1
|
Kathiresan DS, Balasubramani R, Marudhachalam K, Jaiswal P, Ramesh N, Sureshbabu SG, Puthamohan VM, Vijayan M. Role of Mitochondrial Dysfunctions in Neurodegenerative Disorders: Advances in Mitochondrial Biology. Mol Neurobiol 2025; 62:6827-6855. [PMID: 39269547 DOI: 10.1007/s12035-024-04469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024]
Abstract
Mitochondria, essential organelles responsible for cellular energy production, emerge as a key factor in the pathogenesis of neurodegenerative disorders. This review explores advancements in mitochondrial biology studies that highlight the pivotal connection between mitochondrial dysfunctions and neurological conditions such as Alzheimer's, Parkinson's, Huntington's, ischemic stroke, and vascular dementia. Mitochondrial DNA mutations, impaired dynamics, and disruptions in the ETC contribute to compromised energy production and heightened oxidative stress. These factors, in turn, lead to neuronal damage and cell death. Recent research has unveiled potential therapeutic strategies targeting mitochondrial dysfunction, including mitochondria targeted therapies and antioxidants. Furthermore, the identification of reliable biomarkers for assessing mitochondrial dysfunction opens new avenues for early diagnosis and monitoring of disease progression. By delving into these advancements, this review underscores the significance of understanding mitochondrial biology in unraveling the mechanisms underlying neurodegenerative disorders. It lays the groundwork for developing targeted treatments to combat these devastating neurological conditions.
Collapse
Affiliation(s)
- Divya Sri Kathiresan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Rubadevi Balasubramani
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Kamalesh Marudhachalam
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Piyush Jaiswal
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Nivedha Ramesh
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Suruthi Gunna Sureshbabu
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India
| | - Vinayaga Moorthi Puthamohan
- Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Nadu, Tamil, 641046, India.
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
2
|
Chopra U, Bhansali P, Gangi Setty SR, Chakravortty D. Endoplasmic reticulum facilitates the coordinated division of Salmonella-containing vacuoles. mBio 2025; 16:e0011425. [PMID: 40272166 PMCID: PMC12077215 DOI: 10.1128/mbio.00114-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025] Open
Abstract
Salmonella Typhimurium (STM) resides in a membrane-bound compartment called the Salmonella-containing vacuole (SCV) in several infected cell types where bacterial and SCV division occur synchronously to maintain a single bacterium per vacuole. However, the mechanism behind this synchronous fission is not well understood. Fission of intracellular organelles is known to be regulated by the dynamic tubular endoplasmic reticulum (ER). In this study, we evaluated the role of ER in controlling SCV division. Interestingly, Salmonella-infected cells show activation of the unfolded protein response (UPR) and expansion of ER tubules. Altering the expression of ER morphology regulators, such as reticulon-4a (Rtn4a) and CLIMP63, significantly impacted bacterial proliferation, suggesting a potential role of tubular ER in facilitating SCV division. Live-cell imaging revealed the marking of tubular ER at the center of 78% of SCV division sites. This study also explored the role of SteA (a known Salmonella effector in modulating membrane dynamics) in coordinating the SCV division. SteA resides on the SCV membranes and helps form membrane contact between SCV and ER. The colocalization of ER with SCV enclosing STMΔsteA was significantly reduced, compared with SCV of STM WT or STMΔsteA:steA. STMΔsteA shows profound defects in SCV division, resulting in multiple bacteria in a single vacuole with proliferation defects. In vivo, the STMΔsteA shows a defect in colonization in the spleen and liver and affects the initial survival rate of mice. Overall, this study suggests a coordinated role of bacterial effector SteA in promoting ER contact/association with SCVs and regulating SCV division.IMPORTANCEThis study highlights the essential role of the host endoplasmic reticulum in facilitating SCV division and maintaining a single bacterium per vacuole. The Salmonella effector SteA helps maintain the single bacterium per vacuole state. In the absence of SteA, Salmonella resides as multiple bacteria within a single large vacuole. The STMΔsteA shows reduced proliferation under in vitro conditions and exhibits colonization defects in vivo, highlighting the importance of this effector in Salmonella pathogenesis. These findings suggest that targeting SteA could provide a novel therapeutic approach to inhibit Salmonella pathogenicity.
Collapse
Affiliation(s)
- Umesh Chopra
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Priyanka Bhansali
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Subba Rao Gangi Setty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Dipshikha Chakravortty
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, India
| |
Collapse
|
3
|
Kamerkar SC, Liu A, Higgs HN. Mitochondrial fission - changing perspectives for future progress. J Cell Sci 2025; 138:jcs263640. [PMID: 40104946 DOI: 10.1242/jcs.263640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
Mitochondrial fission is important for many aspects of cellular homeostasis, including mitochondrial distribution, stress response, mitophagy, mitochondrially derived vesicle production and metabolic regulation. Several decades of research has revealed much about fission, including identification of a key division protein - the dynamin Drp1 (also known as DNM1L) - receptors for Drp1 on the outer mitochondrial membrane (OMM), including Mff, MiD49 and MiD51 (also known as MIEF2 and MIEF1, respectively) and Fis1, and important Drp1 regulators, including post-translational modifications, actin filaments and the phospholipid cardiolipin. In addition, it is now appreciated that other organelles, including the endoplasmic reticulum, lysosomes and Golgi-derived vesicles, can participate in mitochondrial fission. However, a more holistic understanding of the process is lacking. In this Review, we address three questions that highlight knowledge gaps. First, how do we quantify mitochondrial fission? Second, how does the inner mitochondrial membrane (IMM) divide? Third, how many 'types' of fission exist? We also introduce a model that integrates multiple regulatory factors in mammalian mitochondrial fission. In this model, three possible pathways (cellular stimulation, metabolic switching or mitochondrial dysfunction) independently initiate Drp1 recruitment at the fission site, followed by a shared second step in which Mff mediates subsequent assembly of a contractile Drp1 ring. We conclude by discussing some perplexing issues in fission regulation, including the effects of Drp1 phosphorylation and the multiple Drp1 isoforms.
Collapse
Affiliation(s)
- Sukrut C Kamerkar
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Ao Liu
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
4
|
Robertson GL, Bodnya C, Gama V. Mitochondrial and peroxisomal fission in cortical neurogenesis. Int J Biochem Cell Biol 2025; 182-183:106774. [PMID: 40158688 DOI: 10.1016/j.biocel.2025.106774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/14/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
The human brain is unique in its cellular diversity, intricate cytoarchitecture, function, and complex metabolic and bioenergetic demands, for which mitochondria and peroxisomes are essential. Mitochondria are multifunctional organelles that coordinate various signaling pathways central to neurogenesis. The dynamic morphological changes of the mitochondrial network have been linked to the regulation of bioenergetic and metabolic states. Specific protein machinery is dedicated to mitochondrial fission and fusion, allowing organelle distribution during cell division, organelle repair, and adaptation to environmental stimuli (excellent reviews have been published on these topics [Kondadi and Reichert, 2024; Giacomello et al., 2020; Tilokani et al., 2018; Kraus et al., 2021; Navaratnarajah et al., 2021]). In parallel, peroxisomes contain over 50 different enzymes which regulate metabolic functions that are critical for neurogenesis (Berger et al., 2016; Hulshagen et al., 2008). Peroxisomes share many of the components of their fission machinery with the mitochondria and undergo fission to help meet metabolic demands in response to environmental stimuli (Schrader et al., 2016). This review focuses primarily on the machinery involved in mitochondrial and peroxisomal fission. Mitochondrial fission has been identified as a critical determinant of cell fate decisions (Iwata et al., 2023, 2020; Khacho et al., 2016; King et al., 2021; Prigione and Adjaye, 2010; Vantaggiato et al., 2019; Kraus et al., 2021). The connection between alterations in peroxisomal fission and metabolic changes associated with cellular differentiation remains less clear. Here, we provide an overview of the functional and regulatory aspects of the mitochondrial and peroxisomal fission machinery and provide insight into the current mechanistic understanding by which mitochondrial and peroxisomal fission influence neurogenesis.
Collapse
Affiliation(s)
| | - Caroline Bodnya
- Vanderbilt University, Cell and Developmental Biology, Nashville, TN, United States
| | - Vivian Gama
- Vanderbilt University, Cell and Developmental Biology, Nashville, TN, United States; Vanderbilt University, Vanderbilt Center for Stem Cell Biology, Nashville, TN, United States; Vanderbilt University, Vanderbilt Brain Institute, Nashville, TN, United States.
| |
Collapse
|
5
|
Wang X, Liu Y, Wang J, Lu X, Guo Z, Lv S, Sun Z, Gao T, Gao F, Yuan J. Mitochondrial Quality Control in Ovarian Function: From Mechanisms to Therapeutic Strategies. Reprod Sci 2025; 32:1399-1413. [PMID: 38981995 DOI: 10.1007/s43032-024-01634-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Mitochondrial quality control plays a critical role in cytogenetic development by regulating various cell-death pathways and modulating the release of reactive oxygen species (ROS). Dysregulated mitochondrial quality control can lead to a broad spectrum of diseases, including reproductive disorders, particularly female infertility. Ovarian insufficiency is a significant contributor to female infertility, given its high prevalence, complex pathogenesis, and profound impact on women's health. Understanding the pathogenesis of ovarian insufficiency and devising treatment strategies based on this understanding are crucial. Oocytes and granulosa cells (GCs) are the primary ovarian cell types, with GCs regulated by oocytes, fulfilling their specific energy requirements prior to ovulation. Dysregulation of mitochondrial quality control through gene knockout or external stimuli can precipitate apoptosis, inflammatory responses, or ferroptosis in both oocytes and GCs, exacerbating ovarian insufficiency. This review aimed to delineate the regulatory mechanisms of mitochondrial quality control in GCs and oocytes during ovarian development. This study highlights the adverse consequences of dysregulated mitochondrial quality control on GCs and oocyte development and proposes therapeutic interventions for ovarian insufficiency based on mitochondrial quality control. These insights provide a foundation for future clinical approaches for treating ovarian insufficiency.
Collapse
Affiliation(s)
- Xiaomei Wang
- College of Basic Medical, Jining Medical University, Jining, China
| | - Yuxin Liu
- College of Second Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Jinzheng Wang
- College of Second Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Xueyi Lu
- College of Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Zhipeng Guo
- College of Second Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Shenmin Lv
- College of Second Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Zhenyu Sun
- College of Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Tan Gao
- College of Second Clinical Medicine, Jining Medical University, Jining, China
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Fei Gao
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Jinxiang Yuan
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China.
| |
Collapse
|
6
|
Kirchweger P, Wolf SG, Varsano N, Dadosh T, Resch GP, Elbaum M. Snapshots of mitochondrial fission imaged by cryo-scanning transmission electron tomography. J Cell Sci 2025; 138:jcs263639. [PMID: 40365741 DOI: 10.1242/jcs.263639] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 04/02/2025] [Indexed: 05/15/2025] Open
Abstract
Mitochondria undergo constant remodeling via fission, fusion, extension and degradation. Fission, in particular, depends on the accumulation of mitochondrial fission factor (MFF) and subsequent recruitment of the dynamin-related protein DRP1 (also known as DNM1L). We used cryo-scanning transmission electron tomography (cryo-STET) to investigate mitochondrial morphologies in MFF mutant (MFF-/-) mouse embryonic fibroblast (MEF) cells in ATP-depleting conditions that normally induce fission. The capability of cryo-STET to image through the cytoplasmic volume to a depth of 1 µm facilitated visualization of intact mitochondria and their surroundings. We imaged changes in mitochondrial morphology and cristae structure, as well as contacts with the endoplasmic reticulum (ER), degradative organelles and the cytoskeleton at stalled fission sites. We found disruption of the outer mitochondrial membrane at contact sites with the ER and degradative organelles at sites of mitophagy. We identified fission sites where the inner mitochondrial membrane is already separated while the outer membrane is still continuous. Although MFF is a general fission factor, these observations demonstrate that mitochondrial fission can proceed to the final stage in its absence. The use of cryo-STET allays concerns about the loss of structures due to sample thinning required for tomography using cryo-transmission electron microscopy.
Collapse
Affiliation(s)
- Peter Kirchweger
- Department of Chemical and Biological Physics, Weizmann Institute of Sciences, 7610001 Rehovot, Israel
- Department of Chemical and Structural Biology, Weizmann Institute of Sciences, 7610001 Rehovot, Israel
| | - Sharon Grayer Wolf
- Department of Chemical Research Support, Weizmann Institute of Sciences, 7610001 Rehovot, Israel
| | - Neta Varsano
- Department of Chemical Research Support, Weizmann Institute of Sciences, 7610001 Rehovot, Israel
| | - Tali Dadosh
- Department of Chemical Research Support, Weizmann Institute of Sciences, 7610001 Rehovot, Israel
| | - Guenter P Resch
- Nexperion e.U.-Solutions for Electron Microscopy, 1220 Vienna, Austria
| | - Michael Elbaum
- Department of Chemical and Biological Physics, Weizmann Institute of Sciences, 7610001 Rehovot, Israel
| |
Collapse
|
7
|
Zheng Y, Yang J, Li X, Qi L, Zheng Z, Kong J, Zhang G, Guo Y. Mitochondria at the crossroads: Quality control mechanisms in neuronal senescence and neurodegeneration. Neurobiol Dis 2025; 208:106862. [PMID: 40049539 DOI: 10.1016/j.nbd.2025.106862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/02/2025] [Indexed: 04/13/2025] Open
Abstract
Mitochondria play a central role in essential cellular processes, including energy metabolism, biosynthesis of metabolic substances, calcium ion storage, and regulation of cell death. Maintaining mitochondrial quality control is critical for preserving mitochondrial health and ensuring cellular function. Given their high energy demands, neurons depend on effective mitochondrial quality control to sustain their health and functionality. Neuronal senescence, characterized by a progressive decline in structural integrity and function, is a hallmark of neurodegenerative diseases. In senescent neurons, abnormal mitochondrial morphology, functional impairments, increased reactive oxygen species production and disrupted quality control mechanisms are frequently observed. Understanding the pathological changes in neuronal structure, exploring the intricate relationship between mitochondrial quality control and neuronal health, and leveraging mitochondrial quality control interventions provide a promising foundation for addressing age-related neurodegenerative diseases. This review highlights key mitochondrial quality control, including biogenesis, dynamics, the ubiquitin-proteasome system, autophagy pathways, mitochondria-derived vesicles, and inter-organelle communication, while discussing their roles in neuronal senescence and potential therapeutic strategies. These insights may pave the way for innovative treatments to mitigate neurodegenerative disorders.
Collapse
Affiliation(s)
- Yifei Zheng
- Basic Medical College, Hebei North University, Zhangjiakou, Hebei, China
| | - Jiahui Yang
- Basic Medical College, Hebei North University, Zhangjiakou, Hebei, China
| | - Xuanyao Li
- Basic Medical College, Hebei North University, Zhangjiakou, Hebei, China
| | - Linjie Qi
- Basic Medical College, Hebei North University, Zhangjiakou, Hebei, China
| | - Zhuo Zheng
- Basic Medical College, Hebei North University, Zhangjiakou, Hebei, China
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Guohui Zhang
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China.
| | - Ying Guo
- Department of Forensic Medicine, Hebei North University, Zhangjiakou, Hebei, China; Department of Pathology, Hebei North University, Zhangjiakou, Hebei, China; Hebei Key Laboratory of Neuropharmacology, Hebei North University, Zhangjiakou, Hebei, China.
| |
Collapse
|
8
|
Merta H, Gov K, Isogai T, Paul B, Sannigrahi A, Radhakrishnan A, Danuser G, Henne WM. Spatial proteomics of ER tubules reveals CLMN, an ER-actin tether at focal adhesions that promotes cell migration. Cell Rep 2025; 44:115502. [PMID: 40184252 DOI: 10.1016/j.celrep.2025.115502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 12/20/2024] [Accepted: 03/11/2025] [Indexed: 04/06/2025] Open
Abstract
The endoplasmic reticulum (ER) is structurally and functionally diverse, yet how its functions are organized within morphological subdomains is incompletely understood. Utilizing TurboID-based proximity labeling and CRISPR knockin technologies, we map the proteomic landscape of the human ER network. Sub-organelle proteomics reveals enrichments of proteins into ER tubules, sheets, and the nuclear envelope. We uncover an ER-enriched actin-binding protein, calmin/CLMN, and define it as an ER-actin tether that localizes to focal adhesions adjacent to ER tubules. Mechanistically, we find that CLMN depletion perturbs adhesion disassembly, actin dynamics, and cell movement. CLMN-depleted cells display decreased polarization of ER-plasma membrane contacts and calcium signaling factor STIM1 and altered calcium signaling near ER-actin interfaces, suggesting that CLMN influences calcium signaling to facilitate F-actin/adhesion dynamics. Collectively, we map the sub-organelle proteome landscape of the ER, identify CLMN as an ER-actin tether, and describe a non-canonical mechanism by which ER tubules engage actin to regulate cell migration.
Collapse
Affiliation(s)
- Holly Merta
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kaitlynn Gov
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tadamoto Isogai
- Lyda Hill Department of Bioinformatics and Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Blessy Paul
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Achinta Sannigrahi
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Arun Radhakrishnan
- Department of Molecular Genetics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gaudenz Danuser
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics and Cecil H. and Ida Green Center for Systems Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - W Mike Henne
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
9
|
Wang N, Wang X, Lan B, Gao Y, Cai Y. DRP1, fission and apoptosis. Cell Death Discov 2025; 11:150. [PMID: 40195359 PMCID: PMC11977278 DOI: 10.1038/s41420-025-02458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 03/15/2025] [Accepted: 03/27/2025] [Indexed: 04/09/2025] Open
Abstract
Mitochondrial fission is a critical physiological process in eukaryotic cells, participating in various vital activities such as mitosis, mitochondria quality control, and mitophagy. Recent studies have revealed a tight connection between mitochondrial fission and the mitochondrial metabolism, as well as apoptosis, which involves multiple cellular events and interactions between organelles. As a pivotal molecule in the process of mitochondrial fission, the function of DRP1 is regulated at multiple levels, including transcription, post-translational modifications. This review follows the guidelines for Human Gene Nomenclature and will focus on DRP1, discussing its activity regulation, its role in mitochondrial fission, and the relationship between mitochondrial fission and apoptosis.
Collapse
Affiliation(s)
- Nan Wang
- The Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xinwai Wang
- The Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Beiwu Lan
- The Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yufei Gao
- The Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Yuanyuan Cai
- The First Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
10
|
Yashuo F, Chong G, Zhe Y, Lu C, Hongyu X, Yi W, Nianhong W. Electroacupuncture promotes neural function recovery by alleviating mitochondria damage in cerebral ischemia mice. Brain Res 2025; 1851:149479. [PMID: 39892805 DOI: 10.1016/j.brainres.2025.149479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/19/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
AIMS This study aimed to observe the effect of electroacupuncture (EA) at Zusanli point (ST36) on motor function of cerebral ischemia mice, and to observe the effect of EA on mitochondrial morphology of peri-infarct cortex neurons in cerebral ischemia mice. METHODS Middle cerebral artery occlusion (MCAO) was used to develop an ischemic stroke mice model. EA treatment was performed for three consecutive days for 15 min per day after MCAO modeling. We investigated the therapeutic effects of EA on MCAO mice by performing neurobehavioral assessment (modified Neurological Severity Score, Rotarod test, Open-field test and Gait analysis) and TTC staining. The morphology and function of neuronal mitochondria were evaluated by transmission electron microscopy, qRT-PCR, chemiluminescence, and western blot. Nissl staining, TUNEL staining and immunofluorescence staining were used to observe neuronal morphology and apoptosis. Furthermore, ELISA was employed to measure the expression levels of inflammatory factors in mouse serum. RESULTS EA alleviated motor dysfunction and infarct volume in mice with cerebral ischemia. It improved the neuronal mitochondria damage in MCAO mice, and decreased the protein and mRNA expression level of mitochondrial fission related proteins (FIS1 and Drp1). In addition, EA can reduce neuronal damage and apoptosis of nerve cells, and decrease the level of inflammatory factors (IL-1β, TNF-α, IL-6 and IL-8) in cerebral ischemia mice. CONCLUSION EA therapy can improve motor dysfunction and alleviate the damage of neuron mitochondria in cerebral ischemic mice.
Collapse
Affiliation(s)
- Feng Yashuo
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040 China; National Center for Neurological Disorders, Shanghai 200040 China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040 China
| | - Guan Chong
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040 China; National Center for Neurological Disorders, Shanghai 200040 China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040 China
| | - Yang Zhe
- Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619 China
| | - Cao Lu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040 China
| | - Xie Hongyu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040 China; National Center for Neurological Disorders, Shanghai 200040 China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040 China
| | - Wu Yi
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040 China; National Center for Neurological Disorders, Shanghai 200040 China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040 China.
| | - Wang Nianhong
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai 200040 China; National Center for Neurological Disorders, Shanghai 200040 China; National Clinical Research Center for Geriatric Diseases, Shanghai 200040 China.
| |
Collapse
|
11
|
Townson J, Progida C. The emerging roles of the endoplasmic reticulum in mechanosensing and mechanotransduction. J Cell Sci 2025; 138:JCS263503. [PMID: 39976266 DOI: 10.1242/jcs.263503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025] Open
Abstract
Cells are continuously subjected to physical and chemical cues from the extracellular environment, and sense and respond to mechanical cues via mechanosensation and mechanotransduction. Although the role of the cytoskeleton in these processes is well known, the contribution of intracellular membranes has been long neglected. Recently, it has become evident that various organelles play active roles in both mechanosensing and mechanotransduction. In this Review, we focus on mechanosensitive roles of the endoplasmic reticulum (ER), the functions of which are crucial for maintaining cell homeostasis. We discuss the effects of mechanical stimuli on interactions between the ER, the cytoskeleton and other organelles; the role of the ER in intracellular Ca2+ signalling via mechanosensitive channels; and how the unfolded protein response and lipid homeostasis contribute to mechanosensing. The expansive structure of the ER positions it as a key intracellular communication hub, and we additionally explore how this may be leveraged to transduce mechanical signals around the cell. By synthesising current knowledge, we aim to shed light on the emerging roles of the ER in cellular mechanosensing and mechanotransduction.
Collapse
Affiliation(s)
- Jonathan Townson
- Department of Biosciences, University of Oslo, Blindernveien 31, 0316 Oslo, Norway
| | - Cinzia Progida
- Department of Biosciences, University of Oslo, Blindernveien 31, 0316 Oslo, Norway
| |
Collapse
|
12
|
Baron KR, Oviedo S, Krasny S, Zaman M, Aldakhlallah R, Bora P, Mathur P, Pfeffer G, Bollong MJ, Shutt TE, Grotjahn DA, Wiseman RL. Pharmacologic activation of integrated stress response kinases inhibits pathologic mitochondrial fragmentation. eLife 2025; 13:RP100541. [PMID: 39937095 PMCID: PMC11820110 DOI: 10.7554/elife.100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Excessive mitochondrial fragmentation is associated with the pathologic mitochondrial dysfunction implicated in the pathogenesis of etiologically diverse diseases, including many neurodegenerative disorders. The integrated stress response (ISR) - comprising the four eIF2α kinases PERK, GCN2, PKR, and HRI - is a prominent stress-responsive signaling pathway that regulates mitochondrial morphology and function in response to diverse types of pathologic insult. This suggests that pharmacologic activation of the ISR represents a potential strategy to mitigate pathologic mitochondrial fragmentation associated with human disease. Here, we show that pharmacologic activation of the ISR kinases HRI or GCN2 promotes adaptive mitochondrial elongation and prevents mitochondrial fragmentation induced by the calcium ionophore ionomycin. Further, we show that pharmacologic activation of the ISR reduces mitochondrial fragmentation and restores basal mitochondrial morphology in patient fibroblasts expressing the pathogenic D414V variant of the pro-fusion mitochondrial GTPase MFN2 associated with neurological dysfunctions, including ataxia, optic atrophy, and sensorineural hearing loss. These results identify pharmacologic activation of ISR kinases as a potential strategy to prevent pathologic mitochondrial fragmentation induced by disease-relevant chemical and genetic insults, further motivating the pursuit of highly selective ISR kinase-activating compounds as a therapeutic strategy to mitigate mitochondrial dysfunction implicated in diverse human diseases.
Collapse
Affiliation(s)
- Kelsey R Baron
- Department of Molecular and Cellular Biology, The Scripps Research InstituteLa JollaUnited States
| | - Samantha Oviedo
- Department of Molecular and Cellular Biology, The Scripps Research InstituteLa JollaUnited States
- Department of Integrative Structural and Computation Biology, The Scripps Research InstituteLa JollaUnited States
| | - Sophia Krasny
- Department of Molecular and Cellular Biology, The Scripps Research InstituteLa JollaUnited States
| | - Mashiat Zaman
- Department of Biochemistry and Molecular Biology, Cummings School of Medicine, University of CalgaryCalgaryCanada
| | - Rama Aldakhlallah
- Department of Molecular and Cellular Biology, The Scripps Research InstituteLa JollaUnited States
| | - Prerona Bora
- Department of Molecular and Cellular Biology, The Scripps Research InstituteLa JollaUnited States
| | - Prakhyat Mathur
- Department of Molecular and Cellular Biology, The Scripps Research InstituteLa JollaUnited States
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of CalgaryCalgaryCanada
- Alberta Child Health Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of CalgaryCalgaryCanada
| | - Michael J Bollong
- Department of Chemistry, The Scripps Research InstituteLa JollaUnited States
| | - Timothy E Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, Alberta Children's Hospital Research Institute, University of CalgaryCalgaryCanada
| | - Danielle A Grotjahn
- Department of Integrative Structural and Computation Biology, The Scripps Research InstituteLa JollaUnited States
| | - R Luke Wiseman
- Department of Molecular and Cellular Biology, The Scripps Research InstituteLa JollaUnited States
| |
Collapse
|
13
|
Tábara LC, Segawa M, Prudent J. Molecular mechanisms of mitochondrial dynamics. Nat Rev Mol Cell Biol 2025; 26:123-146. [PMID: 39420231 DOI: 10.1038/s41580-024-00785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2024] [Indexed: 10/19/2024]
Abstract
Mitochondria not only synthesize energy required for cellular functions but are also involved in numerous cellular pathways including apoptosis, calcium homoeostasis, inflammation and immunity. Mitochondria are dynamic organelles that undergo cycles of fission and fusion, and these transitions between fragmented and hyperfused networks ensure mitochondrial function, enabling adaptations to metabolic changes or cellular stress. Defects in mitochondrial morphology have been associated with numerous diseases, highlighting the importance of elucidating the molecular mechanisms regulating mitochondrial morphology. Here, we discuss recent structural insights into the assembly and mechanism of action of the core mitochondrial dynamics proteins, such as the dynamin-related protein 1 (DRP1) that controls division, and the mitofusins (MFN1 and MFN2) and optic atrophy 1 (OPA1) driving membrane fusion. Furthermore, we provide an updated view of the complex interplay between different proteins, lipids and organelles during the processes of mitochondrial membrane fusion and fission. Overall, we aim to present a valuable framework reflecting current perspectives on how mitochondrial membrane remodelling is regulated.
Collapse
Affiliation(s)
- Luis-Carlos Tábara
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Mayuko Segawa
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
14
|
Gatti P, Schiavon C, Cicero J, Manor U, Germain M. Mitochondria- and ER-associated actin are required for mitochondrial fusion. Nat Commun 2025; 16:451. [PMID: 39774009 PMCID: PMC11707194 DOI: 10.1038/s41467-024-55758-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Mitochondria are crucial for cellular metabolism and signalling. Mitochondrial activity is modulated by mitochondrial fission and fusion, which are required to properly balance metabolic functions, transfer material between mitochondria, and remove defective mitochondria. Mitochondrial fission occurs at mitochondria-endoplasmic reticulum (ER) contact sites, and requires the formation of actin filaments that drive mitochondrial constriction and the recruitment of the fission protein DRP1. The role of actin in mitochondrial fusion remains entirely unexplored. Here we show that preventing actin polymerisation on either mitochondria or the ER disrupts both fission and fusion. We show that fusion but not fission is dependent on Arp2/3, whereas both fission and fusion require INF2 formin-dependent actin polymerization. We also show that mitochondria-associated actin marks fusion sites prior to the fusion protein MFN2. Together, our work introduces a method for perturbing organelle-associated actin and demonstrates a previously unknown role for actin in mitochondrial fusion.
Collapse
Affiliation(s)
- Priya Gatti
- Groupe de Recherche en Signalisation Cellulaire and Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montréal, QC, Canada
- Réseau Intersectoriel de Recherche en Santé de l'Université du Québec (RISUQ), Québec, Canada
| | - Cara Schiavon
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Julien Cicero
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Uri Manor
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| | - Marc Germain
- Groupe de Recherche en Signalisation Cellulaire and Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada.
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montréal, QC, Canada.
- Réseau Intersectoriel de Recherche en Santé de l'Université du Québec (RISUQ), Québec, Canada.
| |
Collapse
|
15
|
Labat-de-Hoz L, Jiménez MÁ, Correas I, Alonso MA. Regulation of formin INF2 and its alteration in INF2-linked inherited disorders. Cell Mol Life Sci 2024; 81:463. [PMID: 39586895 PMCID: PMC11589041 DOI: 10.1007/s00018-024-05499-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/31/2024] [Indexed: 11/27/2024]
Abstract
Formins are proteins that catalyze the formation of linear filaments made of actin. INF2, a formin, is crucial for correct vesicular transport, microtubule stability and mitochondrial division. Its activity is regulated by a complex of cyclase-associated protein and lysine-acetylated G-actin (KAc-actin), which helps INF2 adopt an inactive conformation through the association of its N-terminal diaphanous inhibitory domain (DID) with its C-terminal diaphanous autoinhibitory domain. INF2 activation can occur through calmodulin binding, KAc-actin deacetylation, G-actin binding, or association with the Cdc42 GTPase. Mutations in the INF2 DID are linked to focal segmental glomerulosclerosis (FSGS), affecting podocytes, and Charcot-Marie-Tooth disease, which affects Schwann cells and leads to axonal loss. At least 80 pathogenic DID variants of INF2 have been identified, with potential for many more. These mutations disrupt INF2 regulation, leading to excessive actin polymerization. This in turn causes altered intracellular trafficking, abnormal mitochondrial dynamics, and profound transcriptional reprogramming via the MRTF/SRF complex, resulting in mitotic abnormalities and p53-mediated cell death. This sequence of events could be responsible for progressive podocyte loss during glomerular degeneration in FSGS patients. Pharmacological targeting of INF2 or actin polymerization could offer the therapeutic potential to halt the progression of FSGS and improve outcomes for patients with INF2-linked disease.
Collapse
Affiliation(s)
- Leticia Labat-de-Hoz
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
| | - M Ángeles Jiménez
- Instituto de Química Física (IQF) Blas Cabrera, Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Isabel Correas
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain
- Department of Molecular Biology, UAM, 28049, Madrid, Spain
| | - Miguel A Alonso
- Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas (CSIC), Universidad Autónoma de Madrid (UAM), 28049, Madrid, Spain.
| |
Collapse
|
16
|
Baron KR, Oviedo S, Krasny S, Zaman M, Aldakhlallah R, Bora P, Mathur P, Pfeffer G, Bollong MJ, Shutt TE, Grotjahn DA, Wiseman RL. Pharmacologic Activation of Integrated Stress Response Kinases Inhibits Pathologic Mitochondrial Fragmentation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.10.598126. [PMID: 38915623 PMCID: PMC11195119 DOI: 10.1101/2024.06.10.598126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Excessive mitochondrial fragmentation is associated with the pathologic mitochondrial dysfunction implicated in the pathogenesis of etiologically-diverse diseases, including many neurodegenerative disorders. The integrated stress response (ISR) - comprising the four eIF2α kinases PERK, GCN2, PKR, and HRI - is a prominent stress-responsive signaling pathway that regulates mitochondrial morphology and function in response to diverse types of pathologic insult. This suggests that pharmacologic activation of the ISR represents a potential strategy to mitigate pathologic mitochondrial fragmentation associated with human disease. Here, we show that pharmacologic activation of the ISR kinases HRI or GCN2 promotes adaptive mitochondrial elongation and prevents mitochondrial fragmentation induced by the calcium ionophore ionomycin. Further, we show that pharmacologic activation of the ISR reduces mitochondrial fragmentation and restores basal mitochondrial morphology in patient fibroblasts expressing the pathogenic D414V variant of the pro-fusion mitochondrial GTPase MFN2 associated with neurological dysfunctions including ataxia, optic atrophy, and sensorineural hearing loss. These results identify pharmacologic activation of ISR kinases as a potential strategy to prevent pathologic mitochondrial fragmentation induced by disease-relevant chemical and genetic insults, further motivating the pursuit of highly selective ISR kinase-activating compounds as a therapeutic strategy to mitigate mitochondrial dysfunction implicated in diverse human diseases.
Collapse
Affiliation(s)
- Kelsey R. Baron
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037
- These authors contributed equally
| | - Samantha Oviedo
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037
- Department of Integrative Structural and Computation Biology, The Scripps Research Institute, La Jolla, CA 92037
- These authors contributed equally
| | - Sophia Krasny
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Mashiat Zaman
- Department of Biochemistry and Molecular Biology, Cummings School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Rama Aldakhlallah
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Prerona Bora
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Prakhyat Mathur
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary; Alberta Child Health Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary
| | - Michael J. Bollong
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037
| | - Timothy E. Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Danielle A. Grotjahn
- Department of Integrative Structural and Computation Biology, The Scripps Research Institute, La Jolla, CA 92037
| | - R. Luke Wiseman
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
17
|
He W, He W, Chen X, Zeng L, Zeng L, Liu Y, He P, Sun Z. Mitochondrial elongation confers protection against doxorubicin-induced cardiotoxicity. Biochem Pharmacol 2024; 229:116495. [PMID: 39159875 DOI: 10.1016/j.bcp.2024.116495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Doxorubicin (DOX)-induced cardiac damage remains a leading cause of death amongst cancer survivors. DOX-induced cardiotoxicity (DIC) is mediated by disturbed mitochondrial dynamics, but it remains debated that the mechanisms by which DOX disrupted equilibrium between mitochondrial fission and fusion. In the present study, we observed that DOX induced mitochondrial elongation in multiple cardiovascular cell lines. Mechanically, DOX not only downregulated the mitochondrial fusion proteins including Mitofusin 1/2 (MFN1/2) and Optic atrophy 1 (OPA1), but also induced lower motility of dynamin-related protein 1(Drp1) and its phosphorylation on 637 serine, which could inhibit mitochondrial fission. Interestingly, DOX failed to induce mitochondrial elongation in cardiomyocytes co-treated with protein kinase A (PKA) inhibitor H89 or expressing phosphodeficient Drp1-S637A variants. Besides, carbonyl cyanide 3-chlorophenylhydrazone (CCCP) was able to blocked the mitochondrial elongation induced by DOX treatment, which could be phenocopied by OPA1 knockdown. Therefore, we speculated that DOX inhibited mitochondrial fission and fusion simultaneously, yet enabled mitochondrial fusion dominate the mitochondrial dynamics, resulting in mitochondrial elongation as the main manifestation. Notably, blocking mitochondrial elongation by inhibiting Drp1-S637 phosphorylation or OPA1 knockdown aggravated DOX-induced cardiomyocytes death. Based on these results, we propose a novel mechanistic model that DOX-induced mitochondrial elongation is attributed to the equilibrium disturbance of mitochondrial dynamics, which serves as an adaptive response and confers protection against DIC.
Collapse
Affiliation(s)
- Weibin He
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510000 Guangzhou, China; Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, 510000 Guangzhou, China
| | - Wenlong He
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510000 Guangzhou, China; Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, 510000 Guangzhou, China
| | - Xiaopan Chen
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510000 Guangzhou, China
| | - Lin Zeng
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510000 Guangzhou, China; Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, 510000 Guangzhou, China
| | - Lihuan Zeng
- Department of Cardiology, Department of Guangdong Provincial People's Hospital's Nanhai Hospital, The Second Hospital of Nanhai District Foshan City, Foshan, China
| | - Yuanhui Liu
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510000 Guangzhou, China; Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, 510000 Guangzhou, China.
| | - Pengcheng He
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510000 Guangzhou, China; Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, 510000 Guangzhou, China; Department of Cardiology, Heyuan People's Hospital, 517000 Heyuan, China.
| | - Zhongchan Sun
- Department of Cardiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510000 Guangzhou, China; Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangdong Cardiovascular Institute, 510000 Guangzhou, China.
| |
Collapse
|
18
|
Zhu HW, Wang YP, Zhang QF, Wang KD, Huang Y, Xiang RL. F-actin/DRP1 axis-mediated mitochondrial fission promotes mitophagy in diabetic submandibular glands. Oral Dis 2024; 30:5429-5444. [PMID: 38735833 DOI: 10.1111/odi.14983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/08/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND Diabetes is accompanied by a high prevalence of hyposalivation, causing severe damage to oral and systemic health. Mitochondrial dynamics play important roles in the pathogenesis of various diabetic complications; however, little is known about their roles in diabetic hyposalivation. MATERIALS AND METHODS A diabetic mouse model and a high glucose (HG)-induced diabetic submandibular gland (SMG) cell model were employed. RESULTS More mitochondria surrounded by autophagosomes and higher expression of mitophagy-related proteins were detected in the SMGs of diabetic mice and HG-treated SMG cells. In diabetic SMGs, dynamin-related protein 1 (DRP1) was upregulated, whereas mitofusin-2 was downregulated both in vivo and in vitro. Shortened mitochondria and impaired mitochondrial functions were observed in the HG group. A DRP1-specific inhibitor, mdivi-1, suppressed mitochondrial fission and mitophagy, as well as restored mitochondrial functions in the HG condition. Moreover, the interaction of F-actin and DRP1 was enhanced in the diabetic group. Inhibiting F-actin with cytochalasin D repaired the injured effects of HG on mitochondrial dynamics and functions. Conversely, the F-actin-polymerization-inducer jasplakinolide aggravated mitochondrial fission and dysfunction. CONCLUSIONS F-actin contributes to HG-evoked mitochondrial fission by interacting with DRP1, which induces mitophagy and impairs mitochondrial function in SMG cells, ultimately damaging the SMG.
Collapse
Affiliation(s)
- Hou-Wei Zhu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomotalogical Disease Diagnosis and Treatment, Xiamen, China
| | - Yi-Ping Wang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomotalogical Disease Diagnosis and Treatment, Xiamen, China
| | - Qiu-Fang Zhang
- Xiamen Key Laboratory of Stomotalogical Disease Diagnosis and Treatment, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Kai-Di Wang
- Xiamen Key Laboratory of Stomotalogical Disease Diagnosis and Treatment, Stomatological Hospital of Xiamen Medical College, Xiamen, China
| | - Yan Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital of Xiamen Medical College, Xiamen Key Laboratory of Stomotalogical Disease Diagnosis and Treatment, Xiamen, China
| | - Ruo-Lan Xiang
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Beijing, China
| |
Collapse
|
19
|
Douglas RG, Moon RW, Frischknecht F. Cytoskeleton Organization in Formation and Motility of Apicomplexan Parasites. Annu Rev Microbiol 2024; 78:311-335. [PMID: 39094056 DOI: 10.1146/annurev-micro-041222-011539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Apicomplexan parasites are a group of eukaryotic protozoans with diverse biology that have affected human health like no other group of parasites. These obligate intracellular parasites rely on their cytoskeletal structures for giving them form, enabling them to replicate in unique ways and to migrate across tissue barriers. Recent progress in transgenesis and imaging tools allowed detailed insights into the components making up and regulating the actin and microtubule cytoskeleton as well as the alveolate-specific intermediate filament-like cytoskeletal network. These studies revealed interesting details that deviate from the cell biology of canonical model organisms. Here we review the latest developments in the field and point to a number of open questions covering the most experimentally tractable parasites: Plasmodium, the causative agent of malaria; Toxoplasma gondii, the causative agent of toxoplasmosis; and Cryptosporidium, a major cause of diarrhea.
Collapse
Affiliation(s)
- Ross G Douglas
- Biochemistry and Molecular Biology, Interdisciplinary Research Centre and Molecular Infection Biology, Biomedical Research Centre Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Robert W Moon
- Department of Infection Biology, Faculty of Infectious and Tropical Disease, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Friedrich Frischknecht
- German Center for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
- Parasitology, Center for Integrative Infectious Diseases Research at Heidelberg University, Heidelberg, Germany;
| |
Collapse
|
20
|
Shi X, He L, Wang Y, Wu Y, Lin D, Chen C, Yang M, Huang S. Mitochondrial dysfunction is a key link involved in the pathogenesis of sick sinus syndrome: a review. Front Cardiovasc Med 2024; 11:1488207. [PMID: 39534498 PMCID: PMC11554481 DOI: 10.3389/fcvm.2024.1488207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024] Open
Abstract
Sick sinus syndrome (SSS) is a grave medical condition that can precipitate sudden death. The pathogenesis of SSS remains incompletely understood. Existing research postulates that the fundamental mechanism involves increased fibrosis of the sinoatrial node and its surrounding tissues, as well as disturbances in the coupled-clock system, comprising the membrane clock and the Ca2+ clock. Mitochondrial dysfunction exacerbates regional tissue fibrosis and disrupts the functioning of both the membrane and calcium clocks. This plays a crucial role in the underlying pathophysiology of SSS, including mitochondrial energy metabolism disorders, mitochondrial oxidative stress damage, calcium overload, and mitochondrial quality control disorders. Elucidating the mitochondrial mechanisms involved in the pathophysiology of SSS and further investigating the disease's mechanisms is of great significance.
Collapse
Affiliation(s)
- Xinxin Shi
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liming He
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yucheng Wang
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yue Wu
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dongming Lin
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Chao Chen
- Department of Cardiology, Hangzhou TCM Hospital of Zhejiang Chinese Medical University, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| | - Ming Yang
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuwei Huang
- Department of Cardiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
21
|
Landoni JC, Kleele T, Winter J, Stepp W, Manley S. Mitochondrial Structure, Dynamics, and Physiology: Light Microscopy to Disentangle the Network. Annu Rev Cell Dev Biol 2024; 40:219-240. [PMID: 38976811 DOI: 10.1146/annurev-cellbio-111822-114733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mitochondria serve as energetic and signaling hubs of the cell: This function results from the complex interplay between their structure, function, dynamics, interactions, and molecular organization. The ability to observe and quantify these properties often represents the puzzle piece critical for deciphering the mechanisms behind mitochondrial function and dysfunction. Fluorescence microscopy addresses this critical need and has become increasingly powerful with the advent of superresolution methods and context-sensitive fluorescent probes. In this review, we delve into advanced light microscopy methods and analyses for studying mitochondrial ultrastructure, dynamics, and physiology, and highlight notable discoveries they enabled.
Collapse
Affiliation(s)
- Juan C Landoni
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Tatjana Kleele
- Institute of Biochemistry, Swiss Federal Institute of Technology Zürich (ETH), Zürich, Switzerland;
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Julius Winter
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Willi Stepp
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Suliana Manley
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| |
Collapse
|
22
|
Yang M, Zhu H, Peng L, Yin T, Sun S, Du Y, Li J, Liu J, Wang S. Neuronal HIPK2-HDAC3 axis regulates mitochondrial fragmentation to participate in stroke injury and post-stroke anxiety like behavior. Exp Neurol 2024; 380:114906. [PMID: 39079624 DOI: 10.1016/j.expneurol.2024.114906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/04/2024]
Abstract
Post-stroke anxiety (PSA) seriously affects the prognosis of patients, which is an urgent clinical problem to be addressed. However, the pathological mechanism of PSA is largely unclear. Here, we found that neuronal HIPK2 expression was upregulated in the ischemic lesion after stroke. The upregulation of HIPK2 promotes Drp1 oligomerization through the HDAC3-dependent pathway, leading to excessive mitochondrial damage. This subsequently triggers the release of cellular cytokines such as IL-18 from neurons under ischemic stress. Microglia are capable of responding to IL-18, which promotes their activation and enhances their phagocytosis, ultimately resulting in the loss of synapses and neurons, thereby exacerbating the pathological progression of PSA. HIPK2 knockdown or inhibition suppresses excessive pruning of neuronal synapses by activated microglia in the contralateral vCA1 region to compromise inactivated anxiolytic pBLA-vCA1Calb1+ circuit, relieving anxiety-like behavior after stroke. Furthermore, we discovered that early remimazolam administration can remodel HIPK2-HDAC3 axis, ameliorating the progression of PSA. In conclusion, our study revealed that the neuronal HIPK2-HDAC3 axis in the ischemic focus regulates mitochondrial fragmentation to balance inflammation stress reservoir to participate in anxiety susceptibility after stroke.
Collapse
Affiliation(s)
- Mengmeng Yang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Wannan Medical College, Wuhu 241002, China
| | - Hongrui Zhu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| | - Li Peng
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China
| | - Tianyue Yin
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China
| | - Shuaijie Sun
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Wannan Medical College, Wuhu 241002, China
| | - Yuhao Du
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China
| | - Jun Li
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Jinya Liu
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Sheng Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| |
Collapse
|
23
|
Li X, Pham K, Ysaguirre J, Mahmud I, Tan L, Wei B, Shao LJ, Elizondo M, Habib R, Elizondo F, Sesaki H, Lorenzi PL, Sun K. Mechanistic insights into metabolic function of dynamin-related protein 1. J Lipid Res 2024; 65:100633. [PMID: 39182608 PMCID: PMC11426057 DOI: 10.1016/j.jlr.2024.100633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Dynamin-related protein 1 (DRP1) plays crucial roles in mitochondrial and peroxisome fission. However, the mechanisms underlying the functional regulation of DRP1 in adipose tissue during obesity remain unclear. To elucidate the metabolic and pathological significance of diminished DRP1 in obese adipose tissue, we utilized adipose tissue-specific DRP1 KO mice challenged with a high-fat diet. We observed significant metabolic dysregulations in the KO mice. Mechanistically, DRP1 exerts multifaceted functions in mitochondrial dynamics and endoplasmic reticulum (ER)-lipid droplet crosstalk in normal mice. Loss of function of DRP1 resulted in abnormally giant mitochondrial shapes, distorted mitochondrial membrane structure, and disrupted cristae architecture. Meanwhile, DRP1 deficiency induced the retention of nascent lipid droplets in ER, leading to perturbed overall lipid dynamics in the KO mice. Collectively, dysregulation of the dynamics of mitochondria, ER, and lipid droplets contributes to whole-body metabolic disorders, as evidenced by perturbations in energy metabolites. Our findings demonstrate that DRP1 plays diverse and critical roles in regulating energy metabolism within adipose tissue during the progression of obesity.
Collapse
Affiliation(s)
- Xin Li
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Katherine Pham
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jazmin Ysaguirre
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Iqbal Mahmud
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Bo Wei
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Long J Shao
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Maryam Elizondo
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Rabie Habib
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Fathima Elizondo
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kai Sun
- Center for Metabolic and Degenerative Diseases, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, Texas, USA; Graduate Program in Biochemistry and Cellular Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas, USA.
| |
Collapse
|
24
|
Klimenko ES, Sukhareva KS, Vlasova Y, Smolina NA, Fomicheva Y, Knyazeva A, Muravyev AS, Sorokina MY, Gavrilova LS, Boldyreva LV, Medvedeva SS, Sejersen T, Kostareva AA. Flnc expression impacts mitochondrial function, autophagy, and calcium handling in C2C12 cells. Exp Cell Res 2024; 442:114174. [PMID: 39089502 DOI: 10.1016/j.yexcr.2024.114174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/12/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Affiliation(s)
- E S Klimenko
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - K S Sukhareva
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - YuA Vlasova
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - N A Smolina
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - YuV Fomicheva
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - A Knyazeva
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - A S Muravyev
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - M Yu Sorokina
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - L S Gavrilova
- Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - L V Boldyreva
- Scientific-Research Institute of Neurosciences and Medicine, Novosibirsk, Russia; Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - S S Medvedeva
- Scientific-Research Institute of Neurosciences and Medicine, Novosibirsk, Russia; Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - T Sejersen
- Department of Women's and Children's Health, Karolinska Institutet, Department of Child Neurology, Karolinska University Hospital, Astrid Lindgren Children's Hospital, Stockholm, Sweden; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong
| | - A A Kostareva
- Almazov National Medical Research Centre, Saint-Petersburg, Russia; Department of Women's and Children's Health, Karolinska Institutet, Department of Child Neurology, Karolinska University Hospital, Astrid Lindgren Children's Hospital, Stockholm, Sweden; Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, New Territories, Hong Kong.
| |
Collapse
|
25
|
Hegde S, Modi S, Deihl EW, Glomb OV, Yogev S, Hoerndli FJ, Koushika SP. Axonal mitochondria regulate gentle touch response through control of axonal actin dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607780. [PMID: 39185223 PMCID: PMC11343141 DOI: 10.1101/2024.08.13.607780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Actin in neuronal processes is both stable and dynamic. The origin & functional roles of the different pools of actin is not well understood. We find that mutants that lack mitochondria, ric-7 and mtx-2; miro-1, in neuronal processes also lack dynamic actin. Mitochondria can regulate actin dynamics upto a distance ~80 μm along the neuronal process. Absence of axonal mitochondria and dynamic actin does not markedly alter the Spectrin Membrane Periodic Skeleton (MPS) in touch receptor neurons (TRNs). Restoring mitochondria inTRNs cell autonomously restores dynamic actin in a sod-2 dependent manner. We find that dynamic actin is necessary and sufficient for the localization of gap junction proteins in the TRNs and for the C. elegans gentle touch response. We identify an in vivo mechanism by which axonal mitochondria locally facilitate actin dynamics through reactive oxygen species that we show is necessary for electrical synapses & behaviour.
Collapse
Affiliation(s)
- Sneha Hegde
- Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai-400005, India
| | - Souvik Modi
- Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai-400005, India
| | - Ennis W. Deihl
- Colorado State University, Anatomy and Zoology W309, 1617 Campus Delivery, Fort Collins, 80523 Colorado
| | - Oliver Vinzenz Glomb
- Yale University, Boyer Center for Molecular Medicine, 295 Congress Ave, New Haven, CT 06510
- Current address: Institute of Clinical Anatomy and Cell Analysis, University of Tübingen, 72074 Tübingen, Germany
| | - Shaul Yogev
- Yale University, Boyer Center for Molecular Medicine, 295 Congress Ave, New Haven, CT 06510
| | - Frederic J. Hoerndli
- Colorado State University, Anatomy and Zoology W309, 1617 Campus Delivery, Fort Collins, 80523 Colorado
| | - Sandhya P. Koushika
- Tata Institute of Fundamental Research, Homi Bhabha Road, Navy Nagar, Colaba, Mumbai-400005, India
| |
Collapse
|
26
|
Gao C, Shang J, Sun Z, Xia M, Gao D, Sun R, Li W, Wang F, Zhang J. Presenilin2 D439A Mutation Induces Dysfunction of Mitochondrial Fusion/Fission Dynamics and Abnormal Regulation of GTPase Activity. Mol Neurobiol 2024; 61:5047-5070. [PMID: 38159198 PMCID: PMC11249618 DOI: 10.1007/s12035-023-03858-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
Alzheimer's disease (AD) is an age-related progressive neurodegenerative disease, and approximately 10% of AD cases are early-onset familial AD (EOFAD), which is mainly linked to point mutations in genes encoding presenilins (PS1 and PS2). Mutations in PS2 are extremely rare and have not received enough attention. Recently, studies have found that Rho GTPase activity is closely related to the pathogenesis of AD. In this study, we used transcriptome sequencing in PS2 siRNA-transfected SH-SY5Y cells and found a group of differentially expressed genes (DEGs) related to the regulation of GTPase activity. Among those DEGs, the most significantly downregulated was Rho guanine nucleotide exchange factor 5 (ARHGEF5). GTPase activity in PS2 siRNA-transfected cells was significantly decreased. Then, we found that the expression of ARHGEF5 and the GTPase activity of Mitochondrial Rho GTPase 2 (Miro2) in PS2 D439A mutant SH-SY5Y cells were significantly decreased. We found for the first time that PS2 can bind to Miro2, and the PS2 D439A mutation reduced the binding between PS2 and Miro2, reduced the expression of Miro2, and resulted in an imbalance in mitochondrial fusion/fission dynamics. In conclusion, PS2 gene knockdown may participate in the pathogenesis of AD through the regulation of GTPase activity. The imbalance in mitochondrial dynamics mediated by the PS2 D439A mutation through regulation of the expression and GTPase activity of Miro2 may be a potential pathogenic mechanism of AD.
Collapse
Affiliation(s)
- Chenhao Gao
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Junkui Shang
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
- Department of Neurology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Zhengyu Sun
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
- Department of Neurology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Mingrong Xia
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Dandan Gao
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Ruihua Sun
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Wei Li
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Fengyu Wang
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
- Department of Neurology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China
| | - Jiewen Zhang
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450003, Henan, China.
- Department of Neurology, Henan University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
27
|
Deshmukh V, Martin JF. SETD3 is a mechanosensitive enzyme that methylates actin on His73 to regulate mitochondrial dynamics and function. J Cell Sci 2024; 137:jcs261268. [PMID: 38896010 PMCID: PMC11304411 DOI: 10.1242/jcs.261268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/06/2024] [Indexed: 06/21/2024] Open
Abstract
Mitochondria, which act as sensors of metabolic homeostasis and metabolite signaling, form a dynamic intracellular network that continuously changes shape, size and localization to respond to localized cellular energy demands. Mitochondrial dynamics and function depend on interactions with the F-actin cytoskeleton that are poorly understood. Here, we show that SET domain protein 3 (SETD3), a recently described actin histidine methyltransferase, directly methylates actin at histidine-73 and enhances F-actin polymerization on mitochondria. SETD3 is a mechano-sensitive enzyme that is localized on the outer mitochondrial membrane and promotes actin polymerization around mitochondria. SETD3 loss of function leads to diminished F-actin around mitochondria and a decrease in mitochondrial branch length, branch number and mitochondrial movement. Our functional analysis revealed that SETD3 is required for oxidative phosphorylation, and mitochondrial complex I assembly and function. Our data further indicate that SETD3 regulates F-actin formation around mitochondria and is essential for maintaining mitochondrial morphology, movement and function. Finally, we discovered that SETD3 levels are regulated by extracellular matrix (ECM) stiffness and regulate mitochondrial shape in response to changes in ECM stiffness. These findings provide new insight into the mechanism for F-actin polymerization around mitochondria.
Collapse
Affiliation(s)
- Vaibhav Deshmukh
- Department of Integrative Physiology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - James F. Martin
- Department of Integrative Physiology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
- Cardiomyocyte Renewal Lab, Texas Heart Institute, 6770 Bertner Avenue, Houston, Texas 77030, USA
- Center for Organ Repair and Renewal, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| |
Collapse
|
28
|
Schiavon CR, Wang Y, Feng JW, Garrett S, Sung TC, Dayn Y, Wang C, Youle RJ, Quintero-Carmona OA, Shadel GS, Manor U. INF2-mediated actin polymerization at ER-organelle contacts regulates organelle size and movement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.06.602365. [PMID: 39005402 PMCID: PMC11245118 DOI: 10.1101/2024.07.06.602365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Proper regulation of organelle dynamics is critical for cellular function, but the mechanisms coordinating multiple organelles remain poorly understood. Here we show that actin polymerization mediated by the endoplasmic reticulum (ER)-anchored formin INF2 acts as a master regulator of organelle morphology and movement. Using high-resolution imaging, we demonstrate that INF2-polymerized actin filaments assemble at ER contact sites on mitochondria, endosomes, and lysosomes just prior to their fission. Genetic manipulation of INF2 activity alters the size, shape and motility of all three organelles. Our findings reveal a conserved mechanism by which the ER uses actin polymerization to control diverse organelles, with implications for understanding organelle dysfunction in neurodegenerative and other diseases. This work establishes INF2-mediated actin assembly as a central coordinator of organelle dynamics and inter-organelle communication.
Collapse
Affiliation(s)
- Cara R. Schiavon
- Department of Cell & Developmental Biology, University of California, San Diego
| | - Yuning Wang
- Department of Cell & Developmental Biology, University of California, San Diego
| | | | - Stephanie Garrett
- Department of Cell & Developmental Biology, University of California, San Diego
| | | | | | - Chunxin Wang
- National Institute of Neurological Disorders and Stroke
| | | | | | | | - Uri Manor
- Department of Cell & Developmental Biology, University of California, San Diego
| |
Collapse
|
29
|
Gatti P, Schiavon C, Cicero J, Manor U, Germain M. Mitochondria- and ER-associated actin are required for mitochondrial fusion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.13.544768. [PMID: 37398222 PMCID: PMC10312652 DOI: 10.1101/2023.06.13.544768] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Mitochondria play a crucial role in the regulation of cellular metabolism and signalling. Mitochondrial activity is modulated by the processes of mitochondrial fission and fusion, which are required to properly balance respiratory and metabolic functions, transfer material between mitochondria, and remove defective mitochondria. Mitochondrial fission occurs at sites of contact between the endoplasmic reticulum (ER) and mitochondria, and is dependent on the formation of actin filaments that drive mitochondrial constriction and the recruitment and activation of the dynamin-related GTPase fission protein DRP1. The requirement for mitochondria- and ER-associated actin filaments in mitochondrial fission remains unclear, and the role of actin in mitochondrial fusion remains entirely unexplored. Here we show that preventing the formation of actin filaments on either mitochondria or the ER disrupts both mitochondrial fission and fusion. We show that fusion but not fission is dependent on Arp2/3, whereas both fission and fusion are dependent on INF2 formin-dependent actin polymerization. We also show that mitochondria-associated actin marks fusion sites prior to the dynamin family GTPase fusion protein MFN2. Together, our work introduces a novel method for perturbing organelle-associated actin filaments, and demonstrates a previously unknown role for actin in mitochondrial fusion.
Collapse
Affiliation(s)
- Priya Gatti
- Groupe de Recherche en Signalisation Cellulaire and Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- Centre d’Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montréal, Québec, Canada
- Réseau Intersectoriel de Recherche en Santé de l’Université du Québec (RISUQ)
| | - Cara Schiavon
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Julien Cicero
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Uri Manor
- Department of Cell & Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Marc Germain
- Groupe de Recherche en Signalisation Cellulaire and Département de Biologie Médicale, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
- Centre d’Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois, Université du Québec à Montréal, Montréal, Québec, Canada
- Réseau Intersectoriel de Recherche en Santé de l’Université du Québec (RISUQ)
| |
Collapse
|
30
|
Daga P, Thurakkal B, Rawal S, Das T. Matrix stiffening promotes perinuclear clustering of mitochondria. Mol Biol Cell 2024; 35:ar91. [PMID: 38758658 PMCID: PMC11244172 DOI: 10.1091/mbc.e23-04-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
Mechanical cues from the tissue microenvironment, such as the stiffness of the extracellular matrix, modulate cellular forms and functions. As numerous studies have shown, this modulation depends on the stiffness-dependent remodeling of cytoskeletal elements. In contrast, very little is known about how the intracellular organelles such as mitochondria respond to matrix stiffness and whether their form, function, and localization change accordingly. Here, we performed an extensive quantitative characterization of mitochondrial morphology, subcellular localization, dynamics, and membrane tension on soft and stiff matrices. This characterization revealed that while matrix stiffness affected all these aspects, matrix stiffening most distinctively led to an increased perinuclear clustering of mitochondria. Subsequently, we could identify the matrix stiffness-sensitive perinuclear localization of filamin as the key factor dictating this perinuclear clustering. The perinuclear and peripheral mitochondrial populations differed in their motility on soft matrix but surprisingly they did not show any difference on stiff matrix. Finally, perinuclear mitochondrial clustering appeared to be crucial for the nuclear localization of RUNX2 and hence for priming human mesenchymal stem cells towards osteogenesis on a stiff matrix. Taken together, we elucidate a dependence of mitochondrial localization on matrix stiffness, which possibly enables a cell to adapt to its microenvironment.
Collapse
Affiliation(s)
- Piyush Daga
- Tata Institute of Fundamental Research Hyderabad (TIFRH), Hyderabad 500 046, India
| | - Basil Thurakkal
- Tata Institute of Fundamental Research Hyderabad (TIFRH), Hyderabad 500 046, India
| | - Simran Rawal
- Tata Institute of Fundamental Research Hyderabad (TIFRH), Hyderabad 500 046, India
| | - Tamal Das
- Tata Institute of Fundamental Research Hyderabad (TIFRH), Hyderabad 500 046, India
| |
Collapse
|
31
|
Teixeira P, Galland R, Chevrollier A. Super-resolution microscopies, technological breakthrough to decipher mitochondrial structure and dynamic. Semin Cell Dev Biol 2024; 159-160:38-51. [PMID: 38310707 DOI: 10.1016/j.semcdb.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 02/06/2024]
Abstract
Mitochondria are complex organelles with an outer membrane enveloping a second inner membrane that creates a vast matrix space partitioned by pockets or cristae that join the peripheral inner membrane with several thin junctions. Several micrometres long, mitochondria are generally close to 300 nm in diameter, with membrane layers separated by a few tens of nanometres. Ultrastructural data from electron microscopy revealed the structure of these mitochondria, while conventional optical microscopy revealed their extraordinary dynamics through fusion, fission, and migration processes but its limited resolution power restricted the possibility to go further. By overcoming the limits of light diffraction, Super-Resolution Microscopy (SRM) now offers the potential to establish the links between the ultrastructure and remodelling of mitochondrial membranes, leading to major advances in our understanding of mitochondria's structure-function. Here we review the contributions of SRM imaging to our understanding of the relationship between mitochondrial structure and function. What are the hopes for these new imaging approaches which are particularly important for mitochondrial pathologies?
Collapse
Affiliation(s)
- Pauline Teixeira
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe MITOLAB, SFR ICAT, F-49000 Angers, France
| | - Rémi Galland
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Arnaud Chevrollier
- Univ. Angers, INSERM, CNRS, MITOVASC, Equipe MITOLAB, SFR ICAT, F-49000 Angers, France.
| |
Collapse
|
32
|
Liu A, Kage F, Abdulkareem AF, Aguirre-Huamani MP, Sapp G, Aydin H, Higgs HN. Fatty acyl-coenzyme A activates mitochondrial division through oligomerization of MiD49 and MiD51. Nat Cell Biol 2024; 26:731-744. [PMID: 38594588 PMCID: PMC11404400 DOI: 10.1038/s41556-024-01400-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/05/2024] [Indexed: 04/11/2024]
Abstract
Mitochondrial fission occurs in many cellular processes, but the regulation of fission is poorly understood. We show that long-chain acyl-coenzyme A (LCACA) activates two related mitochondrial fission proteins, MiD49 and MiD51, by inducing their oligomerization, which activates their ability to stimulate the DRP1 GTPase. The 1:1 stoichiometry of LCACA:MiD in the oligomer suggests interaction in the previously identified nucleotide-binding pocket, and a point mutation in this pocket reduces LCACA binding and LCACA-induced oligomerization for MiD51. In cells, this LCACA binding mutant does not assemble into puncta on mitochondria or rescue MiD49/51 knockdown effects on mitochondrial length and DRP1 recruitment. Furthermore, cellular treatment with BSA-bound oleic acid, which causes increased LCACA, promotes mitochondrial fission in an MiD49/51-dependent manner. These results suggest that LCACA is an endogenous ligand for MiDs, inducing mitochondrial fission and providing a potential mechanism for fatty-acid-induced mitochondrial division. Finally, MiD49 or MiD51 oligomers synergize with Mff, but not with actin filaments, in DRP1 activation, suggesting distinct pathways for DRP1 activation.
Collapse
Affiliation(s)
- Ao Liu
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Frieda Kage
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Asan F Abdulkareem
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Mac Pholo Aguirre-Huamani
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA
| | - Gracie Sapp
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Halil Aydin
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Henry N Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
33
|
Zhou Z, Ma A, Moore TM, Wolf DM, Yang N, Tran P, Segawa M, Strumwasser AR, Ren W, Fu K, Wanagat J, van der Bliek AM, Crosbie-Watson R, Liesa M, Stiles L, Acin-Perez R, Mahata S, Shirihai O, Goodarzi MO, Handzlik M, Metallo CM, Walker DW, Hevener AL. Drp1 controls complex II assembly and skeletal muscle metabolism by Sdhaf2 action on mitochondria. SCIENCE ADVANCES 2024; 10:eadl0389. [PMID: 38569044 PMCID: PMC10990287 DOI: 10.1126/sciadv.adl0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
The dynamin-related guanosine triphosphatase, Drp1 (encoded by Dnm1l), plays a central role in mitochondrial fission and is requisite for numerous cellular processes; however, its role in muscle metabolism remains unclear. Here, we show that, among human tissues, the highest number of gene correlations with DNM1L is in skeletal muscle. Knockdown of Drp1 (Drp1-KD) promoted mitochondrial hyperfusion in the muscle of male mice. Reduced fatty acid oxidation and impaired insulin action along with increased muscle succinate was observed in Drp1-KD muscle. Muscle Drp1-KD reduced complex II assembly and activity as a consequence of diminished mitochondrial translocation of succinate dehydrogenase assembly factor 2 (Sdhaf2). Restoration of Sdhaf2 normalized complex II activity, lipid oxidation, and insulin action in Drp1-KD myocytes. Drp1 is critical in maintaining mitochondrial complex II assembly, lipid oxidation, and insulin sensitivity, suggesting a mechanistic link between mitochondrial morphology and skeletal muscle metabolism, which is clinically relevant in combatting metabolic-related diseases.
Collapse
Affiliation(s)
- Zhenqi Zhou
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alice Ma
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Timothy M. Moore
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dane M. Wolf
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Nicole Yang
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peter Tran
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mayuko Segawa
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| | - Alexander R. Strumwasser
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wenjuan Ren
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kai Fu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jonathan Wanagat
- Division of Geriatrics, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | | | - Rachelle Crosbie-Watson
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Center for Duchenne Muscular Dystrophy, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Marc Liesa
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Linsey Stiles
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rebecca Acin-Perez
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sushil Mahata
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Orian Shirihai
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Mark O. Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90095, USA
| | - Michal Handzlik
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christian M. Metallo
- Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - David W. Walker
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Andrea L. Hevener
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Iris Cantor UCLA Women’s Health Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Medicine and VA Greater Los Angeles Healthcare System GRECC, Los Angeles, CA 90073, USA
| |
Collapse
|
34
|
Zhao T, Niu D, Chen Y, Fu P. The role of mitochondrial quality control mechanisms in chondrocyte senescence. Exp Gerontol 2024; 188:112379. [PMID: 38378048 DOI: 10.1016/j.exger.2024.112379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
Chondrocytes are the exclusive cellular constituents of articular cartilage, and their functional status governs the health of the cartilage. The primary factor contributing to the deterioration of cartilage structure and function is chondrocyte senescence. In hypoxia and hypodextrose environment, chondrocytes heavily rely on glycolysis for energy metabolism. Mitochondria, acting as the regulatory hub for chondrocyte energy metabolism, exhibit dysfunction before chondrocyte senescence, indicating their crucial involvement in the process. Previous research has suggested that molecules associated with mitochondrial quality control mechanisms can effectively restore mitochondrial function and alleviate chondrocyte senescence. However, there remains to be clarity regarding the relationship between mitochondrial quality control mechanisms and differences in efficacy among various target molecules, which pose challenges when evaluating them in chondrocytes. By conducting a comprehensive review of the existing literature on mitochondrial quality control mechanisms and chondrocyte senescence, we gain further insights into this intricate relationship while identifying promising targets that could potentially open up novel avenues for the treatment of chondrocyte senescence.
Collapse
Affiliation(s)
- Tianlei Zhao
- Naval Medical Center, Naval Medical University, Shanghai 200003, China; Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Dawei Niu
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China; Department of Orthopaedics, The 971 hospital of CPLA Navy, Qingdao 266071, China
| | - Yancheng Chen
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Peiliang Fu
- Department of Orthopedics, Shanghai Changzheng Hospital, Naval Medical University, Shanghai 200003, China.
| |
Collapse
|
35
|
Wu Y, Ren X, Shi P, Wu C. Regulation of mitochondrial structure by the actin cytoskeleton. Cytoskeleton (Hoboken) 2024; 81:206-214. [PMID: 37929797 DOI: 10.1002/cm.21804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023]
Abstract
Mitochondria are the powerhouse of the cell and play important roles in multiple cellular processes including cell metabolism, proliferation, and programmed cell death. Mitochondria are double-membrane organelles with the inner membrane folding inward to form cristae. Mitochondria networks undergo dynamic fission and fusion. Deregulation of mitochondrial structure has been linked to perturbed mitochondrial membrane potential and disrupted metabolism, as evidenced in tumorigenesis, neurodegenerative diseases, etc. Actin and its motors-myosins have long been known to generate mechanical forces and participate in short-distance cargo transport. Accumulating knowledge from biochemistry and live cell/electron microscope imaging has demonstrated the role of actin filaments in pre-constricting the mitochondria during fission. Recent studies have suggested the involvement of myosins in cristae maintenance and mitochondria quality control. Here, we review current findings and discuss future directions in the emerging fields of cytoskeletal regulation in cristae formation, mitochondrial dynamics, intracellular transport, and mitocytosis, with focus on the actin cytoskeleton and its motor proteins.
Collapse
Affiliation(s)
- Yihe Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaoyu Ren
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Peng Shi
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- International Cancer Institute, Peking University, Beijing, China
| | - Congying Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- International Cancer Institute, Peking University, Beijing, China
| |
Collapse
|
36
|
Pokharel MD, Garcia-Flores A, Marciano D, Franco MC, Fineman JR, Aggarwal S, Wang T, Black SM. Mitochondrial network dynamics in pulmonary disease: Bridging the gap between inflammation, oxidative stress, and bioenergetics. Redox Biol 2024; 70:103049. [PMID: 38295575 PMCID: PMC10844980 DOI: 10.1016/j.redox.2024.103049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
Once thought of in terms of bioenergetics, mitochondria are now widely accepted as both the orchestrator of cellular health and the gatekeeper of cell death. The pulmonary disease field has performed extensive efforts to explore the role of mitochondria in regulating inflammation, cellular metabolism, apoptosis, and oxidative stress. However, a critical component of these processes needs to be more studied: mitochondrial network dynamics. Mitochondria morphologically change in response to their environment to regulate these processes through fusion, fission, and mitophagy. This allows mitochondria to adapt their function to respond to cellular requirements, a critical component in maintaining cellular homeostasis. For that reason, mitochondrial network dynamics can be considered a bridge that brings multiple cellular processes together, revealing a potential pathway for therapeutic intervention. In this review, we discuss the critical modulators of mitochondrial dynamics and how they are affected in pulmonary diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), acute lung injury (ALI), and pulmonary arterial hypertension (PAH). A dysregulated mitochondrial network plays a crucial role in lung disease pathobiology, and aberrant fission/fusion/mitophagy pathways are druggable processes that warrant further exploration. Thus, we also discuss the candidates for lung disease therapeutics that regulate mitochondrial network dynamics.
Collapse
Affiliation(s)
- Marissa D Pokharel
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Alejandro Garcia-Flores
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA
| | - David Marciano
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Maria C Franco
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Jeffrey R Fineman
- Department of Pediatrics, UC San Francisco, San Francisco, CA, 94143, USA
| | - Saurabh Aggarwal
- Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA
| | - Ting Wang
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Stephen M Black
- Center for Translational Science, Florida International University, 11350 SW Village Parkway, Port St. Lucie, FL, 34987-2352, USA; Department of Molecular & Cellular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, 33199, USA; Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA.
| |
Collapse
|
37
|
Fan RZ, Sportelli C, Lai Y, Salehe SS, Pinnell JR, Brown HJ, Richardson JR, Luo S, Tieu K. A partial Drp1 knockout improves autophagy flux independent of mitochondrial function. Mol Neurodegener 2024; 19:26. [PMID: 38504290 PMCID: PMC10953112 DOI: 10.1186/s13024-024-00708-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/07/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Dynamin-related protein 1 (Drp1) plays a critical role in mitochondrial dynamics. Partial inhibition of this protein is protective in experimental models of neurological disorders such as Parkinson's disease and Alzheimer's disease. The protective mechanism has been attributed primarily to improved mitochondrial function. However, the observations that Drp1 inhibition reduces protein aggregation in such neurological disorders suggest the involvement of autophagy. To investigate this potential novel protective mechanism of Drp1 inhibition, a model with impaired autophagy without mitochondrial involvement is needed. METHODS We characterized the effects of manganese (Mn), which causes parkinsonian-like symptoms in humans, on autophagy and mitochondria by performing dose-response studies in two cell culture models (stable autophagy HeLa reporter cells and N27 rat immortalized dopamine neuronal cells). Mitochondrial function was assessed using the Seahorse Flux Analyzer. Autophagy flux was monitored by quantifying the number of autophagosomes and autolysosomes, as well as the levels of other autophagy proteins. To strengthen the in vitro data, multiple mouse models (autophagy reporter mice and mutant Drp1+/- mice and their wild-type littermates) were orally treated with a low chronic Mn regimen that was previously reported to increase α-synuclein aggregation and transmission via exosomes. RNAseq, laser captured microdissection, immunofluorescence, immunoblotting, stereological cell counting, and behavioural studies were used. RESULTS IN VITRO: data demonstrate that at low non-toxic concentrations, Mn impaired autophagy flux but not mitochondrial function and morphology. In the mouse midbrain, RNAseq data further confirmed autophagy pathways were dysregulated but not mitochondrial related genes. Additionally, Mn selectively impaired autophagy in the nigral dopamine neurons but not the nearby nigral GABA neurons. In cells with a partial Drp1-knockdown and Drp1+/- mice, Mn induced autophagic impairment was significantly prevented. Consistent with these observations, Mn increased the levels of proteinase-K resistant α-synuclein and Drp1-knockdown protected against this pathology. CONCLUSIONS This study demonstrates that improved autophagy flux is a separate mechanism conferred by Drp1 inhibition independent of its role in mitochondrial fission. Given that impaired autophagy and mitochondrial dysfunction are two prominent features of neurodegenerative diseases, the combined protective mechanisms targeting these two pathways conferred by Drp1 inhibition make this protein an attractive therapeutic target.
Collapse
Affiliation(s)
- Rebecca Z Fan
- Department of Environmental Health Sciences, Florida International University, Miami, USA
| | - Carolina Sportelli
- Department of Environmental Health Sciences, Florida International University, Miami, USA
| | - Yanhao Lai
- Department of Environmental Health Sciences, Florida International University, Miami, USA
| | - Said S Salehe
- Department of Environmental Health Sciences, Florida International University, Miami, USA
| | - Jennifer R Pinnell
- Department of Environmental Health Sciences, Florida International University, Miami, USA
| | - Harry J Brown
- Department of Environmental Health Sciences, Florida International University, Miami, USA
- Biomolecular Sciences Institute, Florida International University, Miami, USA
| | - Jason R Richardson
- Department of Environmental Health Sciences, Florida International University, Miami, USA
| | - Shouqing Luo
- Peninsula Schools of Medicine and Dentistry, Plymouth University, Plymouth, UK
| | - Kim Tieu
- Department of Environmental Health Sciences, Florida International University, Miami, USA.
- Biomolecular Sciences Institute, Florida International University, Miami, USA.
| |
Collapse
|
38
|
Liu A, Hatch AL, Higgs HN. Effects of phosphorylation on Drp1 activation by its receptors, actin, and cardiolipin. Mol Biol Cell 2024; 35:ar16. [PMID: 38019609 PMCID: PMC10881151 DOI: 10.1091/mbc.e23-11-0427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023] Open
Abstract
Drp1 is a dynamin family GTPase required for mitochondrial and peroxisomal division. Oligomerization increases Drp1 GTPase activity through interactions between neighboring GTPase domains. In cells, Drp1 is regulated by several factors including Drp1 receptors, actin filaments, cardiolipin, and phosphorylation at two sites: S579 and S600. Commonly, phosphorylation of S579 is considered activating, while S600 phosphorylation is considered inhibiting. However, direct effects of phosphorylation on Drp1 GTPase activity have not been investigated in detail. Here, we compare effects of S579 and S600 phosphorylation on purified Drp1, using phosphomimetic mutants and in vitro phosphorylation. Both phosphomimetic mutants are shifted toward smaller oligomers. Both phosphomimetic mutations maintain basal GTPase activity, but eliminate GTPase stimulation by actin and decrease GTPase stimulation by cardiolipin, Mff, and MiD49. Phosphorylation of S579 by Erk2 produces similar effects. When mixed with wildtype Drp1, both S579D and S600D phosphomimetic mutants reduce the actin-stimulated GTPase activity of Drp1-WT. Conversely, a Drp1 mutant (K38A) lacking GTPase activity stimulates Drp1-WT GTPase activity under both basal and actin-stimulated conditions. These results suggest that the effect of S579 phosphorylation is not to activate Drp1 directly. In addition, our results suggest that nearest neighbor interactions within the Drp1 oligomer affect catalytic activity.
Collapse
Affiliation(s)
- Ao Liu
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover NH 03755
| | - Anna L. Hatch
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover NH 03755
| | - Henry N. Higgs
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover NH 03755
| |
Collapse
|
39
|
Newman LE, Weiser Novak S, Rojas GR, Tadepalle N, Schiavon CR, Grotjahn DA, Towers CG, Tremblay MÈ, Donnelly MP, Ghosh S, Medina M, Rocha S, Rodriguez-Enriquez R, Chevez JA, Lemersal I, Manor U, Shadel GS. Mitochondrial DNA replication stress triggers a pro-inflammatory endosomal pathway of nucleoid disposal. Nat Cell Biol 2024; 26:194-206. [PMID: 38332353 PMCID: PMC11026068 DOI: 10.1038/s41556-023-01343-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024]
Abstract
Mitochondrial DNA (mtDNA) encodes essential subunits of the oxidative phosphorylation system, but is also a major damage-associated molecular pattern (DAMP) that engages innate immune sensors when released into the cytoplasm, outside of cells or into circulation. As a DAMP, mtDNA not only contributes to anti-viral resistance, but also causes pathogenic inflammation in many disease contexts. Cells experiencing mtDNA stress caused by depletion of the mtDNA-packaging protein, transcription factor A, mitochondrial (TFAM) or during herpes simplex virus-1 infection exhibit elongated mitochondria, enlargement of nucleoids (mtDNA-protein complexes) and activation of cGAS-STING innate immune signalling via mtDNA released into the cytoplasm. However, the relationship among aberrant mitochondria and nucleoid dynamics, mtDNA release and cGAS-STING activation remains unclear. Here we show that, under a variety of mtDNA replication stress conditions and during herpes simplex virus-1 infection, enlarged nucleoids that remain bound to TFAM exit mitochondria. Enlarged nucleoids arise from mtDNA experiencing replication stress, which causes nucleoid clustering via a block in mitochondrial fission at a stage when endoplasmic reticulum actin polymerization would normally commence, defining a fission checkpoint that ensures mtDNA has completed replication and is competent for segregation into daughter mitochondria. Chronic engagement of this checkpoint results in enlarged nucleoids trafficking into early and then late endosomes for disposal. Endosomal rupture during transit through this endosomal pathway ultimately causes mtDNA-mediated cGAS-STING activation. Thus, we propose that replication-incompetent nucleoids are selectively eliminated by an adaptive mitochondria-endosomal quality control pathway that is prone to innate immune system activation, which might represent a therapeutic target to prevent mtDNA-mediated inflammation during viral infection and other pathogenic states.
Collapse
Affiliation(s)
- Laura E Newman
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Gladys R Rojas
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | | | | | | | | - Matthew P Donnelly
- Salk Institute for Biological Studies, La Jolla, CA, USA
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Sagnika Ghosh
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Sienna Rocha
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Joshua A Chevez
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Ian Lemersal
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Uri Manor
- Salk Institute for Biological Studies, La Jolla, CA, USA.
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
- Department of Cell & Developmental Biology, University of California, San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
40
|
Nishimura A, Zhou L, Kato Y, Mi X, Ito T, Ibuki Y, Kanda Y, Nishida M. Supersulfide prevents cigarette smoke extract-induced mitochondria hyperfission and cardiomyocyte early senescence by inhibiting Drp1-filamin complex formation. J Pharmacol Sci 2024; 154:127-135. [PMID: 38246726 DOI: 10.1016/j.jphs.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Smoking is one of the most serious risk factors for cardiovascular diseases. Although cigarette mainstream and sidestream smoke are significant contributors to increased cardiovascular mortality and morbidity, the underlying mechanism is still unclear. Here, we report that exposure of rat neonatal cardiomyocytes to cigarette smoke extract (CSE) induces mitochondrial hyperfission-mediated myocardial senescence. CSE leads to mitochondrial fission and reactive oxygen species (ROS) production through the complex formation between mitochondrial fission factor Drp1 and actin-binding protein, filamin A. Pharmacological perturbation of interaction between Drp1 and filamin A by cilnidipine and gene knockdown of Drp1 or filamin A inhibited CSE-induced mitochondrial hyperfission and ROS production as well as myocardial senescence. We previously reported that Drp1 activity is controlled by supersulfide-induced Cys644 polysulfidation. The redox-sensitive Cys644 was critical for CSE-mediated interaction with filamin A. The administration of supersulfide donor, Na2S3 also improved mitochondrial hyperfission-mediated myocardial senescence induced by CSE. Our results suggest the important role of Drp1-filamin A complex formation on cigarette smoke-mediated cardiac risk and the contribution of supersulfide to mitochondrial fission-associated myocardial senescence.
Collapse
Affiliation(s)
- Akiyuki Nishimura
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan.
| | - Liuchenzi Zhou
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Yuri Kato
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Xinya Mi
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Tomoya Ito
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan
| | - Yuko Ibuki
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka, 422-8526, Japan
| | - Yasunari Kanda
- Division of Pharmacology, National Institute of Health Sciences, Kanagawa, 210-9501, Japan
| | - Motohiro Nishida
- National Institute for Physiological Sciences, National Institutes of Natural Sciences (NINS), Okazaki, 444-8787, Japan; Exploratory Research Center on Life and Living Systems, NINS, Okazaki, 444-8787, Japan; SOKENDAI (The Graduate University for Advanced Studies), Okazaki, 444-8787, Japan; Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
41
|
Pérez-Jover I, Rochon K, Hu D, Mahajan M, Madan Mohan P, Santos-Pérez I, Ormaetxea Gisasola J, Martinez Galvez JM, Agirre J, Qi X, Mears JA, Shnyrova AV, Ramachandran R. Allosteric control of dynamin-related protein 1 through a disordered C-terminal Short Linear Motif. Nat Commun 2024; 15:52. [PMID: 38168038 PMCID: PMC10761769 DOI: 10.1038/s41467-023-44413-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
The mechanochemical GTPase dynamin-related protein 1 (Drp1) catalyzes mitochondrial and peroxisomal fission, but the regulatory mechanisms remain ambiguous. Here we find that a conserved, intrinsically disordered, six-residue Short Linear Motif at the extreme Drp1 C-terminus, named CT-SLiM, constitutes a critical allosteric site that controls Drp1 structure and function in vitro and in vivo. Extension of the CT-SLiM by non-native residues, or its interaction with the protein partner GIPC-1, constrains Drp1 subunit conformational dynamics, alters self-assembly properties, and limits cooperative GTP hydrolysis, surprisingly leading to the fission of model membranes in vitro. In vivo, the involvement of the native CT-SLiM is critical for productive mitochondrial and peroxisomal fission, as both deletion and non-native extension of the CT-SLiM severely impair their progression. Thus, contrary to prevailing models, Drp1-catalyzed membrane fission relies on allosteric communication mediated by the CT-SLiM, deceleration of GTPase activity, and coupled changes in subunit architecture and assembly-disassembly dynamics.
Collapse
Affiliation(s)
- Isabel Pérez-Jover
- Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940, Leioa, Spain
- Instituto Biofisika, CSIC, UPV/EHU, 48940, Leioa, Spain
| | - Kristy Rochon
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Di Hu
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Mukesh Mahajan
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Pooja Madan Mohan
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Isaac Santos-Pérez
- Electron Microscopy and Crystallography Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology, Park Bld 800, 48160-Derio, Bizkaia, Spain
| | - Julene Ormaetxea Gisasola
- Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940, Leioa, Spain
- Instituto Biofisika, CSIC, UPV/EHU, 48940, Leioa, Spain
| | - Juan Manuel Martinez Galvez
- Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940, Leioa, Spain
- Instituto Biofisika, CSIC, UPV/EHU, 48940, Leioa, Spain
| | - Jon Agirre
- York Structural Biology Laboratory, Department of Chemistry, University of York, Heslington, YO10 5DD, York, UK
| | - Xin Qi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Jason A Mears
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Center for Mitochondrial Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Anna V Shnyrova
- Department of Biochemistry and Molecular Biology, University of the Basque Country, 48940, Leioa, Spain.
- Instituto Biofisika, CSIC, UPV/EHU, 48940, Leioa, Spain.
| | - Rajesh Ramachandran
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
- Cleveland Center for Membrane and Structural Biology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
42
|
Chen C, Smith ZJ, Fang J, Chu K. Organelle-specific phase contrast microscopy (OS-PCM) enables facile correlation study of organelles and proteins. BIOMEDICAL OPTICS EXPRESS 2024; 15:199-211. [PMID: 38223195 PMCID: PMC10783919 DOI: 10.1364/boe.510243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/29/2023] [Accepted: 12/03/2023] [Indexed: 01/16/2024]
Abstract
Current methods for studying organelle and protein interactions and correlations depend on multiplex fluorescent labeling, which is experimentally complex and harmful to cells. Here we propose to solve this challenge via OS-PCM, where organelles are imaged and segmented without labels, and combined with standard fluorescence microscopy of protein distributions. In this work, we develop new neural networks to obtain unlabeled organelle, nucleus and membrane predictions from a single 2D image. Automated analysis is also implemented to obtain quantitative information regarding the spatial distribution and co-localization of both protein and organelle, as well as their relationship to the landmark structures of nucleus and membrane. Using mitochondria and DRP1 protein as a proof-of-concept, we conducted a correlation study where only DRP1 is labeled, with results consistent with prior reports utilizing multiplex labeling. Thus our work demonstrates that OS-PCM simplifies the correlation study of organelles and proteins.
Collapse
Affiliation(s)
- Chen Chen
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zachary J Smith
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jingde Fang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Kaiqin Chu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei, Anhui 230027, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| |
Collapse
|
43
|
Roy S, Das A, Bairagi A, Das D, Jha A, Srivastava AK, Chatterjee N. Mitochondria act as a key regulatory factor in cancer progression: Current concepts on mutations, mitochondrial dynamics, and therapeutic approach. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 793:108490. [PMID: 38460864 DOI: 10.1016/j.mrrev.2024.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
The diversified impacts of mitochondrial function vs. dysfunction have been observed in almost all disease conditions including cancers. Mitochondria play crucial roles in cellular homeostasis and integrity, however, mitochondrial dysfunctions influenced by alterations in the mtDNA can disrupt cellular balance. Many external stimuli or cellular defects that cause cellular integrity abnormalities, also impact mitochondrial functions. Imbalances in mitochondrial activity can initiate and lead to accumulations of genetic mutations and can promote the processes of tumorigenesis, progression, and survival. This comprehensive review summarizes epigenetic and genetic alterations that affect the functionality of the mitochondria, with considerations of cellular metabolism, and as influenced by ethnicity. We have also reviewed recent insights regarding mitochondrial dynamics, miRNAs, exosomes that play pivotal roles in cancer promotion, and the impact of mitochondrial dynamics on immune cell mechanisms. The review also summarizes recent therapeutic approaches targeting mitochondria in anti-cancer treatment strategies.
Collapse
Affiliation(s)
- Sraddhya Roy
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Ananya Das
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Aparajita Bairagi
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Debangshi Das
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Ashna Jha
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India
| | - Amit Kumar Srivastava
- CSIR-IICB Translational Research Unit Of Excellence, CN-6, Salt Lake, Sector - V, Kolkata 700091, India
| | - Nabanita Chatterjee
- Chittaranjan National Cancer Institute, 37 S. P. Mukherjee Road, Kolkata 700026, India.
| |
Collapse
|
44
|
Garrido-Bazán V, Guzmán-Ocampo DC, Domínguez L, Aguirre J. Filamentous actin destabilization by H 2O 2 favors DnmA aggregation, with crucial roles of cysteines 450 and 776 in mitochondrial and peroxisomal division in Aspergillus nidulans. mBio 2023; 14:e0282223. [PMID: 38014993 PMCID: PMC10746283 DOI: 10.1128/mbio.02822-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE Mitochondria constitute major sources of H2O2 and other reactive oxygen species in eukaryotic cells. The division of these organelles is crucial for multiple processes in cell biology and relies on highly regulated mechano-GTPases that are oligomerization dependent and belong to the dynamin-related protein family, like A. nidulans DnmA. Our previous work demonstrated that H2O2 induces mitochondrial constriction, division, and remodeling of the outer membrane. Here, we show that H2O2 also induces a DnmA aggregation consistent with higher-order oligomerization and its recruitment to mitochondria. The study of this response uncovered that H2O2 induces the depolymerization and reorganization of actin as well as the critical role that cysteines 450 and 776 play in DnmA function. Our results provide new insights into the mechanisms of reactive oxygen species cell signaling and how they can regulate the dynamics of the actin cytoskeleton and the division of mitochondria and peroxisomes.
Collapse
Affiliation(s)
- Verónica Garrido-Bazán
- Instituto de Fisiología Celular, Departamento de Biología Celular y Desarrollo, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Dulce C. Guzmán-Ocampo
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Laura Domínguez
- Facultad de Química, Departamento de Fisicoquímica, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Jesús Aguirre
- Instituto de Fisiología Celular, Departamento de Biología Celular y Desarrollo, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
45
|
Adhikary A, Mukherjee A, Banerjee R, Nagotu S. DRP1: At the Crossroads of Dysregulated Mitochondrial Dynamics and Altered Cell Signaling in Cancer Cells. ACS OMEGA 2023; 8:45208-45223. [PMID: 38075775 PMCID: PMC10701729 DOI: 10.1021/acsomega.3c06547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/20/2023] [Accepted: 10/30/2023] [Indexed: 10/08/2024]
Abstract
In the past decade, compelling evidence has accumulated that highlights the role of various subcellular structures in human disease conditions. Dysregulation of these structures greatly impacts cellular function and, thereby, disease conditions. One such organelle extensively studied for its role in several human diseases, especially cancer, is the mitochondrion. DRP1 is a GTPase that is considered the master regulator of mitochondrial fission and thereby also affects the proper functioning of the organelle. Altered signaling pathways are a distinguished characteristic of cancer cells. In this review, we aim to summarize our current understanding of the interesting crosstalk between the mitochondrial structure-function maintained by DRP1 and the signaling pathways that are affected in cancer cells. We highlight the structural aspects of DRP1, its regulation by various modifications, and the association of the protein with various cellular pathways altered in cancer. A better understanding of this association may help in identifying potential pharmacological targets for novel therapies in cancer.
Collapse
Affiliation(s)
- Ankita Adhikary
- Organelle Biology and Cellular
Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | | | - Riddhi Banerjee
- Organelle Biology and Cellular
Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Shirisha Nagotu
- Organelle Biology and Cellular
Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
46
|
Qiao L, Dou X, Song X, Chang J, Yi H, Xu C. Targeting mitochondria with antioxidant nutrients for the prevention and treatment of postweaning diarrhea in piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:275-287. [PMID: 38033610 PMCID: PMC10685042 DOI: 10.1016/j.aninu.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 09/27/2023] [Accepted: 09/27/2023] [Indexed: 12/02/2023]
Abstract
Post-weaning diarrhea (PWD) in piglets poses a significant challenge and presents a grave threat to the global swine industry, resulting in considerable financial losses and compromising the welfare of animals. PWD is commonly associated with gut homeostatic imbalance, including oxidative stress, excessive inflammation, and microbiota dysbiosis. Antibiotic use has historically been a common initiative to combat PWD, but concerns about the development of antibiotic resistance have led to increased interest in alternative strategies. Mitochondria are key players in maintaining cellular homeostasis, and their dysfunction is intricately linked to the onset and progression of PWD. Accumulating evidence suggests that targeting mitochondrial function using antioxidant nutrients, such as vitamins, minerals and polyphenolic compounds, may represent a promising approach for preventing and treating PWD. Moreover, nutrients based on antioxidant strategies have been shown to improve mitochondrial function, restore intestinal redox balance, and reduce oxidative damage, which is a key driver of PWD. The present review begins with an overview of the potential interplay between mitochondria and gut homeostasis in the pathogenesis of PWD in piglets. Subsequently, alternative strategies to prevent and treat PWD using antioxidant nutrients to target mitochondria are described and discussed. Ultimately, we delve into potential limitations and suggest future research directions in this field for further advancement. Overall, targeting mitochondria using antioxidant nutrients may be a promising approach to combat PWD and provides a potential nutrition intervention strategy for regulating gut homeostasis of weaned piglets.
Collapse
Affiliation(s)
- Lei Qiao
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xina Dou
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Xiaofan Song
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Jiajing Chang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Hongbo Yi
- State Key Laboratory of Livestock and Poultry Breeding, Ministry of Agriculture Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science of Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, 510640, China
| | - Chunlan Xu
- School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| |
Collapse
|
47
|
Piñero-Pérez R, López-Cabrera A, Álvarez-Córdoba M, Cilleros-Holgado P, Talaverón-Rey M, Suárez-Carrillo A, Munuera-Cabeza M, Gómez-Fernández D, Reche-López D, Romero-González A, Romero-Domínguez JM, de Pablos RM, Sánchez-Alcázar JA. Actin Polymerization Defects Induce Mitochondrial Dysfunction in Cellular Models of Nemaline Myopathies. Antioxidants (Basel) 2023; 12:2023. [PMID: 38136143 PMCID: PMC10740811 DOI: 10.3390/antiox12122023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Nemaline myopathy (NM) is one of the most common forms of congenital myopathy and it is identified by the presence of "nemaline bodies" (rods) in muscle fibers by histopathological examination. The most common forms of NM are caused by mutations in the Actin Alpha 1 (ACTA1) and Nebulin (NEB) genes. Clinical features include hypotonia and muscle weakness. Unfortunately, there is no curative treatment and the pathogenetic mechanisms remain unclear. In this manuscript, we examined the pathophysiological alterations in NM using dermal fibroblasts derived from patients with mutations in ACTA1 and NEB genes. Patients' fibroblasts were stained with rhodamine-phalloidin to analyze the polymerization of actin filaments by fluorescence microscopy. We found that patients' fibroblasts showed incorrect actin filament polymerization compared to control fibroblasts. Actin filament polymerization defects were associated with mitochondrial dysfunction. Furthermore, we identified two mitochondrial-boosting compounds, linoleic acid (LA) and L-carnitine (LCAR), that improved the formation of actin filaments in mutant fibroblasts and corrected mitochondrial bioenergetics. Our results indicate that cellular models can be useful to study the pathophysiological mechanisms involved in NM and to find new potential therapies. Furthermore, targeting mitochondrial dysfunction with LA and LCAR can revert the pathological alterations in NM cellular models.
Collapse
Affiliation(s)
- Rocío Piñero-Pérez
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Alejandra López-Cabrera
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Mónica Álvarez-Córdoba
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Paula Cilleros-Holgado
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Marta Talaverón-Rey
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Alejandra Suárez-Carrillo
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Manuel Munuera-Cabeza
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - David Gómez-Fernández
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Diana Reche-López
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Ana Romero-González
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - José Manuel Romero-Domínguez
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| | - Rocío M. de Pablos
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain;
- Instituto of Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío (HUVR)/CSIC/Universidad de Sevilla, 41012 Sevilla, Spain
| | - José A. Sánchez-Alcázar
- Departamento de Fisiología, Anatomía y Biología Celular, Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), 41013 Sevilla, Spain; (R.P.-P.); (A.L.-C.); (M.Á.-C.); (P.C.-H.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.G.-F.); (D.R.-L.); (A.R.-G.); (J.M.R.-D.)
| |
Collapse
|
48
|
Wu NS, Ma IC, Lin YF, Ko HJ, Loh JK, Hong YR. The mystery of phospho-Drp1 with four adaptors in cell cycle: when mitochondrial fission couples to cell fate decisions. Cell Cycle 2023; 22:2485-2503. [PMID: 38053243 PMCID: PMC10802209 DOI: 10.1080/15384101.2023.2289753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/26/2023] [Accepted: 11/26/2023] [Indexed: 12/07/2023] Open
Abstract
Recent study had deepened our knowledge of the mitochondrial dynamics to classify mitochondrial fission into two types. To further clarify the relationship between the two distinct fission machinery and the four major adaptors of Drp1, we propose a model of mechanism elucidating the multiple functions of phospho-Drp1 with its adaptors during cell cycle and providing in-depth insights into the molecular basis and evolutionary implications in depth. The model highlights not only the clustering characteristics of different phospho-Drp1 with respective subsets of mitochondrial pro-fission adaptors but also the correlation, crosstalk and shifting between different clustering of phosphorylated Drp1-adaptors during different key fission situations. Particularly, phospho-Drp1 (Ser616) couples with Mff/MiD51 to exert mitochondrial division and phospho-Drp1 (Ser637) couples with MiD49/Fis1 to execute mitophagy in M-phase. We then apply the model to address the relationship of mitochondrial dynamics to Parkinson's disease (PD) and carcinogenesis. Our proposed model is indeed compatible with current research results and pathological observations, providing promising directions for future treatment design.
Collapse
Affiliation(s)
- Nian-Siou Wu
- Department of Education, Hsin-Chu Branch, National Taiwan University Hospital, Hsinchu, Taiwan
- PhD Program in Molecular Medicine, National Tsing Hua University, Hsinchu, Taiwan
| | - I-Chu Ma
- Division of Neurology, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Fan Lin
- Department of Education, National Taiwan University Hospital, Taipei, Taiwan
| | - Huey-Jiun Ko
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Joon-Khim Loh
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yi-Ren Hong
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
- Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
49
|
Li Z, Xing J. Contribution and therapeutic value of mitophagy in cerebral ischemia-reperfusion injury after cardiac arrest. Biomed Pharmacother 2023; 167:115492. [PMID: 37716121 DOI: 10.1016/j.biopha.2023.115492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/18/2023] Open
Abstract
Cardiopulmonary resuscitation and related life support technologies have improved substantially in recent years; however, mortality and disability rates from cardiac arrest (CA) remain high and are closely associated with the high incidence of cerebral ischemia-reperfusion injury (CIRI), which is explained by a "double-hit" model (i.e., resulting from both ischemia and reperfusion). Mitochondria are important power plants in the cell and participate in various biochemical processes, such as cell differentiation and signaling in eukaryotes. Various mitochondrial processes, including energy metabolism, calcium homeostasis, free radical production, and apoptosis, are involved in several important stages of the progression and development of CIRI. Mitophagy is a key mechanism of the endogenous removal of damaged mitochondria to maintain organelle function and is a critical target for CIRI treatment after CA. Mitophagy also plays an essential role in attenuating ischemia-reperfusion in other organs, particularly during post-cardiac arrest myocardial dysfunction. Regulation of mitophagy may influence necroptosis (a programmed cell death pathway), which is the main endpoint of organ ischemia-reperfusion injury. In this review, we summarize the main signaling pathways related to mitophagy and their associated regulatory proteins. New therapeutic methods and drugs targeting mitophagy in ischemia-reperfusion animal models are also discussed. In-depth studies of the mechanisms underlying the regulation of mitophagy will enhance our understanding of the damage and repair processes in CIRI after CA, thereby contributing to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Zheng Li
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
50
|
Ke W, Wang B, Liao Z, Song Y, Li G, Ma L, Wang K, Li S, Hua W, Yang C. Matrix stiffness induces Drp1-mediated mitochondrial fission through Piezo1 mechanotransduction in human intervertebral disc degeneration. J Transl Med 2023; 21:711. [PMID: 37817199 PMCID: PMC10563269 DOI: 10.1186/s12967-023-04590-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/04/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Extracellular matrix stiffness is emerging as a crucial mechanical cue that drives the progression of various diseases, such as cancer, fibrosis, and inflammation. The matrix stiffness of the nucleus pulposus (NP) tissues increase gradually during intervertebral disc degeneration (IDD), while the mechanism through which NP cells sense and react to matrix stiffness remains unclear. In addition, mitochondrial dynamics play a key role in various cellular functions. An in-depth investigation of the pathogenesis of IDD can provide new insights for the development of effective therapies. In this study, we aim to investigate the effects of matrix stiffness on mitochondrial dynamics in IDD. METHODS To build the gradient stiffness model, NP cells were cultured on polystyrene plates with different stiffness. Western blot analysis, and immunofluorescence staining were used to detect the expression of mitochondrial dynamics-related proteins. Flow cytometry was used to detect the mitochondrial membrane potential and intracellular Ca2+ levels. Apoptosis related proteins, ROS level, and TUNEL staining were performed to assess the effect of substrate stiffness on NP cells. RESULTS Stiff substrate increased phosphorylation of dynamin-related protein 1 (Drp1) at Ser616 by activating extracellular signal-regulated kinase 1/2 (ERK1/2) pathway, which promoted mitochondrial fission and apoptosis in NP cells. Furthermore, Piezo1 activation was involved in the regulation of the post-translational modifications of Drp1 and mitochondrial fission caused by matrix stiffness. Inhibition of Piezo1 and ERK1/2 can effectively reduce stiffness-induced ROS elevation and apoptosis in NP cells. CONCLUSIONS Our results revealed that stiff substrate causes Piezo1 activation and Ca2+ influx, results in ERK1/2 activation and phosphorylation of Drp1 at S616, and finally leads to mitochondrial fission and apoptosis in NP cells. These findings reveal a new mechanism of mechanotransduction in NP cells, providing novel insights into the development of therapies for treating IDD.
Collapse
Affiliation(s)
- Wencan Ke
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bingjin Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhiwei Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Liang Ma
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kun Wang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenbin Hua
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|