1
|
Mansour MF, Behairy A, Mostafa M, Khamis T, Alsemeh AE, Ahmed NMQ, El-Emam MMA. Quercetin-loaded PEGylated liposomes alleviate testicular dysfunction in alloxan-induced diabetic rats: The role of Kisspeptin/Neurokinin B/Dynorphin pathway. Toxicol Appl Pharmacol 2025; 499:117337. [PMID: 40239742 DOI: 10.1016/j.taap.2025.117337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Diabetes mellitus (DM) is a chronic metabolic disorder that can lead to serious complications, including testicular dysfunction. This dysfunction is considered a significant cause of male infertility. Quercetin (Que), a naturally existing flavonoid with versatile biological functions, has limited water solubility and low bioavailability. The current study was designed to develop a bioavailable formulation of Que. via encapsulating it in PEGylated liposomes (Que-PEG-Lip) and determine whether this formulation is effective in the treatment of alloxan-induced testicular injury via targeting Kisspeptin/Neurokinin B/Dynorphin/steroidogenesis signaling pathway. Thirty-two male Sprague Dawley rats were randomly divided into four groups: Control, alloxan-induced diabetes with testicular dysfunction (ALX), ALX + metformin (MET) and ALX + Que-PEG-Lip. The results showed that treatment of ALX group with Que-PEG-Lip significantly improved the alteration of glycemic index, serum reproductive hormones, testicular antioxidant status, testicular Kiss-1, androgen receptor (AR), and proliferation marker protein (ki67) immunoexpression in compared to ALX group. Moreover, the treatment of ALX group with Que-PEG-Lip regulated the Kisspeptin/Neurokinin B/Dynorphin/steroidogenesis pathway gene expression. Interestingly, the outcomes of the molecular docking analysis revealed a strong agonistic effect of Que. on the kisspeptin, neurokinin, and dynorphin receptors. In conclusion, Que-PEG-Lip mitigated the testicular dysfunction in alloxan-induced diabetic rats via regulation of hypothalamic-pituitary-gonadal axis signaling pathway and alleviation the testicular oxidative stress.
Collapse
Affiliation(s)
- Mohamed Fouad Mansour
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Amany Behairy
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mahmoud Mostafa
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt
| | - Tarek Khamis
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Amira Ebrahim Alsemeh
- Department of Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | | | - Mahran Mohamed Abd El-Emam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
2
|
Zolfaghari S, Soleimanzadeh A, Baqerkhani M. The synergistic activity of fisetin on quercetin improves testicular recover in ischemia-reperfusion injury in rats. Sci Rep 2025; 15:12053. [PMID: 40199993 PMCID: PMC11978994 DOI: 10.1038/s41598-025-96413-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 03/27/2025] [Indexed: 04/10/2025] Open
Abstract
This study examines a potential treatment for testicular ischemia-reperfusion (I/R) injury using fisetin (FIS) and quercetin (QUE) in a rat model. Male rats were divided into five groups: a control group, a torsion/detorsion (T/D) group, and three experimental groups treated with FIS, QUE, or a combination of FIS + QUE. Sperm parameters, oxidative stress markers, histopathological features, RT-PCR analysis of apoptotic and antiapoptotic gene expression, and fertility index were evaluated. The results demonstrated that FIS + QUE, FIS, and QUE significantly improved sperm motility and concentration, leading to a higher fertility index, than the reduced metrics in the T/D group. Additionally, levels of MDA and NO were significantly lowered, while CAT, SOD, GPx, and TAC levels increased in the FIS + QUE, FIS, and QUE groups. Histopathological, RT-PCR and fertility analyses also revealed evidence of apoptosis and testicular damage in the T/D group, shown by significant increases in P53, Bax, and caspase-3, along with marked decreases in AKT, PI3K, and Bcl-2. Treatment with FIS and QUE, particularly in combination, significantly improved outcomes, indicating a strong synergistic effect that helps repair damage and enhance reproductive function after T/D injury.
Collapse
Affiliation(s)
- Sina Zolfaghari
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Ali Soleimanzadeh
- Department of Theriogenology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | | |
Collapse
|
3
|
de Oliveira Santos A, Quadreli DH, Fernandes GSA, de Souza Reis LSL, de Andrade Bernal Fagiani M, Marin LCS, Batista VRG, Teixeira GR, de Lima Paz PJ, Castilho C, de Oliveira Vidotto Figueiredo M, Giometti IC. Quercetin Supplementation Reduces Oxidative Stress in the Testes of Wistar Rats Fed a High-Fat Diet. Am J Reprod Immunol 2025; 93:e70048. [PMID: 39835467 DOI: 10.1111/aji.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/01/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025] Open
Abstract
PROBLEM A high-fat diet (HFD) predisposes animals to glucose intolerance, dyslipidemia and testicular oxidative stress, and impairs sperm production in rats. Quercetin is a flavonoid with antioxidant, anti-inflammatory, and lipolytic actions and is a potential supplement to combat the oxidative stress caused by HFD and its harmful effects on reproduction. This study evaluated the effects of quercetin supplementation at doses of 10 and 20 mg/day on reproductive parameters and testicular oxidative stress in Wistar rats fed a diet rich in pork fat and fructose. METHOD OF STUDY The rats received a basal diet or HFD for 2 months, after which the animals fed the HFD received daily supplementation of 0, 10, or 20 mg of quercetin for another 2 months. Oxidative stress, histological alterations, and the expression of oxidative, inflammatory, and apoptotic mediators in the testes were evaluated. RESULTS Animals fed the HFD had a lower dietary intake and body, epididymis, and duct weights, regardless of the presence of quercetin. There were no changes in testicular weight, germinal epithelium diameter, sperm motility and morphology, or expression of testicular inflammatory genes (p > 0.05). There was a reduction in the oxidative stress index and oxidized glutathione in rats that received the HFD and 20 mg of quercetin compared with the HF group without quercetin. No difference was observed in the expression of BAX, BCL2, TNFα, caspase 3, or AR between the groups. CONCLUSION Daily quercetin supplementation dose-dependently reduces testicular oxidative stress in Wistar rats fed a diet rich in pork fat and fructose.
Collapse
Affiliation(s)
- Aline de Oliveira Santos
- Laboratory of Molecular Genetics and Experimentation in Animal Reproduction, University of Western São Paulo (Unoeste), Presidente Prudente, São Paulo, Brazil
| | - Debora Hipolito Quadreli
- Laboratory of Toxicology and Metabolic Disorders of Reproduction, State University of Londrina (UEL), Londrina, Brazil
| | | | | | - Marcela de Andrade Bernal Fagiani
- Laboratory of Molecular Genetics and Experimentation in Animal Reproduction, University of Western São Paulo (Unoeste), Presidente Prudente, São Paulo, Brazil
| | - Lauren Chrys Soato Marin
- Laboratory of Molecular Genetics and Experimentation in Animal Reproduction, University of Western São Paulo (Unoeste), Presidente Prudente, São Paulo, Brazil
| | - Victor Rogério Garcia Batista
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Giovana Rampazzo Teixeira
- Department of Physical Education, São Paulo State University (UNESP), School of Technology and Sciences, Presidente Prudente, São Paulo, Brazil
- Multicenter Graduate Program in Physiological Sciences, SBFis, São Paulo State University (UNESP), Araçatuba, São Paulo, Brazil
| | - Patrik Junior de Lima Paz
- School of Veterinary Medicine and Animal Science, São Paulo State University "Júlio de Mesquita Filho" (UNESP), Botucatu, São Paulo, Brazil
| | - Caliê Castilho
- Laboratory of Molecular Genetics and Experimentation in Animal Reproduction, University of Western São Paulo (Unoeste), Presidente Prudente, São Paulo, Brazil
| | - Mayara de Oliveira Vidotto Figueiredo
- Laboratory of Molecular Genetics and Experimentation in Animal Reproduction, University of Western São Paulo (Unoeste), Presidente Prudente, São Paulo, Brazil
| | - Ines Cristina Giometti
- Laboratory of Molecular Genetics and Experimentation in Animal Reproduction, University of Western São Paulo (Unoeste), Presidente Prudente, São Paulo, Brazil
| |
Collapse
|
4
|
Uddandrao VVS, Eraniappan S, Balakrishnan Ramajayam A, Singaravel S, Roy A, Parim BN, Ponnusamy C, Ganapathy S, Ponnusamy P, Sasikumar V. Hydroxycitric acid and capsaicin combination alleviates obesity-induced testicular apoptosis, oxidative stress and inflammation. Syst Biol Reprod Med 2024; 70:20-37. [PMID: 38323592 DOI: 10.1080/19396368.2024.2306403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 12/27/2023] [Indexed: 02/08/2024]
Abstract
Recent research in rodents suggests that oxidative stress, inflammation, and apoptosis in the testes caused by high-fat diets (HFD) are a cause of male infertility. To investigate the therapeutic efficacy of the combination of hydroxycitric acid and capsaicin (HCC) against male reproductive disorders, we developed an HFD-induced obese rat model. Rats received HFD supplementation for 21 weeks, which induced obesity. From week 16, HCC (100 mg/kg body weight) was administered to investigate its potential to treat testicular toxicity. According to the results of the current study, treatment of obese rats with HCC improved their sperm quality, increased the production of testosterone, follicle-stimulating hormone, and luteinizing hormone and significantly increased the activities of steroidogenic enzymes and corresponding mRNA levels. In addition, HCC decreased lipid peroxidation and nitric oxide levels in both spermatozoa and testes while increasing the expression of mRNA for the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase in the testes, which in turn reduced oxidative stress in the testes. Moreover, after HCC treatment, testicular tissues showed a remarkable decrease in mRNA levels responsible for inflammation (TNF-α, IL-6, NF-κB) and apoptosis (Bax and Bcl-2). Our results suggest that HCC may alleviate obesity-induced male reproductive dysfunction by attenuating oxidative stress, inflammation, and apoptosis in the testes of HFD-induced obese male rats.
Collapse
Affiliation(s)
- V V Sathibabu Uddandrao
- Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Namakkal District, Tamilnadu, India
| | - Seshathri Eraniappan
- Department of Pharmacology, Bhaarath Medical College and Hospital, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | | | | | - Anitha Roy
- Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Brahma Naidu Parim
- Animal Physiology and Biochemistry Laboratory, ICMR-National Animal Resource Facility for Biomedical Research (ICMR-NARFBR), Hyderabad, India
| | - Chandrasekaran Ponnusamy
- Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Namakkal District, Tamilnadu, India
| | - Saravanan Ganapathy
- Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Namakkal District, Tamilnadu, India
| | | | - Vadivukkarasi Sasikumar
- Department of Biochemistry, K.S. Rangasamy College of Arts and Science (Autonomous), Tiruchengode, Namakkal District, Tamilnadu, India
| |
Collapse
|
5
|
Blagojević J, Stanimirović Z, Glavinić U, Vakanjac S, Radukić Ž, Mirilović M, Maletić M. Impact of Supplemented Nutrition on Semen Quality, Epigenetic-Related Gene Expression, and Oxidative Status in Boars. Animals (Basel) 2024; 14:3297. [PMID: 39595349 PMCID: PMC11591274 DOI: 10.3390/ani14223297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
This study investigates the impact of nutritional supplementation on semen quality, epigenetic-related gene expression, and oxidative status in boars. Thirty boars were divided into a control group and a treatment group receiving Espermaplus (a supplement containing various vitamins, amino acids, omega-3 fatty acids, and trace elements with antioxidant properties). The experiment was performed for 12 weeks. Semen samples were collected at four moments: before starting the supplementation and after 3 weeks, 8 weeks, and 12 weeks. Spermatozoa concentration, motility, and kinematics were assessed using the CASA system. The measured parameters included curvilinear velocity-VCL; straight-line velocity-VSL; average path velocity-VAP; curvilinear distance-DCL; straight line distance-DSL; distance of average path-DAP; amplitude of lateral head displacement-ALH; beat-cross frequency-BCF; and head activity-HAC. Moreover, superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity in seminal plasma, as well as the concentration of thiobarbituric acid reactive substances (TBARS), were measured to assess oxidative stress levels in boar's seminal plasma. The expression of epigenetic-related genes such as Protamine 1 (Prm1), Protamine 2 (Prm2), and DNA-methyltransferase 3 alpha (Dnmt3a) were evaluated using real-time PCR. The treated group showed a significant increase in spermatozoa concentration (p = 0.003), total motility (p = 0.001), and progressive motility (p = 0.002) after 12 weeks compared to the control group. Kinematic parameters such as VCL, VSL, and VAP were also significantly higher (p < 0.001; p = 0.028; p < 0.001, respectively) in the treated group by the end of the experiment. SOD and GPx activities were consistently higher (p < 0.01; p < 0.001, respectively) in the treated group, indicating enhanced antioxidative capacity. TBARS levels as an indicator of lipid peroxidation and oxidative damage were significantly lower (p < 0.01) in the treated group by the end of the study. Significant changes were observed in the expression of epigenetic-related genes. The supplementation of boar diets with Espermaplus significantly improved semen quality, reduced oxidative stress, and had an impact on the expression levels of certain epigenetic-related genes, suggesting that dietary antioxidants and bioactive compounds can enhance boar semen.
Collapse
Affiliation(s)
- Jovan Blagojević
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.B.)
| | - Zoran Stanimirović
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.B.)
| | - Uroš Glavinić
- Department of Biology, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia; (J.B.)
| | - Slobodanka Vakanjac
- Department of Reproduction, Fertility and Artificial Insemination, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia (M.M.)
| | - Željko Radukić
- Animal Husbandry and Veterinary Centre “Velika Plana”, 11320 Velika Plana, Serbia
| | - Milorad Mirilović
- Department of Economics and Statistics, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Milan Maletić
- Department of Reproduction, Fertility and Artificial Insemination, Faculty of Veterinary Medicine, University of Belgrade, 11000 Belgrade, Serbia (M.M.)
| |
Collapse
|
6
|
Raza A, Mushtaq MN, Hassan S, Sharif A, Akhtar B, Akhtar MF. Mitigation of Diabetes Mellitus Using Euphorbia helioscopia Leaf Ethanolic Extract by Modulating GCK, GLUT4, IGF, and G6P Expressions in Streptozotocin-Induced Diabetic Rats. J Diabetes Res 2024; 2024:5497320. [PMID: 39329045 PMCID: PMC11424858 DOI: 10.1155/2024/5497320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/27/2024] [Accepted: 08/12/2024] [Indexed: 09/28/2024] Open
Abstract
Diabetes mellitus is a metabolic disorder. Synthetic antidiabetics are the commonly used treatment options associated with complications. The objective of this study was to explore the antioxidative and antidiabetic potential of Euphorbia helioscopia whole plant ethanolic extract using in vitro and in vivo models. For that purpose, the antioxidative potential was explored by using 2,2-diphenyl-1-picrylhydrazyl analysis. In vitro antidiabetic potential of the extract was evaluated using amylase inhibitory analysis. In vivo antidiabetic activity of the extract was assessed in diabetic rats using streptozotocin/nicotinamide (60 mg/kg/120 mg/kg) as an inducing agent. Metformin was used as standard. The results indicated the presence of significant quantities of phenolic 82.18 ± 1.28 mgg-1 gallic acid equivalent (GAE) and flavonoid 66.55±1.22 mgg-1 quercetin equivalent (QE) contents in the extract. Quantitation of phytoconstituents exhibited the presence of sinapic acid, myricetin, and quercetin using HPLC analysis. The extract inhibited α-amylase by 84.71%, and an antiglycemic potential of 50.34% was assessed in the OGTT assay. Biochemical analysis demonstrated a reduction in urea, creatinine, cholesterol, low-density lipoprotein, and alkaline phosphatase (p < 0.001) as compared to diabetic control rats at the dose of 500 mg/kg. An upregulation in the expressions of glucokinase, glucose transporter 4, peroxisome proliferator-activated receptor γ, and insulin-like growth factor was observed in treated rats in contrast to G6P expression, which was downregulated upon treatment. In conclusion, this study provided evidence of the antioxidative and antidiabetic potential of E. helioscopia whole plant ethanolic extract through in vitro and in vivo analysis and emphasized its promising role as a natural alternative.
Collapse
Affiliation(s)
- Ahmed Raza
- Faculty of PharmacyThe University of Lahore, Lahore 54000, Pakistan
| | | | - Sadia Hassan
- Department of Biomedical Engineering and SciencesSchool of Mechanical and Manufacturing EngineeringNational University of Science and Technology, Islamabad 24090, Pakistan
| | - Ali Sharif
- Department of PharmacologyFaculty of Pharmaceutical and Allied Health SciencesLahore College for Women University, Lahore 54000, Pakistan
| | - Bushra Akhtar
- Department of PharmacyUniversity of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical SciencesRiphah International UniversityLahore Campus, Lahore 54000, Pakistan
| |
Collapse
|
7
|
Zhou Y, Wei Z, Tan J, Sun H, Jiang H, Gao Y, Zhang H, Schroyen M. Alginate oligosaccharide supplementation improves boar semen quality under heat stress. STRESS BIOLOGY 2024; 4:37. [PMID: 39251532 PMCID: PMC11383898 DOI: 10.1007/s44154-024-00177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/23/2024] [Indexed: 09/11/2024]
Abstract
Heat stress is a serious problem that affects animal husbandry by reducing growth and reproductive performance of animals. Adding plant extracts to the diet is an effective way to help overcome this problem. Alginate oligosaccharide (AOS) is a natural non-toxic antioxidant with multiple biological activities. This study analyzed the potential mechanism of AOS in alleviating heat stress and improving semen quality in boars through a combination of multiple omics tools. The results indicated that AOS could significantly increase sperm motility (P < 0.001) and sperm concentration (P < 0.05). At the same time, AOS improved the antioxidant capacity of blood and semen, and increased blood testosterone (P < 0.05) level. AOS could improve the metabolites in sperm, change the composition of gut microbiota, increase the relative abundance of beneficial bacteria such as Pseudomonas (P < 0.01), Escherichia-Shigella (P < 0.05), Bifidobacterium (P < 0.01), reduce the relative abundance of harmful bacteria such as Prevotella_9 (P < 0.05), Prevotellaceae_UCG-001 (P < 0.01), and increase the content of short chain fatty acids. Proteomic results showed that AOS increased proteins related to spermatogenesis, while decreasing heat shock protein 70 (P < 0.05) and heat shock protein 90 (P < 0.01). These results were verified using immunofluorescence staining technology. There was a good correlation among sperm quality, sperm metabolome, sperm proteome, and gut microbiota. In conclusion, AOS can be used as a feed additive to increase the semen quality of boars to enhance reproductive performance under heat stress.
Collapse
Affiliation(s)
- Yexun Zhou
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Zeou Wei
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China
- School of Agriculture and Food Science, University College Dublin, Belfeld, Dublin 4, Ireland
| | - Jiajian Tan
- YangXiang Joint Stock Company, Guigang, 53700, China
| | - Haiqing Sun
- YangXiang Joint Stock Company, Guigang, 53700, China
| | - Haidi Jiang
- YangXiang Joint Stock Company, Guigang, 53700, China
| | - Yang Gao
- College of Life Science, Baicheng Normal University, Baicheng, 137000, Jilin, China.
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, P. R. China.
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| |
Collapse
|
8
|
Bouyahya A, Bakrim S, Aboulaghras S, El Kadri K, Aanniz T, Khalid A, Abdalla AN, Abdallah AA, Ardianto C, Ming LC, El Omari N. Bioactive compounds from nature: Antioxidants targeting cellular transformation in response to epigenetic perturbations induced by oxidative stress. Biomed Pharmacother 2024; 174:116432. [PMID: 38520868 DOI: 10.1016/j.biopha.2024.116432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/09/2024] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
Oxidative stress results from a persistent imbalance in oxidation levels that promotes oxidants, playing a crucial role in the early and sustained phases of DNA damage and genomic and epigenetic instability, both of which are intricately linked to the development of tumors. The molecular pathways contributing to carcinogenesis in this context, particularly those related to double-strand and single-strand breaks in DNA, serve as indicators of DNA damage due to oxidation in cancer cases, as well as factors contributing to epigenetic instability through ectopic expressions. Oxidative stress has been considered a therapeutic target for many years, and an increasing number of studies have highlighted the promising effectiveness of natural products in cancer treatment. In this regard, we present significant research on the therapeutic targeting of oxidative stress using natural molecules and underscore the essential role of oxidative stress in cancer. The consequences of stress, especially epigenetic instability, also offer significant therapeutic prospects. In this context, the use of natural epi-drugs capable of modulating and reorganizing the epigenetic network is beginning to emerge remarkably. In this review, we emphasize the close connections between oxidative stress, epigenetic instability, and tumor transformation, while highlighting the role of natural substances as antioxidants and epi-drugs in the anti-tumoral context.
Collapse
Affiliation(s)
- Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Sara Aboulaghras
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Kawtar El Kadri
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco
| | - Tarik Aanniz
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University in Rabat, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan PO Box: 114, Saudi Arabia.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Ahmed A Abdallah
- Department of Anatomy, Faculty of Medicine, Umm Alqura University, Makkah 21955, Saudi Arabia
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia; School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia; Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam.
| | - Nasreddine El Omari
- High Institute of Nursing Professions and Health Techniques of Tetouan, Tetouan, Morocco
| |
Collapse
|
9
|
Mu Y, Luo LB, Wu SJ, Gao Y, Qin XL, Zhao J, Liu Q, Yang J. Bezafibrate alleviates diabetes-induced spermatogenesis dysfunction by inhibiting inflammation and oxidative stress. Heliyon 2024; 10:e28284. [PMID: 38533024 PMCID: PMC10963653 DOI: 10.1016/j.heliyon.2024.e28284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
The metabolic disorders caused by diabetes can lead to various complications, including male spermatogenesis dysfunction. Exploring effective therapeutics that attenuate diabetes mellitus (DM)-induced male subfertility is of great importance. Pharmaceuticals targeting PPARα activation such as bezafibrate have been regarded as an important strategy for patients with diabetes. In this study, we use streptozocin (STZ) injection to establish a type 1 DM mice model and use bezafibrate to treat DM mice and evaluate the effects of bezafibrate on the spermatogenic function of the DM male mice. Bezafibrate treatment exhibited protective effects on DM-induced spermatogenesis deficiency, as reflected by increased testis weight, improved histological morphology of testis, elevated sperm parameters, increased serum testosterone concentration as well as increased mRNA levels of steroidogenesis enzymes. Meanwhile, testicular cell apoptosis, inflammation accumulation and oxidative stress status were also shown to be alleviated by bezafibrate compared with the DM group. In vivo and in vitro studies, PPARα specific inhibitor and PPARα knockout mice were further used to investigate the role of PPARα in the protective effects of bezafibrate on DM-induced spermatogenesis dysfunction. Our results indicated that the protection of bezafibrate on DM-induced spermatogenesis deficiency was abrogated by PPARα inhibition or deletion. Our study suggested that bezafibrate administration could ameliorate DM-induced spermatogenesis dysfunction and may represent a novel practical strategy for male infertility.
Collapse
Affiliation(s)
- Yang Mu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ling-Bo Luo
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shu-juan Wu
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yue Gao
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiao-lin Qin
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing Zhao
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Qian Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jing Yang
- Reproductive Medicine Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| |
Collapse
|
10
|
Rostamzadeh P, Shokri‐Asl V, Torghabeh FM, Davoudi S, Haghzadeh A, Moradi S. Aubergine stem restores reproductive damages following diabetes mellitus induction in male mice. Food Sci Nutr 2024; 12:399-410. [PMID: 38268903 PMCID: PMC10804115 DOI: 10.1002/fsn3.3767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 09/24/2023] [Accepted: 09/27/2023] [Indexed: 01/26/2024] Open
Abstract
Diabetes mellitus unbalances cellular antioxidant levels. This phenomenon can potentially lead to cellular damage and apoptosis in the male reproductive system. Besides, herbal-based antioxidants can prevent these detrimental changes. Thus, we assessed the probable role of Aubergine stems with antioxidant and anti-hyperlipidemic characteristics on reproductive damage following diabetes mellitus induction. Forty male NMRI mice were categorized into groups of control and treatments. Diabetes was induced by a single dose of streptozotocin (60 mg/kg), and the extract was administered at various doses (100, 300, and 500 mg/kg) daily for 4 weeks. Antioxidative features of the extract were approved by phytochemical assays and ferric-reducing ability of plasma. Side-effects of diabetes were also assessed by the malondialdehyde (MDA) and Griess techniques. Sperm parameters, LH, FSH, and testosterone levels, the TUNEL assay, histopathologic alteration, and apoptotic genes (p53, caspase-3, Bcl-2) were evaluated. Results showed that diabetes increased oxidation levels and the extract accelerated total antioxidant capacity status. Sperm parameters and hormone levels were restored following extract administration in diabetic animals. Also, the apoptosis rate decreased following extract administration in diabetic animals. We concluded that diabetes can elevate the levels of oxidation and suppress the antioxidant power. These pathologic changes were restored by Aubergine stem, leading to decreased levels of apoptosis and normal serum levels of testosterone, LH, and FSH.
Collapse
Affiliation(s)
- Parsa Rostamzadeh
- Department of Anatomical Sciences, Medical SchoolKurdistan University of Medical SciencesSanandajIran
| | - Vahid Shokri‐Asl
- Department of Reproductive Biology, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | | | - Samira Davoudi
- Department of Reproductive Biology, Faculty of Advanced Medical SciencesTabriz University of Medical SciencesTabrizIran
| | - Ahmad Haghzadeh
- Student Research Committee, Faculty of Dentistry, Tabriz BranchIslamic Azad UniversityTabrizIran
| | - Shima Moradi
- Department of Anatomical Sciences, Medical SchoolKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
11
|
Vaghela PB, Navale AM, Patel CB, Patidar NH, Nahar PD, Patel F, Pathan Z, Kumari B. Protective Effects of Chia Seeds and Omega-3 Fatty Acid against Cyclophosphamide-Induced Oligospermia in Male Wistar Rats: Potential Risks of Adverse Drug Interaction with Chia Seeds. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2023; 96:455-465. [PMID: 38161578 PMCID: PMC10751874 DOI: 10.59249/paej4854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Objectives: The aim of this study was to investigate whether chia (Salvia hispanica) seeds, which are rich in omega-3 fatty acids, amino acids, and vitamins with antioxidant properties, can mitigate the negative effects on male reproductive function caused by cyclophosphamide, a frequently used chemotherapeutic agent. Methods: Male wistar rats are divided into seven groups (n=6). All groups except the normal control (NC) received cyclophosphamide (30mg/kg, i.p.) for the first 5 days. The standard group received clomiphene citrate (0.25 mg/kg, p.o.). Treatment groups T1%, T5%, T10%, and ω-3 received 1%, 5%, and 10% chia seeds in the diet, and 880 mg/kg omega-3 fatty acid (p.o) respectively for 15 days. The effect on the reproductive system was evaluated by analysis of epididymal sperm characteristics, biochemical parameters, and serum testosterone level. Results: Clomiphene citrate improved oligospermia via hormone mediated effect. Chia seeds and omega-3 fatty acid treatment also showed improvement in reproductive parameters including oxidative stress and histological features of the testes. Omega-3 fatty acid treatment was more effective for the prevention of cyclophosphamide toxicity on testes as compared to chia seeds. Nasal bleeding was noted in several animals subjected to chia seed treatment. This occurrence might be attributed to chia seeds' impact on coagulation and/or platelet function, potentially heightened due to chemotherapy associated bone marrow suppression. Conclusions: In our study, chia seeds as well as omega-3 fatty acid treatment were found to be protective against cyclophosphamide-induced reproductive toxicity in rats. However, the adverse effect of hemorrhage associated with drug interaction of chia seeds with cytotoxic chemotherapeutic drugs needs careful attention and further investigation.
Collapse
Affiliation(s)
- Prince B. Vaghela
- Department of Pharmacology, Parul Institute of Pharmacy, Parul University,
Gujarat, India
| | - Archana M. Navale
- Department of Pharmacology, Parul Institute of Pharmacy, Parul University,
Gujarat, India
| | - Chirangi B. Patel
- Department of Pharmacology, Parul Institute of Pharmacy, Parul University,
Gujarat, India
| | - Nishant H. Patidar
- Department of Pharmacology, Parul Institute of Pharmacy, Parul University,
Gujarat, India
| | - Prachi D. Nahar
- Department of Pharmacology, Parul Institute of Pharmacy, Parul University,
Gujarat, India
| | - Farmi Patel
- Department of Pharmacology, Parul Institute of Pharmacy, Parul University,
Gujarat, India
| | - Zainab Pathan
- Department of Pharmacology, Parul Institute of Pharmacy, Parul University,
Gujarat, India
| | - Barsha Kumari
- Department of Pharmacology, Parul Institute of Pharmacy, Parul University,
Gujarat, India
| |
Collapse
|
12
|
Mega OO, Oghenetega OB, Victor E, Faith FY, Uchechukwu JG. Quercetin Protects against Levetiracetam induced gonadotoxicity in rats. Toxicology 2023; 491:153518. [PMID: 37098359 DOI: 10.1016/j.tox.2023.153518] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 04/27/2023]
Abstract
The purpose of this study was to determine whether quercetin may counteract the negative effects of levetiracetam on rat reproductive capabilities by examining its influence on a few reproductive parameters following levetiracetam administration. Twenty (20) experimental rats were employed, with five (n = 5) animals per treatment group. Rats in group 1 received saline (10mL/kg, p.o.) which served as control. Quercetin (20mg/kg, p.o./day) was given to groups 2 and 4 for 28 days starting from 29 to 56 days, respectively. However, animals in groups 3-4 received LEV (300mg/kg) once daily for 56 days with a 30-minute break in between treatments. All rats had their serum sex hormone levels, sperm characteristics, testicular antioxidant capability, and levels of oxido-inflammatory/apoptotic mediators evaluated. Additionally, the expression of proteins associated to BTB, autophagy, stress response was examined in rat testes. LEV increased sperm morphological defects and decreased sperm motility, sperm viability, sperm count body weight and testes weight, MDA and 8OHdG levels in the testis of LEV-treated rats were elevated, while antioxidant enzyme expression was concurrently decreased. Additionally, it reduced the levels of serum gonadotropins, testosterone, mitochondrial membrane potential, and cytochrome C liberation into the cytosol from the mitochondria. Caspase-3 and Caspase-9 activity increased. While Bcl-2, Cx-43, Nrf2, HO-1, mTOR, and Atg-7 levels were lowered, NOX-1, TNF-α, NF-kß, IL-1ß, and tDFI levels increased. Histopathological scoring provided further support for the decreased spermatogenesis. In contrast to all of these gonadotoxic effects of LEV, improvements in LEV-induced gonadal damage were seen through upregulation of Nrf2/ HO-1, Cx-43/NOX-1, mTOR/Atg-7 expression and attenuation of hypogonadism, poor sperm quality, mitochondria-mediated apoptosis, and oxidative inflammation due to quercetin post-treatment. The modulation of Nrf2/HO-1, /mTOR/Atg-7 and Cx-43/NOX-1 levels and the inhibition of mitochondria-mediated apoptosis and oxido-inflammation in LEV-induced gonadotoxicity in rats suggest that quercetin may hold promise as a possible therapeutic treatment.
Collapse
Affiliation(s)
- Oyovwi O Mega
- Department of Physiology, Adeleke University, Ede, Osun State, Nigeria; Department of Hunan Physiology, Achievers University, Owo, Ondo State, Nigeria; Department of Medical Laboratory Science, Adeleke University, Ede, Osun State, Nigeria.
| | - Onome B Oghenetega
- Department of Physiology, School of Basic Medical Science, Babcock University, Illisan- Ogun State; Department of Medical Laboratory Science, Adeleke University, Ede, Osun State, Nigeria
| | - Emojevwe Victor
- Department of Physiology, University of Medical Sciences, Ondo, Ondo State, Nigeria; Department of Medical Laboratory Science, Adeleke University, Ede, Osun State, Nigeria
| | - Falajiki Y Faith
- Department of Hunan Physiology, Achievers University, Owo, Ondo State, Nigeria; Department of Medical Laboratory Science, Adeleke University, Ede, Osun State, Nigeria
| | - Joseph Gregory Uchechukwu
- Department of Physiology, University of Medical Sciences, Ondo, Ondo State, Nigeria; Department of Medical Laboratory Science, Adeleke University, Ede, Osun State, Nigeria
| |
Collapse
|
13
|
Asghar A, Sharif A, Awan SJ, Akhtar B, Akhtar MF, Ali S, Shahnaz. "Ficus johannis Boiss. leaves ethanolic extract ameliorate streptozotocin-induced diabetes in rats by upregulating the expressions of GCK, GLUT4, and IGF and downregulating G6P". ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49108-49124. [PMID: 36773254 DOI: 10.1007/s11356-023-25765-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 02/02/2023] [Indexed: 02/12/2023]
Abstract
The leaves of Ficus johannis Boiss (F. johannis), commonly known as Fig tree, Anjir, and Teen, are used by the folk medicinal practitioners in Iran for controlling hyperglycemia in diabetic patients. This study investigated the pharmacological basis for antidiabetic effect of the ethanolic extract of F. johannis leaves using in vitro and in vivo experimental models. Qualitative screening of phytochemicals, estimation of total phenolic and flavonoid contents, and in vitro antioxidant and α-amylase inhibition assays were performed. Moreover, the High-performance liquid chromatography (HPLC) quantification, acute toxicity, glucose tolerance, and in vivo antidiabetic effect along with the evaluation of gene expressions involved in diabetes mellitus were carried out. Significant quantities of phenolic (71.208 ± 2.89 mgg-1 GAE) and flavonoid (26.38 ± 3.53 mgg-1 QE) were present. Inhibitory concentration (IC50) of the plant extract exhibited an excellent in vitro antioxidant (IC50 = 33.81 µg/mL) and α-amylase (IC50 = 12.18 µg/mL) inhibitory potential. The HPLC analysis confirmed the gallic acid (257.79 mgg-1) as main constituent of the extract followed by kaempferol (22.86 mgg-1), myricetin (0.16 mgg-1), and quercetin (3.22 mgg-1). Ethanolic extract displayed glucose tolerance in normo-glycemic rats. Streptozotocin-induced hyperglycemia declined dose dependently in the extract treated rats with improvement in lipid profile and liver and renal function biomarkers. The F. johannis-treated groups showed an increase in mRNA expressions of glucose transporter 4 (GLUT-4), glucokinase, insulin growth like factor 1 and peroxisomal proliferator activating receptor gamma in pancreas. However, the Glucose-6-phosphatase was downregulated. Present study suggests that the ethanolic extract of F. johannis leaves demonstrates a good anti-diabetic profile by improving insulin sensitivity, GLUT-4 translocation, and carbohydrate metabolism while inhibiting lipogenesis.
Collapse
Affiliation(s)
- Afshan Asghar
- Faculty of Pharmacy, The University of Lahore, 1Km- Off Defense Road, Lahore, Pakistan
| | - Ali Sharif
- Department of Pharmacology, Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Jail Road, Lahore, Pakistan.
| | - Sana Javaid Awan
- Department of Zoology, Kinnaird College for Women Lahore, 1Km- Off Defense Road, Lahore, Pakistan
| | - Bushra Akhtar
- Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore, Pakistan
| | - Sajid Ali
- Department of Chemistry - Ångström Laboratory, Physical Chemistry, Uppsala University, Uppsala, Sweden
| | - Shahnaz
- Department of Chemistry, Lahore College for Women University, Jail Road, Lahore, Pakistan
| |
Collapse
|
14
|
The Role of Dietary Nutrients in Male Infertility: A Review. Life (Basel) 2023; 13:life13020519. [PMID: 36836876 PMCID: PMC9960932 DOI: 10.3390/life13020519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
Male infertility is the main health issue with economic, psychological, and medical attributions. Moreover, it is characterized by an inability to produce a sufficient amount of sperm for the fertilization of an oocyte. Dietary nutrients (DN) have a great effect on male reproductive potential. Observations have indicated that adding DN may protect or treat male infertility. The scope of this criticism is to scrutinize the DN, such as omega-3 fatty acids, vitamins, minerals and other phytochemicals, in enhancing the semen attributes, sperm bioenergetics and sperm functionality in male infertility. It seems that diets rich in omega-3 fatty acids affect sperm quality and maintain the sperm membrane and mitochondria stability. An administration of phytochemicals caused an escalation in sperm mitochondrial function and a decrease in oxidative damage. Furthermore, sundry dietary natural phytochemicals differentially affect (negatively or positively) sperm motility, semen quality, and mitochondrial function, dependent on their levels. Vitamins and trace elements are also nutritional modulators in reducing oxidative stress, thereby enhancing sperm quality, which is accurately connected with sperm mitochondrial function. Also, we described the different types of DN as mitochondrial enhancer for sperm functionality and health. We believe that understanding the DN supports sperm mitochondria and epigenetic modulators that may be responsible for sperm quality and health, and will lead to more embattled and efficient therapeutics for male infertility.
Collapse
|
15
|
Quercetin Ameliorates Testicular Damage in Zucker Diabetic Fatty Rats through Its Antioxidant, Anti-Inflammatory and Anti-Apoptotic Properties. Int J Mol Sci 2022; 23:ijms232416056. [PMID: 36555696 PMCID: PMC9781092 DOI: 10.3390/ijms232416056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to investigate the effects of quercetin (QUE) on the testicular architecture as well as markers of oxidative, inflammatory, and apoptotic profile of male gonads in Zucker diabetic fatty (ZDF) rats suffering from Type 2 diabetes mellitus in the absence or presence of obesity. QUE was administered orally at a dose of 20 mg/kg/day for 6 weeks. Morphometric analysis revealed that QUE treatment led to an improvement in testicular appearance, particularly in the case of Obese ZDF rats. Furthermore, a significant stabilization of the antioxidant capacity (p < 0.05), superoxide dismutase and catalase activity (p < 0.01), with a concomitant decrease in lipid peroxidation (p < 0.05) were observed in Obese ZDF animals exposed to QUE. Our data also indicate a significant decline in the levels of interleukin (IL)-1 (p < 0.05), IL-6 (p < 0.01) and tumor necrosis factor alpha (p < 0.001) following QUE supplementation to Obese ZDF rats in comparison with their respective control. Finally, a significant down-regulation of the pro-apoptotic BAX protein (p < 0.0001) was observed in Obese ZDF rats administered with QUE, while a significant Bcl-2 protein overexpression (p < 0.0001) was recorded in Lean ZDF animals when compared to their untreated control. As such, our results suggest that QUE is a potentially beneficial agent to reduce testicular damage in ZDF rats with Type 2 diabetes mellitus by decreasing oxidative stress, chronic inflammation, and excessive cell loss through apoptosis.
Collapse
|
16
|
Mega OO, Benneth BA, Edesiri TP, Rume RA, Victor E, Rotu RA, Oghenetega BO, Agbonifo-Chijiokwu E, Kingsley NE, Andrew UO, Adebayo OG. Possible mechanisms involved in the testicular-protective property of quercetin in rats exposed to endosulfan toxicity. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105224. [PMID: 36464344 DOI: 10.1016/j.pestbp.2022.105224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/24/2022] [Accepted: 09/01/2022] [Indexed: 06/17/2023]
Abstract
The study investigated the effects of quercetin and putative mechanisms involved against endosulfan-testicular impairments in rats. Rats were allotted into five treatment groups (n = 5). Groups 1-2 had normal saline and maize oil (vehicle) (10 mL/kg), group 3 received quercetin (20 mg/kg), 4-5 had endosulfan (5 mg/kg, p.o) orally for 28 days. However, from days 14-28, group 4 received an additional dose of vehicle (10 mL/kg, p.o./day), while group 5 received quercetin (20 mg/kg, p.o./day). Thereafter, blood samples and testes were harvested for markers of cholinergic, hormonal and testicular oxido-nitrergic, inflammatory, apoptosis and proton pump ATPase activities. Also, testicular histopathological changes were also evaluated alongside with germ cell count, testicular injury and spermatogenesis score. Quercetin increased testicular/body weights and spermatogenesis, androgenic hormones (follicle stimulating hormones, FSH; luteinizing hormone, LH; testosterone), acetylcholinesterase levels and attenuated altered membrane integrity, DNA fragmentation, increased caspases-3 levels in rats exposed to endosulfan. Moreover, quercetin increased testicular B-cell lymphoma-2 (Bcl-2), Bcl-2 associated x-protein (Bax) and proton pump adenosine trisphosphate (ATPase) and sialic acid levels. Of note, quercetin reversed endosulfan-mediated increased malondialdehyde, nitrite, peroxynitrite formation, 8-hydroxy-2'-deoxyguanosine and lowered antioxidant enzymes in the testes. The increased levels of testicular myeloperoxidase (MPO), tumor necrosis factor-alpha (TNF-α) and interleukin-1beta (IL-1β) by endosulfan were also reduced by quercetin administration. Additionally, quercetin attenuate endosulfan-induced testicular histopathological changes of rats. Our findings showed that quercetin significantly inhibited endosulfan-induced testicular damage and altered spermatogenesis through inhibition of oxido-nitrergic pathway, inflammatory mediators, apoptosis, acetylcholinesterase activity and enhancement of testicular hormones and improvement in testicular ATPase activity.
Collapse
Affiliation(s)
- Oyovwi O Mega
- Department of Human Physiology, Achievers University, Owo, Ondo State, Nigeria.
| | - Ben-Azu Benneth
- Department of Pharmacology, Faculty of Basic Medical Science, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria.
| | - Tesi P Edesiri
- Department of Science Laboratory Technology, Delta State Polytechnic, Ogwash-Uku, Delta State, Nigeria
| | - Rotu A Rume
- Department of Physiology, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Emojevwe Victor
- Department of Physiology, University of Medical Sciences, Ondo, Ondo State, Nigeria
| | - Rotu A Rotu
- Department of Industrial safety and Environmental Management, School of Maritime Technology, Burutu, Delta State, Nigeria
| | - Bright Onome Oghenetega
- Department of Physiology, Faculty of Basic Medical Science, Babcock University, Illisan-Romo, Ogun State, Nigeria
| | - Ejime Agbonifo-Chijiokwu
- Department of Physiology, Faculty of Basic Medical Science, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Nwangwan E Kingsley
- Department of Physiology, Faculty of Basic Medical Science, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Udi O Andrew
- Department of Human Physiology, Achievers University, Owo, Ondo State, Nigeria
| | - Olusegun G Adebayo
- Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| |
Collapse
|
17
|
Behairy A, Hashem MM, Abo-El-Sooud K, El-Metwally AE, Hassan BA, Abd-Elhakim YM. Quercetin Abates Aluminum Trioxide Nanoparticles and Lead Acetate Induced Altered Sperm Quality, Testicular Oxidative Damage, and Sexual Hormones Disruption in Male Rats. Antioxidants (Basel) 2022; 11:2133. [PMID: 36358505 PMCID: PMC9686927 DOI: 10.3390/antiox11112133] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 12/05/2022] Open
Abstract
This study examined the effects of exposure to lead acetate (PbAc) and/or aluminum trioxide nanoparticles (Al2O3NPs) on testicular function. Additionally, the probable reproprotective effects of quercetin (QTN) against Al2O3NPs and PbAc co-exposure in male Sprague Dawely rats were assessed. Al2O3NPs (100 mg/kg b.wt.), PbAc (50 mg/kg b.wt.), and QTN (20 mg/kg b.wt.) were orally administered for 60 days. Then, spermiogram, histopathological examinations of the testis and accessory glands, and immunohistochemical detection of androgen receptors (AR) and tumor necrotic factor alpha (TNF-α) were achieved. Moreover, serum levels of male sex hormones and testicular levels of antioxidant indices were estimated. The results showed that Al2O3NPs and/or PbAc caused significant sperm abnormalities, testicular oxidative stress, and histopathological changes. Furthermore, serum testosterone, LH, and FSH levels significantly decreased, while estradiol levels significantly increased. The Al2O3NPs and/or PbAc co-exposed group had more obvious disturbances. Furthermore, QTN co-administration significantly reversed the Al2O3NPs and PbAc-induced testicular histopathological alterations, reduced antioxidant defenses, and altered AR and TNF-α immune expression in testicular tissues. Conclusively, Al2O3NPs and/or PbAc evoked testicular dysfunction by inducing oxidative injury and inflammation. However, QTN oral dosing effectively mitigated the negative effects of Al2O3NPs and PbAc by suppressing oxidative stress and inflammation and improving the antioxidant defense system.
Collapse
Affiliation(s)
- Amany Behairy
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed M. Hashem
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12613, Egypt
| | - Khaled Abo-El-Sooud
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12613, Egypt
| | - Abeer E. El-Metwally
- Pathology Department, Animal Reproduction Research Institute, Giza 3514805, Egypt
| | - Bayan A. Hassan
- Pharmacology Department, Faculty of Pharmacy, Future University, Cairo 11835, Egypt
| | - Yasmina M. Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
18
|
Yang Y, Cheng R, Liu J, Fang J, Wang X, Cui Y, Zhang P, Du B. Linarin Protects against Cadmium-Induced Osteoporosis Via Reducing Oxidative Stress and Inflammation and Altering RANK/RANKL/OPG Pathway. Biol Trace Elem Res 2022; 200:3688-3700. [PMID: 34674107 DOI: 10.1007/s12011-021-02967-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/11/2021] [Indexed: 12/14/2022]
Abstract
Cadmium (Cd) contamination in the environment is a major public health concern since it has been linked to osteoporosis and other bone deformities. Linarin is a flavonoid glycoside, and it can promote osteoblastogenesis. This research aimed to investigate the potential role of linarin against Cd-exposed bone deformations in mice model. In our research, male mice were randomly allocated into four groups: control, Cd-exposed, and Cd + linarin (20 and 40mg/kg/bw, respectively). Linarin prevented body weight loss, increased serum calcium (Ca) and phosphorus (P), and bone alkaline phosphatase (BAP) levels in Cd-exposed groups. Furthermore, linarin treatment at 20 and 40mg/kg/bw significantly decreased RANK and OPG, resulting in an increase in RANKL mRNA levels and protein distribution in the bone of Cd-exposed mice. In addition, the bone of Cd-exposed mice administered with linarin showed higher TRAP, NFATc1, MMP9, and RUNX2 mRNA levels and protein distribution. Linarin significantly decreased oxidative stress in Cd-exposed mice bone by decreasing MDA, a lipid peroxidation product. Moreover, linarin protects Cd-exposed mice antioxidant enzymes by increasing bone SOD, CAT, and GPx levels. Besides, linarin suppresses alterations in the inflammatory system, i.e., NF-κB p65/IKKβ, by reducing NF-κB p65, IKKβ, IL-6, and TNF-α in the bone of Cd-exposed animals. This study concluded that linarin has potential to cure osteoporosis in Cd-exposed mice by reducing oxidative stress and inflammation and modulating the RANK/RANKL/OPG pathway.
Collapse
Affiliation(s)
- Yating Yang
- Xi'an Jiao Tong University, Xi'an, Shaanxi, 710049, China
- Department of Geriatrics, Xi'an Ninth Hospital, No. 151, East Section of South Second Ring Road, Beilin District, Xi'an, Shaanxi, 710054, China
| | - Ruining Cheng
- Department of Geriatrics, Xi'an Ninth Hospital, No. 151, East Section of South Second Ring Road, Beilin District, Xi'an, Shaanxi, 710054, China
| | - Jingyun Liu
- Department of Geriatrics, Xi'an Ninth Hospital, No. 151, East Section of South Second Ring Road, Beilin District, Xi'an, Shaanxi, 710054, China
| | - Jing Fang
- Department of Geriatrics, Xi'an Ninth Hospital, No. 151, East Section of South Second Ring Road, Beilin District, Xi'an, Shaanxi, 710054, China
| | - Xiaojing Wang
- Department of Geriatrics, Xi'an Ninth Hospital, No. 151, East Section of South Second Ring Road, Beilin District, Xi'an, Shaanxi, 710054, China
| | - Yingxue Cui
- Department of Geriatrics, Xi'an Ninth Hospital, No. 151, East Section of South Second Ring Road, Beilin District, Xi'an, Shaanxi, 710054, China
| | - Pan Zhang
- Department of Geriatrics, Xi'an Ninth Hospital, No. 151, East Section of South Second Ring Road, Beilin District, Xi'an, Shaanxi, 710054, China
| | - Bin Du
- Xi'an Jiao Tong University, Xi'an, Shaanxi, 710049, China.
- Department of Orthopaedics, Xi'an Ninth Hospital, No. 151, East Section of South Second Ring Road, Beilin District, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
19
|
Bang S, Qamar AY, Tanga BM, Fang X, Seong G, Nabeel AHT, Yu IJ, Saadeldin IM, Cho J. Quercetin improves the apoptotic index and oxidative stress in post-thaw dog sperm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:21925-21934. [PMID: 34773592 DOI: 10.1007/s11356-021-17421-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
Freeze storage of ejaculated sperms is a crucial technique for the semen preservation of valuable pet animals such as dogs. The current study was conducted to investigate if quercetin (QRN) may ameliorate apoptosis and oxidative stress in post-thaw dog sperm. Herein, we evaluated the post-thaw apoptosis and oxidative stress after treatment with QRN (control, 25, 50, and 100 μM) in the freezing of dog semen. Reactive oxygen species levels were significantly affected (p < 0.05) between the various concentrations of QRN and the control (17.56 ± 1.02, 7.54 ± 0.48, 5.66 ± 0.80, and 10.41 ± 0.69), respectively. The apoptosis index was 9.1 ± 1.34, 6.66 ± 0.58, 6.77 ± 0.66, and 5.38 ± 0.86 in the control, and 25, 50, and 100 μM QRN treatment groups, respectively (p < 0.05). The effects of ameliorated cryo-induced damage by QRN on post-thaw sperm quality were also observed through improved structural and functional tests. Sperm treated with 50 μM QRN showed significantly higher motility (51.8 ± 2.1% vs. 43.1 ± 1.4%, P < 0.05), survival rates (46.9 ± 0.7% vs. 43.9 ± 0.4%, P < 0.05), and mucus penetration than control group, respectively. Results also indicated that higher concentrations of QRN (100 μM) were not effective on sperm quality and parameters when compared with the medium levels (50 μM). In conclusion, supplementation of freezing buffer with 50 μM QRN reduced oxidative damage and improved the quality of post-thaw dog sperm.
Collapse
Affiliation(s)
- Seonggyu Bang
- College of Veterinary Medicine, Chungnam National University, 34134, Daejeon, Republic of Korea
| | - Ahmad Yar Qamar
- College of Veterinary Medicine, Chungnam National University, 34134, Daejeon, Republic of Korea
- Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang, Sub-Campus University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Bereket Molla Tanga
- College of Veterinary Medicine, Chungnam National University, 34134, Daejeon, Republic of Korea
- Faculty of Veterinary Medicine, Hawassa University, 05, Hawassa, Ethiopia
| | - Xun Fang
- College of Veterinary Medicine, Chungnam National University, 34134, Daejeon, Republic of Korea
| | - Gyeonghwan Seong
- College of Veterinary Medicine, Chungnam National University, 34134, Daejeon, Republic of Korea
| | - Abdelbagi Hamad Talha Nabeel
- Laboratory of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, Sudan University of Science and Technology, Khartoum, Sudan
| | - Il-Jeoung Yu
- Laboratory of Theriogenology and Reproductive Biotechnology, College of Veterinary Medicine and Bio-Safety Research Institute, Jeonbuk National University, Iksan, Republic of Korea
| | - Islam M Saadeldin
- College of Veterinary Medicine, Chungnam National University, 34134, Daejeon, Republic of Korea
- Research Institute of Veterinary Medicine, Chungnam National University, 34134, Daejeon, Republic of Korea
| | - Jongki Cho
- College of Veterinary Medicine, Chungnam National University, 34134, Daejeon, Republic of Korea.
| |
Collapse
|
20
|
Wierzba W, Śliwczyński A, Karnafel W, Gujski M, Słodki M, Lusawa A, Pinkas J. The association of diabetes with all-cause mortality in patients with end-stage renal disease compared to the general population in Poland - a comparative analysis. Arch Med Sci 2022; 18:314-319. [PMID: 35316921 PMCID: PMC8924816 DOI: 10.5114/aoms.2020.94955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 04/05/2019] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION End-stage renal disease (ESRD) is an important complication of diabetes, which is the leading cause of ESRD worldwide. The aim of the study was a comparative analysis of all-cause mortality in patients with ESRD with diagnosed diabetes mellitus (DM) and no diagnosed DM. MATERIAL AND METHODS Data for the analysis were obtained from the resources of the Polish National Health Fund, and they concerned patients with end-stage renal disease from the entire population of Polish patients in the period from 1.01.2011 to 31.12.2013. In addition, the period from 1.01.2012 to 31.12.2012 was analysed for two subpopulations: diabetic and non-diabetic patients. RESULTS The all-cause mortality in patients with end-stage renal disease in Poland per 100,000 representatives of the general population was 17.7, 15.9, and 12.50 persons in 2011, 2012, and 2013, respectively. The all-cause mortality rates for patients with ESRD and diabetes in Poland in 2012 were more than 15 times higher, for both men and women, than the all-cause mortality rates for non-diabetic patients with ESRD. Mortality in the study group of diabetic men with ESRD amounted to 147.59 ±29.07/100,000 men, whereas in the study group of diabetic women with ESRD it was 105.13 ±26.77/100,000 women. Regarding non-diabetic men with ESRD and non-diabetic women with ESRD, mortality amounted to 9.58 ±6.29/100,000 and 6.87 ±2.27/100,000 men and women, respectively. CONCLUSIONS The occurrence of diabetes in patients with ESRD significantly increases the risk of death compared to patients with ESRD without diabetes.
Collapse
Affiliation(s)
| | | | | | | | - Maciej Słodki
- Department of Prenatal Cardiology in Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland
| | | | | |
Collapse
|
21
|
Pereira SC, Moreira MV, Silva BM, Oliveira PF, Alves MG. Roles of Oxidative Stress in the Male Reproductive System: Potential of Antioxidant Supplementation for Infertility Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:259-274. [PMID: 36472827 DOI: 10.1007/978-3-031-12966-7_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The decline of fertility in modern society is a serious worldwide concern, and the reasons behind it are complex and difficult to unveil. The fact that a big percentage of infertility cases remain diagnosed as idiopathic, turn the strategies to treat such conditions very limited. Nevertheless, one must agree that keeping the oxidative balance of the reproductive tissues should be one of the first lines of treatment for infertile patients. As reported, 30-80% of male infertile individuals present high levels of prooxidant species in the seminal fluid. Thus, antioxidant therapies, which consist of dietary supplementation therapy with one or more antioxidant compound, remain the first step in the treatment of male infertility. Nevertheless, the efficacy of such therapies is variable between individuals. The most common prescribed antioxidants are carnitines and vitamins C and E, but recently phytochemical quercetin has emerged as a potential compound for the treatment of oxidative stress in the male reproductive system. Although there are several animals' evidence about the great potential of quercetin for the treatment of infertility, clinical trials on this subject remain scarce.
Collapse
Affiliation(s)
- Sara C Pereira
- Department of Anatomy, UMIB - Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
- ITR - Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Mafalda V Moreira
- Department of Anatomy, UMIB - Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Branca M Silva
- Department of Medical Sciences, University of Beira Interior, Covilhã, Portugal
| | - Pedro F Oliveira
- QOPNA & LAQV, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Marco G Alves
- Department of Anatomy, UMIB - Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.
- ITR - Laboratory for Integrative and Translational Research in Population Health, University of Porto, Porto, Portugal.
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain.
| |
Collapse
|
22
|
Rovcanin B, Gopcevic K, Kekic D, Zivaljevic V, Diklic A, Tatic S, Jovanovic M, Odalovic B, Paunovic I. Redox metabolism correlates with cellular turnover and clinical phenotype of papillary thyroid carcinoma and colloid goiter. Arch Med Sci 2022; 18:1308-1317. [PMID: 36160341 PMCID: PMC9479590 DOI: 10.5114/aoms.2019.88374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/01/2019] [Indexed: 12/03/2022] Open
Abstract
INTRODUCTION Papillary thyroid carcinoma (PTC) and colloid goiter (CG) represent the most common thyroid malignant and benign diseases, respectively. Oxidative stress is considered to have an important role in the pathogenesis of both diseases, but without sufficient and comprehensive data. The aim was to evaluate the redox profile, its influence on cell survival of PTC, comparing it with CG as a control and its relation with demographic, pathological and clinical parameters. MATERIAL AND METHODS We evaluated for the first time the PTC and CG tissue profile of advanced oxidation protein products (AOPP) and total thiols as parameters of redox metabolism and deoxyribonuclease I (DNase I) and deoxyribonuclease II (DNase II) activity as biomarkers of cell turnover and apoptosis. Tissue levels of biochemical parameters were quantified in PTC and CG tissue using spectrophotometric methods. Study parameters were evaluated in light of different demographic, clinical and pathological features of PTC and CG. RESULTS Papillary thyroid carcinoma tissue is characterized by increased antioxidant activity and a normal prooxidation level. Biochemical parameters show numerous correlations with demographic and clinical characteristics of PTC and CG patients. DNase I and II activities are dependent upon the AOPP concentration in PTC tissue. The size of CG can be predicted with combined use of AOPP, DNase I and DNase II. AOPP is the most powerful predictor of PTC capsular invasion, multicentric intrathyroid dissemination and lymph node metastasis phenotype. CONCLUSIONS Evaluated parameters can be used for assessment of tumor redox and survival status and the clinical course of PTC and CG.
Collapse
Affiliation(s)
- Branislav Rovcanin
- Center for Endocrine Surgery, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Kristina Gopcevic
- Institute for Chemistry in Medicine, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dusan Kekic
- Institute for Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladan Zivaljevic
- Center for Endocrine Surgery, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Aleksandar Diklic
- Center for Endocrine Surgery, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Svetislav Tatic
- Institute for Pathology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Milan Jovanovic
- Center for Endocrine Surgery, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Bozidar Odalovic
- Center for Endocrine Surgery, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ivan Paunovic
- Center for Endocrine Surgery, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
23
|
Guo J, Li J, Wei H, Liang Z. Maackiain Protects the Kidneys of Type 2 Diabetic Rats via Modulating the Nrf2/HO-1 and TLR4/NF-κB/Caspase-3 Pathways. Drug Des Devel Ther 2021; 15:4339-4358. [PMID: 34703210 PMCID: PMC8525417 DOI: 10.2147/dddt.s326975] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/01/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Type 2 diabetes (T2D) is aglobal health burden that accounts for about 90% of all cases of diabetes. Injury to the kidneys is aserious complication of type 2 diabetes. Maackiain, apterocarpan extracted from roots of Sophora flavescens, has been traditionally used for various disease conditions. However, nothing is known about its possible potential effect on HFD/STZ-T2D-induced nephrotoxicity. METHODS In this study, T2D rat model is created by high-fat diet (HFD) for 2 weeks with injection of asingle dose of streptozotocin (35mg/kg body weight). T2D rats were orally administered with maackiain (10 and 20mg/kg body weight) for 7 weeks. RESULTS Maackiain suppressed T2D-induced alterations in metabolic parameters, lipid profile and kidney functionality markers. By administering 10 and 20mg/kg maackiain to T2D rats, it was able to reduce lipid peroxidation while improving antioxidant levels (SOD, CAT, and GSH). Furthermore, the present study demonstrated the molecular mechanisms through which maackiain attenuated T2D-induced oxidative stress (mRNA: Nrf2, Nqo-1, Ho-1, Gclc and Gpx-1; protein: NRF2, NQO-1, HO-1 and NOX-4), inflammation (mRNA: Tlr, Myd88, IκBα, Mcp-1, Tgf-β, col4, Icam1, Vcam1 and E-selectin; Protein: TLR4, MYD88, NF-κB, IκBα, MCP-1; levels: TNF-α and MCP-1) and apoptosis (mRNA: Bcl-2, Bax, Bad, Apaf-1, Caspase-9 and Caspase-3; protein: Bcl-2, Bax, Caspase-3 and Caspase-9) mediated renal injury. Additionally, significant improvement in kidney architecture was observed after treatment of diabetic rats with 10 or 20mg/kg maackiain. CONCLUSION Maackiain protects the kidney by decreasing oxidative stress, inflammation, and apoptosis to preserve normal renal function in type 2 diabetes.
Collapse
Affiliation(s)
- Jiahong Guo
- Department of Nephrology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, 453000, People’s Republic of China
| | - Junying Li
- Department of Nephrology, The Affiliated Hospital of Qingdao University Pingdu district, Pingdu City, Qingdao, Shandong, 266000, People’s Republic of China
| | - Hua Wei
- Department of Nephrology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, 453000, People’s Republic of China
| | - Zhaozhi Liang
- Department of Nephrology, Xinxiang Central Hospital, The Fourth Clinical College of Xinxiang Medical University, Xinxiang, 453000, People’s Republic of China
| |
Collapse
|
24
|
Preclinical and Clinical Antioxidant Effects of Natural Compounds against Oxidative Stress-Induced Epigenetic Instability in Tumor Cells. Antioxidants (Basel) 2021; 10:antiox10101553. [PMID: 34679688 PMCID: PMC8533336 DOI: 10.3390/antiox10101553] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/16/2021] [Accepted: 09/22/2021] [Indexed: 01/17/2023] Open
Abstract
ROS (reactive oxygen species) are produced via the noncomplete reduction in molecular oxygen in the mitochondria of higher organisms. The produced ROS are placed in various cell compartments, such as the mitochondria, cytoplasm, and endoplasmic reticulum. In general, there is an equilibrium between the synthesis of ROS and their reduction by the natural antioxidant defense system, called the redox system. Therefore, when this balance is upset, the excess ROS production can affect different macromolecules, such as proteins, lipids, nucleic acids, and sugars, which can lead to an electronic imbalance than oxidation of these macromolecules. Recently, it has also been shown that ROS produced at the cellular level can affect different signaling pathways that participate in the stimulation of transcription factors linked to cell proliferation and, consequently, to the carcinogenesis process. Indeed, ROS can activate the pathway of tyrosine kinase, MAP kinase, IKK, NF-KB, phosphoinositol 3 phosphate, and hypoxia-inducible factor (HIF). The activation of these signaling pathways directly contributes to the accelerated proliferation process and, as a result, the appearance of cancer. In addition, the use of antioxidants, especially natural ones, is now a major issue in the approach to cancer prevention. Some natural molecules, especially phytochemicals isolated from medicinal plants, have now shown interesting preclinical and clinical results.
Collapse
|
25
|
Tvrdá E, Benko F, Slanina T, du Plessis SS. The Role of Selected Natural Biomolecules in Sperm Production and Functionality. Molecules 2021; 26:5196. [PMID: 34500629 PMCID: PMC8434568 DOI: 10.3390/molecules26175196] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/25/2022] Open
Abstract
Emerging evidence from in vivo as well as in vitro studies indicates that natural biomolecules may play important roles in the prevention or management of a wide array of chronic diseases. Furthermore, the use of natural compounds in the treatment of male sub- or infertility has been proposed as a potential alternative to conventional therapeutic options. As such, we aimed to evaluate the effects of selected natural biomolecules on the sperm production, structural integrity, and functional activity. At the same time, we reviewed their possible beneficial or adverse effects on male reproductive health. Using relevant keywords, a literature search was performed to collect currently available information regarding molecular mechanisms by which selected natural biomolecules exhibit their biological effects in the context of male reproductive dysfunction. Evidence gathered from clinical trials, in vitro experiments and in vivo studies suggest that the selected natural compounds affect key targets related to sperm mitochondrial metabolism and motion behavior, oxidative stress, inflammation, DNA integrity and cell death. The majority of reports emphasize on ameliorative, stimulating and protective effects of natural biomolecules on the sperm function. Nevertheless, possible adverse and toxic behavior of natural compounds has been indicated as well, pointing out to a possible dose-dependent impact of natural biomolecules on the sperm survival and functionality. As such, further research leading to a deeper understanding of the beneficial or adverse roles of natural compounds is necessary before these can be employed for the management of male reproductive dysfunction.
Collapse
Affiliation(s)
- Eva Tvrdá
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (F.B.); (T.S.)
| | - Filip Benko
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (F.B.); (T.S.)
| | - Tomáš Slanina
- Department of Animal Physiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Tr. A. Hlinku 2, 94976 Nitra, Slovakia; (F.B.); (T.S.)
| | - Stefan S. du Plessis
- Department of Basic Sciences, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai 505055, United Arab Emirates;
| |
Collapse
|
26
|
Liu SJ, Hu SQ, Chen YC, Guo J. Uncovering the mechanism of quercetin for treating spermatogenesis impairment by a network pharmacology approach. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1961878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Si-Jia Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Su-Qin Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yu-Cai Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Jian Guo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
27
|
Sudirman S, Su CY, Tsou D, Lee MC, Kong ZL. Hippocampus kuda protein hydrolysate improves male reproductive dysfunction in diabetic rats. Biomed Pharmacother 2021; 140:111760. [PMID: 34052566 DOI: 10.1016/j.biopha.2021.111760] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/05/2021] [Accepted: 05/20/2021] [Indexed: 12/19/2022] Open
Abstract
The global prevalence of diabetes mellitus is rapidly increasing. This disease is associated with many complications including male reproductive dysfunctions and infertility. Seahorse ( Hippocampus kuda) is a marine teleost fish well known for its beneficial effects on the reproductive system in traditional Chinese medicine books. Recently, several studies have been shown that the enzymatic hydrolysate of seahorse has multiple pharmacological activities. This study aimed to investigate the seahorse peptide hydrolysate (SH) ameliorative effects on the diabetic-induced male reproductive dysfunction in rat models. The in vivo studies were carried out with three different doses of SH (4, 8, and 20 mg/kg) and the diabetes condition was induced by administrating with streptozotocin (35 mg/kg) and fed a 40% high-fat diet. Seahorse hydrolysate (20 mg/kg) inhibited lipid peroxidation, increased antioxidant enzyme activity, and restored seminiferous tubules morphology in testis. Moreover, it improved reproductive dysfunction by increasing the level of testosterone, follicle-stimulating hormone, luteinizing hormone, sperm count, and motility. According to these results, we suggested that SH exhibited amelioration effects on the reproductive dysfunction.
Collapse
Affiliation(s)
- Sabri Sudirman
- Fisheries Product Technology, Faculty of Agriculture, Universitas Sriwijaya, Indralaya 30862, Indonesia.
| | - Chieh-Yu Su
- Department of Food Science; National Taiwan Ocean University, Keelung City 20224, Taiwan.
| | - David Tsou
- Department of Food Science; National Taiwan Ocean University, Keelung City 20224, Taiwan.
| | - Meng-Chou Lee
- Department of Aquaculture, National Taiwan Ocean University, Keelung City 20224, Taiwan.
| | - Zwe-Ling Kong
- Department of Food Science; National Taiwan Ocean University, Keelung City 20224, Taiwan.
| |
Collapse
|
28
|
Myristic acid defends against testicular oxidative stress, inflammation, apoptosis: Restoration of spermatogenesis, steroidogenesis in diabetic rats. Life Sci 2021; 278:119605. [PMID: 33989665 DOI: 10.1016/j.lfs.2021.119605] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 01/30/2023]
Abstract
Diabetes mellitus (DM) may lead to testicular-related infertility while Myristic acid (MA) is beneficial to lower hyperglycaemia. Thus, we hypothesized that MA could protect testes against hyperglycaemia-induced damage in DM. DM was induced in adult male rats by high-fat diet consumption for 12 weeks, accompanied by a single dose streptozotocin injection. Following DM confirmation, the rats were fed orally with 10 and 20 mg/kg body weight MA for 28 consecutive days. After completion of treatment, rats were sacrificed and blood, cauda epididymis and testes were harvested. Serum was separated, epididymal sperm was collected for analysis. Molecular studies of the testes were performed by qPCR, Western blotting and immunostaining. MA was found to protect the testes against oxidative stress via preventing the upregulation of RAGE, Keap1, and the downregulation of Nrf2, NQO1, HO1, SOD, CAT and GPx. MA also prevented increase in testicular inflammation and apoptosis, as indicated by low inflammatory (NF-κB p65, IKKβ, TNF-α, IL-1β and iNOS) and apoptosis (Bax and caspase-9), but high anti-apoptosis (Bcl-2) markers' levels. Besides, MA prevented the downregulation of testicular steroidogenic markers (3βHSD, 17βHSD, StAR, ARA-54 and CYP11A1). Sperm analysis revealed near normal sperm count, motility, viability, lower abnormal sperm morphology in diabetic rats received MA. MA also prevented the loss of germ cells via preventing the decreased in cell proliferative marker (PCNA) while maintaining near normal epithelial height, tubular and Leydig cell diameters in the testes in DM. MA protects the testes against damage in DM, thus maintaining spermatogenesis and steroidogenesis, consequently preserving male fertility in diabetes.
Collapse
|
29
|
Mousavi SN, Hosseini E, Seyed Dorraji MS, Sheikh Mohammadi S, Pourmansouri Z, Rasoulifard MH, Doosti M, Chiti H. Synthesis of a green bigel using cottonseed oil/cannabis oil/alginate/ferula gum for quercetin release: Synergistic effects for treating infertility in rats. Int J Biol Macromol 2021; 177:157-165. [PMID: 33609576 DOI: 10.1016/j.ijbiomac.2021.02.121] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/23/2021] [Accepted: 02/15/2021] [Indexed: 11/24/2022]
Abstract
Although therapeutic effect of quercetin (Quer) was reported on non-alcoholic fatty liver disease (NAFLD), destructive effects have been shown on male fertility due to its pro-oxidative properties. On the other hand, NAFLD impairs germ cells to produce sperm and leads to male infertility. Herein, a biocompatible and green bigel was designed for Quer delivery to prevent infertility induced by NAFLD as the increasing complications. Bigels were prepared using cottonseed oil/cannabis oil/alginate/ferula gum and optimized by the mixture design method. NAFLD was induced by 58% of dietary calorie as lard and 42 g/l fructose for 16 weeks in Sprague-Dawley rats. So on animals received 2 mg/kg Quer loaded on bigels, free bigels, or free Quer for 45 days as daily gavage. Semen was analyzed, followed by the assessment of DNA integrity. Count, motility, and normal morphology reached the healthy control group at the bigel-Quer-treated one. Moreover, all of these parameters were significantly higher in the bigel-Quer group than the Quer and bigel, alone. The percent of sperms with head and tail abnormality decreased considerably in the bigel-Quer group compared with the Quer, free bigel, and NAFLD groups. Serum testosterone levels significantly increased and reached the healthy control group in the bigel-Quer group. DNA fragmentation of sperm significantly decreased in the bigel-Quer group (p < 0.05). The bigel showed synergistic effects with Quer for treating infertility in rats with NAFLD.
Collapse
Affiliation(s)
- Seyedeh Neda Mousavi
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Nutrition, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Elham Hosseini
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran; Department of Obstetrics and Gynecology, IVF Clinic, Mousavi Hospital, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mir Saeed Seyed Dorraji
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran.
| | - Shima Sheikh Mohammadi
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Zeinab Pourmansouri
- Department of Pharmacology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohammad Hossein Rasoulifard
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Masumeh Doosti
- Applied Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan, Iran
| | - Hossein Chiti
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
30
|
Ferramosca A, Lorenzetti S, Di Giacomo M, Lunetti P, Murrieri F, Capobianco L, Dolce V, Coppola L, Zara V. Modulation of Human Sperm Mitochondrial Respiration Efficiency by Plant Polyphenols. Antioxidants (Basel) 2021; 10:antiox10020217. [PMID: 33540578 PMCID: PMC7912874 DOI: 10.3390/antiox10020217] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
Plant bioactives, such as polyphenols, can differentially affect (positively or negatively) sperm quality, depending on their concentration. These molecules have been proposed as natural scavengers of reactive oxygen species (ROS) for male infertility treatment. However, few data are available about their effects on the molecular mechanisms related to sperm quality and, in particular, to sperm mitochondrial function. We investigated the effects of quercetin, naringenin, genistein, apigenin, luteolin, and resveratrol at the concentration of 0.1-1000 nM on mitochondrial respiration efficiency. Upon chemical exposure, spermatozoa were swollen in a hypotonic solution and used for polarographic assays of mitochondrial respiration. All tested compounds, except for apigenin, caused a significant increase in the mitochondrial respiration efficiency at the concentration of 0.1 nM, and a significant decrease starting from concentrations of 10 nM. The analysis of oxygen consumption rate in the active and in the resting state of mitochondrial respiration suggested different mechanisms by which the tested compounds modulate mitochondrial function. Therefore, by virtue of their ability to stimulate the respiration active state, quercetin, genistein, and luteolin were found to improve mitochondrial function in asthenozoospermic samples. Our results are relevant to the debate on the promises and perils of natural antioxidants in nutraceutical supplementation.
Collapse
Affiliation(s)
- Alessandra Ferramosca
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100 Lecce, Italy; (M.D.G.); (P.L.); (L.C.); (V.Z.)
- Correspondence: ; Tel.: +39-0832-298705; Fax: +39-0832-298626
| | - Stefano Lorenzetti
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, I-00161 Rome, Italy;
| | - Mariangela Di Giacomo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100 Lecce, Italy; (M.D.G.); (P.L.); (L.C.); (V.Z.)
| | - Paola Lunetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100 Lecce, Italy; (M.D.G.); (P.L.); (L.C.); (V.Z.)
| | - Francesco Murrieri
- Biological Medical Center “Tecnomed”, I-73048 Nardò (LE), Italy; (F.M.); (L.C.)
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100 Lecce, Italy; (M.D.G.); (P.L.); (L.C.); (V.Z.)
| | - Vincenza Dolce
- Department of Pharmacy, Health, and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (Cosenza), Italy;
| | - Lamberto Coppola
- Biological Medical Center “Tecnomed”, I-73048 Nardò (LE), Italy; (F.M.); (L.C.)
| | - Vincenzo Zara
- Department of Biological and Environmental Sciences and Technologies, University of Salento, I-73100 Lecce, Italy; (M.D.G.); (P.L.); (L.C.); (V.Z.)
| |
Collapse
|
31
|
Zeinvand-Lorestani M, Karimi S, Khorsandi L. Quercetin ameliorates cytotoxic effects of zinc oxide nanoparticles on sertoli cells by enhancing autophagy and suppressing oxidative stress. Andrologia 2021; 53:e13988. [PMID: 33476054 DOI: 10.1111/and.13988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/04/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022] Open
Abstract
Previous studies have demonstrated the toxic impacts of zinc oxide nanoparticles (ZO-NPs) on male reproductive cells. The effect of quercetin (QCT) on ZO-NPs-induced mouse Sertoli cell (TM4 cell line) toxicity and its underlying mechanisms were investigated in this study. The TM4 cells were exposed to ZO-NPs or QCT in different groups for 24 hr. The TM4 cells pre-treated with 3MA (3-Methyladenine, an autophagy inhibitor) to evaluate the autophagy role of QCT and ZO-NPs in the TM4 cells. ZO-NPs significantly reduced the viability percentage of the TM4 cells. The apoptosis percentage and Bax/Bcl-2 ratio of the ZO-NPs group were significantly increased, while the expression of autophagy-related genes was considerably downregulated. ZO-NPs also induced oxidative stress in the TM4 cells through increasing malondialdehyde contents and reactive oxygen species levels (ROS) and reducing antioxidant factors including superoxide dismutase, catalase, glutathione and glutathione peroxidase. In QCT + ZO-NPs group, these events were considerably reversed. 3MA could significantly decrease the cell viability of TM4 cells exposed to the QCT and ZO-NPs in comparison with the untreated 3MA groups. According to these results, the protective effects of QCT on ZO-NPs-exposed TM4 cells are related to inducing autophagy, prevention apoptosis and suppressing oxidative stress.
Collapse
Affiliation(s)
- Marzieh Zeinvand-Lorestani
- Faculty of Pharmacy, Department of Toxicology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Faculty of Medicine, Department of Anatomical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
32
|
Chen WQ, Ding CF, Yu J, Wang CY, Wan LY, Hu HM, Ma JX. Wuzi Yanzong Pill-Based on Network Pharmacology and In Vivo Evidence-Protects Against Spermatogenesis Disorder via the Regulation of the Apoptosis Pathway. Front Pharmacol 2020; 11:592827. [PMID: 33390971 PMCID: PMC7775606 DOI: 10.3389/fphar.2020.592827] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/05/2020] [Indexed: 01/31/2023] Open
Abstract
The crisis of male infertility is an issue of human reproductive health worldwide. The Wuzi Yanzong pill (WZYZP) is a traditional Chinese medicine prescription that shows efficacy in kidney reinforcement and essence benefit to ameliorate male reproductive dysfunctions. However, the pharmacological mechanisms of the WZYZP on male infertility have not been investigated and clarified clearly. This study was designed to investigate the effects of the WZYZP on spermatogenesis disorder and explore its underlying pharmacological mechanisms. First, based on a network pharmacology study, 39 bioactive compounds and 40 targets of the WZYZP associated with spermatogenesis disorder were obtained, forming a tight compound-target network. Molecular docking tests showed tight docking of these compounds with predicted targeted proteins. The protein-protein interaction (PPI) network identified TP53, TNF, AKT1, Bcl-XL, Bcl-2, and IκBA as hub targets. The Kyoto Encyclopedia of Genes and Genomes pathway network and pathway-target-compound network revealed that the apoptosis pathway was enriched by multiple signaling pathways and multiple targets, including the hub targets. Subsequently, the chemical characterization of WZYZP was analyzed using liquid chromatography to quadrupole/time-of-flight mass spectrometry, and 40 compounds in positive ion mode and 41 compounds in negative ion mode in the WZYZP were identified. Furthermore, based on the prediction of a network pharmacology study, a rat model of spermatogenesis disorder was established to evaluate the curative role and underlying mechanisms of the WZYZP. The results showed that WZYZP treatment improved rat sperm quality and attenuated serum hormone levels, reversed histopathological damage of the testis, reduced cell apoptosis in testis tissues, and ameliorated the expression of the predicted hub targets (TP53, TNF-α, AKT1, NFκB, and IκBA) and the apoptosis related proteins (Bcl-XL, Bcl-2, Bax, Caspase 3, and Caspase 9). These results indicated that the WZYZP has a protective effect on spermatogenesis disorder, suggesting that it could be an alternative choice for male infertility therapy.
Collapse
Affiliation(s)
- Wang-qiang Chen
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, China
| | - Cai-fei Ding
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, China
| | - Jia Yu
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, China
| | - Chen-ye Wang
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, China
| | - Ling-yi Wan
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, China
| | - Hui-min Hu
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, China
| | - Jian-xiong Ma
- Department of Reproductive Medicine, Zhejiang Provincial Integrated Chinese and Western Medicine Hospital, Hangzhou, China,The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China,Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China,*Correspondence: Jian-xiong Ma,
| |
Collapse
|
33
|
Dolati P, Khodabandeh Z, Zamiri MJ, Jamhiri I, Mehrabani D. The Effect of Lead Acetate and Quercetin on the Tight and Gap Junctions in the Mouse Testis. Biol Trace Elem Res 2020; 198:535-543. [PMID: 32232643 DOI: 10.1007/s12011-020-02079-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/11/2020] [Indexed: 12/25/2022]
Abstract
Environmental pollutant effects on fertility sometime are irretrievable. The aim of this study was to investigate the effect of lead acetate and quercetin on tight (claudin 11 and occludin) and gap junctional (connexin 43) proteins and the integrity of the blood-testis barrier status. Experimental groups, including the lead acetate (Pb), quercetin (QE), lead acetate with quercetin (Pb + QE), and control mice, were treated at least one spermatogenic cycle. Gene expression of claudin 11 and occludin decreased in Pb + QE, Pb, and QE compared with the control group. Connexin 43 (Cx43) expression in the control and Pb groups was lower than in Pb + QE and QE. The immunohistochemical data were generally in line with these findings. In conclusion, the results showed that Pb exposure led to disorders in cellular interactions that affect testicular function; however, simultaneous treatment with quercetin did not alleviate these effects. Graphical Abstract.
Collapse
Affiliation(s)
- Parisa Dolati
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Zahra Khodabandeh
- Stem Cells Technology Research Center, Shiraz University of Medical Science, Shiraz, Iran.
| | - Mohammad Javad Zamiri
- Department of Animal Science, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Iman Jamhiri
- Stem Cells Technology Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Davood Mehrabani
- Stem Cells Technology Research Center, Shiraz University of Medical Science, Shiraz, Iran
- Li Ka Shing Center for Health Research and Innovation, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
34
|
Zhao Q, Dai H, Wang J, Yan F, Jang G, Ma J, Wang B, Li H. A Network Pharmacology Approach to Reveal the Underlying Mechanisms of Zuogui Yin in the Treatment of Male Infertility. Comb Chem High Throughput Screen 2020; 24:803-813. [PMID: 32838712 DOI: 10.2174/1386207323999200824112611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/23/2020] [Accepted: 07/21/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIM Traditional Chinese medicine (TCM), as a complementary and alternative therapy, has played increasingly important roles in clinical treatment and disease prevention. Zuogui Yin (ZGY) is one of the well-known TCM prescriptions used for the treatment of male infertility. To fully reveal the potential mechanisms underlying the therapeutic effects of ZGY on male infertility, a network pharmacology approach was conducted at the molecular level. METHODS Network pharmacology approach was used in this study, which mainly included active compound screening, target prediction, gene enrichment analysis, and network analysis. RESULTS The network analysis successfully identified 148 potential active ingredients of ZGY and 155 predicted targets that were associated with male infertility. ZGY might play a role in the treatment of male infertility by regulating ten hub targets (VEGFA, CASP3, TNF, AKT1, EGF, EGFR, IL-6, MAPK1, TP53, and PTGS2) and six pathways (TNF signaling pathway, PI3K-Akt signaling pathway, FoxO signaling pathway, Toll-like receptor signaling pathway, VEGF signaling pathway, and MAPK signaling pathway). CONCLUSION This study explored the pharmacological activity and molecular mechanisms of ZGY against male infertility from a holistic perspective. The underlying molecular mechanisms were closely related to the intervention of oxidative stress and apoptosis with CASP3, TP53, AKT1, and MAPK1 being possible targets.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Andrology, Dongzhimen Hospital, Beijing 100700, Beijing, China
| | - Hengheng Dai
- Department of Andrology, Dongzhimen Hospital, Beijing 100700, Beijing, China
| | - Jisheng Wang
- Department of Andrology, Dongzhimen Hospital, Beijing 100700, Beijing, China
| | - Fei Yan
- Beijing University of Chinese Medicine, Beijing 100029, Beijing, China
| | - Guejin Jang
- Department of Andrology, Dongzhimen Hospital, Beijing 100700, Beijing, China
| | - Jianxiong Ma
- Department of Andrology, Hang Zhou Red Cross Hospital, Hangzhou 310003, Zhejiang, China
| | - Bin Wang
- Department of Andrology, Dongzhimen Hospital, Beijing 100700, Beijing, China
| | - Haisong Li
- Department of Andrology, Dongzhimen Hospital, Beijing 100700, Beijing, China
| |
Collapse
|
35
|
Maiese K. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:1-35. [PMID: 32854851 DOI: 10.1016/bs.irn.2020.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-communicable diseases (NCDs) that involve neurodegenerative disorders and metabolic disease impact over 400 million individuals globally. Interestingly, metabolic disorders, such as diabetes mellitus, are significant risk factors for the development of neurodegenerative diseases. Given that current therapies for these NCDs address symptomatic care, new avenues of discovery are required to offer treatments that affect disease progression. Innovative strategies that fill this void involve the mechanistic target of rapamycin (mTOR) and its associated pathways of mTOR complex 1 (mTORC1), mTOR complex 2 (mTORC2), AMP activated protein kinase (AMPK), trophic factors that include erythropoietin (EPO), and the programmed cell death pathways of autophagy and apoptosis. These pathways are intriguing in their potential to provide effective care for metabolic and neurodegenerative disorders. Yet, future work is necessary to fully comprehend the entire breadth of the mTOR pathways that can effectively and safely translate treatments to clinical medicine without the development of unexpected clinical disabilities.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, NY, United States.
| |
Collapse
|
36
|
Yu W, Xu Z, Gao Q, Xu Y, Wang B, Dai Y. Protective role of wogonin against cadmium induced testicular toxicity: Involvement of antioxidant, anti-inflammatory and anti-apoptotic pathways. Life Sci 2020; 258:118192. [PMID: 32781062 DOI: 10.1016/j.lfs.2020.118192] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/26/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022]
Abstract
The present study was conducted to identify possible health - promoting effects of wogonin (Wog) on testicular dysfunction in rats caused by cadmium. Pre-treatment of cadmium chloride (Cd: 5 mg/kg b.wt.) administered rats with wogonin (10 mg/kg b.wt) resulted in significant improvement in Cd-induced decrease in body and organ (testes and epididymides) weights. Wogonin treatment significantly improved Cd-induced reduction in sperm quality and quantity, steroidogenic gene (SFI, StAR, CYP11A1, 3β-HSD, CYP17A1 and 17β-HSD) and protein (SF1, StAR and CYP17A1) expressions and serum testosterone levels. Wogonin treatment provided significant protection to Cd-induced aggression in testicular oxidative (elevated levels of MDA) and anti-oxidative (diminished activities of SOD, CAT and GPx) status. Wog significantly up-regulated mRNA levels of Nrf2, NQO1 and HO-1 and down-regulation of Keap1 in cadmium treated testes. Wogonin administration significantly suppressed Cd-stimulated increase in inflammatory reactions (increase in NF-κB p65 DNA, p-IKKβ, TNF-α levels and decrease in IL-10 levels). Wogonin prevented apoptotic damage by enhanced protein distribution of caspase-9, caspase-3, and Bax due to Cd exposure. Furthermore, Wogonin presented significant protection to histo-morphometric changes resulted after Cd administration. Taken together, the findings of this study provided clear evidence of the therapeutic potential of Cd-induced testicular toxicity at least partly due to its antioxidant, anti-inflammatory and anti-apoptotic properties.
Collapse
Affiliation(s)
- Wen Yu
- Andrology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing 210009, Jiangsu, China
| | - Zhipeng Xu
- Andrology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing 210009, Jiangsu, China
| | - Qingqiang Gao
- Andrology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing 210009, Jiangsu, China
| | - Yang Xu
- Andrology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing 210009, Jiangsu, China
| | - Bing Wang
- Andrology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing 210009, Jiangsu, China
| | - Yutian Dai
- Andrology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing 210009, Jiangsu, China.
| |
Collapse
|
37
|
Leyva-Jiménez FJ, Manca ML, Manconi M, Caddeo C, Vázquez JA, Carbone C, Lozano-Sánchez J, Arráez-Román D, Segura-Carretero A. Development of advanced phospholipid vesicles loaded with Lippia citriodora pressurized liquid extract for the treatment of gastrointestinal disorders. Food Chem 2020; 337:127746. [PMID: 32795856 DOI: 10.1016/j.foodchem.2020.127746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023]
Abstract
Pressurized liquid extraction was performed to obtain a phytocomplex from Lippia citriodora leaves rich in bioactive compounds. The extract was loaded in phospholipid vesicles to improve its protective effect against oxidative stress in the intestine. The phytochemicals were identified and quantified by HPLC-ESI-TOF-MS. The extract was incorporated in liposomes and penetration enhancer-containing vesicles (PEVs) modified with glucidex, a dextrin, and a biopolymer obtained from Chimaera monstrosa. The PEVs were smaller than liposomes (~150 vs 370 nm) and more stable, according to accelerated aging tests. The integrity of the vesicles in acidic or neutral pH and high ionic strength or in milk whey was assessed. The cytocompatibility of the formulations and their ability to protect Caco-2 cells against oxidative stress were confirmed in vitro and compared with two commercial extracts of L. citriodora. The results confirmed the suitability of formulations to be used in functional foods to protect the intestine from oxidative stress.
Collapse
Affiliation(s)
- Francisco-Javier Leyva-Jiménez
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento 37, E-18100 Granada, Spain
| | - Maria Letizia Manca
- Department Scienze della Vita e dell'Ambiente, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy
| | - Maria Manconi
- Department Scienze della Vita e dell'Ambiente, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy
| | - Carla Caddeo
- Department Scienze della Vita e dell'Ambiente, University of Cagliari, via Ospedale 72, 09124 Cagliari, Italy
| | - José Antonio Vázquez
- Group of Recycling and Valorization of Waste Materials (REVAL), Marine Research Institute (IIM-CSIC), C/Eduardo Cabello, 6, CP36208 Vigo, Spain
| | - Claudia Carbone
- Department of Drug Sciences, University of Catania, viale A. Doria 6, 95125 Catania, Italy
| | - Jesús Lozano-Sánchez
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento 37, E-18100 Granada, Spain; Department of Food Science and Nutrition, University of Granada, Campus of Cartuja, 18071 Granada, Spain.
| | - David Arráez-Román
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento 37, E-18100 Granada, Spain; Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain
| | - Antonio Segura-Carretero
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento 37, E-18100 Granada, Spain; Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain
| |
Collapse
|
38
|
Winn E, Whitaker BD. Quercetin supplementation to the thawing and incubation media of boar sperm improves post-thaw sperm characteristics and the in vitro production of pig embryos. Reprod Biol 2020; 20:315-320. [PMID: 32586751 DOI: 10.1016/j.repbio.2020.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/08/2020] [Accepted: 06/13/2020] [Indexed: 12/11/2022]
Abstract
Elevated levels of reactive oxygen species can cause oxidative stress, which could lead to membrane damage, decreased fertility, and spermatozoan morphological deformities. Antioxidants can be supplemented to reduce the impacts of oxidative stress. The objective of this study was to determine the effects of supplementing quercetin (0.25, 0.50, 0.75 mM) during the thawing and incubation of frozen-thawed boar semen on spermatozoan characteristics, IVF kinetics (n = 400) and subsequent embryonic development (n = 1340). Spermatozoa were evaluated for motility, viability, and membrane lipid peroxidation levels at 0, 2, 4, 6, 8, and 10 h after thawing. Embryos were evaluated for IVF kinetics 12 h after IVF (penetration, polyspermy, male pronucleus formation, IVF efficiency) and cleavage and blastocyst formation at 48 h and 144 h after IVF, respectively. Spermatozoa supplemented with 0.25 mM quercetin had significantly higher (P < 0.05) motility (51.67±8.50 %) and percent of viable cells (61.21 ± 2.44 %) compared to all other treatments at 10 h after thawing, in addition to having significantly (P < 0.05) lower levels of hydroperoxide (3.38 ± 0.88 μM/107cells). There were no differences in penetration rates and male pronucleus formation between treatment groups. Supplementation of quercetin significantly decreased (P < 0.05) polyspermy and significantly increased (P < 0.05) the percentage of embryos reaching blastocyst stage of development by 144 h after IVF compared to no supplementation. Results indicated that supplementing frozen-thawed boar semen with 0.25 mM quercetin improves sperm characteristics up to 10 h after thawing and decreases polyspermy while improving early embryonic development in pigs.
Collapse
Affiliation(s)
- Emily Winn
- Department of Animal and Pre-veterinary Studies, University of Findlay, Findlay OH, 45840, USA
| | - Brian Daniel Whitaker
- Department of Animal and Pre-veterinary Studies, University of Findlay, Findlay OH, 45840, USA.
| |
Collapse
|
39
|
Abstract
Metabolic disorders, such as diabetes mellitus (DM), are increasingly becoming significant risk factors for the health of the global population and consume substantial portions of the gross domestic product of all nations. Although conventional therapies that include early diagnosis, nutritional modification of diet, and pharmacological treatments may limit disease progression, tight serum glucose control cannot prevent the onset of future disease complications. With these concerns, novel strategies for the treatment of metabolic disorders that involve the vitamin nicotinamide, the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and the cellular pathways of autophagy and apoptosis offer exceptional promise to provide new avenues of treatment. Oversight of these pathways can promote cellular energy homeostasis, maintain mitochondrial function, improve glucose utilization, and preserve pancreatic beta-cell function. Yet, the interplay among mTOR, AMPK, and autophagy pathways can be complex and affect desired clinical outcomes, necessitating further investigations to provide efficacious treatment strategies for metabolic dysfunction and DM.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022,
| |
Collapse
|
40
|
Maiese K. Nicotinamide: Oversight of Metabolic Dysfunction Through SIRT1, mTOR, and Clock Genes. Curr Neurovasc Res 2020; 17:765-783. [PMID: 33183203 PMCID: PMC7914159 DOI: 10.2174/1567202617999201111195232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 12/13/2022]
Abstract
Metabolic disorders that include diabetes mellitus present significant challenges for maintaining the welfare of the global population. Metabolic diseases impact all systems of the body and despite current therapies that offer some protection through tight serum glucose control, ultimately such treatments cannot block the progression of disability and death realized with metabolic disorders. As a result, novel therapeutic avenues are critical for further development to address these concerns. An innovative strategy involves the vitamin nicotinamide and the pathways associated with the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), the mechanistic target of rapamycin (mTOR), mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP activated protein kinase (AMPK), and clock genes. Nicotinamide maintains an intimate relationship with these pathways to oversee metabolic disease and improve glucose utilization, limit mitochondrial dysfunction, block oxidative stress, potentially function as antiviral therapy, and foster cellular survival through mechanisms involving autophagy. However, the pathways of nicotinamide, SIRT1, mTOR, AMPK, and clock genes are complex and involve feedback pathways as well as trophic factors such as erythropoietin that require a careful balance to ensure metabolic homeostasis. Future work is warranted to gain additional insight into these vital pathways that can oversee both normal metabolic physiology and metabolic disease.
Collapse
Affiliation(s)
- Kenneth Maiese
- Cellular and Molecular Signaling, New York, New York 10022
| |
Collapse
|
41
|
Leyva-Jiménez FJ, Lozano-Sánchez J, Cádiz-Gurrea MDLL, Arráez-Román D, Segura-Carretero A. Functional Ingredients based on Nutritional Phenolics. A Case Study against Inflammation: Lippia Genus. Nutrients 2019; 11:E1646. [PMID: 31323877 PMCID: PMC6682913 DOI: 10.3390/nu11071646] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/11/2022] Open
Abstract
Epidemiological studies have reported convincing evidence that natural dietary compounds may modify inflammation, it being an important event described in the pathophysiology of age-related infirmity. Among different dietary components, nutritional phenolics have demonstrated links to a lower risk of inflammation in the most common degenerative and chronic diseases. In this way, the healthy potential of phenolics against inflammation and the emergence of new functional ingredients have caused an enhancement of nutraceutical and functional food formulation. The present review focuses on: (a) nutritional phenolics and their effects on inflammation and (b) functional ingredients based on phenolic compounds with anti-inflammatory properties. Furthermore, the emerging interest in health-promoting products by consumers has caused an increase in the demand for functional products and nutraceuticals. Additionally, this review includes a case study of the Lippia genus, which has shown anti-inflammatory effects claiming to be a natural alternative for the management of this physiological disorder. This report is a practical tool for healthcare providers.
Collapse
Affiliation(s)
- Francisco Javier Leyva-Jiménez
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18100 Granada, Spain
| | - Jesús Lozano-Sánchez
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18100 Granada, Spain.
- Department of Food Science and Nutrition, University of Granada, Campus of Cartuja, 18071 Granada, Spain.
| | - María de la Luz Cádiz-Gurrea
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18100 Granada, Spain.
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain.
| | - David Arráez-Román
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18100 Granada, Spain
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain
| | - Antonio Segura-Carretero
- Functional Food Research and Development Center, Health Science Technological Park, Avenida del Conocimiento s/n, E-18100 Granada, Spain
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Fuentenueva s/n, E-18071 Granada, Spain
| |
Collapse
|