1
|
Chen L, An S, Liu Y, Jiang Q, Ge Y, Yu G. Lead exposure disrupts cytoskeletal arrangement and perturbs glucose metabolism in nerve cells through activation of the RhoA/ROCK signaling pathway. J Trace Elem Med Biol 2025; 89:127663. [PMID: 40315746 DOI: 10.1016/j.jtemb.2025.127663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/20/2025] [Accepted: 04/24/2025] [Indexed: 05/04/2025]
Abstract
Lead (Pb) is a heavy metal environmental pollutant with strong biological toxicity. Our previous study suggested that Pb may impair learning and memory by disrupting cytoskeletal structure and inhibiting the expression of synaptic plasticity-related proteins in mice. However, the exact mechanism of Pb-induced cytoskeletal damage remains unclear. In this study, Neuro-2a cells and Kunming mice were used to explore the neurotoxic mechanism of Pb. The actin dynamics were observed via laser confocal microscopy. The ATP levels and ATPase activity in Neuro-2a cells was measured. In addition, the mRNA and protein expression levels of RhoA/ROCK/Cofilin signaling pathway in brain tissues and Neuro-2a cells was measured, and the mRNA expression levels of glucose metabolism rate-limiting enzymes were detected. Our results showed that Pb induces nerve cell damage and cytoskeletal abnormalities. Western blot and qRT-PCR analyses revealed that Pb activated the RhoA/ROCK/Cofilin signaling pathway. Additionally, ATPase activity significantly decreased following Pb treatment, whereas ATP levels markedly increased in the 50 μM Pb group. In addition, Pb disrupts brain glucose metabolism through affect the transcription of rate-limiting enzymes of glucose metabolism. Overall, these findings suggest that Pb activates the RhoA/ROCK/Cofilin signaling pathway, leading to cytoskeletal damage. Moreover, Pb exposure alters glucose metabolism enzyme activity and ATP production, disrupting the balance between F-actin and G-actin and ultimately affecting neuronal structure and function. These results may provide a better understanding of lead-induced nerve damage.
Collapse
Affiliation(s)
- Lingli Chen
- Postdoctoral Research Station in Biological Sciences, Henan Normal University, Xinxiang, China; College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Siyuan An
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yuye Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Qian Jiang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Yaming Ge
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China.
| | - Guoying Yu
- Postdoctoral Research Station in Biological Sciences, Henan Normal University, Xinxiang, China; Pingyuan Laboratory, Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Center for Outstanding Overseas Scientists of Organ Fibrosis, State Key Laboratory of Cell Differentiation and Regulation, College of Life Science, Henan Normal University, Xinxiang, China.
| |
Collapse
|
2
|
Zou X, Yuan M, Zhou W, Cai A, Cheng Y, Zhan Z, Zhang Y, Pan Z, Hu X, Zheng S, Liu T, Huang P. SOX17 Prevents Endothelial-Mesenchymal Transition of Pulmonary Arterial Endothelial Cells in Pulmonary Hypertension through Mediating TGF-β/Smad2/3 Signaling. Am J Respir Cell Mol Biol 2025; 72:364-379. [PMID: 39392679 DOI: 10.1165/rcmb.2023-0355oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/11/2024] [Indexed: 10/12/2024] Open
Abstract
Endothelial-to-mesenchymal transition (EndMT) has been reported to contribute to pulmonary vascular remodeling in patients with pulmonary hypertension (PH). Our study demonstrates that SOX17, a member of the SOX (SRY-Box) transcription factor family, plays a role in regulating pulmonary arterial homeostasis through extracellular vesicles in an autocrine and paracrine manner. However, the role of SOX17 in mediating EndMT of pulmonary arterial endothelial cells (PAECs) and its intracellular mechanisms remain unclear. Here we present evidence showing that downregulation of SOX17 expression is accompanied by significant pulmonary arterial EndMT and activation of the TGF-β/Smad2/3 signaling pathway in patients with idiopathic PH and rats with PH induced by Sugen 5416/hypoxia. In primary human PAECs, canonical TGF-β (transforming growth factor-β) signaling inhibits the expression of SOX17. Overexpression of SOX17 reverses TGF-β- and hypoxia-induced EndMT. These findings suggest that SOX17 is essential for human PAECs to undergo TGF-β-mediated EndMT. Mechanistically, our data demonstrate that SOX17 prevents TGF-β-induced EndMT by suppressing ROCK1 (Rho-associated kinase 1) expression through binding to the specific promoter region of ROCK1, thereby inhibiting MYPT1 (myosin phosphatase target subunit 1) and MLC (myosin light chain) phosphorylation. Furthermore, we show that Tie2-Cre rats with endothelial cell-specific overexpression of SOX17 are protected against Sugen/hypoxia-induced EndMT and subsequent pulmonary vascular remodeling. Consistent with the in vitro results, compared with Tie2-Cre rats treated with Sugen/hypoxia alone, rats overexpressing SOX17 exhibited reduced levels of ROCK1 as well as decreased phosphorylation levels of MYPT1 and MLC. Overall, our studies unveil a novel TGF-β/SOX17/ROCK1 pathway involved in regulating PAECs' EndMT process, and we propose the targeting of SOX17 as a potential therapeutic strategy for alleviating pulmonary vascular remodeling in PH.
Collapse
Affiliation(s)
- Xiaozhou Zou
- Center for Clinical Pharmacy, Cancer Center, and Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Mengnan Yuan
- Center for Clinical Pharmacy, Cancer Center, and Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Wei Zhou
- Institute of Hepatobiliary Diseases of Wuhan University, Zhongnan Hospital of Wuhan University, Transplant Center of Wuhan University, Hubei Key Laboratory of Medical Technology on Transplantation, Wuhan, China
| | - Anqi Cai
- Center for Clinical Pharmacy, Cancer Center, and Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Yili Cheng
- Center for Clinical Pharmacy, Cancer Center, and Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Zibo Zhan
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiwen Zhang
- Center for Clinical Pharmacy, Cancer Center, and Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Zongfu Pan
- Center for Clinical Pharmacy, Cancer Center, and Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Xiaoping Hu
- Center for Clinical Pharmacy, Cancer Center, and Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Shuilian Zheng
- Center for Clinical Pharmacy, Cancer Center, and Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| | - Ting Liu
- Department of Pharmacy, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; and
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, and Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Hangzhou, China
| |
Collapse
|
3
|
Qi D, Yang S, Zou W, Xu X, Wang H, Li R, Zhang S. Four Novel Rho-associated Coiled-coil Protein Kinase 1 Inhibitors Suppressing Cytoskeleton and Movement in Breast Cancer Cells. Chem Biodivers 2025:e202500258. [PMID: 40107880 DOI: 10.1002/cbdv.202500258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 03/22/2025]
Abstract
Rho-associated coiled-coil protein kinase 1 (ROCK1), a key downstream effector of the Rho GTP-binding protein within the Ras superfamily, regulates cellular metabolism, growth, differentiation, and signaling pathways associated with various diseases. We identified four novel ROCK1 inhibitors through virtual screening technology and enzymatic activity assays-bilobetin, SCH 772984, puerarin 6''-O-xyloside, and GSK 650394. Their IC50 values were 11.82, 12.19, 15.27, and 18.09 µM, respectively. To evaluate their ROCK1-related efficacy, we assessed their effects on the proliferation, cytoskeletal organization, migration, and invasion of MDA-MB-231 breast cancer cells. These compounds effectively reduced cell viability with IC50 values ranging from 20 to 32 µM. Additionally, a marked decrease in EdU uptake confirmed their potent inhibition of cell proliferation. Confocal fluorescence imaging revealed that suppression stems primarily from cytoskeletal disruption, thereby impairing migration and invasion, with in vitro inhibition rates of 70%-85% and 69%-86%, respectively. These findings not only enrich the types of ROCK1 inhibitors but also provide novel molecular scaffolds for the development of anti-breast cancer drugs.
Collapse
Affiliation(s)
- Danshi Qi
- School of Pharmacy, Qinghai University, Xining, China
| | - Shaohua Yang
- Department of Basic Medical Sciences, Medical College of Qinghai University, Xining, China
| | - Wenxing Zou
- School of Pharmacy, Qinghai University, Xining, China
| | - Xiaoxia Xu
- Department of Basic Medical Sciences, Medical College of Qinghai University, Xining, China
| | - Haiyan Wang
- Department of Basic Medical Sciences, Medical College of Qinghai University, Xining, China
| | - Ruilian Li
- School of Pharmacy, Qinghai University, Xining, China
| | - Shoude Zhang
- School of Pharmacy, Qinghai University, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
4
|
Wei X, Wang L, Xing Z, Chen P, He X, Tuo X, Su H, Zhou G, Liu H, Fan Y. Glutamine synthetase accelerates re-endothelialization of vascular grafts by mitigating endothelial cell dysfunction in a rat model. Biomaterials 2025; 314:122877. [PMID: 39378796 DOI: 10.1016/j.biomaterials.2024.122877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/25/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Endothelial cell (EC) dysfunction within the aorta has long been recognized as a prominent contributor to the progression of atherosclerosis and the subsequent failure of vascular graft transplantation. However, the direct relationship between EC dysfunction and vascular remodeling remains to be investigated. In this study, we sought to address this knowledge gap by employing a strategy involving the release of glutamine synthetase (GS), which effectively activated endothelial metabolism and mitigates EC dysfunction. To achieve this, we developed GS-loaded small-diameter vascular grafts (GSVG) through the electrospinning technique, utilizing dual-component solutions consisting of photo-crosslinkable hyaluronic acid and polycaprolactone. Through an in vitro model of oxidized low-density lipoprotein-induced injury in human umbilical vein endothelial cells (HUVECs), we provided compelling evidence that the GSVG promoted the restoration of motility, angiogenic sprouting, and proliferation in dysfunctional HUVECs by enhancing cellular metabolism. Furthermore, the sequencing results indicated that these effects were mediated by miR-122-5p-related signaling pathways. Remarkably, the GSVG also exhibited regulatory capabilities in shifting vascular smooth muscle cells towards a contractile phenotype, mitigating inflammatory responses and thereby preventing vascular calcification. Finally, our data demonstrated that GS incorporation significantly enhanced re-endothelialization of vascular grafts in a ferric chloride-injured rat model. Collectively, our results offer insights into the promotion of re-endothelialization in vascular grafts by restoring dysfunctional ECs through the augmentation of cellular metabolism.
Collapse
Affiliation(s)
- Xinbo Wei
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Li Wang
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Zheng Xing
- School of Pharmacy, Changzhou University, Changzhou, 213164, PR China
| | - Peng Chen
- Department of Ultrasound, The Third Medical Center, Chinese PLA General Hospital, Beijing, PR China
| | - Xi He
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Xiaoye Tuo
- Department of Reparative and Reconstructive Surgery, 9 Jinyuanzhuang Rd., Peking University Shougang Hospital, PR China
| | - Haoran Su
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Gang Zhou
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China.
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China.
| |
Collapse
|
5
|
Gowtham A, Kaundal RK. Exploring the ncRNA landscape in exosomes: Insights into wound healing mechanisms and therapeutic applications. Int J Biol Macromol 2025; 292:139206. [PMID: 39732230 DOI: 10.1016/j.ijbiomac.2024.139206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Exosomal non-coding RNAs (ncRNAs), including miRNAs, lncRNAs, and circRNAs, have emerged as crucial modulators in cellular signaling, influencing wound healing processes. Stem cell-derived exosomes, which serve as vehicles for these ncRNAs, show remarkable therapeutic potential due to their ability to modulate wound healing stages, from initial inflammation to collagen formation. These ncRNAs act as molecular signals, regulating gene expression and protein synthesis necessary for cellular responses in healing. Wound healing is a complex, staged process involving inflammation, hemostasis, fibroblast proliferation, angiogenesis, and tissue remodeling. Stem cell-derived exosomal ncRNAs enhance these stages by reducing excessive inflammation, promoting anti-inflammatory responses, guiding fibroblast and keratinocyte maturation, enhancing vascularization, and ensuring organized collagen deposition. Their molecular cargo, particularly ncRNAs, specifically targets pathways to aid chronic wound repair and support scarless regeneration. This review delves into the unique composition and signaling roles of Stem cell-derived exosomes and ncRNAs, highlighting their impact across wound healing stages and their potential as innovative therapeutics. Understanding the interaction between exosomal ncRNAs and cellular signaling pathways opens new avenues in regenerative medicine, positioning Stem cell-derived exosomes and their ncRNAs as promising molecular-level interventions in wound healing.
Collapse
Affiliation(s)
- A Gowtham
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India.
| |
Collapse
|
6
|
Cairns M, Marais E, Joseph D, Essop MF. The Role of Chronic Stress in the Pathogenesis of Ischemic Heart Disease in Women. Compr Physiol 2025; 15:e70000. [PMID: 39903543 PMCID: PMC11793136 DOI: 10.1002/cph4.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Psychological stress has emerged as a critical risk factor for cardiovascular disease, especially in women. While female participation in clinical research has improved, sex-specific data analysis and reporting often remain inadequate, limiting our ability to draw definitive conclusions for women. Conversely, preclinical studies consistently demonstrate adverse effects of stress on female health, yet the molecular mechanisms underlying this association remain elusive. Evidence suggests that female IHD pathogenesis is more complex than in males, involving multiple factors, including inflammation, contractile dysfunction, bioenergetic impairment, and remodeling. However, many of these mechanisms are primarily derived from male studies, and molecular investigations in female models are limited, hindering our understanding of the underlying biological pathways. This is particularly concerning given the increasing prevalence of ischemic heart disease in postmenopausal women. In order to fully elucidate the impact of stress on female cardiac health and develop targeted interventions, further preclinical research on female models is essential.
Collapse
Affiliation(s)
- Megan Cairns
- Division of Medical PhysiologyCentre for Cardio‐Metabolic Research in Africa (CARMA)Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Erna Marais
- Division of Medical PhysiologyCentre for Cardio‐Metabolic Research in Africa (CARMA)Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| | - Danzil Joseph
- Department of Physiological Sciences, Center for Cardio‐Metabolic Research in Africa (CARMA)Stellenbosch UniversityStellenboschSouth Africa
| | - M. Faadiel Essop
- Division of Medical PhysiologyCentre for Cardio‐Metabolic Research in Africa (CARMA)Faculty of Medicine and Health SciencesStellenbosch UniversityCape TownSouth Africa
| |
Collapse
|
7
|
Lateef OM, Foote C, Power G, Manrique-Acevedo C, Padilla J, Martinez-Lemus LA. LIM kinases in cardiovascular health and disease. Front Physiol 2024; 15:1506356. [PMID: 39744707 PMCID: PMC11688343 DOI: 10.3389/fphys.2024.1506356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/28/2024] [Indexed: 01/14/2025] Open
Abstract
The Lim Kinase (LIMK) family of serine/threonine kinases is comprised of LIMK1 and LIMK2, which are central regulators of cytoskeletal dynamics via their well-characterized roles in promoting actin polymerization and destabilizing the cellular microtubular network. The LIMKs have been demonstrated to modulate several fundamental physiological processes, including cell cycle progression, cell motility and migration, and cell differentiation. These processes play important roles in maintaining cardiovascular health. However, LIMK activity in healthy and pathological states of the cardiovascular system is poorly characterized. This review highlights the cellular and molecular mechanisms involved in LIMK activation and inactivation, examining its roles in the pathophysiology of vascular and cardiac diseases such as hypertension, aneurysm, atrial fibrillation, and valvular heart disease. It addresses the LIMKs' involvement in processes that support cardiovascular health, including vasculogenesis, angiogenesis, and endothelial mechanotransduction. The review also features how LIMK activity participates in endothelial cell, vascular smooth muscle cell, and cardiomyocyte physiology and its implications in pathological states. A few recent preclinical studies demonstrate the therapeutic potential of LIMK inhibition. We conclude by proposing that future research should focus on the potential clinical relevance of LIMK inhibitors as therapeutic agents to reduce the burden of cardiovascular disease and improve patient outcomes.
Collapse
Affiliation(s)
- Olubodun M. Lateef
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri Columbia, Columbia, MO, United States
| | - Christopher Foote
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
| | - Gavin Power
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
| | - Camila Manrique-Acevedo
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Columbia, MO, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO, United States
| | - Jaume Padilla
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO, United States
- Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO, United States
| | - Luis A. Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Medical Pharmacology and Physiology, University of Missouri Columbia, Columbia, MO, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, MO, United States
| |
Collapse
|
8
|
Shen J, Su X, Wang S, Wang Z, Zhong C, Huang Y, Duan S. RhoJ: an emerging biomarker and target in cancer research and treatment. Cancer Gene Ther 2024; 31:1454-1464. [PMID: 38858534 DOI: 10.1038/s41417-024-00792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
RhoJ is a Rho GTPase that belongs to the Cdc42 subfamily and has a molecular weight of approximately 21 kDa. It can activate the p21-activated kinase family either directly or indirectly, influencing the activity of various downstream effectors and playing a role in regulating the cytoskeleton, cell movement, and cell cycle. RhoJ's expression and activity are controlled by multiple upstream factors at different levels, including expression, subcellular localization, and activation. High RhoJ expression is generally associated with a poor prognosis for cancer patients and is mainly due to an increased number of tumor blood vessels and abnormal expression in malignant cells. RhoJ promotes tumor progression through several pathways, particularly in tumor angiogenesis and drug resistance. Clinical data also indicates that high RhoJ expression is closely linked to the pathological features of tumor malignancy. There are various cancer treatment methods that target RhoJ signaling, such as direct binding to inhibit the RhoJ effector pocket, inhibiting RhoJ expression, blocking RhoJ upstream and downstream signals, and indirectly inhibiting RhoJ's effect. RhoJ is an emerging cancer biomarker and a significant target for future cancer clinical research and drug development.
Collapse
Affiliation(s)
- Jinze Shen
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Xinming Su
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Shana Wang
- Department of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Zehua Wang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Chenming Zhong
- Medical Genetics Center, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yi Huang
- Department of Neurosurgery, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China.
| | - Shiwei Duan
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Liu Y, Hao Q, Lu X, Wang P, Guo D, Zhang X, Pan X, Wu Q, Bi H. Electroacupuncture improves retinal function in myopia Guinea pigs probably via inhibition of the RhoA/ROCK2 signaling pathway. Heliyon 2024; 10:e35750. [PMID: 39170407 PMCID: PMC11337061 DOI: 10.1016/j.heliyon.2024.e35750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/02/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
Objective To investigate the effect of electroacupuncture (EA) on retinal function in guinea pigs with negative lens-induced myopia (LIM) by inhibiting the RhoA/ROCK2 signaling pathway. Methods Guinea pigs were randomly divided into normal control (NC) group, LIM group, EA group, SHAM acupoint (SHAM) group, and electro-acupuncture + ROCK pathway inhibitor Y27632 (EA + Y27632) group. The refraction, axial length, retinal blood flow density, choroidal vascular index, retinal physiological function, the contents of total antioxidant capacity (T-AOC), catalase (CAT), glutathione (GSH), superoxide dismutase (SOD) and malondialdehyde (MDA) of each group were determined. The changes in retinal tissue structure were observed by hematoxylin and eosin (H&E) staining, and the expression of the RhoA/ROCK2 signaling pathway-related molecules in the retina was measured by real-time quantitative polymerase chain reaction (qPCR) and Western blot. Results Myopic refraction, AL, and MDA content in the LIM and SHAM groups were significantly increased, retinal blood flow density and CVI, SOD, GSH, CAT, T-AOC content were decreased. After EA intervention, myopic refraction, AL, and MDA content decreased, retinal blood flow density and CVI, SOD, GSH, CAT, T-AOC content were increased. H&E staining showed that the thickness of the guinea pig retina, the thickness of the inner and outer layers of the nucleus, and the number of cells were significantly increased after EA intervention. qPCR and western blot analyses showed that the expression of RhoA、ROCK2、MLC、CollagenⅠ、MMP-2、TIMP-2 and α-SMA were elevated in the LIM and SHAM group than those in the NC group. Compared with the LIM group, the expression of EA group was significantly decreased. Conclusions Electroacupuncture can improve retinal function by improving retinal blood flow, reducing retinal oxidative damage, inhibiting RhoA/ROCK2 signaling pathway and controlling extracellular matrix remodeling, thus delaying the occurrence and development of myopia.
Collapse
Affiliation(s)
- Yijie Liu
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, 250014, China
| | - Qi Hao
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, 250014, China
| | - Xiuzhen Lu
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, Shandong Province, 250002, China
| | - Pubo Wang
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong Province, 250014, China
| | - Dadong Guo
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, Shandong Province, 250002, China
| | - Xiuyan Zhang
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, Shandong Province, 250002, China
| | - Xuemei Pan
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, Shandong Province, 250002, China
| | - Qiuxin Wu
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, Shandong Province, 250002, China
| | - Hongsheng Bi
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Shandong Academy of Eye Disease Prevention and Therapy, Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Jinan, Shandong Province, 250002, China
| |
Collapse
|
10
|
Mohamed RH, Abdel Hay NH, Fawzy NM, Tamim YM, Doaa Karem MM, Yehia DAY, Abdel Maksoud OM, Abdelrahim DS. Targeting mevalonate pathway by zoledronate ameliorated pulmonary fibrosis in a rat model: Promising therapy against post-COVID-19 pulmonary fibrosis. Fundam Clin Pharmacol 2024; 38:703-717. [PMID: 38357833 DOI: 10.1111/fcp.12994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND Rho kinase (ROCK) pathway plays a critical role in post-COVID-19 pulmonary fibrosis (PCPF) and its intervention with angiotensin-converting enzyme 2 (ACE2) and vascular endothelial growth factor (VEGF) will be a potential therapeutic target. OBJECTIVES The present study was conducted to investigate the efficacy of zoledronate (ZA) on carbon tetrachloride (CCl4) induced pulmonary fibrosis (PF) in rats through targeting ACE2, ROCK, and VEGF signaling pathways. METHODS Fifty male Wistar rats were divided into five groups: control, vehicle-treated, PF, PF-ZA 50, and PF-ZA 100 groups. ZA was given in two different doses 100 and 50 μg/kg/week intraperitoneally. After anesthesia, mean arterial blood pressure (MBP) was measured. After scarification, lung coefficient was calculated. Lung levels of ACE 2, interleukin-1β (IL-1β), transforming growth factor-β (TGF-β), VEGF, glutathione (GSH), and superoxide dismutase (SOD) were measured. Expression of ROCK, phosphorylated myosin phosphatase target subunit 1 (P-MYPT1), and matrix metalloproteinase (MMP-1), along with histopathological changes and immune-histochemical staining for lung α-smooth muscle actin (α-SMA), tumor necrosis factor-alpha (TNFα), and caspase-3, were evaluated. RESULTS ZA significantly prevented the decrease in MBP. ZA significantly increased ACE2, GSH, and SOD and significantly decreased IL-1β, TGF-β, and VEGF in lung in comparison to PF group. ZA prevented the histopathological changes induced by CCl4. ZA inhibited lung expression of ROCK, P-MYPT1, MMP-1, α-SMA, TNFα, and caspase-3 with significant differences favoring the high dose intervention. CONCLUSION ZA in a dose-dependent manner prevented the pathological effect of CCl4 in the lung by targeting mevalonate pathway. It could be promising therapy against PCPF.
Collapse
Affiliation(s)
- Reham Hussein Mohamed
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nesma Hussein Abdel Hay
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nesma Mohamed Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Yomna M Tamim
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - M M Doaa Karem
- Department of Histology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Omnia M Abdel Maksoud
- Department of Medical Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dina S Abdelrahim
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Department of Pharmacology, Faculty of Medicine, Modern Technology and Information University, Cairo, Egypt
| |
Collapse
|
11
|
Cao Y, Wang Y, Li W, Feng J, Chen Y, Chen R, Hu L, Wei J. Fasudil attenuates oxidative stress-induced partial epithelial-mesenchymal transition of tubular epithelial cells in hyperuricemic nephropathy via activating Nrf2. Eur J Pharmacol 2024; 975:176640. [PMID: 38750716 DOI: 10.1016/j.ejphar.2024.176640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/24/2024]
Abstract
Anti-partial epithelial-mesenchymal transition (pEMT) treatment of renal tubular epithelial cells (TECs) represents a promising therapeutic approach. Hyperuricemia nephropathy (HN) arises as a consequence of hyperuricemia (HUA)-induced tubulointerstitial fibrosis (TIF). Studies have suggested that the Ras homolog member A (RhoA)/Rho-associated kinase (ROCK) pathway is a crucial signaling transduction system in renal fibrosis. Fasudil, a RhoA/ROCK inhibitor, has exhibited the potential to prevent fibrosis progress. However, its impact on the pEMT of TECs in HN remains unclear. Here, an HN rat model and an uric acid (UA)-stimulated human kidney 2 (HK2) cell model were established and treated with Fasudil to explore its effects. Furthermore, the underlying mechanism of action involved in the attenuation of pEMT in TECs by Fasudil during HN was probed by using multiple molecular approaches. The HN rat model exhibited significant renal dysfunction and histopathological damage, whereas in vitro and in vivo experiments further confirmed the pEMT status accompanied by RhoA/ROCK pathway activation and oxidative stress in tubular cells exposed to UA. Notably, Fasudil ameliorated these pathological changes, and this was consistent with the trend of ROCK silencing in vitro. Mechanistically, we identified the Neh2 domain of nuclear factor erythroid 2-related factor 2 (Nrf2) as a target of Fasudil for the first time. Fasudil targets Nrf2 activation and antagonizes oxidative stress to attenuate the pEMT of TECs in HN. Our findings suggest that Fasudil attenuates oxidative stress-induced pEMT of TECs in HN by targeting Nrf2 activation. Thus, Fasudil is a potential therapeutic agent for the treatment of HN.
Collapse
Affiliation(s)
- Yun Cao
- Department of Nephrology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Yanni Wang
- Department of Nephrology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Weiwei Li
- Division of Nephrology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China; Hubei Selenium and Human Health Institute, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi, Hubei, China
| | - Jianan Feng
- Department of Nephrology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Yao Chen
- Department of Nephrology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Ruike Chen
- Department of Nephrology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Langtao Hu
- Department of Nephrology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China
| | - Jiali Wei
- Department of Nephrology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, Hainan, China.
| |
Collapse
|
12
|
Fei X, Jung S, Kwon S, Kim J, Corson TW, Seo SY. Challenges and opportunities of developing small-molecule therapies for age-related macular degeneration. Arch Pharm Res 2024; 47:538-557. [PMID: 38902481 PMCID: PMC11753178 DOI: 10.1007/s12272-024-01503-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Age-related macular degeneration (AMD) is the leading cause of vision loss in senior adults. The disease can be categorized into two types: wet AMD and dry AMD. Wet AMD, also known as exudative or neovascular AMD, is less common but more severe than dry AMD and is responsible for 90% of the visual impairment caused by AMD and affects 20 million people worldwide. Current treatment options mainly involve biologics that inhibit the vascular endothelial growth factor or complement pathways. However, these treatments have limitations such as high cost, injection-related risks, and limited efficacy. Therefore, new therapeutic targets and strategies have been explored to improve the outcomes of patients with AMD. A promising approach is the use of small-molecule drugs that modulate different factors involved in AMD pathogenesis, such as tyrosine kinases and integrins. Small-molecule drugs offer advantages, such as oral administration, low cost, good penetration, and increased specificity for the treatment of wet and dry AMD. This review summarizes the current status and prospects of small-molecule drugs for the treatment of wet AMD. These advances are expected to support the development of effective and targeted treatments for patients with AMD.
Collapse
Affiliation(s)
- Xiang Fei
- College of Pharmacy, Gachon University, Incheon, 21936, South Korea
| | - Sooyun Jung
- College of Pharmacy, Gachon University, Incheon, 21936, South Korea
| | - Sangil Kwon
- College of Pharmacy, Gachon University, Incheon, 21936, South Korea
| | - Jiweon Kim
- College of Pharmacy, Gachon University, Incheon, 21936, South Korea
| | - Timothy W Corson
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, M5S 3M2, Canada
| | - Seung-Yong Seo
- College of Pharmacy, Gachon University, Incheon, 21936, South Korea.
| |
Collapse
|
13
|
Hijaze E, Gildor T, Seidel R, Layous M, Winter M, Bertinetti L, Politi Y, Ben-Tabou de-Leon S. ROCK and the actomyosin network control biomineral growth and morphology during sea urchin skeletogenesis. eLife 2024; 12:RP89080. [PMID: 38573316 PMCID: PMC10994658 DOI: 10.7554/elife.89080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
Biomineralization had apparently evolved independently in different phyla, using distinct minerals, organic scaffolds, and gene regulatory networks (GRNs). However, diverse eukaryotes from unicellular organisms, through echinoderms to vertebrates, use the actomyosin network during biomineralization. Specifically, the actomyosin remodeling protein, Rho-associated coiled-coil kinase (ROCK) regulates cell differentiation and gene expression in vertebrates' biomineralizing cells, yet, little is known on ROCK's role in invertebrates' biomineralization. Here, we reveal that ROCK controls the formation, growth, and morphology of the calcite spicules in the sea urchin larva. ROCK expression is elevated in the sea urchin skeletogenic cells downstream of the Vascular Endothelial Growth Factor (VEGF) signaling. ROCK inhibition leads to skeletal loss and disrupts skeletogenic gene expression. ROCK inhibition after spicule formation reduces the spicule elongation rate and induces ectopic spicule branching. Similar skeletogenic phenotypes are observed when ROCK is inhibited in a skeletogenic cell culture, indicating that these phenotypes are due to ROCK activity specifically in the skeletogenic cells. Reduced skeletal growth and enhanced branching are also observed under direct perturbations of the actomyosin network. We propose that ROCK and the actomyosin machinery were employed independently, downstream of distinct GRNs, to regulate biomineral growth and morphology in Eukaryotes.
Collapse
Affiliation(s)
- Eman Hijaze
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of HaifaHaifaIsrael
| | - Tsvia Gildor
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of HaifaHaifaIsrael
| | - Ronald Seidel
- B CUBE Center for Molecular Bioengineering, Technische Universität DresdenDresdenGermany
| | - Majed Layous
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of HaifaHaifaIsrael
| | - Mark Winter
- Department of Electrical Engineering, Computer Science and Mathematics, Technische Universiteit DelftDelftNetherlands
| | - Luca Bertinetti
- B CUBE Center for Molecular Bioengineering, Technische Universität DresdenDresdenGermany
| | - Yael Politi
- B CUBE Center for Molecular Bioengineering, Technische Universität DresdenDresdenGermany
| | - Smadar Ben-Tabou de-Leon
- Department of Marine Biology, Leon H. Charney School of Marine Sciences, University of HaifaHaifaIsrael
| |
Collapse
|
14
|
Palomo I, Wehinger S, Andrés V, García‐García FJ, Fuentes E. RhoA/rho kinase pathway activation in age-associated endothelial cell dysfunction and thrombosis. J Cell Mol Med 2024; 28:e18153. [PMID: 38568071 PMCID: PMC10989549 DOI: 10.1111/jcmm.18153] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 04/05/2024] Open
Abstract
The small GTPase RhoA and the downstream Rho kinase (ROCK) regulate several cell functions and pathological processes in the vascular system that contribute to the age-dependent risk of cardiovascular disease, including endothelial dysfunction, excessive permeability, inflammation, impaired angiogenesis, abnormal vasoconstriction, decreased nitric oxide production and apoptosis. Frailty is a loss of physiological reserve and adaptive capacity with advanced age and is accompanied by a pro-inflammatory and pro-oxidative state that promotes vascular dysfunction and thrombosis. This review summarises the role of the RhoA/Rho kinase signalling pathway in endothelial dysfunction, the acquisition of the pro-thrombotic state and vascular ageing. We also discuss the possible role of RhoA/Rho kinase signalling as a promising therapeutic target for the prevention and treatment of age-related cardiovascular disease.
Collapse
Affiliation(s)
- Iván Palomo
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Thrombosis and Healthy Aging Research CenterUniversidad de TalcaTalcaChile
| | - Sergio Wehinger
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Thrombosis and Healthy Aging Research CenterUniversidad de TalcaTalcaChile
| | - Vicente Andrés
- Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV)MadridSpain
| | - Francisco J. García‐García
- Department of Geriatric MedicineHospital Universitario de Toledo, Instituto de Investigación de Castilla La Mancha (IDISCAM), CIBERFES (ISCIII)ToledoSpain
| | - Eduardo Fuentes
- Department of Clinical Biochemistry and Immunohematology, Faculty of Health Sciences, Medical Technology School, Thrombosis and Healthy Aging Research CenterUniversidad de TalcaTalcaChile
| |
Collapse
|
15
|
Yang C, Wang D. Antibiotic bone cement accelerates diabetic foot wound healing: Elucidating the role of ROCK1 protein expression. Int Wound J 2024; 21:e14590. [PMID: 38531354 PMCID: PMC10965272 DOI: 10.1111/iwj.14590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/08/2023] [Indexed: 03/28/2024] Open
Abstract
Clinical studies indicate antibiotic bone cement with propeller flaps improves diabetic foot wound repair and reduces amputation rates, but the molecular mechanisms, particularly key proteins' role remain largely unexplored. This study assessed the efficacy of antibiotic bone cement for treating diabetic foot wounds, focusing on molecular impact on ROCK1. Sixty patients were randomized into experimental (EXP, n = 40) and control (CON, n = 20) groups, treated with antibiotic bone cement and negative pressure. Wound healing rate, amputation rate, wound secretion culture and C-reactive protein (CRP) changes, were monitored. Comprehensive molecular investigations were conducted and animal experiments were performed to further validate the findings. Statistical methods were employed to verify significant differences between the groups and treatment outcomes. The EXP group showed significant improvements in wound healing (χ 2 $$ {\chi}^2 $$ = 11.265, p = 0.004) and reduced amputation rates. Elevated levels of ROCK1, fibroblasts and VGF were observed in the trauma tissue post-treatment in the experimental group compared to pre-treatment and the control group (all p < 0.05). Improved trauma secretion culture and CRP were also noted in the EXP group (all p < 0.05). The study suggests that antibiotic bone cement enhances diabetic foot wound healing, possibly via upregulation of ROCK1. Further research is needed to elucidate the underlying molecular mechanisms and broader clinical implications.
Collapse
Affiliation(s)
- Chenglan Yang
- Soochow University School of MedicineSoochow UniversitySuzhouJiangsuChina
| | - Dali Wang
- Department of Burn Plastic SurgeryAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
16
|
Jiang Y, Tong W, Li Y, Ma Q, Chen Y. Melatonin inhibits the formation of intraplaque neovessels in ApoE-/- mice via PPARγ- RhoA-ROCK pathway. Biochem Biophys Res Commun 2024; 696:149391. [PMID: 38184922 DOI: 10.1016/j.bbrc.2023.149391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND According to former research, the atherosclerotic plaque is thought to be aggravated by intraplaque neovessels (IPN) and intraplaque hemorrhage (IPH). Intriguingly, a lower incidence of IPH was found in plaque treated with melatonin. In this study, we attempted to investigate the impact and underlying mechanism regarding the influences of melatonin upon IPN. METHODS A mouse model was established by subjecting the high fat diet (HFD)-fed ApoE-/- mice to tandem stenosis (TS) surgery with melatonin and GW9662, a PPARγ antagonist, being given by gavage. In vitro experiment was conducted with HUVECs exposing to according treatments of VEGF, melatonin, GW9662, or Y27632. RESULTS Plaque and IPN were attenuated by treatment with melatonin, which was then reversed by blocking PPARγ. Western blotting results showed that melatonin increased PPARγ and decreased RhoA/ROCK signaling in carotid artery. Elevated RhoA/ROCK signaling was observed in melatonin-treated mice when PPARγ was blocked. In accordance with it, experiments using protein and mRNA from HUVECs revealed that melatonin inhibited the RhoA/ROCK signaling by enhancing PPARγ. According to in vitro study, melatonin was able to inhibit cell migration and angiogenesis, which was aborted by GW9662. Blockage of ROCK using Y27632 was able to cease the effect of GW9662 and restored the suppression on cell migration and angiogenesis by melatonin. CONCLUSIONS Our study demonstrates that melatonin is able to curb development of plaque and IPN formation by inhibiting the migration of endothelial cells via PPARγ- RhoA-ROCK pathway. That provides a therapeutic potential for both melatonin and PPARγ agonist targeting IPN, IPH, and atherosclerotic plaque.
Collapse
Affiliation(s)
- YuFan Jiang
- School of Medicine, Nankai University, Tianjin, China; Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wei Tong
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yueyang Li
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qiang Ma
- Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - YunDai Chen
- School of Medicine, Nankai University, Tianjin, China; Department of Cardiology, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
17
|
Li D, Tan X, Zheng L, Tang H, Hu S, Zhai Q, Jing X, Liang P, Zhang Y, He Q, Jian G, Fan D, Ji P, Chen T, Zhang H. A Dual-Antioxidative Coating on Transmucosal Component of Implant to Repair Connective Tissue Barrier for Treatment of Peri-Implantitis. Adv Healthc Mater 2023; 12:e2301733. [PMID: 37660274 DOI: 10.1002/adhm.202301733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/10/2023] [Indexed: 09/04/2023]
Abstract
Since the microgap between implant and surrounding connective tissue creates the pass for pathogen invasion, sustained pathological stimuli can accelerate macrophage-mediated inflammation, therefore affecting peri-implant tissue regeneration and aggravate peri-implantitis. As the transmucosal component of implant, the abutment therefore needs to be biofunctionalized to repair the gingival barrier. Here, a mussel-bioinspired implant abutment coating containing tannic acid (TA), cerium and minocycline (TA-Ce-Mino) is reported. TA provides pyrogallol and catechol groups to promote cell adherence. Besides, Ce3+ /Ce4+ conversion exhibits enzyme-mimetic activity to remove reactive oxygen species while generating O2 , therefore promoting anti-inflammatory M2 macrophage polarization to help create a regenerative environment. Minocycline is involved on the TA surface to create local drug storage for responsive antibiosis. Moreover, the underlying therapeutic mechanism is revealed whereby the coating exhibits exogenous antioxidation from the inherent properties of Ce and TA and endogenous antioxidation through mitochondrial homeostasis maintenance and antioxidases promotion. In addition, it stimulates integrin to activate PI3K/Akt and RhoA/ROCK pathways to enhance VEGF-mediated angiogenesis and tissue regeneration. Combining the antibiosis and multidimensional orchestration, TA-Ce-Mino repairs soft tissue barriers and effector cell differentiation, thereby isolating the immune microenvironment from pathogen invasion. Consequently, this study provides critical insight into the design and biological mechanism of abutment surface modification to prevent peri-implantitis.
Collapse
Affiliation(s)
- Dize Li
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Xi Tan
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Liwen Zheng
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Han Tang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Shanshan Hu
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Qiming Zhai
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Xuan Jing
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, P. R. China
| | - Panpan Liang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Yuxin Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Qingqing He
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Guangyu Jian
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Dongqi Fan
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Tao Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
| | - Hongmei Zhang
- Stomatological Hospital of Chongqing Medical University, Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing Medical University, Chongqing, 401147, P. R. China
- Molecular Oncology Laboratory, Department of Orthopedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| |
Collapse
|
18
|
Guo X, Fan A, Qi X, Liu D, Huang J, Lin W. Indoloquinazoline alkaloids suppress angiogenesis and inhibit metastasis of melanoma cells. Bioorg Chem 2023; 141:106873. [PMID: 37734192 DOI: 10.1016/j.bioorg.2023.106873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/10/2023] [Accepted: 09/17/2023] [Indexed: 09/23/2023]
Abstract
Metastasis is the leading cause of cancer-related mortality, targeting angiogenesis emerges as a therapeutic strategy for the treatment of melanoma metastasis. Discovery of new antiangiogenic compounds with specific mechanism of action is still desired. In present study, a bioassay-guidance uncovers the EtOAc extract of a marine-derived fungus Aspergillus clavutus LZD32-24 with significant inhibitory activity against the angiogenesis in Tg (fli1a: EGFP) zebrafish model. Extensive chromatographic fractionation led to the isolation of 48 indoloquinazoline alkaloids, including 21 new analogues namely clavutoines A-U (1-21). Their structures were determined by the spectroscopic data, including the ECD, single crystal X-ray diffraction and quantum chemical calculation for the configurational assignments. Among the bioactive analogues, quinadoline B (QB) showed the most efficacy to suppress the zebrafish vascular outgrowth in zebrafish embryos. QB markedly inhibited the migration, invasion and tube formation with weak cytotoxicity in human umbilical vein endothelial cells (HUVECs). Investigation of the mode of action revealed QB suppressed the ROCK/MYPT1/MLC2/coffin and FAK /Src signaling pathways, and subsequently disrupted actin cytoskeletal organization. In addition, QB reduced the number of new vessels sprouting from the ex vivo chick chorioallantoic membrane (CAM), and inhibited the metastasis of B16F10 melanoma cells in lung of C57BL/6 mice through suppressing angiogenesis. These findings suggest that QB is a potential lead for the development of new antiangiogenic agent to inhibit melanoma metastasis.
Collapse
Affiliation(s)
- Xingchen Guo
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Aili Fan
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Xinyi Qi
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Dong Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China
| | - Jian Huang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China.
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, PR China; Ningbo Institute of Marine Medicine, Peking University, Beijing 100191, PR China.
| |
Collapse
|
19
|
Mannan A, Dhiamn S, Garg N, Singh TG. Pharmacological modulation of Sonic Hedgehog signaling pathways in Angiogenesis: A mechanistic perspective. Dev Biol 2023; 504:58-74. [PMID: 37739118 DOI: 10.1016/j.ydbio.2023.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
The Sonic hedgehog (SHh) signaling pathway is an imperative operating network that helps in regulates the critical events during the development processes like multicellular embryo growth and patterning. Disruptions in SHh pathway regulation can have severe consequences, including congenital disabilities, stem cell renewal, tissue regeneration, and cancer/tumor growth. Activation of the SHh signal occurs when SHh binds to the receptor complex of Patch (Ptc)-mediated Smoothened (Smo) (Ptc-smo), initiating downstream signaling. This review explores how pharmacological modulation of the SHh pathway affects angiogenesis through canonical and non-canonical pathways. The canonical pathway for angiogenesis involves the activation of angiogenic cytokines such as fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), placental growth factor (PGF), hepatocyte growth factor (HGF), platelet-derived growth factor (PDGF), stromal cell-derived factor 1α, transforming growth factor-β1 (TGF-β1), and angiopoietins (Ang-1 and Ang-2), which facilitate the process of angiogenesis. The Non-canonical pathway includes indirect activation of certain pathways like iNOS/Netrin-1/PKC, RhoA/Rock, ERK/MAPK, PI3K/Akt, Wnt/β-catenin, Notch signaling pathway, and so on. This review will provide a better grasp of the mechanistic approach of SHh in mediating angiogenesis, which can aid in the suppression of certain cancer and tumor growths.
Collapse
Affiliation(s)
- Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Sonia Dhiamn
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.
| |
Collapse
|
20
|
Jiang R, Zhou Y, Gao Q, Han L, Hong Z. ZC3H4 governs epithelial cell migration through ROCK/p-PYK2/p-MLC2 pathway in silica-induced pulmonary fibrosis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104301. [PMID: 37866415 DOI: 10.1016/j.etap.2023.104301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
BACKGROUND Increased epithelial migration capacity is a key step accompanying epithelial-mesenchymal transition (EMT). Our lab has described that ZC3H4 mediated EMT in silicosis. Here, we aimed to explore the mechanisms of ZC3H4 by which to stimulate epithelial cell migration. METHODS Silicon dioxide (SiO2)-induced pulmonary fibrosis (PF) animal models were administered by intratracheal instillation in C57BL/6 J mice. Pathological analysis and 2D migration assay were established to uncover the pulmonary fibrotic lesions and epithelial cell migration, respectively. Inhibitors targeting ROCK/p-PYK2/p-MLC2 and CRISPR/Cas9 plasmids targeting ZC3H4 were administrated to explore the signaling pathways. RESULTS 1) SiO2 upregulated epithelial migration in pulmonary fibrotic lesions. 2) ZC3H4 modulated SiO2-induced epithelial migration. 3) ZC3H4 governed epithelial migration through ROCK/p-PYK2/p-MLC2 signaling pathway. CONCLUSIONS ZC3H4 regulates epithelial migration through the ROCK/p-PYK2/p-MLC2 signaling pathway, providing the possibility that molecular drugs targeting ZC3H4-overexpression may exert effects on pulmonary fibrosis induced by silica.
Collapse
Affiliation(s)
- Rong Jiang
- Jiangsu Health Vocational College, Nanjing, Jiangsu Province, China
| | - Yichao Zhou
- Department of Occupation Disease Prevention and Cure, Changzhou Wujin District Center for Disease Control and Prevention, Changzhou, Jiangsu Province, China
| | - Qianqian Gao
- Department of Occupation Disease Prevention and Cure, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China; Department of Respiratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Lei Han
- Department of Occupation Disease Prevention and Cure, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu Province, China.
| | - Zhen Hong
- Jiangsu Health Vocational College, Nanjing, Jiangsu Province, China.
| |
Collapse
|
21
|
Yeh JL, Kuo CH, Shih PW, Hsu JH, I-Chen P, Huang YH. Xanthine derivative KMUP-1 ameliorates retinopathy. Biomed Pharmacother 2023; 165:115109. [PMID: 37406513 DOI: 10.1016/j.biopha.2023.115109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/17/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023] Open
Abstract
Retinal neovascularization (RNV) and cell apoptosis observed in retinopathy are the most common cause of vision loss worldwide. Increasing vascular endothelial growth factor (VEGF), which was driven by hypoxia or inflammation, would result in RNV. This study investigated the anti-inflammatory and anti-apoptotic xanthine-based derivative KMUP-1 on hypoxia-induced conditions in vitro and in vivo. In the oxygen-induced retinopathy animal model, KMUP-1 mitigated vaso-obliteration and neovascularization. In the cell model of hypoxic endothelium cultured at 1% O2, KMUP-1 inhibited endothelial migration and tube formation and had no cytotoxic effect on cell growth. Upregulation of pro-angiogenic factors, HIF-1α and VEGF, and pro-inflammatory cytokines, IL-1β and TNF-α, expression in the retinal-derived endothelial cells, RF/6 A cells, upon hypoxia stimulation, was suppressed by KMUP-1 treatment. RF/6 A cells treated with KMUP-1 showed a reduction of PI3K/Akt, ERK, and RhoA/ROCKs signaling pathways and induction of protective pathways such as eNOS and soluble guanylyl cyclase at 1% O2. Furthermore, KMUP-1 decreased the expression of VEGF, ICAM-1, TNF-α, and IL-1β and increased the BCL-2/BAX ratio in the oxygen-induced retinopathy mouse retina samples. In conclusion, the results of this study suggest that KMUP-1 has potential therapeutic value in retinopathy due to its triple effects on anti-angiogenesis, anti-inflammation, and anti-apoptosis in hypoxic endothelium.
Collapse
Affiliation(s)
- Jwu-Lai Yeh
- Department of Pharmacology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, 80424 Kaohsiung, Taiwan
| | - Cheng-Hsiang Kuo
- International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan 70101, Taiwan
| | - Po-Wen Shih
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Jong-Hau Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; Department of Pediatrics, School of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Peng I-Chen
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Yi-Hsun Huang
- Department of Ophthalmology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
22
|
Zhu C, Zhou Q, Wang Z, Zhang J, Xu C, Ruan D. Growth differentiation factor 5 inhibits lipopolysaccharide-mediated pyroptosis of nucleus pulposus mesenchymal stem cells via RhoA signaling pathway. Mol Biol Rep 2023; 50:6337-6347. [PMID: 37310547 DOI: 10.1007/s11033-023-08547-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/23/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Degenerative disc disease(DDD)is one of the most important causes of low back pain (LBP). Programmed death of human nucleus pulposus mesenchymal stem cells (NPMSCs) plays an important role in the progression of DDD. Growth differentiation factor-5 (GDF-5) is a protein that promotes chondrogenic differentiation, and has been reported to slow the expression of inflammatory factors in nucleus pulposus cells. Compared with those in normal rats, MRI T2-weighted images show hypointense in the central nucleus pulposus region of the intervertebral disc in GDF-5 knockout rats. METHODS AND RESULTS We aimed to evaluate the role of GDF-5 and Ras homolog family member A (RhoA) in NPMSCs. We used lipopolysaccharide (LPS) to simulate the inflammatory environment in degenerative disc disease, and performed related experiments on the effects of GDF-5 on NPMSCs, including the effects of pyroptosis, RhoA protein, and the expression of extracellular matrix components, and the effects of GDF-5, on NPMSCs. In addition, the effect of GDF-5 on chondroid differentiation of NPMSCs was included. The results showed that the addition of GDF-5 inhibited the LPS-induced pyroptosis of NPMSCs, and further analysis of its mechanism showed that this was achieved by activating the RhoA signaling pathway. CONCLUSION These findings suggest that GDF-5 plays an important role in inhibiting the pyroptosis of NPMSCs and GDF-5 may have potential for degenerative disc disease gene-targeted therapy in the future.
Collapse
Affiliation(s)
- Chao Zhu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Department of Orthopedic Surgery, The Sixth Medical Centre of PLA General Hospital, Beijing, 100048, China
| | - Qing Zhou
- Department of Orthopedic Surgery, The Sixth Medical Centre of PLA General Hospital, Beijing, 100048, China
- Department of Orthopedic Surgery, Navy Clinical College of Anhui Medical University, Beijing, 100048, China
| | - Zuqiang Wang
- Department of Orthopedic Surgery, The Sixth Medical Centre of PLA General Hospital, Beijing, 100048, China
| | - Junyou Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
- Department of Orthopedic Surgery, The Sixth Medical Centre of PLA General Hospital, Beijing, 100048, China
| | - Cheng Xu
- Department of Orthopedic Surgery, The Sixth Medical Centre of PLA General Hospital, Beijing, 100048, China
| | - Dike Ruan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
- Department of Orthopedic Surgery, The Sixth Medical Centre of PLA General Hospital, Beijing, 100048, China.
| |
Collapse
|
23
|
Liu W, Lu JY, Wang YJ, Xu XX, Chen YC, Yu SX, Xiang XW, Chen XZ, Jiu Y, Gao H, Sheng M, Chen ZJ, Hu X, Li D, Maiuri P, Huang X, Ying T, Xu GL, Pang DW, Zhang ZL, Liu B, Liu YJ. Vaccinia virus induces EMT-like transformation and RhoA-mediated mesenchymal migration. J Med Virol 2023; 95:e29041. [PMID: 37621182 DOI: 10.1002/jmv.29041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
The emerging outbreak of monkeypox is closely associated with the viral infection and spreading, threatening global public health. Virus-induced cell migration facilitates viral transmission. However, the mechanism underlying this type of cell migration remains unclear. Here we investigate the motility of cells infected by vaccinia virus (VACV), a close relative of monkeypox, through combining multi-omics analyses and high-resolution live-cell imaging. We find that, upon VACV infection, the epithelial cells undergo epithelial-mesenchymal transition-like transformation, during which they lose intercellular junctions and acquire the migratory capacity to promote viral spreading. After transformation, VACV-hijacked RhoA signaling significantly alters cellular morphology and rearranges the actin cytoskeleton involving the depolymerization of robust actin stress fibers, leading-edge protrusion formation, and the rear-edge recontraction, which coordinates VACV-induced cell migration. Our study reveals how poxviruses alter the epithelial phenotype and regulate RhoA signaling to induce fast migration, providing a unique perspective to understand the pathogenesis of poxviruses.
Collapse
Affiliation(s)
- Wei Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Jia-Yin Lu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Ya-Jun Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Xin-Xin Xu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Yu-Chen Chen
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Sai-Xi Yu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Xiao-Wei Xiang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Xue-Zhu Chen
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Yaming Jiu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Hai Gao
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Mengyao Sheng
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Zheng-Jun Chen
- State Key Laboratory of Cell Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xinyao Hu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, College of Life Sciences, Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, College of Life Sciences, Institute of Biophysics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Paolo Maiuri
- Department of Molecular Medicine and Medical Biotechnology, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Xinxin Huang
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tianlei Ying
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Guo-Liang Xu
- Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Frontiers Science Center for New Organic Matter, Research Center for Analytical Sciences, Frontiers Science Center for Cell Responses, College of Chemistry, Nankai University, Tianjin, China
| | - Zhi-Ling Zhang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, China
| | - Baohong Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| | - Yan-Jun Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Shanghai Stomatological Hospital, Institutes of Biomedical Sciences, Department of Chemistry, Fudan University, Shanghai, China
| |
Collapse
|
24
|
Shou Y, Teo XY, Wu KZ, Bai B, Kumar ARK, Low J, Le Z, Tay A. Dynamic Stimulations with Bioengineered Extracellular Matrix-Mimicking Hydrogels for Mechano Cell Reprogramming and Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300670. [PMID: 37119518 PMCID: PMC10375194 DOI: 10.1002/advs.202300670] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Cells interact with their surrounding environment through a combination of static and dynamic mechanical signals that vary over stimulus types, intensity, space, and time. Compared to static mechanical signals such as stiffness, porosity, and topography, the current understanding on the effects of dynamic mechanical stimulations on cells remains limited, attributing to a lack of access to devices, the complexity of experimental set-up, and data interpretation. Yet, in the pursuit of emerging translational applications (e.g., cell manufacturing for clinical treatment), it is crucial to understand how cells respond to a variety of dynamic forces that are omnipresent in vivo so that they can be exploited to enhance manufacturing and therapeutic outcomes. With a rising appreciation of the extracellular matrix (ECM) as a key regulator of biofunctions, researchers have bioengineered a suite of ECM-mimicking hydrogels, which can be fine-tuned with spatiotemporal mechanical cues to model complex static and dynamic mechanical profiles. This review first discusses how mechanical stimuli may impact different cellular components and the various mechanobiology pathways involved. Then, how hydrogels can be designed to incorporate static and dynamic mechanical parameters to influence cell behaviors are described. The Scopus database is also used to analyze the relative strength in evidence, ranging from strong to weak, based on number of published literatures, associated citations, and treatment significance. Additionally, the impacts of static and dynamic mechanical stimulations on clinically relevant cell types including mesenchymal stem cells, fibroblasts, and immune cells, are evaluated. The aim is to draw attention to the paucity of studies on the effects of dynamic mechanical stimuli on cells, as well as to highlight the potential of using a cocktail of various types and intensities of mechanical stimulations to influence cell fates (similar to the concept of biochemical cocktail to direct cell fate). It is envisioned that this progress report will inspire more exciting translational development of mechanoresponsive hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Yufeng Shou
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Xin Yong Teo
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Kenny Zhuoran Wu
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Bingyu Bai
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Arun R. K. Kumar
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Jessalyn Low
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Zhicheng Le
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Andy Tay
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- NUS Tissue Engineering ProgramNational University of SingaporeSingapore117510Singapore
| |
Collapse
|
25
|
Zhang M, Xu T, Tong D, Li S, Yu X, Liu B, Jiang L, Liu K. Research advances in endometriosis-related signaling pathways: A review. Biomed Pharmacother 2023; 164:114909. [PMID: 37210898 DOI: 10.1016/j.biopha.2023.114909] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/23/2023] Open
Abstract
Endometriosis (EM) is characterized by the existence of endometrial mucosa outside the uterine cavity, which causesinfertility, persistent aches, and a decline in women's quality of life. Both hormone therapies and nonhormone therapies, such as NSAIDs, are ineffective, generic categories of EM drugs. Endometriosis is a benign gynecological condition, yet it shares a number of features with cancer cells, including immune evasion, survival, adhesion, invasion, and angiogenesis. Several endometriosis-related signaling pathways are comprehensively reviewed in this article, including E2, NF-κB, MAPK, ERK, PI3K/Akt/mTOR, YAP, Wnt/β-catenin, Rho/ROCK, TGF-β, VEGF, NO, iron, cytokines and chemokines. To find and develop novel medications for the treatment of EM, it is essential to implicitly determine the molecular pathways that are disordered during EM development. Additionally, research on the shared pathways between EM and tumors can provide hypotheses or suggestions for endometriosis therapeutic targets.
Collapse
Affiliation(s)
- Manlin Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Tongtong Xu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Deming Tong
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Siman Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaodan Yu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Boya Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lili Jiang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Kuiran Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
26
|
Jiang TT, Ji CL, Yu LJ, Song MK, Li Y, Liao Q, Wei T, Olatunji OJ, Zuo J, Han J. Resveratrol-induced SIRT1 activation inhibits glycolysis-fueled angiogenesis under rheumatoid arthritis conditions independent of HIF-1α. Inflamm Res 2023; 72:1021-1035. [PMID: 37016140 DOI: 10.1007/s00011-023-01728-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 04/06/2023] Open
Abstract
OBJECTIVE This study investigated the impacts of SIRT1 activation on rheumatoid arthritis (RA)-related angiogenesis. METHODS HUVECs were cultured by different human serum. Intracellular metabolites were quantified by UPLC-MS. Next, HUVECs and rat vascular epithelial cells under different inflammatory conditions were treated by a SIRT1 agonist resveratrol (RSV). Cytokines and biochemical indicators were detected by corresponding kits. Protein and mRNA expression levels were assessed by immunoblotting and PCR methods, respectively. Angiogenesis capabilities were evaluated by migration, wound-healing and tube-formation experiments. To down-regulate certain signals, gene-specific siRNA were applied. RESULTS Metabolomics study revealed the accelerated glycolysis in RA serum-treated HUVECs. It led to ATP accumulation, but did not affect GTP levels. RSV inhibited pro-angiogenesis cytokines production and glycolysis in both the cells, and impaired the angiogenesis potentials. These effects were mimicked by an energy metabolism interrupter bikini in lipopolysaccharide (LPS)-primed HUVECs, largely independent of HIF-1α. Both RSV and bikinin can inhibit the activation of the GTP-dependent pathway Rho/ROCK and reduce VEGF production. Abrogation of RhoA signaling reinforced HIF-1α silencing-brought changes in LPS-stimulated HUVECs, and overshadowed the anti-angiogenesis potentials of RSV. CONCLUSION Glycolysis provides additional energy to sustain Rho/ROCK activation in RA subjects, which promotes VEGF-driven angiogenesis and can be inhibited by SIRT1 activation.
Collapse
Affiliation(s)
- Tian-Tian Jiang
- Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
| | - Cong-Lan Ji
- School of Pharmacy, Anhui College of Traditional Chinese Medicine, Wuhu, 241000, China
| | - Li-Jun Yu
- Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
| | - Meng-Ke Song
- Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
| | - Yan Li
- Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
| | - Qiang Liao
- Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, China
| | - Tuo Wei
- Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China
| | | | - Jian Zuo
- Xin'an Medicine Research Center, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, 241000, China.
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institution of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230000, China.
- Anhui Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wuhu, 241000, China.
| | - Jun Han
- Anhui Provincial Engineering Laboratory for Screening and Re-Evaluation of Active Compounds of Herbal Medicines in Southern Anhui, Wuhu, 241000, China.
- School of Pharmacy, Wannan Medical College, Wuhu, 241000, China.
| |
Collapse
|
27
|
Xie Y, Yue L, Shi Y, Su X, Gan C, Liu H, Xue T, Ye T. Application and Study of ROCK Inhibitors in Pulmonary Fibrosis: Recent Developments and Future Perspectives. J Med Chem 2023; 66:4342-4360. [PMID: 36940432 DOI: 10.1021/acs.jmedchem.2c01753] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
Abstract
Rho-associated coiled-coil-containing kinases (ROCKs), serine/threonine protein kinases, were initially identified as downstream targets of the small GTP-binding protein Rho. Pulmonary fibrosis (PF) is a lethal disease with limited therapeutic options and a particularly poor prognosis. Interestingly, ROCK activation has been demonstrated in PF patients and in animal PF models, making it a promising target for PF treatment. Many ROCK inhibitors have been discovered, and four of these have been approved for clinical use; however, no ROCK inhibitors are approved for the treatment of PF patients. In this article, we describe ROCK signaling pathways and the structure-activity relationship, potency, selectivity, binding modes, pharmacokinetics (PKs), biological functions, and recently reported inhibitors of ROCKs in the context of PF. We will also focus our attention on the challenges to be addressed when targeting ROCKs and discuss the strategy of ROCK inhibitor use in the treatment of PF.
Collapse
Affiliation(s)
- Yuting Xie
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Yue
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yaojie Shi
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingping Su
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Cailing Gan
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongyao Liu
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Taixiong Xue
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tinghong Ye
- Sichuan University-Oxford University Huaxi Gastrointestinal Cancer Centre, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
28
|
Duess JW, Gosemann JH, Kaskova Gheorghescu A, Puri P, Thompson J. Y-27632 Impairs Angiogenesis on Extra-Embryonic Vasculature in Post-Gastrulation Chick Embryos. TOXICS 2023; 11:134. [PMID: 36851009 PMCID: PMC9962381 DOI: 10.3390/toxics11020134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Y-27632 inhibits Rho-associated coiled-coil-containing protein kinase (ROCK) signaling, which is involved in various embryonic developmental processes, including angiogenesis, by controlling actin cytoskeleton assembly and cell contractility. Administration of Y-27632 impairs cytoskeletal arrangements in post-gastrulation chick embryos, leading to ventral body wall defects (VBWDs). Impaired angiogenesis has been hypothesized to contribute to VBWDs. ROCK is essential in transmitting signals downstream of vascular endothelial growth factor (VEGF). VEGF-mediated angiogenesis induces gene expressions and alterations of the actin cytoskeleton upon binding to VEGF receptors (VEGFRs). The aim of this study was to investigate effects of Y-27632 on angiogenesis in post-gastrulation chick embryos during early embryogenesis. After 60 h incubation, embryos in shell-less culture were treated with Y-27632 or vehicle for controls. Y-27632-treated embryos showed reduced extra-embryonic blood vessel formation with impaired circulation of the yolk sac, confirmed by fractal analysis. Western blot confirmed impaired ROCK downstream signaling by decreased expression of phosphorylated myosin light chain. Interestingly, RT-PCR demonstrated increased gene expression of VEGF and VEGFR-2 1 h post-treatment. Protein levels of VEGF were higher in Y-27632-treated embryos at 8 h following treatment, whereas no difference was seen in membranes. We hypothesize that administration of Y-27632 impairs vessel formation during angiogenesis, which may contribute to failure of VWB closure, causing VBWDs.
Collapse
Affiliation(s)
- Johannes W. Duess
- Department of Pediatric Surgery, University of Leipzig, 04103 Leipzig, Germany
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, 12 Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Belfield, 4 Dublin, Ireland
| | - Jan-Hendrik Gosemann
- Department of Pediatric Surgery, University of Leipzig, 04103 Leipzig, Germany
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, 12 Dublin, Ireland
| | | | - Prem Puri
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, 12 Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Belfield, 4 Dublin, Ireland
| | - Jennifer Thompson
- National Children’s Research Centre, Our Lady’s Children’s Hospital, Crumlin, 12 Dublin, Ireland
- School of Medicine and Medical Science, University College Dublin, Belfield, 4 Dublin, Ireland
| |
Collapse
|
29
|
Li Y, Lih TSM, Dhanasekaran SM, Mannan R, Chen L, Cieslik M, Wu Y, Lu RJH, Clark DJ, Kołodziejczak I, Hong R, Chen S, Zhao Y, Chugh S, Caravan W, Naser Al Deen N, Hosseini N, Newton CJ, Krug K, Xu Y, Cho KC, Hu Y, Zhang Y, Kumar-Sinha C, Ma W, Calinawan A, Wyczalkowski MA, Wendl MC, Wang Y, Guo S, Zhang C, Le A, Dagar A, Hopkins A, Cho H, Leprevost FDV, Jing X, Teo GC, Liu W, Reimers MA, Pachynski R, Lazar AJ, Chinnaiyan AM, Van Tine BA, Zhang B, Rodland KD, Getz G, Mani DR, Wang P, Chen F, Hostetter G, Thiagarajan M, Linehan WM, Fenyö D, Jewell SD, Omenn GS, Mehra R, Wiznerowicz M, Robles AI, Mesri M, Hiltke T, An E, Rodriguez H, Chan DW, Ricketts CJ, Nesvizhskii AI, Zhang H, Ding L. Histopathologic and proteogenomic heterogeneity reveals features of clear cell renal cell carcinoma aggressiveness. Cancer Cell 2023; 41:139-163.e17. [PMID: 36563681 PMCID: PMC9839644 DOI: 10.1016/j.ccell.2022.12.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/18/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022]
Abstract
Clear cell renal cell carcinomas (ccRCCs) represent ∼75% of RCC cases and account for most RCC-associated deaths. Inter- and intratumoral heterogeneity (ITH) results in varying prognosis and treatment outcomes. To obtain the most comprehensive profile of ccRCC, we perform integrative histopathologic, proteogenomic, and metabolomic analyses on 305 ccRCC tumor segments and 166 paired adjacent normal tissues from 213 cases. Combining histologic and molecular profiles reveals ITH in 90% of ccRCCs, with 50% demonstrating immune signature heterogeneity. High tumor grade, along with BAP1 mutation, genome instability, increased hypermethylation, and a specific protein glycosylation signature define a high-risk disease subset, where UCHL1 expression displays prognostic value. Single-nuclei RNA sequencing of the adverse sarcomatoid and rhabdoid phenotypes uncover gene signatures and potential insights into tumor evolution. In vitro cell line studies confirm the potential of inhibiting identified phosphoproteome targets. This study molecularly stratifies aggressive histopathologic subtypes that may inform more effective treatment strategies.
Collapse
Affiliation(s)
- Yize Li
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Tung-Shing M Lih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Saravana M Dhanasekaran
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Rahul Mannan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Marcin Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yige Wu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Rita Jiu-Hsien Lu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - David J Clark
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Iga Kołodziejczak
- International Institute for Molecular Oncology, 60-203 Poznań, Poland; Postgraduate School of Molecular Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Runyu Hong
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Siqi Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Yanyan Zhao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Seema Chugh
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wagma Caravan
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Nataly Naser Al Deen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Noshad Hosseini
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Yuanwei Xu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Kyung-Cho Cho
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Yingwei Hu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Yuping Zhang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chandan Kumar-Sinha
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Anna Calinawan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Matthew A Wyczalkowski
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Michael C Wendl
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Mathematics, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yuefan Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Shenghao Guo
- Department of Biomedical Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Cissy Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA
| | - Anne Le
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Aniket Dagar
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alex Hopkins
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hanbyul Cho
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Xiaojun Jing
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Guo Ci Teo
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wenke Liu
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Melissa A Reimers
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA; Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Russell Pachynski
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA; Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA
| | - Alexander J Lazar
- Departments of Pathology and Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Brian A Van Tine
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Feng Chen
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | | | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David Fenyö
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Scott D Jewell
- Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Gilbert S Omenn
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA; Department of Internal Medicine, Human Genetics, and School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maciej Wiznerowicz
- International Institute for Molecular Oncology, 60-203 Poznań, Poland; Heliodor Swiecicki Clinical Hospital in Poznań, ul. Przybyszewskiego 49, 60-355 Poznań, Poland; Poznań University of Medical Sciences, 61-701 Poznań, Poland
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Eunkyung An
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Daniel W Chan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher J Ricketts
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21213, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Department of Genetics, Washington University in St. Louis, St. Louis, MO 63130, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
30
|
Wang T, Rao D, Yu C, Sheng J, Luo Y, Xia L, Huang W. RHO GTPase family in hepatocellular carcinoma. Exp Hematol Oncol 2022; 11:91. [DOI: 10.1186/s40164-022-00344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractRHO GTPases are a subfamily of the RAS superfamily of proteins, which are highly conserved in eukaryotic species and have important biological functions, including actin cytoskeleton reorganization, cell proliferation, cell polarity, and vesicular transport. Recent studies indicate that RHO GTPases participate in the proliferation, migration, invasion and metastasis of cancer, playing an essential role in the tumorigenesis and progression of hepatocellular carcinoma (HCC). This review first introduces the classification, structure, regulators and functions of RHO GTPases, then dissects its role in HCC, especially in migration and metastasis. Finally, we summarize inhibitors targeting RHO GTPases and highlight the issues that should be addressed to improve the potency of these inhibitors.
Collapse
|
31
|
Shi F, Wu J, Jia Q, Li K, Li W, Shi Y, Wang Y, Wu S. Relationship between the expression of ARHGAP25 and RhoA in non-small cell lung cancer and vasculogenic mimicry. BMC Pulm Med 2022; 22:377. [PMID: 36207695 PMCID: PMC9547444 DOI: 10.1186/s12890-022-02179-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background Vasculogenic mimicry (VM) is a recently identified pattern of blood supply to tumor tissue. It has long been considered a functional element in the metastasis and prognosis of malignant tumors. Both Rho GTPase-activating protein 25 (ARHGAP25) and Ras homolog family member A (RhoA) are effective predictors of tumor metastasis. In this study, we examined the expression levels of ARHGAP25 and RhoA and the structure of VM in non-small cell lung cancer (NSCLC). At the same time, we used cytology-related experiments to explore the effect of ARHGAP25 on the migration ability of tumor cells. Furthermore, we analyzed the interaction between the three factors and their association with clinicopathological characteristics and the five-year survival time in patients using statistical tools. Methods A total of 130 well-preserved NSCLC and associated paracancerous tumor-free tissues were obtained. Cell colony formation, wound healing, and cytoskeleton staining assays were used to analyze the effect of ARHGAP25 on the proliferation and migration ability of NSCLC cells. Immunohistochemical staining was used to determine the positivity rates of ARHGAP25, RhoA, and VM. Statistical software was used to examine the relationships between the three factors and clinical case characteristics, overall survival, and disease-free survival. Results Cell colony formation, wound healing, and cytoskeleton staining assays confirmed that ARHGAP25 expression affects the proliferation and migratory abilities of NSCLC cells. ARHGAP25 positivity rates in NSCLC and paracancerous tumor-free tissues were 48.5% and 63.1%, respectively, whereas RhoA positivity rates were 62.3% and 18.5%, respectively. ARHGAP25 had a negative relationship with RhoA and VM, whereas RhoA and VM had a positive relationship (P < 0.05). ARHGAP25, RhoA, and VM affected the prognosis of patients with NSCLC (P < 0.05) according to Kaplan–Meier of survival time and Cox regression analyses. Furthermore, lowering ARHGAP25 expression increased NSCLC cell proliferation and migration. Conclusions ARHGAP25 and RhoA expression is associated with VM and may be of potential value in predicting tumor metastasis, prognosis, and targeted therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-022-02179-5.
Collapse
Affiliation(s)
- Fan Shi
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, 233000, Anhui, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Jiatao Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, 233000, Anhui, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Qianhao Jia
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, 233000, Anhui, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Kairui Li
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, 233000, Anhui, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Wenjuan Li
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, 233000, Anhui, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Yuqi Shi
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, 233000, Anhui, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Yufei Wang
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, 233000, Anhui, People's Republic of China.,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui, China
| | - Shiwu Wu
- Department of Pathology, The First Affiliated Hospital of Bengbu Medical College, Changhuai road 287, Bengbu, 233000, Anhui, People's Republic of China. .,Department of Pathology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, Anhui, China.
| |
Collapse
|
32
|
Li Q, Cheng Y, Zhang Z, Bi Z, Ma X, Wei Y, Wei X. Inhibition of ROCK ameliorates pulmonary fibrosis by suppressing M2 macrophage polarisation through phosphorylation of STAT3. Clin Transl Med 2022; 12:e1036. [PMID: 36178087 PMCID: PMC9523675 DOI: 10.1002/ctm2.1036] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Emerging evidence provides mechanistic insights into the pathogenesis of pulmonary fibrosis (PF), and rare anti-PF therapeutic method has promising effect in its treatment. Rho-associated coiled-coil kinases (ROCK) inhibition significantly ameliorates bleomycin-induced PF and decreases macrophage infiltration, but the mechanism remains unclear. We established bleomycin and radiation-induced PF to identify the activity of WXWH0265, a newly designed unselective ROCK inhibitor in regulating macrophages. METHODS Bleomycin-induced PF was induced by intratracheal instillation and radiation-induced PF was induced by bilateral thoracic irradiation. Histopathological techniques (haematoxylin and eosin, Masson's trichrome and immunohistochemistry) and hydroxyproline were used to evaluate PF severity. Western blot, quantitative real-time reverse transcription-polymerase chain reaction and flow cytometry were performed to explore the underlying mechanisms. Bone marrow-derived macrophages (BMDMs) were used to verify their therapeutic effect. Clodronate liposomes were applied to deplete macrophages and to identify the therapeutic effect of WXWH0265. RESULTS Therapeutic administration of ROCK inhibitor ameliorates bleomycin-induced PF by inhibiting M2 macrophages polarisation. ROCK inhibitor showed no significant anti-fibrotic effect in macrophages-depleted mice. Treatment with WXWH0265 demonstrated superior protection effect in bleomycin-induced PF compared with positive drugs. In radiation-induced PF, ROCK inhibitor effectively ameliorated PF. Fibroblasts co-cultured with supernatant from various M2 macrophages phenotypes revealed that M2 macrophages stimulated by interleukin-4 promoted extracellular matrix production. Polarisation of M2 macrophages was inhibited by ROCK inhibitor treatment in vitro. The p-signal transducer and activator of transcription 3 (STAT3) in lung tissue and BMDMs was significantly decreased in PF in vivo and vitro after treated with ROCK inhibitors. CONCLUSION Inhibiting ROCK could significantly attenuate bleomycin- and radiation-induced PF by regulating the macrophages polarisation via phosphorylation of STAT3. WXWH0265 is a kind of efficient unselective ROCK inhibitor in ameliorating PF. Furthermore, the results provide empirical evidence that ROCK inhibitor, WXWH0265 is a potential drug to prevent the development of PF.
Collapse
Affiliation(s)
- Qingfang Li
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Yuan Cheng
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Zhe Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Zhenfei Bi
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Xuelei Ma
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China HospitalSichuan UniversityChengduSichuanPR China
| |
Collapse
|
33
|
Zhang Y, Ranaei Pirmardan E, Barakat A, Naseri M, Hafezi-Moghadam A. Nanoarchitectonics for Photo-Controlled Intracellular Drug Release in Immune Modulation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:42976-42987. [PMID: 36103264 DOI: 10.1021/acsami.2c12440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Local stimuli differentiate monocytes into M2-like macrophages that mechanistically drive the pathologies in cancer and age-related macular degeneration (AMD). A photo-controlled nanodrug that halts macrophage polarization through Rho-associated kinase (ROCK) inhibition was developed. A small-molecule ROCK inhibitor, fasudil, was conjugated to a photo-responsive group and a short poly(ethylene glycol) (PEG) chain. This resulted in the novel amphiphilic prodrug, PEG-2-(4'-(di(prop-2-yn-1-yl)amino)-4-nitro-[1,1'-biphenyl]-yl)propan-1-ol (PANBP)-Fasudil, that spontaneously formed micelles. Ultraviolet (UV) irradiation of PEG-PANBP-Fasudil nanoparticles rapidly released fasudil. For visualization of linker degradation, a reporter nanoprobe was synthesized, in which 2-Me-4-OMe TokyoGreen (TG), a fluorophore that does not fluoresce in conjugation, was incorporated. Irradiation of nanoprobe-laden monocytes activated the reporter fluorophore. Cytokine stimulation differentiated monocytes into macrophages, while UV irradiation prevented polarization of PEG-PANBP-Fasudil nanoparticle-laden monocytes. Nanoarchitectonics-based design opens new possibilities for intracellular drug delivery and precise spatiotemporal immune cell modulation toward the development of new therapies.
Collapse
Affiliation(s)
- Yuanlin Zhang
- Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, and Department of Radiology, Harvard Medical School, 75 Francis St., Thorn Research Building, Boston, Massachusetts 02115, United States
| | - Ehsan Ranaei Pirmardan
- Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, and Department of Radiology, Harvard Medical School, 75 Francis St., Thorn Research Building, Boston, Massachusetts 02115, United States
| | - Aliaa Barakat
- Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, and Department of Radiology, Harvard Medical School, 75 Francis St., Thorn Research Building, Boston, Massachusetts 02115, United States
| | - Marzieh Naseri
- Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, and Department of Radiology, Harvard Medical School, 75 Francis St., Thorn Research Building, Boston, Massachusetts 02115, United States
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, United States
| | - Ali Hafezi-Moghadam
- Molecular Biomarkers Nano-Imaging Laboratory, Brigham and Women's Hospital, and Department of Radiology, Harvard Medical School, 75 Francis St., Thorn Research Building, Boston, Massachusetts 02115, United States
| |
Collapse
|
34
|
Rodríguez-Trillo A, Pena C, García S, Pérez-Pampín E, Rodríguez-López M, Mera-Varela A, González A, Conde C. ROCK inhibition with Y-27632 reduces joint inflammation and damage in serum-induced arthritis model and decreases in vitro osteoclastogenesis in patients with early arthritis. Front Immunol 2022; 13:858069. [PMID: 36032152 PMCID: PMC9410766 DOI: 10.3389/fimmu.2022.858069] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022] Open
Abstract
Rheumatoid arthritis (RA) is a common chronic inflammatory disease affecting primarily peripheral joints, which is only partially controlled with current treatments. RA leads to pain, disability, deformities, and life expectancy shortening. Its pathogenesis is complex involving multiple cell types and signaling pathways that we incompletely understand. One of the pathways we have elucidated starts with WNT5A signaling and contributes to the aggressive phenotype of the RA synoviocytes through RYK-RhoA/ROCK signaling. Now, we have explored the contribution of ROCK to arthritis in vivo, using the K/BxN serum-transfer arthritis model; and to osteoclastogenesis, using the arthritis model and cells from patients with inflammatory arthritis. The mice and cells were treated with the ROCK inhibitor Y-27632 that caused a significant improvement of arthritis and reduction of osteoclastogenesis. The improvement in mouse arthritis was observed in the clinical evaluation and, histologically, in synovial inflammation, cartilage damage, bone erosion, and the abundance of multinucleated TRAP+ cells. Expression of inflammatory mediators in the arthritic joints, as assessed by real-time PCR, was also significantly reduced. The effect on bone was confirmed with in vitro assays using bone marrow precursors of arthritic mice and peripheral blood monocytes of patients with inflammatory arthritis. These assays showed dramatically reduced osteoclastogenesis and bone resorption. Overall, our findings suggest that ROCK inhibition could be part of a therapeutic strategy for RA by its dual action on inflammation and bone erosion.
Collapse
Affiliation(s)
- Angela Rodríguez-Trillo
- Laboratorio de Reumatología Experimental y Observacional y Servicio de Reumatología, Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clínico Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Carmen Pena
- Laboratorio de Reumatología Experimental y Observacional y Servicio de Reumatología, Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clínico Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Samuel García
- Laboratorio de Reumatología y Enfermedades Inmunomediadas (IRIDIS), Instituto de Investigación Sanitaria Galicia Sur (IIS Galicia Sur), Hospital Álvaro Cunqueiro, Vigo, Spain
| | - Eva Pérez-Pampín
- Servicio de Reumatología, Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clínico Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Marina Rodríguez-López
- Servicio de Reumatología, Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clínico Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Antonio Mera-Varela
- Servicio de Reumatología, Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clínico Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Antonio González
- Laboratorio de Reumatología Experimental y Observacional y Servicio de Reumatología, Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clínico Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Carmen Conde
- Laboratorio de Reumatología Experimental y Observacional y Servicio de Reumatología, Instituto de Investigación Sanitaria de Santiago (IDIS), Hospital Clínico Universitario de Santiago de Compostela (CHUS), Servizo Galego de Saúde (SERGAS), Santiago de Compostela, Spain
- *Correspondence: Carmen Conde,
| |
Collapse
|
35
|
Zhu Y, Liu W, Wang Z, Wang Y, Tan C, Pan Z, Wang A, Liu J, Sun G. ARHGEF2/EDN1 pathway participates in ER stress-related drug resistance of hepatocellular carcinoma by promoting angiogenesis and malignant proliferation. Cell Death Dis 2022; 13:652. [PMID: 35896520 PMCID: PMC9329363 DOI: 10.1038/s41419-022-05099-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/12/2022] [Accepted: 07/12/2022] [Indexed: 01/21/2023]
Abstract
Endoplasmic reticulum (ER) stress is widely involved in the drug resistance of hepatocellular carcinoma (HCC), but the mechanism of ER stress-induced drug resistance involves multiple signaling pathways that cannot be fully explained. Exploring genes associated with ER stress could yield a novel therapeutic target for ER stress-induced drug resistance. By analyzing RNA-sequencing, ATAC-sequencing, and Chip-sequencing data of Tunicamycin (TM)-treated or untreated HCC cells, we found that Rho guanine nucleotide exchange factor 2 (ARHGEF2) is upregulated in HCC cells with ER stress. ARHGEF2 plays an active role in tumor malignant progression. Notwithstanding, no research has been done on the link between ER stress and ARHGEF2. The function of ARHGEF2 as a novel downstream effector of ER stress in the angiogenesis and treatment resistance of HCC was revealed in this work. ARHGEF2 overexpression was linked to malignant development and a poor prognosis in HCC. ER stress stimulates the expression of ARHGEF2 through upregulation of ZNF263. Elevated ARHGEF2 accelerates HCC angiogenesis via the EDN1 pathway, enhances HCC cell proliferation and tumor growth both in vitro and in vivo, and contributes to ER stress-related treatment resistance. HCC cell growth was more inhibited when ARHGEF2 knockdown was paired with targeted medicines. Collectively, we uncovered a previously hidden mechanism where ARHGEF2/EDN1 pathway promotes angiogenesis and participates in ER stress-related drug resistance in HCC.
Collapse
Affiliation(s)
- Yue Zhu
- grid.412679.f0000 0004 1771 3402Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui China
| | - Weiwei Liu
- grid.412679.f0000 0004 1771 3402Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui China
| | - Zishu Wang
- grid.414884.5Department of Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui China
| | - Yanfei Wang
- grid.412679.f0000 0004 1771 3402Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui China ,grid.186775.a0000 0000 9490 772XDepartment of Integrated Traditional Chinese and Western Medicine, Anhui Medical University, Hefei, Anhui China
| | - Chaisheng Tan
- grid.412679.f0000 0004 1771 3402Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui China
| | - Zhipeng Pan
- grid.412679.f0000 0004 1771 3402Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui China
| | - Anqi Wang
- grid.412679.f0000 0004 1771 3402Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui China
| | - Jiatao Liu
- grid.412679.f0000 0004 1771 3402Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui China
| | - Guoping Sun
- grid.412679.f0000 0004 1771 3402Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui China
| |
Collapse
|
36
|
Liu Q, Lu QD, Sun BS, Zhao J, He F, Zhu JZ. Inhibition of U-II/UT signaling ameliorates cystitis-associated bladder hyperactivity by targeting the RhoA/Rho-kinase pathway. Kaohsiung J Med Sci 2022; 38:879-888. [PMID: 35766129 DOI: 10.1002/kjm2.12569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/01/2022] [Accepted: 05/26/2022] [Indexed: 11/06/2022] Open
Abstract
Urotensin II (U-II) and its receptor (UT) are involved in the pathogenesis of various diseases; however, their association with the development of cystitis has not been elucidated. The present study was designed to investigate the functional role of U-II/UT signaling in cyclophosphamide (CYP)-induced cystitis. A total of 60 female rats were randomly divided into the control and CYP-treated groups. Intraperitoneal injection of CYP successfully induced cystitis in rats of the CYP-treated group. The protein and mRNA expression levels of U-II and UT were significantly enhanced in rat bladder tissues of the CYP-treated group. Furthermore, the results of the immunofluorescence staining analysis demonstrated that CYP treatment apparently increased the expression levels of UT in the urothelium layer, detrusor smooth muscle, and bladder interstitial Cajal-like cells. The selective antagonist of UT, SB657510 (10 μm), significantly suppressed the CYP-induced increase in the spontaneous contractions of muscle strips and ameliorated the bladder hyperactivity of CYP-treated rats. Moreover, CYP treatment significantly increased the protein expression levels of Ras homolog family member (Rho) A and Rho-associated protein kinase 2 in rat bladder tissues. Following pretreatment with the Rho-kinase inhibitor Y-27632 (10 μm), the inhibitory effects of SB657510 (10 μm) on the spontaneous contractions of muscle strips were eliminated. In conclusion, the results of the present study suggested that activation of U-II/UT signaling promoted the development of cystitis-associated-bladder hyperactivity by targeting the RhoA/Rho-kinase pathway, indicating that the U-II/UT signaling could serve as a novel target for the treatment of interstitial cystitis/bladder pain syndrome.
Collapse
Affiliation(s)
- Qian Liu
- Clinical Medicine Postdoctoral Research Station, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Urology, The General Hospital of Western Theater Command, Chengdu, China
| | - Qu-Dong Lu
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Bi-Shao Sun
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jiang Zhao
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Fan He
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jing-Zhen Zhu
- Department of Urology, Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
37
|
Activity of ROCKII not ROCKI promotes pulmonary metastasis of melanoma cells via modulating Smad2/3-MMP9 and FAK-Src-VEGF signalling. Cell Signal 2022; 97:110389. [PMID: 35718242 DOI: 10.1016/j.cellsig.2022.110389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022]
Abstract
Rho-associated coiled-coil kinase (ROCK) inhibition decreases tumourogenic growth, proliferation and angiogenesis. Multifaceted evidences are there about the role of ROCK in cancer progression, but isoform specific analysis in secondary pulmonary melanoma is still unaddressed. This study explored the operating function of ROCK in the metastasis of B16F10 mice melanoma cell line. Inhibition by KD-025 indicated dual wielding role of ROCKII as it is associated with the regulation of MMP9 activity responsible for extra-cellular matrix (ECM) degradation as well as angiogenic invasion as an effect of Src-FAK-STAT3 interaction dependent VEGF switching. We found the assisting role of ROCKII, not ROCKI in nuclear localization of Smads that effectively increased MMP9 expression and activity (p < 0.01). This cleaved the protein components of ECM thereby played a crucial role in tissue remodeling at secondary site during establishment of metastatic tumour. ROCKII phosphorylation at Ser1366 as an activation of the same was imprinted essential for oncogenic molecular bagatelle leading to histo-architectural change of pulmonary tissue with extracellular matrix degradation as a consequence of invasion. Direct correlation of pROCKIISer1366 with MMP9 as well as VEGF expression in vivo studies cue to demonstrate the importance of pROCKIISer1366 inhibition in the context of angiogenesis, and metastasis suggesting ROCKII signaling as a possible target for the treatment of secondary lung cancer specially in metastatic melanoma.
Collapse
|
38
|
Liu H, Zeng X, Ma Y, Chen X, Losiewicz MD, Du X, Tian Z, Zhang S, Shi L, Zhang H, Yang F. Long-term exposure to low concentrations of MC-LR induces blood-testis barrier damage through the RhoA/ROCK pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113454. [PMID: 35367887 DOI: 10.1016/j.ecoenv.2022.113454] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/19/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Microcystin-leucine arginine (MC-LR), an emerging water pollutant, produced by cyanobacteria, has an acute testicular toxicity. However, little is known about the chronic toxic effects of MC-LR exposure on the testis at environmental concentrations and the underlying molecular mechanisms. In this study, C57BL/6 J mice were exposed to different low concentrations of MC-LR for 6, 9 and 12 months. The results showed that MC-LR could cause testis structure loss, cell abscission and blood-testis barrier (BTB) damage. Long-term exposure of MC-LR also activated RhoA/ROCK pathway, which was accompanied by the rearrangement of α-Tubulin. Furthermore, MC-LR reduced the levels of the adherens junction proteins (N-cadherin and β-catenin) and the tight junction proteins (ZO-1 and Occludin) in a dose- and time-dependent way, causing BTB damage. MC-LR also reduced the expressions of Occludin, ZO-1, β-catenin, and N-cadherin in TM4 cells, accompanied by a disruption of cytoskeletal proteins. More importantly, the RhoA inhibitor Rhosin ameliorated these MC-LR-induced changes. Together, these new findings suggest that long-term exposure to MC-LR induces BTB damage through RhoA/ROCK activation: involvement of tight junction and adherens junction changes and cytoskeleton disruption. This study highlights a new mechanism for MC-LR-induced BTB disruption and provides new insights into the cause and treatment of BTB disruption.
Collapse
Affiliation(s)
- Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xin Zeng
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Michael D Losiewicz
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Zhihui Tian
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Shiyu Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Linjia Shi
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou 450001, Henan, China.
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
39
|
Golestaneh M, Firoozrai M, Javid H, Hashemy SI. The substance P/ neurokinin-1 receptor signaling pathway mediates metastasis in human colorectal SW480 cancer cells. Mol Biol Rep 2022; 49:4893-4900. [DOI: 10.1007/s11033-022-07348-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/17/2022]
|
40
|
Lan C, Liu G, Huang L, Wang X, Tan J, Wang Y, Fan N, Zhu Y, Yu M, Liu X. Forkhead Domain Inhibitor-6 Suppresses Corneal Neovascularization and Subsequent Fibrosis After Alkali Burn in Rats. Invest Ophthalmol Vis Sci 2022; 63:14. [PMID: 35446346 PMCID: PMC9034725 DOI: 10.1167/iovs.63.4.14] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to investigate the effects of Forkhead Domain Inhibitor-6 (FDI-6) on regulating inflammatory corneal angiogenesis and subsequent fibrosis induced by alkali burn. Methods A corneal alkali burn model was established in Sprague Dawley rats using NaOH and the rat eyes were topically treated with FDI-6 (40 µM) or a control vehicle four times daily for 7 days. Corneal neovascularization, inflammation and epithelial defects were observed on days 1, 4, and 7 under a slit lamp microscope after corneal alkali burn. Analysis of angiogenesis-, inflammation-, and fibrosis-related indicators was conducted on day 7. Murine macrophages (RAW264.7 cells) and mouse retinal microvascular endothelial cells (MRMECs) were used to examine the effects of FDI-6 on inflammatory angiogenesis in vitro. Results Topical delivery of FDI-6 significantly attenuated alkali burn-induced corneal inflammation, neovascularization, and fibrosis. FDI-6 suppressed the expression of angiogenic factors (vascular epidermal growth factor, CD31, matrix metalloproteinase-9, and endothelial NO synthase), fibrotic factors (α-smooth muscle actin and fibronectin), and pro-inflammatory factor interleukin-6 in alkali-injured corneas. FDI-6 downregulated the expression of monocyte chemotactic protein-1, pro-inflammatory cytokines (interleukin-1β and tumor necrosis factor-alpha), nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3, and vascular endothelial growth factor in RAW264.7 cells and inhibited the proliferation, migration, and tube formation of MRMECs in vitro. Conclusions FDI-6 can attenuate corneal neovascularization, inflammation, and fibrosis in alkali-injured corneas.
Collapse
Affiliation(s)
- Chunlin Lan
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Guo Liu
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Longxiang Huang
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xizhen Wang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, Guangdong, China
| | - Junkai Tan
- Xiamen Eye Center, Xiamen University, Xiamen, Fujian, China
| | - Yun Wang
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, Guangdong, China
| | - Ning Fan
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Jinan University, Shenzhen, Guangdong, China
| | - Yihua Zhu
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Man Yu
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Xuyang Liu
- Xiamen Eye Center, Xiamen University, Xiamen, Fujian, China.,Department of Ophthalmology, Shenzhen People's Hospital, the 2nd Clinical Medical College, Jinan University, Shenzhen, China
| |
Collapse
|
41
|
Li X, Li X, Sun R, Gao M, Wang H. Cadmium exposure enhances VE‑cadherin expression in endothelial cells via suppression of ROCK signaling. Exp Ther Med 2022; 23:355. [DOI: 10.3892/etm.2022.11282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 02/22/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Xiaorui Li
- Public Health Clinical Center Affiliated to Shandong University, Jinan, Shandong 250100, P.R. China
| | - Xiao Li
- Department of Pathophysiology, School of Traditional Chinese Medicine, Shandong University of Traditional Medicine, Jinan, Shandong 250014, P.R. China
| | - Rong Sun
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Mei Gao
- Shandong Medicine and Health Key Laboratory of Cardiac Electrophysiology and Arrhythmia, Department of Cardiology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong 250014, P.R. China
| | - Hui Wang
- Key Laboratory of Molecular and Nano Probes, Institute of Biomedical Sciences, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Ministry of Education, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
42
|
ROCK ‘n TOR: An Outlook on Keratinocyte Stem Cell Expansion in Regenerative Medicine via Protein Kinase Inhibition. Cells 2022; 11:cells11071130. [PMID: 35406693 PMCID: PMC8997668 DOI: 10.3390/cells11071130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/13/2022] Open
Abstract
Keratinocyte stem cells play a fundamental role in homeostasis and repair of stratified epithelial tissues. Transplantation of cultured keratinocytes autografts provides a landmark example of successful cellular therapies by restoring durable integrity in stratified epithelia lost to devastating tissue conditions. Despite the overall success of such procedures, failures still occur in case of paucity of cultured stem cells in therapeutic grafts. Strategies aiming at a further amplification of stem cells during keratinocyte ex vivo expansion may thus extend the applicability of these treatments to subjects in which endogenous stem cells pools are depauperated by aging, trauma, or disease. Pharmacological targeting of stem cell signaling pathways is recently emerging as a powerful strategy for improving stem cell maintenance and/or amplification. Recent experimental data indicate that pharmacological inhibition of two prominent keratinocyte signaling pathways governed by apical mTOR and ROCK protein kinases favor stem cell maintenance and/or amplification ex vivo and may improve the effectiveness of stem cell-based therapeutic procedures. In this review, we highlight the pathophysiological roles of mTOR and ROCK in keratinocyte biology and evaluate existing pre-clinical data on the effects of their inhibition in epithelial stem cell expansion for transplantation purposes.
Collapse
|
43
|
Liu X, Xing Y, Liu X, Zeng L, Ma J. Opticin Ameliorates Hypoxia-Induced Retinal Angiogenesis by Suppression of Integrin α2-I Domain-Collagen Complex Formation and RhoA/ROCK1 Signaling. Invest Ophthalmol Vis Sci 2022; 63:13. [PMID: 35006271 PMCID: PMC8762695 DOI: 10.1167/iovs.63.1.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Purpose It was previously demonstrated that opticin (OPTC) inhibits the collagen-induced promotion of bioactivities of human retinal vascular endothelial cells (hRVECs). The present in vivo study aimed to further investigate the regulatory role of opticin in vitreous collagen-mediated retinal neovascularization and to elucidate its regulatory mechanisms with regard to integrin α2-I domain–GXXGER complex formation and RhoA/ROCK1 signal change. The regulatory role of Mg2+ on integrin α2-I domain–GXXGER complex formation in the above process was also investigated. Methods The zebrafish model of hypoxia-induced retinopathy was established, and OPTC-overexpressing plasmids were intravitreally injected to assess the antiangiogenesis effect of opticin. The regulatory role of opticin in integrin α2-I domain–GXXGER complex formation in vivo was analyzed by mass spectrometry. The mRNA and protein expression of RhoA/ROCK1 were examined. The concentration of Mg2+ as an activator of the integrin α2-I domain–GXXGER complex was measured. Solid-phase binding assays were performed to investigate the interference of opticin in integrin α2 collagen binding and the regulatory role of Mg2+ in that process. Results Opticin and OPTC-overexpressing plasmid injection reduced retinal neovascularization in the zebrafish model of hypoxia-induced retinopathy. Mass spectrometry revealed that opticin could inhibit integrin α2-I domain–GXXGER complex formation. The Mg2+ concentration was also decreased by opticin, which was another indication of the complex activation. Injection of OPTC-overexpressing plasmids inhibited mRNA and the protein expression of RhoA/ROCK1 in the zebrafish model of hypoxia-induced retinopathy. The solid-phase binding assay revealed that opticin could block integrin α2–collagen I binding in the presence of Mg2+. Conclusions Opticin exerts its antiangiogenesis effect by interfering in the Mg2+-modulated integrin α2-I domain–collagen complex formation and suppressing the downstream RhoA/ ROCK1 signaling pathway.
Collapse
Affiliation(s)
- Xiaoxue Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Yue Xing
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Xin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Lingyan Zeng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Jin Ma
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
44
|
García-Morales V, Gento-Caro Á, Portillo F, Montero F, González-Forero D, Moreno-López B. Lysophosphatidic Acid and Several Neurotransmitters Converge on Rho-Kinase 2 Signaling to Manage Motoneuron Excitability. Front Mol Neurosci 2021; 14:788039. [PMID: 34938160 PMCID: PMC8685439 DOI: 10.3389/fnmol.2021.788039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/05/2021] [Indexed: 01/18/2023] Open
Abstract
Intrinsic membrane excitability (IME) sets up neuronal responsiveness to synaptic drive. Several neurotransmitters and neuromodulators, acting through G-protein-coupled receptors (GPCRs), fine-tune motoneuron (MN) IME by modulating background K+ channels TASK1. However, intracellular partners linking GPCRs to TASK1 modulation are not yet well-known. We hypothesized that isoform 2 of rho-kinase (ROCK2), acting as downstream GPCRs, mediates adjustment of MN IME via TASK1. Electrophysiological recordings were performed in hypoglossal MNs (HMNs) obtained from adult and neonatal rats, neonatal knockout mice for TASK1 (task1–/–) and TASK3 (task3–/–, the another highly expressed TASK subunit in MNs), and primary cultures of embryonic spinal cord MNs (SMNs). Small-interfering RNA (siRNA) technology was also used to knockdown either ROCK1 or ROCK2. Furthermore, ROCK activity assays were performed to evaluate the ability of various physiological GPCR ligands to stimulate ROCK. Microiontophoretically applied H1152, a ROCK inhibitor, and siRNA-induced ROCK2 knockdown both depressed AMPAergic, inspiratory-related discharge activity of adult HMNs in vivo, which mainly express the ROCK2 isoform. In brainstem slices, intracellular constitutively active ROCK2 (aROCK2) led to H1152-sensitive HMN hyper-excitability. The aROCK2 inhibited pH-sensitive and TASK1-mediated currents in SMNs. Conclusively, aROCK2 increased IME in task3–/–, but not in task1–/– HMNs. MN IME was also augmented by the physiological neuromodulator lysophosphatidic acid (LPA) through a mechanism entailing Gαi/o-protein stimulation, ROCK2, but not ROCK1, activity and TASK1 inhibition. Finally, two neurotransmitters, TRH, and 5-HT, which are both known to increase MN IME by TASK1 inhibition, stimulated ROCK2, and depressed background resting currents via Gαq/ROCK2 signaling. These outcomes suggest that LPA and several neurotransmitters impact MN IME via Gαi/o/Gαq-protein-coupled receptors, downstream ROCK2 activation, and subsequent inhibition of TASK1 channels.
Collapse
Affiliation(s)
- Victoria García-Morales
- GRUpo de NEuroDEgeneración y NeurorREparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Ángela Gento-Caro
- GRUpo de NEuroDEgeneración y NeurorREparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Federico Portillo
- GRUpo de NEuroDEgeneración y NeurorREparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Fernando Montero
- GRUpo de NEuroDEgeneración y NeurorREparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain
| | - David González-Forero
- GRUpo de NEuroDEgeneración y NeurorREparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| | - Bernardo Moreno-López
- GRUpo de NEuroDEgeneración y NeurorREparación (GRUNEDERE), Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, Cádiz, Spain.,Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Cádiz, Spain
| |
Collapse
|
45
|
Liao J, Zheng Y, Hu M, Xu P, Lin L, Liu X, Wu Y, Huang B, Ye X, Li S, Duan R, Fu H, Huang J, Wen L, Fu Y, Kilby MD, Kenny LC, Baker PN, Qi H, Tong C. Impaired Sphingosine-1-Phosphate Synthesis Induces Preeclampsia by Deactivating Trophoblastic YAP (Yes-Associated Protein) Through S1PR2 (Sphingosine-1-Phosphate Receptor-2)-Induced Actin Polymerizations. Hypertension 2021; 79:399-412. [PMID: 34865521 DOI: 10.1161/hypertensionaha.121.18363] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Incomplete spiral artery remodeling, caused by impaired extravillous trophoblast invasion, is a fundamental pathogenic process associated with malplacentation and the development of preeclampsia. Nevertheless, the mechanisms controlling this regulation of trophoblast invasion are largely unknown. We report that sphingosine-1-phosphate synthesis and expression is abundant in healthy trophoblast, whereas in pregnancies complicated by preeclampsia the placentae are associated with reduced sphingosine-1-phosphate and lower SPHK1 (sphingosine kinase 1) expression and activity. In vivo inhibition of sphingosine kinase 1 activity during placentation in pregnant mice led to decreased placental sphingosine-1-phosphate production and defective placentation, resulting in a preeclampsia phenotype. Moreover, sphingosine-1-phosphate increased HTR8/SVneo (immortalized trophoblast cells) cell invasion in a Hippo-signaling-dependent transcriptional coactivator YAP (Yes-associated protein) dependent manner, which is activated by S1PR2 (sphingosine-1-phosphate receptor-2) and downstream RhoA/ROCK induced actin polymerization. Mutation-based YAP-5SA demonstrated that sphingosine-1-phosphate activation of YAP could be either dependent or independent of Hippo signaling. Together, these findings suggest a novel pathogenic pathway of preeclampsia via disrupted sphingosine-1-phosphate metabolism and signaling-induced, interrupted actin dynamics and YAP deactivation; this may lead to potential novel intervention targets for the prevention and management of preeclampsia.
Collapse
Affiliation(s)
- Jiujiang Liao
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.Z., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,Ministry of Education-International Collaborative Laboratory of Reproduction and Development, Chongqing, China (J.L., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, China (J.L., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.)
| | - Yangxi Zheng
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.Z., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,Department of Biochemistry & Molecular Biology, University of Texas McGovern Medical School at Houston (Y.Z.).,Department of Stem Cell Transplantation and Cell Therapy, MD Anderson Cancer Center, Houston, TX (Y.Z.)
| | - Mingyu Hu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.Z., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,Ministry of Education-International Collaborative Laboratory of Reproduction and Development, Chongqing, China (J.L., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, China (J.L., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.)
| | - Ping Xu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.Z., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,Ministry of Education-International Collaborative Laboratory of Reproduction and Development, Chongqing, China (J.L., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, China (J.L., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.)
| | - Li Lin
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.Z., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,Ministry of Education-International Collaborative Laboratory of Reproduction and Development, Chongqing, China (J.L., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, China (J.L., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.)
| | - Xiyao Liu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.Z., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,Ministry of Education-International Collaborative Laboratory of Reproduction and Development, Chongqing, China (J.L., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, China (J.L., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.)
| | - Yue Wu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.Z., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,Ministry of Education-International Collaborative Laboratory of Reproduction and Development, Chongqing, China (J.L., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, China (J.L., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.)
| | - Biao Huang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.Z., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,Ministry of Education-International Collaborative Laboratory of Reproduction and Development, Chongqing, China (J.L., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, China (J.L., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.)
| | - Xuan Ye
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.Z., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,Ministry of Education-International Collaborative Laboratory of Reproduction and Development, Chongqing, China (J.L., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, China (J.L., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.)
| | - Sisi Li
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.Z., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,Ministry of Education-International Collaborative Laboratory of Reproduction and Development, Chongqing, China (J.L., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, China (J.L., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.)
| | - Ran Duan
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.Z., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,Ministry of Education-International Collaborative Laboratory of Reproduction and Development, Chongqing, China (J.L., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, China (J.L., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.)
| | - Huijia Fu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.Z., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,Ministry of Education-International Collaborative Laboratory of Reproduction and Development, Chongqing, China (J.L., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, China (J.L., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.)
| | - Jiayu Huang
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.Z., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,Ministry of Education-International Collaborative Laboratory of Reproduction and Development, Chongqing, China (J.L., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, China (J.L., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.)
| | - Li Wen
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.Z., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,Ministry of Education-International Collaborative Laboratory of Reproduction and Development, Chongqing, China (J.L., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, China (J.L., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.)
| | - Yong Fu
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.Z., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,Ministry of Education-International Collaborative Laboratory of Reproduction and Development, Chongqing, China (J.L., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, China (J.L., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.)
| | - Mark D Kilby
- Institute of Metabolism and System Research, College of Medical & Dental Sciences, University of Birmingham and the Fetal Medicine Centre, Birmingham Women's and Children's Foundation Trust, United Kingdom (M.D.K.)
| | - Louise C Kenny
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, United Kingdom (L.C.K.)
| | - Philip N Baker
- College of Life Sciences, University of Leicester, United Kingdom (P.N.B.)
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.Z., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,Ministry of Education-International Collaborative Laboratory of Reproduction and Development, Chongqing, China (J.L., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, China (J.L., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,Chongqing Women and Children's Health Center, China (H.Q.)
| | - Chao Tong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, China (J.L., Y.Z., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,Ministry of Education-International Collaborative Laboratory of Reproduction and Development, Chongqing, China (J.L., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.).,State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, China (J.L., M.H., P.X., L.L., X.L., Y.W., B.H., X.Y., S.L., R.D., H.F., J.H., L.W., Y.F., H.Q., C.T.)
| |
Collapse
|
46
|
Lou P, Liu S, Wang Y, Pan C, Xu X, Zhao M, Liao G, Yang G, Yuan Y, Li L, Zhang J, Chen Y, Cheng J, Lu Y, Liu J. Injectable self-assembling peptide nanofiber hydrogel as a bioactive 3D platform to promote chronic wound tissue regeneration. Acta Biomater 2021; 135:100-112. [PMID: 34389483 DOI: 10.1016/j.actbio.2021.08.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/20/2021] [Accepted: 08/05/2021] [Indexed: 02/05/2023]
Abstract
Chronic wounds remain a worldwide clinical challenge, and bioactive materials that can promote skin regeneration are required. Self-assembling peptide (SAP) hydrogels have shown great potential in tissue repair, but their regenerative efficacy and possible mechanism in chronic wound healing are unclear. Here, we report an SAP (KGH) that enhances extracellular matrix (ECM) remodeling and angiogenesis, thereby promoting chronic wound healing in diabetic mice. In vivo, the KGH hydrogel was retained in wounds up to 7 days after injection, and it was effective in speeding up wound closure by ∼20% compared to the control groups and enhancing angiogenesis (e.g., VEGFA, CD31+ capillaries), cell proliferation (e.g., PCNA+ cells), formation of granulation tissue (e.g., α-SMA), and ECM deposition/remodeling (e.g., collagen I, fibronectin). In vitro, the KGH hydrogel created a 3D microenvironment for skin cells, maintained the sustained growth of cell spheroids, and increased the secretion of ECM proteins (e.g., laminin) and growth factors (e.g., PDGFB, VEGFA, and TGF-β) in skin keratinocytes compared to the conventional 2D culture. Mechanistically, the KGH hydrogel might promote wound tissue regeneration by activating the Rho/ROCK and TGF-β/MEK/MAPK pathways. As a type of designed material, SAP can be further re-engineered with biological motifs, therapeutic reagents, or stem cells to enhance skin regeneration. This study highlights that SAP hydrogels are a promising material platform for advanced chronic wound healing and might have translational potential in future clinical applications. STATEMENT OF SIGNIFICANCE: Chronic wounds are a common and serious health issue worldwide, and bioactive dressing materials are required to address this issue. SAP hydrogels have shown certain tissue repair potential, but their regenerative efficacy and underlying mechanism in chronic wound healing remain elusive. Herein, we report that SAP hydrogels create a native 3D microenvironment that can remarkably stimulate angiogenesis and ECM remodeling in diabetic wounds. Mechanistically, the SAP hydrogel promoted ECM proteins and GFs secretion in skin cells through the activation of the Rho/ROCK and TGF-ß/MEK/MAPK pathways. Additionally, SAP can be readily engineered with various bioactive motifs or therapeutic drugs/cells. This work highlights SAP hydrogels as a promising biomaterial platform for chronic wound healing and the regeneration of many other tissues.
Collapse
Affiliation(s)
- Peng Lou
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China
| | - Shuyun Liu
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China
| | - Yizhuo Wang
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China
| | - Cheng Pan
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xuewen Xu
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Zhao
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China
| | - Guangneng Liao
- Animal Center, West China Hospital, Sichuan University, Chengdu, China
| | - Guang Yang
- Animal Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yujia Yuan
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China
| | - Lan Li
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China
| | - Jie Zhang
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China
| | - Younan Chen
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China
| | - Jingqiu Cheng
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China
| | - Yanrong Lu
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China.
| | - Jingping Liu
- Key Laboratory of Transplant Engineering and Immunology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, No. 1 Keyuan 4th Road, Gaopeng Ave, Chengdu 610041, China.
| |
Collapse
|
47
|
Molecular mechanisms of cyclic phosphatidic acid-induced lymphangiogenic actions in vitro. Microvasc Res 2021; 139:104273. [PMID: 34699844 DOI: 10.1016/j.mvr.2021.104273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022]
Abstract
The lymphatic system plays important roles in various physiological and pathological phenomena. As a bioactive phospholipid, lysophosphatidic acid (LPA) has been reported to function as a lymphangiogenic factor as well as some growth factors, yet the involvement of phospholipids including LPA and its derivatives in lymphangiogenesis is not fully understood. In the present study, we have developed an in-vitro lymphangiogenesis model (termed a collagen sandwich model) by utilizing type-I collagen, which exists around the lymphatic endothelial cells of lymphatic capillaries in vivo. The collagen sandwich model has revealed that cyclic phosphatidic acid (cPA), and not LPA, augmented the tube formation of human dermal lymphatic endothelial cells (HDLECs). Both cPA and LPA increased the migration of HDLECs cultured on the collagen. As the gene expression of LPA receptor 6 (LPA6) was predominantly expressed in HDLECs, a siRNA experiment against LPA6 attenuated the cPA-mediated tube formation. A synthetic LPA1/3 inhibitor, Ki16425, suppressed the cPA-augmented tube formation and migration of the HDLECs, and the LPA-induced migration. The activity of Rho-associated protein kinase (ROCK) located at the downstream of the LPA receptors was augmented in both the cPA- and LPA-treated cells. A potent ROCK inhibitor, Y-27632, suppressed the cPA-dependent tube formation but not the migration of the HDLECs. Furthermore, cPA, but not LPA, augmented the gene expression of VE-cadherin and β-catenin in the HDLECs. These results provide novel evidence that cPA facilitates the capillary-like morphogenesis and the migration of HDLECs through LPA6/ROCK and LPA1/3 signaling pathways in concomitance with the augmentation of VE-cadherin and β-catenin expression. Thus, cPA is likely to be a potent lymphangiogenic factor for the initial lymphatics adjacent to type I collagen under physiological conditions.
Collapse
|
48
|
Massimini M, Romanucci M, De Maria R, Della Salda L. An Update on Molecular Pathways Regulating Vasculogenic Mimicry in Human Osteosarcoma and Their Role in Canine Oncology. Front Vet Sci 2021; 8:722432. [PMID: 34631854 PMCID: PMC8494780 DOI: 10.3389/fvets.2021.722432] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/23/2021] [Indexed: 01/16/2023] Open
Abstract
Canine tumors are valuable comparative models for human counterparts, especially to explore novel biomarkers and to understand pathways and processes involved in metastasis. Vasculogenic mimicry (VM) is a unique property of malignant cancer cells which promote metastasis. Thus, it represents an opportunity to investigate both the molecular mechanisms and the therapeutic targets of a crucial phenotypic malignant switch. Although this biological process has been largely investigated in different human cancer types, including osteosarcoma, it is still largely unknown in veterinary pathology, where it has been mainly explored in canine mammary tumors. The presence of VM in human osteosarcoma is associated with poor clinical outcome, reduced patient survival, and increased risk of metastasis and it shares the main pathways involved in other type of human tumors. This review illustrates the main findings concerning the VM process in human osteosarcoma, search for the related current knowledge in canine pathology and oncology, and potential involvement of multiple pathways in VM formation, in order to provide a basis for future investigations on VM in canine tumors.
Collapse
|
49
|
Gunassekaran GR, Poongkavithai Vadevoo SM, Baek MC, Lee B. M1 macrophage exosomes engineered to foster M1 polarization and target the IL-4 receptor inhibit tumor growth by reprogramming tumor-associated macrophages into M1-like macrophages. Biomaterials 2021; 278:121137. [PMID: 34560422 DOI: 10.1016/j.biomaterials.2021.121137] [Citation(s) in RCA: 264] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022]
Abstract
M2-polarized, pro-tumoral tumor-associated macrophages (TAMs) express the interleukin-4 receptor (IL4R) at higher levels compared with M1-polarized, anti-tumoral macrophages. In this study, we harnessed M1 macrophage-derived exosomes engineered to foster M1 polarization and target IL4R for the inhibition of tumor growth by reprogramming TAMs into M1-like macrophages. M1 exosomes were transfected with NF-κB p50 siRNA and miR-511-3p to enhance M1 polarization and were surface-modified with IL4RPep-1, an IL4R-binding peptide, to target the IL4 receptor of TAMs (named IL4R-Exo(si/mi). IL4R-Exo(si/mi) were internalized and downregulated target gens in M2 macrophages and decreased M2 markers, while increasing M1 markers, more efficiently compared with untargeted and control peptide-labeled exosomes and exosomes from non-immune, normal cells. Whole-body fluorescence imaging showed that IL4R-Exo(si/mi) homed to tumors at higher levels compared with the liver, unlike untargeted and control peptide-labeled exosomes. Systemic administration of IL4R-Exo(si/mi) inhibited tumor growth, downregulated target genes, and decreased the levels of M2 cytokines and immune-suppressive cells, while increasing the levels of M1 cytokines and immune-stimulatory cells, more efficiently than untargeted and control peptide-labeled exosomes. These results suggest that IL4R-Exo(si/mi) inhibits tumor growth by reprogramming TAMs into M1-like macrophages and increasing anti-tumor immunity, thus representing a novel cancer immunotherapy.
Collapse
Affiliation(s)
- Gowri Rangaswamy Gunassekaran
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Republic of Korea; CMRI, School of Medicine, Kyungpook National University, Republic of Korea
| | - Sri Murugan Poongkavithai Vadevoo
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Republic of Korea; CMRI, School of Medicine, Kyungpook National University, Republic of Korea
| | - Moon-Chang Baek
- CMRI, School of Medicine, Kyungpook National University, Republic of Korea; Division of Biomedical Science, School of Medicine, Kyungpook National University, Republic of Korea; Department of Molecular Medicine, School of Medicine, Kyungpook National University, Republic of Korea
| | - Byungheon Lee
- Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University, Republic of Korea; CMRI, School of Medicine, Kyungpook National University, Republic of Korea; Division of Biomedical Science, School of Medicine, Kyungpook National University, Republic of Korea.
| |
Collapse
|
50
|
Chen X, Tan QQ, Tan XR, Li SJ, Zhang XX. Circ_0057558 promotes nonalcoholic fatty liver disease by regulating ROCK1/AMPK signaling through targeting miR-206. Cell Death Dis 2021; 12:809. [PMID: 34446693 PMCID: PMC8390503 DOI: 10.1038/s41419-021-04090-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic liver disorders that is featured by the extensive deposition of fat in the hepatocytes. Current treatments are very limited due to its unclear pathogenesis. Here, we investigated the function of circ_0057558 and miR-206 in NAFLD. High-fat diet (HFD) feeding mouse was used as an in vivo NAFLD model and long-chain-free fatty acid (FFA)-treated liver cells were used as an in vitro NAFLD model. qRT-PCR was used to measure levels of miR-206, ROCK1 mRNA, and circ_0057558, while Western blotting was employed to determine protein levels of ROCK1, p-AMPK, AMPK, and lipogenesis-related proteins. Immunohistochemistry were performed to examine ROCK1 level. Oil-Red O staining was used to assess the lipid deposition in cells. ELISA was performed to examine secreted triglyceride (TG) level. Dual-luciferase assay was used to validate interactions of miR-206/ROCK1 and circ_0057558/miR-206. RNA immunoprecipitation was employed to confirm the binding of circ_0057558 with miR-206. Circ_0057558 was elevated while miR-206 was reduced in both in vivo and in vitro NAFLD models. miR-206 directly bound with ROCK1 3'-UTR and suppressed lipogenesis and TG secretion through targeting ROCK1/AMPK signaling. Circ_0057558 directly interacted with miR-206 to disinhibit ROCK1/AMPK signaling. Knockdown of circ_0057558 or overexpression of miR-206 inhibited lipogenesis, TG secretion and expression of lipogenesis-related proteins. ROCK1 knockdown reversed the effects of circ_0057558 overexpression. Injection of miR-206 mimics significantly ameliorated NAFLD progression in vivo. Circ_0057558 acts as a miR-206 sponge to de-repress the ROCK1/AMPK signaling and facilitates lipogenesis and TG secretion, which greatly contributes to NAFLD development and progression.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pediatrics, The Second Xiangya Hospital, Central South Univeristy, Changsha, 410011, Hunan Province, China
| | - Qing-Qing Tan
- Department of Biology, The Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Xin-Rui Tan
- Department of Pediatrics, The Second Xiangya Hospital, Central South Univeristy, Changsha, 410011, Hunan Province, China
| | - Shi-Jun Li
- Department of Pediatrics, The Second Xiangya Hospital, Central South Univeristy, Changsha, 410011, Hunan Province, China
| | - Xing-Xing Zhang
- Department of Pediatrics, The Second Xiangya Hospital, Central South Univeristy, Changsha, 410011, Hunan Province, China.
| |
Collapse
|