1
|
Amraoui N, Xu I, Robles Cortés J, Beaudoin Cloutier C, Fradette J. Improving Fat Graft Survival Using Soluble Molecule Preconditioning. Biomolecules 2025; 15:526. [PMID: 40305256 PMCID: PMC12025244 DOI: 10.3390/biom15040526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/21/2025] [Accepted: 03/24/2025] [Indexed: 05/02/2025] Open
Abstract
Fat grafting is widely used in plastic surgery to correct soft tissue deformities. A major limitation of this technique is the poor long-term volume retention of the injected fat due to tissue remodeling and adipocyte death. To address this issue, various optimizations of the grafting process have been proposed. This scoping review focuses on preclinical and clinical studies that investigated the impact of various classes of soluble molecules on fat grafting outcomes. Globally, we describe that these molecules can be classified as acting through three main mechanisms to improve graft retention: supporting adipogenesis, improving vascularization, and reducing oxidative stress. A variety of 18 molecules are discussed, including insulin, VEGF, deferoxamine, botulinum toxin A, apocynin, N-acetylcysteine, and melatonin. Many biomolecules have shown the potential to improve long-term outcomes of fat grafts through enhanced cell survival and higher volume retention. However, the variability between experimental protocols, as well as the scarcity of clinical studies, remain obstacles to clinical translation. In order to determine the best preconditioning method for fat grafts, future studies should focus on dosage optimization, more sustained delivery of the molecules, and the design of homogenous experimental protocols and specific clinical trials.
Collapse
Affiliation(s)
- Nabil Amraoui
- Regenerative Medicine Division, CHU de Quebec-Université Laval Research Center, Quebec, QC G1J 1Z4, Canada; (N.A.)
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada; (I.X.); (J.R.C.)
| | - Isabelle Xu
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada; (I.X.); (J.R.C.)
| | - Jorge Robles Cortés
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada; (I.X.); (J.R.C.)
| | - Chanel Beaudoin Cloutier
- Regenerative Medicine Division, CHU de Quebec-Université Laval Research Center, Quebec, QC G1J 1Z4, Canada; (N.A.)
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada; (I.X.); (J.R.C.)
| | - Julie Fradette
- Regenerative Medicine Division, CHU de Quebec-Université Laval Research Center, Quebec, QC G1J 1Z4, Canada; (N.A.)
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec, QC G1V 0A6, Canada; (I.X.); (J.R.C.)
- Centre de Recherche en Organogenèse Expérimentale de l’Université Laval/LOEX, 2255 Vitré Avenue, Quebec, QC G1J 5B3, Canada
| |
Collapse
|
2
|
Tian D, Zhang W, Wang L, Qi J, Xu T, Zuo M, Han B, Li X, Zhao K. Proteo-transcriptomic profiles reveal genetic mechanisms underlying primary hair follicle development in coarse sheep fetal skin. J Proteomics 2025; 310:105327. [PMID: 39395776 DOI: 10.1016/j.jprot.2024.105327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Long hair trait represents a valuable genetic asset in Qinghai Tibetan sheep, with its quality and yield being contingent upon the characteristics of hair follicles (HFs). This study aims to elucidate the genetic mechanism underlying primary hair follicles (PFs) formation through an integrated analysis of proteomics and transcriptomics. Samples were collected at key stages of fetal HF formation (E65 and E85) for histological observation, revealing significant alterations in the microstructure of PF (E65) during the developmental process. In this study, a comprehensive analysis revealed a total of 217 overlapping genes that exhibited concordant expression patterns at both the proteomic and transcriptomic levels. Furthermore, to ensure the reliability of our findings, we employed parallel response monitoring (PRM) to validate the obtained proteomic data. The protein-protein interaction (PPI) network diagram highlights five hub core proteins (TTN, IGTA2, F2, EGFR, and MYH14). These differentially expressed proteins (DEPs) play crucial roles in metabolic processes, cell adhesion, and diverse biological processes. The potential synergy between transcriptional regulation and post-translational modifications plays a pivotal role in governing the initiation PF development. The findings presented in this study offer innovative insights into the molecular mechanisms underlying HFs generation and establish a robust foundation for targeted breeding strategies aimed at augmenting wool traits in sheep. SIGNIFICANCE: The composition of coarse hair primarily consists of long, myelinated fibers originating from primary hair follicles. Sheep fetal skin initiates the formation of primary hair follicles around E65, followed by the development of secondary hair follicles around E85. Conducting differential proteomic and transcriptomic analyses during these developmental stages enhances our understanding of the molecular mechanisms underlying primary hair follicle development and offers valuable insights for sustainable utilization of high-quality germplasm resources.
Collapse
Affiliation(s)
- Dehong Tian
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 81000 0, Qinghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenkui Zhang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, Qinghai, China
| | - Lei Wang
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, Qinghai, China
| | - Junying Qi
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, Qinghai, China
| | - Teng Xu
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, Qinghai, China
| | - Mingxing Zuo
- Qinghai Sheep Breeding and Promotion Service Center, Gangcha 812300, Qinghai, China
| | - Buying Han
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 81000 0, Qinghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xue Li
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 81000 0, Qinghai, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Zhao
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 81000 0, Qinghai, China.
| |
Collapse
|
3
|
Yan W, Liu J, Xie X, Jin Q, Yang Y, Pan Y, Zhang Y, Zhang F, Wang Y, Liu J, Jin L. Restoration of follicular β-catenin signaling by mesenchymal stem cells promotes hair growth in mice with androgenetic alopecia. Stem Cell Res Ther 2024; 15:439. [PMID: 39563459 PMCID: PMC11575167 DOI: 10.1186/s13287-024-04051-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/06/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND The use of mesenchymal stem cells (MSCs) is recognized as a promising strategy for the treatment of androgenetic alopecia (AGA). However, the underlying mechanism remains to be explored. Here, we evaluated the therapeutic effects and potential mechanisms of the use of human umbilical cord mesenchymal stem cells (hUCMSCs) in dihydrotestosterone (DHT)-induced AGA models in vivo and in vitro. METHODS Intradermal transplantation of hUCMSCs was performed in AGA model mice and therapeutic effects were evaluated using histological and immunofluorescence staining. Transwell assays were used for co-culture of hUCMSCs and dermal papilla cells (DPCs), and communication was assessed using RT-qPCR, immunofluorescence, and apoptosis analysis. Interactions between DPCs and hair follicle stem cells (HFSCs) were investigated using RT-qPCR, EdU assays, and cell cycle analysis. RESULTS Treatment of AGA mice with hUCMSCs promoted hair growth, HFs density, skin thickness, and anagen phase activation, while inhibiting DPCs apoptosis, and promoting HFSCs proliferation. In vitro, hUCMSCs activated Wnt/β-catenin signaling in DPCs via Wntless (Wls), while stimulating growth factor secretion and HFSCs proliferation. Blocking β-catenin degradation with MSAB increased DPCs apoptosis, reduced growth factor secretion, and retarded HFSCs proliferation. CONCLUSION hUCMSCs promoted hair regeneration in AGA model mice. This was found to be dependent on reducing DPCs apoptosis, thereby relieving the inhibitory effects of DPCs on the growth of HFSCs. The activation of the Wnt/β-catenin signaling pathway was shown to play a crucial role in the promotion of hair growth by hUCMSCs in AGA mice.
Collapse
Affiliation(s)
- Wenjing Yan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiakun Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Xuedong Xie
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Qianqian Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Yue Yang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Yanfeng Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Fangfang Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Wang
- Nanjing Ailote Cell Technology Research Institute Co., Ltd, Nanjing, 211103, China
| | - Jianxing Liu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Retchkiman M, Ron O, Stuchiner B, Gronovich Y. A comparison of surgical scar treatment using various combinations of autologous fat, hyaluronic acid and resurfacing with the 1540 nm non-ablative Erbium laser - a prospective pilot study. J COSMET LASER THER 2024; 26:103-108. [PMID: 39163996 DOI: 10.1080/14764172.2024.2390585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 01/10/2024] [Accepted: 08/06/2024] [Indexed: 08/22/2024]
Abstract
Scars can cause aesthetic or functional disturbance. Several interventions had been described to improve their appearance. We propose that the combination of some of those treatments can synergize their effects on the scar. We designed a prospective pilot study with ten patients using the patient as their own control to compare different interventions. In each patient, the scar was divided into four parts treated differently: 1. No treatment (control), 2. Fat grafting only, 3. Fat grafting and Hyaluronic Acid (HA), 4. Fat grafting, HA and with a non-fractional laser. Each part of the scar was evaluated by the Patient and Observer Scar Assessment Scale (POSAS). Treatment of the scar with the combination of the three modalities showed better results in the observer scale. In addition, a combination of fat injection, HA, and subsequent skin resurfacing with non-ablative laser showed better outcomes for all parameters on the Observer Scale except vascularity, while on the Patient Scale thickness, relief, pliability, surface area, and overall measurement were better. The combination of all three treatments tends to improve scarring results and appears to be safe and effective. However, further studies with larger samples are needed to explore the potential use of this combined treatment.
Collapse
Affiliation(s)
- Meir Retchkiman
- Department of Plastic Surgery, Shaare Zedek Medical Center, Jerusalem, Israel
- Department of Plastic Surgery, Soroka Medical Center, Be'er Sheva, Israel
| | - Ofir Ron
- Department of Plastic Surgery, Soroka Medical Center, Be'er Sheva, Israel
| | - Barak Stuchiner
- Department of Plastic Surgery, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Yoav Gronovich
- Department of Plastic Surgery, Shaare Zedek Medical Center, Jerusalem, Israel
| |
Collapse
|
5
|
Kamar SA, Naiem Hamdy K, El-Nefiawy NE, Mohammed H, Fetouh MA. Exploring Mesenchymal Stem Cells versus Minoxidil for Androgenic Alopecia Treatment: A Detailed Animal-Based Histological and Morphometric Study. Cells Tissues Organs 2024:1-17. [PMID: 39527940 DOI: 10.1159/000542547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION Androgenic alopecia (AGA), a hair loss condition caused by dihydrotestosterone binding to hair follicle receptors, negatively impacts quality of life for both men and women. Current treatments like minoxidil and finasteride have limitations, highlighting the need for alternative therapies, such as human umbilical cord blood-derived mesenchymal stem cells (HUCB-MSCs). METHODS In this study, forty-eight adult male Wistar albino rats (3 months old) were used. The control group (Group I) received no treatment, while the other rats underwent AGA induction via daily subcutaneous testosterone injections (100 mg/kg). These rats developed alopecia and were divided into three groups: AGA (Group II), AGA plus daily minoxidil spray (Group III), and AGA plus a single intradermal injection of HUCB-MSCs (1 mL containing 1 × 105 cells, Group IV). After 4 weeks, the rats were sacrificed, and skin specimens were prepared for histological analysis using H&E, Masson's trichrome, and immunohistochemical staining for CK 19, vascular endothelial growth factor (VEGF), and TUNEL antibodies. RESULTS It was shown that HUCB-MSC treatment reversed structural damage to hair and follicles, normalizing conditions within 1-week post-injection. The treatment enhanced the anagen phase, suppressed telogen and catagen phases, reduced apoptosis, and increased VEGF and CK 19 immune reactions. Observational follow-up for Groups III and IV revealed that while the minoxidil group experienced significant hair loss after 37 days, the stem cell group exhibited dense and long hair covering the treated area. CONCLUSION HUCB-MSC therapy demonstrated superior efficacy over minoxidil with no observed side effects, indicating its potential as a promising alternative for AGA treatment.
Collapse
Affiliation(s)
- Sherif A Kamar
- Department Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Basic Medical Sciences, Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
| | - Khaled Naiem Hamdy
- Department Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Heba Mohammed
- Department Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Marwa A Fetouh
- Department Anatomy and Embryology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
6
|
Ahmad N, Anker A, Klein S, Dean J, Knoedler L, Remy K, Pagani A, Kempa S, Terhaag A, Prantl L. Autologous Fat Grafting-A Panacea for Scar Tissue Therapy? Cells 2024; 13:1384. [PMID: 39195271 PMCID: PMC11352477 DOI: 10.3390/cells13161384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024] Open
Abstract
Scars may represent more than a cosmetic concern for patients; they may impose functional limitations and are frequently associated with the sensation of itching or pain, thus impacting both psychological and physical well-being. From an aesthetic perspective, scars display variances in color, thickness, texture, contour, and their homogeneity, while the functional aspect encompasses considerations of functionality, pliability, and sensory perception. Scars located in critical anatomic areas have the potential to induce profound impairments, including contracture-related mobility restrictions, thereby significantly impacting daily functioning and the quality of life. Conventional approaches to scar management may suffice to a certain extent, yet there are cases where tailored interventions are warranted. Autologous fat grafting emerges as a promising therapeutic avenue in such instances. Fundamental mechanisms underlying scar formation include chronic inflammation, fibrogenesis and dysregulated wound healing, among other contributing factors. These mechanisms can potentially be alleviated through the application of adipose-derived stem cells, which represent the principal cellular component utilized in the process of lipofilling. Adipose-derived stem cells possess the capacity to secrete proangiogenic factors such as fibroblast growth factor, vascular endothelial growth factor and hepatocyte growth factor, as well as neurotrophic factors, such as brain-derived neurotrophic factors. Moreover, they exhibit multipotency, remodel the extracellular matrix, act in a paracrine manner, and exert immunomodulatory effects through cytokine secretion. These molecular processes contribute to neoangiogenesis, the alleviation of chronic inflammation, and the promotion of a conducive milieu for wound healing. Beyond the obvious benefit in restoring volume, the adipose-derived stem cells and their regenerative capacities facilitate a reduction in pain, pruritus, and fibrosis. This review elucidates the regenerative potential of autologous fat grafting and its beneficial and promising effects on both functional and aesthetic outcomes when applied to scar tissue.
Collapse
Affiliation(s)
- Nura Ahmad
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Alexandra Anker
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Silvan Klein
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Jillian Dean
- School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Katya Remy
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA;
| | - Andrea Pagani
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Sally Kempa
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Amraj Terhaag
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| | - Lukas Prantl
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Franz–Josef–Strauß Allee 11, 93053 Regensburg, Germany; (A.A.); (S.K.); (L.K.); (A.P.); (S.K.); (A.T.); (L.P.)
| |
Collapse
|
7
|
Zhou C, Jiao L, Qiao X, Zhang W, Chen S, Yang C, Meng M. Combined treatment of umbilical cord Wharton's jelly-derived mesenchymal stem cells and platelet-rich plasma for a surgical patient with hospital-acquired pressure ulcer: a case report and literature review. Front Bioeng Biotechnol 2024; 12:1424941. [PMID: 39045540 PMCID: PMC11263083 DOI: 10.3389/fbioe.2024.1424941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/10/2024] [Indexed: 07/25/2024] Open
Abstract
Hospital-acquired pressure ulcers (HAPUs) are still an important worldwide issue related to the safety and quality of patient care, which are among the top five adverse events reported. Patients who develop HAPUs have longer stays in the hospital than necessary, are at a greater risk of infections, and are more likely to die. Surgical patients are prone to developing PUs because they often remain immobile for extended periods of time, and their surgical procedures may limit the flow of blood oxygen and nutrition and lead to a decrease in muscle tone. Mesenchymal stem cells (MSCs) represent an attractive stem cell source for tissue regeneration in clinical applications, which have been demonstrated to improve wound healing through re-epithelialization, increased angiogenesis, and granulation tissue formation. Here, we present the case of an emergency surgical patient who developed an ulcer on the right heel during hospitalization. The human umbilical cord Wharton's jelly-derived MSCs (WJ-MSCs) re-suspended in platelet-rich plasma (PRP) were injected into ulcer margins. Four days after the WJ-MSC application, the patient showed progressive healing of the PU. From days 4 to 33, granulation tissue formation and re-epithelialization were clearly observed. The ulcer was almost healed completely on day 47, and the pain in the patient's wound area also decreased. Thus, intradermal transplantation of WJ-MSCs and PRP was safe and effective for treatment in patients with pressure ulcers. WJ-MSCs, together with PRP, may offer a promising treatment option for wound healing.
Collapse
Affiliation(s)
- Changhui Zhou
- Department of Central Laboratory, Liaocheng People’s Hospital, Liaocheng, China
| | - Linlin Jiao
- Nursing Department, Liaocheng People’s Hospital, Liaocheng, China
| | - Xiaoping Qiao
- Department of Traditional Chinese Medicine, Liaocheng People’s Hospital, Liaocheng, China
| | - Weiwei Zhang
- Department of Central Laboratory, Liaocheng People’s Hospital, Liaocheng, China
| | - Shuangfeng Chen
- Department of Central Laboratory, Liaocheng People’s Hospital, Liaocheng, China
| | - Chunling Yang
- Nursing Department, Liaocheng People’s Hospital, Liaocheng, China
| | - Min Meng
- Department of Central Laboratory, Liaocheng People’s Hospital, Liaocheng, China
| |
Collapse
|
8
|
Chen M, Liang H, Wu M, Ge H, Ma Y, Shen Y, Lu S, Shen C, Zhang H, Wang Z, Tang L. Fgf9 regulates bone marrow mesenchymal stem cell fate and bone-fat balance in osteoporosis by PI3K/AKT/Hippo and MEK/ERK signaling. Int J Biol Sci 2024; 20:3461-3479. [PMID: 38993574 PMCID: PMC11234224 DOI: 10.7150/ijbs.94863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 06/08/2024] [Indexed: 07/13/2024] Open
Abstract
Bone-fat balance is crucial to maintain bone homeostasis. As common progenitor cells of osteoblasts and adipocytes, bone marrow mesenchymal stem cells (BMSCs) are delicately balanced for their differentiation commitment. However, the exact mechanisms governing BMSC cell fate are unclear. In this study, we discovered that fibroblast growth factor 9 (Fgf9), a cytokine expressed in the bone marrow niche, controlled bone-fat balance by influencing the cell fate of BMSCs. Histomorphology and cytodifferentiation analysis showed that Fgf9 loss-of-function mutation (S99N) notably inhibited bone marrow adipose tissue (BMAT) formation and alleviated ovariectomy-induced bone loss and BMAT accumulation in adult mice. Furthermore, in vitro and in vivo investigations demonstrated that Fgf9 altered the differentiation potential of BMSCs, shifting from osteogenesis to adipogenesis at the early stages of cell commitment. Transcriptomic and gene expression analyses demonstrated that FGF9 upregulated the expression of adipogenic genes while downregulating osteogenic gene expression at both mRNA and protein levels. Mechanistic studies revealed that FGF9, through FGFR1, promoted adipogenic gene expression via PI3K/AKT/Hippo pathways and inhibited osteogenic gene expression via MAPK/ERK pathway. This study underscores the crucial role of Fgf9 as a cytokine regulating the bone-fat balance in adult bone, suggesting that FGF9 is a potentially therapeutic target in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Mingmei Chen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hui Liang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Min Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Haoyang Ge
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yan Ma
- Ruijin Hospital Lu Wan Branch, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Yan Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shunyuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongxin Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lingyun Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
9
|
Yu W, Wang Z, Dai Y, Zhao S, Chen H, Wang S, Xie H. Autologous fat grafting for postoperative breast reconstruction: A systemic review. Regen Ther 2024; 26:1010-1017. [PMID: 39553540 PMCID: PMC11564784 DOI: 10.1016/j.reth.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/22/2024] [Accepted: 10/10/2024] [Indexed: 11/19/2024] Open
Abstract
Autologous fat grafting technology has become a new method for breast reconstruction after breast surgery due to its advantages of simple operation, low immunogenicity, fewer complications, high patient acceptance, and natural filling effect. However, the unpredictable fate of transplanted fat limits its widespread application. Currently, many studies have made certain progress in improving the survival rate of fat grafts. This article provides an overview of autologous fat grafting technology, including the mechanisms of fat graft survival, techniques for obtaining and transplanting adipose tissue, methods for enhancing graft survival, and complications associated with fat grafting.
Collapse
Affiliation(s)
| | | | - Yuhan Dai
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Shuhan Zhao
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Huilin Chen
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Shui Wang
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Hui Xie
- Department of Breast Surgery, The First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| |
Collapse
|
10
|
Jiang Z, Huang C, Guo E, Zhu X, Li N, Huang Y, Wang P, Shan H, Yin Y, Wang H, Huang L, Han Z, Ouyang K, Sun L. Platelet-Rich Plasma in Young and Elderly Humans Exhibits a Different Proteomic Profile. J Proteome Res 2024; 23:1788-1800. [PMID: 38619924 DOI: 10.1021/acs.jproteome.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
As people age, their ability to resist injury and repair damage decreases significantly. Platelet-rich plasma (PRP) has demonstrated diverse therapeutic effects on tissue repair. However, the inconsistency of patient outcomes poses a challenge to the practical application of PRP in clinical practice. Furthermore, a comprehensive understanding of the specific impact of aging on PRP requires a systematic investigation. We derived PRP from 6 young volunteers and 6 elderly volunteers, respectively. Subsequently, 95% of high-abundance proteins were removed, followed by mass spectrometry analysis. Data are available via ProteomeXchange with the identifier PXD050061. We detected a total of 739 proteins and selected 311 proteins that showed significant differences, including 76 upregulated proteins in the young group and 235 upregulated proteins in the elderly group. Functional annotation and enrichment analysis unveiled upregulation of proteins associated with cell apoptosis, angiogenesis, and complement and coagulation cascades in the elderly. Conversely, IGF1 was found to be upregulated in the young group, potentially serving as the central source of enhanced cell proliferation ability. Our investigation not only provides insights into standardizing PRP preparation but also offers novel strategies for augmenting the functionality of aging cells or tissues.
Collapse
Affiliation(s)
- Zhitong Jiang
- Department of Cardiovascular Surgery, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Can Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Erliang Guo
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Xiangbin Zhu
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Na Li
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yu Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Peihe Wang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hui Shan
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Yuxin Yin
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Hong Wang
- Central Laboratory, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Lei Huang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Zhen Han
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Kunfu Ouyang
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Lu Sun
- Department of Cardiovascular Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
11
|
Gentile P, Cervelli V, De Fazio D, Calabrese C, Scioli MG, Orlandi A. Mechanical and Enzymatic Digestion of Autologous Fat Grafting (A-FG): Fat Volume Maintenance and AD-SVFs Amount in Comparison. Aesthetic Plast Surg 2023; 47:2051-2062. [PMID: 37130992 DOI: 10.1007/s00266-023-03364-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/08/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Currently, several techniques for autologous fat graft (A-FG) preparation aimed at obtaining purified tissue exist. Both mechanical digestions via centrifugation, filtration, and enzymatic digestion were considered the most effective with different impacts in terms of adult adipose-derived stromal vascular fraction cells (AD-SVFs) amount that volume maintenance. OBJECTIVES This article aimed to report the in vivo and in vitro results, represented by fat volume maintenance and AD-SVFs amount, obtained by four different procedures of AD-SVFs isolation and A-FG purification based on centrifugation, filtration, centrifugation with filtration, and enzymatic digestion. METHODS A prospective, case-control study was conducted. In total, 80 patients affected by face and breast soft tissue defects were treated with A-FG and divided into four groups: n=20 were treated with A-FG enhanced with AD-SVFs obtained by enzymatic digestion (study group 1 [SG-1]); n=20 were treated with A-FG enhanced with AD-SVFs obtained by centrifugation with filtration (SG-2); n=20 were treated with A-FG enhanced with AD-SVFs obtained by only filtration (SG-3); n=20 were treated with A-FG obtained by only centrifugation according to the Coleman technique (control group [CG]). Twelve months after the last A-FG session, the volume maintenance percentage was analyzed by magnetic resonance imaging (MRI). Isolated AD-SVF populations were counted using a hemocytometer, and cell yield was reported as cell number/mL of fat. RESULTS Starting with the same amount of fat analyzed (20 mL), 50,000 ± 6956 AD-SVFs/mL were obtained in SG-1; 30,250 ± 5100 AD-SVFs/mL in SG-2; 33.333 ± 5650 AD-SVFs/mL in SG-3, while 500 AD-SVFs/mL were obtained in CG. In patients treated with A-FG enhanced with AD-SVFs obtained by automatic enzymatic digestion, a 63% ± 6.2% maintenance of fat volume restoring after 1 year was observed compared with 52% ± 4.6% using centrifugation with filtration, 39% ± 4.4% using only centrifugation (Coleman), and 60% ± 5.0% using only filtration. CONCLUSIONS In vitro AD-SVFs cell analysis indicated that filtration was the most efficient system-between mechanical digestion procedures-thanks to the highest amount of cells obtained with fewer cell structure damage, producing in vivo, the most volume maintenance after 1 year. Enzymatic digestion produced the best number of AD-SVFs and the best fat volume maintenance. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors http://www.springer.com/00266 .
Collapse
Affiliation(s)
- Pietro Gentile
- Surgical Science Department, Plastic and Reconstructive Surgery, University of Rome "Tor Vergata", Via Montpellier 1, 00179, Rome, Italy.
| | - Valerio Cervelli
- Surgical Science Department, Plastic and Reconstructive Surgery, University of Rome "Tor Vergata", Via Montpellier 1, 00179, Rome, Italy
| | - Domenico De Fazio
- Plastic and Reconstructive Surgery, "Madonnina Clinic", 20122, Milan, Italy
| | | | - Maria Giovanna Scioli
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, University of Rome Tor Vergata, 00133, Roma, Italy
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, Anatomic Pathology Institute, University of Rome Tor Vergata, 00133, Roma, Italy
| |
Collapse
|
12
|
Legiawati L, Suseno LS, Sitohang IBS, Yusharyahya SN, Pawitan JA, Liem IK, Kurniawati T, Ardelia A, Paramastri K. Combination of adipose-derived stem cell conditioned media and minoxidil for hair regrowth in male androgenetic alopecia: a randomized, double-blind clinical trial. Stem Cell Res Ther 2023; 14:210. [PMID: 37605227 PMCID: PMC10441691 DOI: 10.1186/s13287-023-03440-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 08/02/2023] [Indexed: 08/23/2023] Open
Abstract
INTRODUCTION Treatments for AGA have yet to produce satisfactory outcomes and may cause intolerable side effects. Recent studies have reported that adipose tissue-derived stem cell conditioned media (ADSC-CM) could induce hair growth and regeneration. OBJECTIVE To investigate the efficacy of ADSC-CM combined with minoxidil for hair regeneration therapy in male AGA. METHODS This study lasted for 6 weeks. Subjects were divided into two groups: concentrated and non-concentrated ADSC-CM. Scalp was divided vertically in half before intradermal injection was administered from the frontal region of the scalp toward the vertex with a 30G needle, spaced about 1 cm apart. Treatment side received 2 ml of ADSC-CM; the other side was given 2 ml of NaCl 0.9% as placebo. Patients applied 5% minoxidil twice daily post-injection. Improvements were assessed using photographs and trichoscan every 2 weeks. RESULTS Hair count, hair density, and mean thickness increased significantly on both sides after 6 weeks, while vellus rate decreased proportionally with the increase of terminal rate. No statistically significant differences between treatment groups were found. Minimum side effects were reported, and subjects were satisfied with the results. CONCLUSION Combination of ADSC-CM and minoxidil could be a potential agent for hair regrowth. Follow-up research with extensive populations, longer duration, and different study design may be required to confirm the exact mechanisms of ADSC-CM on hair growth. TRIAL REGISTRATION Clinicaltrials.gov, NCT05296863. Registered 25 March 2022-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT05296863 .
Collapse
Affiliation(s)
- Lili Legiawati
- Department of Dermatology and Venereology, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Diponegoro No. 71, Central Jakarta, DKI Jakarta, 10430, Indonesia.
- Stem Cell Medical Technology, Integrated Service Unit, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia.
| | - Lis Surachmiati Suseno
- Department of Dermatology and Venereology, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Diponegoro No. 71, Central Jakarta, DKI Jakarta, 10430, Indonesia
- Stem Cell Medical Technology, Integrated Service Unit, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Irma Bernadette S Sitohang
- Department of Dermatology and Venereology, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Diponegoro No. 71, Central Jakarta, DKI Jakarta, 10430, Indonesia
- Stem Cell Medical Technology, Integrated Service Unit, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Shannaz Nadia Yusharyahya
- Department of Dermatology and Venereology, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Diponegoro No. 71, Central Jakarta, DKI Jakarta, 10430, Indonesia
- Stem Cell Medical Technology, Integrated Service Unit, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Jeanne Adiwinata Pawitan
- Stem Cell Medical Technology, Integrated Service Unit, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
- Department of Histology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Faculty of Medicine, Stem Cell and Tissue Engineering Research Center, Indonesia Medical Education and Research Institute (IMERI), Universitas Indonesia, Jakarta, Indonesia
| | - Isabella Kurnia Liem
- Stem Cell Medical Technology, Integrated Service Unit, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Trie Kurniawati
- Stem Cell Medical Technology, Integrated Service Unit, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Athaya Ardelia
- Department of Dermatology and Venereology, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Diponegoro No. 71, Central Jakarta, DKI Jakarta, 10430, Indonesia
- Stem Cell Medical Technology, Integrated Service Unit, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
| | - Kanya Paramastri
- Department of Dermatology and Venereology, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Diponegoro No. 71, Central Jakarta, DKI Jakarta, 10430, Indonesia
- Stem Cell Medical Technology, Integrated Service Unit, Faculty of Medicine, Dr. Cipto Mangunkusumo Hospital, Universitas Indonesia, Jakarta, Indonesia
| |
Collapse
|
13
|
Rashid U, Saba E, Yousaf A, Tareen WA, Sarfraz A, Rhee MH, Sandhu MA. Autologous Platelet Lysate Is an Alternative to Fetal Bovine Serum for Canine Adipose-Derived Mesenchymal Stem Cell Culture and Differentiation. Animals (Basel) 2023; 13:2655. [PMID: 37627446 PMCID: PMC10451755 DOI: 10.3390/ani13162655] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
The use of fetal bovine serum (FBS) in regenerative medicine raises serious ethical and scientific concerns. We have cultured and differentiated the canine mesenchymal stem cells (cMSCs) in five different media combinations of autologous platelet lysate (A-PL) and FBS; consisting of 0% A-PL and 10% FBS (M-1), 2.5% A-PL and 7.5% FBS (M-2), 5% A-PL and 5% FBS (M-3), 7.5% A-PL and 2.5% FBS (M-4), and 10% A-PL and 0% FBS (M-5). The cMSCs were evaluated for their doubling time, differentiation efficiency, and expression of CD73, CD90, CD105, and PDGFRα. The mRNA expression of NT5E, THY1, ENG, PPARγ, FABP4, FAS, SP7, BGLAP, and SPP1 was also assessed. The results indicated non-significant differences in cellular proliferation/viability; positive expression of surface markers, and PDGFRα with substantial adipo/osteogenic differentiation. The expression of adipogenic (PPARγ, FABP4, FAS), and osteogenic (SP7, BGLAP, SPP1) genes were higher (p < 0.05) in the M5 group. In conclusion, A-PL in cMSCs culture did not negatively affect cellular proliferation and viability but also enhanced their genetic potential for multilineage differentiation. Our results indicate that A-PL can be used as an alternative for FBS to develop potent cMSCs under good manufacturing practice protocol for regenerative medicine.
Collapse
Affiliation(s)
- Usman Rashid
- Department of Clinical Studies, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan; (U.R.); (A.Y.)
| | - Evelyn Saba
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan; (E.S.); (W.A.T.)
| | - Arfan Yousaf
- Department of Clinical Studies, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan; (U.R.); (A.Y.)
| | - Waleed Ahsan Tareen
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan; (E.S.); (W.A.T.)
| | - Adeel Sarfraz
- Department of Anatomy and Histology, Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Man Hee Rhee
- Department of Veterinary Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mansur Abdullah Sandhu
- Department of Veterinary Biomedical Sciences, Faculty of Veterinary and Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan; (E.S.); (W.A.T.)
| |
Collapse
|
14
|
Janarthanan R, Jayakumar R, Iyer S. Injectable Pectin-Alginate Hydrogels for Improving Vascularization and Adipogenesis of Human Fat Graft. J Funct Biomater 2023; 14:409. [PMID: 37623654 PMCID: PMC10455938 DOI: 10.3390/jfb14080409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/27/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
Autologous fat grafting (AFG) is the most prevailing tool for soft tissue regeneration in clinics, although efficiency is limited to unpredictable volume resorption due to poor vascularization and eventual necrosis. This study sought to improve the AFG efficiency using a hydrogel as a carrier for human fat graft (F) with and without platelet-rich plasma (PRP). PRP is clinically well known for the local release of several endogenous growth factors and has been in clinical use already. A human-fat-graft-encapsulated pectin-alginate hydrogel (FG) was developed and characterized. PRP was added to F to develop a human fat graft with PRP (FP). FP was admixed with a pectin-alginate hydrogel to develop FGP. FG and FGP showed the smooth injectable, elastic, and shear-thinning properties. FG and FGP groups showed enhanced cell viability and proliferation compared to the control F in vitro. We also investigated the in vivo angiogenesis and neo-adipogenesis ability of F, FG, FGP, and FP in nude mice after subcutaneous injection. After 2 and 4 weeks, an MRI of the mice was conducted, followed by graft explantation. The explanted grafts were also assessed histologically and with immunohistochemistry (IHC) studies. MRI and histology results revealed better vascularity of the FG and FGP system compared to fat graft alone. Further, the IHC studies, CD 31, and perilipin staining also revealed better vasculature and adipogenesis of FG and FGP systems. These results indicate the enhanced angiogenesis and adipogenesis of FG and FGP. Thus, developed pectin-alginate hydrogel-based fat graft systems FG and FGP replenish the native microenvironment by mediating angiogenesis and adipogenesis, thereby maximizing the clinical outcomes of autologous fat grafting.
Collapse
Affiliation(s)
- Ramu Janarthanan
- Department of Plastic and Reconstructive Surgery, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India;
| | - Rangasamy Jayakumar
- Polymeric Biomaterials Lab, School of Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi 682041, India;
| | - Subramania Iyer
- Department of Plastic and Reconstructive Surgery, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682041, India;
| |
Collapse
|
15
|
Debuc B, Gendron N, Cras A, Rancic J, Philippe A, Cetrulo CL, Lellouch AG, Smadja DM. Improving Autologous Fat Grafting in Regenerative Surgery through Stem Cell-Assisted Lipotransfer. Stem Cell Rev Rep 2023; 19:1726-1754. [PMID: 37261667 DOI: 10.1007/s12015-023-10568-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Autologous fat transplantation -i.e., lipofilling- has become a promising and popular technique in aesthetic and reconstructive surgery with several application such as breast reconstruction, facial and hand rejuvenation. However, the use of this technology is still limited due to an unpredictable and low graft survival rate (which ranges from 25%-80%). A systematic literature review was performed by thoroughly searching 12 terms using the PubMed database. The objective of this study is to present the current evidence for the efficacy of adjuvant regenerative strategies and cellular factors, which have been tested to improve fat graft retention. We present the main results (fat retention rate, histological analysis for pre-clinical studies and satisfaction/ complication for clinical studies) obtained from the studies of the three main fat grafting enrichment techniques: platelet-rich plasma (PRP), the stromal vascular fraction (SVF) and adipose-derived stem cells (ADSCs) and discuss the promising role of recent angiogenic cell enrichment that could induce early vascularization of fat graft. All in all, adding stem or progenitor cells to autologous fat transplantation might become a new concept in lipofilling. New preclinical models should be used to find mechanisms able to increase fat retention, assure safety and transfer these technologies to a good manufacturing practice (GMP) compliant facility, to manufacture an advanced therapy medicinal product (ATMP).
Collapse
Affiliation(s)
- Benjamin Debuc
- Department of Plastic Surgery, European Georges Pompidou Hospital, AP-HP, Paris, France
- Innovative Therapies in Haemostasis, INSERM UMR-S 1140, University of Paris, F-75006, Paris, France
| | - Nicolas Gendron
- Innovative Therapies in Haemostasis, INSERM UMR-S 1140, University of Paris, F-75006, Paris, France
- Department of Hematology, European Georges Pompidou Hospital, AP-HP, 20 Rue Leblanc, F-75015, Paris, France
| | - Audrey Cras
- Innovative Therapies in Haemostasis, INSERM UMR-S 1140, University of Paris, F-75006, Paris, France
- Department of Cell Therapy, Saint Louis Hospital, AP-HP, F-75010, Paris, France
| | - Jeanne Rancic
- Innovative Therapies in Haemostasis, INSERM UMR-S 1140, University of Paris, F-75006, Paris, France
| | - Aurélien Philippe
- Innovative Therapies in Haemostasis, INSERM UMR-S 1140, University of Paris, F-75006, Paris, France
- Department of Hematology, European Georges Pompidou Hospital, AP-HP, 20 Rue Leblanc, F-75015, Paris, France
| | - Curtis L Cetrulo
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children-Boston, Boston, MA, USA
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Alexandre G Lellouch
- Innovative Therapies in Haemostasis, INSERM UMR-S 1140, University of Paris, F-75006, Paris, France
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Shriners Hospitals for Children-Boston, Boston, MA, USA
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - David M Smadja
- Innovative Therapies in Haemostasis, INSERM UMR-S 1140, University of Paris, F-75006, Paris, France.
- Department of Hematology, European Georges Pompidou Hospital, AP-HP, 20 Rue Leblanc, F-75015, Paris, France.
| |
Collapse
|
16
|
Lu GM, Jiang LY, Huang DL, Rong YX, Li YH, Wei LX, Ning Y, Huang SF, Mo S, Meng FH, Li HM. Advanced Platelet-Rich Fibrin Extract Treatment Promotes the Proliferation and Differentiation of Human Adipose-Derived Mesenchymal Stem Cells through Activation of Tryptophan Metabolism. Curr Stem Cell Res Ther 2023; 18:127-142. [PMID: 34872484 DOI: 10.2174/1574888x16666211206150934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/25/2021] [Accepted: 11/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Advanced platelet-rich fibrin extract (APRFE) contains a high concentration of various cytokines that are helpful for improving stem cells repair function. OBJECTIVE However, the underlying mechanism of APRFE improving stem cell repairing is not clear. METHODS We produced APRFE by centrifuging fresh peripheral blood samples and isolated and identified human adipose-derived mesenchymal stem cells (ADMSCs). The abundance of cytokines contained in APRFE was detected by the Enzyme-linked immunosorbent assay (ELISA). The ADMSCs treated with or without APRFE were collected for transcriptome sequencing. RESULTS Based on the sequencing data, the expression profiles were contracted. The differentially expressed genes and lncRNA (DEGs and DElncRNAs) were obtained using for the differential expression analysis. The lncRNA-miRNA-mRNA network was constructed based on the miRNet database. The further enrichment analysis results showed that the biological functions were mainly related to proliferation, differentiation, and cell-cell function. To explore the role of APRFE, the protein-protein interaction network was constructed among the cytokines included in APRFE and DEGs. Furthermore, we constructed the global regulatory network based on the RNAInter and TRRUST database. The pathways in the global regulatory network were considered as the core pathways. We found that the DEGs in the core pathways were associated with stemness scores. CONCLUSION In summary, we predicted that APRFE activated three pathways (tryptophan metabolism, mTOR signaling pathway, and adipocytokine signaling) to promote the proliferation and differentiation of ADMSCs. The finding may be helpful for guiding the application of ADMSCs in the clinic.
Collapse
Affiliation(s)
- Guan-Ming Lu
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Li-Yuan Jiang
- Department of Orthopaedics, Guiping People's Hospital, Guigping, Guangxi, 537200, China
| | - Dong-Lin Huang
- Research Center of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Yong-Xian Rong
- Department of Burn and Plastic Surgery, Guiping People's Hospital, Guigping, Guangxi, 537200, China
| | - Yang-Hong Li
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Liu-Xing Wei
- Department of Breast and Thyroid Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, 533000, China
| | - Yan Ning
- Research Center of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning 530021, China
| | - Shan-Fu Huang
- Department of Dermatology, The People's Hospital of Binyang County, Binyang, Guangxi, 530405, China
| | - Steven Mo
- Yuan Dong International Academy of Life Sciences, Nanning, China
| | - Fu-Han Meng
- Department of Rehabilitation Medicine, The People's Hospital of Binyang County, Binyang, Guangxi, 530405, China
| | - Hong-Mian Li
- Research Center of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning 530021, China
| |
Collapse
|
17
|
Latorre J, Martínez C, Ortega F, Oliveras-Cañellas N, Díaz-Sáez F, Aragonés J, Camps M, Gumà A, Ricart W, Fernández-Real JM, Moreno-Navarrete JM. The relevance of EGFR, ErbB receptors and neuregulins in human adipocytes and adipose tissue in obesity. Biomed Pharmacother 2022; 156:113972. [DOI: 10.1016/j.biopha.2022.113972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/10/2022] Open
|
18
|
Bellei B, Migliano E, Picardo M. Therapeutic potential of adipose tissue-derivatives in modern dermatology. Exp Dermatol 2022; 31:1837-1852. [PMID: 35102608 DOI: 10.1111/exd.14532] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 12/14/2022]
Abstract
Stem cell-mediated therapies in combination with biomaterial and growth factor-based approaches in regenerative medicine are rapidly evolving with increasing application beyond the dermatologic field. Adipose-derived stem cells (ADSCs) are the more frequently used adult stem cells due to their abundance and easy access. In the case of volumetric defects, adipose tissue can take the shape of defects, restoring the volume and enhancing the regeneration of receiving tissue. When regenerative purposes prevail on volume restoration, the stromal vascular fraction (SVF) rich in staminal cells, purified mesenchymal stem cells (MSCs) or their cell-free derivatives grafting are favoured. The therapeutic efficacy of acellular approaches is explained by the fact that a significant part of the natural propensity of stem cells to repair damaged tissue is ascribable to their secretory activity that combines mitogenic factors, cytokines, chemokines and extracellular matrix components. Therefore, the secretome's ability to modulate multiple targets simultaneously demonstrated preclinical and clinical efficacy in reversing pathological mechanisms of complex conditions such atopic dermatitis (AD), vitiligo, psoriasis, acne and Lichen sclerosus (LS), non-resolving wounds and alopecia. This review analysing both in vivo and in vitro models gives an overview of the clinical relevance of adipose tissue-derivatives such as autologous fat graft, stromal vascular fraction, purified stem cells and secretome for skin disorders application. Finally, we highlighted the major disease-specific limitations and the future perspective in this field.
Collapse
Affiliation(s)
- Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Emilia Migliano
- Department of Plastic and Regenerative Surgery, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| |
Collapse
|
19
|
Zheng G, Ma HW, Xiang GH, He GL, Cai HC, Dai ZH, Chen YL, Lin Y, Xu HZ, Ni WF, Xu C, Liu HX, Wang XY. Bone-targeting delivery of platelet lysate exosomes ameliorates glucocorticoid-induced osteoporosis by enhancing bone-vessel coupling. J Nanobiotechnology 2022; 20:220. [PMID: 36310171 PMCID: PMC9620632 DOI: 10.1186/s12951-022-01400-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/26/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Glucocorticoids (GCs) overuse is associated with decreased bone mass and osseous vasculature destruction, leading to severe osteoporosis. Platelet lysates (PL) as a pool of growth factors (GFs) were widely used in local bone repair by its potent pro-regeneration and pro-angiogenesis. However, it is still seldom applied for treating systemic osteopathia due to the lack of a suitable delivery strategy. The non-targeted distribution of GFs might cause tumorigenesis in other organs. RESULTS In this study, PL-derived exosomes (PL-exo) were isolated to enrich the platelet-derived GFs, followed by conjugating with alendronate (ALN) grafted PEGylated phospholipid (DSPE-PEG-ALN) to establish a bone-targeting PL-exo (PL-exo-ALN). The in vitro hydroxyapatite binding affinity and in vivo bone targeting aggregation of PL-exo were significantly enhanced after ALN modification. Besides directly modulating the osteogenic and angiogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and endothelial progenitor cells (EPCs), respectively, PL-exo-ALN also facilitate their coupling under GCs' stimulation. Additionally, intravenous injection of PL-exo-ALN could successfully rescue GCs induced osteoporosis (GIOP) in vivo. CONCLUSIONS PL-exo-ALN may be utilized as a novel nanoplatform for precise infusion of GFs to bone sites and exerts promising therapeutic potential for GIOP.
Collapse
Affiliation(s)
- Gang Zheng
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Hai-Wei Ma
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Guang-Heng Xiang
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Gao-Lu He
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Han-Chen Cai
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Zi-Han Dai
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Yan-Lin Chen
- Department of Orthopaedic Surgery, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, Zhejiang Province, China
| | - Yan Lin
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Hua-Zi Xu
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Wen-Fei Ni
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
| | - Cong Xu
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
| | - Hai-Xiao Liu
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
| | - Xiang-Yang Wang
- Key Laboratory of Orthopaedics of Zhejiang Province, Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
20
|
Pacifici F, Della-Morte D, Capuani B, Coppola A, Scioli MG, Donadel G, Andreadi A, Ciccosanti F, Fimia GM, Bellia A, Orlandi A, Lauro D. Peroxiredoxin 6 Modulates Insulin Secretion and Beta Cell Death via a Mitochondrial Dynamic Network. Front Endocrinol (Lausanne) 2022; 13:842575. [PMID: 35370943 PMCID: PMC8971298 DOI: 10.3389/fendo.2022.842575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
In pancreatic beta cells, mitochondrial metabolism controls glucose-stimulated insulin secretion (GSIS) by ATP production, redox signaling, and calcium (Ca2+) handling. Previously, we demonstrated that knockout mice for peroxiredoxin 6 (Prdx6-/- ), an antioxidant enzyme with both peroxidase and phospholipase A2 activity, develop a mild form of diabetes mellitus with a reduction in GSIS and in peripheral insulin sensitivity. However, whether the defect of GSIS present in these mice is directly modulated by Prdx6 is unknown. Therefore, the main goal of the present study was to evaluate if depletion of Prdx6 affects directly GSIS and pancreatic beta β-cell function. Murine pancreatic β-cell line (βTC6) knockdown for Prdx6 (Prdx6KD) was employed, and insulin secretion, ATP, and intracellular Ca2+ content were assessed in response to glucose stimulation. Mitochondrial morphology and function were also evaluated through electron microscopy, and by testing mitochondrial membrane potential, oxygen consumption, and mitochondrial mass. Prdx6KD cells showed a significant reduction in GSIS as confirmed by decrease in both ATP release and Ca2+ influx. GSIS alteration was also demonstrated by a marked impairment of mitochondrial morphology and function. These latest are mainly linked to mitofusin downregulation, which are, in turn, strictly related to mitochondrial homeostasis (by regulating autophagy) and cell fate (by modulating apoptosis). Following a pro-inflammatory stimulus (typical of diabetic subjects), and in agreement with the deregulation of mitofusin steady-state levels, we also observed an enhancement in apoptotic death in Prdx6KD compared to control cells. We analyzed molecular mechanisms leading to apoptosis, and we further demonstrated that Prdx6 suppression activates both intrinsic and extrinsic apoptotic pathways, ultimately leading to caspase 3 and PARP-1 activation. In conclusion, Prdx6 is the first antioxidant enzyme, in pancreatic β-cells, that by controlling mitochondrial homeostasis plays a pivotal role in GSIS modulation.
Collapse
Affiliation(s)
- Francesca Pacifici
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - David Della-Morte
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele University, Rome, Italy
- Department of Neurology and Evelyn F. McKnight Brain Institute, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Barbara Capuani
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Andrea Coppola
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Maria Giovanna Scioli
- Anatomic Pathology, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Giulia Donadel
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Aikaterini Andreadi
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Fabiola Ciccosanti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L. Spallanzani, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L. Spallanzani, Istituto Di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alfonso Bellia
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Augusto Orlandi
- Anatomic Pathology, Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Rome, Italy
| | - Davide Lauro
- Department of Systems Medicine, University of Rome “Tor Vergata”, Rome, Italy
- Department of Medical Sciences, Fondazione Policlinico Tor Vergata, Rome, Italy
| |
Collapse
|
21
|
Effect of biomolecules derived from human platelet-rich plasma on the ex vivo expansion of human adipose-derived mesenchymal stem cells for clinical applications. Biologicals 2021; 75:37-48. [PMID: 34785135 DOI: 10.1016/j.biologicals.2021.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/02/2021] [Accepted: 11/06/2021] [Indexed: 11/20/2022] Open
Abstract
Mesenchymal stem cells are a tool in cell therapies but demand a large cell number per treatment, for that, suitable culture media is required which contains fetal bovine serum (FBS). However, for cell-based therapy applications, the use of FBS is problematic. Several alternatives to FBS have been explored, including human derivatives from platelet-rich plasma (hD-PRP). Although various studies have evaluated the impact of hD-PRP on MSC proliferation and differentiation, few of them have assessed their influence on processes, such as metabolism and gene expression. Here, we cultured human adipose-derived MSCs (hAD-MSCs) in media supplemented with either 10% hD-PRP (hD-PRP-SM) or 10% FBS (FBS-SM) in order to characterize them and evaluate the effect of hD-PRP on cell metabolism, gene expression of associated regenerative factors, as well as chromosome stability during cell expansion. We found that hAD-MSCs cultured in hD-PRP-SM have a greater cell elongation but express similar surface markers; in addition, hD-PRP-SM promoted a significant osteogenic differentiation in the absence of differentiation medium and increased the growth rate, maintaining chromosomal stability. In terms of cell metabolic profile, hAD-MSC behavior did not reveal any differences between both culture conditions. Conversely, significant differences in collagen I and angiopoietin 2 expression were observed between both conditions. The present results suggest that hD-PRP may influence hAD-MSC behavior.
Collapse
|
22
|
Zhang J, Chen R, Wen L, Fan Z, Guo Y, Hu Z, Miao Y. Recent Progress in the Understanding of the Effect of Sympathetic Nerves on Hair Follicle Growth. Front Cell Dev Biol 2021; 9:736738. [PMID: 34513851 PMCID: PMC8427189 DOI: 10.3389/fcell.2021.736738] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/02/2021] [Indexed: 11/15/2022] Open
Abstract
Clinical observation and experimental studies have long suggested that the perifollicular nerves have nutritional and regulatory effects on the growth, development, and physiological cycle of hair follicles (HFs), even though the concrete mechanism remains obscure. Recently, with the progress of immunohistochemistry and molecular biology techniques, more innovation has been made in the study of the follicular sympathetic nerves and its nerve-effect factor norepinephrine affecting hair follicle stem cells. This review highlights the progress in the regulation of the sympathetic nervous system toward the growth of HFs.
Collapse
Affiliation(s)
- Jiarui Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ruosi Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lihong Wen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhexiang Fan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yilong Guo
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
23
|
Luo H, Liu W, Zhou Y, Jiang X, Liu Y, Yang Q, Shao L. Concentrated growth factor regulates the macrophage-mediated immune response. Regen Biomater 2021; 8:rbab049. [PMID: 34513006 PMCID: PMC8421811 DOI: 10.1093/rb/rbab049] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 02/05/2023] Open
Abstract
Concentrated growth factor (CGF) is a promising regenerative material that serves as a scaffold and adjunct growth factor for tissue engineering. The host immune response, particularly macrophage activity, plays a critical role in injury repair and tissue regeneration. However, the biological effect of CGF on the immune response is not clear. To enrich the theoretical groundwork for clinical application, the present study examined the immunoregulatory role of CGF in macrophage functional activities in vitro. The CGF scaffold appeared as a dense fibrin network with multiple embedded leukocytes and platelets, and it was biocompatible with macrophages. Concentrated bioactive factors in the CGF extract enhanced THP-1 monocyte recruitment and promoted the maturation of suspended monocytes into adherent macrophages. CGF extract also promoted THP-1 macrophage polarization toward the M2 phenotype with upregulated CD163 expression, as detected by cell morphology and surface marker expression. A cytokine antibody array showed that CGF extract exerted a regulatory effect on macrophage functional activities by reducing secretion of the inflammatory factor interleukin-1β while inducing expression of the chemokine regulated on activation, normal T cell expressed and secreted. Mechanistically, the AKT signaling pathway was activated, and an AKT inhibitor partially suppressed the immunomodulatory effect of CGF. Our findings reveal that CGF induces a favorable immune response mediated by macrophages, which represents a promising strategy for functional tissue regeneration.
Collapse
Affiliation(s)
- Haiyun Luo
- Department of Endodontics, Stomatological Hospital, Southern Medical University, 366 Jiangnan Avenue South, Guangzhou 510280, China
| | - Wenjing Liu
- Department of Prosthodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yachuan Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, NO. 14, 3rd Section of Ren Min Nan Rd., Chengdu 610041, China
| | - Xiao Jiang
- Department of Oral Medicine, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yeungyeung Liu
- Department of Periodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| | - Qin Yang
- Department of Endodontics, Stomatological Hospital, Southern Medical University, 366 Jiangnan Avenue South, Guangzhou 510280, China
| | - Longquan Shao
- Department of Prosthodontics, Stomatological Hospital, Southern Medical University, Guangzhou 510280, China
| |
Collapse
|
24
|
Scioli MG, Storti G, Bielli A, Sanchez M, Scimeca M, Gimble JM, Cervelli V, Orlandi A. CD146 expression regulates osteochondrogenic differentiation of human adipose-derived stem cells. J Cell Physiol 2021; 237:589-602. [PMID: 34287857 DOI: 10.1002/jcp.30506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 01/12/2023]
Abstract
Tissue engineering aims to develop innovative approaches to repair tissue defects. The use of adipose-derived stem cells (ASCs) in tissue regeneration was extensively investigated for osteochondrogenesis. Among the ASC population, ASCs expressing the CD146 were demonstrated to be multipotent and considered as perivascular stem cells, although the functional role of CD146 expression in these cells remains unclear. Herein, we investigated the influence of CD146 expression on osteochondrogenic differentiation of ASCs. Our results showed that, in two-dimensional culture systems, sorted CD146+ ASCs proliferated less and displayed higher adipogenic and chondrogenic potential than CD146- ASCs. The latter demonstrated a higher osteogenic capacity. Besides this, CD146+ ASCs in three-dimensional Matrigel/endothelial growth medium (EGM) cultures showed the highest angiogenic capability. When cultured in three-dimensional collagen scaffolds, CD146+ ASCs showed a spontaneous chondrogenic differentiation, further enhanced by the EGM medium's addition. Finally, CD146- ASCs seeded on hexafluoroisopropanol silk scaffolds displayed a greater spontaneous osteogenetic capacity. Altogether, these findings demonstrated a functional and relevant influence of CD146 expression in ASC properties and osteochondrogenic commitment. Exploiting the combination of specific differentiation properties of ASC subpopulations and appropriate culture systems could represent a promising strategy to improve the efficacy of new regenerative therapies.
Collapse
Affiliation(s)
- Maria Giovanna Scioli
- Anatomic Pathology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Gabriele Storti
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Alessandra Bielli
- Anatomic Pathology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Massimo Sanchez
- Major Equipments and Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Manuel Scimeca
- Anatomic Pathology, Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Jeffrey M Gimble
- Department of Pharmacology, Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Valerio Cervelli
- Plastic and Reconstructive Surgery, Department of Surgical Sciences, University of Rome Tor Vergata, Rome, Italy
| | - Augusto Orlandi
- Anatomic Pathology, Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy.,Department of Biomedical Sciences, Catholic University Our Lady of Good Counsel, Tirana, Albania
| |
Collapse
|
25
|
Wu M, Karvar M, Liu Q, Orgill DP, Panayi AC. Comparison of Conventional and Platelet-Rich Plasma-Assisted Fat Grafting: A Systematic Review and Meta-analysis. J Plast Reconstr Aesthet Surg 2021; 74:2821-2830. [PMID: 34246590 DOI: 10.1016/j.bjps.2021.05.046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/28/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Autologous fat grafting (FG) is a popular technique for soft-tissue augmentation, but the fat survival rate is unpredictable. Platelet-rich plasma (PRP) has emerged as an adjuvant to enhance fat graft survival. OBJECTIVES This literature review and meta-analysis aimed to investigate the effect of PRP on the survival rate of fat grafting. METHODS A comprehensive systematic literature search was done to identify clinical studies on PRP and fat cotransplantation in PubMed, Cochrane Library, Web of Science, and EMBASE databases up to May 2020. The reference lists of selected articles were reviewed to identify any additional related articles. A meta-analysis was conducted to compare PRP + FG and conventional FG in terms of fat graft survival rate, patient satisfaction rate, and recovery time after surgery. RESULTS Eleven studies consisting of 1125 patients were analyzed. Patients were followed up from 3 to 24 months post-FG. The fat survival rate varied from 20.5% to 54.8% in FG alone and from 24.1% to 89.2% in the PRP + FG groups. The survival rate was significantly higher and recovery time was significantly lower in the PRP + FG group than in the FG alone group. However, there was no significant difference in the patient satisfaction rate between the groups. CONCLUSIONS This study demonstrates that PRP-enhanced fat transplantation has better efficacy than conventional fat grafting. Further studies are required to provide the optimum concentration of PRP and the long-term efficacy of the technique. There is not enough evidence to compare the rate of complications with PRP and fat cotransplantation and conventional fat grafting.
Collapse
Affiliation(s)
- Mengfan Wu
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA; Department of Plastic Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, 518036, P. R. China
| | - Mehran Karvar
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Qinxin Liu
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA; Department of Traumatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Dennis P Orgill
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Adriana C Panayi
- Division of Plastic Surgery, Department of Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
26
|
Therapeutic effect of mesenchymal stem cells on histopathological, immunohistochemical, and molecular analysis in second-grade burn model. Stem Cell Res Ther 2021; 12:308. [PMID: 34051875 PMCID: PMC8164255 DOI: 10.1186/s13287-021-02365-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Background and aim Deleterious cutaneous tissue damages could result from exposure to thermal trauma, which could be ameliorated structurally and functionally through therapy via the most multipotent progenitor bone marrow mesenchymal stem cells (BM-MSCs). This study aimed to induce burns and examine the effect of BM-MSCs during a short and long period of therapy. Material and methods Ninety albino rats were divided into three groups: group I (control); group II (burn model), the animals were exposed to the preheated aluminum bar at 100°C for 15 s; and group III (the burned animals subcutaneously injected with BM-MSCs (2×106 cells/ ml)); they were clinically observed and sacrificed at different short and long time intervals, and skin samples were collected for histopathological and immunohistochemical examination and analysis of different wound healing mediators via quantitative polymerase chain reaction (qPCR). Results Subcutaneous injection of BM-MSCs resulted in the decrease of the wound contraction rate; the wound having a pinpoint appearance and regular arrangement of the epidermal layer with thin stratum corneum; decrease in the area percentages of ADAMs10 expression; significant downregulation of transforming growth factor-β (TGF-β), interleukin-6 (IL-6), tumor necrotic factor-α (TNF-α), metalloproteinase-9 (MMP-9), and microRNA-21; and marked upregulation of heat shock protein-90α (HSP-90α) especially in late stages. Conclusion BM-MSCs exhibited a powerful healing property through regulating the mediators of wound healing and restoring the normal skin structures, reducing the scar formation and the wound size.
Collapse
|
27
|
Alavi-Farzaneh B, Shojaeian A, Banitalebi-Dehkordi M, Mirahmadi F, Mehri-Ghahfarrokhi A, Ghorbanpour A, Rahmati-Dehkordi S, Yazdani F. Effects of Xenogen Mesenchymal Stem Cells and Cryo-Platelet Gel on Intractable Wound Healing in Animal. Antiinflamm Antiallergy Agents Med Chem 2021; 20:344-352. [PMID: 33992068 DOI: 10.2174/1871523020666210514002722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/27/2020] [Accepted: 02/04/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Today, the effects of growth factors and mesenchymal stem cells (MSCs) in promoting wound healing have been confirmed. OBJECTIVE This study aimed to investigate the effect of MSCs and platelet cryogel on wound healing. METHODS 40 male Wistar rats were randomly divided into five groups (n=8). The control group just dressed, the second group received platelet cryogel, the third group received platelet cryogel containing MSCs, the fourth group received plasma, and the fifth group received plasma plus MSCs. The biopsy was obtained from the wounds in 2, 4, 6, and 8 days of the treatment. Then pathological evaluation was conducted. Finally, qRT-PCR was performed to determine angiogenesis. RESULTS The intervention groups had faster wound healing and lower wound area than the control group (p<0.05). The highest wound healing rate and the smallest wound area were observed in the group after receiving platelet cryogel plus MSCs. Angiogenesis, fibrosis, myoepithelial and epithelialization in the pathologic examination using H & E staining were not significantly different between the groups. The expression of Ang-1 in the intervention groups was higher than the control group and the highest expression was observed in the platelet cryogel plus MSCs, followed by the platelet cryogel group. The expression of VEGF in the plasma plus MSCs was higher than in the other groups. CONCLUSION Further studies require to determine the effects of combined use of platelet cryogel plus MSCs on other types of wounds and evaluate mechanisms involved in wound healing like collagenases and inflammatory factors.
Collapse
Affiliation(s)
- Babak Alavi-Farzaneh
- Department of Surgery, School of Medicine, Kashani Hospital Shahrekord University of Medical Sciences, Iran
| | - Ali Shojaeian
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mehdi Banitalebi-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Mirahmadi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ameneh Mehri-Ghahfarrokhi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Alireza Ghorbanpour
- Department of Surgery, School of Medicine, Kashani Hospital Shahrekord University of Medical Sciences, Iran
| | - Shima Rahmati-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Farshad Yazdani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
28
|
Zhou S, Qi F, Gong Y, Zhang C, Zhao S, Yang X, He Y. Platelet-Rich Plasma in Female Androgenic Alopecia: A Comprehensive Systematic Review and Meta-Analysis. Front Pharmacol 2021; 12:642980. [PMID: 34140889 PMCID: PMC8204330 DOI: 10.3389/fphar.2021.642980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/19/2021] [Indexed: 01/11/2023] Open
Abstract
Introduction: The population of young women who suffered from female pattern hair loss (FPHL) or female androgenic alopecia (AGA) is gradually increasing. Platelet-rich plasma is a novel and promising therapeutic method as a nonsurgical treatment for FPHL. Objective: To summarize different preparation methods of PRP and treatment regimes in FPHL, qualitatively evaluate the current observations, and quantitively analyze the efficacy of PRP in FPHL treatment. Methods: Six databases, MEDLINE, EMBASE, Web of Science, Cochrane Central Register of Controlled Trials, LILACS, and CNKI, were searched with terms "platelet-rich plasma," synonyms for AGA and FPHL. Meta-analysis was conducted with enrolled observational studies and randomized controlled trials separately. Results: We evaluated 636 studies and 12 trials from all searched databases. A total of 42 studies of 1,569 cases, including 776 female participants covering 16 randomized controlled trials and 26 observational trials, were included for qualitative synthesis study and systematic review. PRP showed positive efficacy in treating FPHL in hair density compared to the control groups with odds ratio (OR) 1.61, 95% CI 0.52-2.70, and compared to baseline with OR 1.11, 95% CI 0.86-1.37. Conclusion: PRP showed excellent efficiency as a novel therapy of FPHL through hair density evaluation. Further studies are needed to define standardized protocols, and large-scale randomized trials still need to be conducted to confirm its efficacy.
Collapse
Affiliation(s)
- Shuying Zhou
- Department of Dermatology, The 305 Hospital of PLA, Xicheng, China
| | - Fei Qi
- Capital Medical University, Beijing Chaoyang Hospital, Beijing, China
| | - Yue Gong
- Department of Dermatology, The 305 Hospital of PLA, Xicheng, China
| | - Chenxi Zhang
- Department of Dermatology, The 305 Hospital of PLA, Xicheng, China
| | - Siqi Zhao
- Capital Medical University, Beijing Chaoyang Hospital, Beijing, China
| | - Xutong Yang
- Capital Medical University, Beijing Chaoyang Hospital, Beijing, China
| | - Yanling He
- Capital Medical University, Beijing Chaoyang Hospital, Beijing, China
| |
Collapse
|
29
|
Isolation and characterization of bone marrow-derived mesenchymal stem cells in Xenopus laevis. Stem Cell Res 2021; 53:102341. [PMID: 33892293 DOI: 10.1016/j.scr.2021.102341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 03/13/2021] [Accepted: 04/04/2021] [Indexed: 11/24/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent cells that exist in mesenchymal tissues such as bone marrow and are able to differentiate into osteocytes, chondrocytes, and adipocytes. MSCs are generally collected as adherent cells on a plastic dish, and are positive for markers such as CD44, CD73, CD90, CD105 and CD166, and negative for CD11b, CD14, CD19, CD31, CD34, CD45, CD79a and HLA-DR. MSCs have been established from many kinds of mammals, but MSCs from amphibians have not yet been reported. We cultured adherent cells from the bone marrow of Xenopus laevis by modifying the protocol for culturing mammalian MSCs. The morphology of these cells was similar to that of mammalian MSCs. The amphibian MSCs were positive for cd44, cd73, cd90 and cd166, and negative for cd11b, cd14, cd19, cd31, cd34, cd45, cd79a and hla-dra. Moreover, they could be induced to differentiate into osteocyte-, chondrocyte-, and adipocyte-lineage cells by cytokine induction systems that were similar to those used for mammalian MSC differentiation. Thus, they are considered to be similar to mammalian MSCs. Unlike mammals, amphibians have high regenerative capacity. The findings from the present study will allow for future research to reveal how Xenopus MSCs are involved in the amphibian regenerative capacity and to elucidate the differences in the regenerative capacity between mammals and amphibians.
Collapse
|
30
|
Sharma PP, Baskaran V. Polysaccharide (laminaran and fucoidan), fucoxanthin and lipids as functional components from brown algae (Padina tetrastromatica) modulates adipogenesis and thermogenesis in diet-induced obesity in C57BL6 mice. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Volume Retention After Facial Fat Grafting and Relevant Factors: A Systematic Review and Meta-analysis. Aesthetic Plast Surg 2021; 45:506-520. [PMID: 31940073 DOI: 10.1007/s00266-020-01612-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 01/05/2020] [Indexed: 10/25/2022]
Abstract
BACKGROUND Autologous fat grafting is common in facial reconstructive and cosmetic surgeries; the most important drawbacks are the high absorption rate and unpredictable volume retention rate. Surgeons usually make clinical judgements based on their own experience. Therefore, this study aimed to systematically and quantitatively review the volume retention rate of facial autologous fat grafting and analyse the relevant influencing factors. METHODS A systematic literature review was performed using the Medline, EMBASE, Cochrane Library, and Web of Science databases in October 2019 for articles that reported objectively measured volume retention rates of facial fat grafting. Patient characteristics, fat graft volumetric data, and complications were collected. A meta-analysis using a random-effects model was conducted to pool the estimated fat retention rate. Relevant factors were analysed and reviewed on the basis of subgroups. RESULTS We included 27 studies involving 1011 patients with facial fat grafting. The volume retention rate varied from 26 to 83%, with a mean follow-up of 3-24 months. The overall pooled retention rate was 47% (95% CI 41-53%). The volume measurement method significantly influenced the reported retention rate. A trend towards better retention was found for secondary fat grafting procedures and patients with congenital deformities. Only 2.8% of all patients had complications. CONCLUSION The exact percentage of facial fat grafts retained is currently unpredictable; the reported rate varies with different estimation methods. This review analysed studies that provided objectively measured volume retention rates, the pooled average percentage of facial fat graft retention (47%, 95% CI 41-53%), and relevant factors. LEVEL OF EVIDENCE III This journal requires that authors assign a level of evidence to each article. For a full description of these evidence-based medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
32
|
Kurdi BA, Ababneh NA, Abuharfeil N, Al Demour S, Awidi AS. Use of conditioned media (CM) and xeno-free serum substitute on human adipose-derived stem cells (ADSCs) differentiation into urothelial-like cells. PeerJ 2021; 9:e10890. [PMID: 33850639 PMCID: PMC8019311 DOI: 10.7717/peerj.10890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/12/2021] [Indexed: 01/01/2023] Open
Abstract
Background Congenital abnormalities, cancers as well as injuries can cause irreversible damage to the urinary tract, which eventually requires tissue reconstruction. Smooth muscle cells, endothelial cells, and urothelial cells are the major cell types required for the reconstruction of lower urinary tract. Adult stem cells represent an accessible source of unlimited repertoire of untransformed cells. Aim Fetal bovine serum (FBS) is the most vital supplement in the culture media used for cellular proliferation and differentiation. However, due to the increasing interest in manufacturing xeno-free stem cell-based cellular products, optimizing the composition of the culture media and the serum-type used is of paramount importance. In this study, the effects of FBS and pooled human platelet (pHPL) lysate were assessed on the capacity of human adipose-derived stem cells (ADSCs) to differentiate into urothelial-like cells. Also, we aimed to compare the ability of both conditioned media (CM) and unconditioned urothelial cell media (UCM) to induce urothelial differentiation of ADCS in vitro. Methods ADSCs were isolated from human lipoaspirates and characterized by flow cytometry for their ability to express the most common mesenchymal stem cell (MSCs) markers. The differentiation potential was also assessed by differentiating them into osteogenic and adipogenic cell lineages. To evaluate the capacity of ADSCs to differentiate towards the urothelial-like lineage, cells were cultured with either CM or UCM, supplemented with either 5% pHPL, 2.5% pHPL or 10% FBS. After 14 days of induction, cells were utilized for gene expression and immunofluorescence analysis. Results ADSCs cultured in CM and supplemented with FBS exhibited the highest upregulation levels of the urothelial cell markers; cytokeratin-18 (CK-18), cytokeratin-19 (CK-19), and Uroplakin-2 (UPK-2), with a 6.7, 4.2- and a 2-folds increase in gene expression, respectively. Meanwhile, the use of CM supplemented with either 5% pHPL or 2.5% pHPL, and UCM supplemented with either 5% pHPL or 2.5% pHPL showed low expression levels of CK-18 and CK-19 and no upregulation of UPK-2 level was observed. In contrast, the use of UCM with FBS has increased the levels of CK-18 and CK-19, however to a lesser extent compared to CM. At the cellular level, CK-18 and UPK-2 were only detected in CM/FBS supplemented group. Growth factor analysis revealed an increase in the expression levels of EGF, VEGF and PDGF in all of the differentiated groups. Conclusion Efficient ADSCs urothelial differentiation is dependent on the use of conditioned media. The presence of high concentrations of proliferation-inducing growth factors present in the pHPL reduces the efficiency of ADSCs differentiation towards the urothelial lineage. Additionally, the increase in EGF, VEGF and PDGF during the differentiation implicates them in the mechanism of urothelial cell differentiation.
Collapse
Affiliation(s)
- Ban Al- Kurdi
- Cell Therapy Center, University of Jordan, Amman, Jordan.,Department of Hematology and Oncology, Jordan University Hospital, Amman, Jordan
| | | | - Nizar Abuharfeil
- Department of Biotechnology and Genetic Engineering, Jordan University of Science and Technology, Irbid, Jordan
| | - Saddam Al Demour
- Department of Urology, School of medicine, University of Jordan, Amman, Jordan, University of Jordan, Amman, Jordan
| | - Abdalla S Awidi
- Cell Therapy Center, University of Jordan, Amman, Jordan.,Department of Hematology and Oncology, Jordan University Hospital, Amman, Jordan
| |
Collapse
|
33
|
Da Silva D, Crous A, Abrahamse H. Photobiomodulation: An Effective Approach to Enhance Proliferation and Differentiation of Adipose-Derived Stem Cells into Osteoblasts. Stem Cells Int 2021; 2021:8843179. [PMID: 33833810 PMCID: PMC8012132 DOI: 10.1155/2021/8843179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 01/07/2023] Open
Abstract
Osteoporosis is regarded as the most common chronic metabolic bone condition in humans. In osteoporosis, bone mesenchymal stem cells (MSCs) have reduced cellular function. Regenerative medicine using adipose-derived stem cell (ADSC) transplantation can promote the growth and strength of new bones, improve bone stability, and reduce the risk of fractures. Various methods have been attempted to differentiate ADSCs to functioning specialized cells for prospective clinical application. However, commonly used therapies have resulted in damage to the donor site and morbidity, immune reactions, carcinogenic generation, and postoperative difficulties. Photobiomodulation (PBM) improves ADSC differentiation and proliferation along with reducing clinical difficulties such as treatment failures to common drug therapies and late initiation of treatment. PBM is a noninvasive, nonthermal treatment that encourages cells to produce more energy and to undergo self-repair by using visible green and red and invisible near-infrared (NIR) radiation. The use of PBM for ADSC proliferation and differentiation has been widely studied with multiple outcomes observed due to laser fluence and wavelength dependence. In this article, the potential for differentiating ADSCs into osteoblasts and the various methods used, including biological induction, chemical induction, and PBM, will be addressed. Likewise, the optimal laser parameters that could improve the proliferation and differentiation of ADSC, translating into clinical success, will be commented on.
Collapse
Affiliation(s)
- Daniella Da Silva
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, South Africa 2028
| | - Anine Crous
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, South Africa 2028
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg, South Africa 2028
| |
Collapse
|
34
|
Zhou S, Li L, Chen C, Chen Y, Zhou L, Zhou FH, Dong J, Wang L. Injectable gelatin microspheres loaded with platelet rich plasma improve wound healing by regulating early inflammation. Int J Med Sci 2021; 18:1910-1920. [PMID: 33850460 PMCID: PMC8040391 DOI: 10.7150/ijms.51060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/15/2021] [Indexed: 12/26/2022] Open
Abstract
We investigated the potential of gelatin microspheres (GMs) loaded with platelet-rich plasma (PRP) to enhance their wound healing effect. Platelets from the PRP were immobilized onto GMs to form biomimetic bioreactor GM+PRP. The therapeutic effect of this agent was further investigated in vivo on a wound-healing model in rats. Wounds were locally injected with phosphate buffered saline (PBS), GM, PRP, and GM+PRP. Wound healing rate, vessel density, and inflammation level were measured histologically, by RT-PCR, and by Western blotting at days 3, 7, 14, and 21. Platelets on GM caused a continuous high release in both interleukin-10 and metalloproteinase-3 compared with PRP alone. Both GM+PRP and PRP successfully accelerated the wound healing process, while GM alone did not improve the wound healing process compared with the untreated control. Wounds treated with GM+PRP resulted in shorter healing period and improved dermal structure. GM+PRP improved angiogenesis in the wound by increasing expression of angiogenic factors. GM+PRP prolonged and enhanced the cytokine release profile compared with PRP. By promoting the inflammatory and angiogenic responses, GM+PRP has the potential to improve wound healing. Our findings demonstrate that GMs are an injectable carrier that enhanced the therapeutic effects of PRP.
Collapse
Affiliation(s)
- Shaolong Zhou
- Aesthetic Medical School, Yichun University, Yichun, 336000, Jiangxi, China
| | - Li Li
- Aesthetic Medical School, Yichun University, Yichun, 336000, Jiangxi, China
| | - Chen Chen
- Aesthetic Medical School, Yichun University, Yichun, 336000, Jiangxi, China
| | - Yi Chen
- Aesthetic Medical School, Yichun University, Yichun, 336000, Jiangxi, China
| | - Linhua Zhou
- Aesthetic Medical School, Yichun University, Yichun, 336000, Jiangxi, China
| | - Fiona H. Zhou
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
- School of Medicine, University of Adelaide, Adelaide, South Australia, 5000, Australia
| | - Jianghui Dong
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Liping Wang
- UniSA Clinical & Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| |
Collapse
|
35
|
Liang Z, Huang D, Nong W, Mo J, Zhu D, Wang M, Chen M, Wei C, Li H. Advanced-platelet-rich fibrin extract promotes adipogenic and osteogenic differentiation of human adipose-derived stem cells in a dose-dependent manner in vitro. Tissue Cell 2021; 71:101506. [PMID: 33607525 DOI: 10.1016/j.tice.2021.101506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/01/2023]
Abstract
Advanced platelet-rich fibrin (A-PRF) is an autogenous biological material obtained from peripheral blood. A-PRF extract (A-PRFe) contains a high concentration of various cytokines that are increasingly appreciated for their roles in improving stem cell repairing function during tissue regeneration. However, the optimal A-PRFe concentration to stimulate stem cells is unknown. This study aimed to identify the optimal concentrations of A-PRFe to promote adipogenic and osteogenic differentiation of human adipose-derived stem cells (ASCs). We produced A-PRFe from A-PRF clots by centrifuging fresh peripheral blood samples and isolated and identified ASCs using surface CD markers and multilineage differentiation potential. Enzyme-linked immunosorbent assay (ELISA) showed the concentrations of several cytokines, including b-FGF, PDGF-BB, and others, increased gradually, peaked on day 7 and then decreased. Cell proliferation assays showed A-PRFe significantly stimulated ASC proliferation, and proliferation significantly increased at higher A-PRFe doses. The degree of adipogenic and osteogenic differentiation increased at higher A-PRFe concentrations in the culture medium, as determined by oil red O and alizarin red staining. Reverse transcription polymerase chain reaction (RT-PCR) showed that expression levels of genes related to adipogenic/osteogenic differentiation (PPARγ2, C/EBPα, FABP4, Adiponectin, and ALP, OPN, OCN, RUNX2), paracrine (HIF-1α, VEGF, IGF-2) and immunoregulation (HSP70, IL-8) function were higher in groups with a higher concentration of A-PRFe than in lower concentration groups. This study demonstrates that A-PRFe is ideal for use in ASC applications in regenerative medicine because it improves biological functions, including proliferation, adipogenic/osteogenic differentiation, and paracrine function in a dose-dependent manner.
Collapse
Affiliation(s)
- Zhijie Liang
- Department of Wound Repair Surgery, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China; Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Donglin Huang
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Wenhai Nong
- Department of Orthopaedics, the People's Hospital of Binyang County, Binyang, Guangxi, China
| | - Jinping Mo
- Department of Orthopaedics, the People's Hospital of Binyang County, Binyang, Guangxi, China
| | - Dandan Zhu
- Department of Wound Repair Surgery, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China
| | - Mengxin Wang
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Maojian Chen
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Changyuan Wei
- Department of Breast Surgery, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Hongmian Li
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Guangxi Medical University & The First People's Hospital of Nanning, Nanning, China.
| |
Collapse
|
36
|
Gentile P, Garcovich S. Systematic Review: Adipose-Derived Mesenchymal Stem Cells, Platelet-Rich Plasma and Biomaterials as New Regenerative Strategies in Chronic Skin Wounds and Soft Tissue Defects. Int J Mol Sci 2021; 22:1538. [PMID: 33546464 PMCID: PMC7913648 DOI: 10.3390/ijms22041538] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022] Open
Abstract
The number of clinical trials evaluating adipose-derived mesenchymal stem cells (AD-MSCs), platelet-rich plasma (PRP), and biomaterials efficacy in regenerative plastic surgery has exponentially increased during the last ten years. AD-MSCs are easily accessible from various fat depots and show intrinsic plasticity in giving rise to cell types involved in wound healing and angiogenesis. AD-MSCs have been used in the treatment of soft tissue defects and chronic wounds, employed in conjunction with a fat grafting technique or with dermal substitute scaffolds and platelet-rich plasma. In this systematic review, an overview of the current knowledge on this topic has been provided, based on existing studies and the authors' experience. A multistep search of the PubMed, MEDLINE, Embase, PreMEDLINE, Ebase, CINAHL, PsycINFO, Clinicaltrials.gov, Scopus database, and Cochrane databases has been performed to identify papers on AD-MSCs, PRP, and biomaterials used in soft tissue defects and chronic wounds. Of the 2136 articles initially identified, 422 articles focusing on regenerative strategies in wound healing were selected and, consequently, only 278 articles apparently related to AD-MSC, PRP, and biomaterials were initially assessed for eligibility. Of these, 85 articles were excluded as pre-clinical, experimental, and in vitro studies. For the above-mentioned reasons, 193 articles were selected; of this amount, 121 letters, expert opinions, commentary, and editorials were removed. The remaining 72 articles, strictly regarding the use of AD-MSCs, PRP, and biomaterials in chronic skin wounds and soft tissue defects, were analyzed. The studies included had to match predetermined criteria according to the patients, intervention, comparator, outcomes, and study design (PICOS) approach. The information analyzed highlights the safety and efficacy of AD-MSCs, PRP, and biomaterials on soft tissue defects and chronic wounds, without major side effects.
Collapse
Affiliation(s)
- Pietro Gentile
- Department of Surgical Science, Plastic and Reconstructive Surgery, “Tor Vergata” University, 00133 Rome, Italy
- Scientific Director of Academy of International Regenerative Medicine & Surgery Societies (AIRMESS), 1201 Geneva, Switzerland
| | - Simone Garcovich
- Institute of Dermatology, F. Policlinico Gemelli IRCSS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
37
|
Straum OK. The optimal platelet concentration in platelet-rich plasma for proliferation of human cells in vitro-diversity, biases, and possible basic experimental principles for further research in the field: A review. PeerJ 2020; 8:e10303. [PMID: 33240635 PMCID: PMC7668201 DOI: 10.7717/peerj.10303] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In the last decades, several in vitro studies have tested the effect of plate-rich plasma (PRP) on the proliferation of human cells in search of a wizard for the use of PRP in a clinical setting. However, the literature displays striking differences regarding this question despite the relatively similar experimental design. The aim of this review is twofold: describe and explain this diversity and suggest basic principles for further in vitro studies in the field. The optimal platelet concentration in vivo will also be discussed. METHODS A search in mainly EMBASE and PubMed was performed to identify in vitro studies that investigate the effect of different PRP concentrations on human cell proliferation. The assessment of bias was based on the principles of "Good Cell Culture Practice" and adapted. RESULTS In total, 965 in vitro studies were detected. After the initial screening, 31 studies remained for full-text screening. A total of 16 studies met the criteria of final inclusion and appeared relatively sound. In general, the studies state consistently that PRP stimulates the proliferation of the human cell. Two main types of experimental techniques were detected: 1. The Fixed PRP Concentration Group using a fixed PRP concentration throughout the experiment, which leads to a substantial decrease in nutrition available at higher concentrations. 2. The Fixed PRP Volume Group using a fixed PRP-to-media ratio (Vol/Vol) throughout the experiment. A general tendency was observed in both groups: when the PRP to media ratio increased (Vol/Vol), the proliferation rate decreased. Further, The Low Leukocyte group observed a substantial higher optimal PRP concentration than The High leukocyte group. No prominent tendencies was seen regarding anticoagulants, activation methods, and blood donor (age or sex). DISCUSSION Two major biases regarding optimal proliferation in vitro is pointed out: 1. Too high PRP volume. It is speculated that the techniques used by some studies led to an adverse growth condition and even cell starvation at higher concentrations. 2. High leukocyte levels. Reduced proliferation rate due to proinflammatory substances released during degranulation of leukocytes. CONCLUSIONS The two main biases may explain the bell-shaped effect of PRP and the detrimental effects at higher platelet concentrations observed in several studies. These biases may also explain the low optimal PRP concentration observed in some studies. Even if one universal optimal PRP concentration does not exist, the review indicates that PRP concentrations in the upper parts of the scale is optimal or at least beneficial. Finally, following basic experimental principles are suggested. 1: The PRP/media ratio (Vol/Vol) should be kept as constant. 2: The PRP/media ratio should provide a sufficient nutrition supply, that is, PRP ≤ 10% (Vol/Vol). 3: The cell density per well (cells/mL) should be defined. 4: Leukocyte level should be kept low, preferable depleted (< 0.1 PLT/µL).
Collapse
Affiliation(s)
- Olav K. Straum
- Faculty of Humanities, Social Sciences, and Education, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
38
|
Beccia E, Carbone A, Cecchino LR, Pedicillo MC, Annacontini L, Lembo F, Di Gioia S, Parisi D, Angiolillo A, Pannone G, Portincasa A, Conese M. Adipose Stem Cells and Platelet-Rich Plasma Induce Vascular-Like Structures in a Dermal Regeneration Template. Tissue Eng Part A 2020; 27:631-641. [PMID: 32907520 DOI: 10.1089/ten.tea.2020.0175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In the context of biointeractive dressings used for enhancing wound healing, the use of stromal vascular fraction (SVF) or adipose-derived stem cells (ASCs) hereof derived has not been fully exploited yet. Noncultured SVF, a heterogeneous mesenchymal population of cells, is attractive in the field of dermal regeneration because it can be instantaneously obtained, avoids genomic alterations, and is comparatively safer than cultured ASCs. Integra® Dermal Regeneration Template (DRT) was sprinkled with ASCs in complete medium supplemented with 10% fetal bovine serum (FBS), or SVF, obtained from emulsified or nonemulsified fat, in medium supplemented with 2% platelet-rich plasma (PRP). The presence and differentiation of cells were evaluated by standard histochemistry and immunohistochemistry, whereas conditioned media were analyzed for vascular endothelial growth factors (VEGF) by ELISA. In vitro experiments were conducted to analyze ASC proliferation in the presence of either FBS or PRP. Deposition of ASCs in medium supplemented with FBS caused their integration into Integra DRT as early as 1 h. ASCs were found as aggregates until 6-10 days without forming organized structures. When seeded onto Integra DRT, SVF cells in medium supplemented with PRP formed aggregates at early times, which at 7 and 10 days organized into vascular-like structures, lined by CD31+ and smooth muscle actin-positive cells. With nonemulsified fat, the lacunar structures did not show an organized distribution of SVF cells. PRP induced ASC proliferation although at lower level than FBS. VEGF secretion was enhanced when fat emulsification was introduced into the protocol. In conclusion, the combination of SVF cells obtained from emulsified fat, PRP, and Integra DRT exhibit synergistic effect on the formation of vessel-like structures indicating a step forward aimed at regenerative surgery for chronic wound healing.
Collapse
Affiliation(s)
- Elisa Beccia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.,Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy
| | - Annalucia Carbone
- Division of Internal Medicine and Chronobiology Unit, IRCCS "Casa Sollievo della Sofferenza," San Giovanni Rotondo, Foggia, Italy
| | | | | | - Luigi Annacontini
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Fedele Lembo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Sante Di Gioia
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Domenico Parisi
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonella Angiolillo
- Department of Medicine and Health Sciences "V. Tiberio," University of Molise, Campobasso, Italy
| | - Giuseppe Pannone
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Aurelio Portincasa
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
39
|
Ferlosio A, Doldo E, Agostinelli S, Costanza G, Centofanti F, Sidoni A, Orlandi A. Cellular retinol binding protein 1 transfection reduces proliferation and AKT-related gene expression in H460 non-small lung cancer cells. Mol Biol Rep 2020; 47:6879-6886. [PMID: 32909215 PMCID: PMC7561531 DOI: 10.1007/s11033-020-05744-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 08/13/2020] [Accepted: 08/28/2020] [Indexed: 12/31/2022]
Abstract
In recent years, new treatments with novel action mechanisms have been explored for advanced non-small cell lung cancer (NSCLC). Retinoids promote cancer cell differentiation and death and their trafficking and action is mediated from specific cytoplasmic and nuclear receptors, respectively. The purpose of this study was to investigate the effect of Cellular retinol binding protein-1 (CRBP-1) transfection in H460 human NSCLC cell line, normally not expressing CRBP-1. H460 cells were transfected by using a vector pTargeT Mammalian expression system carrying the whole sequence of CRBP-1 gene. For proliferation and apoptosis studies, cells were treated with different concentrations of all-trans Retinoic Acid (atRA) and retinol. AKT-related gene expression was analyzed by using western blot and Signosis array and results analysed by one-way analysis of variance (ANOVA) or by t-student test. CRBP-1+ showed reduced proliferation and viability in basal condition and after atRA treatment when compared to empty-transfected H460 cells. Reduced proliferation in CRBP-1+ H460 cells associated to the down-regulation of pAKT/pERK/pEGFR-related genes. In particular, gene array documented the down-regulation of AKT and Stat-3-related genes, including M-Tor, Akt1, Akt2, Akt3, Foxo1, p27, Jun. Restoration of CRBP-1 expression in H460 cells reduced proliferation and viability in both basal condition and after atRA treatment, likely by down-regulating AKT-related gene level. Further studies are needed to better clarify how those CRBP-1-related intracellular pathways contribute to counteract NSCLC progression in order to suggest a potential tool to improve efficacy of retinoid anti lung cancer adjuvant therapy.
Collapse
Affiliation(s)
- Amedeo Ferlosio
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Elena Doldo
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Sara Agostinelli
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Gaetana Costanza
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy.,Dermapathology laboratory, San Gallicano Institute, Rome, Italy
| | - Federica Centofanti
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy
| | - Angelo Sidoni
- Department of Experimental Medicine, Section of Anatomic Pathology and Histology, Medical School, University of Perugia, Perugia, Italy
| | - Augusto Orlandi
- Anatomic Pathology, Department of Biomedicine and Prevention, Tor Vergata University of Rome, Rome, Italy. .,Department of Anatomic Pathology, Tor Vergata Policlinic of Rome, Rome, Italy. .,Institute of Anatomic Pathology, Dept. of Biomedicine and Prevention, Tor Vergata University of Rome, Via Montpellier, 00133, Rome, Italy.
| |
Collapse
|
40
|
Yang J, Chen Z, Pan D, Li H, Shen J. Umbilical Cord-Derived Mesenchymal Stem Cell-Derived Exosomes Combined Pluronic F127 Hydrogel Promote Chronic Diabetic Wound Healing and Complete Skin Regeneration. Int J Nanomedicine 2020; 15:5911-5926. [PMID: 32848396 PMCID: PMC7429232 DOI: 10.2147/ijn.s249129] [Citation(s) in RCA: 287] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 06/10/2020] [Indexed: 12/15/2022] Open
Abstract
Purpose Chronic refractory wounds are a multifactorial comorbidity of diabetes mellitus with the characteristic of impaired vascular networks. Currently, there is a lack of effective treatments for such wounds. Various types of mesenchymal stem cell-derived exosomes (MSC-exos) have been shown to exert multiple therapeutic effects on skin regeneration. We aimed to determine whether a constructed combination of human umbilical cord MSC (hUCMSC)-derived exosomes (hUCMSC-exos) and Pluronic F-127 (PF-127) hydrogel could improve wound healing. Materials and Methods We topically applied human umbilical cord-derived MSC (hUCMSC)-derived exosomes (hUCMSC-exos) encapsulated in a thermosensitive PF-127 hydrogel to a full-thickness cutaneous wound in a streptozotocin-induced diabetic rat model. The material properties and wound healing ability of the hydrogel and cellular responses were analyzed. Results Compared with hUCMSC-exos, PF-127-only or control treatment, the combination of PF-127 and hUCMSC-exos resulted in a significantly accelerated wound closure rate, increased expression of CD31 and Ki67, enhanced regeneration of granulation tissue and upregulated expression of vascular endothelial growth factor (VEGF) and factor transforming growth factor beta-1 (TGFβ-1). Conclusion The efficient delivery of hUCMSC-exos in PF-127 gel and improved exosome ability could promote diabetic wound healing. Thus, this biomaterial-based exosome therapy may represent a new therapeutic approach for cutaneous regeneration of chronic wounds.
Collapse
Affiliation(s)
- Jiayi Yang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Zhiyi Chen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Daoyan Pan
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Huaizhi Li
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou, People's Republic of China.,Shunde Hospital of Southern Medical University, Shunde, People's Republic of China
| |
Collapse
|
41
|
Kothari C, Diorio C, Durocher F. The Importance of Breast Adipose Tissue in Breast Cancer. Int J Mol Sci 2020; 21:ijms21165760. [PMID: 32796696 PMCID: PMC7460846 DOI: 10.3390/ijms21165760] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023] Open
Abstract
Adipose tissue is a complex endocrine organ, with a role in obesity and cancer. Adipose tissue is generally linked to excessive body fat, and it is well known that the female breast is rich in adipose tissue. Hence, one can wonder: what is the role of adipose tissue in the breast and why is it required? Adipose tissue as an organ consists of adipocytes, an extracellular matrix (ECM) and immune cells, with a significant role in the dynamics of breast changes throughout the life span of a female breast from puberty, pregnancy, lactation and involution. In this review, we will discuss the importance of breast adipose tissue in breast development and its involvement in breast changes happening during pregnancy, lactation and involution. We will focus on understanding the biology of breast adipose tissue, with an overview on its involvement in the various steps of breast cancer development and progression. The interaction between the breast adipose tissue surrounding cancer cells and vice-versa modifies the tumor microenvironment in favor of cancer. Understanding this mutual interaction and the role of breast adipose tissue in the tumor microenvironment could potentially raise the possibility of overcoming breast adipose tissue mediated resistance to therapies and finding novel candidates to target breast cancer.
Collapse
Affiliation(s)
- Charu Kothari
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1T 1C2, Canada;
- Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC G1V 4G2, Canada;
| | - Caroline Diorio
- Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC G1V 4G2, Canada;
- Department of Preventive and Social Medicine, Faculty of Medicine, Laval University, Quebec, QC G1T 1C2, Canada
| | - Francine Durocher
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1T 1C2, Canada;
- Cancer Research Centre, CHU de Quebec Research Centre, Quebec, QC G1V 4G2, Canada;
- Correspondence: ; Tel.: +1-(418)-525-4444 (ext. 48508)
| |
Collapse
|
42
|
Gentile P, Garcovich S. Systematic Review-The Potential Implications of Different Platelet-Rich Plasma (PRP) Concentrations in Regenerative Medicine for Tissue Repair. Int J Mol Sci 2020; 21:5702. [PMID: 32784862 PMCID: PMC7460839 DOI: 10.3390/ijms21165702] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022] Open
Abstract
The number of studies evaluating platelet-rich plasma (PRP) concentration has substantially grown in the last fifteen years. A systematic review on this field has been realized by evaluating in the identified studies the in vitro PRP concentration-also analyzing the platelet amount-and the in vivo PRP effects in tissue regeneration compared to any control. The protocol has been developed in agreement with the Preferred Reporting for Items for Systematic Reviews and Meta-Analyses-Protocols (PRISMA-P) guidelines. Multistep research of the PubMed, MEDLINE, Embase, PreMEDLINE, Ebase, CINAHL, PsycINFO, Clinicaltrials.gov, Scopus database and Cochrane databases has permitted to identify articles on different concentrations of PRP in vitro and related in vivo impact for tissue repair. Of the 965 articles initially identified, 30 articles focusing on PRP concentration have been selected and, consequently, only 15 articles have been analyzed. In total, 40% (n = 6) of the studies were related to the fixed PRP Concentration Group used a fixed PRP concentration and altered the platelet concentration by adding the different volumes of the PRP (lysate) to the culture. This technique led to a substantial decrease in nutrition available at higher concentrations. Sixty percent (n = 9) of the studies were related to the fixed PRP Volume Group that used a fixed PRP-to-media ratio (Vol/Vol) throughout the experiment and altered the concentration within the PRP volume. For both groups, when the volume of medium (nutrition) decreases, a lower rate of cell proliferation is observed. A PRP concentration of 1.0 × 106 plt/μL, appears to be optimal thanks to the constant and plentiful capillary nutrition supply and rapid diffusion of growth factors that happen in vivo and it also respects the blood decree-law. The PRP/media ratio should provide a sufficient nutrition supply to prevent cellular starvation, that is, PRP ≤ 10% (Vol/Vol) and thus best mimic the conditions in vivo.
Collapse
Affiliation(s)
- Pietro Gentile
- Surgical Science Department, Plastic and Reconstructive Surgery, “Tor Vergata” University, 00133 Rome, Italy
- Scientific Director of AIRMESS, Academy of International Regenerative Medicine & Surgery Societies, 1201 Geneva, Switzerland
| | - Simone Garcovich
- Institute of Dermatology, F. Policlinico Gemelli IRCSS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
43
|
Abstract
BACKGROUND Autologous fat grafting is a dynamic modality used in plastic surgery as an adjunct to improve functional and aesthetic form. However, current practices in fat grafting for soft-tissue augmentation are plagued by tremendous variability in long-term graft retention, resulting in suboptimal outcomes and repetitive procedures. This systematic review identifies and critically appraises the evidence for various enrichment strategies that can be used to augment and improve the viability of fat grafts. METHODS A comprehensive literature search of the Medline and PubMed databases was conducted for animal and human studies published through October of 2017 with multiple search terms related to adipose graft enrichment agents encompassing growth factors, platelet-rich plasma, adipose-derived and bone marrow stem cells, gene therapy, tissue engineering, and other strategies. Data on level of evidence, techniques, complications, and outcomes were collected. RESULTS A total of 1382 articles were identified, of which 147 met inclusion criteria. The majority of enrichment strategies demonstrated positive benefit for fat graft survival, particularly with growth factors and adipose-derived stem cell enrichment. Platelet-rich plasma and adipose-derived stem cells had the strongest evidence to support efficacy in human studies and may demonstrate a dose-dependent effect. CONCLUSIONS Improved understanding of enrichment strategies contributing to fat graft survival can help to optimize safety and outcomes. Controlled clinical studies are lacking, and future studies should examine factors influencing graft survival through controlled clinical trials in order to establish safety and to obtain consistent outcomes.
Collapse
|
44
|
Cellular retinoic acid binding protein-II expression and its potential role in skin aging. Aging (Albany NY) 2020; 11:1619-1632. [PMID: 30888968 PMCID: PMC6461173 DOI: 10.18632/aging.101813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/01/2019] [Indexed: 12/17/2022]
Abstract
Skin aging is an intricate biological process consisting of intrinsic and extrinsic alterations of epidermal and dermal structures. Retinoids play an important role in epidermal cell growth and differentiation and are beneficial to counteract skin aging. Cellular retinoic acid binding protein-II (CRABP-II) selectively binds all trans-retinoic acid, the most active retinoid metabolite, contributing to regulate intracytoplasmic retinoid trafficking and keratinocyte differentiation. Immunohistochemistry revealed a reduced epidermal and dermal CRABP-II expression in aged human and mouse skin. To better clarify the role of CRABP-II, we investigated age-related skin changes in CRABP-II knock-out mice. We documented an early reduction of keratinocyte layers, proliferation and differentiation rate, dermal and hypodermal thickness, pilosebaceous units and dermal vascularity in CRABP-II knock-out compared with wild-type mice. Ultrastructural investigation documented reduced number and secretion of epidermal lamellar bodies in CRABP-II knock-out compared with wild-type mice. Cultured CRABP-II knock-out-derived dermal fibroblasts proliferated less and showed reduced levels of TGF-β signal-related genes, Col1A1, Col1A2, and increased MMP2 transcripts compared with those from wild-type. Our data strongly support the hypothesis that a reduction of CRABP-II expression accelerates and promotes skin aging, and suggest CRABP-II as a novel target to improve the efficacy of retinoid-mediated anti-aging therapies.
Collapse
|
45
|
Helmy MA, Mohamed AF, Rasheed HM, Fayad AI. A protocol for primary isolation and culture of adipose-derived stem cells and their phenotypic profile. ALEXANDRIA JOURNAL OF MEDICINE 2020. [DOI: 10.1080/20905068.2020.1750863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Myriam A. Helmy
- Clinical and Chemical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Adham F. Mohamed
- Plastic Surgery Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Hadeer M. Rasheed
- Clinical and Chemical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Amira I. Fayad
- Clinical and Chemical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
46
|
Vollono L, Del Duca E, Mazzilli S, Bianchi L, Cosio T, Lanna C, Campione E. A Case of Pincer Nail Successfully Treated with Tazarotene 0.1% Gel. Case Rep Dermatol 2020; 12:114-118. [PMID: 32518543 PMCID: PMC7265718 DOI: 10.1159/000507915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/15/2020] [Indexed: 01/24/2023] Open
Abstract
Pincer nail is a common condition characterized by excessive transverse nail curvature, progressively pinching the nail bed distally, resulting in cosmetic discomfort, pain and functional limitation. Treatment is difficult and often unsatisfactory. Surgical treatment performed by experienced physicians provides good outcomes. However, patients usually hesitate to undergo invasive procedures, preferring conservative treatments. Unfortunately, these mainly offer only temporary relief and recurrence rate is high. Topical tazarotene has been used in several nail conditions, but its potential remains not fully elucidated. We herewith present a case of pincer nails in a 35-year-old woman successfully treated with tazarotene 0.1% gel applied topically twice a day for 3 months who did not experience recurrence at 1-year follow-up. At 1-year follow-up, no recurrence has been observed. To our knowledge, this is the first case of pincer nails successfully treated with tazarotene 0.1% gel. With our report, we suggest topical tazarotene as a novel, effective conservative treatment of milder cases of this common, albeit disturbing condition. Although our report may not be sufficient to generalize the results, it paves the way for larger studies investigating the potential of this fast, noninvasive therapeutic agent.
Collapse
Affiliation(s)
- Laura Vollono
- Dermatology Unit, Department of "Medicina dei Sistemi," University of Rome Tor Vergata, Rome, Italy
| | - Ester Del Duca
- Dermatology Unit, Department of "Medicina dei Sistemi," University of Rome Tor Vergata, Rome, Italy
| | - Sara Mazzilli
- Dermatology Unit, Department of "Medicina dei Sistemi," University of Rome Tor Vergata, Rome, Italy
| | - Luca Bianchi
- Dermatology Unit, Department of "Medicina dei Sistemi," University of Rome Tor Vergata, Rome, Italy
| | - Terenzio Cosio
- Dermatology Unit, Department of "Medicina dei Sistemi," University of Rome Tor Vergata, Rome, Italy
| | - Caterina Lanna
- Dermatology Unit, Department of "Medicina dei Sistemi," University of Rome Tor Vergata, Rome, Italy
| | - Elena Campione
- Dermatology Unit, Department of "Medicina dei Sistemi," University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
47
|
Chen Y, Fan Z, Wang X, Mo M, Zeng SB, Xu RH, Wang X, Wu Y. PI3K/Akt signaling pathway is essential for de novo hair follicle regeneration. Stem Cell Res Ther 2020; 11:144. [PMID: 32245516 PMCID: PMC7118821 DOI: 10.1186/s13287-020-01650-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/21/2020] [Accepted: 03/11/2020] [Indexed: 12/21/2022] Open
Abstract
Background Cultured epidermal stem cells (Epi-SCs) and skin-derived precursors (SKPs) were capable of reconstituting functional hair follicles after implantation, while the signaling pathways that regulate neogenic hair follicle formation are poorly investigated. In this study, we aimed to understand the interactions between Epi-SCs and SKPs during skin organoid formation and to uncover key signal pathways crucial for de novo hair follicle regeneration. Methods To track their fate after transplantation, Epi-SCs derived from neonatal C57BL/6 mice were labeled with tdTomato, and SKPs were isolated from neonatal C57BL/6/GFP mice. A mixture of Epi-SCs-tdTomato and SKPs-EGFP in Matrigel was observed under two-photon microscope in culture and after implantation into excisional wounds in nude mice, to observe dynamic migrations of the cells during hair follicle morphogenesis. Signaling communications between the two cell populations were examined by RNA-Seq analysis. Potential signaling pathways revealed by the analysis were validated by targeting the pathways using specific inhibitors to observe a functional loss in de novo hair follicle formation. Results Two-photon microscopy analysis indicated that when Epi-SCs and SKPs were mixed in Matrigel and cultured, they underwent dynamic migrations resulting in the formation of a bilayer skin-like structure (skin organoid), where Epi-SCs positioned themselves in the outer layer; when the mixture of Epi-SCs and SKPs was grafted into excisional wounds in nude mice, a bilayer structure resembling the epidermis and the dermis formed at the 5th day, and de novo hair follicles generated subsequently. RNA-Seq analysis of the two cell types after incubation in mixture revealed dramatic alterations in gene transcriptome, where PI3K-Akt signaling pathway in Epi-SCs was significantly upregulated; meanwhile, elevated expressions of several growth factors and cytokine potentially activating PI3K were found in SKPs, suggesting active reciprocal communications between them. In addition, inhibition of PI3K or Akt by specific inhibitors markedly suppressed the hair follicle regeneration mediated by Epi-SCs and SKPs. Conclusions Our data indicate that the PI3K-Akt signaling pathway plays a crucial role in de novo hair follicle regeneration, and the finding may suggest potential therapeutic applications in enhancing hair regeneration.
Collapse
Affiliation(s)
- Yu Chen
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Zhimeng Fan
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Xiaoxiao Wang
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Miaohua Mo
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China
| | - Shu Bin Zeng
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China
| | - Ren-He Xu
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Xusheng Wang
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China. .,School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China.
| | - Yaojiong Wu
- State Key Laboratory of Chemical Oncogenomics, and Shenzhen Key Laboratory of Health Sciences and Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China. .,Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, China.
| |
Collapse
|
48
|
Yang C, Luo L, Bai X, Shen K, Liu K, Wang J, Hu D. Highly-expressed micoRNA-21 in adipose derived stem cell exosomes can enhance the migration and proliferation of the HaCaT cells by increasing the MMP-9 expression through the PI3K/AKT pathway. Arch Biochem Biophys 2020; 681:108259. [DOI: 10.1016/j.abb.2020.108259] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 01/06/2023]
|
49
|
The Role of Adipose-Derived Stem Cells, Dermal Regenerative Templates, and Platelet-Rich Plasma in Tissue Engineering-Based Treatments of Chronic Skin Wounds. Stem Cells Int 2020; 2020:7056261. [PMID: 32399048 PMCID: PMC7199611 DOI: 10.1155/2020/7056261] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 11/29/2019] [Indexed: 12/12/2022] Open
Abstract
The continuous improvements in the field of both regenerative medicine and tissue engineering have allowed the design of new and more efficacious strategies for the treatment of chronic or hard-to-heal skin wounds, which represent heavy burden, from a medical and economic point of view. These novel approaches are based on the usage of three key methodologies: stem cells, growth factors, and biomimetic scaffolds. These days, the adipose tissue can be considered the main source of multipotent mesenchymal stem cells, especially adipose-derived stem cells (ASCs). ASCs are easily accessible from various fat depots and show an intrinsic plasticity in giving rise to cell types involved in wound healing and angiogenesis. ASCs can be found in fat grafts, historically used in the treatment of chronic wounds, and have been evaluated as such in both animal models and human trials, to exploit their capability of accelerating wound closure and inducing a correct remodeling of the newly formed fibrovascular tissue. Since survival and fitness of ASCs need to be improved, they are now employed in conjunction with advanced wound dressings, together with dermal regenerative templates and platelet-rich plasma (as a source of growth and healing factors). In this work, we provide an overview of the current knowledge on the topic, based on existing studies and on our own experience.
Collapse
|
50
|
Abstract
Autologous fat grafting is increasingly being used as a method for the repair of facial soft tissue defects and facial rejuvenation, given its low risk of adverse effects and high efficacy. However, the unpredictability of graft retention is a limitation of this procedure. In addition, there is no standard procedure to date for autologous fat grafting. Different methods have been developed to increase the retention of grafted fat. For instance, platelet concentrates have been used to directly deliver bioactive factors to grafted fat. Platelet concentrates also provide incidental therapeutic benefits by enhancing the persistence of fat grafted in the face via the release of growth factors and cytokines. In this review, we describe current strategies for improving the survival of facial fat grafts, mainly focusing on the application of growth factors/cytokines and platelet concentrates to fat grafting.
Collapse
|