1
|
Asmah RH, Squire DS, Adupko S, Adedia D, Kyei-Baafour E, Aidoo EK, Ayeh-Kumi PF. Host-parasite interaction in severe and uncomplicated malaria infection in ghanaian children. Eur J Clin Microbiol Infect Dis 2024; 43:915-926. [PMID: 38472520 DOI: 10.1007/s10096-024-04804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/07/2024] [Indexed: 03/14/2024]
Abstract
PURPOSE During malarial infection, both parasites and host red blood cells (RBCs) come under severe oxidative stress due to the production of free radicals. The host system responds in protecting the RBCs against the oxidative damage caused by these free radicals by producing antioxidants. In this study, we investigated the antioxidant enzyme; superoxide dismutase (SOD) activity and cytokine interactions with parasitaemia in Ghanaian children with severe and uncomplicated malaria. METHODOLOGY One hundred and fifty participants aged 0-12 years were administered with structured questionnaires. Active case finding approach was used in participating hospitals to identify and interview cases before treatment was applied. Blood samples were taken from each participant and used to quantify malaria parasitaemia, measure haematological parameters and SOD activity. Cytokine levels were measured by commercial ELISA kits. DNA comet assay was used to evaluate the extent of parasite DNA damage due to oxidative stress. RESULTS Seventy - Nine (79) and Twenty- Six (26) participants who were positive with malaria parasites were categorized as severe (56.75 × 103 ± 57.69 parasites/µl) and uncomplicated malaria (5.87 × 103 ± 2.87 parasites/µl) respectively, showing significant difference in parasitaemia (p < 0.0001). Significant negative correlation was found between parasitaemia and SOD activity levels among severe malaria study participants (p = 0.0428). Difference in cytokine levels (IL-10) amongst the control, uncomplicated and severe malaria groups was significant (p < 0.0001). The IFN-γ/IL-10 /TNF-α/IL-10 ratio differed significantly between the malaria infected and non- malaria infected study participants. DNA comet assay revealed damage to Plasmodium parasite DNA. CONCLUSION Critical roles played by SOD activity and cytokines as anti-parasitic defense during P. falciparum malaria infection in children were established.
Collapse
Affiliation(s)
- Richard H Asmah
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Daniel Sai Squire
- Department of Medical Laboratory Science, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Volta Region, Ghana.
| | - Selorme Adupko
- Department of Pharmaceutics and Microbiology, School of Pharmacy, University of Ghana, Accra, Ghana
| | - David Adedia
- Department of Basic Sciences, School of Basic and Biomedical Sciences, University of University of Health and Allied Sciences, Ho, Ghana
| | - Eric Kyei-Baafour
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Ebenezer K Aidoo
- Department of Medical Laboratory Technology, Accra Technical University, Accra, Ghana
| | - Patrick F Ayeh-Kumi
- Department of Medical Microbiology, University of Ghana Medical School, Accra, Ghana
| |
Collapse
|
2
|
Kotepui M, Mala W, Kwankaew P, Mahittikorn A, Ramirez Masangkay F, Uthaisar Kotepui K. A systematic review and meta-analysis of changes in interleukin-8 levels in malaria infection. Cytokine 2023; 169:156262. [PMID: 37327530 DOI: 10.1016/j.cyto.2023.156262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/23/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023]
Abstract
The roles of interleukin-8 (IL-8) in malaria are inconsistent and unclear. This study synthesised evidence for differences in IL-8 levels in patients with malaria of various levels of severity. Relevant studies were searched in Scopus, MEDLINE, Embase, CENTRAL and PubMed from inception to 22 April 2022. Pooled mean differences (MDs) and 95% confidence intervals (CIs) were estimated using the random effects model. Of 1083 articles retrieved from the databases, 34 were included for syntheses. The meta-analysis revealed increased IL-8 levels in individuals with uncomplicated malaria compared with those without malaria (P = 0.04; MD, 25.57 pg/mL; 95% CI, 1.70 to 49.43 pg/mL; I2, 99.53, 4 studies; 400 uncomplicated malaria, 204 uninfected controls). The meta-analysis revealed comparable levels of IL-8 between the two groups (P = 0.10; MD, 74.46 pg/mL; 95% CI, -15.08 to 164.0 pg/mL; I2, 9.03; 4 studies; 133 severe malaria cases, 568 uncomplicated malaria cases). The study found evidence of increased IL-8 levels in individuals with malaria compared with those without malaria. However, no differences were found in IL-8 levels between patients with severe and non-severe malaria. Further research is needed to investigate the IL-8 cytokine levels in patients with malaria of different levels of severity.
Collapse
Affiliation(s)
- Manas Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand.
| | - Wanida Mala
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand.
| | - Pattamaporn Kwankaew
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand.
| | - Aongart Mahittikorn
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | | | - Kwuntida Uthaisar Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand.
| |
Collapse
|
3
|
Chaturvedi R, Mohan M, Kumar S, Chandele A, Sharma A. Profiles of host immune impairment in Plasmodium and SARS-CoV-2 infections. Heliyon 2022; 8:e11744. [PMID: 36415655 PMCID: PMC9671871 DOI: 10.1016/j.heliyon.2022.e11744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/21/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Over the past two decades, many countries have reported a steady decline in reported cases of malaria, and a few countries, like China, have been declared malaria-free by the World Health Organization. In 2020 the number of deaths from malaria has declined since 2000. The COVID-19 pandemic has adversely affected overall public health efforts and thus it is feasible that there might be a resurgence of malaria. COVID-19 and malaria share some similarities in the immune responses of the patient and these two diseases also share overlapping early symptoms such as fever, headache, nausea, and muscle pain/fatigue. In the absence of early diagnostics, there can be a misdiagnosis of the infection(s) that can pose additional challenges due to delayed treatment. In both SARS-CoV-2 and Plasmodium infections, there is a rapid release of cytokines/chemokines that play a key role in disease pathophysiology. In this review, we have discussed the cytokine/chemokine storm observed during COVID-19 and malaria. We observed that: (1) the severity in malaria and COVID-19 is likely a consequence primarily of an uncontrolled 'cytokine storm'; (2) five pro-inflammatory cytokines (IL-6, IL-10, TNF-α, type I IFN, and IFN-γ) are significantly increased in severe/critically ill patients in both diseases; (3) Plasmodium and SARS-CoV-2 share some similar clinical manifestations and thus may result in fatal consequences if misdiagnosed during onset.
Collapse
Affiliation(s)
- Rini Chaturvedi
- Molecular Medicine Group, International Center for Genetic Engineering and Biotechnology, New Delhi, Delhi, India
| | - Mradul Mohan
- Parasite-Host Biology Group, National Institute of Malaria Research, New Delhi, Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sanjeev Kumar
- ICGEB-Emory Vaccine Program, International Center for Genetic Engineering and Biotechnology, New Delhi, Delhi, India
| | - Anmol Chandele
- ICGEB-Emory Vaccine Program, International Center for Genetic Engineering and Biotechnology, New Delhi, Delhi, India
| | - Amit Sharma
- Molecular Medicine Group, International Center for Genetic Engineering and Biotechnology, New Delhi, Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India,Corresponding author
| |
Collapse
|
4
|
Kamiya T, Davis NM, Greischar MA, Schneider D, Mideo N. Linking functional and molecular mechanisms of host resilience to malaria infection. eLife 2021; 10:e65846. [PMID: 34636723 PMCID: PMC8510579 DOI: 10.7554/elife.65846] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 08/16/2021] [Indexed: 12/30/2022] Open
Abstract
It remains challenging to understand why some hosts suffer severe illnesses, while others are unscathed by the same infection. We fitted a mathematical model to longitudinal measurements of parasite and red blood cell density in murine hosts from diverse genetic backgrounds to identify aspects of within-host interactions that explain variation in host resilience and survival during acute malaria infection. Among eight mouse strains that collectively span 90% of the common genetic diversity of laboratory mice, we found that high host mortality was associated with either weak parasite clearance, or a strong, yet imprecise response that inadvertently removes uninfected cells in excess. Subsequent cross-sectional cytokine assays revealed that the two distinct functional mechanisms of poor survival were underpinned by low expression of either pro- or anti-inflammatory cytokines, respectively. By combining mathematical modelling and molecular immunology assays, our study uncovered proximate mechanisms of diverse infection outcomes across multiple host strains and biological scales.
Collapse
Affiliation(s)
- Tsukushi Kamiya
- Department of Ecology and Evolutionary Biology, University of TorontoTorontoCanada
| | - Nicole M Davis
- Department of Microbiology and Immunology, Stanford UniversityStanfordUnited States
| | - Megan A Greischar
- Department of Ecology and Evolutionary Biology, Cornell UniversityIthacaUnited States
| | - David Schneider
- Department of Microbiology and Immunology, Stanford UniversityStanfordUnited States
| | - Nicole Mideo
- Department of Ecology and Evolutionary Biology, University of TorontoTorontoCanada
| |
Collapse
|
5
|
Bucşan AN, Williamson KC. Setting the stage: The initial immune response to blood-stage parasites. Virulence 2020; 11:88-103. [PMID: 31900030 PMCID: PMC6961725 DOI: 10.1080/21505594.2019.1708053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 01/22/2023] Open
Abstract
Individuals growing up in malaria endemic areas gradually develop protection against clinical malaria and passive transfer experiments in humans have demonstrated that this protection is mediated in part by protective antibodies. However, neither the target antigens, specific effector mechanisms, nor the role of continual parasite exposure have been elucidated, which complicates vaccine development. Progress has been made in defining the innate signaling pathways activated by parasite components, including DNA, RNA, hemozoin, and phospholipids, which initiate the immune response and will be the focus of this review. The challenge that remains within the field is to understand the role of these early responses in the development of protective adaptive responses that clear iRBC and block merozoite invasion so that optimal vaccines and therapeutics may be produced.
Collapse
Affiliation(s)
- Allison N. Bucşan
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kim C. Williamson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
6
|
Cytokine signatures of Plasmodium vivax infection during pregnancy and delivery outcomes. PLoS Negl Trop Dis 2020; 14:e0008155. [PMID: 32365058 PMCID: PMC7224570 DOI: 10.1371/journal.pntd.0008155] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/14/2020] [Accepted: 02/19/2020] [Indexed: 12/13/2022] Open
Abstract
Plasmodium vivax malaria is a neglected disease, particularly during pregnancy. Severe vivax malaria is associated with inflammatory responses but in pregnancy immune alterations make it uncertain as to what cytokine signatures predominate, and how the type and quantity of blood immune mediators influence delivery outcomes. We measured the plasma concentrations of a set of thirty-one biomarkers, comprising cytokines, chemokines and growth factors, in 987 plasma samples from a cohort of 572 pregnant women from five malaria-endemic tropical countries and related these concentrations to delivery outcomes (birth weight and hemoglobin levels) and malaria infection. Samples were collected at recruitment (first antenatal visit) and at delivery (periphery, cord and placenta). At recruitment, we found that P. vivax–infected pregnant women had higher plasma concentrations of proinflammatory (IL-6, IL-1β, CCL4, CCL2, CXCL10) and TH1-related cytokines (mainly IL-12) than uninfected women. This biomarker signature was essentially lost at delivery and was not associated with birth weight nor hemoglobin levels. Antiinflammatory cytokines (IL-10) were positively associated with infection and poor delivery outcomes. CCL11 was the only biomarker to show a negative association with P. vivax infection and its concentration at recruitment was positively associated with hemoglobin levels at delivery. Birth weight was negatively associated with peripheral IL-4 levels at delivery. Our multi-biomarker multicenter study is the first comprehensive one to characterize the immunological signature of P. vivax infection in pregnancy thus far. In conclusion, data show that while TH1 and pro-inflammatory responses are dominant during P. vivax infection in pregnancy, antiinflammatory cytokines may compensate excessive inflammation avoiding poor delivery outcomes, and skewness toward a TH2 response may trigger worse delivery outcomes. CCL11, a chemokine largely neglected in the field of malaria, emerges as an important marker of exposure or mediator in this condition. Cytokine and growth factor plasma concentrations were evaluated in women from five countries endemic for malaria vivax, at different moments and blood compartments during pregnancy. P. vivax infection during pregnancy was associated with a pro-inflammatory and TH1 response, together with an antiinflammatory response. Nevertheless, at delivery most associations between cytokines and infection were lost. Of note, CCL11/eotaxin, a chemokine not generally analyzed in malaria studies, presented a lower concentration in P. vivax-infected women and a protective association with hemoglobin levels at delivery. Moreover, IL-4 levels had a negative association with birth weight. Data suggest that a compensated inflammatory/antiinflammatory response in P. vivax infection during pregnancy might avoid poor delivery outcomes, while a predominance of TH2 responses may be detrimental for birth weight. Further research is warranted to unravel the role of CCL11 in malaria infection or exposure.
Collapse
|
7
|
Punnath K, Dayanand KK, Chandrashekhar VN, Achur RN, Kakkilaya SB, Ghosh SK, Kumari SN, Gowda DC. Association between inflammatory cytokine levels and anemia during Plasmodium falciparum and Plasmodium vivax infections in Mangaluru: A Southwestern Coastal Region of India. Trop Parasitol 2019; 9:98-107. [PMID: 31579664 PMCID: PMC6767796 DOI: 10.4103/tp.tp_66_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/10/2019] [Indexed: 01/04/2023] Open
Abstract
Background and Objectives: Dysregulated production of inflammatory cytokines might play important role in anemia during malaria infection. The objective of this study was to assess the extent of anemia due to malaria, associated complications, and inflammatory cytokines (tumor necrosis factor alpha [TNF-α], interleukin [IL]-6, and IL-10) across varying anemic intensity during malaria infections. Materials and Methods: A hospital-based cross-sectional study was conducted at District Wenlock hospital in Mangaluru city. Samples from 627 patients and 168 healthy controls (HC) were analyzed for level of hemoglobin (Hb), red blood cells (RBCs), and inflammatory cytokines. The blood cell parameters and inflammatory cytokines levels across varying intensity of anemia were analyzed using Kruskal–Wallis test and pair-wise comparison between two groups were by Mann–Whitney U-test. Correlations were calculated by Pearson's and Spearman rank correlations. Results: Compared to HC, Hb, and RBC levels were significantly lower in infected patients. On comparison with mild anemia patients (Hb 8–10.9 g/dL), the levels of TNF-α and IL-6 were significantly elevated, whereas IL-10 levels were lower during severe anemia (SA) (Hb <5 g/dL). In this endemic setting, we found a strong negative association between Hb levels and parasitemia, Hb and TNF-α, and positive relationship with IL-10; anemic patients also had significantly high TNF-α/IL-10 ratios. SA was associated with complications such as acute renal failure (16.0%), jaundice (16.0%), metabolic acidosis (24.0%), hypoglycemia (12.0%), hyperparasitemia (4.0%), and hepatic dysfunction (16.0%). Conclusions: Contrary to its benign reputation, Plasmodium vivax (Pv) infections can also result in severe malarial anemia (SMA) and its associated severe complications similar to Plasmodium falciparum infections. Dysregulated inflammatory cytokine responses play an important role in the pathogenesis of SMA, especially during Pv infections.
Collapse
Affiliation(s)
- Kishore Punnath
- Department of Biochemistry, Kuvempu University, Shivamogga, Karnataka, India
| | - Kiran K Dayanand
- Department of Biochemistry, Kuvempu University, Shivamogga, Karnataka, India
| | | | - Rajeshwara N Achur
- Department of Biochemistry, Kuvempu University, Shivamogga, Karnataka, India
| | - Srinivasa B Kakkilaya
- Light House Polyclinic, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - Susanta K Ghosh
- Department of Molecular Parasitology, ICMR-National Institute of Malaria Research, Poojanahalli, Bengaluru, Karnataka, India
| | - Suchetha N Kumari
- Department of Biochemistry, K. S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, Karnataka, India
| | - D Channe Gowda
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, USA
| |
Collapse
|
8
|
Stanisic DI, Fink J, Mayer J, Coghill S, Gore L, Liu XQ, El-Deeb I, Rodriguez IB, Powell J, Willemsen NM, De SL, Ho MF, Hoffman SL, Gerrard J, Good MF. Vaccination with chemically attenuated Plasmodium falciparum asexual blood-stage parasites induces parasite-specific cellular immune responses in malaria-naïve volunteers: a pilot study. BMC Med 2018; 16:184. [PMID: 30293531 PMCID: PMC6174572 DOI: 10.1186/s12916-018-1173-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 09/11/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The continuing morbidity and mortality associated with infection with malaria parasites highlights the urgent need for a vaccine. The efficacy of sub-unit vaccines tested in clinical trials in malaria-endemic areas has thus far been disappointing, sparking renewed interest in the whole parasite vaccine approach. We previously showed that a chemically attenuated whole parasite asexual blood-stage vaccine induced CD4+ T cell-dependent protection against challenge with homologous and heterologous parasites in rodent models of malaria. METHODS In this current study, we evaluated the immunogenicity and safety of chemically attenuated asexual blood-stage Plasmodium falciparum (Pf) parasites in eight malaria-naïve human volunteers. Study participants received a single dose of 3 × 107 Pf pRBC that had been treated in vitro with the cyclopropylpyrolloindole analogue, tafuramycin-A. RESULTS We demonstrate that Pf asexual blood-stage parasites that are completely attenuated are immunogenic, safe and well tolerated in malaria-naïve volunteers. Following vaccination with a single dose, species and strain transcending Plasmodium-specific T cell responses were induced in recipients. This included induction of Plasmodium-specific lymphoproliferative responses, T cells secreting the parasiticidal cytokines, IFN-γ and TNF, and CD3+CD45RO+ memory T cells. Pf-specific IgG was not detected. CONCLUSIONS This is the first clinical study evaluating a whole parasite blood-stage malaria vaccine. Following administration of a single dose of completely attenuated Pf asexual blood-stage parasites, Plasmodium-specific T cell responses were induced while Pf-specific antibodies were not detected. These results support further evaluation of this chemically attenuated vaccine in humans. TRIAL REGISTRATION Trial registration: ACTRN12614000228684 . Registered 4 March 2014.
Collapse
Affiliation(s)
- Danielle I Stanisic
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, Queensland, Australia.
| | - James Fink
- Gold Coast University Hospital, 1 Hospital Blvd, Southport, Queensland, Australia
| | - Johanna Mayer
- Gold Coast University Hospital, 1 Hospital Blvd, Southport, Queensland, Australia
| | - Sarah Coghill
- Gold Coast University Hospital, 1 Hospital Blvd, Southport, Queensland, Australia
| | - Letitia Gore
- Gold Coast University Hospital, 1 Hospital Blvd, Southport, Queensland, Australia
| | - Xue Q Liu
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, Queensland, Australia
| | - Ibrahim El-Deeb
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, Queensland, Australia
| | - Ingrid B Rodriguez
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, Queensland, Australia
| | - Jessica Powell
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, Queensland, Australia
| | - Nicole M Willemsen
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, Queensland, Australia
| | - Sai Lata De
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, Queensland, Australia
| | - Mei-Fong Ho
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, Queensland, Australia
| | | | - John Gerrard
- Gold Coast University Hospital, 1 Hospital Blvd, Southport, Queensland, Australia
| | - Michael F Good
- Institute for Glycomics, Griffith University, Parklands Drive, Southport, Queensland, Australia.
| |
Collapse
|
9
|
Moncunill G, Mpina M, Nhabomba AJ, Aguilar R, Ayestaran A, Sanz H, Campo JJ, Jairoce C, Barrios D, Dong Y, Díez-Padrisa N, Fernandes JF, Abdulla S, Sacarlal J, Williams NA, Harezlak J, Mordmüller B, Agnandji ST, Aponte JJ, Daubenberger C, Valim C, Dobaño C. Distinct Helper T Cell Type 1 and 2 Responses Associated With Malaria Protection and Risk in RTS,S/AS01E Vaccinees. Clin Infect Dis 2018; 65:746-755. [PMID: 28505356 DOI: 10.1093/cid/cix429] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/04/2017] [Indexed: 12/13/2022] Open
Abstract
Background The RTS,S/AS01E malaria vaccine has moderate efficacy, lower in infants than children. Current efforts to enhance RTS,S/AS01E efficacy would benefit from learning about the vaccine-induced immunity and identifying correlates of malaria protection, which could, for instance, inform the choice of adjuvants. Here, we sought cellular immunity-based correlates of malaria protection and risk associated with RTS,S/AS01E vaccination. Methods We performed a matched case-control study nested within the multicenter African RTS,S/AS01E phase 3 trial. Children and infant samples from 57 clinical malaria cases (32 RTS,S/25 comparator vaccinees) and 152 controls without malaria (106 RTS,S/46 comparator vaccinees) were analyzed. We measured 30 markers by Luminex following RTS,S/AS01E antigen stimulation of cells 1 month postimmunization. Crude concentrations and ratios of antigen to background control were analyzed. Results Interleukin (IL) 2 and IL-5 ratios were associated with RTS,S/AS01E vaccination (adjusted P ≤ .01). IL-5 circumsporozoite protein (CSP) ratios, a helper T cell type 2 cytokine, correlated with higher odds of malaria in RTS,S/AS01E vaccinees (odds ratio, 1.17 per 10% increases of CSP ratios; P value adjusted for multiple testing = .03). In multimarker analysis, the helper T cell type 1 (TH1)-related markers interferon-γ, IL-15, and granulocyte-macrophage colony-stimulating factor protected from subsequent malaria, in contrast to IL-5 and RANTES, which increased the odds of malaria. Conclusions RTS,S/AS01E-induced IL-5 may be a surrogate of lack of protection, whereas TH1-related responses may be involved in protective mechanisms. Efforts to develop second-generation vaccine candidates may concentrate on adjuvants that modulate the immune system to support enhanced TH1 responses and decreased IL-5 responses.
Collapse
Affiliation(s)
- Gemma Moncunill
- ISGlobal, Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Maxmillian Mpina
- Ifakara Health Institute, Bagamoyo Research and Training Centre, Tanzania
| | | | - Ruth Aguilar
- ISGlobal, Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, Catalonia, Spain
| | - Aintzane Ayestaran
- ISGlobal, Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, Catalonia, Spain
| | - Héctor Sanz
- ISGlobal, Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, Catalonia, Spain
| | - Joseph J Campo
- ISGlobal, Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | | | - Diana Barrios
- ISGlobal, Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, Catalonia, Spain
| | - Yan Dong
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington
| | - Núria Díez-Padrisa
- ISGlobal, Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, Catalonia, Spain
| | - José F Fernandes
- Centre de Recherches Médicales de Lambaréné, Albert Schweitzer Hospital, Gabon
| | | | - Jahit Sacarlal
- Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique.,Faculdade de Medicina da Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Nana A Williams
- ISGlobal, Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, Catalonia, Spain
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington
| | - Benjamin Mordmüller
- Centre de Recherches Médicales de Lambaréné, Albert Schweitzer Hospital, Gabon.,Institute of Tropical Medicine, German Center for Infection Research, University of Tübingen, Germany
| | - Selidji T Agnandji
- Centre de Recherches Médicales de Lambaréné, Albert Schweitzer Hospital, Gabon
| | - John J Aponte
- ISGlobal, Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| | - Claudia Daubenberger
- Swiss Tropical and Public Health Institute, Basel.,University of Basel, Switzerland
| | - Clarissa Valim
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing.,Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Carlota Dobaño
- ISGlobal, Barcelona Centre for International Health Research, Hospital Clínic-Universitat de Barcelona, Catalonia, Spain.,Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique
| |
Collapse
|
10
|
Nguyen TN, Baaklini S, Koukouikila-Koussounda F, Ndounga M, Torres M, Pradel L, Ntoumi F, Rihet P. Association of a functional TNF variant with Plasmodium falciparum parasitaemia in a congolese population. Genes Immun 2017; 18:152-157. [DOI: 10.1038/gene.2017.13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/08/2017] [Accepted: 05/10/2017] [Indexed: 11/09/2022]
|
11
|
Sibiya H, Musabayane CT, Mabandla MV. Transdermal delivery of oleanolic acid attenuates pro-inflammatory cytokine release and ameliorates anaemia in P. berghei malaria. Acta Trop 2017; 171:24-29. [PMID: 28283442 DOI: 10.1016/j.actatropica.2017.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 02/28/2017] [Accepted: 03/06/2017] [Indexed: 12/13/2022]
Abstract
Malaria remains a major health problem in many tropical areas. Severe malaria infection is associated with secondary complications including anaemia leading to a need for the search of affordable antimalarial agents that can clear the parasitaemia and ameliorate anaemia during infection. The current study investigated the effects of transdermally delivered OA on malaria parasites, HCT and selected plasma cytokine concentrations in P. berghei-infected male Sprague-Dawley rats. The study was carried out over a period of 21days, divided into pre-treatment (day 0-7), treatment (day 8-12) and post-treatment (day 13-21) periods. Parasitaemia, HCT, RBC count, Hgb, plasma TNF-α, IL-6 and IL-10 concentrations were monitored in non-infected and infected rats following a once-off application of an OA-pectin patch (34mg/kg). Animals treated with drug-free pectin and CHQ (30mg/kg, p.o) twice daily for 5 consecutive days acted as negative and positive controls respectively. Infected control animals exhibited increased percentage parasitaemia, TNF-α, IL-6, IL-10 and a reduction in HCT. Interestingly, OA-pectin patch application cleared the malaria parasites and increased HCT values back to normalcy. Furthermore, TNF-α, IL-6 and IL-10 were reduced by day 12 of the study. These findings suggest that the OA-pectin patch delivers therapeutic doses of OA which are able to attenuate cytokine release and ameliorate anaemia during malaria infection. Therefore, transdermally delivered OA may be a potent therapeutic agent for malaria and amelioration of anaemia.
Collapse
|
12
|
Kavishe RA, Koenderink JB, Alifrangis M. Oxidative stress in malaria and artemisinin combination therapy: Pros and Cons. FEBS J 2017; 284:2579-2591. [DOI: 10.1111/febs.14097] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 04/05/2017] [Accepted: 04/28/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Reginald A. Kavishe
- Department of Biochemistry & Molecular Biology; Faculty of Medicine; Kilimanjaro Christian Medical University College; Moshi Tanzania
| | - Jan B. Koenderink
- Department of Pharmacology and Toxicology; Radboud Institute for Molecular Life Sciences; Radboud University Medical Center; Nijmegen The Netherlands
| | | |
Collapse
|
13
|
Adukpo S, Gyan BA, Ofori MF, Dodoo D, Velavan TP, Meyer CG. Triggering receptor expressed on myeloid cells 1 (TREM-1) and cytokine gene variants in complicated and uncomplicated malaria. Trop Med Int Health 2016; 21:1592-1601. [PMID: 27671831 DOI: 10.1111/tmi.12787] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Malaria elicits inflammatory responses, which, if not well regulated, may exert detrimental effects. When activated, triggering receptor expressed on myeloid cells 1 (TREM-1) enhances inflammatory responses by increasing secretion of IL-8 and other Th1 cytokines. In contrast, TREM-like transcript 1 (TREML-1) promotes anti-inflammatory responses by binding to TREM-1 ligands and competing with TREM-1, thus antagonizing TREM-1 activation to reduce inflammation. Endothelial protein C receptor (EPCR) also mediates anti-inflammatory responses by activating endothelial protein C (PC). Upon microbial stimulation, soluble forms of TREM-1 (sTREM-1) and soluble EPCR (sEPCR) are released. Their plasma levels reflect the degree of inflammation and the severity of infection. METHODS In a cross-sectional study comparing patients with severe with uncomplicated malaria, sTREM-1, soluble TREML-1 (sTREML-1) and sEPCR plasma levels as well as plasma levels of sEPCR derived from convalescent patients were quantified. Samples were collected on admittance of paediatric patients infected with Plasmodium falciparum to hospitals in Accra, Ghana. Distinct genetic regions of the genes encoding TREM-1, EPCR, interleukin (IL)-8 and IL-18 encompassing known genetic polymorphisms that influence plasma levels underwent DNA sequencing. RESULTS Higher sTREM-1 levels were observed among children suffering from severe malaria compared to those with uncomplicated malaria (P = 0.049). Low TREM-1 to TREML-1 ratios were associated with uncomplicated malaria (P = 0.033). The TREM1 rs2234237T variant causing the amino acid exchange Thr25Ser, which has been associated with higher TREM-1 plasma levels, was significantly more frequent among patients with severe malaria than in those with uncomplicated malaria (P = 0.036). Low levels of sEPCR were observed in severe and uncomplicated malaria, while variant genotypes of IL8, IL18 and EPCR did not show any association. CONCLUSION Higher plasma levels of sTREM-1 alone or relative to sTREML-1 during malaria predispose to the phenotype of severe malaria. Carriage of the TREM1 rs2234237T allele appears to be a risk factor for the development of severe malaria.
Collapse
Affiliation(s)
- Selorme Adukpo
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Ben A Gyan
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Michael F Ofori
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Daniel Dodoo
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Thirumalaisamy P Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo.,Duy Tan University, Da Nang, Vietnam
| | - Christian G Meyer
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
14
|
Olaniyan SA, Amodu OK, Bakare AA, Troye-Blomberg M, Omotade OO, Rockett KA. Tumour necrosis factor alpha promoter polymorphism, TNF-238 is associated with severe clinical outcome of falciparum malaria in Ibadan southwest Nigeria. Acta Trop 2016; 161:62-7. [PMID: 27178813 DOI: 10.1016/j.actatropica.2016.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 05/03/2016] [Accepted: 05/09/2016] [Indexed: 01/24/2023]
Abstract
Tumour necrosis factor (TNF) - α has been shown to play an important role in the pathogenesis of falciparum malaria. Two TNF promoter polymorphisms, TNF-308 and TNF-238 have been associated with differential activity and production of TNF. In order to investigate the association between TNF-308 and TNF-238 and the clinical outcome of malaria in a Nigerian population, the two TNF polymorphisms were analysed using Sequenom iPLEX Platform. A total of 782 children; 283 children with uncomplicated malaria, 255 children with severe malaria and 244 children with asymptomatic infection (controls) were studied. The distribution of TNF-308 and TNF-238 genotypes were consistent with the Hardy-Weinberg equilibrium. Distribution of both TNF polymorphisms differed significantly across all clinical groups (TNF-308: p=0.007; TNF-238: p=0.001). Further tests for association with severe malaria using genotype models controlling for age, parasitaemia and HbAS showed a significant association of the TNF-238 polymorphism with susceptibility to severe malaria (95% CI=1.43-6.02, OR=2.94, p=0.003237) The GG genotype of TNF-238 significantly increased the risk of developing cerebral malaria from asymptomatic malaria and uncomplicated malaria (95% CI=1.99-18.17, OR=6.02, p<0.001 and 95% CI=1.78-8.23, OR=3.84, p<0.001 respectively). No significant association was found between TNF-308 and malaria outcome. These results show thegenetic association of TNF-238 in the clinical outcome of malaria in Ibadan, southwest Nigeria. These findings add support to the role of TNF in the outcome of malaria infection. Further large scale studies across multiple malaria endemic populations will be required to determine the specific roles of TNF-308 and TNF-238 in the outcome of falciparum malaria infection.
Collapse
|
15
|
Reduced Parasite Burden in Children with Falciparum Malaria and Bacteremia Coinfections: Role of Mediators of Inflammation. Mediators Inflamm 2016; 2016:4286576. [PMID: 27418744 PMCID: PMC4933845 DOI: 10.1155/2016/4286576] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/28/2016] [Indexed: 01/07/2023] Open
Abstract
Bacteremia and malaria coinfection is a common and life-threatening condition in children residing in sub-Saharan Africa. We previously showed that coinfection with Gram negative (G[-]) enteric Bacilli and Plasmodium falciparum (Pf[+]) was associated with reduced high-density parasitemia (HDP, >10,000 parasites/μL), enhanced respiratory distress, and severe anemia. Since inflammatory mediators are largely unexplored in such coinfections, circulating cytokines were determined in four groups of children (n = 206, aged <3 yrs): healthy; Pf[+] alone; G[-] coinfected; and G[+] coinfected. Staphylococcus aureus and non-Typhi Salmonella were the most frequently isolated G[+] and G[-] organisms, respectively. Coinfected children, particularly those with G[-] pathogens, had lower parasite burden (peripheral and geometric mean parasitemia and HDP). In addition, both coinfected groups had increased IL-4, IL-5, IL-7, IL-12, IL-15, IL-17, IFN-γ, and IFN-α and decreased TNF-α relative to malaria alone. Children with G[-] coinfection had higher IL-1β and IL-1Ra and lower IL-10 than the Pf[+] group and higher IFN-γ than the G[+] group. To determine how the immune response to malaria regulates parasitemia, cytokine production was investigated with a multiple mediation model. Cytokines with the greatest mediational impact on parasitemia were IL-4, IL-10, IL-12, and IFN-γ. Results here suggest that enhanced immune activation, especially in G[-] coinfected children, acts to reduce malaria parasite burden.
Collapse
|
16
|
Nyakundi RK, Nyamongo O, Maamun J, Akinyi M, Mulei I, Farah IO, Blankenship D, Grimberg B, Hau J, Malhotra I, Ozwara H, King CL, Kariuki TM. Protective Effect of Chronic Schistosomiasis in Baboons Coinfected with Schistosoma mansoni and Plasmodium knowlesi. Infect Immun 2016; 84:1320-1330. [PMID: 26883586 PMCID: PMC4862699 DOI: 10.1128/iai.00490-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 02/08/2016] [Indexed: 11/20/2022] Open
Abstract
Malaria and schistosomiasis coinfections are common, and chronic schistosomiasis has been implicated in affecting the severity of acute malaria. However, whether it enhances or attenuates malaria has been controversial due the lack of appropriately controlled human studies and relevant animal models. To examine this interaction, we conducted a randomized controlled study using the baboon (Papio anubis) to analyze the effect of chronic schistosomiasis on severe malaria. Two groups of baboons (n = 8 each) and a schistosomiasis control group (n = 3) were infected with 500 Schistosoma mansoni cercariae. At 14 and 15 weeks postinfection, one group was given praziquantel to treat schistosomiasis infection. Four weeks later, the two groups plus a new malaria control group (n = 8) were intravenously inoculated with 10(5) Plasmodium knowlesi parasites and monitored daily for development of severe malaria. A total of 81% of baboons exposed to chronic S. mansoni infection with or without praziquantel treatment survived malaria, compared to only 25% of animals infected with P. knowlesi only (P = 0.01). Schistosome-infected animals also had significantly lower parasite burdens (P = 0.004) than the baboons in the P. knowlesi-only group and were protected from severe anemia. Coinfection was associated with increased spontaneous production of interleukin-6 (IL-6), suggesting an enhanced innate immune response, whereas animals infected with P. knowlesi alone failed to develop mitogen-driven tumor necrosis factor alpha and IL-10, indicating the inability to generate adequate protective and balancing immunoregulatory responses. These results indicate that chronic S. mansoni attenuates the severity of P. knowlesi coinfection in baboons by mechanisms that may enhance innate immunity to malaria.
Collapse
Affiliation(s)
- Ruth K Nyakundi
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
- University of Copenhagen, Copenhagen, Denmark
| | - Onkoba Nyamongo
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| | - Jeneby Maamun
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| | - Mercy Akinyi
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| | - Isaac Mulei
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| | - Idle O Farah
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| | | | | | - Jann Hau
- University of Copenhagen, Copenhagen, Denmark
| | - Indu Malhotra
- Case Western Reserve University, Cleveland, Ohio, USA
| | - Hastings Ozwara
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| | | | - Thomas M Kariuki
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| |
Collapse
|
17
|
Abstract
Naturally acquired immunity to the blood-stage of the malaria parasite develops slowly in areas of high endemicity, but is not sterilizing. It manifests as a reduction in parasite density and clinical symptoms. Immunity as a result of blood-stage vaccination has not yet been achieved in humans, although there are many animal models where vaccination has been successful. The development of a blood-stage vaccine has been complicated by a number of factors including limited knowledge of human-parasite interactions and which antigens and immune responses are critical for protection. Opinion is divided as to whether this vaccine should aim to accelerate the acquisition of responses acquired following natural exposure, or whether it should induce a different response. Animal and experimental human models suggest that cell-mediated immune responses can control parasite growth, but these responses can also contribute to significant immunopathology if unregulated. They are largely ignored in most blood-stage malaria vaccine development strategies. Here, we discuss key observations relating to cell-mediated immune responses in the context of experimental human systems and field studies involving naturally exposed individuals and how this may inform the development of a blood-stage malaria vaccine.
Collapse
|
18
|
Abstract
SUMMARYPlasmodium vivaxis the most geographically widespread of the malaria parasites causing human disease, yet it is comparatively understudied compared withPlasmodium falciparum.In this article we review what is known about naturally acquired immunity toP. vivax, and importantly, how this differs to that acquired againstP. falciparum.Immunity to clinicalP. vivaxinfection is acquired more quickly than toP. falciparum, and evidence suggests humans in endemic areas also have a greater capacity to mount a successful immunological memory response to this pathogen. Both of these factors give promise to the idea of a successfulP. vivaxvaccine. We review what is known about both the cellular and humoral immune response, including the role of cytokines, antibodies, immunoregulation, immune memory and immune dysfunction. Furthermore, we discuss where the future lies in terms of advancing our understanding of naturally acquired immunity toP. vivax, through the use of well-designed longitudinal epidemiological studies and modern tools available to immunologists.
Collapse
|
19
|
Mohamad D, Suppian R, Mohd Nor N. Immunomodulatory effects of recombinant BCG expressing MSP-1C of Plasmodium falciparum on LPS- or LPS+IFN-γ-stimulated J774A.1 cells. Hum Vaccin Immunother 2014; 10:1880-6. [PMID: 25424796 DOI: 10.4161/hv.28695] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Macrophage phagocytosis is the first line of defense of the innate immune system against malaria parasite infection. This study evaluated the immunomodulatory effects of BCG and recombinant BCG (rBCG) strains expressing the C-terminus of the merozoite surface protein-1 (MSP-1C) of Plasmodium falciparum on mouse macrophage cell line J774A.1 in the presence or absence of lipopolysaccharide (LPS) or LPS + IFN-γ. The rBCG strain significantly enhanced phagocytic activity, production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, nitric oxide (NO), and inducible nitric oxide synthase (iNOS) as compared with parental BCG strain, and these activities increased in the presence of LPS and LPS+IFN-γ. Furthermore, the rBCG strain also significantly reduced the macrophage viability as well as the rBCG growth suggesting the involvement of macrophage apoptosis. Taken together, these data indicate that the rBCG strain has an immunomodulatory effect on macrophages, thus strengthen the rational use of rBCG to control malaria infection.
Collapse
Affiliation(s)
- Dhaniah Mohamad
- a School of Health Sciences; Health Campus; Universiti Sains Malaysia; Kelantan, Malaysia
| | | | | |
Collapse
|
20
|
de Souza JB. Protective immunity against malaria after vaccination. Parasite Immunol 2014; 36:131-9. [PMID: 24188045 DOI: 10.1111/pim.12086] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 10/29/2013] [Indexed: 11/28/2022]
Abstract
A good understanding of the immunological correlates of protective immunity is an important requirement for the development of effective vaccines against malaria. However, this concern has received little attention even in the face of two decades of intensive vaccine research. Here, we review the immune response to blood-stage malaria, with a particular focus on the type of vaccine most likely to induce the kind of response required to give strong protection against infection.
Collapse
Affiliation(s)
- J B de Souza
- Faculty of Infectious and Tropical Diseases, Department of Immunity and Infection, London School of Hygiene & Tropical Medicine, London, UK; Division of Infection & Immunity, University College London Medical School, London, UK
| |
Collapse
|
21
|
Gonçalves RM, Lima NF, Ferreira MU. Parasite virulence, co-infections and cytokine balance in malaria. Pathog Glob Health 2014; 108:173-8. [PMID: 24854175 DOI: 10.1179/2047773214y.0000000139] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Strong early inflammatory responses followed by a timely production of regulatory cytokines are required to control malaria parasite multiplication without inducing major host pathology. Here, we briefly examine the homeostasis of inflammatory responses to malaria parasite species with varying virulence levels and discuss how co-infections with bacteria, viruses, and helminths can modulate inflammation, either aggravating or alleviating malaria-related morbidity.
Collapse
|
22
|
Karadjian G, Berrebi D, Dogna N, Vallarino-Lhermitte N, Bain O, Landau I, Martin C. Co-infection restrains Litomosoides sigmodontis filarial load and plasmodial P. yoelii but not P. chabaudi parasitaemia in mice. ACTA ACUST UNITED AC 2014; 21:16. [PMID: 24717449 PMCID: PMC3980669 DOI: 10.1051/parasite/2014017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 03/26/2014] [Indexed: 01/19/2023]
Abstract
Infection with multiple parasite species is clearly the norm rather than the exception, in animals as well as in humans. Filarial nematodes and Plasmodium spp. are important parasites in human public health and they are often co-endemic. Interactions between these parasites are complex. The mechanisms underlying the modulation of both the course of malaria and the outcome of filarial infection are poorly understood. Despite increasing activity in recent years, studies comparing co- and mono-infections are very much in their infancy and results are contradictory at first sight. In this study we performed controlled and simultaneous co-infections of BALB/c mice with Litomosoides sigmodontis filaria and with Plasmodium spp. (Plasmodium yoelii 17 XNL or Plasmodium chabaudi 864VD). An analysis of pathological lesions in the kidneys and lungs and a parasitological study were conducted at different times of infection. Whatever the plasmodial species, the filarial recovery rate was strongly decreased. The peak of parasitaemia in the plasmodial infection was decreased in the course of P. yoelii infection but not in that of P. chabaudi. Regarding pathological lesions, L. sigmodontis can reverse lesions in the kidneys due to the presence of both Plasmodium species but does not modify the course of pulmonary lesions. The filarial infection induces granulomas in the lungs.
Collapse
Affiliation(s)
- Gregory Karadjian
- UMR 7245 MCAM MNHN CNRS, Muséum National d'Histoire Naturelle, 61 rue Buffon, CP 52, 75231 Paris Cedex 05, France
| | - Dominique Berrebi
- Service d'Anatomie et de Cytologie Pathologique, Paris, Hôpital Robert Debré, Assistance Publique-Hôpitaux de Paris France, and EA3102, Université Paris 7, France
| | - Nathalie Dogna
- UMR 7245 MCAM MNHN CNRS, Muséum National d'Histoire Naturelle, 61 rue Buffon, CP 52, 75231 Paris Cedex 05, France
| | - Nathaly Vallarino-Lhermitte
- UMR 7245 MCAM MNHN CNRS, Muséum National d'Histoire Naturelle, 61 rue Buffon, CP 52, 75231 Paris Cedex 05, France
| | - Odile Bain
- UMR 7245 MCAM MNHN CNRS, Muséum National d'Histoire Naturelle, 61 rue Buffon, CP 52, 75231 Paris Cedex 05, France
| | - Irène Landau
- UMR 7245 MCAM MNHN CNRS, Muséum National d'Histoire Naturelle, 61 rue Buffon, CP 52, 75231 Paris Cedex 05, France
| | - Coralie Martin
- UMR 7245 MCAM MNHN CNRS, Muséum National d'Histoire Naturelle, 61 rue Buffon, CP 52, 75231 Paris Cedex 05, France
| |
Collapse
|
23
|
Hemozoin inhibition and control of clinical malaria. Adv Pharmacol Sci 2014; 2014:984150. [PMID: 24669217 PMCID: PMC3941158 DOI: 10.1155/2014/984150] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/24/2013] [Indexed: 11/17/2022] Open
Abstract
Malaria has a negative impact on health and social and economic life of residents of endemic countries. The ultimate goals of designing new treatment for malaria are to prevent clinical infection, reduce morbidity, and decrease mortality. There are great advances in the understanding of the parasite-host interaction through studies by various scientists. In some of these studies, attempts were made to evaluate the roles of malaria pigment or toxins in the pathogenesis of malaria. Hemozoin is a key metabolite associated with severe malaria anemia (SMA), immunosuppression, and cytokine dysfunction. Targeting of this pigment may be necessary in the design of new therapeutic products against malaria. In this review, the roles of hemozoin in the morbidity and mortality of malaria are highlighted as an essential target in the quest for effective control of clinical malaria.
Collapse
|
24
|
Plasmodium genetic loci linked to host cytokine and chemokine responses. Genes Immun 2014; 15:145-52. [PMID: 24452266 PMCID: PMC3999244 DOI: 10.1038/gene.2013.74] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/20/2013] [Accepted: 12/02/2013] [Indexed: 12/23/2022]
Abstract
Both host and parasite factors contribute to disease severity of malaria infection; however, the molecular mechanisms responsible for the disease and the host-parasite interactions involved remain largely unresolved. To investigate effects of parasite factors on host immune responses and pathogenesis, we measured levels of plasma cytokines/chemokines (CC) and growth rates in mice infected with two Plasmodium yoelii strains having different virulence phenotypes and in progeny from a genetic cross of the two parasites. Quantitative trait loci (QTL) analysis linked levels of many CCs, particularly IL-1β, IP-10, IFN-γ, MCP-1, and MIG, and early parasite growth rate to loci on multiple parasite chromosomes, including chromosomes 7, 9, 10, 12, and 13. Comparison of the genome sequences spanning the mapped loci revealed various candidate genes. The loci on chromosome 7 and 13 had significant (p < 0.005) additive effects on IL-1β, IL-5, and IP-10 responses, and the chromosome 9 and 12 loci had significant (p = 0.017) interaction. Infection of knockout mice showed critical roles of MCP-1 and IL-10 in parasitemia control and host mortality. These results provide important information for better understanding of malaria pathogenesis and can be used to examine the role of these factors in human malaria infection.
Collapse
|
25
|
Kabyemela E, Gonçalves BP, Prevots DR, Morrison R, Harrington W, Gwamaka M, Kurtis JD, Fried M, Duffy PE. Cytokine profiles at birth predict malaria severity during infancy. PLoS One 2013; 8:e77214. [PMID: 24130857 PMCID: PMC3795067 DOI: 10.1371/journal.pone.0077214] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 09/08/2013] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Severe malaria risk varies between individuals, and most of this variation remains unexplained. Here, we examined the hypothesis that cytokine profiles at birth reflect inter-individual differences that persist and influence malaria parasite density and disease severity throughout early childhood. METHODS AND FINDINGS Cytokine levels (TNF-α, IFN-γ, IL-1β, IL-4, IL-5, IL-6 and IL-10) were measured at birth (cord blood; N=783) and during subsequent routine follow-up visits (peripheral blood) for children enrolled between 2002 and 2006 into a birth cohort in Muheza, Tanzania. Children underwent blood smear and clinical assessments every 2-4 weeks, and at the time of any illness. Cord blood levels of all cytokines were positively correlated with each other (Spearman's rank correlation). Cord levels of IL-1β and TNF-α (but not other cytokines) correlated with levels of the same cytokine measured at routine visits during early life (P < 0.05). Higher cord levels of IL-1β but not TNF-α were associated with lower parasite densities during infancy (P=0.003; Generalized Estimating Equation (GEE) method), with an average ~40% reduction versus children with low cord IL-1β levels, and with decreased risk of severe malaria during follow-up (Cox regression): adjusted hazard ratio (95% CI) 0.60 (0.39-0.92), P = 0.02. CONCLUSION IL-1β levels at birth are related to future IL-1β levels as well as the risk of severe malaria in early life. The effect on severe malaria risk may be due in part to the effect of inflammatory cytokines to control parasite density.
Collapse
Affiliation(s)
- Edward Kabyemela
- MOMS Project, Seattle Biomedical Research Institute, Seattle, Washington, United States of America, and Muheza Designated District Hospital, Muheza, Tanzania
| | - Bronner P. Gonçalves
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, United States of America
- Laboratory of Clinical Infectious Diseases – Epidemiology Unit, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, United States of America
| | - D. Rebecca Prevots
- Laboratory of Clinical Infectious Diseases – Epidemiology Unit, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, United States of America
| | - Robert Morrison
- MOMS Project, Seattle Biomedical Research Institute, Seattle, Washington, United States of America, and Muheza Designated District Hospital, Muheza, Tanzania
| | - Whitney Harrington
- Seattle Children's Hospital and Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Moses Gwamaka
- MOMS Project, Seattle Biomedical Research Institute, Seattle, Washington, United States of America, and Muheza Designated District Hospital, Muheza, Tanzania
| | - Jonathan D. Kurtis
- Center for International Health Research, Rhode Island Hospital, Providence, Rhode Island, United States of America
- Department of Pathology and Laboratory Medicine, Brown University Medical School, Providence, Rhode Island, United States of America
| | - Michal Fried
- MOMS Project, Seattle Biomedical Research Institute, Seattle, Washington, United States of America, and Muheza Designated District Hospital, Muheza, Tanzania
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, United States of America
| | - Patrick E. Duffy
- MOMS Project, Seattle Biomedical Research Institute, Seattle, Washington, United States of America, and Muheza Designated District Hospital, Muheza, Tanzania
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, NIH, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
26
|
Roetynck S, Olotu A, Simam J, Marsh K, Stockinger B, Urban B, Langhorne J. Phenotypic and functional profiling of CD4 T cell compartment in distinct populations of healthy adults with different antigenic exposure. PLoS One 2013; 8:e55195. [PMID: 23383106 PMCID: PMC3557244 DOI: 10.1371/journal.pone.0055195] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 12/19/2012] [Indexed: 01/26/2023] Open
Abstract
Background Multiparameter flow cytometry has revealed extensive phenotypic and functional heterogeneity of CD4 T cell responses in mice and humans, emphasizing the importance of assessing multiple aspects of the immune response in correlation with infection or vaccination outcome. The aim of this study was to establish and validate reliable and feasible flow cytometry assays, which will allow us to characterize CD4 T cell population in humans in field studies more fully. Methodology/Principal Findings We developed polychromatic flow cytometry antibody panels for immunophenotyping the major CD4 T cell subsets as well as broadly characterizing the functional profiles of the CD4 T cells in peripheral blood. We then validated these assays by conducting a pilot study comparing CD4 T cell responses in distinct populations of healthy adults living in either rural or urban Kenya. This study revealed that the expression profile of CD4 T cell activation and memory markers differed significantly between African and European donors but was similar amongst African individuals from either rural or urban areas. Adults from rural Kenya had, however, higher frequencies and greater polyfunctionality among cytokine producing CD4 T cells compared to both urban populations, particularly for “Th1” type of response. Finally, endemic exposure to malaria in rural Kenya may have influenced the expansion of few discrete CD4 T cell populations with specific functional signatures. Conclusion/Significance These findings suggest that environmentally driven T cell activation does not drive the dysfunction of CD4 T cells but is rather associated with greater magnitude and quality of CD4 T cell response, indicating that the level or type of microbial exposure and antigenic experience may influence and shape the functionality of CD4 T cell compartment. Our data confirm that it is possible and mandatory to assess multiple functional attributes of CD4 T cell response in the context of infection.
Collapse
Affiliation(s)
- Sophie Roetynck
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
| | - Ally Olotu
- Kenya Medical Research Institute/Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Kilifi, Kenya
| | - Joan Simam
- Kenya Medical Research Institute/Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Kilifi, Kenya
| | - Kevin Marsh
- Kenya Medical Research Institute/Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Kilifi, Kenya
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Brigitta Stockinger
- Division of Molecular Immunology, MRC National Institute for Medical Research, London, United Kingdom
| | - Britta Urban
- Kenya Medical Research Institute/Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Kilifi, Kenya
- Molecular Parasitology and Immunology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jean Langhorne
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
- * E-mail:
| |
Collapse
|
27
|
Cytokine balance in human malaria: does Plasmodium vivax elicit more inflammatory responses than Plasmodium falciparum? PLoS One 2012; 7:e44394. [PMID: 22973442 PMCID: PMC3433413 DOI: 10.1371/journal.pone.0044394] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 08/06/2012] [Indexed: 02/08/2023] Open
Abstract
Background The mechanisms by which humans regulate pro- and anti-inflammatory responses on exposure to different malaria parasites remains unclear. Although Plasmodium vivax usually causes a relatively benign disease, this parasite has been suggested to elicit more host inflammation per parasitized red blood cell than P. falciparum. Methodology/Principal Findings We measured plasma concentrations of seven cytokines and two soluble tumor necrosis factor (TNF)-α receptors, and evaluated clinical and laboratory outcomes, in Brazilians with acute uncomplicated infections with P. vivax (n = 85), P. falciparum (n = 30), or both species (n = 12), and in 45 asymptomatic carriers of low-density P. vivax infection. Symptomatic vivax malaria patients, compared to those infected with P. falciparum or both species, had more intense paroxysms, but they had no clear association with a pro-inflammatory imbalance. To the contrary, these patients had higher levels of the regulatory cytokine interleukin (IL)-10, which correlated positively with parasite density, and elevated IL-10/TNF-α, IL-10/interferon (IFN)-γ, IL-10/IL-6 and sTNFRII/TNF-α ratios, compared to falciparum or mixed-species malaria patient groups. Vivax malaria patients had the highest levels of circulating soluble TNF-α receptor sTNFRII. Levels of regulatory cytokines returned to normal values 28 days after P. vivax clearance following chemotherapy. Finally, asymptomatic carriers of low P. vivax parasitemias had substantially lower levels of both inflammatory and regulatory cytokines than did patients with clinical malaria due to either species. Conclusions Controlling fast-multiplying P. falciparum blood stages requires a strong inflammatory response to prevent fulminant infections, while reducing inflammation-related tissue damage with early regulatory cytokine responses may be a more cost-effective strategy in infections with the less virulent P. vivax parasite. The early induction of regulatory cytokines may be a critical mechanism protecting vivax malaria patients from severe clinical complications.
Collapse
|
28
|
Rovira-Vallbona E, Moncunill G, Bassat Q, Aguilar R, Machevo S, Puyol L, Quintó L, Menéndez C, Chitnis CE, Alonso PL, Dobaño C, Mayor A. Low antibodies against Plasmodium falciparum and imbalanced pro-inflammatory cytokines are associated with severe malaria in Mozambican children: a case-control study. Malar J 2012; 11:181. [PMID: 22646809 PMCID: PMC3464173 DOI: 10.1186/1475-2875-11-181] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 05/10/2012] [Indexed: 12/17/2022] Open
Abstract
Background The factors involved in the progression from Plasmodium falciparum infection to severe malaria (SM) are still incompletely understood. Altered antibody and cellular immunity against P. falciparum might contribute to increase the risk of developing SM. Methods To identify immune responses associated with SM, a sex- and age-matched case–control study was carried out in 134 Mozambican children with SM (cerebral malaria, severe anaemia, acidosis and/or respiratory distress, prostration, hypoglycaemia, multiple seizures) or uncomplicated malaria (UM). IgG and IgM against P. falciparum lysate, merozoite antigens (MSP-119, AMA-1 and EBA-175), a Duffy binding like (DBL)-α rosetting domain and antigens on the surface of infected erythrocytes were measured by ELISA or flow cytometry. Plasma concentrations of IL-12p70, IL-2, IFN-γ, IL-4, IL-5, IL-10, IL-8, IL-6, IL-1β, TNF, TNF-β and TGF-β1 were measured using fluorescent bead immunoassays. Data was analysed using McNemar’s and Signtest. Results Compared to UM, matched children with SM had reduced levels of IgG against DBLα (P < 0.001), IgM against MSP-119 (P = 0.050) and AMA-1 (P = 0.047), TGF-β1 (P <0.001) and IL-12 (P = 0.039). In addition, levels of IgG against P. falciparum lysate and IL-6 concentrations were increased (P = 0.004 and P = 0.047, respectively). Anti-DBLα IgG was the only antibody response associated to reduced parasite densities in a multivariate regression model (P = 0.026). Conclusions The lower levels of antibodies found in children with SM compared to children with UM were not attributable to lower exposure to P. falciparum in the SM group. IgM against P. falciparum and specific IgG against a rosetting PfEMP1 domain may play a role in the control of SM, whereas an imbalanced pro-inflammatory cytokine response may exacerbate the severity of infection. A high overlap in symptoms together with a limited sample size of different SM clinical groups reduced the power to identify immunological correlates for particular forms of SM.
Collapse
Affiliation(s)
- Eduard Rovira-Vallbona
- Barcelona Centre for International Health Research, (CRESIB, Hospital Clínic-Universitat de Barcelona), Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Perkins DJ, Were T, Davenport GC, Kempaiah P, Hittner JB, Ong'echa JM. Severe malarial anemia: innate immunity and pathogenesis. Int J Biol Sci 2011; 7:1427-42. [PMID: 22110393 PMCID: PMC3221949 DOI: 10.7150/ijbs.7.1427] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/01/2011] [Indexed: 11/05/2022] Open
Abstract
Greater than 80% of malaria-related mortality occurs in sub-Saharan Africa due to infections with Plasmodium falciparum. The majority of P. falciparum-related mortality occurs in immune-naïve infants and young children, accounting for 18% of all deaths before five years of age. Clinical manifestations of severe falciparum malaria vary according to transmission intensity and typically present as one or more life-threatening complications, including: hyperparasitemia; hypoglycemia; cerebral malaria; severe malarial anemia (SMA); and respiratory distress. In holoendemic transmission areas, SMA is the primary clinical manifestation of severe childhood malaria, with cerebral malaria occurring only in rare cases. Mortality rates from SMA can exceed 30% in pediatric populations residing in holoendemic transmission areas. Since the vast majority of the morbidity and mortality occurs in immune-naïve African children less than five years of age, with SMA as the primary manifestation of severe disease, this review will focus primarily on the innate immune mechanisms that govern malaria pathogenesis in this group of individuals. The pathophysiological processes that contribute to SMA involve direct and indirect destruction of parasitized and non-parasitized red blood cells (RBCs), inefficient and/or suppression of erythropoiesis, and dyserythropoiesis. While all of these causal etiologies may contribute to reduced hemoglobin (Hb) concentrations in malaria-infected individuals, data from our laboratory and others suggest that SMA in immune-naïve children is characterized by a reduced erythropoietic response. One important cause of impaired erythroid responses in children with SMA is dysregulation in the innate immune response. Phagocytosis of malarial pigment hemozoin (Hz) by monocytes, macrophages, and neutrophils is a central factor for promoting dysregulation in innate inflammatory mediators. As such, the role of P. falciparum-derived Hz (PfHz) in mediating suppression of erythropoiesis through its ability to cause dysregulation in pro- and anti-inflammatory cytokines, growth factors, chemokines, and effector molecules is discussed in detail. An improved understanding of the etiological basis of suppression of erythropoietic responses in children with SMA may offer the much needed therapeutic alternatives for control of this global disease burden.
Collapse
Affiliation(s)
- Douglas J Perkins
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque NM, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Metenou S, Dembele B, Konate S, Dolo H, Coulibaly YI, Diallo AA, Soumaoro L, Coulibaly ME, Coulibaly SY, Sanogo D, Doumbia SS, Traoré SF, Mahanty S, Klion A, Nutman TB. Filarial infection suppresses malaria-specific multifunctional Th1 and Th17 responses in malaria and filarial coinfections. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:4725-33. [PMID: 21411732 PMCID: PMC3407819 DOI: 10.4049/jimmunol.1003778] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mechanisms underlying the modulation of both the malaria-specific immune response and the course of clinical malaria in the context of concomitant helminth infection are poorly understood. We used multiparameter flow cytometry to characterize the quality and the magnitude of malaria-specific T cell responses in filaria-infected and -uninfected individuals with concomitant asymptomatic Plasmodium falciparum malaria in Mali. In comparison with filarial-uninfected subjects, filarial infection was associated with higher ex vivo frequencies of CD4(+) cells producing IL-4, IL-10, and IL-17A (p = 0.01, p = 0.001, and p = 0.03, respectively). In response to malaria Ag stimulation, however, filarial infection was associated with lower frequencies of CD4(+) T cells producing IFN-γ, TNF-α, and IL-17A (p < 0.001, p = 0.04, and p = 0.04, respectively) and with higher frequencies of CD4(+)IL10(+)T cells (p = 0.0005). Importantly, filarial infection was associated with markedly lower frequencies of malaria Ag-specific Th1 (p < 0.0001), Th17 (p = 0.012), and "TNF-α" (p = 0.0008) cells, and a complete absence of malaria-specific multifunctional Th1 cells. Filarial infection was also associated with a marked increase in the frequency of malaria-specific adaptive regulatory T/Tr1 cells (p = 0.024), and the addition of neutralizing anti-IL-10 Ab augmented the amount of Th1-associated cytokine produced per cell. Thus, among malaria-infected individuals, concomitant filarial infection diminishes dramatically the frequencies of malaria-specific Th1 and Th17 T cells, and alters the quality and magnitude of malaria-specific T cell responses.
Collapse
Affiliation(s)
- Simon Metenou
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Alesutan I, Bobbala D, Qadri SM, Estremera A, Föller M, Lang F. Beneficial effect of aurothiomalate on murine malaria. Malar J 2010; 9:118. [PMID: 20459650 PMCID: PMC2875225 DOI: 10.1186/1475-2875-9-118] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 05/07/2010] [Indexed: 12/29/2022] Open
Abstract
Background Premature death of Plasmodium-infected erythrocytes is considered to favourably influence the clinical course of malaria. Aurothiomalate has previously been shown to trigger erythrocyte death or eryptosis, which is characterized by cell membrane scrambling leading to phosphatidylserine exposure at the cell surface. Phosphatidylserine-exposing cells are rapidly cleared from circulating blood. The present study thus tested whether sodium aurothiomalate influences the intraerythrocytic parasite development in vitro and the clinical course of murine malaria in vivo. Methods Human erythrocytes were infected with Plasmodium falciparum BinH in vitro and mice were infected (intraperitoneal injection of 1 × 106 parasitized murine erythrocytes) with Plasmodium berghei ANKA in vivo. Results Exposure to aurothiomalate significantly decreased the in vitro parasitemia of P. falciparum-infected human erythrocytes without influencing the intraerythrocytic DNA/RNA content. Administration of sodium aurothiomalate in vivo (daily 10 mg/kg b.w. s.c. from the 8th day of infection) enhanced the percentage of phosphatidylserine-exposing infected and noninfected erythrocytes in blood. All nontreated mice died within 30 days of infection. Aurothiomalate-treatment delayed the lethal course of malaria leading to survival of more than 50% of the mice 30 days after infection. Conclusions Sodium aurothiomalate influences the survival of Plasmodium berghei-infected mice, an effect only partially explained by stimulation of eryptosis.
Collapse
Affiliation(s)
- Ioana Alesutan
- Department of Physiology, University of Tübingen, Gmelinstr, 5, 72076 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Scholzen A, Minigo G, Plebanski M. Heroes or villains? T regulatory cells in malaria infection. Trends Parasitol 2010; 26:16-25. [DOI: 10.1016/j.pt.2009.10.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Revised: 10/09/2009] [Accepted: 10/15/2009] [Indexed: 12/14/2022]
|
33
|
Wellems TE, Hayton K, Fairhurst RM. The impact of malaria parasitism: from corpuscles to communities. J Clin Invest 2009; 119:2496-505. [PMID: 19729847 DOI: 10.1172/jci38307] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Malaria continues to exert a tremendous health burden on human populations, reflecting astonishingly successful adaptations of the causative Plasmodium parasites. We discuss here how this burden has driven the natural selection of numerous polymorphisms in the genes encoding hemoglobin and other erythrocyte proteins and some effectors of immunity. Plasmodium falciparum, the most deadly parasite species in humans, displays a vigorous system of antigen variation to counter host defenses and families of functionally redundant ligands to invade human cells. Advances in genetics and genomics are providing fresh insights into the nature of these evolutionary adaptations, processes of parasite transmission and infection, and the difficult challenges of malaria control.
Collapse
Affiliation(s)
- Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892-8132, USA.
| | | | | |
Collapse
|
34
|
Bueno LL, Morais CG, da Silva Soares I, Bouillet LEM, Bruna-Romero O, Fontes CJ, Fujiwara RT, Braga ÉM. Plasmodium vivax recombinant vaccine candidate AMA-1 plays an important role in adaptive immune response eliciting differentiation of dendritic cells. Vaccine 2009; 27:5581-8. [DOI: 10.1016/j.vaccine.2009.07.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Revised: 07/06/2009] [Accepted: 07/14/2009] [Indexed: 11/16/2022]
|
35
|
Metenou S, Dembélé B, Konate S, Dolo H, Coulibaly SY, Coulibaly YI, Diallo AA, Soumaoro L, Coulibaly ME, Sanogo D, Doumbia SS, Wagner M, Traoré SF, Klion A, Mahanty S, Nutman TB. Patent filarial infection modulates malaria-specific type 1 cytokine responses in an IL-10-dependent manner in a filaria/malaria-coinfected population. THE JOURNAL OF IMMUNOLOGY 2009; 183:916-24. [PMID: 19561105 DOI: 10.4049/jimmunol.0900257] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effect of filarial infections on malaria-specific immune responses was investigated in Malian villages coendemic for filariasis (Fil) and malaria. Cytokines were measured from plasma and Ag-stimulated whole blood from individuals with Wuchereria bancrofti and/or Mansonella perstans infections (Fil(+); n = 19) and those without evidence of filarial infection (Fil(-); n = 19). Plasma levels of IL-10 (geometric mean [GM], 22.8 vs 10.4) were higher in Fil(+) compared with Fil(-), whereas levels of IFN-inducible protein (IP)-10 were lower in Fil(+) (GM, 66.3 vs 110.0). Fil(+) had higher levels of spontaneously secreted IL-10 (GM, 59.3 vs 6.8 pg/ml) and lower levels of IL-2 (1.0 vs 1.2 pg/ml) than did Fil(-). Although there were no differences in levels of Staphylococcus aureus enterotoxin B-induced cytokines between the two groups, Fil(+) mounted lower IL-12p70 (GM, 1.11 vs 3.83 pg/ml; p = 0.007), IFN-gamma (GM, 5.44 vs 23.41 pg/ml; p = 0.009), and IP-10 (GM, 29.43 vs 281.7 pg/ml; p = 0.007) responses following malaria Ag (MalAg) stimulation compared with Fil(-). In contrast, Fil(+) individuals had a higher MalAg-specific IL-10 response (GM, 7318 pg/ml vs 3029 pg/ml; p = 0.006) compared with those without filarial infection. Neutralizing Ab to IL-10 (but not to TGFbeta) reversed the down-regulated MalAg-specific IFN-gamma and IP-10 (p < 0.001) responses in Fil(+). Together, these data demonstrate that filarial infections modulate the Plasmodium falciparum-specific IL-12p70/IFN-gamma secretion pathways known to play a key role in resistance to malaria and that they do so in an IL-10-dependent manner.
Collapse
Affiliation(s)
- Simon Metenou
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Were T, Davenport GC, Yamo EO, Hittner JB, Awandare GA, Otieno MF, Ouma C, Orago ASS, Vulule JM, Ong'echa JM, Perkins DJ. Naturally acquired hemozoin by monocytes promotes suppression of RANTES in children with malarial anemia through an IL-10-dependent mechanism. Microbes Infect 2009; 11:811-9. [PMID: 19427395 DOI: 10.1016/j.micinf.2009.04.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 03/11/2009] [Accepted: 04/24/2009] [Indexed: 01/08/2023]
Abstract
Regulated upon activation, normal T-cell expressed, and secreted (RANTES, CCL-5) is an important immunoregulatory mediator that is suppressed in children with malarial anemia (MA). Although pro-inflammatory (e.g., TNF-alpha, IL-1beta and IFN-gamma) and anti-inflammatory (e.g., IL-4, IL-10 and IL-13) cytokines regulate RANTES production, their effect on RANTES in children with MA has not been determined. Since intraleukocytic malarial pigment, hemozoin (Hz), causes dysregulation in chemokine and cytokine production, the impact of naturally acquired Hz (pfHz) on RANTES and RANTES-regulatory cytokines (TNF-alpha, IFN-gamma, IL-1beta, IL-4, IL-10, and IL-13) was examined. Circulating RANTES levels progressively declined with increasing levels of pigment-containing monocytes (PCM) (P=0.035). Additional experiments in cultured peripheral blood mononuclear cells (PBMC) showed that monocytic acquisition of pfHz (in vivo) was associated with suppression of RANTES under baseline (P=0.001) and stimulated conditions (P=0.072). Although high PCM levels were associated with decreased circulating IFN-gamma (P=0.003) and IL-10 (P=0.010), multivariate modeling revealed that only PCM (P=0.048, beta=-0.171) and IL-10 (P<0.0001, beta=-0.476) were independently associated with RANTES production. Subsequent in vitro experiments revealed that blockade of endogenous IL-10 significantly increased RANTES production (P=0.028) in PBMC from children with naturally acquired Hz. Results here demonstrate that monocytic acquisition of Hz suppresses RANTES production in children with MA through an IL-10-dependent mechanism.
Collapse
Affiliation(s)
- Tom Were
- University of New Mexico/Kenya Medical Research Institute, Laboratories of Parasitic and Viral Diseases, Centre for Global Health Research, Kisumu, Kenya
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Minigo G, Woodberry T, Piera KA, Salwati E, Tjitra E, Kenangalem E, Price RN, Engwerda CR, Anstey NM, Plebanski M. Parasite-dependent expansion of TNF receptor II-positive regulatory T cells with enhanced suppressive activity in adults with severe malaria. PLoS Pathog 2009; 5:e1000402. [PMID: 19390618 PMCID: PMC2668192 DOI: 10.1371/journal.ppat.1000402] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 03/30/2009] [Indexed: 12/24/2022] Open
Abstract
Severe Plasmodium falciparum malaria is a major cause of global mortality, yet the immunological factors underlying progression to severe disease remain unclear. CD4+CD25+ regulatory T cells (Treg cells) are associated with impaired T cell control of Plasmodium spp infection. We investigated the relationship between Treg cells, parasite biomass, and P. falciparum malaria disease severity in adults living in a malaria-endemic region of Indonesia. CD4+CD25+Foxp3+CD127lo Treg cells were significantly elevated in patients with uncomplicated (UM; n = 17) and severe malaria (SM; n = 16) relative to exposed asymptomatic controls (AC; n = 10). In patients with SM, Treg cell frequency correlated positively with parasitemia (r = 0.79, p = 0.0003) and total parasite biomass (r = 0.87, p<0.001), both major determinants for the development of severe and fatal malaria, and Treg cells were significantly increased in hyperparasitemia. There was a further significant correlation between Treg cell frequency and plasma concentrations of soluble tumor necrosis factor receptor II (TNFRII) in SM. A subset of TNFRII+ Treg cells with high expression of Foxp3 was increased in severe relative to uncomplicated malaria. In vitro, P. falciparum–infected red blood cells dose dependently induced TNFRII+Foxp3hi Treg cells in PBMC from malaria-unexposed donors which showed greater suppressive activity than TNFRII− Treg cells. The selective enrichment of the Treg cell compartment for a maximally suppressive TNFRII+Foxp3hi Treg subset in severe malaria provides a potential link between immune suppression, increased parasite biomass, and malaria disease severity. The findings caution against the induction of TNFRII+Foxp3hi Treg cells when developing effective malaria vaccines. Malaria is a major global health problem responsible for more than 1 million deaths annually. Severity of malaria disease is associated with the inability of host immune cells to efficiently eliminate malaria parasites from the blood. Little is known about immune regulatory factors controlling the onset of severe and potentially fatal malaria. Regulatory T (Treg) cells are a small specialized subset of immune cells that suppress the activation and expansion of effector immune cells which partake in parasite elimination. We investigated the relationship between Treg cells, parasite burden, and disease severity in adult malaria patients with either uncomplicated or severe malaria. We demonstrated that Treg cell frequency was elevated in malaria patients and associated with high parasite burden in severe malaria but not in uncomplicated malaria. Comparison of Treg cell characteristics allowed us to identify a new highly suppressive subset of Treg cells that was elevated in severe malaria patients. Our results indicate that severe malaria is accompanied by the induction of highly suppressive Treg cells that can promote parasite growth and caution against the induction of these Treg cells when developing effective malaria vaccines.
Collapse
Affiliation(s)
- Gabriela Minigo
- Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Australia
- International Health Division, Menzies School of Health Research (MSHR) and Charles Darwin University, Darwin, Australia
| | - Tonia Woodberry
- International Health Division, Menzies School of Health Research (MSHR) and Charles Darwin University, Darwin, Australia
| | - Kim A. Piera
- International Health Division, Menzies School of Health Research (MSHR) and Charles Darwin University, Darwin, Australia
| | - Ervi Salwati
- National Institute of Health Research and Development (NIHRD), Ministry of Health, Jakarta, Indonesia
| | - Emiliana Tjitra
- National Institute of Health Research and Development (NIHRD), Ministry of Health, Jakarta, Indonesia
| | - Enny Kenangalem
- NIHRD-MSHR Collaborative Research Program and District Health Authority, Timika, Papua, Indonesia
| | - Ric N. Price
- International Health Division, Menzies School of Health Research (MSHR) and Charles Darwin University, Darwin, Australia
- Centre for Vaccinology and Tropical Medicine, Nuffield Department of Clinical Medicine, Churchill Hospital, Oxford, United Kingdom
| | | | - Nicholas M. Anstey
- International Health Division, Menzies School of Health Research (MSHR) and Charles Darwin University, Darwin, Australia
| | - Magdalena Plebanski
- Department of Immunology, Monash University, Alfred Medical Research and Education Precinct, Melbourne, Australia
- * E-mail:
| |
Collapse
|
38
|
Cellular tumor necrosis factor, gamma interferon, and interleukin-6 responses as correlates of immunity and risk of clinical Plasmodium falciparum malaria in children from Papua New Guinea. Infect Immun 2009; 77:3033-43. [PMID: 19380468 DOI: 10.1128/iai.00211-09] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The role of early to intermediate Plasmodium falciparum-induced cellular responses in the development of clinical immunity to malaria is not well understood, and such responses have been proposed to contribute to both immunity and risk of clinical malaria episodes. To investigate whether P. falciparum-induced cellular responses are able to function as predictive correlates of parasitological and clinical outcomes, we conducted a prospective cohort study of children (5 to 14 years of age) residing in a region of Papua New Guinea where malaria is endemic Live, intact P. falciparum-infected red blood cells were applied to isolated peripheral blood mononuclear cells obtained at baseline. Cellular cytokine production, including production of interleukin-2 (IL-2), IL-4, IL-6, IL-10, tumor necrosis factor (TNF) (formerly tumor necrosis factor alpha), and gamma interferon (IFN-gamma), was measured, and the cellular source of key cytokines was investigated. Multicytokine models revealed that increasing P. falciparum-induced IL-6 production was associated with an increased incidence of P. falciparum clinical episodes (incidence rate ratio [IRR], 1.75; 95% confidence interval [CI], 1.20 to 2.53), while increasing P. falciparum-induced TNF and IFN-gamma production was associated with a reduced incidence of clinical episodes (IRR for TNF, 0.55 [95% CI, 0.38 to 0.80]; IRR for IFN-gamma, 0.71 [95% CI, 0.55 to 0.90]). Furthermore, we found that monocytes/macrophages and gammadelta-T cells are important for the P. falciparum-induced production of IL-6 and TNF. Early to intermediate cellular cytokine responses to P. falciparum may therefore be important correlates of immunity and risk of symptomatic malaria episodes and thus warrant detailed investigation in relation to the development and implementation of effective vaccines.
Collapse
|
39
|
Walther M, Jeffries D, Finney OC, Njie M, Ebonyi A, Deininger S, Lawrence E, Ngwa-Amambua A, Jayasooriya S, Cheeseman IH, Gomez-Escobar N, Okebe J, Conway DJ, Riley EM. Distinct roles for FOXP3 and FOXP3 CD4 T cells in regulating cellular immunity to uncomplicated and severe Plasmodium falciparum malaria. PLoS Pathog 2009; 5:e1000364. [PMID: 19343213 PMCID: PMC2658808 DOI: 10.1371/journal.ppat.1000364] [Citation(s) in RCA: 168] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 03/03/2009] [Indexed: 02/04/2023] Open
Abstract
Failure to establish an appropriate balance between pro- and anti-inflammatory immune responses is believed to contribute to pathogenesis of severe malaria. To determine whether this balance is maintained by classical regulatory T cells (CD4(+) FOXP3(+) CD127(-/low); Tregs) we compared cellular responses between Gambian children (n = 124) with severe Plasmodium falciparum malaria or uncomplicated malaria infections. Although no significant differences in Treg numbers or function were observed between the groups, Treg activity during acute disease was inversely correlated with malaria-specific memory responses detectable 28 days later. Thus, while Tregs may not regulate acute malarial inflammation, they may limit memory responses to levels that subsequently facilitate parasite clearance without causing immunopathology. Importantly, we identified a population of FOXP3(-), CD45RO(+) CD4(+) T cells which coproduce IL-10 and IFN-gamma. These cells are more prevalent in children with uncomplicated malaria than in those with severe disease, suggesting that they may be the regulators of acute malarial inflammation.
Collapse
Affiliation(s)
- Michael Walther
- Medical Research Council Laboratories, Fajara, Banjul, The Gambia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Barbier M, Delahaye NF, Fumoux F, Rihet P. Family-based association of a low producing lymphotoxin-alpha allele with reduced Plasmodium falciparum parasitemia. Microbes Infect 2008; 10:673-9. [PMID: 18457972 DOI: 10.1016/j.micinf.2008.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 02/29/2008] [Accepted: 03/13/2008] [Indexed: 11/16/2022]
Abstract
Tumor necrosis factor (TNF)-related genes are thought to play a role in human malaria. TNF polymorphisms have been associated with severe malaria, mild malaria, and parasitemia. Lymphotoxin-alpha gene (LTA) that belongs to the TNF family is one such candidate gene. Here we report the family-based association analysis of a cis-regulatory lymphotoxin-alpha polymorphism with parasitemia in two independent populations living in Burkina Faso. Analysis of 199 subjects (34 families) living in an urban endemic area revealed the association of the low producing LTA+80A allele with reduced parasitemia. Furthermore, there was evidence of significant LTA+80-by-age and LTA+80-by-gender interactions. In another set of 318 residents (55 families) in a rural endemic area, we found both the association of the low producing LTA+80A allele with reduced parasitemia and LTA+80-by-age and LTA+80-by-gender interactions. This study suggests that LTA+80 polymorphism influences parasitemia and acts in an age- and gender-dependent manner.
Collapse
Affiliation(s)
- Mathieu Barbier
- Aix-Marseille Université, IFR 48, Faculté de Pharmacie, Laboratoire de Pharmacogénétique des Maladies Parasitaires-EA 864, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
| | | | | | | |
Collapse
|
41
|
Bueno LL, Fujiwara RT, Soares IS, Braga EM. Direct effect of Plasmodium vivax recombinant vaccine candidates AMA-1 and MSP-119 on the innate immune response. Vaccine 2008; 26:1204-13. [PMID: 18242795 DOI: 10.1016/j.vaccine.2007.12.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Revised: 12/15/2007] [Accepted: 12/19/2007] [Indexed: 10/22/2022]
Abstract
The recombinant apical membrane antigen 1 (AMA-1) and 19-kDa fragment of merozoite surface protein (MSP-1(19)) are the lead candidates for inclusion in a vaccine against blood stages of malaria due to encouraging protective studies in humans and animals. Despite the importance of an efficacious malaria vaccine, vaccine-related research has focused on identifying antigens that result in protective immunity rather than determining the nature of anti-malarial immune effector mechanisms. Moreover, emphasis has been placed on adaptive rather than innate immune responses. In this study, we investigated the effect of Plasmodium vivax vaccine candidates Pv-AMA-1 and Pv-MSP-1(19) on the immune response of malaria-naïve donors. Maturation of dendritic cells is altered by Pv-AMA-1 but not Pv-MSP-1(19), as observed by differential expression of cell surface markers. In addition, Pv-AMA-1 induced an increased production of MIP-1alpha/CCL3 and decreased production of TARC/CCL17 levels in both dendritic cells (DCs) and peripheral blood mononuclear cells (PBMCs). Finally, a significant pro-inflammatory response was elicited by Pv-AMA-1-stimulated PBMCs. These results suggest that the recombinant vaccine candidate Pv-AMA-1 may play a direct role on innate immune response and might be involved in parasite destruction.
Collapse
Affiliation(s)
- Lilian Lacerda Bueno
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte (MG), Brazil
| | | | | | | |
Collapse
|
42
|
Abstract
Malaria remains an important public health problem throughout the tropical world causing immense human suffering and impeding economic development. Despite extensive research for > 100 years, options for preventing malaria remain limited to vector control and chemoprophylaxis. The complexity of the organism and its life cycle have, thus far, thwarted vaccine development and exacerbated the perennial problems of drug resistance. Nevertheless, development of a vaccine against malaria that reduces morbidity and mortality, and ideally also reduces transmission, has long been seen as an essential component of a sustainable malaria control strategy. In this article the authors review the biological challenges of malaria vaccine development, summarise some of the recent advances and offer some immunological insights which might facilitate further research.
Collapse
Affiliation(s)
- Jiraprapa Wipasa
- Chiang Mai University, Research Institute for Health Sciences, PO Box 80 CMU, Chiang Mai 50202, Thailand
| | | |
Collapse
|
43
|
Walther M, Woodruff J, Edele F, Jeffries D, Tongren JE, King E, Andrews L, Bejon P, Gilbert SC, De Souza JB, Sinden R, Hill AVS, Riley EM. Innate Immune Responses to Human Malaria: Heterogeneous Cytokine Responses to Blood-Stage Plasmodium falciparum Correlate with Parasitological and Clinical Outcomes. THE JOURNAL OF IMMUNOLOGY 2006; 177:5736-45. [PMID: 17015763 DOI: 10.4049/jimmunol.177.8.5736] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Taking advantage of a sporozoite challenge model established to evaluate the efficacy of new malaria vaccine candidates, we have explored the kinetics of systemic cytokine responses during the prepatent period of Plasmodium falciparum infection in 18 unvaccinated, previously malaria-naive subjects, using a highly sensitive, bead-based multiplex assay, and relate these data to peripheral parasite densities as measured by quantitative real-time PCR. These data are complemented with the analysis of cytokine production measured in vitro from whole blood or PBMC, stimulated with P. falciparum-infected RBC. We found considerable qualitative and quantitative interindividual variability in the innate responses, with subjects falling into three groups according to the strength of their inflammatory response. One group secreted moderate levels of IFN-gamma and IL-10, but no detectable IL-12p70. A second group produced detectable levels of circulating IL-12p70 and developed very high levels of IFN-gamma and IL-10. The third group failed to up-regulate any significant proinflammatory responses, but showed the highest levels of TGF-beta. Proinflammatory responses were associated with more rapid control of parasite growth but only at the cost of developing clinical symptoms, suggesting that the initial innate response may have far-reaching consequences on disease outcome. Furthermore, the in vitro observations on cytokine kinetics presented here, suggest that intact schizont-stage infected RBC can trigger innate responses before rupture of the infected RBC.
Collapse
Affiliation(s)
- Michael Walther
- Center for Clinical Vaccinology and Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Churchill Hospital, Oxford, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Dietz K, Raddatz G, Molineaux L. Mathematical model of the first wave of Plasmodium falciparum asexual parasitemia in non-immune and vaccinated individuals. Am J Trop Med Hyg 2006; 75:46-55. [PMID: 16931815 DOI: 10.4269/ajtmh.2006.75.46] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
We present a dynamic model of the highly pathogenic first wave of Plasmodium falciparum asexual parasitemia in non-immune persons. The model was successfully fitted to malaria therapy data. This required four case-specific parameters: the basic two-day multiplication factor, the time of onset of adaptive immunity, and the effective dose 50 densities for the innate and adaptive immune responses, respectively. All four parameters show large case-dependent variation that is mainly attributable to host factors. According to the model, the maximum value of the first wave is controlled mainly by the innate immune response. We used the model to explore the expected effects of vaccines targeting the parasite's asexual blood stages on the basis of what we consider to be the biologically most plausible assumptions concerning the parameter modifications induced by vaccination. According to our simulations, the benefit of antiparasitic vaccination is strongly host dependent and vaccine efficacy at low immunogenicity is much larger against severe disease than against fever. This has implications for the early testing of the protective efficacy of a vaccine in humans.
Collapse
Affiliation(s)
- Klaus Dietz
- Department of Medical Biometry, University of Tübingen, Tübingen, Germany.
| | | | | |
Collapse
|
45
|
Hemmer CJ, Holst FGE, Kern P, Chiwakata CB, Dietrich M, Reisinger EC. Stronger host response per parasitized erythrocyte in Plasmodium vivax or ovale than in Plasmodium falciparum malaria. Trop Med Int Health 2006; 11:817-23. [PMID: 16772003 DOI: 10.1111/j.1365-3156.2006.01635.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE AND METHODS Fever tends to start at a lower level of parasitemia in Plasmodium vivax or ovale than in P. falciparum malaria, but hyperparasitemia and complications are more likely to occur in P. falciparum malaria. Therefore, we compared the relationship between parasitemia and host response parameters before therapy in 97 patients with P. faciparum malaria (18 with complications), and 28 with P. vivax or ovale malaria. RESULTS In both types of malaria, parasitemia correlated with blood levels of tumour necrosis factor alpha (TNF-alpha), lactate dehydrogenase (LDH), Thrombin-antithrombin III (TAT) and elastase, and these parameters were higher in P. falciparum malaria than in P. vivax or ovale malaria. In contrast, the ratios of TNF-alpha, TAT, elastase, and LDH per parasitized erythrocyte were higher in P. vivax or ovale malaria than in uncomplicated P. falciparum malaria. They were lowest in complicated disease. Multivariate regression analysis confirmed that parasitemia did not affect these differences. CONCLUSION The host response may reach full strength at lower parasitemia in Plasmodium vivax or ovale, than in P. falciparum malaria. With hyperparasitemia in P. falciparum malaria, the host response seems to be unable to control parasite multiplication.
Collapse
Affiliation(s)
- Christoph Josef Hemmer
- Department of Tropical Medicine and Infectious Diseases, University of Rostock, Rostock, Germany.
| | | | | | | | | | | |
Collapse
|
46
|
Golenser J, McQuillan J, Hee L, Mitchell AJ, Hunt NH. Conventional and experimental treatment of cerebral malaria. Int J Parasitol 2006; 36:583-93. [PMID: 16603167 DOI: 10.1016/j.ijpara.2006.02.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2005] [Revised: 01/25/2006] [Accepted: 02/07/2006] [Indexed: 11/24/2022]
Abstract
The most severe complication of Plasmodium falciparum infection is cerebral malaria (CM). Cerebral malaria implies the presence of neurological features, especially impaired consciousness. The treatment of CM is limited to: (i) a few conventional anti-malarial drugs (quinine or artemisinins), (ii) adjunctive treatments (initial stabilisation, blood exchange transfusion, osmotic diuretics and correction of hypoglycaemia, acidosis and hypovolaemia) and (iii) immunomodulation. There are clear procedures concerning treatment of CM, which include the use of the anti-plasmodial drugs. Adjunctive treatments are permissible but there is no single official guideline and immune intervention is a possibility currently being examined in rodent models only. The suggested immunomodulation approach is based on the strong likelihood that CM is the result of an immunopathological process. P. falciparum initiates the multifactorial chain of events leading to lethal CM and, after a certain stage, it is impossible to stop the progression even by using anti-malarial drugs. We present evidence that CM is a result of a dysregulated immune response. Therefore, it might be prevented by early modulation of discrete factors that participate in this process. In experimental systems, some immunomodulators delay or prevent CM without affecting the parasitaemia. Therefore, in the future the ultimate treatment of CM may be a combination of an anti-malarial and an immunomodulator. However, the overall effect of an immunomodulator would need to be carefully examined in view of concomitant infections, especially in malaria endemic areas.
Collapse
Affiliation(s)
- J Golenser
- Department of Parasitology, The Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, Israel.
| | | | | | | | | |
Collapse
|
47
|
Huy NT, Trang DTX, Kariu T, Sasai M, Saida K, Harada S, Kamei K. Leukocyte activation by malarial pigment. Parasitol Int 2005; 55:75-81. [PMID: 16316776 DOI: 10.1016/j.parint.2005.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 10/11/2005] [Indexed: 11/17/2022]
Abstract
Malarial pigment, a unique hemozoin crystal composed of unit cells of heme dimers, is present in large amounts in circulating monocytes and neutrophils and can persist unchanged in macrophages for several months. In the present study, we investigated the effect of hemozoin not only on macrophages, but also on neutrophils. We used beta-hematin (BH), a chemically synthetic crystal structurally identical to hemozoin, for these studies. In vitro, BH up-regulated the expression of tumor necrosis factor-alpha in whole blood and in isolated peritoneal macrophages, indicating that hemozoin is able to stimulate monocytes. BH stimulated murine peritoneal neutrophils to express macrophage inflammatory protein-2 (MIP-2), a homologue of human interleukin-8 that is used as a marker of neutrophil activation. Injecting BH into the peritoneal cavity resulted in a dose-dependent migration of neutrophils and a high level of myeloperoxidase activity of peritoneal cells. Finally, BH directly induced neutrophil chemotaxis in vitro. Taken together, these results suggest that the malarial pigment hemozoin can activate leukocytes and may participate in the pathology of severe malaria.
Collapse
Affiliation(s)
- Nguyen Tien Huy
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Baratin M, Roetynck S, Lépolard C, Falk C, Sawadogo S, Uematsu S, Akira S, Ryffel B, Tiraby JG, Alexopoulou L, Kirschning CJ, Gysin J, Vivier E, Ugolini S. Natural killer cell and macrophage cooperation in MyD88-dependent innate responses to Plasmodium falciparum. Proc Natl Acad Sci U S A 2005; 102:14747-52. [PMID: 16203971 PMCID: PMC1253601 DOI: 10.1073/pnas.0507355102] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
IFN-gamma secretion by natural killer (NK) cells is pivotal to several tumor and viral immune responses, during which NK and dendritic cells cooperation is required. We show here that macrophages are mandatory for NK cell IFN-gamma secretion in response to erythrocytes infected with Plasmodium falciparum (Pf), a causative agent of human malaria. In addition, direct sensing of Pf infection by NK cells induces their production of the proinflammatory chemokine CXCL8, without triggering their granule-mediated cytolytic programs. Despite their reported role in Pf recognition, Toll-like receptor (TLR) 2, TLR9, and TLR11 are individually dispensable for NK cell activation induced by Pf-infected erythrocytes. However, IL-18R expression on NK cells, IL-18 production by macrophages, and MyD88 on both cell types are essential components of this previously undescribed pathway of NK cell activation in response to a parasite infection.
Collapse
Affiliation(s)
- Myriam Baratin
- Centre d'Immunologie de Marseille-Luminy, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université delaMéditerranée, 13288 Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Flori L, Delahaye NF, Iraqi FA, Hernandez-Valladares M, Fumoux F, Rihet P. TNF as a malaria candidate gene: polymorphism-screening and family-based association analysis of mild malaria attack and parasitemia in Burkina Faso. Genes Immun 2005; 6:472-80. [PMID: 15931230 DOI: 10.1038/sj.gene.6364231] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have previously obtained strong evidence for linkage of mild malaria attack to the MHC region, with a peak close to the tumor necrosis factor (TNF) gene. We screened, for polymorphisms, the entire TNF gene in the same sample of 34 families comprising 197 individuals living in a Plasmodium falciparum endemic area and we found 17 polymorphisms. In a longitudinal study, we investigated whether the 11 most frequent and informative polymorphisms were associated with mild malaria attack and maximum parasitemia, which was the highest parasitemia in each individual over 2 years. Mild malaria attack and maximum parasitemia were positively correlated. Transmission disequilibrium tests showed nominal evidence for association between TNF-1031, TNF-308, TNF851 and TNF1304 polymorphisms, and mild malaria attack on the one hand, and between TNF-238, TNF851 and TNF1304 polymorphisms, and maximum parasitemia on the other hand. After accounting for multiple tests, we confirmed the association of TNF-238 with maximum parasitemia and the association of TNF1304 and TNF851 with maximum parasitemia and mild malaria attack. The association tests with mild malaria attack suggest a moderate effect of TNF-308 polymorphism. In conclusion, our study suggests that several TNF variants may be part of the genetic determinants for maximum parasitemia and/or mild malaria attack.
Collapse
Affiliation(s)
- L Flori
- Laboratoire d'immunogénétique et de pharmacologie du paludisme-EA 864, Faculté de Pharmacie, Université de la Méditerranée, IFR 48, Marseille Cedex, France
| | | | | | | | | | | |
Collapse
|
50
|
Dixit S, Gaur RL, Khan MA, Saxena JK, Murthy PSR, Murthy PK. Inflammatory antigens of Brugia malayi and their effect on rodent host Mastomys coucha. Parasite Immunol 2004; 26:397-407. [PMID: 15752117 DOI: 10.1111/j.0141-9838.2004.00725.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The study was aimed at identifying pro- and anti-inflammatory cytokine releasing potential of Brugia malayi adult worm fractions and their role in filarial infection and pathogenesis. THP-1 cells were incubated with soluble somatic Brugia malayi adult worm extract (BmAS) and its Sephadex G-200 fractions BmAFI, BmAFII and BmAFIII and the effect of the fractions on parasitological, immunological and lymph node parameters was assessed in Mastomys coucha. BmAFII stimulated the pro-inflammatory TNF-alpha, IL-1beta and IL-6 release; IL-10 release was insignificant. Sensitization of animals with BmAFII and subsequent intraperitoneal implantation of worms enhanced CMI response. BmAFII also increased lymph node weight and cellularity, stimulated lymph node mast cells and eliminated intraperitoneally instilled worms. BmAFI stimulated several folds more release of IL-10, whereas TNF-alpha release was negligible. Sensitization with BmAFI elicited low CMI responses, moderately stimulated mast cells and facilitated survival of implanted adult parasites. Fifty percent of naive animals exposed to BmAFI showed oedematous lymph nodes and increased node weight. NCP-bound molecules corresponding to BmAFI and II showed cytokine-stimulating potential in vitro. It is concluded that BmAFII is protective and stimulates pro-inflammatory cytokines, whereas BmAFI facilitates parasite survival and stimulates IL-10.
Collapse
Affiliation(s)
- S Dixit
- Division of Parasitology, Central Drug Research Institute, Lucknow 226001, India
| | | | | | | | | | | |
Collapse
|