moscow, Russia, 119991
| | - Shakir Suleimanov
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia, 119991
- Laboratory of Clinical Smart Nanotechnologies, Sechenov University, Moscow, Russia, 119991
| | - Irina I Vlasova
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia, 119991
| | - Andrey Svistunov
- Sechenov First Moscow State Medical University, Moscow, Russia, 119991
| | - Nastasia Kosheleva
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia, 119991
- Laboratory of Clinical Smart Nanotechnologies, Sechenov University, Moscow, Russia, 119991
- FSBSI Institute of General Pathology and Pathophysiology, Moscow, Russia, 125315
| | - Peter Timashev
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, Moscow, Russia, 119991.
- Institute for Regenerative Medicine, Sechenov University, Moscow, Russia, 119991.
- Laboratory of Clinical Smart Nanotechnologies, Sechenov University, Moscow, Russia, 119991.
| |
Collapse
|
34
|
Humenik F, Maloveská M, Hudáková N, Petroušková P, Šufliarska Z, Horňáková Ľ, Valenčáková A, Kožár M, Šišková B, Mudroňová D, Bartkovský M, Čížková D. Impact of Canine Amniotic Mesenchymal Stem Cell Conditioned Media on the Wound Healing Process: In Vitro and In Vivo Study. Int J Mol Sci 2023; 24:ijms24098214. [PMID: 37175924 PMCID: PMC10179513 DOI: 10.3390/ijms24098214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The aim of this study was to provide a beneficial treatment effect of mesenchymal stem cell products derived from the canine amniotic membrane (AM-MSC) on the complicated wound healing process in dogs. AM-MSCs were characterized in terms of morphology, phenotypic profile, and multilineage differentiation potential. The in vitro study of the effect of canine amniotic mesenchymal stem cell conditioned media (AMMSC-CM) on a primary skin fibroblast cell culture scratch assay showed a decrease in the measured scratch area of about 66.39% against the negative control (Dulbecco's Modified Eagle's Medium-32.55%) and the positive control (Dulbecco's Modified Eagle's Medium supplemented with FGF2, N2, B27, and EGF-82.077%) after 72 h treatment. In the experimental study, seven dogs with complicated nonhealing wounds were treated with a combination of antibiotics, NSAIDs, and local AMMSC-CM application. After 15 days of therapy, we observed a 98.47% reduction in the wound surface area as opposed to 57.135% in the control group treated by conventional therapy based on debridement of necrotic tissue, antibiotic therapy, pain management, and change of wound dressing.
Collapse
Affiliation(s)
- Filip Humenik
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy in Kosice, 040 01 Kosice, Slovakia
| | - Marcela Maloveská
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy in Kosice, 040 01 Kosice, Slovakia
| | - Nikola Hudáková
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy in Kosice, 040 01 Kosice, Slovakia
| | - Patrícia Petroušková
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy in Kosice, 040 01 Kosice, Slovakia
| | - Zuzana Šufliarska
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy in Kosice, 040 01 Kosice, Slovakia
| | - Ľubica Horňáková
- Small Animal Clinic, The University of Veterinary Medicine and Pharmacy in Kosice, 040 01 Kosice, Slovakia
| | - Alexandra Valenčáková
- Small Animal Clinic, The University of Veterinary Medicine and Pharmacy in Kosice, 040 01 Kosice, Slovakia
| | - Martin Kožár
- Small Animal Clinic, The University of Veterinary Medicine and Pharmacy in Kosice, 040 01 Kosice, Slovakia
| | - Barbora Šišková
- Small Animal Clinic, The University of Veterinary Medicine and Pharmacy in Kosice, 040 01 Kosice, Slovakia
| | - Dagmar Mudroňová
- Institute of Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, 040 01 Kosice, Slovakia
| | - Martin Bartkovský
- Department of Food Hygiene, Technology and Safety, The University of Veterinary Medicine and Pharmacy in Kosice, 040 01 Kosice, Slovakia
| | - Daša Čížková
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy in Kosice, 040 01 Kosice, Slovakia
| |
Collapse
|
35
|
Zong Q, Bundkirchen K, Neunaber C, Noack S. Are the Properties of Bone Marrow-Derived Mesenchymal Stem Cells Influenced by Overweight and Obesity? Int J Mol Sci 2023; 24:ijms24054831. [PMID: 36902259 PMCID: PMC10003331 DOI: 10.3390/ijms24054831] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) are promising candidates for cell-based therapies. Growing evidence has indicated that overweight/obesity can change the bone marrow microenvironment, which affects some properties of BMSCs. As the overweight/obese population rapidly increases, they will inevitably become a potential source of BMSCs for clinical application, especially when receiving autologous BMSC transplantation. Given this situation, the quality control of these cells has become particularly important. Therefore, it is urgent to characterize BMSCs isolated from overweight/obese bone marrow environments. In this review, we summarize the evidence of the effects of overweight/obesity on the biological properties of BMSCs derived from humans and animals, including proliferation, clonogenicity, surface antigen expression, senescence, apoptosis, and trilineage differentiation, as well as the underlying mechanisms. Overall, the conclusions of existing studies are not consistent. Most studies demonstrate that overweight/obesity can influence one or more characteristics of BMSCs, while the involved mechanisms are still unclear. Moreover, insufficient evidence proves that weight loss or other interventions can rescue these qualities to baseline status. Thus, further research should address these issues and prioritize developing methods to improve functions of overweight- or obesity-derived BMSCs.
Collapse
|
36
|
Al-Akashi Z, Zujur D, Kamiya D, Kato T, Kondo T, Ikeya M. Selective vulnerability of human-induced pluripotent stem cells to dihydroorotate dehydrogenase inhibition during mesenchymal stem/stromal cell purification. Front Cell Dev Biol 2023; 11:1089945. [PMID: 36814599 PMCID: PMC9939518 DOI: 10.3389/fcell.2023.1089945] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/24/2023] [Indexed: 02/08/2023] Open
Abstract
The use of induced mesenchymal stem/stromal cells (iMSCs) derived from human induced pluripotent stem cells (hiPSCs) in regenerative medicine involves the risk of teratoma formation due to hiPSCs contamination in iMSCs. Therefore, eradicating the remaining undifferentiated hiPSCs is crucial for the effectiveness of the strategy. The present study demonstrates the Brequinar (BRQ)-induced inhibition of dihydroorotate dehydrogenase (DHODH), a key enzyme in de novo pyrimidine biosynthesis, selectively induces apoptosis, cell cycle arrest, and differentiation; furthermore, it promotes transcriptional changes and prevents the growth of 3-dimensional hiPSC aggregates. Contrastingly, BRQ-treated iMSCs showed no changes in survival, differentiation potential, or gene expression. The results suggest that BRQ is a potential agent for the effective purification of iMSCs from a mixed population of iMSCs and hiPSCs, which is a crucial step in successful iMSC-based therapy.
Collapse
Affiliation(s)
- Ziadoon Al-Akashi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Denise Zujur
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Daisuke Kamiya
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan,Takeda-CiRA Joint Program, Fujisawa, Kanagawa, Japan
| | - Tomohisa Kato
- Medical Research Institute, Kanazawa Medical University, Kanazawa, Japan
| | - Toru Kondo
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Makoto Ikeya
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan,Takeda-CiRA Joint Program, Fujisawa, Kanagawa, Japan,*Correspondence: Makoto Ikeya,
| |
Collapse
|
37
|
Li W, Liu Q, Shi J, Xu X, Xu J. The role of TNF-α in the fate regulation and functional reprogramming of mesenchymal stem cells in an inflammatory microenvironment. Front Immunol 2023; 14:1074863. [PMID: 36814921 PMCID: PMC9940754 DOI: 10.3389/fimmu.2023.1074863] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are pluripotent stem cells with multidirectional differentiation potential and strong immunomodulatory capacity. MSCs have been widely used in the treatment of injured, inflammatory, and immune-related diseases. Resting MSCs lack differentiation and immunomodulatory ability. Instead, they rely on microenvironmental factors to: 1) stimulate and regulate their expression of specific cell growth factors, chemokines, immunomodulatory factors, or receptors; or 2) direct their differentiation into specific tissue cells, which ultimately perform tissue regeneration and repair and immunomodulatory functions. Tumor necrosis factor (TNF)-α is central to the creation of an inflammatory microenvironment. TNF-α regulates the fate and functional reprogramming of MSCs, either alone or in combination with a variety of other inflammatory factors. TNF-α can exert opposing effects on MSCs, from inducing MSC apoptosis to enhancing their anti-tumor capacity. In addition, the immunomodulation and osteogenic differentiation capacities of MSCs, as well as their exosome or microvesicle components vary significantly with TNF-α stimulating concentration, time of administration, or its use in combination with or without other factors. Therefore, this review discusses the impact of TNF-α on the fate and functional reprogramming of MSCs in the inflammatory microenvironment, to provide new directions for improving the immunomodulatory and tissue repair functions of MSCs and enhance their therapeutic potential.
Collapse
Affiliation(s)
- Weiqiang Li
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China.,Department of Research and Development, Ankerui (Shanxi) Biological Cell Co., Ltd., Shanxi, China
| | - Qianqian Liu
- Department of Research and Development, Ankerui (Shanxi) Biological Cell Co., Ltd., Shanxi, China
| | - Jinchao Shi
- Department of Research and Development, Ankerui (Shanxi) Biological Cell Co., Ltd., Shanxi, China
| | - Xiang Xu
- Department of Stem Cell & Regenerative Medicine, State Key Laboratory of Trauma, Burn and Combined Injury, Daping Hospital, Army Medical University, Chongqing, China.,Department of Biochemistry and Molecular Biology, College of Basic Medical Science, Army Medical University, Chongqing, China
| | - Jinyi Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Scala P, Lovecchio J, Lamparelli EP, Vitolo R, Giudice V, Giordano E, Selleri C, Rehak L, Maffulli N, Della Porta G. Myogenic commitment of human stem cells by myoblasts Co-culture: a static vs. a dynamic approach. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:49-58. [PMID: 35188030 DOI: 10.1080/21691401.2022.2039684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An in-vitro model of human bone marrow mesenchymal stem cells (hBM-MSCs) myogenic commitment by synergic effect of a differentiation media coupled with human primary skeletal myoblasts (hSkMs) co-culture was developed adopting both conventional static co-seeding and perfused culture systems. Static co-seeding provided a notable outcome in terms of gene expression with a significant increase of Desmin (141-fold) and Myosin heavy chain II (MYH2, 32-fold) at day 21, clearly detected also by semi-quantitative immunofluorescence. Under perfusion conditions, myogenic induction ability of hSkMs on hBM-MSCs was exerted by paracrine effect with an excellent gene overexpression and immunofluorescence detection of MYH2 protein; furthermore, due to the dynamic cell culture in separate wells, western blot data were acquired confirming a successful cell commitment at day 14. A significant increase of anti-inflammatory cytokine gene expression, including IL-10 and IL-4 (15-fold and 11-fold, respectively) at day 14, with respect to the pro-inflammatory cytokines IL-12A (7-fold at day 21) and IL-1β (1.4-fold at day 7) was also detected during dynamic culture, confirming the immunomodulatory activity of hBM-MSCs along with commitment events. The present study opens interesting perspectives on the use of dynamic culture based on perfusion as a versatile tool to study myogenic events and paracrine cross-talk compared to the simple co-seeding static culture.
Collapse
Affiliation(s)
- Pasqualina Scala
- Translational Medicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Salerno (SA), Italy
| | - J Lovecchio
- Mol Cel Eng. Lab "S. Cavalcanti", Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Via dell'Universitá 50, 47522 Cesena, Forlí-Cesena (FC), Italy.,Health Sciences and Technologies - Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano dell'Emilia, Bologna (BO), Italy
| | - E P Lamparelli
- Translational Medicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Salerno (SA), Italy
| | - R Vitolo
- Translational Medicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Salerno (SA), Italy
| | - V Giudice
- Translational Medicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Salerno (SA), Italy
| | - E Giordano
- Mol Cel Eng. Lab "S. Cavalcanti", Department of Electrical, Electronic and Information Engineering "Guglielmo Marconi" (DEI), University of Bologna, Via dell'Universitá 50, 47522 Cesena, Forlí-Cesena (FC), Italy.,Health Sciences and Technologies - Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano dell'Emilia, Bologna (BO), Italy.,Advanced Research Center on Electronic Systems (ARCES), University of Bologna, Via Vincenzo Toffano 2/2, 40125 Bologna (BO), Italy
| | - C Selleri
- Translational Medicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Salerno (SA), Italy
| | - L Rehak
- Athena Biomedical innovations, Viale Europa 139, Florence (FI), 50126, Italy
| | - N Maffulli
- Translational Medicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Salerno (SA), Italy
| | - G Della Porta
- Translational Medicine Laboratory, Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Salerno (SA), Italy.,Interdepartment Centre BIONAM, Università di Salerno, via Giovanni Paolo I, 84084 Fisciano, Salerno (SA), Italy
| |
Collapse
|
39
|
Yamatani Y, Nakai K. Comprehensive comparison of gene expression diversity among a variety of human stem cells. NAR Genom Bioinform 2022; 4:lqac087. [PMID: 36458020 PMCID: PMC9706419 DOI: 10.1093/nargab/lqac087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 10/26/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022] Open
Abstract
Several factors, including tissue origins and culture conditions, affect the gene expression of undifferentiated stem cells. However, understanding the basic identity across different stem cells has not been pursued well despite its importance in stem cell biology. Thus, we aimed to rank the relative importance of multiple factors to gene expression profile among undifferentiated human stem cells by analyzing publicly available RNA-seq datasets. We first conducted batch effect correction to avoid undefined variance in the dataset as possible. Then, we highlighted the relative impact of biological and technical factors among undifferentiated stem cell types: a more influence on tissue origins in induced pluripotent stem cells than in other stem cell types; a stronger impact of culture condition in embryonic stem cells and somatic stem cell types, including mesenchymal stem cells and hematopoietic stem cells. In addition, we found that a characteristic gene module, enriched in histones, exhibits higher expression across different stem cell types that were annotated by specific culture conditions. This tendency was also observed in mouse stem cell RNA-seq data. Our findings would help to obtain general insights into stem cell quality, such as the balance of differentiation potentials that undifferentiated stem cells possess.
Collapse
Affiliation(s)
- Yukiyo Yamatani
- Department of Computational Biology and Medical Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | - Kenta Nakai
- Department of Computational Biology and Medical Sciences, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
- Human Genome Center, the Institute of Medical Science, the University of Tokyo, 4-6-1 Shirokanedai Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
40
|
Meesuk L, Suwanprateeb J, Thammarakcharoen F, Tantrawatpan C, Kheolamai P, Palang I, Tantikanlayaporn D, Manochantr S. Osteogenic differentiation and proliferation potentials of human bone marrow and umbilical cord-derived mesenchymal stem cells on the 3D-printed hydroxyapatite scaffolds. Sci Rep 2022; 12:19509. [PMID: 36376498 PMCID: PMC9663507 DOI: 10.1038/s41598-022-24160-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are a promising candidate for bone repair. However, the maintenance of MSCs injected into the bone injury site remains inefficient. A potential approach is to develop a bone-liked platform that incorporates MSCs into a biocompatible 3D scaffold to facilitate bone grafting into the desired location. Bone tissue engineering is a multistep process that requires optimizing several variables, including the source of cells, osteogenic stimulation factors, and scaffold properties. This study aims to evaluate the proliferation and osteogenic differentiation potentials of MSCs cultured on 2 types of 3D-printed hydroxyapatite, including a 3D-printed HA and biomimetic calcium phosphate-coated 3D-printed HA. MSCs from bone marrow (BM-MSCs) and umbilical cord (UC-MSCs) were cultured on the 3D-printed HA and coated 3D-printed HA. Scanning electron microscopy and immunofluorescence staining were used to examine the characteristics and the attachment of MSCs to the scaffolds. Additionally, the cell proliferation was monitored, and the ability of cells to differentiate into osteoblast was assessed using alkaline phosphatase (ALP) activity and osteogenic gene expression. The BM-MSCs and UC-MSCs attached to a plastic culture plate with a spindle-shaped morphology exhibited an immunophenotype consistent with the characteristics of MSCs. Both MSC types could attach and survive on the 3D-printed HA and coated 3D-printed HA scaffolds. The MSCs cultured on these scaffolds displayed sufficient osteoblastic differentiation capacity, as evidenced by increased ALP activity and the expression of osteogenic genes and proteins compared to the control. Interestingly, MSCs grown on coated 3D-printed HA exhibited a higher ALP activity and osteogenic gene expression than those cultured on the 3D-printed HA. The finding indicated that BM-MSCs and UC-MSCs cultured on the 3D-printed HA and coated 3D-printed HA scaffolds could proliferate and differentiate into osteoblasts. Thus, the HA scaffolds could provide a suitable and favorable environment for the 3D culture of MSCs in bone tissue engineering. Additionally, biomimetic coating with octacalcium phosphate may improve the biocompatibility of the bone regeneration scaffold.
Collapse
Affiliation(s)
- Ladda Meesuk
- grid.412434.40000 0004 1937 1127Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120 Thailand
| | - Jintamai Suwanprateeb
- grid.425537.20000 0001 2191 4408Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Faungchat Thammarakcharoen
- grid.425537.20000 0001 2191 4408Biofunctional Materials and Devices Research Group, National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Chairat Tantrawatpan
- grid.412434.40000 0004 1937 1127Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120 Thailand ,grid.412434.40000 0004 1937 1127Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120 Thailand
| | - Pakpoom Kheolamai
- grid.412434.40000 0004 1937 1127Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120 Thailand ,grid.412434.40000 0004 1937 1127Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120 Thailand
| | - Iyapa Palang
- grid.412434.40000 0004 1937 1127Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120 Thailand
| | - Duangrat Tantikanlayaporn
- grid.412434.40000 0004 1937 1127Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120 Thailand ,grid.412434.40000 0004 1937 1127Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120 Thailand
| | - Sirikul Manochantr
- grid.412434.40000 0004 1937 1127Division of Cell Biology, Department of Preclinical Sciences, Faculty of Medicine, Thammasat University, Pathumthani, 12120 Thailand ,grid.412434.40000 0004 1937 1127Center of Excellence in Stem Cell Research, Thammasat University, Pathumthani, 12120 Thailand
| |
Collapse
|
41
|
MSC-EV therapy for bone/cartilage diseases. Bone Rep 2022; 17:101636. [DOI: 10.1016/j.bonr.2022.101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/03/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
|
42
|
Yigitbilek F, Ozdogan E, Abrol N, Park W, Hansen M, Dasari S, Stegall M, Taner T. Liver mesenchymal stem cells are superior inhibitors of NK cell functions through differences in their secretome compared to other mesenchymal stem cells. Front Immunol 2022; 13:952262. [PMID: 36211345 PMCID: PMC9534521 DOI: 10.3389/fimmu.2022.952262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Liver-resident mesenchymal stem cells (L-MSCs) are superior inhibitors of alloreactive T cell responses compared to their counterparts from bone marrow (BM-MSCs) or adipose tissue (A-MSCs), suggesting a role in liver's overall tolerogenic microenvironment. Whether L-MSCs also impact NK cell functions differently than other MSCs is not known. We generated and characterized L-MSCs, A-MSCs and BM-MSCs from human tissues. The mass spectrometry analysis demonstrated that L-MSC secretome is uniquely different than that of A-MSC/BM-MSC, with enriched protein sets involved in IFNγ responses and signaling. When co-cultured with primary human NK cells, L-MSCs but not other MSCs, decreased surface expression of activating receptors NKp44 and NKG2D. L-MSCs also decreased IFNγ secretion by IL-2-stimulated NK cells more effectively than other MSCs. Cytolytic function of NK cells were reduced significantly when co-cultured with L-MSCs, whereas A-MSCs or BM-MSCs did not have a major impact. Mechanistic studies showed that the L-MSC-mediated reduction in NK cell cytotoxicity is not through changes in secretion of the cytotoxic proteins Perforin, Granzyme A or B, but through increased production of HLA-C1 found in L-MSC secretome that inhibits NK cells by stimulating their inhibitory receptor KIRDL2/3. L-MSCs are more potent inhibitors of NK cell functions than A-MSC or BM-MSC. Combined with their T cell inhibitory features, these results suggest L-MSCs contribute to the tolerogenic liver microenvironment and liver-induced systemic tolerance often observed after liver transplantation.
Collapse
Affiliation(s)
| | - Elif Ozdogan
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
| | - Nitin Abrol
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
| | - Walter D. Park
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
| | | | - Surendra Dasari
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Mark D. Stegall
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | - Timucin Taner
- Department of Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
43
|
Zhou C, Bai XY. Strategies for the induction of anti-inflammatory mesenchymal stem cells and their application in the treatment of immune-related nephropathy. Front Med (Lausanne) 2022; 9:891065. [PMID: 36059816 PMCID: PMC9437354 DOI: 10.3389/fmed.2022.891065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have potent immunomodulatory functions. Animal studies and clinical trials have demonstrated that MSCs can inhibit immune/inflammatory response in tissues and have good therapeutic effects on a variety of immune-related diseases. However, MSCs currently used for treatment are a mixed, undefined, and heterogeneous cell population, resulting in inconsistent clinical treatment effects. MSCs have dual pro-inflammatory/anti-inflammatory regulatory functions in different environments. In different microenvironments, the immunomodulatory function of MSCs has plasticity; therefore, MSCs can transform into pro-inflammatory MSC1 or anti-inflammatory MSC2 phenotypes. There is an urgent need to elucidate the molecular mechanism that induces the phenotypic transition of MSCs to pro-inflammatory or anti-inflammatory MSCs and to develop technical strategies that can induce the transformation of MSCs to the anti-inflammatory MSC2 phenotype to provide a theoretical basis for the future clinical use of MSCs in the treatment of immune-related nephropathy. In this paper, we summarize the relevant strategies and mechanisms for inducing the transformation of MSCs into the anti-inflammatory MSC2 phenotype and enhancing the immunosuppressive function of MSCs.
Collapse
|
44
|
Comparison of Sources and Methods for the Isolation of Equine Adipose Tissue-Derived Stromal/Stem Cells and Preliminary Results on Their Reaction to Incubation with 5-Azacytidine. Animals (Basel) 2022; 12:ani12162049. [PMID: 36009640 PMCID: PMC9404420 DOI: 10.3390/ani12162049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The function of the equine heart is different from that in other species, and a species-specific in vitro model would simplify investigations in the field of equine cardiology. The recent advances in stem cell research and the availability of adipose tissue-derived stromal/stem cells (ASCs) could be a promising starting point for the development of such an in vitro model. In order to test the hypothesis that equine ASCs can be differentiated into cells resembling heart cells, we isolated ASCs from abdominal, retrobulbar, and subcutaneous adipose tissue after collagenase digestion or from direct cultivation of explants. Both techniques resulted in similar yields of cells displaying morphological, immunophenotypical, and molecular biological characteristics of mesenchymal stem cells. Abdominal adipose tissue was found to be most suitable for ASC isolation in equines. However, contrasting earlier studies performed with ASCs from other species, equine ASCs were refractory to 5-azacytidine-induced upregulation of markers characteristic for the differentiation into heart cells. Hence, further studies are required to establish equine cardiomyocyte induction. Abstract Physiological particularities of the equine heart justify the development of an in vitro model suitable for investigations of the species-specific equine cardiac electrophysiology. Adipose tissue-derived stromal/stem cells (ASCs) could be a promising starting point from which to develop such a cardiomyocyte (CM)-like cell model. Therefore, we compared abdominal, retrobulbar, and subcutaneous adipose tissue as sources for the isolation of ASCs applying two isolation methods: the collagenase digestion and direct explant culture. Abdominal adipose tissue was most suitable for the isolation of ASCs and both isolation methods resulted in comparable yields of CD45-/CD34-negative cells expressing the mesenchymal stem cell markers CD29, CD44, and CD90, as well as pluripotency markers, as determined by flow cytometry and real-time quantitative PCR. However, exposure of equine ASCs to 5-azacytidine (5-AZA), reportedly inducing CM differentiation from rats, rabbits, and human ASCs, was not successful in our study. More precisely, neither the early differentiation markers GATA4 and NKX2-5, nor the late CM differentiation markers TNNI3, MYH6, and MYH7 were upregulated in equine ASCs exposed to 10 µM 5-AZA for 48 h. Hence, further work focusing on the optimal conditions for CM differentiation of equine stem cells derived from adipose tissue, as well as possibly from other origins, are needed.
Collapse
|
45
|
Boss AL, Damani T, Wickman TJ, Chamley LW, James JL, Brooks AES. Full spectrum flow cytometry reveals mesenchymal heterogeneity in first trimester placentae and phenotypic convergence in culture, providing insight into the origins of placental mesenchymal stromal cells. eLife 2022; 11:76622. [PMID: 35920626 PMCID: PMC9371602 DOI: 10.7554/elife.76622] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 08/01/2022] [Indexed: 12/05/2022] Open
Abstract
Single-cell technologies (RNA-sequencing, flow cytometry) are critical tools to reveal how cell heterogeneity impacts developmental pathways. The placenta is a fetal exchange organ, containing a heterogeneous mix of mesenchymal cells (fibroblasts, myofibroblasts, perivascular, and progenitor cells). Placental mesenchymal stromal cells (pMSC) are also routinely isolated, for therapeutic and research purposes. However, our understanding of the diverse phenotypes of placental mesenchymal lineages, and their relationships remain unclear. We designed a 23-colour flow cytometry panel to assess mesenchymal heterogeneity in first-trimester human placentae. Four distinct mesenchymal subsets were identified; CD73+CD90+ mesenchymal cells, CD146+CD271+ perivascular cells, podoplanin+CD36+ stromal cells, and CD26+CD90+ myofibroblasts. CD73+CD90+ and podoplanin + CD36+ cells expressed markers consistent with cultured pMSCs, and were explored further. Despite their distinct ex-vivo phenotype, in culture CD73+CD90+ cells and podoplanin+CD36+ cells underwent phenotypic convergence, losing CD271 or CD36 expression respectively, and homogenously exhibiting a basic MSC phenotype (CD73+CD90+CD31-CD144-CD45-). However, some markers (CD26, CD146) were not impacted, or differentially impacted by culture in different populations. Comparisons of cultured phenotypes to pMSCs further suggested cultured pMSCs originate from podoplanin+CD36+ cells. This highlights the importance of detailed cell phenotyping to optimise therapeutic capacity, and ensure use of relevant cells in functional assays.
Collapse
Affiliation(s)
- Anna Leabourn Boss
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Tanvi Damani
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Tayla J Wickman
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Larry W Chamley
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Jo L James
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Anna E S Brooks
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
46
|
Yuan W, Song C. Crosstalk between bone and other organs. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:331-348. [PMID: 37724328 PMCID: PMC10471111 DOI: 10.1515/mr-2022-0018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/06/2022] [Indexed: 09/20/2023]
Abstract
Bone has long been considered as a silent organ that provides a reservoir of calcium and phosphorus, traditionally. Recently, further study of bone has revealed additional functions as an endocrine organ connecting systemic organs of the whole body. Communication between bone and other organs participates in most physiological and pathological events and is responsible for the maintenance of homeostasis. Here, we present an overview of the crosstalk between bone and other organs. Furthermore, we describe the factors mediating the crosstalk and review the mechanisms in the development of potential associated diseases. These connections shed new light on the pathogenesis of systemic diseases and provide novel potential targets for the treatment of systemic diseases.
Collapse
Affiliation(s)
- Wanqiong Yuan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Chunli Song
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| |
Collapse
|
47
|
Jiang X, Yang J, Liu F, Tao J, Xu J, Zhang M. Embryonic stem cell-derived mesenchymal stem cells alleviate skeletal muscle injury induced by acute compartment syndrome. Stem Cell Res Ther 2022; 13:313. [PMID: 35841081 PMCID: PMC9284828 DOI: 10.1186/s13287-022-03000-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background Acute compartment syndrome (ACS), a well-known complication of musculoskeletal injury, results in muscle necrosis and cell death. Embryonic stem cell-derived mesenchymal stem cells (ESC-MSCs) have been shown to be a promising therapy for ACS. However, their effectiveness and potentially protective mechanism remain unknown. The present study was designed to investigate the efficacy and underlying mechanism of ESC-MSCs in ACS-induced skeletal muscle injury. Method A total of 168 male Sprague–Dawley (SD) rats underwent 2 h of intracompartmental pressure elevation by saline infusion into the anterior compartment of the left hindlimb to establish the ACS model. ESC-MSCs were differentiated from the human embryonic stem cell (ESC) line H9. A dose of 1.2 × 106 of ESC-MSCs was intravenously injected during fasciotomy. Post-ACS assessments included skeletal edema index, serum indicators, histological analysis, apoptosis, fibrosis, regeneration, and functional recovery of skeletal muscle. Then, fluorescence microscopy was used to observe the distribution of labeled ESC-MSCs in vivo, and western blotting and immunofluorescence analyses were performed to examine macrophages infiltration in skeletal muscle. Finally, we used liposomal clodronate to deplete macrophages and reassess skeletal muscle injury in response to ESC-MSC therapy. Result ESC-MSCs significantly reduced systemic inflammatory responses, ACS-induced skeletal muscle edema, and cell apoptosis. In addition, ESC-MSCs inhibited skeletal muscle fibrosis and increased regeneration and functional recovery of skeletal muscle after ACS. The beneficial effects of ESC-MSCs on ACS-induced skeletal muscle injury were accompanied by a decrease in CD86-positive M1 macrophage polarization and an increase in CD206-positive M2 macrophage polarization. After depleting macrophages with liposomal clodronate, the beneficial effects of ESC-MSCs were attenuated. Conclusion Our findings suggest that embryonic stem cell-derived mesenchymal stem cells infusion could effectively alleviate ACS-induced skeletal muscle injury, in which the beneficial effects were related to the regulation of macrophages polarization.
Collapse
Affiliation(s)
- Xiangkang Jiang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China.,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Jingyuan Yang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China.,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Fei Liu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China.,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Jiawei Tao
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China.,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Jiefeng Xu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China.,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China.,Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China
| | - Mao Zhang
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China. .,Key Laboratory of The Diagnosis and Treatment of Severe Trauma and Burn of Zhejiang Province, Hangzhou, China. .,Zhejiang Provincial Clinical Research Center for Emergency and Critical Care Medicine, Hangzhou, China.
| |
Collapse
|
48
|
Klimczak A. Mesenchymal Stem/Progenitor Cells and Their Derivates in Tissue Regeneration. Int J Mol Sci 2022; 23:ijms23126652. [PMID: 35743095 PMCID: PMC9223727 DOI: 10.3390/ijms23126652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSC) have been extensively studied over the last 30 years in the context of their regenerative and immunomodulatory activities for potential application in regenerative medicine [...].
Collapse
Affiliation(s)
- Aleksandra Klimczak
- Laboratory of Biology of Stem and Neoplastic Cells, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
49
|
Humenik F, Maloveska M, Hudakova N, Petrouskova P, Hornakova L, Domaniza M, Mudronova D, Bodnarova S, Cizkova D. A Comparative Study of Canine Mesenchymal Stem Cells Isolated from Different Sources. Animals (Basel) 2022; 12:1502. [PMID: 35739839 PMCID: PMC9219547 DOI: 10.3390/ani12121502] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/26/2022] [Accepted: 06/04/2022] [Indexed: 01/06/2023] Open
Abstract
In this study, we provide comprehensive analyses of mesenchymal stem cells (MSCs) isolated from three types of canine tissues: bone marrow (BM-MSCs), adipose tissue (AT-MSCs) and amniotic tissue (AM-MSCs). We compare their morphology, phenotype, multilineage potential and proliferation activity. The BM-MSCs and AM-MSCs showed fibroblast-like shapes against the spindle shape of the AT-MSCs. All populations showed strong osteogenic and chondrogenic potential. However, we observed phenotypic differences. The BM-MSCs and AT-MSCs revealed high expression of CD29, CD44, CD90 and CD105 positivity compared to the AM-MSCs, which showed reduced expression of all the analysed CD markers. Similarly, the isolation yield and proliferation varied depending on the source. The highest isolation yield and proliferation were detected in the population of AT-MSCs, while the AM-MSCs showed a high yield of cells, but the lowest proliferation activity, in contrast to the BM-MSCs which had the lowest isolation yield. Thus, the present data provide assumptions for obtaining a homogeneous MSC derived from all three canine tissues for possible applications in veterinary regenerative medicine, while the origin of isolated MSCs must always be taken into account.
Collapse
Affiliation(s)
- Filip Humenik
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (F.H.); (M.M.); (N.H.); (P.P.)
| | - Marcela Maloveska
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (F.H.); (M.M.); (N.H.); (P.P.)
| | - Nikola Hudakova
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (F.H.); (M.M.); (N.H.); (P.P.)
| | - Patricia Petrouskova
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (F.H.); (M.M.); (N.H.); (P.P.)
| | - Lubica Hornakova
- University Veterinary Hospital, The University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (L.H.); (M.D.)
| | - Michal Domaniza
- University Veterinary Hospital, The University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (L.H.); (M.D.)
| | - Dagmar Mudronova
- Institute of Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia;
| | - Simona Bodnarova
- Department of Pneumology a Phtiseology, Faculty of Medicine, University of Pavol Jozef Safarik, 041 80 Kosice, Slovakia;
| | - Dasa Cizkova
- Centre of Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (F.H.); (M.M.); (N.H.); (P.P.)
- Institute of Neuroimmunology, Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| |
Collapse
|
50
|
Lobov A, Malashicheva A. Osteogenic differentiation: a universal cell program of heterogeneous mesenchymal cells or a similar extracellular matrix mineralizing phenotype? BIOLOGICAL COMMUNICATIONS 2022; 67. [DOI: 10.21638/spbu03.2022.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Despite the popularity of mesenchymal stem cells (MSCs), many fundamental aspects of their physiology still have not been understood. The information accumulated to date argues that MSCs from different sources vary in their differentiation potential and, probably, in molecular mechanisms of trilineage differentiation. Therefore, this review consists of two parts. Firstly, we focus on the data on inter- and intra-source variation of MSCs. We discuss in detail MSC variation at the single-cell level and direct omics comparison of MSCs from four main tissue sources: bone marrow, adipose tissue, umbilical cord and tooth. MSCs from all tissues represent heterogeneous populations in vivo with sub-populational structures reflecting their functional role in the tissue. After in vitro cultivation MSCs lose their natural heterogeneity, but obtain a new one, which might be regarded as a cultivation artifact. Nevertheless, MSCs from various sources still keep their functional differences after in vitro cultivation. In the second part of the review, we discuss how these differences influence molecular mechanisms of osteogenic differentiation. We highlight at least one subtype of mesenchymal cells differentiation with matrix mineralization — odontoblastic differentiation. We also discuss differences in molecular mechanisms of pathological heterotopic osteogenic differentiation of valve interstitial and tumor cells, but these assumptions need additional empirical confirmation. Finally, we observe differences in osteogenic differentiation molecular mechanisms of several MSC types and argue that this differentiation might be influenced by the cell context. Nevertheless, bone marrow and adipose MSCs seem to undergo osteogenic differentiation similarly, by the same mechanisms.
Collapse
|