1
|
Huang Y, Chen Z, Chen J, Liu J, Qiu C, Liu Q, Zhang L, Zhu G, Ma X, Sun S, Shi YS, Wan G. Direct reprogramming of fibroblasts into spiral ganglion neurons by defined transcription factors. Cell Prolif 2025; 58:e13775. [PMID: 39551613 PMCID: PMC11969255 DOI: 10.1111/cpr.13775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Degeneration of the cochlear spiral ganglion neurons (SGNs) is one of the major causes of sensorineural hearing loss and significantly impacts the outcomes of cochlear implantation. Functional regeneration of SGNs holds great promise for treating sensorineural hearing loss. In this study, we systematically screened 33 transcriptional regulators implicated in neuronal and SGN fate. Using gene expression array and principal component analyses, we identified a sequential combination of Ascl1, Pou4f1 and Myt1l (APM) in promoting functional reprogramming of SGNs. The neurons induced by APM expressed mature neuronal and SGN lineage-specific markers, displayed mature SGN-like electrophysiological characteristics and exhibited single-cell transcriptomes resembling the endogenous SGNs. Thus, transcription factors APM may serve as novel candidates for direct reprogramming of SGNs and hearing recovery due to SGN damages.
Collapse
Affiliation(s)
- Yuhang Huang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
| | - Zhen Chen
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
| | - Jiang Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Department of Neurology, The Affiliated Drum Tower Hospital of Medical School and Institute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjingChina
| | - Jingyue Liu
- National Institute of Biological SciencesBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical ResearchTsinghua UniversityBeijingChina
| | - Cui Qiu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
| | - Qing Liu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Linqing Zhang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
| | - Guang‐Jie Zhu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Xiaofeng Ma
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Shuohao Sun
- National Institute of Biological SciencesBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical ResearchTsinghua UniversityBeijingChina
| | - Yun Stone Shi
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Guangdong Institute of Intelligence Science and TechnologyZhuhaiChina
| | - Guoqiang Wan
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| |
Collapse
|
2
|
Yamasaki A, Imanishi I, Tanaka K, Ohkawa Y, Tsuda M, Masuda T. IRF8 and MAFB drive distinct transcriptional machineries in different resident macrophages of the central nervous system. Commun Biol 2024; 7:896. [PMID: 39043941 PMCID: PMC11266354 DOI: 10.1038/s42003-024-06607-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024] Open
Abstract
The central nervous system (CNS) includes anatomically distinct macrophage populations including parenchyma microglia and CNS-associated macrophages (CAMs) localized at the interfaces like meninges and perivascular space, which play specialized roles for the maintenance of the CNS homeostasis with the help of precisely controlled gene expressions. However, the transcriptional machinery that determines their cell-type specific states of microglia and CAMs remains poorly understood. Here we show, by myeloid cell-specific deletion of transcription factors, IRF8 and MAFB, that both adult microglia and CAMs utilize IRF8 to maintain their core gene signatures, although the genes altered by IRF8 deletion are different in the two macrophage populations. By contrast, MAFB deficiency robustly affected the gene expression profile of adult microglia, whereas CAMs are almost independent of MAFB. Our data suggest that distinct transcriptional machineries regulate different macrophages in the CNS.
Collapse
Affiliation(s)
- Ayato Yamasaki
- Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Science, Kyushu University, Fukuoka, Japan
| | - Iroha Imanishi
- Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Kaori Tanaka
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Science, Kyushu University, Fukuoka, Japan
| | - Takahiro Masuda
- Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
3
|
Yu C, He Y, Liu Q, Qian X, Gao X, Yang D, Yang Y, Wan G. Thyroid hormone controls the timing of cochlear ribbon synapse maturation. Biochem Biophys Res Commun 2024; 704:149704. [PMID: 38430700 DOI: 10.1016/j.bbrc.2024.149704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 01/25/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Ribbon synapses in the cochlear hair cells are subject to extensive pruning and maturation processes before hearing onset. Previous studies have highlighted the pivotal role of thyroid hormone (TH) in this developmental process, yet the detailed mechanisms are largely unknown. In this study, we found that the thyroid hormone receptor α (Thrα) is expressed in both sensory epithelium and spiral ganglion neurons in mice. Hypothyroidism, induced by Pax8 gene knockout, significantly delays the synaptic pruning during postnatal development in mice. Detailed spatiotemporal analysis of ribbon synapse distribution reveals that synaptic maturation involves not only ribbon pruning but also their migration, both of which are notably delayed in the cochlea of Pax8 knockout mice. Intriguingly, postnatal hyperthyroidism, induced by intraperitoneal injections of liothyronine sodium (T3), accelerates the pruning of ribbon synapses to the mature state without affecting the auditory functions. Our findings suggest that thyroid hormone does not play a deterministic role but rather controls the timing of cochlear ribbon synapse maturation.
Collapse
Affiliation(s)
- Chaorong Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, 210061, China; MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, 210061, China
| | - Yihan He
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, 210061, China; MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, 210061, China
| | - Qing Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, 210061, China; MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, 210061, China; Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, 210061, China
| | - Xiaoyun Qian
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, 210061, China; Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, 210061, China
| | - Xia Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, 210061, China; Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, 210061, China
| | - Deye Yang
- Department of Cardiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, 310000, China.
| | - Ye Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, 210061, China; Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, 210061, China.
| | - Guoqiang Wan
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School, Model Animal Research Center of Medical School, Nanjing University, Nanjing, 210061, China; MOE Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of China, Nanjing University, Nanjing, 210061, China; Research Institute of Otolaryngology, No. 321 Zhongshan Road, Nanjing, 210061, China.
| |
Collapse
|
4
|
Wang SX, Streit A. Shared features in ear and kidney development - implications for oto-renal syndromes. Dis Model Mech 2024; 17:dmm050447. [PMID: 38353121 PMCID: PMC10886756 DOI: 10.1242/dmm.050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
The association between ear and kidney anomalies has long been recognized. However, little is known about the underlying mechanisms. In the last two decades, embryonic development of the inner ear and kidney has been studied extensively. Here, we describe the developmental pathways shared between both organs with particular emphasis on the genes that regulate signalling cross talk and the specification of progenitor cells and specialised cell types. We relate this to the clinical features of oto-renal syndromes and explore links to developmental mechanisms.
Collapse
Affiliation(s)
- Scarlet Xiaoyan Wang
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Andrea Streit
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|
5
|
Pan Y, Li S, He S, Wang G, Li C, Liu Z, Xiang M. Fgf8 P2A-3×GFP/+: A New Genetic Mouse Model for Specifically Labeling and Sorting Cochlear Inner Hair Cells. Neurosci Bull 2023; 39:1762-1774. [PMID: 37233921 PMCID: PMC10661496 DOI: 10.1007/s12264-023-01069-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/08/2023] [Indexed: 05/27/2023] Open
Abstract
The cochlear auditory epithelium contains two types of sound receptors, inner hair cells (IHCs) and outer hair cells (OHCs). Mouse models for labelling juvenile and adult IHCs or OHCs exist; however, labelling for embryonic and perinatal IHCs or OHCs are lacking. Here, we generated a new knock-in Fgf8P2A-3×GFP/+ (Fgf8GFP/+) strain, in which the expression of a series of three GFP fragments is controlled by endogenous Fgf8 cis-regulatory elements. After confirming that GFP expression accurately reflects the expression of Fgf8, we successfully obtained both embryonic and neonatal IHCs with high purity, highlighting the power of Fgf8GFP/+. Furthermore, our fate-mapping analysis revealed, unexpectedly, that IHCs are also derived from inner ear progenitors expressing Insm1, which is currently regarded as an OHC marker. Thus, besides serving as a highly favorable tool for sorting early IHCs, Fgf8GFP/+ will facilitate the isolation of pure early OHCs by excluding IHCs from the entire hair cell pool.
Collapse
Affiliation(s)
- Yi Pan
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shuting Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shunji He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Guangqin Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| | - Mingliang Xiang
- Department of Otolaryngology and Head and Neck Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
6
|
Cui H, Banerjee S, Xie N, Dey T, Liu RM, Sanders YY, Liu G. MafB regulates NLRP3 inflammasome activation by sustaining p62 expression in macrophages. Commun Biol 2023; 6:1047. [PMID: 37845329 PMCID: PMC10579372 DOI: 10.1038/s42003-023-05426-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023] Open
Abstract
Activation of the NLRP3 inflammasome is a two-step process: the priming and the activating. The priming step involves the induction of NLRP3 and pro-IL-1β, while the activating step leads to the full inflammasome activation triggered by a NLRP3 activator. Although mechanisms underlying the NLRP3 inflammasome activation have been increasingly clear, the regulation of this process remains incompletely understood. In this study, we find that LPS and Pseudomonas aeruginosa cause a rapid downregulation in MafB transcription in macrophages, which leads to a quick decline in the level of MafB protein because MafB is short-lived and constantly degraded by the ubiquitin/proteasome system. We find that MafB knockdown or knockout markedly enhances the NLRP3, but not the NLRP1, NLRC4, or AIM2, inflammasome activation in macrophages. Conversely, pharmacological induction of MafB diminishes the NLRP3 inflammasome activation. Mechanistically, we find that MafB sustains the expression of p62, a key mediator of autophagy/mitophagy. We find that MafB inhibits mitochondrial damage, and mitochondrial ROS production and DNA cytoplasmic release. Furthermore, we find that myeloid MafB deficient mice demonstrate increased systemic and lung IL-1β production in response to LPS treatment and P. aeruginosa infection and deficient lung P. aeruginosa clearance in vivo. In conclusion, our study demonstrates that MafB is an important negative regulator of the NLRP3 inflammasome. Our findings suggest that strategies elevating MafB may be effective to treat immune disorders due to excessive activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Huachun Cui
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Sami Banerjee
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Na Xie
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Tapan Dey
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Yan Y Sanders
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, 23501, USA
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
7
|
Blinkiewicz PV, Long MR, Stoner ZA, Ketchum EM, Sheltz-Kempf SN, Duncan JS. Gata3 is required in late proneurosensory development for proper sensory cell formation and organization. Sci Rep 2023; 13:12573. [PMID: 37537240 PMCID: PMC10400699 DOI: 10.1038/s41598-023-39707-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023] Open
Abstract
It has previously been shown that the zinc-finger transcription factor Gata3 has dynamic expression within the inner ear throughout embryonic development and is essential for cochlear neurosensory development. However, the temporal window for which Gata3 is required for proper formation of the cochlear neurosensory epithelia remains unclear. To investigate the role of Gata3 in cochlear neurosensory development in the late prosensory stages, we used the Sox2-creERT2 mouse line to target and conditionally delete Gata3 at E11.5, a timepoint before cells have fully committed to a neurosensory fate. While the inner ears of Sox2-creERT2: Gata3 f/f mice appear normal with no gross structural defects, the sensory cells in the organ of Corti are partially lost and disorganized in an increasing severity from base to apex. Additionally, spiral ganglion neurons display aberrant peripheral projections, including increased distances between radial bundles and disorganization upon reaching the organ of Corti. Furthermore, heterozygous Sox2-creERT2: Gata3 f/+ mice show a reduced aberrant phenotype in comparison to the homozygous mutant, supporting the hypothesis that Gata3 is not only required for proper formation at the later proneurosensory stage, but also that a specific expression level of Gata3 is required. Therefore, this study provides evidence that Gata3 plays a time-sensitive and dose-dependent role in the development of sensory and neuronal cells in late proneurosensory stages.
Collapse
Affiliation(s)
- Paige V Blinkiewicz
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Makayla R Long
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | - Zachary A Stoner
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA.
- Section On Sensory Cell Regeneration and Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Elizabeth M Ketchum
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA
| | | | - Jeremy S Duncan
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, USA.
- Department of Biomedical Sciences, Western Michigan School of Medicine, Kalamazoo, MI, USA.
- Department of Neurology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
8
|
Blinkiewicz PV, Long MR, Stoner ZA, Ketchum EM, Sheltz-Kempf SN, Duncan JS. Gata3 is Required in Late Proneurosensory Development for Proper Sensory Cell Formation and Organization. RESEARCH SQUARE 2023:rs.3.rs-2747944. [PMID: 37090645 PMCID: PMC10120746 DOI: 10.21203/rs.3.rs-2747944/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
It has been previously shown that zinc-finger transcription factor Gata3 has dynamic expression within the inner ear throughout embryonic development and is essential for cochlear neurosensory development. However, the temporal window to which Gata3 is required for the formation of the cochlear neurosensory epithelia remains unclear. To investigate the role of Gata3 on cochlear neurosensory development in the late prosensory stages, we used the Sox2-cre ERT2 mouse line to target and conditionally delete Gata3 at E11.5 before the cells have fully committed to a neurosensory fate. While the inner ears of Sox2-cre ERT2 : Gata3 f/f mice appear morphologically normal, the sensory cells in the organ of Corti are partially lost and disorganized in a basal to apical gradient with the apex demonstrating the more severe phenotype. Additionally, spiral ganglion neurons display aberrant peripheral projections, such as increased distances between radial bundles and disorganization upon reaching the organ of Corti. Furthermore, heterozygous Sox2-cre ERT2 : Gata3 f/+ mice show a reduced phenotype in comparison to the homozygous mutant, supporting the concept that Gata3 is not only required for proper formation at the later proneurosensory stage, but also that a specific level of Gata3 is required. Therefore, our studies confirm that Gata3 plays a time-sensitive and dose-dependent role in the development of sensory cells in the late proneurosensory stages.
Collapse
|
9
|
Shrestha BR, Wu L, Goodrich LV. Runx1 controls auditory sensory neuron diversity in mice. Dev Cell 2023; 58:306-319.e5. [PMID: 36800995 PMCID: PMC10202259 DOI: 10.1016/j.devcel.2023.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/28/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023]
Abstract
Sound stimulus is encoded in mice by three molecularly and physiologically diverse subtypes of sensory neurons, called Ia, Ib, and Ic spiral ganglion neurons (SGNs). Here, we show that the transcription factor Runx1 controls SGN subtype composition in the murine cochlea. Runx1 is enriched in Ib/Ic precursors by late embryogenesis. Upon the loss of Runx1 from embryonic SGNs, more SGNs take on Ia rather than Ib or Ic identities. This conversion was more complete for genes linked to neuronal function than to connectivity. Accordingly, synapses in the Ib/Ic location acquired Ia properties. Suprathreshold SGN responses to sound were enhanced in Runx1CKO mice, confirming the expansion of neurons with Ia-like functional properties. Runx1 deletion after birth also redirected Ib/Ic SGNs toward Ia identity, indicating that SGN identities are plastic postnatally. Altogether, these findings show that diverse neuronal identities essential for normal auditory stimulus coding arise hierarchically and remain malleable during postnatal development.
Collapse
Affiliation(s)
- Brikha R Shrestha
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratories, Massachusetts Eye and Ear, Boston, MA 02114, USA; Department of Otolaryngology, Harvard Medical School, Boston, MA 02114, USA.
| | - Lorna Wu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Bara AM, Chen L, Ma C, Underwood J, Moreci RS, Sumigray K, Sun T, Diao Y, Verzi M, Lechler T. Maf family transcription factors are required for nutrient uptake in the mouse neonatal gut. Development 2022; 149:285915. [PMID: 36504079 PMCID: PMC10112929 DOI: 10.1242/dev.201251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022]
Abstract
There are fundamental differences in how neonatal and adult intestines absorb nutrients. In adults, macromolecules are broken down into simpler molecular components in the lumen of the small intestine, then absorbed. In contrast, neonates are thought to rely on internalization of whole macromolecules and subsequent degradation in the lysosome. Here, we identify the Maf family transcription factors MAFB and c-MAF as markers of terminally differentiated intestinal enterocytes throughout life. The expression of these factors is regulated by HNF4α and HNF4γ, master regulators of enterocyte cell fate. Loss of Maf factors results in a neonatal-specific failure to thrive and loss of macromolecular nutrient uptake. RNA-Seq and CUT&RUN analyses defined an endo-lysosomal program as being downstream of these transcription factors. We demonstrate major transcriptional changes in metabolic pathways, including fatty acid oxidation and increases in peroxisome number, in response to loss of Maf proteins. Finally, we show that loss of BLIMP1, a repressor of adult enterocyte genes, shows highly overlapping changes in gene expression and similar defects in macromolecular uptake. This work defines transcriptional regulators that are necessary for nutrient uptake in neonatal enterocytes.
Collapse
Affiliation(s)
- Anne M Bara
- Department of Dermatology, Duke University, Durham, NC 27710, USA.,Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Lei Chen
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | - Celina Ma
- Department of Dermatology, Duke University, Durham, NC 27710, USA.,Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Julie Underwood
- Department of Dermatology, Duke University, Durham, NC 27710, USA.,Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Rebecca S Moreci
- Department of Dermatology, Duke University, Durham, NC 27710, USA.,Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Kaelyn Sumigray
- Department of Dermatology, Duke University, Durham, NC 27710, USA.,Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Tongyu Sun
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Yarui Diao
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Michael Verzi
- Department of Genetics, Rutgers University, Piscataway, NJ 08854, USA
| | - Terry Lechler
- Department of Dermatology, Duke University, Durham, NC 27710, USA.,Department of Cell Biology, Duke University, Durham, NC 27710, USA
| |
Collapse
|
11
|
Petitpré C, Faure L, Uhl P, Fontanet P, Filova I, Pavlinkova G, Adameyko I, Hadjab S, Lallemend F. Single-cell RNA-sequencing analysis of the developing mouse inner ear identifies molecular logic of auditory neuron diversification. Nat Commun 2022; 13:3878. [PMID: 35790771 PMCID: PMC9256748 DOI: 10.1038/s41467-022-31580-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/21/2022] [Indexed: 11/08/2022] Open
Abstract
Different types of spiral ganglion neurons (SGNs) are essential for auditory perception by transmitting complex auditory information from hair cells (HCs) to the brain. Here, we use deep, single cell transcriptomics to study the molecular mechanisms that govern their identity and organization in mice. We identify a core set of temporally patterned genes and gene regulatory networks that may contribute to the diversification of SGNs through sequential binary decisions and demonstrate a role for NEUROD1 in driving specification of a Ic-SGN phenotype. We also find that each trajectory of the decision tree is defined by initial co-expression of alternative subtype molecular controls followed by gradual shifts toward cell fate resolution. Finally, analysis of both developing SGN and HC types reveals cell-cell signaling potentially playing a role in the differentiation of SGNs. Our results indicate that SGN identities are drafted prior to birth and reveal molecular principles that shape their differentiation and will facilitate studies of their development, physiology, and dysfunction.
Collapse
Affiliation(s)
- Charles Petitpré
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Louis Faure
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090, Vienna, Austria
| | - Phoebe Uhl
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Paula Fontanet
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Iva Filova
- Institute of Biotechnology CAS, 25250, Vestec, Czech Republic
| | | | - Igor Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Saida Hadjab
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Francois Lallemend
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Ming-Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
12
|
Miller-Rhodes P, Li H, Velagapudi R, Chiang W, Terrando N, Gelbard HA. URMC-099 prophylaxis prevents hippocampal vascular vulnerability and synaptic damage in an orthopedic model of delirium superimposed on dementia. FASEB J 2022; 36:e22343. [PMID: 35535564 PMCID: PMC9175136 DOI: 10.1096/fj.202200184rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 11/11/2022]
Abstract
Systemic perturbations can drive a neuroimmune cascade after surgical trauma, including affecting the blood-brain barrier (BBB), activating microglia, and contributing to cognitive deficits such as delirium. Delirium superimposed on dementia (DSD) is a particularly debilitating complication that renders the brain further vulnerable to neuroinflammation and neurodegeneration, albeit these molecular mechanisms remain poorly understood. Here, we have used an orthopedic model of tibial fracture/fixation in APPSwDI/mNos2-/- AD (CVN-AD) mice to investigate relevant pathogenetic mechanisms underlying DSD. We conducted the present study in 6-month-old CVN-AD mice, an age at which we speculated amyloid-β pathology had not saturated BBB and neuroimmune functioning. We found that URMC-099, our brain-penetrant anti-inflammatory neuroprotective drug, prevented inflammatory endothelial activation, breakdown of the BBB, synapse loss, and microglial activation in our DSD model. Taken together, our data link post-surgical endothelial activation, microglial MafB immunoreactivity, and synapse loss as key substrates for DSD, all of which can be prevented by URMC-099.
Collapse
Affiliation(s)
- Patrick Miller-Rhodes
- Center for Neurotherapeutics Discovery, Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA.,Neuroscience Graduate Program, University of Rochester Medical Center, Rochester, New York, USA
| | - Herman Li
- Center for Neurotherapeutics Discovery, Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA
| | - Ravikanth Velagapudi
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Wesley Chiang
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, USA
| | - Niccolò Terrando
- Department of Anesthesiology, Center for Translational Pain Medicine, Duke University Medical Center, Durham, North Carolina, USA.,Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Harris A Gelbard
- Center for Neurotherapeutics Discovery, Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA.,Department of Neurology, University of Rochester Medical Center, Rochester, New York, USA.,Department of Neuroscience, University of Rochester Medical Center, Rochester, New York, USA.,Department of Pediatrics, University of Rochester Medical Center, Rochester, New York, USA.,Department of Microbiology & Immunology, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
13
|
Hosoya M, Fujioka M, Okahara J, Yoshimatsu S, Okano H, Ozawa H. Early development of the cochlea of the common marmoset, a non-human primate model. Neural Dev 2022; 17:6. [PMID: 35524278 PMCID: PMC9077934 DOI: 10.1186/s13064-022-00162-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/13/2022] [Indexed: 11/12/2022] Open
Abstract
Background Fine-tuned cochlear development is essential for hearing. Owing to the difficulty in using early human fetal samples, most of our knowledge regarding cochlear development has been obtained from rodents. However, several inter-species differences in cochlear development between rodents and humans have been reported. To bridge these differences, we investigated early otic development of a non-human primate model animal, the common marmoset (Callithrix jacchus). Methods We examined 20 genes involved in early cochlear development and described the critical developmental steps for morphogenesis, which have been reported to vary between rodents and marmosets. Results The results revealed that several critical genes involved in prosensory epithelium specifications showed higher inter-species differences, suggesting that the molecular process for hair cell lineage acquisition in primates differs considerably from that of rodents. We also observed that the tempo of cochlear development was three times slower in the primate than in rodents. Conclusions Our data provide new insights into early cochlear development in primates and humans and imply that the procedures used for manipulating rodent cochlear sensory cells cannot be directly used for the research of primate cells due to the intrinsic inter-species differences in the cell fate determination program.
Collapse
Affiliation(s)
- Makoto Hosoya
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Masato Fujioka
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan. .,Department of Molecular Genetics, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0374, Japan.
| | - Junko Okahara
- Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, 2-1 Hirosawa Wako, Saitama, 351-0193, Japan.,Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, 3-25-12 Tonomachi Kawasaki-ku Kawasaki, Kanagawa, 210-0821, Japan
| | - Sho Yoshimatsu
- Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, 2-1 Hirosawa Wako, Saitama, 351-0193, Japan.,Department of Physiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hideyuki Okano
- Laboratory for Marmoset Neural Architecture, Center for Brain Science, RIKEN, 2-1 Hirosawa Wako, Saitama, 351-0193, Japan.,Department of Physiology, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroyuki Ozawa
- Department of Otorhinolaryngology, Head and Neck Surgery, Keio University School of Medicine, 35 Shinanomachi Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
14
|
Specification of CNS macrophage subsets occurs postnatally in defined niches. Nature 2022; 604:740-748. [PMID: 35444273 DOI: 10.1038/s41586-022-04596-2] [Citation(s) in RCA: 163] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/28/2022] [Indexed: 02/08/2023]
Abstract
All tissue-resident macrophages of the central nervous system (CNS)-including parenchymal microglia, as well as CNS-associated macrophages (CAMs1) such as meningeal and perivascular macrophages2-7-are part of the CNS endogenous innate immune system that acts as the first line of defence during infections or trauma2,8-10. It has been suggested that microglia and all subsets of CAMs are derived from prenatal cellular sources in the yolk sac that were defined as early erythromyeloid progenitors11-15. However, the precise ontogenetic relationships, the underlying transcriptional programs and the molecular signals that drive the development of distinct CAM subsets in situ are poorly understood. Here we show, using fate-mapping systems, single-cell profiling and cell-specific mutants, that only meningeal macrophages and microglia share a common prenatal progenitor. By contrast, perivascular macrophages originate from perinatal meningeal macrophages only after birth in an integrin-dependent manner. The establishment of perivascular macrophages critically requires the presence of arterial vascular smooth muscle cells. Together, our data reveal a precisely timed process in distinct anatomical niches for the establishment of macrophage subsets in the CNS.
Collapse
|
15
|
Li S, Fan T, Li C, Wang Y, Li J, Liu Z. Fate-mapping analysis of cochlear cells expressing Atoh1 mRNA via a new Atoh1 3*HA-P2A-Cre knockin mouse strain. Dev Dyn 2022; 251:1156-1174. [PMID: 35038200 DOI: 10.1002/dvdy.453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Atoh1 is recognized to be essential for cochlear hair cell (HC) development. However, Atoh1 temporal and spatial expression patterns remain widely debated. Here, we aimed to obtain evidence to resolve the controversies regarding Atoh1 expression by generating a new knockin mouse strain: Atoh13*HA-P2A-Cre . RESULTS Fate-mapping analysis of Atoh13*HA-P2A-Cre/+ ; Rosa26-CAG-LSL-tdTomato (Ai9)/+ mice enabled us to concurrently characterize the temporal expression of Atoh1 protein (through HA-tag immunostaining) and visualize the cells expressing Atoh1 mRNA (as tdTomato+ cells). Our findings show that whereas Atoh1 mRNA expression is rapidly turned on in early cochlear progenitors, Atoh1 protein is only detected in differentiating HCs or progenitors just committed to the HC fate. Cre activity is also stronger in Atoh13*HA-P2A-Cre/+ than in previous mouse models, because almost all cochlear HCs and nearby supporting cells here are tdTomato+. Furthermore, tdTomato, but not HA, is expressed in middle and apical spiral ganglion neurons. CONCLUSION Collectively, our findings indicate that Atoh13*HA-P2A-Cre can serve as a powerful genetic model in the developmental biology field. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shuting Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Ting Fan
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine, National Health and Family Planning Commission (NHFPC), Shanghai, China
| | - Chao Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yunfeng Wang
- ENT Institute and Otorhinolaryngology Department, Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China.,Key Laboratory of Hearing Medicine, National Health and Family Planning Commission (NHFPC), Shanghai, China
| | - Jian Li
- Clinical Laboratory Center, Children's Hospital of Fudan University, Shanghai, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| |
Collapse
|
16
|
Hoshino N, Altarshan Y, Alzein A, Fernando AM, Nguyen HT, Majewski EF, Chen VCF, William Rochlin M, Yu WM. Ephrin-A3 is required for tonotopic map precision and auditory functions in the mouse auditory brainstem. J Comp Neurol 2021; 529:3633-3654. [PMID: 34235739 PMCID: PMC8490280 DOI: 10.1002/cne.25213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 01/09/2023]
Abstract
Tonotopy is a prominent feature of the vertebrate auditory system and forms the basis for sound discrimination, but the molecular mechanism that underlies its formation remains largely elusive. Ephrin/Eph signaling is known to play important roles in axon guidance during topographic mapping in other sensory systems, so we investigated its possible role in the establishment of tonotopy in the mouse cochlear nucleus. We found that ephrin-A3 molecules are differentially expressed along the tonotopic axis in the cochlear nucleus during innervation. Ephrin-A3 forward signaling is sufficient to repel auditory nerve fibers in a developmental stage-dependent manner. In mice lacking ephrin-A3, the tonotopic map is degraded and isofrequency bands of neuronal activation upon pure tone exposure become imprecise in the anteroventral cochlear nucleus. Ephrin-A3 mutant mice also exhibit a delayed second wave in auditory brainstem responses upon sound stimuli and impaired detection of sound frequency changes. Our findings establish an essential role for ephrin-A3 in forming precise tonotopy in the auditory brainstem to ensure accurate sound discrimination.
Collapse
Affiliation(s)
- Natalia Hoshino
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | - Yazan Altarshan
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | - Ahmad Alzein
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | - Amali M. Fernando
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | - Hieu T. Nguyen
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | - Emma F. Majewski
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | | | | | - Wei-Ming Yu
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| |
Collapse
|
17
|
Roccio M. Directed differentiation and direct reprogramming: Applying stem cell technologies to hearing research. Stem Cells 2020; 39:375-388. [PMID: 33378797 DOI: 10.1002/stem.3315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022]
Abstract
Hearing loss is the most widely spread sensory disorder in our society. In the majority of cases, it is caused by the loss or malfunctioning of cells in the cochlea: the mechanosensory hair cells, which act as primary sound receptors, and the connecting auditory neurons of the spiral ganglion, which relay the signal to upper brain centers. In contrast to other vertebrates, where damage to the hearing organ can be repaired through the activity of resident cells, acting as tissue progenitors, in mammals, sensory cell damage or loss is irreversible. The understanding of gene and cellular functions, through analysis of different animal models, has helped to identify causes of disease and possible targets for hearing restoration. Translation of these findings to novel therapeutics is, however, hindered by the lack of cellular assays, based on human sensory cells, to evaluate the conservation of molecular pathways across species and the efficacy of novel therapeutic strategies. In the last decade, stem cell technologies enabled to generate human sensory cell types in vitro, providing novel tools to study human inner ear biology, model disease, and validate therapeutics. This review focuses specifically on two technologies: directed differentiation of pluripotent stem cells and direct reprogramming of somatic cell types to sensory hair cells and neurons. Recent development in the field are discussed as well as how these tools could be implemented to become routinely adopted experimental models for hearing research.
Collapse
Affiliation(s)
- Marta Roccio
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Zurich (USZ), and University of Zurich (UZH), Zurich, Switzerland
| |
Collapse
|
18
|
Caldwell AB, Liu Q, Schroth GP, Galasko DR, Yuan SH, Wagner SL, Subramaniam S. Dedifferentiation and neuronal repression define familial Alzheimer's disease. SCIENCE ADVANCES 2020; 6:6/46/eaba5933. [PMID: 33188013 PMCID: PMC7673760 DOI: 10.1126/sciadv.aba5933] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 09/23/2020] [Indexed: 05/05/2023]
Abstract
Identifying the systems-level mechanisms that lead to Alzheimer's disease, an unmet need, is an essential step toward the development of therapeutics. In this work, we report that the key disease-causative mechanisms, including dedifferentiation and repression of neuronal identity, are triggered by changes in chromatin topology. Here, we generated human induced pluripotent stem cell (hiPSC)-derived neurons from donor patients with early-onset familial Alzheimer's disease (EOFAD) and used a multiomics approach to mechanistically characterize the modulation of disease-associated gene regulatory programs. We demonstrate that EOFAD neurons dedifferentiate to a precursor-like state with signatures of ectoderm and nonectoderm lineages. RNA-seq, ATAC-seq, and ChIP-seq analysis reveals that transcriptional alterations in the cellular state are orchestrated by changes in histone methylation and chromatin topology. Furthermore, we demonstrate that these mechanisms are observed in EOFAD-patient brains, validating our hiPSC-derived neuron models. The mechanistic endotypes of Alzheimer's disease uncovered here offer key insights for therapeutic interventions.
Collapse
Affiliation(s)
- Andrew B Caldwell
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Qing Liu
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | | | - Douglas R Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Shauna H Yuan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Steven L Wagner
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, La Jolla, CA, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA.
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
19
|
Scheffel JL, Mohammed SS, Borcean CK, Parng AJ, Yoon HJ, Gutierrez DA, Yu WM. Spatiotemporal Analysis of Cochlear Nucleus Innervation by Spiral Ganglion Neurons that Serve Distinct Regions of the Cochlea. Neuroscience 2020; 446:43-58. [PMID: 32866604 DOI: 10.1016/j.neuroscience.2020.08.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
Cochlear neurons innervate the brainstem cochlear nucleus in a tonotopic fashion according to their sensitivity to different sound frequencies (known as the neuron's characteristic frequency). It is unclear whether these neurons with distinct characteristic frequencies use different strategies to innervate the cochlear nucleus. Here, we use genetic approaches to differentially label spiral ganglion neurons (SGNs) and their auditory nerve fibers (ANFs) that relay different characteristic frequencies in mice. We found that SGN populations that supply distinct regions of the cochlea employ different cellular strategies to target and innervate neurons in the cochlear nucleus during tonotopic map formation. ANFs that will exhibit high-characteristic frequencies initially overshoot and sample a large area of targets before refining their connections to correct targets, while fibers that will exhibit low-characteristic frequencies are more accurate in initial targeting and undergo minimal target sampling. Moreover, similar to their peripheral projections, the central projections of ANFs show a gradient of development along the tonotopic axis, with outgrowth and branching of prospective high-frequency ANFs initiated about two days earlier than those of prospective low-frequency ANFs. The processes of synaptogenesis are similar between high- and low-frequency ANFs, but a higher proportion of low-frequency ANFs form smaller endbulb synaptic endings. These observations reveal the diversity of cellular mechanisms that auditory neurons that will become functionally distinct use to innervate their targets during tonotopic map formation.
Collapse
Affiliation(s)
- Jennifer L Scheffel
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States
| | - Samiha S Mohammed
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States
| | - Chloe K Borcean
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States
| | - Annie J Parng
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States
| | - Hyun Ju Yoon
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States
| | - Darwin A Gutierrez
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States
| | - Wei-Ming Yu
- Department of Biology, Loyola University Chicago, Chicago, IL 60660, United States.
| |
Collapse
|
20
|
The Purinergic Receptor P2rx3 is Required for Spiral Ganglion Neuron Branch Refinement during Development. eNeuro 2020; 7:ENEURO.0179-20.2020. [PMID: 32675174 PMCID: PMC7418533 DOI: 10.1523/eneuro.0179-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/03/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022] Open
Abstract
The mammalian cochlea undergoes a highly dynamic process of growth and innervation during development. This process includes spiral ganglion neuron (SGN) branch refinement, a process whereby Type I SGNs undergo a phase of “debranching” before forming unramified synaptic contacts with inner hair cells. Using Sox2CreERT2 and R26RtdTomato as a strategy to genetically label individual SGNs in mice of both sexes, we report on both a time course of SGN branch refinement and a role for P2rx3 in this process. P2rx3 is an ionotropic ATP receptor that was recently implicated in outer hair cell spontaneous activity and Type II SGN synapse development (Ceriani et al., 2019), but its function in Type I SGN development is unknown. Here, we demonstrate that P2rx3 is expressed by Type I SGNs and hair cells during developmental periods that coincide with SGN branching refinement. P2rx3 null mice show SGNs with more complex branching patterns on their peripheral synaptic terminals and near their cell bodies around the time of birth. Loss of P2rx3 does not appear to confer general changes in axon outgrowth or hair cell formation, and alterations in branching complexity appear to mostly recover by postnatal day (P)6. However, when we examined the distribution of Type I SGN subtypes using antibodies that bind Calb2, Calb1, and Pou4f1, we found that P2rx3 null mice showed an increased proportion of SGNs that express Calb2. These data suggest P2rx3 may be necessary for normal Type I SGN differentiation in addition to serving a role in branch refinement.
Collapse
|
21
|
Pai ELL, Chen J, Fazel Darbandi S, Cho FS, Chen J, Lindtner S, Chu JS, Paz JT, Vogt D, Paredes MF, Rubenstein JLR. Maf and Mafb control mouse pallial interneuron fate and maturation through neuropsychiatric disease gene regulation. eLife 2020; 9:e54903. [PMID: 32452758 PMCID: PMC7282818 DOI: 10.7554/elife.54903] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/22/2020] [Indexed: 12/31/2022] Open
Abstract
Maf (c-Maf) and Mafb transcription factors (TFs) have compensatory roles in repressing somatostatin (SST+) interneuron (IN) production in medial ganglionic eminence (MGE) secondary progenitors in mice. Maf and Mafb conditional deletion (cDKO) decreases the survival of MGE-derived cortical interneurons (CINs) and changes their physiological properties. Herein, we show that (1) Mef2c and Snap25 are positively regulated by Maf and Mafb to drive IN morphological maturation; (2) Maf and Mafb promote Mef2c expression which specifies parvalbumin (PV+) INs; (3) Elmo1, Igfbp4 and Mef2c are candidate markers of immature PV+ hippocampal INs (HIN). Furthermore, Maf/Mafb neonatal cDKOs have decreased CINs and increased HINs, that express Pnoc, an HIN specific marker. Our findings not only elucidate key gene targets of Maf and Mafb that control IN development, but also identify for the first time TFs that differentially regulate CIN vs. HIN production.
Collapse
Affiliation(s)
- Emily Ling-Lin Pai
- Department of Psychiatry, University of California San FranciscoSan FranciscoUnited States
- Neuroscience Graduate Program, University of California San FranciscoSan FranciscoUnited States
| | - Jin Chen
- Department of Cellular and Molecular Pharmacology, University of California San FranciscoSan FranciscoUnited States
- Howard Hughes Medical Institute, University of California San FranciscoSan FranciscoUnited States
| | - Siavash Fazel Darbandi
- Department of Psychiatry, University of California San FranciscoSan FranciscoUnited States
| | - Frances S Cho
- Neuroscience Graduate Program, University of California San FranciscoSan FranciscoUnited States
- Department of Neurology, University of California San FranciscoSan FranciscoUnited States
- Gladstone Institute of Neurological Disease, Gladstone InstitutesSan FranciscoUnited States
| | - Jiapei Chen
- Gladstone Institute of Neurological Disease, Gladstone InstitutesSan FranciscoUnited States
- Biomedical Sciences Graduate Program, University of California San FranciscoSan FranciscoUnited States
| | - Susan Lindtner
- Department of Psychiatry, University of California San FranciscoSan FranciscoUnited States
| | - Julia S Chu
- Department of Neurology, University of California San FranciscoSan FranciscoUnited States
| | - Jeanne T Paz
- Neuroscience Graduate Program, University of California San FranciscoSan FranciscoUnited States
- Department of Neurology, University of California San FranciscoSan FranciscoUnited States
- Gladstone Institute of Neurological Disease, Gladstone InstitutesSan FranciscoUnited States
- The Kavli Institute for Fundamental Neuroscience, University of California San FranciscoSan FranciscoUnited States
| | - Daniel Vogt
- Department of Pediatrics and Human Development, Michigan State UniversityGrand RapidsUnited States
| | - Mercedes F Paredes
- Neuroscience Graduate Program, University of California San FranciscoSan FranciscoUnited States
- Department of Neurology, University of California San FranciscoSan FranciscoUnited States
- The Kavli Institute for Fundamental Neuroscience, University of California San FranciscoSan FranciscoUnited States
| | - John LR Rubenstein
- Department of Psychiatry, University of California San FranciscoSan FranciscoUnited States
- The Kavli Institute for Fundamental Neuroscience, University of California San FranciscoSan FranciscoUnited States
| |
Collapse
|
22
|
Luo L, Ambrozkiewicz MC, Benseler F, Chen C, Dumontier E, Falkner S, Furlanis E, Gomez AM, Hoshina N, Huang WH, Hutchison MA, Itoh-Maruoka Y, Lavery LA, Li W, Maruo T, Motohashi J, Pai ELL, Pelkey KA, Pereira A, Philips T, Sinclair JL, Stogsdill JA, Traunmüller L, Wang J, Wortel J, You W, Abumaria N, Beier KT, Brose N, Burgess HA, Cepko CL, Cloutier JF, Eroglu C, Goebbels S, Kaeser PS, Kay JN, Lu W, Luo L, Mandai K, McBain CJ, Nave KA, Prado MA, Prado VF, Rothstein J, Rubenstein JL, Saher G, Sakimura K, Sanes JR, Scheiffele P, Takai Y, Umemori H, Verhage M, Yuzaki M, Zoghbi HY, Kawabe H, Craig AM. Optimizing Nervous System-Specific Gene Targeting with Cre Driver Lines: Prevalence of Germline Recombination and Influencing Factors. Neuron 2020; 106:37-65.e5. [PMID: 32027825 PMCID: PMC7377387 DOI: 10.1016/j.neuron.2020.01.008] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/12/2019] [Accepted: 01/10/2020] [Indexed: 12/17/2022]
Abstract
The Cre-loxP system is invaluable for spatial and temporal control of gene knockout, knockin, and reporter expression in the mouse nervous system. However, we report varying probabilities of unexpected germline recombination in distinct Cre driver lines designed for nervous system-specific recombination. Selective maternal or paternal germline recombination is showcased with sample Cre lines. Collated data reveal germline recombination in over half of 64 commonly used Cre driver lines, in most cases with a parental sex bias related to Cre expression in sperm or oocytes. Slight differences among Cre driver lines utilizing common transcriptional control elements affect germline recombination rates. Specific target loci demonstrated differential recombination; thus, reporters are not reliable proxies for another locus of interest. Similar principles apply to other recombinase systems and other genetically targeted organisms. We hereby draw attention to the prevalence of germline recombination and provide guidelines to inform future research for the neuroscience and broader molecular genetics communities.
Collapse
Affiliation(s)
- Lin Luo
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada
| | - Mateusz C. Ambrozkiewicz
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany,Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany
| | - Fritz Benseler
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Cui Chen
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Emilie Dumontier
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | | | | | | | - Naosuke Hoshina
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Wei-Hsiang Huang
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA,Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, The Research Institute of the McGill University Health Centre, Montreal, QC H3G 1A4, Canada
| | - Mary Anne Hutchison
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yu Itoh-Maruoka
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Laura A. Lavery
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77003, USA,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wei Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Tomohiko Maruo
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Department of Biochemistry, Tokushima University Graduate School of Medical Sciences, 3-18-15, Kuramoto-cho, Tokushima 770-8503, Japan,Department of Biochemistry, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Junko Motohashi
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Emily Ling-Lin Pai
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA,Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kenneth A. Pelkey
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ariane Pereira
- Department of Neurobiology and Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Thomas Philips
- Department of Neurology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jennifer L. Sinclair
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Jeff A. Stogsdill
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02139, USA
| | | | - Jiexin Wang
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Joke Wortel
- Department of Functional Genomics and Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and University Medical Center Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Wenjia You
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA,Departments of Genetics, Harvard Medical School, Boston, MA 02115, USA,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nashat Abumaria
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China,Department of Laboratory Animal Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Kevin T. Beier
- Department of Physiology and Biophysics, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA 92697, USA
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Harold A. Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Constance L. Cepko
- Departments of Genetics, Harvard Medical School, Boston, MA 02115, USA,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Jean-François Cloutier
- Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Cagla Eroglu
- Department of Cell Biology, Department of Neurobiology, and Duke Institute for Brain Sciences, Regeneration Next Initiative, Duke University Medical Center, Durham, NC 27710, USA
| | - Sandra Goebbels
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Pascal S. Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeremy N. Kay
- Department of Neurobiology and Department of Ophthalmology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Liqun Luo
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Kenji Mandai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan,Department of Biochemistry, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0374, Japan
| | - Chris J. McBain
- Section on Cellular and Synaptic Physiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Marco A.M. Prado
- Robarts Research Institute, Department of Anatomy and Cell Biology, and Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5B7, Canada,Brain and Mind Institute, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Vania F. Prado
- Robarts Research Institute, Department of Anatomy and Cell Biology, and Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 5B7, Canada,Brain and Mind Institute, The University of Western Ontario, London, ON N6A 5B7, Canada
| | - Jeffrey Rothstein
- Department of Neurology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - John L.R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA,Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Joshua R. Sanes
- Center for Brain Science and Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
| | - Hisashi Umemori
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Matthijs Verhage
- Department of Functional Genomics and Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam and University Medical Center Amsterdam, de Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Michisuke Yuzaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Huda Yahya Zoghbi
- Department of Molecular and Human Genetics, Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX 77003, USA,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hiroshi Kawabe
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Hermann-Rein-Strasse 3, 37075 Göttingen, Germany; Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 1-5-6 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan; Department of Gerontology, Laboratory of Molecular Life Science, Institute of Biomedical Research and Innovation, Foundation for Biomedical Research and Innovation at Kobe, 2-2 Minatojima-minamimachi Chuo-ku, Kobe, Hyogo 650-0047, Japan.
| | - Ann Marie Craig
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
23
|
Pai ELL, Vogt D, Clemente-Perez A, McKinsey GL, Cho FS, Hu JS, Wimer M, Paul A, Fazel Darbandi S, Pla R, Nowakowski TJ, Goodrich LV, Paz JT, Rubenstein JLR. Mafb and c-Maf Have Prenatal Compensatory and Postnatal Antagonistic Roles in Cortical Interneuron Fate and Function. Cell Rep 2020; 26:1157-1173.e5. [PMID: 30699346 PMCID: PMC6602795 DOI: 10.1016/j.celrep.2019.01.031] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 11/17/2018] [Accepted: 01/08/2019] [Indexed: 10/27/2022] Open
Abstract
Mafb and c-Maf transcription factor (TF) expression is enriched in medial ganglionic eminence (MGE) lineages, beginning in late-secondary progenitors and continuing into mature parvalbumin (PV+) and somatostatin (SST+) interneurons. However, the functions of Maf TFs in MGE development remain to be elucidated. Herein, Mafb and c-Maf were conditionally deleted, alone and together, in the MGE and its lineages. Analyses of Maf mutant mice revealed redundant functions of Mafb and c-Maf in secondary MGE progenitors, where they repress the generation of SST+ cortical and hippocampal interneurons. By contrast, Mafb and c-Maf have distinct roles in postnatal cortical interneuron (CIN) morphological maturation, synaptogenesis, and cortical circuit integration. Thus, Mafb and c-Maf have redundant and opposing functions at different steps in CIN development.
Collapse
Affiliation(s)
- Emily Ling-Lin Pai
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Daniel Vogt
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA
| | - Alexandra Clemente-Perez
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Gabriel L McKinsey
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Frances S Cho
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Jia Sheng Hu
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Matt Wimer
- Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - Anirban Paul
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Siavash Fazel Darbandi
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Ramon Pla
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tomasz J Nowakowski
- Department of Anatomy, Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Jeanne T Paz
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institute of Neurological Disease, San Francisco, CA 94158, USA
| | - John L R Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA; Neuroscience Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
24
|
Péré-Védrenne C, He W, Azzi-Martin L, Prouzet-Mauléon V, Buissonnière A, Cardinaud B, Lehours P, Mégraud F, Grosset CF, Ménard A. The Nuclear Remodeling Induced by Helicobacter Cytolethal Distending Toxin Involves MAFB Oncoprotein. Toxins (Basel) 2020; 12:toxins12030174. [PMID: 32178359 PMCID: PMC7150770 DOI: 10.3390/toxins12030174] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/25/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Enterohepatic Helicobacters, such as Helicobacter hepaticus and Helicobacter pullorum, are associated with several intestinal and hepatic diseases. Their main virulence factor is the cytolethal distending toxin (CDT). In the present study, whole genome microarray-based identification of differentially expressed genes was performed in vitro in HT-29 intestinal cells while following the ectopic expression of the active CdtB subunit of H. hepaticus CDT. A CdtB-dependent upregulation of the V-maf musculoaponeurotic fibrosarcoma oncogene homolog B (MAFB) gene encoding the MAFB oncoprotein was found, as well as the CdtB-dependent regulation of several MAFB target genes. The transduction and coculture experiments confirmed MAFB mRNA and protein induction in response to CDT and its CdtB subunit in intestinal and hepatic cell lines. An analysis of MAFB protein subcellular localization revealed a strong nuclear and perinuclear localization in the CdtB-distended nuclei in intestinal and hepatic cells. MAFB was also detected at the cell periphery of the CdtB-induced lamellipodia in some cells. The silencing of MAFB changed the cellular response to CDT with the formation of narrower lamellipodia, a reduction of the increase in nucleus size, and the formation of less γH2AX foci, the biomarker for DNA double-strand breaks. Taken together, these data show that the CDT of enterohepatic Helicobacters modulates the expression of the MAFB oncoprotein, which is translocated in the nucleus and is associated with the remodeling of the nuclei and actin cytoskeleton.
Collapse
Affiliation(s)
- Christelle Péré-Védrenne
- Université de Bordeaux, INSERM—Institut National de la Santé et de la Recherche Médicale, BaRITOn—Bordeaux Research in Translational Oncology, UMR1053, 33076 Bordeaux, France; (C.P.-V.); (W.H.); (L.A.-M.); (A.B.); (P.L.); (F.M.)
| | - Wencan He
- Université de Bordeaux, INSERM—Institut National de la Santé et de la Recherche Médicale, BaRITOn—Bordeaux Research in Translational Oncology, UMR1053, 33076 Bordeaux, France; (C.P.-V.); (W.H.); (L.A.-M.); (A.B.); (P.L.); (F.M.)
| | - Lamia Azzi-Martin
- Université de Bordeaux, INSERM—Institut National de la Santé et de la Recherche Médicale, BaRITOn—Bordeaux Research in Translational Oncology, UMR1053, 33076 Bordeaux, France; (C.P.-V.); (W.H.); (L.A.-M.); (A.B.); (P.L.); (F.M.)
| | - Valérie Prouzet-Mauléon
- Université de Bordeaux, TBMCore, CRISP’edit, TBMcore CNRS-Centre National de la Recherche Scientifique UMS3427/INSERM—Institut National de la Santé et de la Recherche Médicale US005, 33076 Bordeaux, France;
- Université de Bordeaux, INSERM—Institut National de la Santé et de la Recherche Médicale, ACTION, U1218, Institut Bergonié, 33076 Bordeaux, France;
| | - Alice Buissonnière
- Université de Bordeaux, INSERM—Institut National de la Santé et de la Recherche Médicale, BaRITOn—Bordeaux Research in Translational Oncology, UMR1053, 33076 Bordeaux, France; (C.P.-V.); (W.H.); (L.A.-M.); (A.B.); (P.L.); (F.M.)
| | - Bruno Cardinaud
- Université de Bordeaux, INSERM—Institut National de la Santé et de la Recherche Médicale, ACTION, U1218, Institut Bergonié, 33076 Bordeaux, France;
- Bordeaux INP, ENSTBB, F-33000 Bordeaux, France
| | - Philippe Lehours
- Université de Bordeaux, INSERM—Institut National de la Santé et de la Recherche Médicale, BaRITOn—Bordeaux Research in Translational Oncology, UMR1053, 33076 Bordeaux, France; (C.P.-V.); (W.H.); (L.A.-M.); (A.B.); (P.L.); (F.M.)
- CHU Pellegrin, National Reference Center for Campylobacters and Helicobacters, 33076 Bordeaux, France
| | - Francis Mégraud
- Université de Bordeaux, INSERM—Institut National de la Santé et de la Recherche Médicale, BaRITOn—Bordeaux Research in Translational Oncology, UMR1053, 33076 Bordeaux, France; (C.P.-V.); (W.H.); (L.A.-M.); (A.B.); (P.L.); (F.M.)
- CHU Pellegrin, National Reference Center for Campylobacters and Helicobacters, 33076 Bordeaux, France
| | - Christophe F. Grosset
- Université de Bordeaux, INSERM—Institut National de la Santé et de la Recherche Médicale, BMGIC—Biotherapy of Genetic Diseases, Inflammatory Disorders and Cancer, U1035, miRCaDe Team, 33076 Bordeaux, France;
| | - Armelle Ménard
- Université de Bordeaux, INSERM—Institut National de la Santé et de la Recherche Médicale, BaRITOn—Bordeaux Research in Translational Oncology, UMR1053, 33076 Bordeaux, France; (C.P.-V.); (W.H.); (L.A.-M.); (A.B.); (P.L.); (F.M.)
- CHU Pellegrin, National Reference Center for Campylobacters and Helicobacters, 33076 Bordeaux, France
- Correspondence: ; Tel.: +33-(0)-5-5757-1288
| |
Collapse
|
25
|
Johnson Chacko L, Sergi C, Eberharter T, Dudas J, Rask-Andersen H, Hoermann R, Fritsch H, Fischer N, Glueckert R, Schrott-Fischer A. Early appearance of key transcription factors influence the spatiotemporal development of the human inner ear. Cell Tissue Res 2020; 379:459-471. [PMID: 31788757 DOI: 10.1007/s00441-019-03115-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/22/2019] [Indexed: 12/11/2022]
Abstract
Expression patterns of transcription factors leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5), transforming growth factor-β-activated kinase-1 (TAK1), SRY (sex-determining region Y)-box 2 (SOX2), and GATA binding protein 3 (GATA3) in the developing human fetal inner ear were studied between the gestation weeks 9 and 12. Further development of cochlear apex between gestational weeks 11 and 16 (GW11 and GW16) was examined using transmission electron microscopy. LGR5 was evident in the apical poles of the sensory epithelium of the cochlear duct and the vestibular end organs at GW11. Immunostaining was limited to hair cells of the organ of Corti by GW12. TAK1 was immune positive in inner hair cells of the organ of Corti by GW12 and colocalized with p75 neurotrophic receptor expression. Expression for SOX2 was confined primarily to the supporting cells of utricle at the earliest stage examined at GW9. Intense expression for GATA3 was presented in the cochlear sensory epithelium and spiral ganglia at GW9. Expression of GATA3 was present along the midline of both the utricle and saccule in the zone corresponding to the striolar reversal zone where the hair cell phenotype switches from type I to type II. The spatiotemporal gradient of the development of the organ of Corti was also evident with the apex of the cochlea forming by GW16. It seems that highly specific staining patterns of several transcriptions factors are critical in guiding the genesis of the inner ear over development. Our findings suggest that the spatiotemporal gradient in cochlear development extends at least until gestational week 16.
Collapse
Affiliation(s)
- Lejo Johnson Chacko
- Department of Otorhinolaryngology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Consolato Sergi
- Department of Laboratory Medicine and Pathology and Department of Pediatrics, University of Alberta, 8440 112 St, NW, Edmonton, AB, T6G 2B7, Canada
| | - Theresa Eberharter
- Department of Otorhinolaryngology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Jozsef Dudas
- Department of Otorhinolaryngology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Helge Rask-Andersen
- Department of Surgical Sciences, Head and Neck Surgery, Section of Otolaryngology, Uppsala University Hospital, SE-751 85, Uppsala, Sweden
| | - Romed Hoermann
- Department of Anatomy, Histology & Embryology, Division of Clinical & Functional Anatomy, Medical University of Innsbruck, Muellerstrasse 59, 6020, Innsbruck, Austria
| | - Helga Fritsch
- Department of Anatomy, Histology & Embryology, Division of Clinical & Functional Anatomy, Medical University of Innsbruck, Muellerstrasse 59, 6020, Innsbruck, Austria
| | - Natalie Fischer
- University Clinics Innsbruck, Tirol Kliniken, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Rudolf Glueckert
- Department of Otorhinolaryngology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
- University Clinics Innsbruck, Tirol Kliniken, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Anneliese Schrott-Fischer
- Department of Otorhinolaryngology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
26
|
Li X, Bi Z, Sun Y, Li C, Li Y, Liu Z. In vivo ectopic Ngn1 and Neurod1 convert neonatal cochlear glial cells into spiral ganglion neurons. FASEB J 2020; 34:4764-4782. [PMID: 32027432 DOI: 10.1096/fj.201902118r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 12/22/2022]
Abstract
Damage or degeneration of inner ear spiral ganglion neurons (SGNs) causes hearing impairment. Previous in vitro studies indicate that cochlear glial cells can be reprogrammed into SGNs, however, it remains unknown whether this can occur in vivo. Here, we show that neonatal glial cells can be converted, in vivo, into SGNs (defined as new SGNs) by simultaneous induction of Neurog1 (Ngn1) and Neurod1. New SGNs express SGN markers, Tuj1, Map2, Prox1, Mafb and Gata3, and reduce glial cell marker Sox10 and Scn7a. The heterogeneity within new SGNs is illustrated by immunostaining and transcriptomic assays. Transcriptomes analysis indicates that well reprogrammed SGNs are similar to type I SGNs. In addition, reprogramming efficiency is positively correlated with the dosage of Ngn1 and Neurod1, but declined with aging. Taken together, our in vivo data demonstrates the plasticity of cochlear neonatal glial cells and the capacity of Ngn1 and Neurod1 to reprogram glial cells into SGNs. Looking ahead, we expect that combination of Neurog1 and Neurod1 along with other factors will further boost the percentage of fully converted (Mafb+/Gata3+) new SGNs.
Collapse
Affiliation(s)
- Xiang Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhenghong Bi
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yidi Sun
- CAS Key Laboratory of Systems Biology, CAS Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Shanghai, China
| | - Chao Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yixue Li
- University of Chinese Academy of Sciences, Shanghai, China.,Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| |
Collapse
|
27
|
Li C, Li X, Bi Z, Sugino K, Wang G, Zhu T, Liu Z. Comprehensive transcriptome analysis of cochlear spiral ganglion neurons at multiple ages. eLife 2020; 9:50491. [PMID: 31913118 PMCID: PMC7299348 DOI: 10.7554/elife.50491] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/07/2020] [Indexed: 12/26/2022] Open
Abstract
Inner ear cochlear spiral ganglion neurons (SGNs) transmit sound information to the brainstem. Recent single cell RNA-Seq studies have revealed heterogeneities within SGNs. Nonetheless, much remains unknown about the transcriptome of SGNs, especially which genes are specifically expressed in SGNs. To address these questions, we needed a deeper and broader gene coverage than that in previous studies. We performed bulk RNA-Seq on mouse SGNs at five ages, and on two reference cell types (hair cells and glia). Their transcriptome comparison identified genes previously unknown to be specifically expressed in SGNs. To validate our dataset and provide useful genetic tools for this research field, we generated two knockin mouse strains: Scrt2-P2A-tdTomato and Celf4-3xHA-P2A-iCreER-T2A-EGFP. Our comprehensive analysis confirmed the SGN-selective expression of the candidate genes, testifying to the quality of our transcriptome data. These two mouse strains can be used to temporally label SGNs or to sort them.
Collapse
Affiliation(s)
- Chao Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhenghong Bi
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Ken Sugino
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, United States
| | - Guangqin Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Tong Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhiyong Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| |
Collapse
|
28
|
Lu J, Liu H, Lin S, Li C, Wu H. Electrophysiological characterization of acutely isolated spiral ganglion neurons in neonatal and mature sonic hedgehog knock-in mice. Neurosci Lett 2019; 714:134536. [PMID: 31589904 DOI: 10.1016/j.neulet.2019.134536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/04/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022]
Abstract
Spiral ganglion neurons (SGNs) are primary afferent auditory neurons activated by inner hair cells in mammalian cochlea. Here, for the convenience of SGN studies such as patch-clamp or single cell RNA-sequence studies, a knock-in mouse (ShhCreEGFP/+; Rosa26-Tdtomatoloxp/+) was generated for the purpose of obtaining fluorescence SGNs. Auditory brainstem response (ABR) and Tuj1 immunohistochemistry staining were performed to verify the hearing function and the morphological characteristics. The results showed that there was no significant difference between shh and wild type mice. In electrophysiological studies, we verified a series of electrophysiological characteristics including the amplitude of sodium and potassium currents and action potential characteristics of shh and wild type mice and no significant differences were found either. From the above, shh mice have the same cell function and morphology as their littermate control wild type mice and could be used as an ideal tool to study the function and characteristics of spiral ganglion neurons. Potassium channels of SGNs play an important role in resolving time accuracy. We obtained similar amplitude of IK+ in neonatal and mature mice in the aging competition experiment, however, the density of IK+ from mature mice were significantly different from those of neonatal mice, a phenomenon that may play a key role in the nervous system. Potassium channels have been shown to contribute to apoptosis induced by cisplatin administration in various cell lines. Here we used cisplatin administration to study the ototoxicity and found that the effects of a low dose of cisplatin (0.5 mM correspond to therapeutic doses) causes a decrease in currents and is reversible after a short administration time. Moreover, we propose the activated state of potassium channels has changed but the characteristic and number remain still after cisplatin administration. The excess potassium ions may accumulate in the cell body, which had affected the firing properties and induce cytotoxicity and apoptosis. We suggest that the electrophysiological properties of acutely isolated SGNs may support further research on the mechanics of auditory propagation and ion channel pharmacology.
Collapse
Affiliation(s)
- Jiawen Lu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Huihui Liu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Shanshan Lin
- College of Medical Technology, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chao Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China.
| |
Collapse
|
29
|
PKHD1L1 is a coat protein of hair-cell stereocilia and is required for normal hearing. Nat Commun 2019; 10:3801. [PMID: 31444330 PMCID: PMC6707252 DOI: 10.1038/s41467-019-11712-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/28/2019] [Indexed: 12/18/2022] Open
Abstract
The bundle of stereocilia on inner ear hair cells responds to subnanometer deflections produced by sound or head movement. Stereocilia are interconnected by a variety of links and also carry an electron-dense surface coat. The coat may contribute to stereocilia adhesion or protect from stereocilia fusion, but its molecular identity remains unknown. From a database of hair-cell-enriched translated proteins, we identify Polycystic Kidney and Hepatic Disease 1-Like 1 (PKHD1L1), a large, mostly extracellular protein of 4249 amino acids with a single transmembrane domain. Using serial immunogold scanning electron microscopy, we show that PKHD1L1 is expressed at the tips of stereocilia, especially in the high-frequency regions of the cochlea. PKHD1L1-deficient mice lack the surface coat at the upper but not lower regions of stereocilia, and they develop progressive hearing loss. We conclude that PKHD1L1 is a component of the surface coat and is required for normal hearing in mice. There is little known about the function or molecular identity of the electron-dense stereocilia coat, which is transiently present at the surface of stereocilia. In this study authors screened a database of hair-cell-enriched translated proteins to identify the expression of Polycystic Kidney and Hepatic Disease 1-Like 1 (PKHD1L1), a large, mostly extracellular protein, and show that it forms the coat at the tips of stereocilia and is required for normal hearing in mice
Collapse
|
30
|
Michalski N, Petit C. Genes Involved in the Development and Physiology of Both the Peripheral and Central Auditory Systems. Annu Rev Neurosci 2019; 42:67-86. [DOI: 10.1146/annurev-neuro-070918-050428] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genetic approach, based on the study of inherited forms of deafness, has proven to be particularly effective for deciphering the molecular mechanisms underlying the development of the peripheral auditory system, the cochlea and its afferent auditory neurons, and how this system extracts the physical parameters of sound. Although this genetic dissection has provided little information about the central auditory system, scattered data suggest that some genes may have a critical role in both the peripheral and central auditory systems. Here, we review the genes controlling the development and function of the peripheral and central auditory systems, focusing on those with demonstrated intrinsic roles in both systems and highlighting the current underappreciation of these genes. Their encoded products are diverse, from transcription factors to ion channels, as are their roles in the central auditory system, mostly evaluated in brainstem nuclei. We examine the ontogenetic and evolutionary mechanisms that may underlie their expression at different sites.
Collapse
Affiliation(s)
- Nicolas Michalski
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75015 Paris, France;,
- Institut National de la Santé et de la Recherche Médicale, UMRS 1120, 75015 Paris, France
- Sorbonne Universités, 75005 Paris, France
| | - Christine Petit
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, 75015 Paris, France;,
- Institut National de la Santé et de la Recherche Médicale, UMRS 1120, 75015 Paris, France
- Sorbonne Universités, 75005 Paris, France
- Syndrome de Usher et Autres Atteintes Rétino-Cochléaires, Institut de la Vision, 75012 Paris, France
- Collège de France, 75005 Paris, France
| |
Collapse
|
31
|
Bardhan T, Jeng J, Waldmann M, Ceriani F, Johnson SL, Olt J, Rüttiger L, Marcotti W, Holley MC. Gata3 is required for the functional maturation of inner hair cells and their innervation in the mouse cochlea. J Physiol 2019; 597:3389-3406. [PMID: 31069810 PMCID: PMC6636704 DOI: 10.1113/jp277997] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/07/2019] [Indexed: 01/14/2023] Open
Abstract
KEY POINTS The physiological maturation of auditory hair cells and their innervation requires precise temporal and spatial control of cell differentiation. The transcription factor gata3 is essential for the earliest stages of auditory system development and for survival and synaptogenesis in auditory sensory afferent neurons. We show that during postnatal development in the mouse inner ear gata3 is required for the biophysical maturation, growth and innervation of inner hair cells; in contrast, it is required only for the survival of outer hair cells. Loss of gata3 in inner hair cells causes progressive hearing loss and accounts for at least some of the deafness associated with the human hypoparathyroidism, deafness and renal anomaly (HDR) syndrome. The results show that gata3 is critical for later stages of mammalian auditory system development where it plays distinct, complementary roles in the coordinated maturation of sensory hair cells and their innervation. ABSTRACT The zinc finger transcription factor gata3 regulates inner ear development from the formation of the embryonic otic placode. Throughout development, gata3 is expressed dynamically in all the major cochlear cell types. Its role in afferent formation is well established but its possible involvement in hair cell maturation remains unknown. Here, we find that in heterozygous gata3 null mice (gata3+/- ) outer hair cells (OHCs) differentiate normally but their numbers are significantly lower. In contrast, inner hair cells (IHCs) survive normally but they fail to acquire adult basolateral membrane currents, retain pre-hearing current and efferent innervation profiles and have fewer ribbon synapses. Targeted deletion of gata3 driven by otoferlin-cre recombinase (gata3fl/fl otof-cre+/- ) in IHCs does not affect OHCs or the number of IHC afferent synapses but it leads to a failure in IHC maturation comparable to that observed in gata3+/- mice. Auditory brainstem responses in gata3fl/fl otof-cre+/- mice reveal progressive hearing loss that becomes profound by 6-7 months, whilst distortion product otoacoustic emissions are no different to control animals up to this age. Our results, alongside existing data, indicate that gata3 has specific, complementary functions in different cell types during inner ear development and that its continued expression in the sensory epithelium orchestrates critical aspects of physiological development and neural connectivity. Furthermore, our work indicates that hearing loss in human hypoparathyroidism, deafness and renal anomaly (HDR) syndrome arises from functional deficits in IHCs as well as loss of function from OHCs and both afferent and efferent neurons.
Collapse
MESH Headings
- Animals
- Cell Differentiation/physiology
- Cochlea/metabolism
- Cochlea/physiology
- GATA3 Transcription Factor/metabolism
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/physiology
- Hair Cells, Auditory, Outer/metabolism
- Hair Cells, Auditory, Outer/physiology
- Hair Cells, Vestibular/metabolism
- Hair Cells, Vestibular/physiology
- Hearing/physiology
- Hearing Loss/metabolism
- Hearing Loss/physiopathology
- Membrane Proteins/metabolism
- Mice, Knockout
- Mice, Transgenic
- Sensory Receptor Cells/metabolism
- Sensory Receptor Cells/physiology
- Synapses/metabolism
Collapse
Affiliation(s)
- Tanaya Bardhan
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | - Jing‐Yi Jeng
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | - Marco Waldmann
- Department of OtolaryngologyTübingen Hearing Research CenterSection of Physiological Acoustics and CommunicationUniversity of Tübingen72076TübingenGermany
| | - Federico Ceriani
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | | | - Jennifer Olt
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | - Lukas Rüttiger
- Department of OtolaryngologyTübingen Hearing Research CenterSection of Physiological Acoustics and CommunicationUniversity of Tübingen72076TübingenGermany
| | - Walter Marcotti
- Department of Biomedical ScienceUniversity of SheffieldSheffieldUK
| | | |
Collapse
|
32
|
Coate TM, Scott MK, Gurjar MC. Current concepts in cochlear ribbon synapse formation. Synapse 2019; 73:e22087. [PMID: 30592086 PMCID: PMC6573016 DOI: 10.1002/syn.22087] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022]
Abstract
In mammals, hair cells and spiral ganglion neurons (SGNs) in the cochlea together are sophisticated "sensorineural" structures that transduce auditory information from the outside world into the brain. Hair cells and SGNs are joined by glutamatergic ribbon-type synapses composed of a molecular machinery rivaling in complexity the mechanoelectric transduction components found at the apical side of the hair cell. The cochlear hair cell ribbon synapse has received much attention lately because of recent and important findings related to its damage (sometimes termed "synaptopathy") as a result of noise overexposure. During development, ribbon synapses between type I SGNs and inner hair cells form in the time window between birth and hearing onset and is a process coordinated with type I SGN myelination, spontaneous activity, synaptic pruning, and innervation by efferents. In this review, we highlight new findings regarding the diversity of type I SGNs and inner hair cell synapses, and the molecular mechanisms of selective hair cell targeting. Also discussed are cell adhesion molecules and protein constituents of the ribbon synapse, and how these factors participate in ribbon synapse formation. We also note interesting new insights into the morphological development of type II SGNs, and the potential for cochlear macrophages as important players in protecting SGNs. We also address recent studies demonstrating that the structural and physiological profiles of the type I SGNs do not reach full maturity until weeks after hearing onset, suggesting a protracted development that is likely modulated by activity.
Collapse
Affiliation(s)
- Thomas M. Coate
- Georgetown University, Department of Biology, 37th and O St. NW. Washington, DC. 20007. USA
| | - M. Katie Scott
- Department of Biological Sciences and Purdue Institute of Integrative Neuroscience, Purdue University, West Lafayette, Indiana 47907. USA
| | - Mansa C. Gurjar
- Georgetown University, Department of Biology, 37th and O St. NW. Washington, DC. 20007. USA
| |
Collapse
|
33
|
Shepard AR, Scheffel JL, Yu WM. Relationships between neuronal birthdates and tonotopic positions in the mouse cochlear nucleus. J Comp Neurol 2018; 527:999-1011. [PMID: 30414323 DOI: 10.1002/cne.24575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 12/22/2022]
Abstract
Tonotopy is a key anatomical feature of the vertebrate auditory system, but little is known about the mechanisms underlying its development. Since date of birth of a neuron correlates with tonotopic position in the cochlea, we investigated if it also correlates with tonotopic position in the cochlear nucleus (CN). In the cochlea, spiral ganglion neurons are organized in a basal to apical progression along the length of the cochlea based on birthdates, with neurons in the base (responding to high-frequency sounds) born early around mouse embryonic day (E) 9.5-10.5, and those in the apex (responding to low-frequency sounds) born late around E12.5-13.5. Using a low-dose thymidine analog incorporation assay, we examine whether CN neurons are arranged in a spatial gradient according to their birthdates. Most CN neurons are born between E10.5 ānd E13.5, with a peak at E12.5. A second wave of neuron birth was observed in the dorsal cochlear nucleus (DCN) beginning on E14.5 and lasts until E18.5. Large excitatory neurons were born in the first wave, and small local circuit neurons were born in the second. No spatial gradient of cell birth was observed in the DCN. In contrast, neurons in the anteroventral cochlear nucleus (AVCN) were found to be arranged in a dorsal to ventral progression according to their birthdates, which are aligned with the tonotopic axis. Most of these AVCN neurons are endbulb-innervated bushy cells. The correlation between birthdate and tonotopic position suggests testable mechanisms for specification of tonotopic position.
Collapse
Affiliation(s)
- Austin R Shepard
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| | | | - Wei-Ming Yu
- Department of Biology, Loyola University of Chicago, Chicago, Illinois
| |
Collapse
|
34
|
Tozaki-Saitoh H, Masuda J, Kawada R, Kojima C, Yoneda S, Masuda T, Inoue K, Tsuda M. Transcription factor MafB contributes to the activation of spinal microglia underlying neuropathic pain development. Glia 2018; 67:729-740. [PMID: 30485546 DOI: 10.1002/glia.23570] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 09/27/2018] [Accepted: 10/25/2018] [Indexed: 11/07/2022]
Abstract
Microglia, which are pathological effectors and amplifiers in the central nervous system, undergo various forms of activation. A well-studied microglial-induced pathological paradigm, spinal microglial activation following peripheral nerve injury (PNI), is a key event for the development of neuropathic pain but the transcription factors contributing to microglial activation are less understood. Herein, we demonstrate that MafB, a dominant transcriptional regulator of mature microglia, is involved in the pathology of a mouse model of neuropathic pain. PNI caused a rapid and marked increase of MafB expression selectively in spinal microglia but not in neurons. We also found that the microRNA mir-152 in the spinal cord which targets MafB expression decreased after PNI, and intrathecal administration of mir-152 mimic suppressed the development of neuropathic pain. Reduced MafB expression using heterozygous Mafb deficient mice and by intrathecal administration of siRNA alleviated the development of PNI-induced mechanical hypersensitivity. Furthermore, we found that intrathecal transfer of Mafb deficient microglia did not induce mechanical hypersensitivity and that conditional Mafb knockout mice did not develop neuropathic pain after PNI. We propose that MafB is a key mediator of the PNI-induced phenotypic alteration of spinal microglia and neuropathic pain development.
Collapse
Affiliation(s)
- Hidetoshi Tozaki-Saitoh
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Junya Masuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Ryu Kawada
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Chinami Kojima
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Sosuke Yoneda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Takahiro Masuda
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Kazuhide Inoue
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
| | - Makoto Tsuda
- Department of Life Innovation, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Fukuoka, Japan
| |
Collapse
|
35
|
Tremblay M, Sanchez-Ferras O, Bouchard M. GATA transcription factors in development and disease. Development 2018; 145:145/20/dev164384. [DOI: 10.1242/dev.164384] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT
The GATA family of transcription factors is of crucial importance during embryonic development, playing complex and widespread roles in cell fate decisions and tissue morphogenesis. GATA proteins are essential for the development of tissues derived from all three germ layers, including the skin, brain, gonads, liver, hematopoietic, cardiovascular and urogenital systems. The crucial activity of GATA factors is underscored by the fact that inactivating mutations in most GATA members lead to embryonic lethality in mouse models and are often associated with developmental diseases in humans. In this Primer, we discuss the unique and redundant functions of GATA proteins in tissue morphogenesis, with an emphasis on their regulation of lineage specification and early organogenesis.
Collapse
Affiliation(s)
- Mathieu Tremblay
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| | - Oraly Sanchez-Ferras
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| | - Maxime Bouchard
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| |
Collapse
|
36
|
Shrestha BR, Chia C, Wu L, Kujawa SG, Liberman MC, Goodrich LV. Sensory Neuron Diversity in the Inner Ear Is Shaped by Activity. Cell 2018; 174:1229-1246.e17. [PMID: 30078709 PMCID: PMC6150604 DOI: 10.1016/j.cell.2018.07.007] [Citation(s) in RCA: 290] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 04/23/2018] [Accepted: 07/02/2018] [Indexed: 01/02/2023]
Abstract
In the auditory system, type I spiral ganglion neurons (SGNs) convey complex acoustic information from inner hair cells (IHCs) to the brainstem. Although SGNs exhibit variation in physiological and anatomical properties, it is unclear which features are endogenous and which reflect input from synaptic partners. Using single-cell RNA sequencing, we derived a molecular classification of mouse type I SGNs comprising three subtypes that express unique combinations of Ca2+ binding proteins, ion channel regulators, guidance molecules, and transcription factors. Based on connectivity and susceptibility to age-related loss, these subtypes correspond to those defined physiologically. Additional intrinsic differences among subtypes and across the tonotopic axis highlight an unexpectedly active role for SGNs in auditory processing. SGN identities emerge postnatally and are disrupted in a mouse model of deafness that lacks IHC-driven activity. These results elucidate the range, nature, and origins of SGN diversity, with implications for treatment of congenital deafness.
Collapse
Affiliation(s)
- Brikha R Shrestha
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Chester Chia
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Lorna Wu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sharon G Kujawa
- Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston, MA 02114, USA
| | - M Charles Liberman
- Department of Otolaryngology, Harvard Medical School, Boston, MA 02115, USA; Eaton-Peabody Laboratories, Massachusetts Eye & Ear Infirmary, Boston, MA 02114, USA
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
37
|
Harley RJ, Murdy JP, Wang Z, Kelly MC, Ropp TJF, Park SH, Maness PF, Manis PB, Coate TM. Neuronal cell adhesion molecule (NrCAM) is expressed by sensory cells in the cochlea and is necessary for proper cochlear innervation and sensory domain patterning during development. Dev Dyn 2018; 247:934-950. [PMID: 29536590 PMCID: PMC6105381 DOI: 10.1002/dvdy.24629] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/06/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND In the cochlea, auditory development depends on precise patterns of innervation by afferent and efferent nerve fibers, as well as a stereotyped arrangement of hair and supporting cells. Neuronal cell adhesion molecule (NrCAM) is a homophilic cell adhesion molecule that controls diverse aspects of nervous system development, but the function of NrCAM in cochlear development is not well understood. RESULTS Throughout cochlear innervation, NrCAM is detectable on spiral ganglion neuron (SGN) afferent and olivocochlear efferent fibers, and on the membranes of developing hair and supporting cells. Neonatal Nrcam-null cochleae show errors in type II SGN fasciculation, reduced efferent innervation, and defects in the stereotyped packing of hair and supporting cells. Nrcam loss also leads to dramatic changes in the profiles of presynaptic afferent and efferent synaptic markers at the time of hearing onset. Despite these numerous developmental defects, Nrcam-null adults do not show defects in auditory acuity, and by postnatal day 21, the developmental deficits in ribbon synapse distribution and sensory domain structure appear to have been corrected. CONCLUSIONS NrCAM is expressed by several neural and sensory epithelial subtypes within the developing cochlea, and the loss of Nrcam confers numerous, but nonpermanent, developmental defects in innervation and sensory domain patterning. Developmental Dynamics 247:934-950, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Randall J. Harley
- Department of Biology, Georgetown University, 37 and O St. NW, Regents Hall 410, Washington, DC 20007, USA
| | - Joseph P. Murdy
- Department of Biology, Georgetown University, 37 and O St. NW, Regents Hall 410, Washington, DC 20007, USA
| | - Zhirong Wang
- Department of Biology, Georgetown University, 37 and O St. NW, Regents Hall 410, Washington, DC 20007, USA
| | - Michael C. Kelly
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, 35 Convent Dr., Bethesda, MD 20892, USA
| | - Tessa-Jonne F. Ropp
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, B251 Marsico Hall, CB#7070, 125 Mason Farm Rd., Chapel Hill, NC 27599, USA
| | - SeHoon H. Park
- Department of Biology, Georgetown University, 37 and O St. NW, Regents Hall 410, Washington, DC 20007, USA
| | - Patricia F. Maness
- Department of Biochemistry and Biophysics, The University of North Carolina School of Medicine, 120 Mason Farm Rd., suite 3020, CB#7260, Chapel Hill, NC 27599, USA
| | - Paul B. Manis
- Department of Otolaryngology/Head and Neck Surgery and Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, B027 Marsico Hall, CB#7070. 125 Mason Farm Rd., Chapel Hill, NC 27599
| | - Thomas M. Coate
- Department of Biology, Georgetown University, 37 and O St. NW, Regents Hall 410, Washington, DC 20007, USA
| |
Collapse
|
38
|
Lim L, Pakan JMP, Selten MM, Marques-Smith A, Llorca A, Bae SE, Rochefort NL, Marín O. Optimization of interneuron function by direct coupling of cell migration and axonal targeting. Nat Neurosci 2018; 21:920-931. [PMID: 29915195 PMCID: PMC6061935 DOI: 10.1038/s41593-018-0162-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/13/2018] [Indexed: 12/31/2022]
Abstract
Neural circuit assembly relies on the precise synchronization of developmental processes, such as cell migration and axon targeting, but the cell-autonomous mechanisms coordinating these events remain largely unknown. Here we found that different classes of interneurons use distinct routes of migration to reach the embryonic cerebral cortex. Somatostatin-expressing interneurons that migrate through the marginal zone develop into Martinotti cells, one of the most distinctive classes of cortical interneurons. For these cells, migration through the marginal zone is linked to the development of their characteristic layer 1 axonal arborization. Altering the normal migratory route of Martinotti cells by conditional deletion of Mafb-a gene that is preferentially expressed by these cells-cell-autonomously disrupts axonal development and impairs the function of these cells in vivo. Our results suggest that migration and axon targeting programs are coupled to optimize the assembly of inhibitory circuits in the cerebral cortex.
Collapse
Affiliation(s)
- Lynette Lim
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Janelle M P Pakan
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Center for Behavioral Brain Sciences, Institute of Cognitive Neurology and Dementia Research, German Center for Neurodegenerative Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Martijn M Selten
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - André Marques-Smith
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Alfredo Llorca
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Sung Eun Bae
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Nathalie L Rochefort
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain.
| |
Collapse
|
39
|
MafB Is Critical for Glucagon Production and Secretion in Mouse Pancreatic α Cells In Vivo. Mol Cell Biol 2018; 38:MCB.00504-17. [PMID: 29378833 DOI: 10.1128/mcb.00504-17] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/19/2018] [Indexed: 12/14/2022] Open
Abstract
The MafB transcription factor is expressed in pancreatic α and β cells during development but becomes exclusive to α cells in adult rodents. Mafb-null (Mafb-/- ) mice were reported to have reduced α- and β-cell numbers throughout embryonic development. To further analyze the postnatal function of MafB in the pancreas, we generated endocrine cell-specific (MafbΔEndo ) and tamoxifen-dependent (MafbΔTAM ) Mafb knockout mice. MafbΔEndo mice exhibited reduced populations of insulin-positive (insulin+) and glucagon+ cells at postnatal day 0, but the insulin+ cell population recovered by 8 weeks of age. In contrast, the Arx+ glucagon+ cell fraction and glucagon expression remained decreased even in adulthood. MafbΔTAM mice, with Mafb deleted after pancreas maturation, also demonstrated diminished glucagon+ cells and glucagon content without affecting β cells. A decreased Arx+ glucagon+ cell population in MafbΔEndo mice was compensated for by an increased Arx+ pancreatic polypeptide+ cell population. Furthermore, gene expression analyses from both MafbΔEndo and MafbΔTAM islets revealed that MafB is a key regulator of glucagon expression in α cells. Finally, both mutants failed to respond to arginine, likely due to impaired arginine transporter gene expression and glucagon production ability. Taken together, our findings reveal that MafB is critical for the functional maintenance of mouse α cells in vivo, including glucagon production and secretion, as well as in development.
Collapse
|
40
|
Noda T, Meas SJ, Nogami J, Amemiya Y, Uchi R, Ohkawa Y, Nishimura K, Dabdoub A. Direct Reprogramming of Spiral Ganglion Non-neuronal Cells into Neurons: Toward Ameliorating Sensorineural Hearing Loss by Gene Therapy. Front Cell Dev Biol 2018; 6:16. [PMID: 29492404 PMCID: PMC5817057 DOI: 10.3389/fcell.2018.00016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/31/2018] [Indexed: 01/22/2023] Open
Abstract
Primary auditory neurons (PANs) play a critical role in hearing by transmitting sound information from the inner ear to the brain. Their progressive degeneration is associated with excessive noise, disease and aging. The loss of PANs leads to permanent hearing impairment since they are incapable of regenerating. Spiral ganglion non-neuronal cells (SGNNCs), comprised mainly of glia, are resident within the modiolus and continue to survive after PAN loss. These attributes make SGNNCs an excellent target for replacing damaged PANs through cellular reprogramming. We used the neurogenic pioneer transcription factor Ascl1 and the auditory neuron differentiation factor NeuroD1 to reprogram SGNNCs into induced neurons (iNs). The overexpression of both Ascl1 and NeuroD1 in vitro generated iNs at high efficiency. Transcriptome analyses revealed that iNs displayed a transcriptome profile resembling that of endogenous PANs, including expression of several key markers of neuronal identity: Tubb3, Map2, Prph, Snap25, and Prox1. Pathway analyses indicated that essential pathways in neuronal growth and maturation were activated in cells upon neuronal induction. Furthermore, iNs extended projections toward cochlear hair cells and cochlear nucleus neurons when cultured with each respective tissue. Taken together, our study demonstrates that PAN-like neurons can be generated from endogenous SGNNCs. This work suggests that gene therapy can be a viable strategy to treat sensorineural hearing loss caused by degeneration of PANs.
Collapse
Affiliation(s)
- Teppei Noda
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Otolaryngology - Head and Neck Surgery, Kyushu University, Fukuoka, Japan
| | - Steven J Meas
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jumpei Nogami
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yutaka Amemiya
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Ryutaro Uchi
- Department of Otolaryngology - Head and Neck Surgery, Kyushu University, Fukuoka, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Koji Nishimura
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Hearing Communication Medical Center, Shiga Medical Center Research Institute, Moriyama, Japan
| | - Alain Dabdoub
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Otolaryngology - Head & Neck Surgery, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
41
|
Perny M, Ting CC, Kleinlogel S, Senn P, Roccio M. Generation of Otic Sensory Neurons from Mouse Embryonic Stem Cells in 3D Culture. Front Cell Neurosci 2017; 11:409. [PMID: 29311837 PMCID: PMC5742223 DOI: 10.3389/fncel.2017.00409] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/05/2017] [Indexed: 12/29/2022] Open
Abstract
The peripheral hearing process taking place in the cochlea mainly depends on two distinct sensory cell types: the mechanosensitive hair cells and the spiral ganglion neurons (SGNs). The first respond to the mechanical stimulation exerted by sound pressure waves on their hair bundles by releasing neurotransmitters and thereby activating the latter. Loss of these sensorineural cells is associated with permanent hearing loss. Stem cell-based approaches aiming at cell replacement or in vitro drug testing to identify potential ototoxic, otoprotective, or regenerative compounds have lately gained attention as putative therapeutic strategies for hearing loss. Nevertheless, they rely on efficient and reliable protocols for the in vitro generation of cochlear sensory cells for their implementation. To this end, we have developed a differentiation protocol based on organoid culture systems, which mimics the most important steps of in vivo otic development, robustly guiding mouse embryonic stem cells (mESCs) toward otic sensory neurons (OSNs). The stepwise differentiation of mESCs toward ectoderm was initiated using a quick aggregation method in presence of Matrigel in serum-free conditions. Non-neural ectoderm was induced via activation of bone morphogenetic protein (BMP) signaling and concomitant inhibition of transforming growth factor beta (TGFβ) signaling to prevent mesendoderm induction. Preplacodal and otic placode ectoderm was further induced by inhibition of BMP signaling and addition of fibroblast growth factor 2 (FGF2). Delamination and differentiation of SGNs was initiated by plating of the organoids on a 2D Matrigel-coated substrate. Supplementation with brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) was used for further maturation until 15 days of in vitro differentiation. A large population of neurons with a clear bipolar morphology and functional excitability was derived from these cultures. Immunostaining and gene expression analysis performed at different time points confirmed the transition trough the otic lineage and final expression of the key OSN markers. Moreover, the stem cell-derived OSNs exhibited functional electrophysiological properties of native SGNs. Our established in vitro model of OSNs development can be used for basic developmental studies, for drug screening or for the exploration of their regenerative potential.
Collapse
Affiliation(s)
- Michael Perny
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Bern, Switzerland.,Laboratory of Inner Ear Research, Department for BioMedical Research, University of Bern, Bern, Switzerland.,Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Ching-Chia Ting
- Laboratory of Inner Ear Research, Department for BioMedical Research, University of Bern, Bern, Switzerland.,Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, Department of Biomedical Research, University of Bern, Bern, Switzerland
| | | | - Pascal Senn
- Laboratory of Inner Ear Research, Department for BioMedical Research, University of Bern, Bern, Switzerland.,Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, Department of Biomedical Research, University of Bern, Bern, Switzerland.,Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Geneva (HUG), Geneva, Switzerland
| | - Marta Roccio
- Laboratory of Inner Ear Research, Department for BioMedical Research, University of Bern, Bern, Switzerland.,Department of Otorhinolaryngology, Head and Neck Surgery, Inselspital, University of Bern, Bern, Switzerland.,Cluster for Regenerative Neuroscience, Department of Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
42
|
Brown LN, Xing Y, Noble KV, Barth JL, Panganiban CH, Smythe NM, Bridges MC, Zhu J, Lang H. Macrophage-Mediated Glial Cell Elimination in the Postnatal Mouse Cochlea. Front Mol Neurosci 2017; 10:407. [PMID: 29375297 PMCID: PMC5770652 DOI: 10.3389/fnmol.2017.00407] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/23/2017] [Indexed: 12/20/2022] Open
Abstract
Hearing relies on the transmission of auditory information from sensory hair cells (HCs) to the brain through the auditory nerve. This relay of information requires HCs to be innervated by spiral ganglion neurons (SGNs) in an exclusive manner and SGNs to be ensheathed by myelinating and non-myelinating glial cells. In the developing auditory nerve, mistargeted SGN axons are retracted or pruned and excessive cells are cleared in a process referred to as nerve refinement. Whether auditory glial cells are eliminated during auditory nerve refinement is unknown. Using early postnatal mice of either sex, we show that glial cell numbers decrease after the first postnatal week, corresponding temporally with nerve refinement in the developing auditory nerve. Additionally, expression of immune-related genes was upregulated and macrophage numbers increase in a manner coinciding with the reduction of glial cell numbers. Transient depletion of macrophages during early auditory nerve development, using transgenic CD11bDTR/EGFP mice, resulted in the appearance of excessive glial cells. Macrophage depletion caused abnormalities in myelin formation and transient edema of the stria vascularis. Macrophage-depleted mice also showed auditory function impairment that partially recovered in adulthood. These findings demonstrate that macrophages contribute to the regulation of glial cell number during postnatal development of the cochlea and that glial cells play a critical role in hearing onset and auditory nerve maturation.
Collapse
Affiliation(s)
- LaShardai N. Brown
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Yazhi Xing
- Department of Otorhinolaryngology, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China
| | - Kenyaria V. Noble
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Jeremy L. Barth
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Clarisse H. Panganiban
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Nancy M. Smythe
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Mary C. Bridges
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC, United States
| | - Juhong Zhu
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
43
|
Transcriptional regulation of endothelial cell behavior during sprouting angiogenesis. Nat Commun 2017; 8:726. [PMID: 28959057 PMCID: PMC5620061 DOI: 10.1038/s41467-017-00738-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 07/25/2017] [Indexed: 01/29/2023] Open
Abstract
Mediating the expansion of vascular beds in many physiological and pathological settings, angiogenesis requires dynamic changes in endothelial cell behavior. However, the molecular mechanisms governing endothelial cell activity during different phases of vascular growth, remodeling, maturation, and quiescence remain elusive. Here, we characterize dynamic gene expression changes during postnatal development and identify critical angiogenic factors in mouse retinal endothelial cells. Using actively translating transcriptome analysis and in silico computational analyses, we determine candidate regulators controlling endothelial cell behavior at different developmental stages. We further show that one of the identified candidates, the transcription factor MafB, controls endothelial sprouting in vitro and in vivo, and perform an integrative analysis of RNA-Seq and ChIP-Seq data to define putative direct MafB targets, which are activated or repressed by the transcriptional regulator. Together, our results identify novel cell-autonomous regulatory mechanisms controlling sprouting angiogenesis. Angiogenesis is a complex process that requires coordinated changes in endothelial cell behavior. Here the authors use Ribo-tag and RNA-Seq to determine temporal profiles of transcriptional activity during postnatal retinal angiogenesis, identifying transcriptional regulators of the process.
Collapse
|
44
|
Wang L, Lin QF, Wang HY, Guan J, Lan L, Xie LY, Yu L, Yang J, Zhao C, Liang JL, Zhou HL, Yang HM, Xiong WP, Zhang QJ, Wang DY, Wang QJ. Clinical Auditory Phenotypes Associated with GATA3 Gene Mutations in Familial Hypoparathyroidism-deafness-renal Dysplasia Syndrome. Chin Med J (Engl) 2017; 130:703-709. [PMID: 28303854 PMCID: PMC5358421 DOI: 10.4103/0366-6999.201600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Hypoparathyroidism-deafness-renal dysplasia (HDR) syndrome is an autosomal dominant disorder primarily caused by haploinsufficiency of GATA binding protein 3 (GATA3) gene mutations, and hearing loss is the most frequent phenotypic feature. This study aimed at identifying the causative gene mutation for a three-generation Chinese family with HDR syndrome and analyzing auditory phenotypes in all familial HDR syndrome cases. Methods: Three affected family members underwent otologic examinations, biochemistry tests, and other clinical evaluations. Targeted genes capture combining next-generation sequencing was performed within the family. Sanger sequencing was used to confirm the causative mutation. The auditory phenotypes of all reported familial HDR syndrome cases analyzed were provided. Results: In Chinese family 7121, a heterozygous nonsense mutation c.826C>T (p.R276*) was identified in GATA3. All the three affected members suffered from sensorineural deafness and hypocalcemia; however, renal dysplasia only appeared in the youngest patient. Furthermore, an overview of thirty HDR syndrome families with corresponding GATA3 mutations revealed that hearing impairment occurred earlier in the younger generation in at least nine familial cases (30%) and two thirds of them were found to carry premature stop mutations. Conclusions: This study highlights the phenotypic heterogeneity of HDR and points to a possible genetic anticipation in patients with HDR, which needs to be further investigated.
Collapse
Affiliation(s)
- Li Wang
- Department of Otolaryngology Head and Neck Surgery, Institute of Otolaryngology, Chinese People's Liberation Army General Hospital, Beijing 100853; Department of Clinical Medicine, School of Medicine, Nankai University, Tianjin 300071, China
| | - Qiong-Fen Lin
- Beijing Genomics Institute, Shenzhen, Guangdong 518083, China
| | - Hong-Yang Wang
- Department of Otolaryngology Head and Neck Surgery, Institute of Otolaryngology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Jing Guan
- Department of Otolaryngology Head and Neck Surgery, Institute of Otolaryngology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Lan Lan
- Department of Otolaryngology Head and Neck Surgery, Institute of Otolaryngology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Lin-Yi Xie
- Department of Otolaryngology Head and Neck Surgery, Institute of Otolaryngology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Lan Yu
- Department of Otolaryngology Head and Neck Surgery, Institute of Otolaryngology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Ju Yang
- Department of Otolaryngology Head and Neck Surgery, Institute of Otolaryngology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Cui Zhao
- Department of Otolaryngology Head and Neck Surgery, Institute of Otolaryngology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Jin-Long Liang
- Beijing Genomics Institute, Shenzhen, Guangdong 518083, China
| | - Han-Lin Zhou
- Beijing Genomics Institute, Shenzhen, Guangdong 518083, China
| | - Huan-Ming Yang
- Beijing Genomics Institute, Shenzhen, Guangdong 518083; James D. Watson Institute of Genome Sciences, Hangzhou, Zhejiang 310058, China
| | - Wen-Ping Xiong
- Department of Otolaryngology Head and Neck Surgery, Institute of Otolaryngology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Qiu-Jing Zhang
- Department of Otolaryngology Head and Neck Surgery, Institute of Otolaryngology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Da-Yong Wang
- Department of Otolaryngology Head and Neck Surgery, Institute of Otolaryngology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Qiu-Ju Wang
- Department of Otolaryngology Head and Neck Surgery, Institute of Otolaryngology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| |
Collapse
|
45
|
Maag JLV, Kaczorowski DC, Panja D, Peters TJ, Bramham CR, Wibrand K, Dinger ME. Widespread promoter methylation of synaptic plasticity genes in long-term potentiation in the adult brain in vivo. BMC Genomics 2017; 18:250. [PMID: 28335720 PMCID: PMC5364592 DOI: 10.1186/s12864-017-3621-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 03/11/2017] [Indexed: 01/08/2023] Open
Abstract
Background DNA methylation is a key modulator of gene expression in mammalian development and cellular differentiation, including neurons. To date, the role of DNA modifications in long-term potentiation (LTP) has not been explored. Results To investigate the occurrence of DNA methylation changes in LTP, we undertook the first detailed study to describe the methylation status of all known LTP-associated genes during LTP induction in the dentate gyrus of live rats. Using a methylated DNA immunoprecipitation (MeDIP)-array, together with previously published matched RNA-seq and public histone modification data, we discover widespread changes in methylation status of LTP-genes. We further show that the expression of many LTP-genes is correlated with their methylation status. We show that these correlated genes are enriched for RNA-processing, active histone marks, and specific transcription factors. These data reveal that the synaptic activity-evoked methylation changes correlates with pre-existing activation of the chromatin landscape. Finally, we show that methylation of Brain-derived neurotrophic factor (Bdnf) CpG-islands correlates with isoform switching from transcripts containing exon IV to exon I. Conclusions Together, these data provide the first evidence of widespread regulation of methylation status in LTP-associated genes. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3621-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jesper L V Maag
- Division of Genomics and Epigenetics, Garvan Institute of Medical Research, Sydney, Australia.,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, 370 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia
| | - Dominik C Kaczorowski
- Division of Genomics and Epigenetics, Garvan Institute of Medical Research, Sydney, Australia
| | - Debabrata Panja
- Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Timothy J Peters
- Division of Genomics and Epigenetics, Garvan Institute of Medical Research, Sydney, Australia
| | - Clive R Bramham
- Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Karin Wibrand
- Department of Biomedicine and K.G. Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| | - Marcel E Dinger
- Division of Genomics and Epigenetics, Garvan Institute of Medical Research, Sydney, Australia. .,St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, 370 Victoria Street, Darlinghurst, Sydney, NSW, 2010, Australia.
| |
Collapse
|
46
|
Nishimura K, Noda T, Dabdoub A. Dynamic Expression of Sox2, Gata3, and Prox1 during Primary Auditory Neuron Development in the Mammalian Cochlea. PLoS One 2017; 12:e0170568. [PMID: 28118374 PMCID: PMC5261741 DOI: 10.1371/journal.pone.0170568] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/06/2017] [Indexed: 12/15/2022] Open
Abstract
Primary auditory neurons (PANs) connect cochlear sensory hair cells in the mammalian inner ear to cochlear nucleus neurons in the brainstem. PANs develop from neuroblasts delaminated from the proneurosensory domain of the otocyst and keep maturing until the onset of hearing after birth. There are two types of PANs: type I, which innervate the inner hair cells (IHCs), and type II, which innervate the outer hair cells (OHCs). Glial cells surrounding these neurons originate from neural crest cells and migrate to the spiral ganglion. Several transcription factors are known to regulate the development and differentiation of PANs. Here we systematically examined the spatiotemporal expression of five transcription factors: Sox2, Sox10, Gata3, Mafb, and Prox1 from early delamination at embryonic day (E) 10.5 to adult. We found that Sox2 and Sox10 were initially expressed in the proneurosensory cells in the otocyst (E10.5). By E12.75 both Sox2 and Sox10 were downregulated in the developing PANs; however, Sox2 expression transiently increased in the neurons around birth. Furthermore, both Sox2 and Sox10 continued to be expressed in spiral ganglion glial cells. We also show that Gata3 and Prox1 were first expressed in all developing neurons, followed by a decrease in expression of Gata3 and Mafb in type I PANs and Prox1 in type II PANs as they matured. Moreover, we describe two subtypes of type II neurons based on Peripherin expression. These results suggest that Sox2, Gata3 and Prox1 play a role during neurogenesis as well as maturation of the PANs.
Collapse
Affiliation(s)
- Koji Nishimura
- Shiga Medical Center Research Institute, Moriyama, Shiga, Japan
| | - Teppei Noda
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Alain Dabdoub
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Otolaryngology – Head & Neck Surgery, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
47
|
Johnson Chacko L, Pechriggl EJ, Fritsch H, Rask-Andersen H, Blumer MJF, Schrott-Fischer A, Glueckert R. Neurosensory Differentiation and Innervation Patterning in the Human Fetal Vestibular End Organs between the Gestational Weeks 8-12. Front Neuroanat 2016; 10:111. [PMID: 27895556 PMCID: PMC5108762 DOI: 10.3389/fnana.2016.00111] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/28/2016] [Indexed: 11/13/2022] Open
Abstract
Balance orientation depends on the precise operation of the vestibular end organs and the vestibular ganglion neurons. Previous research on the assemblage of the neuronal network in the developing fetal vestibular organ has been limited to data from animal models. Insights into the molecular expression profiles and signaling moieties involved in embryological development of the human fetal inner ear have been limited. We present an investigation of the cells of the vestibular end organs with specific focus on the hair cell differentiation and innervation pattern using an uninterrupted series of unique specimens from gestational weeks 8-12. Nerve fibers positive for peripherin innervate the entire fetal crista and utricle. While in rodents only the peripheral regions of the cristae and the extra-striolar region of the statolithic organs are stained. At week 9, transcription factors PAX2 and PAX8 were observed in the hair cells whereas PAX6 was observed for the first time among the supporting cells of the cristae and the satellite glial cells of the vestibular ganglia. Glutamine synthetase, a regulator of the neurotransmitter glutamate, is strongly expressed among satellite glia cells, transitional zones of the utricle and supporting cells in the sensory epithelium. At gestational week 11, electron microscopic examination reveals bouton contacts at hair cells and first signs of the formation of a protocalyx at type I hair cells. Our study provides first-hand insight into the fetal development of the vestibular end organs as well as their pattern of innervation by means of immunohistochemical and EM techniques, with the aim of contributing toward our understanding of balance development.
Collapse
Affiliation(s)
- Lejo Johnson Chacko
- Department of Otolaryngology, Medical University of Innsbruck Innsbruck, Austria
| | - Elisabeth J Pechriggl
- Department of Anatomy, Histology, and Embryology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck Innsbruck, Austria
| | - Helga Fritsch
- Department of Anatomy, Histology, and Embryology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck Innsbruck, Austria
| | | | - Michael J F Blumer
- Department of Anatomy, Histology, and Embryology, Division of Clinical and Functional Anatomy, Medical University of Innsbruck Innsbruck, Austria
| | | | - Rudolf Glueckert
- Department of Otolaryngology, Medical University of InnsbruckInnsbruck, Austria; University Clinics Innsbruck, Tirol KlinikenInnsbruck, Austria
| |
Collapse
|
48
|
Kwan KY. Single-Cell Transcriptome Analysis of Developing and Regenerating Spiral Ganglion Neurons. ACTA ACUST UNITED AC 2016; 2:211-220. [PMID: 28758056 DOI: 10.1007/s40495-016-0064-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The spiral ganglion neurons (SGNs) of the cochlea are essential for our ability to hear. SGN loss after exposure to ototoxic drugs or loud noise results in hearing loss. Pluripotent stem cell-derived and endogenous progenitor cell types have the potential to become SGNs and are cellular foundations for replacement therapies. Repurposing transcriptional regulatory networks to promote SGN differentiation from progenitor cells is a strategy for regeneration. Advances in the Fludigm C1 workflow or Drop-seq allow sequencing of single cell transcriptomes to reveal variability between cells. During differentiation, the individual transcriptomes obtained from single-cell RNA-seq can be exploited to identify different cellular states. Pseudotemporal ordering of transcriptomes describes the differentiation trajectory, allows monitoring of transcriptional changes and determines molecular barriers that prevent the progression of progenitors into SGNs. Analysis of single cell transcriptomes will help develop novel strategies for guiding efficient SGN regeneration.
Collapse
Affiliation(s)
- Kelvin Y Kwan
- Department of Cell Biology & Neuroscience, Rutgers University, Piscataway, NJ 08854, USA.,Stem Cell Research Center and Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
49
|
Banerjee RR, Cyphert HA, Walker EM, Chakravarthy H, Peiris H, Gu X, Liu Y, Conrad E, Goodrich L, Stein RW, Kim SK. Gestational Diabetes Mellitus From Inactivation of Prolactin Receptor and MafB in Islet β-Cells. Diabetes 2016; 65:2331-41. [PMID: 27217483 PMCID: PMC4955982 DOI: 10.2337/db15-1527] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 05/11/2016] [Indexed: 12/21/2022]
Abstract
β-Cell proliferation and expansion during pregnancy are crucial for maintaining euglycemia in response to increased metabolic demands placed on the mother. Prolactin and placental lactogen signal through the prolactin receptor (PRLR) and contribute to adaptive β-cell responses in pregnancy; however, the in vivo requirement for PRLR signaling specifically in maternal β-cell adaptations remains unknown. We generated a floxed allele of Prlr, allowing conditional loss of PRLR in β-cells. In this study, we show that loss of PRLR signaling in β-cells results in gestational diabetes mellitus (GDM), reduced β-cell proliferation, and failure to expand β-cell mass during pregnancy. Targeted PRLR loss in maternal β-cells in vivo impaired expression of the transcription factor Foxm1, both G1/S and G2/M cyclins, tryptophan hydroxylase 1 (Tph1), and islet serotonin production, for which synthesis requires Tph1. This conditional system also revealed that PRLR signaling is required for the transient gestational expression of the transcription factor MafB within a subset of β-cells during pregnancy. MafB deletion in maternal β-cells also produced GDM, with inadequate β-cell expansion accompanied by failure to induce PRLR-dependent target genes regulating β-cell proliferation. These results unveil molecular roles for PRLR signaling in orchestrating the physiologic expansion of maternal β-cells during pregnancy.
Collapse
Affiliation(s)
- Ronadip R Banerjee
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA Division of Endocrinology, Gerontology and Metabolism, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Holly A Cyphert
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Emily M Walker
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Harini Chakravarthy
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Heshan Peiris
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Xueying Gu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Yinghua Liu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Elizabeth Conrad
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Lisa Goodrich
- Department of Neurobiology, Harvard Medical School, Boston, MA
| | - Roland W Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, CA Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
50
|
Park JG, Tischfield MA, Nugent AA, Cheng L, Di Gioia SA, Chan WM, Maconachie G, Bosley TM, Summers CG, Hunter DG, Robson CD, Gottlob I, Engle EC. Loss of MAFB Function in Humans and Mice Causes Duane Syndrome, Aberrant Extraocular Muscle Innervation, and Inner-Ear Defects. Am J Hum Genet 2016; 98:1220-1227. [PMID: 27181683 DOI: 10.1016/j.ajhg.2016.03.023] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 03/21/2016] [Indexed: 11/16/2022] Open
Abstract
Duane retraction syndrome (DRS) is a congenital eye-movement disorder defined by limited outward gaze and retraction of the eye on attempted inward gaze. Here, we report on three heterozygous loss-of-function MAFB mutations causing DRS and a dominant-negative MAFB mutation causing DRS and deafness. Using genotype-phenotype correlations in humans and Mafb-knockout mice, we propose a threshold model for variable loss of MAFB function. Postmortem studies of DRS have reported abducens nerve hypoplasia and aberrant innervation of the lateral rectus muscle by the oculomotor nerve. Our studies in mice now confirm this human DRS pathology. Moreover, we demonstrate that selectively disrupting abducens nerve development is sufficient to cause secondary innervation of the lateral rectus muscle by aberrant oculomotor nerve branches, which form at developmental decision regions close to target extraocular muscles. Thus, we present evidence that the primary cause of DRS is failure of the abducens nerve to fully innervate the lateral rectus muscle in early development.
Collapse
Affiliation(s)
- Jong G Park
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Duke University School of Medicine, Durham, NC 27710, USA
| | - Max A Tischfield
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alicia A Nugent
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA
| | - Long Cheng
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Silvio Alessandro Di Gioia
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Wai-Man Chan
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Gail Maconachie
- Ulverscroft Eye Unit, University of Leicester, Leicester LE2 7LX, UK; Department of Neuroscience, Psychology, and Behavior, University of Leicester, Leicester LE2 7LX, UK
| | - Thomas M Bosley
- Wilmer Eye Institute, Johns Hopkins University, Baltimore, MD 21287, USA
| | - C Gail Summers
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN 55455, USA; Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - David G Hunter
- Department of Ophthalmology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
| | - Caroline D Robson
- Department of Radiology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Irene Gottlob
- Ulverscroft Eye Unit, University of Leicester, Leicester LE2 7LX, UK; Department of Neuroscience, Psychology, and Behavior, University of Leicester, Leicester LE2 7LX, UK
| | - Elizabeth C Engle
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA; F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Department of Neurology, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA; Department of Ophthalmology, Boston Children's Hospital, Boston, MA 02115, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|