1
|
Kessler R, McManus M, Schmidt S, Teixeira SR, Reynoso Santos FJ, Agarwal S. A Novel MACF1 Gene Mutation: Expanding the Fetal and Neonatal Phenotype. Pediatr Neurol 2025; 164:78-80. [PMID: 39874661 DOI: 10.1016/j.pediatrneurol.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/21/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025]
Affiliation(s)
- Riley Kessler
- Division of Neurology & Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Division of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Morgan McManus
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Sarah Schmidt
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Sara Reis Teixeira
- Division of Neuroradiology, Department of Radiology, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Sonika Agarwal
- Division of Neurology & Pediatrics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Division of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Ferreira G, Cardozo R, Chavarria L, Santander A, Sobrevia L, Chang W, Gundersen G, Nicolson GL. The LINC complex in blood vessels: from physiology to pathological implications in arterioles. J Physiol 2025. [PMID: 39898417 DOI: 10.1113/jp285906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
The LINC (linker of nucleoskeleton and cytoskeleton) complex is a critical component of the cellular architecture that bridges the nucleoskeleton and cytoskeleton and mediates mechanotransduction to and from the nucleus. Though it plays important roles in all blood vessels, it is in arterioles that this complex plays a pivotal role in maintaining endothelial cell integrity, regulating vascular tone, forming new microvessels and modulating responses to mechanical and biochemical stimuli. It is also important in vascular smooth muscle cells and fibroblasts, where it possibly plays a role in the contractile to secretory phenotypic transformation during atherosclerosis and vascular ageing, and in fibroblasts' migration and inflammatory responses in the adventitia. Physiologically, the LINC complex contributes to the stability of arteriolar structure, adaptations to changes in blood flow and injury repair mechanisms. Pathologically, dysregulation or mutations in LINC complex components can lead to compromised endothelial function, vascular remodelling and exacerbation of cardiovascular diseases such as atherosclerosis (arteriolosclerosis). This review summarizes our current understanding of the roles of the LINC complex in cells from arterioles, highlighting its most important physiological functions, exploring its implications for vascular pathology and emphasizing some of its functional characteristics in endothelial cells. By elucidating the LINC complex's role in health and disease, we aim to provide insights that could improve future therapeutic strategies targeting LINC complex-related vascular disorders.
Collapse
Affiliation(s)
- Gonzalo Ferreira
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Romina Cardozo
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Luisina Chavarria
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Axel Santander
- Department of Biophysics, Faculty of Medicine, Universidad de La República, Montevideo, Uruguay
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Pathology and Medical Biology, Division of Pathology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, The Netherlands
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
- Medical School (Faculty of Medicine), Sao Paulo State University (UNESP), Sao Paulo, Brazil
- Faculty of Medicine and Biomedical Sciences, University of Queensland Centre for Clinical Research (UQCCR), University of Queensland, QLD, Herston, Queensland, Australia
- Tecnologico de Monterrey, Eutra, The Institute for Obesity Research (IOR), School of Medicine and Health Sciences, Monterrey, Nuevo León, Mexico
| | - Wakam Chang
- Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Gregg Gundersen
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Garth L Nicolson
- Department of Molecular Pathology, Institute for Molecular Medicine, Huntington Beach, CA, USA
| |
Collapse
|
3
|
Bonner K, Quick QA. Microtubule actin crosslinking factor 1, a brain tumor oncoprotein (Review). Mol Clin Oncol 2025; 22:15. [PMID: 39720461 PMCID: PMC11667447 DOI: 10.3892/mco.2024.2810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/22/2024] [Indexed: 12/26/2024] Open
Abstract
Microtubule actin crosslinking factor 1 (MACF1), is a cytoskeletal protein that functions as a crosslinker between microtubules and actin filaments, with early studies expanding the role of this spectraplakin protein to the central nervous system and Wnt signaling. In the early 2000's, genetic alterations of MACF1 were identified in several cancers suggesting that this cytoskeletal crosslinker was involved in tumor development and progression, while preclinical studies provided evidence that MACF1 is a potential diagnostic and prognostic biomarker and therapeutic target in glioblastomas, a central nervous system cancer derived from astrocytes and neural progenitor stem cells. Furthermore, investigations in glioblastomas demonstrated that genetic inhibitory targeting of this spectraplakin protein alone and in combination with DNA damaging agents had synergistic antitumorigenic effects. The established role of MACF1 in Wnt signaling, a known mechanistic driver of central nervous system development and pro-tumorigenic cell behavior in glioblastomas, provide a premise for addressing the potential of this spectraplakin protein as a novel oncoprotein in cancers with origins in the nervous system. The present review provides a summary of the role and function of MACF1 in the central nervous system, Wnt signaling and cancer development, specifically as an oncoprotein that underlie the transformation and oncogenic properties of glioblastomas.
Collapse
Affiliation(s)
- Kala Bonner
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37066, USA
| | - Quincy A. Quick
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37066, USA
| |
Collapse
|
4
|
Hu L, Chen W, Qian A, Li YP. Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res 2024; 12:39. [PMID: 38987555 PMCID: PMC11237130 DOI: 10.1038/s41413-024-00342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/27/2024] [Accepted: 05/12/2024] [Indexed: 07/12/2024] Open
Abstract
Wnts are secreted, lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways, which control various biological processes throughout embryonic development and adult life. Aberrant Wnt signaling pathway underlies a wide range of human disease pathogeneses. In this review, we provide an update of Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and diseases. The Wnt proteins, receptors, activators, inhibitors, and the crosstalk of Wnt signaling pathways with other signaling pathways are summarized and discussed. We mainly review Wnt signaling functions in bone formation, homeostasis, and related diseases, and summarize mouse models carrying genetic modifications of Wnt signaling components. Moreover, the therapeutic strategies for treating bone diseases by targeting Wnt signaling, including the extracellular molecules, cytosol components, and nuclear components of Wnt signaling are reviewed. In summary, this paper reviews our current understanding of the mechanisms by which Wnt signaling regulates bone formation, homeostasis, and the efforts targeting Wnt signaling for treating bone diseases. Finally, the paper evaluates the important questions in Wnt signaling to be further explored based on the progress of new biological analytical technologies.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
5
|
Wong SK. Glycogen Synthase Kinase-3 Beta (GSK3β) as a Potential Drug Target in Regulating Osteoclastogenesis: An Updated Review on Current Evidence. Biomolecules 2024; 14:502. [PMID: 38672518 PMCID: PMC11047881 DOI: 10.3390/biom14040502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Glycogen synthase kinase 3-beta (GSK3β) is a highly conserved protein kinase originally involved in glucose metabolism, insulin activity, and energy homeostasis. Recent scientific evidence demonstrated the significant role of GSK3β in regulating bone remodelling through involvement in multiple signalling networks. Specifically, the inhibition of GSK3β enhances the conversion of osteoclast progenitors into mature osteoclasts. GSK3β is recognised as a pivotal regulator for the receptor activator of nuclear factor-kappa B (RANK)/receptor activator of nuclear factor-kappa B ligand (RANKL)/osteoprotegerin (OPG), phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT), nuclear factor-kappa B (NF-κB), nuclear factor-erythroid 2-related factor 2 (NRF2)/Kelch-like ECH-associated protein 1 (KEAP1), canonical Wnt/beta (β)-catenin, and protein kinase C (PKC) signalling pathways during osteoclastogenesis. Conversely, the inhibition of GSK3β has been shown to prevent bone loss in animal models with complex physiology, suggesting that the role of GSK3β may be more significant in bone formation than bone resorption. Divergent findings have been reported regarding the efficacy of GSK3β inhibitors as bone-protecting agents. Some studies demonstrated that GSK3β inhibitors reduced osteoclast formation, while one study indicated an increase in osteoclast formation in RANKL-stimulated bone marrow macrophages (BMMs). Given the discrepancies observed in the accumulated evidence, further research is warranted, particularly regarding the use of GSK3β silencing or overexpression models. Such efforts will provide valuable insights into the direct impact of GSK3β on osteoclastogenesis and bone resorption.
Collapse
Affiliation(s)
- Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
6
|
Wang Y, Tong H, Wang J, Hu L, Huang Z. LRRC1 knockdown downregulates MACF1 to inhibit the malignant progression of acute myeloid leukemia by inactivating β-catenin/c-Myc signaling. J Mol Histol 2024; 55:37-50. [PMID: 38165568 DOI: 10.1007/s10735-023-10170-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/21/2023] [Indexed: 01/04/2024]
Abstract
Acute myeloid leukemia (AML) is a hematologic disease associated with genetic abnormalities. This study aimed to explore the role of leucine-rich repeat-containing protein 1 (LRRC1) in the malignant activities of AML and to reveal the molecular mechanism related to microtubule actin cross-linking factor 1 (MACF1). GEPIA database was used to analyze the expression of LRRC1 in bone marrow tissues of AML patients and the correlation between LRRC1 expression and survival analysis. LRRC1 was knocked down to assess the change of AML cell proliferation, cell cycle and apoptosis using CCK-8 assay and flow cytometry. Besides, the contents of extracellular acidification and oxygen consumption rates were measured to evaluate the glycolysis. Additionally, the interaction between LRRC1 and MACF1 predicted by MEM database and was verified by co-immunoprecipitation (Co-IP) assay. Then, MACF1 was overexpressed to conduct the rescue experiments. Expression of proteins in β-catenin/c-Myc signaling was detected by western blot. Finally, AML xenograft mouse model was established to observe the impacts of LRRC1 silencing on the tumor development. Notably upregulated LRRC1 expression was observed in bone marrow tissues of AML patients and AML cells, and patients with the higher LRRC1 expression displayed the lower overall survival. LRRC1 depletion promoted cell cycle arrest and apoptosis and inhibited the glycolysis. Co-IP confirmed the interaction between LRRC1 and MACF1. MACF1 upregulation relieved the impacts of LRRC1 knockdown on the malignant activities of AML cells. Moreover, LRRC1 silencing inhibited the development of xenograft tumor growth of HL-60 cells in nude mice, suppressed MACF1 expression and inactivated the β-catenin/c-Myc signaling. Collectively, LRRC1 knockdown suppressed proliferation, glycolysis and promoted apoptosis in AML cells by downregulating MACF1 expression to inactivate β-catenin/c-Myc signaling.
Collapse
Affiliation(s)
- Yao Wang
- Department of Pediatric Hematology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyue Road, Wenzhou, 325027, Zhejiang, China
| | - Hongfei Tong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Juxiang Wang
- Department of Pediatric Hematology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyue Road, Wenzhou, 325027, Zhejiang, China
| | - Linglong Hu
- Department of Pediatric Hematology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyue Road, Wenzhou, 325027, Zhejiang, China
| | - Zhen Huang
- Department of Pediatric Hematology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, 109 West Xueyue Road, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
7
|
Tano V, Utami KH, Yusof NABM, Bégin J, Tan WWL, Pouladi MA, Langley SR. Widespread dysregulation of mRNA splicing implicates RNA processing in the development and progression of Huntington's disease. EBioMedicine 2023; 94:104720. [PMID: 37481821 PMCID: PMC10393612 DOI: 10.1016/j.ebiom.2023.104720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND In Huntington's disease (HD), a CAG repeat expansion mutation in the Huntingtin (HTT) gene drives a gain-of-function toxicity that disrupts mRNA processing. Although dysregulation of gene splicing has been shown in human HD post-mortem brain tissue, post-mortem analyses are likely confounded by cell type composition changes in late-stage HD, limiting the ability to identify dysregulation related to early pathogenesis. METHODS To investigate gene splicing changes in early HD, we performed alternative splicing analyses coupled with a proteogenomics approach to identify early CAG length-associated splicing changes in an established isogenic HD cell model. FINDINGS We report widespread neuronal differentiation stage- and CAG length-dependent splicing changes, and find an enrichment of RNA processing, neuronal function, and epigenetic modification-related genes with mutant HTT-associated splicing. When integrated with a proteomics dataset, we identified several of these differential splicing events at the protein level. By comparing with human post-mortem and mouse model data, we identified common patterns of altered splicing from embryonic stem cells through to post-mortem striatal tissue. INTERPRETATION We show that widespread splicing dysregulation in HD occurs in an early cell model of neuronal development. Importantly, we observe HD-associated splicing changes in our HD cell model that were also identified in human HD striatum and mouse model HD striatum, suggesting that splicing-associated pathogenesis possibly occurs early in neuronal development and persists to later stages of disease. Together, our results highlight splicing dysregulation in HD which may lead to disrupted neuronal function and neuropathology. FUNDING This research is supported by the Lee Kong Chian School of Medicine, Nanyang Technological University Singapore Nanyang Assistant Professorship Start-Up Grant, the Singapore Ministry of Education under its Singapore Ministry of Education Academic Research Fund Tier 1 (RG23/22), the BC Children's Hospital Research Institute Investigator Grant Award (IGAP), and a Scholar Award from the Michael Smith Health Research BC.
Collapse
Affiliation(s)
- Vincent Tano
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Kagistia Hana Utami
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore; Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore
| | - Nur Amirah Binte Mohammad Yusof
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore
| | - Jocelyn Bégin
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Willy Wei Li Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore
| | - Mahmoud A Pouladi
- Translational Laboratory in Genetic Medicine (TLGM), Agency for Science, Technology and Research (A∗STAR), Singapore 138648, Singapore; Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4, Canada
| | - Sarah R Langley
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 636921, Singapore.
| |
Collapse
|
8
|
Tian Y, Zhu K, Li Y, Ren Z, Wang J. MACF1 mutations predict poor prognosis: a novel potential therapeutic target for breast cancer. Am J Transl Res 2022; 14:7670-7688. [PMID: 36505342 PMCID: PMC9730059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/19/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Microtubule actin cross-linking factor 1 (MACF1) mutations are known to play an important role in the progression of various cancers. However, its role in breast cancer remains to be determined. In this study, we investigated how MACF1 mutations may play a role in breast cancer development. METHODS The gene-expression profile data of patients with breast cancer were obtained from The Cancer Genome Atlas (TCGA)-Breast cancer cohort. We estimated the influence of MACF1 mutations on patient clinical prognosis using the Kaplan-Meier method. Further, patients with MACF1-mutant (MACF1-MT) and MACF1-wild-type (MACF1-WT) were compared to identify the differentially expressed genes (DEGs). We also performed functional enrichment analyses, constructed protein-protein interaction (PPI) and competing endogenous RNA (ceRNA) networks, and investigated the correlation between MACF1 mutations and immune-cell infiltration. To explore the prognostic value of MACF1 mutations, a nomogram was developed based on MACF1 mutations and other clinicopathological parameters. RESULTS Patients with MACF1-MT had a worse prognosis and higher tumor mutation burden score (P < 0.05) than patients with MACF1-WT. MACF1 mutations were demonstrated to upregulate the mTOR signaling pathway and alter energy metabolism and tumor immune microenvironment. Thus, MACF1 mutations might affect immunogenicity and result in a lower response to immunotherapy. By analyzing the Genomics of Drug Sensitivity in Cancer (GDSC), the sensitivity of breast cancer cells to 13 drugs was found to be significantly enhanced by MACF1 mutations. The prognostic model was verified in predicting the outcome of breast cancer patients. CONCLUSION MACF1 mutations might be a potential prognostic biomarker and a therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Ye Tian
- Department of Thyroid and Breast SurgeryWuhan No. 1 Hospital, Wuhan, Hubei, China
| | - Kongjun Zhu
- Department of Thyroid and Breast SurgeryWuhan No. 1 Hospital, Wuhan, Hubei, China
| | - Yuefei Li
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, China
| | - Zhen Ren
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, China
| | - Juan Wang
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, Hubei, China
| |
Collapse
|
9
|
Zhao AJ, Montes-Laing J, Perry WMG, Shiratori M, Merfeld E, Rogers SL, Applewhite DA. The Drosophila spectraplakin Short stop regulates focal adhesion dynamics by crosslinking microtubules and actin. Mol Biol Cell 2022; 33:ar19. [PMID: 35235367 PMCID: PMC9282009 DOI: 10.1091/mbc.e21-09-0434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The spectraplakin family of proteins includes ACF7/MACF1 and BPAG1/dystonin in mammals, VAB-10 in Caenorhabditis elegans, Magellan in zebrafish, and Short stop (Shot), the sole Drosophila member. Spectraplakins are giant cytoskeletal proteins that cross-link actin, microtubules, and intermediate filaments, coordinating the activity of the entire cytoskeleton. We examined the role of Shot during cell migration using two systems: the in vitro migration of Drosophila tissue culture cells and in vivo through border cell migration. RNA interference (RNAi) depletion of Shot increases the rate of random cell migration in Drosophila tissue culture cells as well as the rate of wound closure during scratch-wound assays. This increase in cell migration prompted us to analyze focal adhesion dynamics. We found that the rates of focal adhesion assembly and disassembly were faster in Shot-depleted cells, leading to faster adhesion turnover that could underlie the increased migration speeds. This regulation of focal adhesion dynamics may be dependent on Shot being in an open confirmation. Using Drosophila border cells as an in vivo model for cell migration, we found that RNAi depletion led to precocious border cell migration. Collectively, these results suggest that spectraplakins not only function to cross-link the cytoskeleton but may regulate cell–matrix adhesion.
Collapse
Affiliation(s)
- Andrew J Zhao
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Julia Montes-Laing
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Wick M G Perry
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Mari Shiratori
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Emily Merfeld
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| | - Stephen L Rogers
- Department of Biology & Carolina Center for Genome Sciences, The University of North Carolina at Chapel Hill, Campus Box 3280, 422 Fordham Hall, Chapel Hill, NC 27599-3280, USA
| | - Derek A Applewhite
- Department of Biology, Reed College, 3203 SE Woodstock Boulevard, Portland, OR 97202, USA
| |
Collapse
|
10
|
Su P, Tian Y, Yin C, Wang X, Li D, Yang C, Pei J, Deng X, King S, Li Y, Qian A. MACF1 promotes osteoblastic cell migration by regulating MAP1B through the GSK3beta/TCF7 pathway. Bone 2022; 154:116238. [PMID: 34700040 DOI: 10.1016/j.bone.2021.116238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 11/29/2022]
Abstract
RATIONALE The migration of osteoblastic cells to bone formation surface is an essential step for bone development and growth. However, whether the migration capacity of osteoblastic cells is compromised during osteoporosis occurrence and how it contributes to bone formation reduction remain unexplored so far. In this work, we found, as a positive regulator of cell migration, microtubule actin crosslinking factor 1 (MACF1) enhanced osteoblastic cells migration. We also examined whether MACF1 could facilitate osteoblastic cells' migration to bone formation surface to promote bone formation through another cytoskeleton protein, microtubule associated protein 1 (MAP1B). METHODS Preosteoblast cell line MC3T3-E1 with different MACF1 level was used for in vitro and in vivo cell migration assay; Primary cortical bone derived mesenchymal stem cells (C-MSCs) from bone tissue of MACF1 conditional knock out (cKO) mice was used for in vitro cell migration assay. Cell migration ability in vitro was evaluated by wound healing assay and transwell assay and in vivo by bone marrow cavity injection. Small interfering RNA (siRNA) was used for knocking down Map1b in MC3T3-E1 cell. Lithium chloride (LiCl) and Wortmannin (Wort) were used for inhibiting/activating GSK3β pathway activity. Luciferase report assay was performed for detection of transcriptional activity of TCF7 for Map1b; Chromatin immunoprecipitation (ChIP) was engaged for the binding of TCF7 to Map1b promoter region. RESULTS We found MACF1 enhanced MC3T3-E1 cell and C-MSCs migration in vitro through promoting microtubule (MT) stability and dynamics, and increased the injected MC3T3-E1 cell number on bone formation surface, which indicated a promoted bone formation. We further authenticated that MAP1B had a similar function to MACF1 and was regulated by MACF1 in osteogenic cell, and silencing map1b repressed MC3T3-E1 cell migration in vitro. Mechanistically, by adopting MC3T3-E1 cell with different MACF1 level or treated with LiCl/Wort, we discovered that MACF1 decreased the levels of 1265 threonine phosphorylated MAP1B (p[T1265] MAP1B) through inhibiting GSK3β activity. Additionally, total MAP1B mRNA expression level was upregulated by MACF1 through strengthening the binding of TCF7 to the map1b promoter sequence. CONCLUSION Our study uncovered a novel role of MACF1 in bone formation and MAP1B regulation, which suggested that MACF1 could be a potential therapeutic target for osteoporosis.
Collapse
Affiliation(s)
- Peihong Su
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China; Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Ye Tian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Chong Yin
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China; Department of Clinical Laboratory, Academician (expert) Workstation, Lab of Epigenetics and RNA Therapy, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | - Xue Wang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Dijie Li
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China; Law Sau Fai Institute for Advancing Translational Medicine in Bone & Joint Diseases, Hong Kong Baptist University, Hong Kong, China
| | - Chaofei Yang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Jiawei Pei
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Xiaoni Deng
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Sarah King
- The University of Chicago, Ben May Department for Cancer Research, Chicago, IL 60637, USA
| | - Yu Li
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Lab for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| |
Collapse
|
11
|
Gilbert BL, Zhu S, Salameh A, Sun S, Alagramam KN, McDermott BM. Actin Crosslinking Family Protein 7 Deficiency Does Not Impair Hearing in Young Mice. Front Cell Dev Biol 2021; 9:709442. [PMID: 34917607 PMCID: PMC8670236 DOI: 10.3389/fcell.2021.709442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
To enable hearing, the sensory hair cell contains specialized subcellular structures at its apical region, including the actin-rich cuticular plate and circumferential band. ACF7 (actin crosslinking family protein 7), encoded by the gene Macf1 (microtubule and actin crosslinking factor 1), is a large cytoskeletal crosslinking protein that interacts with microtubules and filamentous actin to shape cells. ACF7 localizes to the cuticular plate and the circumferential band in the hair cells of vertebrates. The compelling expression pattern of ACF7 in hair cells, combined with conserved roles of this protein in the cytoskeleton of various cell types in invertebrates and vertebrates, led to the hypothesis that ACF7 performs a key function in the subcellular architecture of hair cells. To test the hypothesis, we conditionally target Macf1 in the inner ears of mice. Surprisingly, our data show that in young, but mature, conditional knockout mice cochlear hair cell survival, planar cell polarity, organization of the hair cells within the organ of Corti, and capacity to hear are not significantly impacted. Overall, these results fail to support the hypothesis that ACF7 is an essential hair cell protein in young mice, and the purpose of ACF7 expression in the hair cell remains to be understood.
Collapse
Affiliation(s)
- Benjamin L Gilbert
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Shaoyuan Zhu
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Ahlam Salameh
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Shenyu Sun
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University, Cleveland, OH, United States
| | - Kumar N Alagramam
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Brian M McDermott
- Department of Otolaryngology-Head and Neck Surgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Department of Biology, Case Western Reserve University, Cleveland, OH, United States.,Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States.,Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
12
|
Mancini GMS, Smits DJ, Dekker J, Schot R, de Wit MCY, Lequin MH, Dremmen M, Brooks AS, van Ham T, Verheijen FW, Fornerod M, Dobyns WB, Wilke M. Multidisciplinary interaction and MCD gene discovery. The perspective of the clinical geneticist. Eur J Paediatr Neurol 2021; 35:27-34. [PMID: 34592643 DOI: 10.1016/j.ejpn.2021.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/18/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
The increasing pace of gene discovery in the last decade has brought a major change in the way the genetic causes of brain malformations are being diagnosed. Unbiased genomic screening has gained the first place in the diagnostic protocol of a child with congenital (brain) anomalies and the detected variants are matched with the phenotypic presentation afterwards. This process is defined as "reverse phenotyping". Screening of DNA, through copy number variant analysis of microarrays and analysis of exome data on different platforms, obtained from the index patient and both parents has become a routine approach in many centers worldwide. Clinicians are used to multidisciplinary team interaction in patient care and disease management and this explains why the majority of research that has led to the discovery of new genetic disorders nowadays proceeds from clinical observations to genomic analysis and to data exchange facilitated by open access sharing databases. However, the relevance of multidisciplinary team interaction has not been object of systematic research in the field of brain malformations. This review will illustrate some examples of how diagnostically driven questions through multidisciplinary interaction, among clinical and preclinical disciplines, can be successful in the discovery of new genes related to brain malformations. The first example illustrates the setting of interaction among neurologists, geneticists and neuro-radiologists. The second illustrates the importance of interaction among clinical dysmorphologists for pattern recognition of syndromes with multiple congenital anomalies. The third example shows how fruitful it can be to step out of the "clinical comfort zone", and interact with basic scientists in applying emerging technologies to solve the diagnostic puzzles.
Collapse
Affiliation(s)
- Grazia M S Mancini
- Department of Clinical Genetics, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands; ENCORE Expertise Center for Genetic Neurocognitive Developmental Disorders, Erasmus, MC, Rotterdam.
| | - Daphne J Smits
- Department of Clinical Genetics, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Jordy Dekker
- Department of Clinical Genetics, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Rachel Schot
- Department of Clinical Genetics, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands; ENCORE Expertise Center for Genetic Neurocognitive Developmental Disorders, Erasmus, MC, Rotterdam
| | - Marie Claire Y de Wit
- Department of Child Neurology, Sophia Children's Hospital, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, Rotterdam, NL, the Netherlands; ENCORE Expertise Center for Genetic Neurocognitive Developmental Disorders, Erasmus, MC, Rotterdam
| | - Maarten H Lequin
- Department of Radiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marjolein Dremmen
- Department of Radiology, Sophia Children's Hospital, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands; ENCORE Expertise Center for Genetic Neurocognitive Developmental Disorders, Erasmus, MC, Rotterdam
| | - Alice S Brooks
- Department of Clinical Genetics, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Tjakko van Ham
- Department of Clinical Genetics, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - Frans W Verheijen
- Department of Clinical Genetics, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands; ENCORE Expertise Center for Genetic Neurocognitive Developmental Disorders, Erasmus, MC, Rotterdam
| | - Maarten Fornerod
- Department of Cell Biology, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands
| | - William B Dobyns
- Department of Pediatrics (Genetics), University of Minnesota, 420 Delaware Street SE, MMC75, Minneapolis, MN, 55454, USA
| | - Martina Wilke
- Department of Clinical Genetics, ErasmusMC University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, the Netherlands; ENCORE Expertise Center for Genetic Neurocognitive Developmental Disorders, Erasmus, MC, Rotterdam
| |
Collapse
|
13
|
Barvitenko N, Aslam M, Lawen A, Saldanha C, Skverchinskaya E, Uras G, Manca A, Pantaleo A. Two Motors and One Spring: Hypothetic Roles of Non-Muscle Myosin II and Submembrane Actin-Based Cytoskeleton in Cell Volume Sensing. Int J Mol Sci 2021; 22:7967. [PMID: 34360739 PMCID: PMC8347689 DOI: 10.3390/ijms22157967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/16/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Changes in plasma membrane curvature and intracellular ionic strength are two key features of cell volume perturbations. In this hypothesis we present a model of the responsible molecular apparatus which is assembled of two molecular motors [non-muscle myosin II (NMMII) and protrusive actin polymerization], a spring [a complex between the plasma membrane (PM) and the submembrane actin-based cytoskeleton (smACSK) which behaves like a viscoelastic solid] and the associated signaling proteins. We hypothesize that this apparatus senses changes in both the plasma membrane curvature and the ionic strength and in turn activates signaling pathways responsible for regulatory volume increase (RVI) and regulatory volume decrease (RVD). During cell volume changes hydrostatic pressure (HP) changes drive alterations in the cell membrane curvature. HP difference has opposite directions in swelling versus shrinkage, thus allowing distinction between them. By analogy with actomyosin contractility that appears to sense stiffness of the extracellular matrix we propose that NMMII and actin polymerization can actively probe the transmembrane gradient in HP. Furthermore, NMMII and protein-protein interactions in the actin cortex are sensitive to ionic strength. Emerging data on direct binding to and regulating activities of transmembrane mechanosensors by NMMII and actin cortex provide routes for signal transduction from transmembrane mechanosensors to cell volume regulatory mechanisms.
Collapse
Affiliation(s)
| | - Muhammad Aslam
- Department of Internal Medicine I, Experimental Cardiology, Justus Liebig University, 35392 Giessen, Germany;
| | - Alfons Lawen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Clayton, VIC 3800, Australia;
| | - Carlota Saldanha
- Institute of Biochemistry, Institute of Molecular Medicine, Faculty of Medicine University of Lisbon, 1649-028 Lisboa, Portugal;
| | | | - Giuseppe Uras
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London NW3 2PF, UK;
| | - Alessia Manca
- Department of Biomedical Science, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy;
| | - Antonella Pantaleo
- Department of Biomedical Science, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy;
| |
Collapse
|
14
|
Structure and regulation of the microtubule plus-end tracking protein Kar9. Structure 2021; 29:1266-1278.e4. [PMID: 34237274 DOI: 10.1016/j.str.2021.06.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/26/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022]
Abstract
In many eukaryotes, coordination of chromosome segregation with cell cleavage relies on the patterned interaction of specific microtubules with actin filaments through dedicated microtubule plus-end tracking proteins (+TIPs). However, how these +TIPs are spatially controlled is unclear. The yeast +TIP Kar9 drives one of the spindle aster microtubules along actin cables to align the mitotic spindle with the axis of cell division. Here, we report the crystal structure of Kar9's folded domain, revealing spectrin repeats reminiscent of the +TIPs MACF/ACF7/Shot and PRC1/Ase1. Point mutations abrogating spectrin-repeat-mediated dimerization of Kar9 reduced and randomized Kar9 distribution to microtubule tips, and impaired spindle positioning. Six Cdk1 sites surround the Kar9 dimerization interface. Their phosphomimetic substitution inhibited Kar9 dimerization, displaced Kar9 from microtubules, and affected its interaction with the myosin motor Myo2. Our results provide molecular-level understanding on how diverse cell types may regulate and pattern microtubule-actin interactions to orchestrate their divisions.
Collapse
|
15
|
Nakamura T, Nakajima K, Kobayashi Y, Itohara S, Kasahara T, Tsuboi T, Kato T. Functional and behavioral effects of de novo mutations in calcium-related genes in patients with bipolar disorder. Hum Mol Genet 2021; 30:1851-1862. [PMID: 34100076 PMCID: PMC8444452 DOI: 10.1093/hmg/ddab152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Bipolar disorder is a common mental illness occurring in approximately 1% of individuals and exhibits lifetime prevalence. Although genetic factors are known to contribute to this disorder, the genetic architecture has not yet been completely clarified. Our initial trio-based exome sequencing study of bipolar disorder showed enrichment of de novo, loss-of-function (LOF) or protein-altering mutations in a combined group with bipolar I and schizoaffective disorders, and the identified de novo mutations were enriched in calcium-related genes. These findings suggested a role for de novo mutations in bipolar disorder. The validity of these statistical associations can be demonstrated if the functional impact of the mutations on cellular function and behavior are identified. In this study, we focused on two de novo LOF mutations in calcium-related genes, EHD1 and MACF1, found in patients with bipolar disorder. We first showed that the EHD1 mutation resulted in a truncated protein with diminished effect on neurite outgrowth and inhibited endocytosis. Next, we used CRISPR/Cas9 to establish two knock-in mouse lines to model the in vivo effects of these mutations. We performed behavioral screening using IntelliCage and long-term wheel running analysis. Ehd1 mutant mice showed higher activity in the light phase. Macf1 mutant mice showed diminished attention and persistence to rewards. These behavioral alterations were similar to the phenotypes in previously proposed animal models of bipolar disorder. These findings endorse the possible role of de novo mutations as a component of the genetic architecture of bipolar disorder which was suggested by the statistical evidence.
Collapse
Affiliation(s)
- Takumi Nakamura
- Department of Psychiatry & Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama, Japan
| | - Kazuo Nakajima
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama, Japan
| | - Yuki Kobayashi
- Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Saitama, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Saitama, Japan
| | - Takaoki Kasahara
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama, Japan
| | - Takashi Tsuboi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadafumi Kato
- Department of Psychiatry & Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
16
|
Pol-Fuster J, Cañellas F, Ruiz-Guerra L, Medina-Dols A, Bisbal-Carrió B, Asensio V, Ortega-Vila B, Marzese D, Vidal C, Santos C, Lladó J, Olmos G, Heine-Suñer D, Strauch K, Flaquer A, Vives-Bauzà C. Familial Psychosis Associated With a Missense Mutation at MACF1 Gene Combined With the Rare Duplications DUP3p26.3 and DUP16q23.3, Affecting the CNTN6 and CDH13 Genes. Front Genet 2021; 12:622886. [PMID: 33897758 PMCID: PMC8058362 DOI: 10.3389/fgene.2021.622886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/15/2021] [Indexed: 12/30/2022] Open
Abstract
Psychosis is a highly heritable and heterogeneous psychiatric condition. Its genetic architecture is thought to be the result of the joint effect of common and rare variants. Families with high prevalence are an interesting approach to shed light on the rare variant's contribution without the need of collecting large cohorts. To unravel the genomic architecture of a family enriched for psychosis, with four affected individuals, we applied a system genomic approach based on karyotyping, genotyping by whole-exome sequencing to search for rare single nucleotide variants (SNVs) and SNP array to search for copy-number variants (CNVs). We identified a rare non-synonymous variant, g.39914279 C > G, in the MACF1 gene, segregating with psychosis. Rare variants in the MACF1 gene have been previously detected in SCZ patients. Besides, two rare CNVs, DUP3p26.3 and DUP16q23.3, were also identified in the family affecting relevant genes (CNTN6 and CDH13, respectively). We hypothesize that the co-segregation of these duplications with the rare variant g.39914279 C > G of MACF1 gene precipitated with schizophrenia and schizoaffective disorder.
Collapse
Affiliation(s)
- Josep Pol-Fuster
- Health Research Institute of Balearic Islands (IdISBa), Palma, Spain.,Department of Biology, University of Balearic Islands (UIB) and Institut Universitari d'Investigacions en Ciències de la Salut, IUNICS, Palma, Spain
| | - Francesca Cañellas
- Health Research Institute of Balearic Islands (IdISBa), Palma, Spain.,Psychiatry Service, University Hospital Son Espases (HUSE), Palma, Spain
| | - Laura Ruiz-Guerra
- Health Research Institute of Balearic Islands (IdISBa), Palma, Spain.,Research Unit, HUSE, Palma, Spain
| | - Aina Medina-Dols
- Health Research Institute of Balearic Islands (IdISBa), Palma, Spain.,Research Unit, HUSE, Palma, Spain
| | - Bàrbara Bisbal-Carrió
- Health Research Institute of Balearic Islands (IdISBa), Palma, Spain.,Department of Biology, University of Balearic Islands (UIB) and Institut Universitari d'Investigacions en Ciències de la Salut, IUNICS, Palma, Spain
| | - Víctor Asensio
- Health Research Institute of Balearic Islands (IdISBa), Palma, Spain.,Genomic Service Balearic Islands (GEN-IB), HUSE, Palma, Spain
| | - Bernat Ortega-Vila
- Health Research Institute of Balearic Islands (IdISBa), Palma, Spain.,Genomic Service Balearic Islands (GEN-IB), HUSE, Palma, Spain
| | - Diego Marzese
- Health Research Institute of Balearic Islands (IdISBa), Palma, Spain.,Research Unit, HUSE, Palma, Spain
| | - Carme Vidal
- Genomic Service Balearic Islands (GEN-IB), HUSE, Palma, Spain
| | - Carmen Santos
- Genomic Service Balearic Islands (GEN-IB), HUSE, Palma, Spain
| | - Jerònia Lladó
- Health Research Institute of Balearic Islands (IdISBa), Palma, Spain.,Department of Biology, University of Balearic Islands (UIB) and Institut Universitari d'Investigacions en Ciències de la Salut, IUNICS, Palma, Spain
| | - Gabriel Olmos
- Health Research Institute of Balearic Islands (IdISBa), Palma, Spain.,Department of Biology, University of Balearic Islands (UIB) and Institut Universitari d'Investigacions en Ciències de la Salut, IUNICS, Palma, Spain
| | - Damià Heine-Suñer
- Health Research Institute of Balearic Islands (IdISBa), Palma, Spain.,Genomic Service Balearic Islands (GEN-IB), HUSE, Palma, Spain
| | - Konstantin Strauch
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Munich, Germany.,Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Antònia Flaquer
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, LMU Munich, Munich, Germany.,Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Cristòfol Vives-Bauzà
- Health Research Institute of Balearic Islands (IdISBa), Palma, Spain.,Department of Biology, University of Balearic Islands (UIB) and Institut Universitari d'Investigacions en Ciències de la Salut, IUNICS, Palma, Spain.,Research Unit, HUSE, Palma, Spain
| |
Collapse
|
17
|
Jaillard S, Bell K, Akloul L, Walton K, McElreavy K, Stocker WA, Beaumont M, Harrisson C, Jääskeläinen T, Palvimo JJ, Robevska G, Launay E, Satié AP, Listyasari N, Bendavid C, Sreenivasan R, Duros S, van den Bergen J, Henry C, Domin-Bernhard M, Cornevin L, Dejucq-Rainsford N, Belaud-Rotureau MA, Odent S, Ayers KL, Ravel C, Tucker EJ, Sinclair AH. New insights into the genetic basis of premature ovarian insufficiency: Novel causative variants and candidate genes revealed by genomic sequencing. Maturitas 2020; 141:9-19. [PMID: 33036707 DOI: 10.1016/j.maturitas.2020.06.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/12/2020] [Accepted: 06/07/2020] [Indexed: 11/20/2022]
Abstract
Ovarian deficiency, including premature ovarian insufficiency (POI) and diminished ovarian reserve (DOR), represents one of the main causes of female infertility. POI is a genetically heterogeneous condition but current understanding of its genetic basis is far from complete, with the cause remaining unknown in the majority of patients. The genes that regulate DOR have been reported but the genetic basis of DOR has not been explored in depth. Both conditions are likely to lie along a continuum of degrees of decrease in ovarian reserve. We performed genomic analysis via whole exome sequencing (WES) followed by in silico analyses and functional experiments to investigate the genetic cause of ovarian deficiency in ten affected women. We achieved diagnoses for three of them, including the identification of novel variants in STAG3, GDF9, and FANCM. We identified potentially causative FSHR variants in another patient. This is the second report of biallelic GDF9 and FANCM variants, and, combined with functional support, validates these genes as bone fide autosomal recessive "POI genes". We also identified new candidate genes, NRIP1, XPO1, and MACF1. These genes have been linked to ovarian function in mouse, pig, and zebrafish respectively, but never in humans. In the case of NRIP1, we provide functional support for the deleterious nature of the variant via SUMOylation and luciferase/β-galactosidase reporter assays. Our study provides multiple insights into the genetic basis of POI/DOR. We have further elucidated the involvement of GDF9, FANCM, STAG3 and FSHR in POI pathogenesis, and propose new candidate genes, NRIP1, XPO1, and MACF1, which should be the focus of future studies.
Collapse
Affiliation(s)
- Sylvie Jaillard
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France; CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France; Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia.
| | - Katrina Bell
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Linda Akloul
- CHU Rennes, Service de Génétique Clinique, CLAD Ouest, F-35033, Rennes, France
| | - Kelly Walton
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, VIC, 3800, Australia
| | | | - William A Stocker
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, VIC, 3800, Australia; Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Marion Beaumont
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
| | - Craig Harrisson
- Department of Physiology, Monash Biomedicine Discovery Institute, Monash University, VIC, 3800, Australia
| | - Tiina Jääskeläinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, FI-70211 Kuopio, Finland
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, FI-70211 Kuopio, Finland
| | - Gorjana Robevska
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Erika Launay
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
| | - Anne-Pascale Satié
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Nurin Listyasari
- Doctoral Program of Medical and Health Sciences, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Claude Bendavid
- INRAE, INSERM, Univ Rennes, Institut NuMeCan, Rennes, Saint-Gilles, France; CHU Rennes, Laboratoire de Biochimie et Toxicologie, F-35033, Rennes, France
| | - Rajini Sreenivasan
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Solène Duros
- CHU Rennes, Département de Gynécologie Obstétrique et Reproduction Humaine, F-35033, Rennes, France
| | - Jocelyn van den Bergen
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia
| | - Catherine Henry
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
| | - Mathilde Domin-Bernhard
- CHU Rennes, Département de Gynécologie Obstétrique et Reproduction Humaine, F-35033, Rennes, France
| | - Laurence Cornevin
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France
| | - Nathalie Dejucq-Rainsford
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France
| | - Marc-Antoine Belaud-Rotureau
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France; CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France; CHU Rennes, Service de Biologie de la Reproduction-CECOS, F-35033, Rennes, France
| | - Sylvie Odent
- CHU Rennes, Service de Génétique Clinique, CLAD Ouest, F-35033, Rennes, France; Univ Rennes, CNRS UMR 6290, Institut de Génétique et Développement, F-35000, Rennes, France
| | - Katie L Ayers
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Célia Ravel
- Univ Rennes, CHU Rennes, INSERM, EHESP, IRSET (Institut de recherche en santé, environnement et travail) - UMR_S 1085, F-35000, Rennes, France; CHU Rennes, Service de Biologie de la Reproduction-CECOS, F-35033, Rennes, France
| | - Elena J Tucker
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3052, Australia.
| | - Andrew H Sinclair
- Murdoch Children's Research Institute, Royal Children's Hospital, Melbourne, VIC, 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, 3052, Australia
| |
Collapse
|
18
|
Su P, Yin C, Li D, Yang C, Wang X, Pei J, Tian Y, Qian A. MACF1 promotes preosteoblast migration by mediating focal adhesion turnover through EB1. Biol Open 2020; 9:bio048173. [PMID: 32139394 PMCID: PMC7104863 DOI: 10.1242/bio.048173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 02/20/2020] [Indexed: 12/25/2022] Open
Abstract
Microtubule actin crosslinking factor 1 (MACF1) is a widely expressed cytoskeletal linker and plays an essential role in various cells' functions by mediating cytoskeleton organization and dynamics. However, the role of MACF1 on preosteoblast migration is not clear. Here, by using MACF1 knockdown and overexpressed MC3T3-E1 cells, we found MACF1 positively regulated preosteoblast migration induced by cell polarization. Furthermore, immunofluorescent staining showed that MACF1 increased end-binding protein (EB1) distribution on microtubule (MT), and decreased EB1 distribution on focal adhesion (FA) complex. Moreover, upregulation of MACF1 activated Src level and enhanced the colocalization of EB1 with activated Src. In addition, MACF1 diminished colocalization of EB1 with adenomatous polyposis coli (APC), which induced EB1 release from FA and promoted FA turnover. These results indicated an important role and mechanism of MACF1 in regulating preosteoblast migration through promoting FA turnover by mediating EB1 colocalization with Src and APC, which inferred that MACF1 might be a potential target for preventing and treating bone disorders.
Collapse
Affiliation(s)
- Peihong Su
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chong Yin
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Dijie Li
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chaofei Yang
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xue Wang
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Jiawei Pei
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ye Tian
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
19
|
Kang L, Liu Y, Jin Y, Li M, Song J, Zhang Y, Zhang Y, Yang Y. Mutations of MACF1, Encoding Microtubule-Actin Crosslinking-Factor 1, Cause Spectraplakinopathy. Front Neurol 2020; 10:1335. [PMID: 32010038 PMCID: PMC6974614 DOI: 10.3389/fneur.2019.01335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 12/02/2019] [Indexed: 02/01/2023] Open
Abstract
As a member of spectraplakin family of cytoskeletal crosslinking proteins, microtubule-actin crosslinking factor 1 (MACF1) controls cytoskeleton network dynamics. Knockout of Macf1 in mice resulted in the developmental retardation and embryonic lethality. Spectraplakinopathy type I, a novel neuromuscular condition characterized by periodic hypotonia, lax muscles, joint contracture, and diminished motor skill, was reported to be associated with heterozygous genomic duplication involving the MACF1 loci, with incomplete penetrance and highly variable clinical presentation in a single pedigree. In this study, parental-derived compound heterozygous novel missense mutations of MACF1, c.1517C>T (p.Thr506Ile) and c.11654T>C (p.Ile3885Thr), were found to co-segregate with disease status in two affected brothers presenting with progressive spastic tetraplegia, dystonia, joint contracture, feeding difficulty and developmental delay. We speculated that MACF1 mutations cause spectraplakinopathy inherited in an autosomal recessive manner. Our clinical findings expanded the phenotype of this neuromuscular disorder and provided new insights into the function of MACF1.
Collapse
Affiliation(s)
- Lulu Kang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yi Liu
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Ying Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Mengqiu Li
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Jinqing Song
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | | | - Yao Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing, China
| |
Collapse
|
20
|
Qiu WX, Ma XL, Lin X, Zhao F, Li DJ, Chen ZH, Zhang KW, Zhang R, Wang P, Xiao YY, Miao ZP, Dang K, Wu XY, Qian AR. Deficiency of Macf1 in osterix expressing cells decreases bone formation by Bmp2/Smad/Runx2 pathway. J Cell Mol Med 2019; 24:317-327. [PMID: 31709715 PMCID: PMC6933318 DOI: 10.1111/jcmm.14729] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/16/2019] [Accepted: 10/03/2019] [Indexed: 12/18/2022] Open
Abstract
Microtubule actin cross-linking factor 1 (Macf1) is a spectraplakin family member known to regulate cytoskeletal dynamics, cell migration, neuronal growth and cell signal transduction. We previously demonstrated that knockdown of Macf1 inhibited the differentiation of MC3T3-E1 cell line. However, whether Macf1 could regulate bone formation in vivo is unclear. To study the function and mechanism of Macf1 in bone formation and osteogenic differentiation, we established osteoblast-specific Osterix (Osx) promoter-driven Macf1 conditional knockout mice (Macf1f/f Osx-Cre). The Macf1f/f Osx-Cre mice displayed delayed ossification and decreased bone mass. Morphological and mechanical studies showed deteriorated trabecular microarchitecture and impaired biomechanical strength of femur in Macf1f/f Osx-Cre mice. In addition, the differentiation of primary osteoblasts isolated from calvaria was inhibited in Macf1f/f Osx-Cre mice. Deficiency of Macf1 in primary osteoblasts inhibited the expression of osteogenic marker genes (Col1, Runx2 and Alp) and the number of mineralized nodules. Furthermore, deficiency of Macf1 attenuated Bmp2/Smad/Runx2 signalling in primary osteoblasts of Macf1f/f Osx-Cre mice. Together, these results indicated that Macf1 plays a significant role in bone formation and osteoblast differentiation by regulating Bmp2/Smad/Runx2 pathway, suggesting that Macf1 might be a therapeutic target for bone disease.
Collapse
Affiliation(s)
- Wu-Xia Qiu
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xiao-Li Ma
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xiao Lin
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Fan Zhao
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Di-Jie Li
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Zhi-Hao Chen
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ke-Wen Zhang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ru Zhang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Pai Wang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yun-Yun Xiao
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Zhi-Ping Miao
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Kai Dang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xiao-Yang Wu
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, USA
| | - Ai-Rong Qian
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
21
|
Lin X, Xiao Y, Chen Z, Ma J, Qiu W, Zhang K, Xu F, Dang K, Qian A. Microtubule actin crosslinking factor 1 (MACF1) knockdown inhibits RANKL-induced osteoclastogenesis via Akt/GSK3β/NFATc1 signalling pathway. Mol Cell Endocrinol 2019; 494:110494. [PMID: 31260729 DOI: 10.1016/j.mce.2019.110494] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 01/23/2023]
Abstract
Osteoclasts are responsible for bone resorption and play essential roles in causing bone diseases such as osteoporosis. Microtubule actin crosslinking factor 1 (MACF1) is a large spectraplakin protein that has been implicated in regulating cytoskeletal distribution, cell migration, cell survival and cell differentiation. However, whether MACF1 regulates the differentiation of osteoclasts has not been elucidated. In this study, we found that the expression of MACF1 was increased in primary bone marrow-derived monocytes (BMMs) of osteoporotic mice and was downregulated during receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis of pre-osteoclast cell lines RAW264.7 cells. RAW264.7 cells were transfected with shMACF1 using a lentiviral vector to study the role of MACF1 in osteoclastogenic differentiation. Knockdown of MACF1 in RAW264.7 cells inhibited the formation of multinucleated osteoclasts and decreased the expression of osteoclast-marker genes (Ctsk, Acp5, Mmp9 and Oscar) during RANKL-induced osteoclastogenesis. Additionally, knockdown of MACF1 disrupted actin ring formation in osteoclasts and further blocked the bone resorption activity of osteoclasts by reducing the area and depth of pits. Knockdown of MACF1 had no effect on the survival of pre-osteoclasts and mature osteoclasts. We further established that knockdown of MACF1 attenuated the phosphorylation of Akt and GSK3β and inhibited the expression of its downstream target NFATc1. Akt activator rescued the inhibition of osteoclast differentiation by MACF1 knockdown. These data demonstrate that MACF1 positively regulates osteoclast differentiation via the Akt/GSK3β/NFATc1 signalling pathway, suggesting that targeting MACF1 may be a novel therapeutic approach against osteoporosis.
Collapse
Affiliation(s)
- Xiao Lin
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Yunyun Xiao
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Zhihao Chen
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Jianhua Ma
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wuxia Qiu
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Kewen Zhang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Fang Xu
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Kai Dang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| |
Collapse
|
22
|
King SA, Liu H, Wu X. Biomedical potential of mammalian spectraplakin proteins: Progress and prospect. Exp Biol Med (Maywood) 2019; 244:1313-1322. [PMID: 31398993 DOI: 10.1177/1535370219864920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The cytoskeleton is an essential element of a eukaryotic cell which informs both form and function and ultimately has physiological consequences for the organism. Equally as important as the major cytoskeletal networks are crosslinkers which coordinate and regulate their activities. One such category of crosslinker is the spectraplakins, a family of giant, evolutionarily conserved crosslinking proteins with the rare ability to interact with each of the three major cytoskeletal networks. In particular, a mammalian spectraplakin isotype called MACF1 (microtubule actin crosslinking factor 1), also known as ACF7 (actin crosslinking factor 7), has been of particular interest in the years since its discovery; MACF1 has come under such scrutiny due to the mounting list of biological phenomena in which it has been implicated. This review is an overview of the current knowledge on the structure and function of the known spectraplakin isotypes with an emphasis on MACF1, recent studies on MACF1, and finally, an analysis of the potential of MACF1 to advance medicine. Impact statement Spectraplakins are a highly conserved group of proteins which have the rare ability to bind to each of the three major cytoskeletal networks. The mammalian spectraplakin MACF1/ACF7 has proven to be instrumental in many cellular processes (e.g. signaling and cell migration) since its identification and, as such, has been the focus of various research studies. This review is a synthesis of scientific reports on the structure, confirmed functions, and implicated roles of MACF1/ACF7 as of 2019. Based on what has been revealed thus far in terms of MACF1/ACF7’s role in complex pathologies such as metastatic cancers and inflammatory bowel disease, it appears that MACF1/ACF7 and the continued study thereof hold great potential to both enhance the design of future therapies for various diseases and vastly expand scientific understanding of organismal physiology as a whole.
Collapse
Affiliation(s)
- Sarah A King
- Ben May Department for Cancer Research, the University of Chicago, Chicago, IL 60637, USA
| | - Han Liu
- Ben May Department for Cancer Research, the University of Chicago, Chicago, IL 60637, USA
- Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, the University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
23
|
Schurr Y, Spindler M, Kurz H, Bender M. The cytoskeletal crosslinking protein MACF1 is dispensable for thrombus formation and hemostasis. Sci Rep 2019; 9:7726. [PMID: 31118482 PMCID: PMC6531446 DOI: 10.1038/s41598-019-44183-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 04/27/2019] [Indexed: 12/15/2022] Open
Abstract
Coordinated reorganization of cytoskeletal structures is critical for key aspects of platelet physiology. While several studies have addressed the role of microtubules and filamentous actin in platelet production and function, the significance of their crosstalk in these processes has been poorly investigated. The microtubule-actin cross-linking factor 1 (MACF1; synonym: Actin cross-linking factor 7, ACF7) is a member of the spectraplakin family, and one of the few proteins expressed in platelets, which possess actin and microtubule binding domains thereby facilitating actin-microtubule interaction and regulation. We used megakaryocyte- and platelet-specific Macf1 knockout (Macf1fl/fl, Pf4-Cre) mice to study the role of MACF1 in platelet production and function. MACF1 deficient mice displayed comparable platelet counts to control mice. Analysis of the platelet cytoskeletal ultrastructure revealed a normal marginal band and actin network. Platelet spreading on fibrinogen was slightly delayed but platelet activation and clot traction was unaffected. Ex vivo thrombus formation and mouse tail bleeding responses were similar between control and mutant mice. These results suggest that MACF1 is dispensable for thrombopoiesis, platelet activation, thrombus formation and the hemostatic function in mice.
Collapse
Affiliation(s)
- Yvonne Schurr
- Institute of Experimental Biomedicine - Chair I, University Hospital and Rudolf Virchow Center, Würzburg, Germany
| | - Markus Spindler
- Institute of Experimental Biomedicine - Chair I, University Hospital and Rudolf Virchow Center, Würzburg, Germany
| | - Hendrikje Kurz
- Institute of Experimental Biomedicine - Chair I, University Hospital and Rudolf Virchow Center, Würzburg, Germany
| | - Markus Bender
- Institute of Experimental Biomedicine - Chair I, University Hospital and Rudolf Virchow Center, Würzburg, Germany.
| |
Collapse
|
24
|
Zhang Y, Yin C, Hu L, Chen Z, Zhao F, Li D, Ma J, Ma X, Su P, Qiu W, Yang C, Wang P, Li S, Zhang G, Wang L, Qian A, Xian CJ. MACF1 Overexpression by Transfecting the 21 kbp Large Plasmid PEGFP-C1A-ACF7 Promotes Osteoblast Differentiation and Bone Formation. Hum Gene Ther 2019; 29:259-270. [PMID: 29334773 DOI: 10.1089/hum.2017.153] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Microtubule actin crosslinking factor 1 (MACF1) is a large spectraplakin protein known to have crucial roles in regulating cytoskeletal dynamics, cell migration, growth, and differentiation. However, its role and action mechanism in bone remain unclear. The present study investigated optimal conditions for effective transfection of the large plasmid PEGFP-C1A-ACF7 (∼21 kbp) containing full-length human MACF1 cDNA, as well as the potential role of MACF1 in bone formation. To enhance MACF1 expression, the plasmid was transfected into osteogenic cells by electroporation in vitro and into mouse calvaria with nanoparticles. Then, transfection efficiency, osteogenic marker expression, calvarial thickness, and bone formation were analyzed. Notably, MACF1 overexpression triggered a drastic increase in osteogenic gene expression, alkaline phosphatase activity, and matrix mineralization in vitro. Mouse calvarial thickness, mineral apposition rate, and osteogenic marker protein expression were significantly enhanced by local transfection. In addition, MACF1 overexpression promoted β-catenin expression and signaling. In conclusion, MACF1 overexpression by transfecting the large plasmid containing full-length MACF1 cDNA promotes osteoblast differentiation and bone formation via β-catenin signaling. Current data will provide useful experimental parameters for the transfection of large plasmids and a novel strategy based on promoting bone formation for prevention and therapy of bone disorders.
Collapse
Affiliation(s)
- Yan Zhang
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Chong Yin
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Lifang Hu
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Zhihao Chen
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Fan Zhao
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Dijie Li
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Jianhua Ma
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Xiaoli Ma
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Peihong Su
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Wuxia Qiu
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Chaofei Yang
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Pai Wang
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Siyu Li
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Ge Zhang
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Liping Wang
- 4 Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia , Adelaide, Australia
| | - Airong Qian
- 1 Bone Metabolism Lab, School of Life Sciences, Northwestern Polytechnical University , Xi'an, Shaanxi, China
- 2 Shenzhen Research Institute of Northwestern Polytechnical University , Shenzhen, Guangdong, China
- 3 NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University , Xi'an, Shaanxi, China
| | - Cory J Xian
- 4 Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia , Adelaide, Australia
| |
Collapse
|
25
|
Oury J, Liu Y, Töpf A, Todorovic S, Hoedt E, Preethish-Kumar V, Neubert TA, Lin W, Lochmüller H, Burden SJ. MACF1 links Rapsyn to microtubule- and actin-binding proteins to maintain neuromuscular synapses. J Cell Biol 2019; 218:1686-1705. [PMID: 30842214 PMCID: PMC6504910 DOI: 10.1083/jcb.201810023] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/07/2019] [Accepted: 02/07/2019] [Indexed: 12/20/2022] Open
Abstract
Oury et al. show that the scaffolding protein MACF1 links Rapsyn, which binds acetylcholine receptors, to the microtubule- and actin-network at neuromuscular synapses. MACF1 thereby plays a role in synaptic maturation in mice, and mutations of MACF1 are associated with congenital myasthenia in humans. Complex mechanisms are required to form neuromuscular synapses, direct their subsequent maturation, and maintain the synapse throughout life. Transcriptional and post-translational pathways play important roles in synaptic differentiation and direct the accumulation of the neurotransmitter receptors, acetylcholine receptors (AChRs), to the postsynaptic membrane, ensuring for reliable synaptic transmission. Rapsyn, an intracellular peripheral membrane protein that binds AChRs, is essential for synaptic differentiation, but how Rapsyn acts is poorly understood. We screened for proteins that coisolate with AChRs in a Rapsyn-dependent manner and show that microtubule actin cross linking factor 1 (MACF1), a scaffolding protein with binding sites for microtubules (MT) and actin, is concentrated at neuromuscular synapses, where it binds Rapsyn and serves as a synaptic organizer for MT-associated proteins, EB1 and MAP1b, and the actin-associated protein, Vinculin. MACF1 plays an important role in maintaining synaptic differentiation and efficient synaptic transmission in mice, and variants in MACF1 are associated with congenital myasthenia in humans.
Collapse
Affiliation(s)
- Julien Oury
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University Medical School, New York, NY
| | - Yun Liu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Slobodanka Todorovic
- Clinic for Neurology and Psychiatry for Children and Youth, Belgrade, Serbia and Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Esthelle Hoedt
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University Medical School, New York, NY
| | | | - Thomas A Neubert
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University Medical School, New York, NY
| | - Weichun Lin
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany.,Centro Nacional de Análisis Genómico, Center for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Steven J Burden
- Helen L. and Martin S. Kimmel Center for Biology and Medicine at the Skirball Institute of Biomolecular Medicine, New York University Medical School, New York, NY
| |
Collapse
|
26
|
Yin C, Tian Y, Yu Y, Wang H, Wu Z, Huang Z, Zhang Y, Li D, Yang C, Wang X, Li Y, Qian A. A novel long noncoding RNA AK016739 inhibits osteoblast differentiation and bone formation. J Cell Physiol 2019; 234:11524-11536. [PMID: 30656695 DOI: 10.1002/jcp.27815] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/01/2018] [Indexed: 01/04/2023]
Abstract
The incidence of postmenopausal osteoporosis research 50% in middle-aged and older women, however, effects of existing therapy are not ideal. Emerging evidence have proved that long noncoding RNAs (lncRNAs) was correlated with multiple physiological and pathology processes including development, carcinogenesis, and osteogenesis. However, reports on lncRNAs regulating bone formation were relatively limited. In this study, we screened osteogenic lncRNAs through mRNA/lncRNA microarray combined with gene coexpression analysis. The biological function of the screened lncRNA was assessed both in vitro and in vivo. The effects of the lncRNA on osteogenic transcription factors were also evaluated. We identified AK016739, which was correlated with osteogenic differentiation and enriched in skeletal tissues of mice. The expression levels of AK016739 in bone-derived mesenchymal stem cells were increased with age and negatively correlated with osteogenic differentiation marker genes. Experiments showed that AK016739 inhibited osteoblast differentiation, and in vivo inhibition of AK016739 by its small interfering RNA would rescue bone formation in ovariectomized osteoporosis mice model. In addition, AK016739 suppressed both expression levels and activities of osteogenic transcription factors. This newly identified lncRNA AK016739 has revealed a new mechanism of osteogenic differentiation and provided new targets for treatment of skeletal disorders.
Collapse
Affiliation(s)
- Chong Yin
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Ye Tian
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yang Yu
- Tianjin Key Laboratory on Technologies Enabling Development Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Haoyu Wang
- Department of Software Technology and Service Engineering, School of Software and Microelectronics, Peking University, Beijing, China
| | - Zhixiang Wu
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Zizhan Huang
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yan Zhang
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Dijie Li
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Chaofei Yang
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Xue Wang
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Yu Li
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
27
|
Baehr W, Hanke-Gogokhia C, Sharif A, Reed M, Dahl T, Frederick JM, Ying G. Insights into photoreceptor ciliogenesis revealed by animal models. Prog Retin Eye Res 2018; 71:26-56. [PMID: 30590118 DOI: 10.1016/j.preteyeres.2018.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 12/10/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022]
Abstract
Photoreceptors are polarized neurons, with very specific subcellular compartmentalization and unique requirements for protein expression and trafficking. Each photoreceptor contains an outer segment, the site of photon capture that initiates vision, an inner segment that houses the biosynthetic machinery and a synaptic terminal for signal transmission to downstream neurons. Outer segments and inner segments are connected by a connecting cilium (CC), the equivalent of a transition zone (TZ) of primary cilia. The connecting cilium is part of the basal body/axoneme backbone that stabilizes the outer segment. This report will update the reader on late developments in photoreceptor ciliogenesis and transition zone formation, specifically in mouse photoreceptors, focusing on early events in photoreceptor ciliogenesis. The connecting cilium, an elongated and narrow structure through which all outer segment proteins and membrane components must traffic, functions as a gate that controls access to the outer segment. Here we will review genes and their protein products essential for basal body maturation and for CC/TZ genesis, sorted by phenotype. Emphasis is given to naturally occurring mouse mutants and gene knockouts that interfere with CC/TZ formation and ciliogenesis.
Collapse
Affiliation(s)
- Wolfgang Baehr
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA.
| | - Christin Hanke-Gogokhia
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Ali Sharif
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Michelle Reed
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Tiffanie Dahl
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Jeanne M Frederick
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| | - Guoxin Ying
- Department of Ophthalmology and Visual Sciences, University of Utah Health Sciences, Salt Lake City, UT, 84132, USA
| |
Collapse
|
28
|
Chen L, Miao Y, Liu M, Zeng Y, Gao Z, Peng D, Hu B, Li X, Zheng Y, Xue Y, Zuo Z, Xie Y, Ren J. Pan-Cancer Analysis Reveals the Functional Importance of Protein Lysine Modification in Cancer Development. Front Genet 2018; 9:254. [PMID: 30065750 PMCID: PMC6056651 DOI: 10.3389/fgene.2018.00254] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022] Open
Abstract
Large-scale tumor genome sequencing projects have revealed a complex landscape of genomic mutations in multiple cancer types. A major goal of these projects is to characterize somatic mutations and discover cancer drivers, thereby providing important clues to uncover diagnostic or therapeutic targets for clinical treatment. However, distinguishing only a few somatic mutations from the majority of passenger mutations is still a major challenge facing the biological community. Fortunately, combining other functional features with mutations to predict cancer driver genes is an effective approach to solve the above problem. Protein lysine modifications are an important functional feature that regulates the development of cancer. Therefore, in this work, we have systematically analyzed somatic mutations on seven protein lysine modifications and identified several important drivers that are responsible for tumorigenesis. From published literature, we first collected more than 100,000 lysine modification sites for analysis. Another 1 million non-synonymous single nucleotide variants (SNVs) were then downloaded from TCGA and mapped to our collected lysine modification sites. To identify driver proteins that significantly altered lysine modifications, we further developed a hierarchical Bayesian model and applied the Markov Chain Monte Carlo (MCMC) method for testing. Strikingly, the coding sequences of 473 proteins were found to carry a higher mutation rate in lysine modification sites compared to other background regions. Hypergeometric tests also revealed that these gene products were enriched in known cancer drivers. Functional analysis suggested that mutations within the lysine modification regions possessed higher evolutionary conservation and deleteriousness. Furthermore, pathway enrichment showed that mutations on lysine modification sites mainly affected cancer related processes, such as cell cycle and RNA transport. Moreover, clinical studies also suggested that the driver proteins were significantly associated with patient survival, implying an opportunity to use lysine modifications as molecular markers in cancer diagnosis or treatment. By searching within protein-protein interaction networks using a random walk with restart (RWR) algorithm, we further identified a series of potential treatment agents and therapeutic targets for cancer related to lysine modifications. Collectively, this study reveals the functional importance of lysine modifications in cancer development and may benefit the discovery of novel mechanisms for cancer treatment.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yanyan Miao
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mengni Liu
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yanru Zeng
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zijun Gao
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Di Peng
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bosu Hu
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xu Li
- Spine Center, Department of Orthopaedics, Anhui Provincial Hospital, The First Affiliated Hospital of USTC, Hefei, China
| | - Yueyuan Zheng
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu Xue
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhixiang Zuo
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yubin Xie
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian Ren
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
29
|
Hu L, Huang Z, Wu Z, Ali A, Qian A. Mammalian Plakins, Giant Cytolinkers: Versatile Biological Functions and Roles in Cancer. Int J Mol Sci 2018; 19:ijms19040974. [PMID: 29587367 PMCID: PMC5979291 DOI: 10.3390/ijms19040974] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/18/2018] [Accepted: 03/20/2018] [Indexed: 01/07/2023] Open
Abstract
Cancer is a highly lethal disease that is characterized by aberrant cell proliferation, migration, and adhesion, which are closely related to the dynamic changes of cytoskeletons and cytoskeletal-adhesion. These will further result in cell invasion and metastasis. Plakins are a family of giant cytolinkers that connect cytoskeletal elements with each other and to junctional complexes. With various isoforms composed of different domain structures, mammalian plakins are broadly expressed in numerous tissues. They play critical roles in many cellular processes, including cell proliferation, migration, adhesion, and signaling transduction. As these cellular processes are key steps in cancer development, mammalian plakins have in recent years attracted more and more attention for their potential roles in cancer. Current evidence shows the importance of mammalian plakins in various human cancers and demonstrates mammalian plakins as potential biomarkers for cancer. Here, we introduce the basic characteristics of mammalian plakins, review the recent advances in understanding their biological functions, and highlight their roles in human cancers, based on studies performed by us and others. This will provide researchers with a comprehensive understanding of mammalian plakins, new insights into the development of cancer, and novel targets for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Zizhan Huang
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Zixiang Wu
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Arshad Ali
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Laboratory for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
30
|
Yin C, Zhang Y, Hu L, Tian Y, Chen Z, Li D, Zhao F, Su P, Ma X, Zhang G, Miao Z, Wang L, Qian A, Xian CJ. Mechanical unloading reduces microtubule actin crosslinking factor 1 expression to inhibit β-catenin signaling and osteoblast proliferation. J Cell Physiol 2018; 233:5405-5419. [PMID: 29219183 DOI: 10.1002/jcp.26374] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/29/2017] [Indexed: 02/03/2023]
Abstract
Mechanical unloading was considered a major threat to bone homeostasis, and has been shown to decrease osteoblast proliferation although the underlying mechanism is unclear. Microtubule actin crosslinking factor 1 (MACF1) is a cytoskeletal protein that regulates cellular processes and Wnt/β-catenin pathway, an essential signaling pathway for osteoblasts. However, the relationship between MACF1 expression and mechanical unloading, and the function and the associated mechanisms of MACF1 in regulating osteoblast proliferation are unclear. This study investigated effects of mechanical unloading on MACF1 expression levels in cultured MC3T3-E1 osteoblastic cells and in femurs of mice with hind limb unloading; and it also examined the role and potential action mechanisms of MACF1 in osteoblast proliferation in MACF1-knockdown, overexpressed or control MC3T3-E1 cells treated with or without the mechanical unloading condition. Results showed that the mechanical unloading condition inhibited osteoblast proliferation and MACF1 expression in MC3T3-E1 osteoblastic cells and mouse femurs. MACF1 knockdown decreased osteoblast proliferation, while MACF1 overexpression increased it. The inhibitory effect of mechanical unloading on osteoblast proliferation also changed with MACF1 expression levels. Furthermore, MACF1 was found to enhance β-catenin expression and activity, and mechanical unloading decreased β-catenin expression through MACF1. Moreover, β-catenin was found an important regulator of osteoblast proliferation, as its preservation by treatment with its agonist lithium attenuated the inhibitory effects of MACF1-knockdown or mechanical unloading on osteoblast proliferation. Taken together, mechanical unloading decreases MACF1 expression, and MACF1 up-regulates osteoblast proliferation through enhancing β-catenin signaling. This study has thus provided a mechanism for mechanical unloading-induced inhibited osteoblast proliferation.
Collapse
Affiliation(s)
- Chong Yin
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Yan Zhang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Lifang Hu
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Ye Tian
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Zhihao Chen
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Dijie Li
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Fan Zhao
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Peihong Su
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Xiaoli Ma
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China
| | - Ge Zhang
- Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Zhiping Miao
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Liping Wang
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Cory J Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
31
|
Replication of MACF1 gene variant rs2296172 with type 2 diabetes susceptibility in the Bania population group of Punjab, India. Int J Diabetes Dev Ctries 2017. [DOI: 10.1007/s13410-017-0598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
32
|
Miao Z, Ali A, Hu L, Zhao F, Yin C, Chen C, Yang T, Qian A. Microtubule actin cross-linking factor 1, a novel potential target in cancer. Cancer Sci 2017; 108:1953-1958. [PMID: 28782898 PMCID: PMC5623738 DOI: 10.1111/cas.13344] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/28/2017] [Accepted: 08/02/2017] [Indexed: 01/09/2023] Open
Abstract
Cancer is a polygenic disease characterized by uncontrolled growth of normal body cells, deregulation of the cell cycle as well as resistance to apoptosis. The spectraplakin protein microtubule actin cross-linking factor 1 (MACF1) plays an essential function in various cellular processes, including cell proliferation, migration, signaling transduction and embryo development. MACF1 is also involved in processes such as metastatic invasion in which cytoskeleton organization is a critical element that contributes to tumor progression in various human cancers. Aberrant expression of MACF1 initiates the tumor cell proliferation, and migration and metastasis in numerous cancers, such as breast cancer, colon cancer, lung cancer and glioblastoma. In this review, we summarized the current knowledge of MACF1 and its critical role in different human cancers. This will be helpful for researchers to investigate the novel functional role of MACF1 in human cancers and as a potential target to enhance the efficacy of therapeutic treatment modalities.
Collapse
Affiliation(s)
- Zhiping Miao
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, China
| | - Arshad Ali
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, China
| | - Lifang Hu
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, China
| | - Fan Zhao
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, China
| | - Chong Yin
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, China
| | - Chu Chen
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Tuanmin Yang
- Hong-Hui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institution of Northwestern Polytechnical University, Shenzhen, China
| |
Collapse
|
33
|
Hu L, Su P, Yin C, Zhang Y, Li R, Yan K, Chen Z, Li D, Zhang G, Wang L, Miao Z, Qian A, Xian CJ. Microtubule actin crosslinking factor 1 promotes osteoblast differentiation by promoting β-catenin/TCF1/Runx2 signaling axis. J Cell Physiol 2017. [PMID: 28621459 DOI: 10.1002/jcp.26059] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Osteoblast differentiation is a multistep process delicately regulated by many factors, including cytoskeletal dynamics and signaling pathways. Microtubule actin crosslinking factor 1 (MACF1), a key cytoskeletal linker, has been shown to play key roles in signal transduction and in diverse cellular processes; however, its role in regulating osteoblast differentiation is still needed to be elucidated. To further uncover the functions and mechanisms of action of MACF1 in osteoblast differentiation, we examined effects of MACF1 knockdown (MACF1-KD) in MC3T3-E1 osteoblastic cells on their osteoblast differentiation and associated molecular mechanisms. The results showed that knockdown of MACF1 significantly suppressed mineralization of MC3T3-E1 cells, down-regulated the expression of key osteogenic genes alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2) and type I collagen α1 (Col Iα1). Knockdown of MACF1 dramatically reduced the nuclear translocation of β-catenin, decreased the transcriptional activation of T cell factor 1 (TCF1), and down-regulated the expression of TCF1, lymphoid enhancer-binding factor 1 (LEF1), and Runx2, a target gene of β-catenin/TCF1. In addition, MACF1-KD increased the active level of glycogen synthase kinase-3β (GSK-3β), which is a key regulator for β-catenin signal transduction. Moreover, the reduction of nuclear β-catenin amount and decreased expression of TCF1 and Runx2 were significantly reversed in MACF1-KD cells when treated with lithium chloride, an agonist for β-catenin by inhibiting GSK-3β activity. Taken together, these findings suggest that knockdown of MACF1 in osteoblastic cells inhibits osteoblast differentiation through suppressing the β-catenin/TCF1-Runx2 axis. Thus, a novel role of MACF1 in and a new mechanistic insight of osteoblast differentiation are uncovered.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Peihong Su
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Chong Yin
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Yan Zhang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Runzhi Li
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Kun Yan
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Zhihao Chen
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Dijie Li
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Ge Zhang
- Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Liping Wang
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| | - Zhiping Miao
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, China.,NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an, China
| | - Cory J Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
34
|
Horie M, Yoshioka N, Takebayashi H. BPAG1 in muscles: Structure and function in skeletal, cardiac and smooth muscle. Semin Cell Dev Biol 2017; 69:26-33. [PMID: 28736206 DOI: 10.1016/j.semcdb.2017.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 07/12/2017] [Accepted: 07/14/2017] [Indexed: 01/19/2023]
Abstract
BPAG1, also known as Dystonin or BP230, belongs to the plakin family of proteins, which has multiple cytoskeleton-binding domains. Several BPAG1 isoforms are produced by a single BPAG1 genomic locus using different promoters and exons. For example, BPAG1a, BPAG1b, and BPAG1e are predominantly expressed in the nervous system, muscle, and skin, respectively. Among BPAG1 isoforms, BPAG1e is well studied because it was first identified as an autoantigen in patients with bullous pemphigoid, an autoimmune skin disease. BPAG1e is a component of hemidesmosomes, the adhesion complexes that promote dermal-epidermal cohesion. In the nervous system, the role of BPAG1a is also well studied because disruption of BPAG1a results in a phenotype identical to that of Dystonia musculorum (dt) mutants, which show progressive motor disorder. However, the expression and function of BPAG1 in muscles is not well studied. The aim of this review is to provide an overview of and highlight some recent findings on the expression and function of BPAG1 in muscles, which can assist future studies designed to delineate the role and regulation of BPAG1 in the dt mouse phenotype and in human hereditary sensory and autonomic neuropathy type 6 (HSAN6).
Collapse
Affiliation(s)
- Masao Horie
- Division of Neurobiology and Anatomy, Niigata University, Niigata 951-8510, Japan
| | - Nozomu Yoshioka
- Division of Neurobiology and Anatomy, Niigata University, Niigata 951-8510, Japan
| | - Hirohide Takebayashi
- Division of Neurobiology and Anatomy, Niigata University, Niigata 951-8510, Japan.
| |
Collapse
|
35
|
Zhao W, Qian H, Zhang R, Gao X, Gou X. MicroRNA targeting microtubule cross-linked protein (MACF1) would suppress the invasion and metastasis of malignant tumor. Med Hypotheses 2017; 104:25-29. [DOI: 10.1016/j.mehy.2017.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 05/06/2017] [Indexed: 12/31/2022]
|
36
|
Moffat JJ, Ka M, Jung EM, Smith AL, Kim WY. The role of MACF1 in nervous system development and maintenance. Semin Cell Dev Biol 2017; 69:9-17. [PMID: 28579452 DOI: 10.1016/j.semcdb.2017.05.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/12/2017] [Accepted: 05/29/2017] [Indexed: 12/14/2022]
Abstract
Microtubule-actin crosslinking factor 1 (MACF1), also known as actin crosslinking factor 7 (ACF7), is essential for proper modulation of actin and microtubule cytoskeletal networks. Most MACF1 isoforms are expressed broadly in the body, but some are exclusively found in the nervous system. Consequentially, MACF1 is integrally involved in multiple neural processes during development and in adulthood, including neurite outgrowth and neuronal migration. Furthermore, MACF1 participates in several signaling pathways, including the Wnt/β-catenin and GSK-3 signaling pathways, which regulate key cellular processes, such as proliferation and cell migration. Genetic mutation or dysregulation of the MACF1 gene has been associated with neurodevelopmental and neurodegenerative diseases, specifically schizophrenia and Parkinson's disease. MACF1 may also play a part in neuromuscular disorders and have a neuroprotective role in the optic nerve. In this review, the authors seek to synthesize recent findings relating to the roles of MACF1 within the nervous system and explore potential novel functions of MACF1 not yet examined.
Collapse
Affiliation(s)
- Jeffrey J Moffat
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Minhan Ka
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Eui-Man Jung
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Amanda L Smith
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Woo-Yang Kim
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
37
|
Hu L, Xiao Y, Xiong Z, Zhao F, Yin C, Zhang Y, Su P, Li D, Chen Z, Ma X, Zhang G, Qian A. MACF1, versatility in tissue-specific function and in human disease. Semin Cell Dev Biol 2017; 69:3-8. [PMID: 28577926 DOI: 10.1016/j.semcdb.2017.05.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/18/2017] [Accepted: 05/26/2017] [Indexed: 01/24/2023]
Abstract
Spectraplakins are a family of evolutionarily conserved gigantic proteins and play critical roles in many cytoskeleton-related processes. Microtubule actin crosslinking factor 1 (MACF1) is one of the most versatile spectraplakin with multiple isoforms. As a broadly expressed mammalian spectraplakin, MACF1 is important in maintaining normal functions of many tissues. The loss-of-function studies using knockout mouse models reveal the pivotal roles of MACF1 in embryo development, skin integrity maintenance, neural development, bone formation, and colonic paracellular permeability. Mutation in the human MACF1 gene causes a novel myopathy genetic disease. In addition, abnormal expression of MACF1 is associated with schizophrenia, Parkinson's disease, cancer and osteoporosis. This demonstrates the crucial roles of MACF1 in physiology and pathology. Here, we review the research advances of MACF1's roles in specific tissue and in human diseases, providing the perspectives of MACF1 for future studies.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yunyun Xiao
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhipeng Xiong
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China
| | - Fan Zhao
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China
| | - Chong Yin
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yan Zhang
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China
| | - Peihong Su
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China
| | - Dijie Li
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhihao Chen
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiaoli Ma
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ge Zhang
- NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China; Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Airong Qian
- Laboratory for Bone Metabolism, Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China; Shenzhen Research Institute of Northwestern Polytechnical University, Shenzhen, 518057, China; NPU-HKBU Joint Research Centre for Translational Medicine on Musculoskeletal Health in Space, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
38
|
Afghani N, Mehta T, Wang J, Tang N, Skalli O, Quick QA. Microtubule actin cross-linking factor 1, a novel target in glioblastoma. Int J Oncol 2016; 50:310-316. [PMID: 27959385 DOI: 10.3892/ijo.2016.3798] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 12/05/2016] [Indexed: 12/26/2022] Open
Abstract
Genetic heterogeneity is recognized as a major contributing factor of glioblastoma resistance to clinical treatment modalities and consequently low overall survival rates. This genetic diversity results in variations in protein expression, both intratumorally and between individual glioblastoma patients. In this regard, the spectraplakin protein, microtubule actin cross-linking factor 1 (MACF1), was examined in glioblastoma. An expression analysis of MACF1 in various types of brain tumor tissue revealed that MACF1 was predominately present in grade III-IV astroctyomas and grade IV glioblastoma, but not in normal brain tissue, normal human astrocytes and lower grade brain tumors. Subsequent genetic inhibition experiments showed that suppression of MACF1 selectively inhibited glioblastoma cell proliferation and migration in cell lines established from patient derived xenograft mouse models and immortalized glioblastoma cell lines that were associated with downregulation of the Wnt-signaling mediators, Axin1 and β-catenin. Additionally, concomitant MACF1 silencing with the chemotherapeutic agent temozolomide (TMZ) used for the clinical treatment of glioblastomas cooperatively reduced the proliferative capacity of glioblastoma cells. In conclusion, the present study represents the first investigation on the functional role of MACF1 in tumor cell biology, as well as demonstrates its potential as a unique biomarker that can be targeted synergistically with TMZ as part of a combinatorial therapeutic approach for the treatment of genetically multifarious glioblastomas.
Collapse
Affiliation(s)
- Najlaa Afghani
- Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| | - Toral Mehta
- Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| | - Jialiang Wang
- Department of Neurological Surgery, Vanderbilt Medical Center, Nashville, TN, USA
| | - Nan Tang
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Omar Skalli
- Department of Biological Sciences, University of Memphis, Memphis, TN, USA
| | - Quincy A Quick
- Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| |
Collapse
|