1
|
Jancarova M, Polanska N, Thiesson A, Arnaud F, Stejskalova M, Rehbergerova M, Kohl A, Viginier B, Volf P, Ratinier M. Susceptibility of diverse sand fly species to Toscana virus. PLoS Negl Trop Dis 2025; 19:e0013031. [PMID: 40315233 PMCID: PMC12047804 DOI: 10.1371/journal.pntd.0013031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/01/2025] [Indexed: 05/04/2025] Open
Abstract
Toscana virus (TOSV) is an emerging but neglected human pathogen currently circulating around the Mediterranean basin including North Africa. Human illness ranges from asymptomatic or mild flu-like syndromes to severe neurological diseases such as meningitis or meningoencephalitis. Despite its significant impact, understanding of TOSV transmission and epidemiology remains limited. Sand flies (Diptera: Phlebotominae), specifically Phlebotomus perniciosus and Phlebotomus perfiliewi, are believed to be the primary vectors of TOSV. However, the spread of TOSV to new geographical areas and its detection in other sand fly species suggest that additional species play a role in the circulation and transmission of this virus. This study investigated the vector competence of four sand fly species - P. tobbi, P. sergenti, P. papatasi, and Sergentomyia schwetzi - for two TOSV strains: 1500590 (TOSV A lineage) and MRS20104319501 (TOSV B lineage). Sand flies were orally challenged with TOSV via bloodmeals. None of the tested species showed susceptibility to the TOSV A strain. However, for TOSV B strain, P. tobbi demonstrated a high potential as a new vector, exhibiting high infection and dissemination rates. P. sergenti also showed some susceptibility to TOSV B, with the virus dissemination observed in all infected females. These finding suggests that P. tobbi and P. sergenti are new potential vectors for TOSV B. Given that P. tobbi and P. sergenti are the primary vectors of human leishmaniases in the Balkans, Turkey and Middle East, their susceptibility to TOSV could have significant epidemiological consequences. On the other hand, P. papatasi and S. schwetzi appeared refractory to TOSV B infection. Refractoriness of P. papatasi, a highly anthropophilic species distributed from the Mediterranean to the Middle East and India, suggests that this species does not contribute to TOSV circulation.
Collapse
Affiliation(s)
- Magdalena Jancarova
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Nikola Polanska
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Adrien Thiesson
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| | - Frédérick Arnaud
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| | - Marketa Stejskalova
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marketa Rehbergerova
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
- Centre for Neglected Tropical Diseases, Departments of Tropical Disease Biology and Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Barbara Viginier
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| | - Petr Volf
- Laboratory of Vector Biology, Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Maxime Ratinier
- IVPC UMR754, INRAE, Universite Claude Bernard Lyon 1, EPHE, Université PSL, Lyon, France
| |
Collapse
|
2
|
Khan A, Zakirullah, Wahab S, Hong ST. Advances in antiviral strategies targeting mosquito-borne viruses: cellular, viral, and immune-related approaches. Virol J 2025; 22:26. [PMID: 39905499 PMCID: PMC11792744 DOI: 10.1186/s12985-025-02622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Mosquito-borne viruses (MBVs) are a major global health threat, causing significant morbidity and mortality. MBVs belong to several distinct viral families, each with unique characteristics. The primary families include Flaviviridae (e.g., Dengue, Zika, West Nile, Yellow Fever, Japanese Encephalitis), transmitted predominantly by Aedes and Culex mosquitoes; Togaviridae, which consists of the genus Alphavirus (e.g., Chikungunya, Eastern and Western Equine Encephalitis viruses), also transmitted by Aedes and Culex; Bunyaviridae (recently reorganized), containing viruses like Rift Valley Fever and Oropouche virus, transmitted by mosquitoes and sometimes sandflies; and Reoviridae, which includes the genus Orbivirus (e.g., West Nile and Bluetongue viruses), primarily affecting animals and transmitted by mosquitoes and sandflies. Despite extensive research, effective antiviral treatments for MBVs remain scarce, and current therapies mainly provide symptomatic relief and supportive care. This review examines the viral components and cellular and immune factors involved in the life cycle of MBVs. It also highlights recent advances in antiviral strategies targeting host factors such as lipid metabolism, ion channels, and proteasomes, as well as viral targets like NS2B-NS3 proteases and nonstructural proteins. Additionally, it explores immunomodulatory therapies to enhance antiviral responses and emphasizes the potential of drug repurposing, bioinformatics, artificial intelligence, and deep learning in identifying novel antiviral candidates. Continued research is crucial in mitigating MBVs' impact and preventing future outbreaks.
Collapse
Affiliation(s)
- Ayyaz Khan
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, 54907, South Korea
| | - Zakirullah
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shahid Wahab
- Department of Agriculture, Jeonbuk National University, Jeonju-si, Republic of Korea
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Jeonbuk National University Medical School, Jeonju, 54907, South Korea.
| |
Collapse
|
3
|
Tang X, Cui Y, Namarra U, Tian X, Rivas-Giorgi F, Fikrig E. Dual roles for a tick protein disulfide isomerase during the life cycle of the Lyme disease agent. mBio 2024; 15:e0175424. [PMID: 39470213 PMCID: PMC11633212 DOI: 10.1128/mbio.01754-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
The protein disulfide isomerase (PDI) family is a group of enzymes that have thiol-disulfide oxidoreductase, disulfide isomerase, and redox-dependent chaperone activities. PDIs facilitate diverse infections in mammalian hosts by directly binding to pathogens, immunomodulation, or enabling microbial invasion of host cells. PDI homologs within pathogens are also potential virulence factors. However, whether PDIs within blood-feeding ticks influence microbial infection remains unknown. In this study, we investigated the role of Ixodes scapularis PDIs, on the Lyme disease agent, Borrelia burgdorferi. I. scapularis has five PDIs (IsPDIs), and IsPDIA6 gene expression is reduced upon B. burgdorferi infection in the tick. IsPDIA6-mediated trypsin inhibitor gene expression contributes to B. burgdorferi colonization within the tick midgut. IsPDIA6 is also secreted into the host during tick feeding, alters cytokine/chemokine expression at the tick bite site, and influences the initial stage of bacterial infection in mice. These data demonstrate that a PDI from a blood-feeding vector plays a role in the life cycle of an extracellular pathogen. IMPORTANCE Vector-borne diseases are a leading cause of death and illness worldwide, and more than 80% of the global population live in areas at risk from at least one major vector-borne disease. In this study, we demonstrate a dual role of a specific Ixodes tick protein disulfide isomerase (PDI) in inhibiting the ability of the Lyme disease agent to colonize ticks and also in enhancing the initial stage of spirochete infection of mice. This study represents a novel conceptual advancement that a PDI from a blood-feeding vector plays important roles in the life cycle of an extracellular pathogen.
Collapse
Affiliation(s)
- Xiaotian Tang
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Yingjun Cui
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Ushuu Namarra
- History of Science, Medicine, and Public Health Program, Yale College, New Haven, Connecticut, USA
| | - Xiuqi Tian
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Freddie Rivas-Giorgi
- Molecular Biochemistry and Biophysics Program, Yale College, New Haven, Connecticut, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
4
|
de Oliveira MR, Souza TF, Arcos AN, Katak RDM, da Silva SRS, da Cruz JC, da Silva GF, Marinotti O, Terenius O, de Souza ADL, de Souza AQL. Fungi from Anopheles darlingi Root, 1926, larval breeding sites in the Brazilian Amazon. PLoS One 2024; 19:e0312624. [PMID: 39636874 PMCID: PMC11620424 DOI: 10.1371/journal.pone.0312624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/09/2024] [Indexed: 12/07/2024] Open
Abstract
The fungi present in the breeding waters of mosquitoes have been scarcely investigated. This work explored the diversity of cultivable fungi present in the breeding sites of the South American malaria vector mosquito Anopheles darlingi. Water samples were collected from four sites located in the municipalities of Coari and São Gabriel da Cachoeira and four different culture media were used for the isolation of fungi. Two-hundred-and-six fungal strains were isolated and morphologically similar fungi were grouped into 30 morphotypes. Their taxonomic identities were assigned by macro and microscopic observations and sequencing of rDNA internal transcribed spacers (ITS1-5.8S-ITS2). Representatives of 26 morphotypes were identified at the genus level, one only at the family level, and three were not identified. The identified morphotypes belong to the phyla, Ascomycota (80.6%), Basidiomycota (11.7%), and Mucoromycota (2.4%), distributed in five classes, ten orders, 25 families, and 26 genera. This study fills a considerable knowledge gap about the fungi present in the breeding sites of An. darlingi mosquitoes.
Collapse
Affiliation(s)
- Marta Rodrigues de Oliveira
- Programa de Pós-graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Department of Entomology and Acarology, School de Agricultura "Luiz de Queiroz", University of São Paulo (ESALQ/USP), Piracicaba, São Paulo, Brazil
| | - Thiago Fernandes Souza
- Programa de Pós-graduação de Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Embrapa Amazônia Ocidental, Empresa Brasileira de Pesquisa Agropecuária (Embrapa) Manaus, Amazonas, Brazil
| | - Adriano Nobre Arcos
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Federal de Mato Grosso do Sul / UFMS, Campo Grande, Mato Grosso do Sul, Brazil
- Laboratório de Malária e Dengue, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
| | - Ricardo de Melo Katak
- Programa de Pós-graduação de Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Laboratório de Malária e Dengue, Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
| | | | - Jeferson Chagas da Cruz
- Embrapa Amazônia Ocidental, Empresa Brasileira de Pesquisa Agropecuária (Embrapa) Manaus, Amazonas, Brazil
| | - Gilvan Ferreira da Silva
- Programa de Pós-graduação de Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Embrapa Amazônia Ocidental, Empresa Brasileira de Pesquisa Agropecuária (Embrapa) Manaus, Amazonas, Brazil
| | - Osvaldo Marinotti
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Olle Terenius
- Department of Cell and Molecular Biology, Microbiology, Uppsala University, Uppsala, Sweden
| | - Afonso Duarte Leão de Souza
- Programa de Pós-graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Central Analítica—Centro de Apoio Multidisciplinar (CAM), Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brazil
- Departamento de Química, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| | - Antonia Queiroz Lima de Souza
- Programa de Pós-graduação em Biodiversidade e Biotecnologia, Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
- Central Analítica—Centro de Apoio Multidisciplinar (CAM), Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brazil
- Faculdade de Ciências Agrárias (FCA), Universidade Federal do Amazonas, Manaus, Amazonas, Brazil
| |
Collapse
|
5
|
Chen TY, Marín-López A, Raduwan H, Fikrig E. Aedes aegypti adiponectin receptor-like protein signaling facilitates Zika virus infection. mBio 2024; 15:e0243324. [PMID: 39373507 PMCID: PMC11559040 DOI: 10.1128/mbio.02433-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024] Open
Abstract
The Aedes aegypti mosquito plays a critical role in the transmission of viral diseases, including Zika virus, which poses significant public health challenges. Understanding the complex interactions between mosquitoes and viruses is paramount for the development of effective control strategies. In this study, we demonstrate that silencing the A. aegypti adiponectin receptor-like protein (AaARLP) results in a reduction of Zika virus infection. Transcriptomic analysis identified alterations in several trypsin genes and further revealed that AaARLP-knockdown mosquitoes had diminished trypsin activity. Moreover, silencing of selected trypsins resulted in a similar delay in Zika virus infection in mosquitoes, further highlighting the connection between the AaARLP and trypsin. Overall, our findings demonstrate that AaARLP signaling is important for Zika virus infection of A. aegypti. IMPORTANCE Arboviruses pose a significant threat to public health, with mosquitoes, especially Aedes aegypti, being a major vector for their transmission. Gaining insight into the complex interaction between mosquitoes and viruses is essential to build successful control strategies. In this study, we identified a novel pathway connecting the A. aegypti adiponectin receptor-like protein and its association with trypsin, key enzymes involved in blood digestion. Furthermore, we demonstrated the significance of signaling via the adiponectin receptor-like protein in virus infection within the mosquito. Together, our discoveries illuminate mosquito metabolic pathways essential in viral infection.
Collapse
Affiliation(s)
- Tse-Yu Chen
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Hamidah Raduwan
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
6
|
Hussain S, Kanuka H, Rakotondrafara A, Tani M, Aiuchi D. Pathogenicity and sub-lethal activity of orally administered entomopathogenic fungi against two adult mosquito species, Aedes aegypti (Diptera: Culicidae) and Anopheles stephensi (Diptera: Culicidae). J Invertebr Pathol 2024; 207:108233. [PMID: 39521270 DOI: 10.1016/j.jip.2024.108233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/22/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Entomopathogenic fungi (EPF) are known for their efficacy in controlling adult mosquito populations by penetrating through their cuticle. However, the effect of oral administration of EPF on the biological parameters of Aedes aegypti and Anopheles stephensi remains largely unexplored. This study aimed to assess the effect of orally administrated EPF isolates on the survival, feeding behavior, fecundity, fertility, follicle development and host-searching behavior in response to yeast-generated CO2 of Ae. aegypti and An. stephensi. An initial screening of 50 isolates involved exposure of adult Ae. aegypti and An. stephensi by integument inoculation. Subsequently, the entomopathogenic effect of the five highly virulent isolates was confirmed through oral administration revealing Beauveria pseudobassiana 42-51 as a potent mosquito killer. B. pseudobassiana 42-51 was administered orally to evaluate sub-lethal effects. The results showed a 63 % and 43 % reduction in blood feeding of Ae. aegypti and An. stephensi, respectively. Furthermore, a decrease in egg hatching rate was observed, with a reduction of 83% for Ae. aegypti and 74% for An. stephensi on the seventh day following fungal administration, showing decreased hatchability in both species. Poor and abnormal follicle development was observed in both mosquito species. Also, the host-searching behavior was evaluated by attraction to CO2 utilizing a Y-tube olfactometer. A tendency of reduction in the attraction rate towards the odor was observed three days post-fungal administration. These findings underscore the significant impact of oral administration of B. pseudobassiana 42-51 on mosquitoes, highlighting not only its lethal effects but also sub lethal impacts on their biology. Moreover, this fungus may exhibit the potential to simultaneously control both mosquito species and serve as a biocontrol agent for the management of vector-borne diseases.
Collapse
Affiliation(s)
- Sikandar Hussain
- Department of Agro-environmental Science, Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Hirotaka Kanuka
- Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | | | - Masayuki Tani
- Department of Agro-environmental Science, Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro 080-8555, Hokkaido, Japan
| | - Daigo Aiuchi
- Department of Agro-environmental Science, Obihiro University of Agriculture & Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan; Research Center for Global Agromedicine, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro 080-8555, Hokkaido, Japan.
| |
Collapse
|
7
|
Sun X, Wang Y, Yuan F, Zhang Y, Kang X, Sun J, Wang P, Lu T, Sae Wang F, Gu J, Wang J, Xia Q, Zheng A, Zou Z. Gut symbiont-derived sphingosine modulates vector competence in Aedes mosquitoes. Nat Commun 2024; 15:8221. [PMID: 39300135 DOI: 10.1038/s41467-024-52566-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
The main vectors of Zika virus (ZIKV) and dengue virus (DENV) are Aedes aegypti and Ae. albopictus, with Ae. aegypti being more competent. However, the underlying mechanisms remain unclear. Here, we find Ae. albopictus shows comparable vector competence to ZIKV/DENV with Ae. aegypti by blood-feeding after antibiotic treatment or intrathoracic injection. This suggests that midgut microbiota can influence vector competence. Enterobacter hormaechei_B17 (Eh_B17) is isolated from field-collected Ae. albopictus and conferred resistance to ZIKV/DENV infection in Ae. aegypti after gut-transplantation. Sphingosine, a metabolite secreted by Eh_B17, effectively suppresses ZIKV infection in both Ae. aegypti and cell cultures by blocking viral entry during the fusion step, with an IC50 of approximately 10 μM. A field survey reveals that Eh_B17 preferentially colonizes Ae. albopictus compared to Ae. aegypti. And field Ae. albopictus positive for Eh_B17 are more resistant to ZIKV infection. These findings underscore the potential of gut symbiotic bacteria, such as Eh_B17, to modulate the arbovirus vector competence of Aedes mosquitoes. As a natural antiviral agent, Eh_B17 holds promise as a potential candidate for blocking ZIKV/DENV transmission.
Collapse
Affiliation(s)
- Xiaomei Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Yanhong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Fei Yuan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanan Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xun Kang
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China
| | - Jian Sun
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tengfei Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Fanny Sae Wang
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jinbao Gu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Pathogen Biology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Jinglin Wang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qianfeng Xia
- NHC Key Laboratory of Tropical Disease Control, School of Tropical Medicine, Hainan Medical University, Haikou, Hainan, China.
| | - Aihua Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| | - Zhen Zou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
8
|
Tabbabi A, Mizushima D, Yamamoto DS, Zhioua E, Kato H. Comparative analysis of the microbiota of sand fly vectors of Leishmania major and L. tropica in a mixed focus of cutaneous leishmaniasis in southeast Tunisia; ecotype shapes the bacterial community structure. PLoS Negl Trop Dis 2024; 18:e0012458. [PMID: 39236074 PMCID: PMC11407667 DOI: 10.1371/journal.pntd.0012458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/17/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024] Open
Abstract
Phlebotomine sand flies are vectors of the protozoan parasite Leishmania spp. Although the intestinal microbiota is involved in a wide range of biological and physiological processes and has the potential to alter vector competence, little is known about the impact of host species and environment on the gut microbiome. To address this issue, a comparative analysis of the microbiota of sand fly vector populations of Leishmania major and L. tropica in a mixed focus of cutaneous leishmaniasis in Tunisia was performed. Bacterial 16S rRNA gene amplification and Illumina MiSeq sequencing were used to characterize and compare the overall bacterial and fungal composition of field-collected sand flies: Phlebotomus papatasi, Ph. perniciosus, Ph. riouxi, and Ph. sergenti. Thirty-eight bacterial genera belonging to five phyla were identified in 117 female specimens. The similarities and differences between the microbiome data from different samples collected from three collections were determined using principal coordinate analysis (PCoA). Substantial variations in the bacterial composition were found between geographically distinct populations of the same sand fly species, but not between different species at the same location, suggesting that the microbiota content was structured according to environmental factors rather than host species. These findings suggest that host phylogeny may play a minor role in determining the insect gut microbiota, and its potential to affect the transmission of the Leishmania parasite appear to be very low. These results highlight the need for further studies to decode sand fly Leishmania-microbiota interactions, as even the same bacterial species, such as Enterococcus faecalis, can exert completely opposite effects when confronted with different pathogens within various host insects and vice versa.
Collapse
Affiliation(s)
- Ahmed Tabbabi
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Daiki Mizushima
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Daisuke S Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| | - Elyes Zhioua
- Unit of Vector Ecology, Institut Pasteur de Tunis, Tunis, Tunisia
| | - Hirotomo Kato
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
9
|
Pedreañez A, Carrero Y, Vargas R, Hernandez-Fonseca JP, Hernandez-Fonseca H, Mosquera JA. Role of Gut Microbiota in Dengue. Rev Med Virol 2024; 34:e2577. [PMID: 39215460 DOI: 10.1002/rmv.2577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Dengue is a disease caused by a flavivirus (DENV) and transmitted by the bite of a mosquito, primarily the Aedes aegypti and Aedes albopictus species. Previous studies have demonstrated a relationship between the host gut microbiota and the evolution of dengue. It seems to be a bidirectional relationship, in which the DENV can affect the microbiota by inducing alterations related to intestinal permeability, leading to the release of molecules from microbiota dysbiosis that can influence the evolution of dengue. The role of angiotensin II (Ang II) in the microbiota/dengue relationship is not well understood, but it is known that the renin-angiotensin system (RAS) is present in the intestinal tract and interacts with the gut microbiota. The possible effect of Ang II on the microbiota/Ang II/dengue relationship can be summarised as follows: the presence of Ang II induced hypertension, the increase in angiotensinogen, chymase, and microRNAs during the disease, the induction of vascular dysfunction, the production of trimethylamine N-oxide and the brain/microbiota relationship, all of which are elements present in dengue that could be part of the microbiota/Ang II/dengue interactions. These findings suggest the potential use of Ang II synthesis blockers and the use of AT1 receptor antagonists as therapeutic drugs in dengue.
Collapse
Affiliation(s)
- Adriana Pedreañez
- Cátedra de Inmunología, Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Yenddy Carrero
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Renata Vargas
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Juan P Hernandez-Fonseca
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
- Servicio de Microscopia Electrónica, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, España
| | - Hugo Hernandez-Fonseca
- Facultad de Ciencias Veterinarias, Universidad del Zulia, Maracaibo, Venezuela
- Anatomy, Physiology and Pharmacology Department, School of Veterinary Medicine, Saint George's University, Saint George, Grenada
| | - Jesús A Mosquera
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette", Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| |
Collapse
|
10
|
Salgado JFM, Premkrishnan BNV, Oliveira EL, Vettath VK, Goh FG, Hou X, Drautz-Moses DI, Cai Y, Schuster SC, Junqueira ACM. The dynamics of the midgut microbiome in Aedes aegypti during digestion reveal putative symbionts. PNAS NEXUS 2024; 3:pgae317. [PMID: 39157462 PMCID: PMC11327924 DOI: 10.1093/pnasnexus/pgae317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 07/02/2024] [Indexed: 08/20/2024]
Abstract
Blood-feeding is crucial for the reproductive cycle of the mosquito Aedes aegypti, as well as for the transmission of arboviruses to hosts. It is postulated that blood meals may influence the mosquito microbiome but shifts in microbial diversity and function during digestion remain elusive. We used whole-genome shotgun metagenomics to monitor the midgut microbiome in 60 individual females of A. aegypti throughout digestion, after 12, 24, and 48 h following blood or sugar meals. Additionally, ten individual larvae were sequenced, showing microbiomes dominated by Microbacterium sp. The high metagenomic coverage allowed for microbial assignments at the species taxonomic level, also providing functional profiling. Females in the post-digestive period and larvae displayed low microbiome diversities. A striking proliferation of Enterobacterales was observed during digestion in blood-fed mosquitoes. The compositional shift was concomitant with enrichment in genes associated with carbohydrate and protein metabolism, as well as virulence factors for antimicrobial resistance and scavenging. The bacterium Elizabethkingia anophelis (Flavobacteriales), a known human pathogen, was the dominant species at the end of blood digestion. Phylogenomics suggests that its association with hematophagous mosquitoes occurred several times. We consider evidence of mutually beneficial host-microbe interactions raised from this association, potentially pivotal for the mosquito's resistance to arbovirus infection. After digestion, the observed shifts in blood-fed females' midguts shifted to a sugar-fed-like microbial profile. This study provides insights into how the microbiome of A. aegypti is modulated to fulfil digestive roles following blood meals, emphasizing proliferation of potential symbionts in response to the dynamic midgut environment.
Collapse
Affiliation(s)
- João Felipe M Salgado
- RG Insect Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch str. 10, Marburg 35043, Germany
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, 373 Avenida Carlos Chagas Filho, Rio de Janeiro, RJ 21941-902, Brazil
| | - Balakrishnan N V Premkrishnan
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Elaine L Oliveira
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Vineeth Kodengil Vettath
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Feng Guang Goh
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Block S3, #05-01, Singapore 117558, Singapore
| | - Xinjun Hou
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Block S3, #05-01, Singapore 117558, Singapore
| | - Daniela I Drautz-Moses
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Yu Cai
- Temasek Life Sciences Laboratory, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Block S3, #05-01, Singapore 117558, Singapore
| | - Stephan C Schuster
- Singapore Center for Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Ana Carolina M Junqueira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, 373 Avenida Carlos Chagas Filho, Rio de Janeiro, RJ 21941-902, Brazil
| |
Collapse
|
11
|
Onyango MG, Payne AF, Stout J, Dieme C, Kuo L, Kramer LD, Ciota AT. Aedes albopictus saliva contains a richer microbial community than the midgut. Parasit Vectors 2024; 17:267. [PMID: 38918848 PMCID: PMC11197185 DOI: 10.1186/s13071-024-06334-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
BACKGROUND Past findings demonstrate that arthropods can egest midgut microbiota into the host skin leading to dual colonization of the vertebrate host with pathogens and saliva microbiome. A knowledge gap exists on how the saliva microbiome interacts with the pathogen in the saliva. To fill this gap, we need to first define the microbial composition of mosquito saliva. METHODS The current study aimed at analyzing and comparing the microbial profile of Aedes albopictus saliva and midgut as well as assessing the impact of Zika virus (ZIKV) infection on the midgut and saliva microbial composition. Colony-reared Ae. albopictus strains were either exposed to ZIKV infectious or noninfectious bloodmeal. At 14 ays postinfection, the 16S V3-V4 hypervariable rRNA region was amplified from midgut and saliva samples and sequenced on an Illumina MiSeq platform. The relative abundance and diversity of midgut and saliva microbial taxa were assessed. RESULTS We observed a richer microbial community in the saliva compared with the midgut, yet some of the microbial taxa were common in the midgut and saliva. ZIKV infection did not impact the microbial diversity of midgut or saliva. Further, we identified Elizabethkingia spp. in the Ae. albopictus saliva. CONCLUSIONS This study provides insights into the microbial community of the Ae. albopictus saliva as well as the influence of ZIKV infection on the microbial composition of its midgut and saliva. The identification of Elizabethkingia spp., an emerging pathogen of global health significance, in Ae. albopictus saliva is of medical importance. Future studies to assess the interactions between Ae. albopictus saliva microbiome and ZIKV could lead to novel strategies for developing transmission barrier tools.
Collapse
Affiliation(s)
- Maria G Onyango
- Department of Biological Sciences, Texas Tech University, 2901 Main St, Lubbock, Texas, 79409-3131, USA.
| | - Anne F Payne
- New York State Department of Health, Wadsworth Center, 5668 State Farm Road, Slingerlands, NY, 12159, USA
| | - Jessica Stout
- New York State Department of Health, Wadsworth Center, 5668 State Farm Road, Slingerlands, NY, 12159, USA
| | - Constentin Dieme
- New York State Department of Health, Wadsworth Center, 5668 State Farm Road, Slingerlands, NY, 12159, USA
| | - Lili Kuo
- New York State Department of Health, Wadsworth Center, 5668 State Farm Road, Slingerlands, NY, 12159, USA
| | - Laura D Kramer
- School of Public Health, State University of New York Albany, 1400 Washington Avenue, Albany, NY, 12222, USA
| | - Alexander T Ciota
- New York State Department of Health, Wadsworth Center, 5668 State Farm Road, Slingerlands, NY, 12159, USA
- School of Public Health, State University of New York Albany, 1400 Washington Avenue, Albany, NY, 12222, USA
| |
Collapse
|
12
|
Polycarpo CR, Walter-Nuno AB, Azevedo-Reis L, Paiva-Silva GO. The vector-symbiont affair: a relationship as (im)perfect as it can be. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101203. [PMID: 38705385 DOI: 10.1016/j.cois.2024.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Vector-borne diseases are globally prevalent and represent a major socioeconomic problem worldwide. Blood-sucking arthropods transmit most pathogenic agents that cause these human infections. The pathogens transmission to their vertebrate hosts depends on how efficiently they infect their vector, which is particularly impacted by the microbiota residing in the intestinal lumen, as well as its cells or internal organs such as ovaries. The balance between costs and benefits provided by these interactions ultimately determines the outcome of the relationship. Here, we will explore aspects concerning the nature of microbe-vector interactions, including the adaptive traits required for their establishment, the varied outcomes of symbiotic interactions, as well as the factors influencing the transition of these relationships across a continuum from parasitism to mutualism.
Collapse
Affiliation(s)
- Carla R Polycarpo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-902, Brazil
| | - Ana B Walter-Nuno
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-902, Brazil
| | - Leonan Azevedo-Reis
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-902, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro 21941-902, Brazil.
| |
Collapse
|
13
|
Hixson B, Chen R, Buchon N. Innate immunity in Aedes mosquitoes: from pathogen resistance to shaping the microbiota. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230063. [PMID: 38497256 PMCID: PMC10945403 DOI: 10.1098/rstb.2023.0063] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/12/2023] [Indexed: 03/19/2024] Open
Abstract
Discussions of host-microbe interactions in mosquito vectors are frequently dominated by a focus on the human pathogens they transmit (e.g. Plasmodium parasites and arboviruses). Underlying the interactions between a vector and its transmissible pathogens, however, is the physiology of an insect living and interacting with a world of bacteria and fungi including commensals, mutualists and primary and opportunistic pathogens. Here we review what is known about the bacteria and fungi associated with mosquitoes, with an emphasis on the members of the Aedes genus. We explore the reciprocal effects of microbe on mosquito, and mosquito on microbe. We analyse the roles of bacterial and fungal symbionts in mosquito development, their effects on vector competence, and their potential uses as biocontrol agents and vectors for paratransgenesis. We explore the compartments of the mosquito gut, uncovering the regionalization of immune effectors and modulators, which create the zones of resistance and immune tolerance with which the mosquito host controls and corrals its microbial symbionts. We examine the anatomical patterning of basally expressed antimicrobial peptides. Finally, we review the relationships between inducible antimicrobial peptides and canonical immune signalling pathways, comparing and contrasting current knowledge on each pathway in mosquitoes to the model insect Drosophila melanogaster. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Bretta Hixson
- Department of Entomology, Cornell University College of Agriculture and Life Sciences, Ithaca, 14853, NY, USA
| | - Robin Chen
- Department of Entomology, Cornell University College of Agriculture and Life Sciences, Ithaca, 14853, NY, USA
| | - Nicolas Buchon
- Department of Entomology, Cornell University College of Agriculture and Life Sciences, Ithaca, 14853, NY, USA
| |
Collapse
|
14
|
Zhang L, Wang D, Shi P, Li J, Niu J, Chen J, Wang G, Wu L, Chen L, Yang Z, Li S, Meng J, Ruan F, He Y, Zhao H, Ren Z, Wang Y, Liu Y, Shi X, Wang Y, Liu Q, Li J, Wang P, Wang J, Zhu Y, Cheng G. A naturally isolated symbiotic bacterium suppresses flavivirus transmission by Aedes mosquitoes. Science 2024; 384:eadn9524. [PMID: 38669573 DOI: 10.1126/science.adn9524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024]
Abstract
The commensal microbiota of the mosquito gut plays a complex role in determining the vector competence for arboviruses. In this study, we identified a bacterium from the gut of field Aedes albopictus mosquitoes named Rosenbergiella sp. YN46 (Rosenbergiella_YN46) that rendered mosquitoes refractory to infection with dengue and Zika viruses. Inoculation of 1.6 × 103 colony forming units (CFUs) of Rosenbergiella_YN46 into A. albopictus mosquitoes effectively prevents viral infection. Mechanistically, this bacterium secretes glucose dehydrogenase (RyGDH), which acidifies the gut lumen of fed mosquitoes, causing irreversible conformational changes in the flavivirus envelope protein that prevent viral entry into cells. In semifield conditions, Rosenbergiella_YN46 exhibits effective transstadial transmission in field mosquitoes, which blocks transmission of dengue virus by newly emerged adult mosquitoes. The prevalence of Rosenbergiella_YN46 is greater in mosquitoes from low-dengue areas (52.9 to ~91.7%) than in those from dengue-endemic regions (0 to ~6.7%). Rosenbergiella_YN46 may offer an effective and safe lead for flavivirus biocontrol.
Collapse
Affiliation(s)
- Liming Zhang
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Daxi Wang
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
| | - Peibo Shi
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juzhen Li
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Jichen Niu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Jielong Chen
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Gang Wang
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Linjuan Wu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Lu Chen
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan 650000, China
| | - Susheng Li
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan 650000, China
| | - Jinxin Meng
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan 650000, China
| | - Fangchao Ruan
- Kunming Medical University, Kunming, Yunnan 650000, China
| | - Yuwen He
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan 650000, China
| | - Hailong Zhao
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
| | - Zirui Ren
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
| | - Yibaina Wang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Yang Liu
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Xiaolu Shi
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Yunfu Wang
- Institute of Neuroscience, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Qiyong Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Junhua Li
- Shenzhen Key Laboratory of Unknown Pathogen Identification, BGI Research, Shenzhen 518083, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Jinglin Wang
- Yunnan Tropical and Subtropical Animal Viral Disease Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, Yunnan 650000, China
| | - Yibin Zhu
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
- Southwest United Graduate School, Kunming 650092, China
| |
Collapse
|
15
|
Hegde S, Khanipov K, Hornett EA, Nilyanimit P, Pimenova M, Saldaña MA, de Bekker C, Golovko G, Hughes GL. Interkingdom interactions shape the fungal microbiome of mosquitoes. Anim Microbiome 2024; 6:11. [PMID: 38454530 PMCID: PMC10921588 DOI: 10.1186/s42523-024-00298-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The mosquito microbiome is an important modulator of vector competence and vectoral capacity. Unlike the extensively studied bacterial microbiome, fungal communities in the mosquito microbiome (the mycobiome) remain largely unexplored. To work towards getting an improved understanding of the fungi associated with mosquitoes, we sequenced the mycobiome of three field-collected and laboratory-reared mosquito species (Aedes albopictus, Aedes aegypti, and Culex quinquefasciatus). RESULTS Our analysis showed both environment and host species were contributing to the diversity of the fungal microbiome of mosquitoes. When comparing species, Ae. albopictus possessed a higher number of diverse fungal taxa than Cx. quinquefasciatus, while strikingly less than 1% of reads from Ae. aegypti samples were fungal. Fungal reads from Ae. aegypti were < 1% even after inhibiting host amplification using a PNA blocker, indicating that this species lacked a significant fungal microbiome that was amplified using this sequencing approach. Using a mono-association mosquito infection model, we confirmed that mosquito-derived fungal isolates colonize Aedes mosquitoes and support growth and development at comparable rates to their bacterial counterparts. Strikingly, native bacterial taxa isolated from mosquitoes impeded the colonization of symbiotic fungi in Ae. aegypti suggesting interkingdom interactions shape fungal microbiome communities. CONCLUSION Collectively, this study adds to our understanding of the fungal microbiome of different mosquito species, that these fungal microbes support growth and development, and highlights that microbial interactions underpin fungal colonization of these medically relevent species.
Collapse
Affiliation(s)
- Shivanand Hegde
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK.
- School of Life Sciences, Keele University, Newcastle, UK.
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Emily A Hornett
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
- Institute of Infection, Veterinary and Ecological Sciences, Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK
| | - Pornjarim Nilyanimit
- Center of Excellence in Clinical Virology, Faculty of Medicine , Chulalongkorn University, Bangkok, Thailand
| | - Maria Pimenova
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Miguel A Saldaña
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Charissa de Bekker
- Microbiology, Department of Biology, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - George Golovko
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
16
|
Li M, Zhou Y, Cheng J, Wang Y, Lan C, Shen Y. Response of the mosquito immune system and symbiotic bacteria to pathogen infection. Parasit Vectors 2024; 17:69. [PMID: 38368353 PMCID: PMC10874582 DOI: 10.1186/s13071-024-06161-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/24/2024] [Indexed: 02/19/2024] Open
Abstract
Mosquitoes are the deadliest animal in the word, transmitting a variety of insect-borne infectious diseases, such as malaria, dengue fever, yellow fever, and Zika, causing more deaths than any other vector-borne pathogen. Moreover, in the absence of effective drugs and vaccines to prevent and treat insect-borne diseases, mosquito control is particularly important as the primary measure. In recent decades, due to the gradual increase in mosquito resistance, increasing attention has fallen on the mechanisms and effects associated with pathogen infection. This review provides an overview of mosquito innate immune mechanisms in terms of physical and physiological barriers, pattern recognition receptors, signalling pathways, and cellular and humoral immunity, as well as the antipathogenic effects of mosquito symbiotic bacteria. This review contributes to an in-depth understanding of the interaction process between mosquitoes and pathogens and provides a theoretical basis for biological defence strategies against mosquito-borne infectious diseases.
Collapse
Affiliation(s)
- Manjin Li
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Yang Zhou
- Nanjing Medical University, Nanjing, 211166, China
| | - Jin Cheng
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Yiqing Wang
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China
| | - Cejie Lan
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
| | - Yuan Shen
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi Center for Disease Control and Prevention, Wuxi, 214023, China.
- Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
17
|
Zhu Y, Yu X, Jiang L, Wang Y, Shi X, Cheng G. Advances in research on arboviral acquisition from hosts to mosquitoes. CURRENT OPINION IN INSECT SCIENCE 2024; 61:101141. [PMID: 37977238 DOI: 10.1016/j.cois.2023.101141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
Arboviral acquisition is a critical step in virus transmission. In this review, we present an overview of the interactions between viruses and host blood-derived factors, highlighting the diverse ways in which they interact. Moreover, the review outlines the impact of host blood on gut barriers during viral acquisition, emphasizing the crucial role of this physiological process in virus dissemination. Additionally, the review investigates the responses of symbioses to invading arboviruses, providing insights into the dynamic reactions of these vital relationships to the presence of arboviruses.
Collapse
Affiliation(s)
- Yibin Zhu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China.
| | - Xi Yu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Liping Jiang
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Yibaina Wang
- China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Xiaolu Shi
- Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518000, China; Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
18
|
Zhang K, Wang S, Li Y, Yin Y, Zhang X, Zhang Q, Kong X, Liu W, Yao D, Zhang R, Zhang Z. Application of bacteria and bacteriophage cocktails for biological control of houseflies. Parasit Vectors 2024; 17:22. [PMID: 38233948 PMCID: PMC10795258 DOI: 10.1186/s13071-023-06082-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Houseflies, Musca domestica L., are an ubiquitous pest that can transmit numerous diseases and threaten human health. Increasing insecticide resistance shown by houseflies necessitates the develop new control alternatives. The housefly gut is densely colonized with microorganisms that interact with each other dynamically and benefit the host's health. However, the impact of multiple symbiotic bacteria on the composition of housefly gut microbiota and the host's activities remains unclear. METHODS We isolated and cultured 12 bacterial species from the intestines of housefly larvae. We also isolated seven bacteriophages to precisely target the regulation of certain bacterial species. Using 16S rRNA high-throughput gene sequencing, we analyzed the bacterial diversity after orally administering bacteria/phage cocktails to houseflies. RESULTS Our results showed that larval growth was promoted, the abundance of beneficial bacteria, such as Klebsiella and Enterobacter, was increased and the abundance of harmful bacteria, such as Providencia, Morganella and Pseudomonas, was decreased in housefly larvae fed with the beneficial bacteria cocktail. However, oral administration of both beneficial and harmful bacterial phage cocktails inhibited larval growth, probably due to the drastic alteration of gut flora. Untargeted metabolomics using liquid chromatography-mass spectrometry showed that disturbances in gut microbiota changed the larval metabolite profiles. Feeding experiments revealed that disrupting the intestinal flora suppressed the beneficial bacteria and increased the harmful bacteria, causing changes in the metabolites and inhibiting larval growth. CONCLUSIONS Based on our results, bacteria/phage cocktails are effective tools for regulating the intestinal flora of insects and have a high potential as a biological control agent for incorporation into an integrated pest management program.
Collapse
Affiliation(s)
- Kexin Zhang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Shumin Wang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- School of Life Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Ying Li
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yansong Yin
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xinyu Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qian Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xinxin Kong
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wenjuan Liu
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- Department of Laboratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, China
| | - Dawei Yao
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University, Jinan, Shandong, China.
| | - Ruiling Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China.
- School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| | - Zhong Zhang
- School of Life Science, Weifang Medical University, Weifang, China.
- Medical Science and Technology Innovation Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.
| |
Collapse
|
19
|
Mantilla-Granados JS, Castellanos JE, Velandia-Romero ML. A tangled threesome: understanding arbovirus infection in Aedes spp. and the effect of the mosquito microbiota. Front Microbiol 2024; 14:1287519. [PMID: 38235434 PMCID: PMC10792067 DOI: 10.3389/fmicb.2023.1287519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024] Open
Abstract
Arboviral infections transmitted by Aedes spp. mosquitoes are a major threat to human health, particularly in tropical regions but are expanding to temperate regions. The ability of Aedes aegypti and Aedes albopictus to transmit multiple arboviruses involves a complex relationship between mosquitoes and the virus, with recent discoveries shedding light on it. Furthermore, this relationship is not solely between mosquitoes and arboviruses, but also involves the mosquito microbiome. Here, we aimed to construct a comprehensive review of the latest information about the arbovirus infection process in A. aegypti and A. albopictus, the source of mosquito microbiota, and its interaction with the arbovirus infection process, in terms of its implications for vectorial competence. First, we summarized studies showing a new mechanism for arbovirus infection at the cellular level, recently described innate immunological pathways, and the mechanism of adaptive response in mosquitoes. Second, we addressed the general sources of the Aedes mosquito microbiota (bacteria, fungi, and viruses) during their life cycle, and the geographical reports of the most common microbiota in adults mosquitoes. How the microbiota interacts directly or indirectly with arbovirus transmission, thereby modifying vectorial competence. We highlight the complexity of this tripartite relationship, influenced by intrinsic and extrinsic conditions at different geographical scales, with many gaps to fill and promising directions for developing strategies to control arbovirus transmission and to gain a better understanding of vectorial competence. The interactions between mosquitoes, arboviruses and their associated microbiota are yet to be investigated in depth.
Collapse
Affiliation(s)
- Juan S. Mantilla-Granados
- Saneamiento Ecológico, Salud y Medio Ambiente, Universidad El Bosque, Vicerrectoría de Investigaciones, Bogotá, Colombia
| | - Jaime E. Castellanos
- Grupo de Virología, Universidad El Bosque, Vicerrectoría de Investigaciones, Bogotá, Colombia
| | | |
Collapse
|
20
|
Lewis J, Gallichotte EN, Randall J, Glass A, Foy BD, Ebel GD, Kading RC. Intrinsic factors driving mosquito vector competence and viral evolution: a review. Front Cell Infect Microbiol 2023; 13:1330600. [PMID: 38188633 PMCID: PMC10771300 DOI: 10.3389/fcimb.2023.1330600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Mosquitoes are responsible for the transmission of numerous viruses of global health significance. The term "vector competence" describes the intrinsic ability of an arthropod vector to transmit an infectious agent. Prior to transmission, the mosquito itself presents a complex and hostile environment through which a virus must transit to ensure propagation and transmission to the next host. Viruses imbibed in an infectious blood meal must pass in and out of the mosquito midgut, traffic through the body cavity or hemocoel, invade the salivary glands, and be expelled with the saliva when the vector takes a subsequent blood meal. Viruses encounter physical, cellular, microbial, and immunological barriers, which are influenced by the genetic background of the mosquito vector as well as environmental conditions. Collectively, these factors place significant selective pressure on the virus that impact its evolution and transmission. Here, we provide an overview of the current state of the field in understanding the mosquito-specific factors that underpin vector competence and how each of these mechanisms may influence virus evolution.
Collapse
Affiliation(s)
- Juliette Lewis
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Emily N. Gallichotte
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Jenna Randall
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Arielle Glass
- Department of Cellular and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Brian D. Foy
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Gregory D. Ebel
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Rebekah C. Kading
- Center for Vector-borne Infectious Diseases, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
21
|
Zhu Y, Liu J, Cheng G. Progress towards research on mosquito-borne arboviral transmission and infection. Sci Bull (Beijing) 2023; 68:2884-2888. [PMID: 37940452 DOI: 10.1016/j.scib.2023.10.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Affiliation(s)
- Yibin Zhu
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Jianying Liu
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Gong Cheng
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China; Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
| |
Collapse
|
22
|
de Araújo CN, Santiago PB, Causin Vieira G, Silva GDS, Moura RP, Bastos IMD, de Santana JM. The biotechnological potential of proteases from hematophagous arthropod vectors. Front Cell Infect Microbiol 2023; 13:1287492. [PMID: 37965257 PMCID: PMC10641018 DOI: 10.3389/fcimb.2023.1287492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Affiliation(s)
- Carla Nunes de Araújo
- Host-Pathogen Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
- Faculty of Ceilândia, University of Brasília, Brasília, DF, Brazil
| | - Paula Beatriz Santiago
- Host-Pathogen Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Giulia Causin Vieira
- Host-Pathogen Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Gabriel dos Santos Silva
- Host-Pathogen Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Renan Pereira Moura
- Host-Pathogen Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Izabela Marques Dourado Bastos
- Host-Pathogen Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Jaime Martins de Santana
- Host-Pathogen Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| |
Collapse
|
23
|
Shi H, Yu X, Cheng G. Impact of the microbiome on mosquito-borne diseases. Protein Cell 2023; 14:743-761. [PMID: 37186167 PMCID: PMC10599646 DOI: 10.1093/procel/pwad021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Mosquito-borne diseases present a significant threat to human health, with the possibility of outbreaks of new mosquito-borne diseases always looming. Unfortunately, current measures to combat these diseases such as vaccines and drugs are often either unavailable or ineffective. However, recent studies on microbiomes may reveal promising strategies to fight these diseases. In this review, we examine recent advances in our understanding of the effects of both the mosquito and vertebrate microbiomes on mosquito-borne diseases. We argue that the mosquito microbiome can have direct and indirect impacts on the transmission of these diseases, with mosquito symbiotic microorganisms, particularly Wolbachia bacteria, showing potential for controlling mosquito-borne diseases. Moreover, the skin microbiome of vertebrates plays a significant role in mosquito preferences, while the gut microbiome has an impact on the progression of mosquito-borne diseases in humans. As researchers continue to explore the role of microbiomes in mosquito-borne diseases, we highlight some promising future directions for this field. Ultimately, a better understanding of the interplay between mosquitoes, their hosts, pathogens, and the microbiomes of mosquitoes and hosts may hold the key to preventing and controlling mosquito-borne diseases.
Collapse
Affiliation(s)
- Huicheng Shi
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Xi Yu
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Gong Cheng
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Department of Parasitology, School of Basic Medical Sciences, Central South University, Changsha 410013, China
| |
Collapse
|
24
|
Li S, Yu X, Fan B, Hao D. A gut-isolated Enterococcus strain (HcM7) triggers the expression of antimicrobial peptides that aid resistance to nucleopolyhedrovirus infection of Hyphantria cunea larvae. PEST MANAGEMENT SCIENCE 2023; 79:3529-3537. [PMID: 37198147 DOI: 10.1002/ps.7533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/06/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Commensal microorganisms are widely distributed in insect gut tissues and play important roles in host nutrition, metabolism, reproductive regulation, and especially immune functioning and tolerance to pathogens. Consequently, gut microbiota represent a promising resource for the development of microbial-based products for pest control and management. However, the interactions among host immunity, entomopathogen infections, and gut microbiota remain poorly understood for many arthropod pests. RESULTS We previously isolated an Enterococcus strain (HcM7) from Hyphantria cunea larvae guts that increased the survival rates of larvae challenged with nucleopolyhedrovirus (NPV). Here, we further investigated whether this Enterococcus strain stimulates a protective immune response against NPV proliferation. Infection bioassays demonstrated that re-introduction of the HcM7 strain to germfree larvae preactivated the expression of several antimicrobial peptides (particularly H. cunea gloverin 1, HcGlv1), resulting in the significant repression of virus replication in host guts and hemolymph, and consequently improved host survivorship after NPV infection. Furthermore, silencing of the HcGlv1 gene by RNA interference markedly enhanced the deleterious effects of NPV infection, revealing a role of this gut symbiont-induced gene in host defenses against pathogenic infections. CONCLUSION These results show that some gut microorganisms can stimulate host immune systems, thereby contributing to resistance to entomopathogens. Furthermore, HcM7, as a functional symbiotic bacteria of H. cunea larvae, may be a potential target for increasing the effectiveness of biocontrol agents against this devastating pest. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shouyin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Xiaohang Yu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Binqi Fan
- Forest Station of Shanghai, Shanghai, China
| | - Dejun Hao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
25
|
Dong S, Dimopoulos G. Aedes aegypti Argonaute 2 controls arbovirus infection and host mortality. Nat Commun 2023; 14:5773. [PMID: 37723154 PMCID: PMC10507101 DOI: 10.1038/s41467-023-41370-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023] Open
Abstract
Ae. aegypti mosquitoes transmit some of the most important human viral diseases that are responsible for a significant public health burden worldwide. The small interfering RNA (siRNA) pathway is considered the major antiviral defense system in insects. Here we show that siRNA pathway disruption by CRISPR/Cas9-based Ago2 knockout impaired the mosquitoes' ability to degrade arbovirus RNA leading to hyper-infection accompanied by cell lysis and tissue damage. Ago2 disruption impaired DNA repair mechanisms and the autophagy pathway by altering histone abundance. This compromised DNA repair and removal of damaged cellular organelles and dysfunctional aggregates promoted mosquito death. We also report that hyper-infection of Ago2 knockout mosquitoes stimulated a broad-spectrum antiviral immunity, including apoptosis, which may counteract infection. Taken together, our studies reveal novel roles for Ago2 in protecting mosquitoes from arbovirus infection and associated death.
Collapse
Affiliation(s)
- Shengzhang Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD, 21205-2179, USA.
| |
Collapse
|
26
|
Zheng R, Wang Q, Wu R, Paradkar PN, Hoffmann AA, Wang GH. Holobiont perspectives on tripartite interactions among microbiota, mosquitoes, and pathogens. THE ISME JOURNAL 2023; 17:1143-1152. [PMID: 37231184 PMCID: PMC10356850 DOI: 10.1038/s41396-023-01436-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/18/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
Mosquito-borne diseases like dengue and malaria cause a significant global health burden. Unfortunately, current insecticides and environmental control strategies aimed at the vectors of these diseases are only moderately effective in decreasing disease burden. Understanding and manipulating the interaction between the mosquito holobiont (i.e., mosquitoes and their resident microbiota) and the pathogens transmitted by these mosquitoes to humans and animals could help in developing new disease control strategies. Different microorganisms found in the mosquito's microbiota affect traits related to mosquito survival, development, and reproduction. Here, we review the physiological effects of essential microbes on their mosquito hosts; the interactions between the mosquito holobiont and mosquito-borne pathogen (MBP) infections, including microbiota-induced host immune activation and Wolbachia-mediated pathogen blocking (PB); and the effects of environmental factors and host regulation on the composition of the microbiota. Finally, we briefly overview future directions in holobiont studies, and how these may lead to new effective control strategies against mosquitoes and their transmitted diseases.
Collapse
Affiliation(s)
- Ronger Zheng
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiqi Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Runbiao Wu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Prasad N Paradkar
- CSIRO Health and Biosecurity, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, VIC, Australia
| | - Guan-Hong Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
27
|
Svobodová K, Maitre A, Obregón D, Wu-Chuang A, Thaduri S, Locke B, de Miranda JR, Mateos-Hernández L, Krejčí AB, Cabezas-Cruz A. Gut microbiota assembly of Gotland varroa-surviving honey bees excludes major viral pathogens. Microbiol Res 2023; 274:127418. [PMID: 37315341 DOI: 10.1016/j.micres.2023.127418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/16/2023]
Abstract
The spread of the parasite Varroa destructor and associated viruses has resulted in massive honey bee colony losses with considerable economic and ecological impact. The gut microbiota has a major role in shaping honey bees tolerance and resistance to parasite infestation and viral infection, but the contribution of viruses to the assembly of the host microbiota in the context of varroa resistance and susceptibility remains unclear. Here, we used a network approach including viral and bacterial nodes to characterize the impact of five viruses, Apis Rhabdovirus-1 (ARV-1), Black Queen Cell virus (BQCV), Lake Sinai virus (LSV), Sacbrood virus (SBV) and Deformed wing virus (DWV) on the gut microbiota assembly of varroa-susceptible and Gotland varroa-surviving honey bees. We found that microbiota assembly was different in varroa-surviving and varroa-susceptible honey bees with the network of the latter having a whole module not present in the network of the former. Four viruses, ARV-1, BQCV, LSV, and SBV, were tightly associated with bacterial nodes of the core microbiota of varroa-susceptible honey bees, while only two viruses BQCV and LSV, appeared correlated with bacterial nodes in varroa-surviving honey bees. In silico removal of viral nodes caused major re-arrangement of microbial networks with changes in nodes centrality and significant reduction of the networks' robustness in varroa-susceptible, but not in varroa-surviving honey bees. Comparison of predicted functional pathways in bacterial communities using PICRUSt2 showed the superpathway for heme b biosynthesis from uroporphyrinogen-III and a pathway for arginine, proline, and ornithine interconversion as significantly increased in varroa-surviving honey bees. Notably, heme and its reduction products biliverdin and bilirubin have been reported as antiviral agents. These findings show that viral pathogens are differentially nested in the bacterial communities of varroa-surviving and varroa-susceptible honey bees. These results suggest that Gotland honey bees are associated with minimally-assembled and reduced bacterial communities that exclude viral pathogens and are resilient to viral nodes removal, which, together with the production of antiviral compounds, may explain the resiliency of Gotland honey bees to viral infections. In contrast, the intertwined virus-bacterium interactions in varroa-susceptible networks suggest that the complex assembly of microbial communities in this honey bee strain favor viral infections, which may explain viral persistence in this honey bee strain. Further understanding of protective mechanisms mediated by the microbiota could help developing novel ways to control devastating viral infections affecting honey bees worldwide.
Collapse
Affiliation(s)
- Karolína Svobodová
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic.
| | - Apolline Maitre
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France; INRAE, UR 0045 Laboratoire de Recherches Sur Le Développement de L'Elevage (SELMET-LRDE), 20250 Corte, France; EA 7310, Laboratoire de Virologie, Université de Corse, Corte, France
| | - Dasiel Obregón
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Alejandra Wu-Chuang
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France
| | - Srinivas Thaduri
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden
| | - Barbara Locke
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07 Uppsala, Sweden
| | - Lourdes Mateos-Hernández
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France
| | - Alena Bruce Krejčí
- University of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic; Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Alejandro Cabezas-Cruz
- ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, Maisons-Alfort F-94700, France.
| |
Collapse
|
28
|
Chen TY, Bozic J, Mathias D, Smartt CT. Immune-related transcripts, microbiota and vector competence differ in dengue-2 virus-infected geographically distinct Aedes aegypti populations. Parasit Vectors 2023; 16:166. [PMID: 37208697 PMCID: PMC10199558 DOI: 10.1186/s13071-023-05784-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND Vector competence in Aedes aegypti is influenced by various factors. Crucial new control methods can be developed by recognizing which factors affect virus and mosquito interactions. METHODS In the present study we used three geographically distinct Ae. aegypti populations and compared their susceptibility to infection by dengue virus serotype 2 (DENV-2). To identify any differences among the three mosquito populations, we evaluated expression levels of immune-related genes and assessed the presence of microbiota that might contribute to the uniqueness in their vector competence. RESULTS Based on the results from the DENV-2 competence study, we categorized the three geographically distinct Ae. aegypti populations into a refractory population (Vilas do Atlântico), a susceptible population (Vero) and a susceptible but low transmission population (California). The immune-related transcripts were highly expressed in the California population but not in the refractory population. However, the Rel-1 gene was upregulated in the Vilas do Atlântico population following ingestion of a non-infectious blood meal, suggesting the gene's involvement in non-viral responses, such as response to microbiota. Screening of the bacteria, fungi and flaviviruses revealed differences between populations, and any of these could be one of the factors that interfere with the vector competence. CONCLUSIONS The results reveal potential factors that might impact the virus and mosquito interaction, as well as influence the Ae. aegypti refractory phenotype.
Collapse
Affiliation(s)
- Tse-Yu Chen
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, FL USA
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, Yale University, New Haven, CT USA
| | - Jovana Bozic
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, FL USA
- Department of Entomology, The Center for Infectious Disease Dynamics, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA USA
| | - Derrick Mathias
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, FL USA
| | - Chelsea T. Smartt
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, University of Florida, Vero Beach, FL USA
| |
Collapse
|
29
|
A comprehensive overview of the existing microbial symbionts in mosquito vectors: An important tool for impairing pathogen -transmission. Exp Parasitol 2022; 243:108407. [DOI: 10.1016/j.exppara.2022.108407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/07/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022]
|
30
|
Basic M, Dardevet D, Abuja PM, Bolsega S, Bornes S, Caesar R, Calabrese FM, Collino M, De Angelis M, Gérard P, Gueimonde M, Leulier F, Untersmayr E, Van Rymenant E, De Vos P, Savary-Auzeloux I. Approaches to discern if microbiome associations reflect causation in metabolic and immune disorders. Gut Microbes 2022; 14:2107386. [PMID: 35939623 PMCID: PMC9361767 DOI: 10.1080/19490976.2022.2107386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Our understanding of microorganisms residing within our gut and their roles in the host metabolism and immunity advanced greatly over the past 20 years. Currently, microbiome studies are shifting from association and correlation studies to studies demonstrating causality of identified microbiome signatures and identification of molecular mechanisms underlying these interactions. This transformation is crucial for the efficient translation into clinical application and development of targeted strategies to beneficially modulate the intestinal microbiota. As mechanistic studies are still quite challenging to perform in humans, the causal role of microbiota is frequently evaluated in animal models that need to be appropriately selected. Here, we provide a comprehensive overview on approaches that can be applied in addressing causality of host-microbe interactions in five major animal model organisms (Caenorhabditis elegans, Drosophila melanogaster, zebrafish, rodents, and pigs). We particularly focused on discussing methods available for studying the causality ranging from the usage of gut microbiota transfer, diverse models of metabolic and immune perturbations involving nutritional and chemical factors, gene modifications and surgically induced models, metabolite profiling up to culture-based approached. Furthermore, we addressed the impact of the gut morphology, physiology as well as diet on the microbiota composition in various models and resulting species specificities. Finally, we conclude this review with the discussion on models that can be applied to study the causal role of the gut microbiota in the context of metabolic syndrome and host immunity. We hope this review will facilitate important considerations for appropriate animal model selection.
Collapse
Affiliation(s)
- Marijana Basic
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Dominique Dardevet
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| | - Peter Michael Abuja
- Diagnostic & Research Centre of Molecular Biomedicine, Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Silvia Bolsega
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | - Stéphanie Bornes
- University Clermont Auvergne, Inrae, VetAgro Sup, Umrf, Aurillac, France
| | - Robert Caesar
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Massimo Collino
- Rita Levi-Montalcini Department of Neuroscience, University of Turin, Turin, Italy
| | - Maria De Angelis
- Department of Soil, Plant and Science, “Aldo Moro” University Bari, Bari, Italy
| | - Philippe Gérard
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, France
| | - Miguel Gueimonde
- Department of Microbiology and Biochemistry of Dairy Products, IPLA-CSIC;Villaviciosa, Spain
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, UMR5242 CNRS, Université Claude Bernard-Lyon1, Lyon, France
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Austria
| | - Evelien Van Rymenant
- Flanders Research Institute for Agriculture, Fisheries and Food (Ilvo), Merelbeke, Belgium
| | - Paul De Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University Medical Center Groningen; Groningen, Netherlands
| | - Isabelle Savary-Auzeloux
- Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France,CONTACT Isabelle Savary-Auzeloux Human Nutrition Unit, UMR1019, University Clermont Auvergne, INRAE, Clermont-Ferrand, France
| |
Collapse
|
31
|
Gómez M, Martinez D, Muñoz M, Ramírez JD. Aedes aegypti and Ae. albopictus microbiome/virome: new strategies for controlling arboviral transmission? Parasit Vectors 2022; 15:287. [PMID: 35945559 PMCID: PMC9364528 DOI: 10.1186/s13071-022-05401-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023] Open
Abstract
Aedes aegypti and Aedes albopictus are the main vectors of highly pathogenic viruses for humans, such as dengue (DENV), chikungunya (CHIKV), and Zika (ZIKV), which cause febrile, hemorrhagic, and neurological diseases and remain a major threat to global public health. The high ecological plasticity, opportunistic feeding patterns, and versatility in the use of urban and natural breeding sites of these vectors have favored their dispersal and adaptation in tropical, subtropical, and even temperate zones. Due to the lack of available treatments and vaccines, mosquito population control is the most effective way to prevent arboviral diseases. Resident microorganisms play a crucial role in host fitness by preventing or enhancing its vectorial ability to transmit viral pathogens. High-throughput sequencing and metagenomic analyses have advanced our understanding of the composition and functionality of the microbiota of Aedes spp. Interestingly, shotgun metagenomics studies have established that mosquito vectors harbor a highly conserved virome composed of insect-specific viruses (ISV). Although ISVs are not infectious to vertebrates, they can alter different phases of the arboviral cycle, interfering with transmission to the human host. Therefore, this review focuses on the description of Ae. aegypti and Ae. albopictus as vectors susceptible to infection by viral pathogens, highlighting the role of the microbiota-virome in vectorial competence and its potential in control strategies for new emerging and re-emerging arboviruses.
Collapse
Affiliation(s)
- Marcela Gómez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia.,Grupo de Investigación en Ciencias Básicas (NÚCLEO) Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - David Martinez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia. .,Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
32
|
Caragata EP, Short SM. Vector microbiota and immunity: modulating arthropod susceptibility to vertebrate pathogens. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100875. [PMID: 35065286 DOI: 10.1016/j.cois.2022.100875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/03/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Arthropods, including mosquitoes, sand flies, tsetse flies, and ticks are vectors of many bacterial, parasitic, and viral pathogens that cause serious disease in humans and animals. Their microbiota, that is, all microorganisms that dwell within their tissues, can impact vector immunity and susceptibility to pathogen infection. Historically, host-pathogen-microbiota interactions have not been well described, with little known about mechanism. In this review, we highlight recent advances in understanding how individual microorganisms and microbial communities interact with vectors and human pathogens, the mechanisms they utilize to achieve these effects, and the potential for exploiting these interactions to control pathogen transmission. These studies fill important knowledge gaps and further our understanding of the roles that the vector microbiota plays in pathogen transmission.
Collapse
Affiliation(s)
- Eric P Caragata
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL 32962, USA
| | - Sarah M Short
- Department of Entomology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
33
|
Abduljalil JM, Abd Al Galil FM. Molecular pathogenesis of dengue virus infection in Aedes mosquitoes. JOURNAL OF INSECT PHYSIOLOGY 2022; 138:104367. [PMID: 35131236 DOI: 10.1016/j.jinsphys.2022.104367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 02/01/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Aedes mosquitoes are implicated in the transmission of several viruses, including Dengue virus (DENV) to millions of people worldwide. The global expansion of Aedes mosquitos'habitats creates a desperate need for control mechanisms with minimum negative effects. Deciphering the molecular interactions between DENV and its vector is a promising field to develop such efficient control strategies. As soon as the viremic blood is ingested by the mosquito, DENV is encountered by different innate immunity responses. During the past three decades, different pathways of innate immunity have been identified in Aedes spp. Recognition of viral molecular patterns, including viral RNA, and vector attempts to resist DENV infection are the most important defense mechanisms. Crosstalk between innate immune pathways and redundancy of anti-DENV responses become more evident as research progresses. The viral evasion and repression of vector immune response are increasingly being discovered. Such viral strategies are potential targets to be disrupted in order to limit DENV infection and spread. Vector-related non-immune factors such as gut microbiota can also be tapped for efficient control of DENV infection in Aedes mosquito's populations without affecting their fitness. Current trends in controlling DENV in its vector are exploring the potentials of using genetically engineered mosquitoes via RNA-based systems to degrade DENV genome once released into the midgut cells cytoplasm at the early phase of the infection.
Collapse
Affiliation(s)
- Jameel M Abduljalil
- Department of Biological Sciences, Faculty of Applied Sciences, Thamar University, B.O. Box: 87246, Yemen.
| | - Fahd M Abd Al Galil
- Department of Biological Sciences, Faculty of Applied Sciences, Thamar University, B.O. Box: 87246, Yemen; Department of Biology, Faculty of Sciences, University of Bisha, B.O. Box: 551, Bisha, Saudi Arabia.
| |
Collapse
|
34
|
Zouache K, Martin E, Rahola N, Gangue MF, Minard G, Dubost A, Van VT, Dickson L, Ayala D, Lambrechts L, Moro CV. Larval habitat determines the bacterial and fungal microbiota of the mosquito vector Aedes aegypti. FEMS Microbiol Ecol 2022; 98:6526867. [PMID: 35147188 DOI: 10.1093/femsec/fiac016] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/12/2022] Open
Abstract
Mosquito larvae are naturally exposed to microbial communities present in a variety of larval development sites. Several earlier studies have highlighted that the larval habitat influences the composition of the larval bacterial microbiota. However, little information is available on their fungal microbiota, i.e. the mycobiota. In this study, we provide the first simultaneous characterization of the bacterial and fungal microbiota in field-collected Aedes aegypti larvae and their respective aquatic habitats. We evaluated whether the microbial communities associated with the breeding site may affect the composition of both the bacterial and fungal communities in Ae. aegypti larvae. Our results show a higher similarity in microbial community structure for both bacteria and fungi between larvae and the water in which larvae develop than between larvae from different breeding sites. This supports the hypothesis that larval habitat is a major factor driving microbial composition in mosquito larvae. Since the microbiota plays an important role in mosquito biology, unravelling the network of interactions that operate between bacteria and fungi is essential to better understand the functioning of the mosquito holobiont.
Collapse
Affiliation(s)
- Karima Zouache
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Edwige Martin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Nil Rahola
- CIRMF, Franceville, Gabon.,UMR MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | | | - Guillaume Minard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Audrey Dubost
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Van Tran Van
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| | - Laura Dickson
- Institut Pasteur, Université de Paris, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Diego Ayala
- CIRMF, Franceville, Gabon.,UMR MIVEGEC, Univ. Montpellier, CNRS, IRD, Montpellier, France
| | - Louis Lambrechts
- Institut Pasteur, Université de Paris, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Claire Valiente Moro
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622 Villeurbanne, France
| |
Collapse
|
35
|
Talaromyces-Insect Relationships. Microorganisms 2021; 10:microorganisms10010045. [PMID: 35056494 PMCID: PMC8780841 DOI: 10.3390/microorganisms10010045] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022] Open
Abstract
Facing the urgent need to reduce the input of agrochemicals, in recent years, the ecological relationships between plants and their associated microorganisms have been increasingly considered as an essential tool for improving crop production. New findings and data have been accumulated showing that the application of fungi can go beyond the specific role that has been traditionally assigned to the species, employed in integrated pest management as entomopathogens or mycoparasites, and that strains combining both aptitudes can be identified and possibly used as multipurpose biocontrol agents. Mainly considered for their antagonistic relationships with plant pathogenic fungi, species in the genus Talaromyces have been more and more widely reported as insect associates in investigations carried out in various agricultural and non-agricultural contexts. Out of a total of over 170 species currently accepted in this genus, so far, 27 have been found to have an association with insects from 9 orders, with an evident increasing trend. The nature of their mutualistic and antagonistic relationships with insects, and their ability to synthesize bioactive compounds possibly involved in the expression of the latter kind of interactions, are analyzed in this paper with reference to the ecological impact and applicative perspectives in crop protection.
Collapse
|
36
|
Microbial Composition in Larval Water Enhances Aedes aegypti Development but Reduces Transmissibility of Zika Virus. mSphere 2021; 6:e0068721. [PMID: 34878293 PMCID: PMC8653847 DOI: 10.1128/msphere.00687-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arthropod-borne viruses comprise a significant global disease burden. Surveillance and mitigation of arboviruses like Zika virus (ZIKV) require accurate estimates of transmissibility by vector mosquitoes. Although Aedes species mosquitoes are established as competent ZIKV vectors, differences in experimental protocols across studies prevent direct comparisons of relative transmissibility. An understudied factor complicating these comparisons is differential environmental microbiota exposures, where most vector competence studies use mosquitoes reared in laboratory tap water, which does not represent the microbial complexity of environmental water where wild larvae develop. We simulated natural larval development by rearing Californian Aedes aegypti larvae with microbes obtained from cemetery headstone water compared to conventional tap water. A. aegypti larvae reared in environmental cemetery water pupated 3 days faster and at higher rates. Mosquitoes reared in environmental water were less competent vectors of ZIKV than laboratory water-reared A. aegypti, as evidenced by significantly reduced infection and transmission rates. Microbiome comparisons of laboratory water- and environment water-reared mosquitoes and their rearing water showed significantly higher bacterial diversity in environment water. Despite this pattern, corresponding differences in bacterial diversity were not consistently observed between the respective adult mosquitoes. We also observed that the microbial compositions of adult mosquitoes differed more by whether they ingested a bloodmeal than by larval water type. Together, these results highlight the role of transient microbes in the larval environment in modulating A. aegypti vector competence for ZIKV. Laboratory vector competence likely overestimates the true transmissibility of arboviruses like ZIKV when conventional laboratory water is used for rearing. IMPORTANCE We observed that A. aegypti mosquitoes reared in water from cemetery headstones instead of the laboratory tap exhibited a reduced capacity to become infected with and transmit Zika virus. Water from the environment contained more bacterial species than tap water, but these bacteria were not consistently detected in adult mosquitoes. Our results suggest that rearing mosquito larvae in water collected from local environments as opposed to laboratory tap water, as is conventional, could provide a more realistic assessment of ZIKV vector competence since it better recapitulates the natural environment in which larvae develop. Given that laboratory vector competence is used to define the species to target for control, the use of environmental water to rear larvae could better approximate the microbial exposures of wild mosquitoes, lessening the potential for overestimating ZIKV transmission risk. These studies raise the question of whether rearing larvae in natural water sources also reduces vector competence for other mosquito-borne viruses.
Collapse
|
37
|
Islam MT, Quispe C, Herrera-Bravo J, Sarkar C, Sharma R, Garg N, Fredes LI, Martorell M, Alshehri MM, Sharifi-Rad J, Daştan SD, Calina D, Alsafi R, Alghamdi S, Batiha GES, Cruz-Martins N. Production, Transmission, Pathogenesis, and Control of Dengue Virus: A Literature-Based Undivided Perspective. BIOMED RESEARCH INTERNATIONAL 2021; 2021:4224816. [PMID: 34957305 PMCID: PMC8694986 DOI: 10.1155/2021/4224816] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/11/2021] [Accepted: 11/26/2021] [Indexed: 12/18/2022]
Abstract
Dengue remains one of the most serious and widespread mosquito-borne viral infections in human beings, with serious health problems or even death. About 50 to 100 million people are newly infected annually, with almost 2.5 billion people living at risk and resulting in 20,000 deaths. Dengue virus infection is especially transmitted through bites of Aedes mosquitos, hugely spread in tropical and subtropical environments, mostly found in urban and semiurban areas. Unfortunately, there is no particular therapeutic approach, but prevention, adequate consciousness, detection at earlier stage of viral infection, and appropriate medical care can lower the fatality rates. This review offers a comprehensive view of production, transmission, pathogenesis, and control measures of the dengue virus and its vectors.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (Dhaka)8100, Bangladesh
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique 1110939, Chile
| | - Jesús Herrera-Bravo
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Chile
- Center of Molecular Biology and Pharmacogenetics, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile
| | - Chandan Sarkar
- Department of Pharmacy, Life Science Faculty, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj (Dhaka)8100, Bangladesh
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | - Neha Garg
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi-221005, Uttar Pradesh, India
| | | | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, 4070386 Concepción, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Concepción 4070386, Chile
| | - Mohammed M. Alshehri
- Pharmaceutical Care Department, Ministry of National Guard-Health Affairs, Riyadh, Saudi Arabia
| | | | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140 Sivas, Turkey
- Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Radi Alsafi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Natália Cruz-Martins
- Faculty of Medicine, University of Porto, Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
- Institute of Research and Advanced Training in Health Sciences and Technologies (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra PRD, Portugal
| |
Collapse
|
38
|
A human-blood-derived microRNA facilitates flavivirus infection in fed mosquitoes. Cell Rep 2021; 37:110091. [PMID: 34910910 DOI: 10.1016/j.celrep.2021.110091] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 09/28/2021] [Accepted: 11/11/2021] [Indexed: 01/04/2023] Open
Abstract
Hematophagous arthropods, such as mosquitoes, naturally carry and transmit hundreds of arboviruses to humans. Blood meal is a predominant physical interface that shapes cross-species communications among humans, bloodsuckers, and arboviruses. Here, we identify a human-blood-derived microRNA, hsa-miR-150-5p, that interferes with a mosquito antiviral system to facilitate flavivirus infection and transmission. hsa-miR-150-5p is acquired with a blood meal into the mosquito hemocoel and persists for a prolonged time there. The agomir of hsa-miR-150-5p enhances, whereas the antagomir represses flaviviral infection in mosquitoes and transmission from mice to mosquitoes. Mechanistic studies indicate that hsa-miR-150-5p hijacks the mosquito Argonaute-1-mediated RNA interference system to suppress the expression of some chymotrypsins with potent virucidal activity. Mosquito chymotrypsins are essential for resisting systemic flavivirus infection in hemocoel tissues. Chymotrypsin homologs potentially targeted by miR-150-5p are also found in other hematophagous arthropods, demonstrating a conserved miR-150-5p-mediated cross-species RNAi mechanism that might determine flaviviral transmissibility in nature.
Collapse
|
39
|
de Oliveira AS, Vasconcellos AF, Rodrigues BMP, da Silva LA, Resende RO, Ribeiro BM. Chikungunya virus produced by a persistently infected mosquito cell line comprises a shorter genome and is non-infectious to mammalian cells. J Gen Virol 2021; 102. [PMID: 34878970 DOI: 10.1099/jgv.0.001700] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although RNA viruses have high mutation rates, host cells and organisms work as selective environments, maintaining the viability of virus populations by eliminating deleterious genotypes. In serial passages of RNA viruses in a single cell line, most of these selective bottlenecks are absent, with no virus circulation and replication in different tissues or host alternation. In this work, Aedes aegypti Aag-2 cells were accidentally infected with Chikungunya virus (CHIKV) and Mayaro virus (MAYV). After numerous passages to achieve infection persistency, the infectivity of these viruses was evaluated in Ae. albopictus C6/36 cells, African green monkey Vero cells and primary-cultured human fibroblasts. While these CHIKV and MAYV isolates were still infectious to mosquito cells, they lost their ability to infect mammalian cells. After genome sequencing, it was observed that CHIKV accumulated many nonsynonymous mutations and a significant deletion in the coding sequence of the hypervariable domain in the nsP3 gene. Since MAYV showed very low titres, it was not sequenced successfully. Persistently infected Aag-2 cells also accumulated high loads of short and recombinant CHIKV RNAs, which seemed to have been originated from virus-derived DNAs. In conclusion, the genome of this CHIKV isolate could guide mutagenesis strategies for the production of attenuated or non-infectious (to mammals) CHIKV vaccine candidates. Our results also reinforce that a paradox is expected during passages of cells persistently infected by RNA viruses: more loosening for the development of more diverse virus genotypes and more pressure for virus specialization to this constant cellular environment.
Collapse
Affiliation(s)
- Athos S de Oliveira
- Laboratory of Virology, Department of Cell Biology, University of Brasília, Brasília, Brazil
| | | | - Bruno M P Rodrigues
- Laboratory of Virology, Department of Cell Biology, University of Brasília, Brasília, Brazil
| | - Leonardo A da Silva
- Laboratory of Virology, Department of Cell Biology, University of Brasília, Brasília, Brazil
| | - Renato O Resende
- Laboratory of Virology, Department of Cell Biology, University of Brasília, Brasília, Brazil
| | - Bergmann M Ribeiro
- Laboratory of Virology, Department of Cell Biology, University of Brasília, Brasília, Brazil
| |
Collapse
|
40
|
Onyango MG, Lange R, Bialosuknia S, Payne A, Mathias N, Kuo L, Vigneron A, Nag D, Kramer LD, Ciota AT. Zika virus and temperature modulate Elizabethkingia anophelis in Aedes albopictus. Parasit Vectors 2021; 14:573. [PMID: 34772442 PMCID: PMC8588690 DOI: 10.1186/s13071-021-05069-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/15/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Vector-borne pathogens must survive and replicate in the hostile environment of an insect's midgut before successful dissemination. Midgut microbiota interfere with pathogen infection by activating the basal immunity of the mosquito and by synthesizing pathogen-inhibitory metabolites. METHODS The goal of this study was to assess the influence of Zika virus (ZIKV) infection and increased temperature on Aedes albopictus midgut microbiota. Aedes albopictus were reared at diurnal temperatures of day 28 °C/night 24 °C (L) or day 30 °C/night 26 °C (M). The mosquitoes were given infectious blood meals with 2.0 × 108 PFU/ml ZIKV, and 16S rRNA sequencing was performed on midguts at 7 days post-infectious blood meal exposure. RESULTS Our findings demonstrate that Elizabethkingia anophelis albopictus was associated with Ae. albopictus midguts exposed to ZIKV infectious blood meal. We observed a negative correlation between ZIKV and E. anophelis albopictus in the midguts of Ae. albopictus. Supplemental feeding of Ae. albopictus with E. anophelis aegypti and ZIKV resulted in reduced ZIKV infection rates. Reduced viral loads were detected in Vero cells that were sequentially infected with E. anophelis aegypti and ZIKV, dengue virus (DENV), or chikungunya virus (CHIKV). CONCLUSIONS Our findings demonstrate the influence of ZIKV infection and temperature on the Ae. albopictus microbiome along with a negative correlation between ZIKV and E. anophelis albopictus. Our results have important implications for controlling vector-borne pathogens.
Collapse
Affiliation(s)
- Maria G. Onyango
- Department of Biological Sciences, College of Arts and Sciences, Texas Tech University, 2901 Main St, Lubbock, TX 79409 USA
| | - Rachel Lange
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159 USA
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, 1400 Washington Avenue, Rensselaer, NY 12144 USA
| | - Sean Bialosuknia
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159 USA
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, 1400 Washington Avenue, Rensselaer, NY 12144 USA
| | - Anne Payne
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159 USA
| | - Nicholas Mathias
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159 USA
| | - Lili Kuo
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159 USA
| | - Aurelien Vigneron
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
| | - Dilip Nag
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159 USA
| | - Laura D. Kramer
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159 USA
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, 1400 Washington Avenue, Rensselaer, NY 12144 USA
| | - Alexander T. Ciota
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, 5668 State Farm Road, Slingerlands, NY 12159 USA
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, 1400 Washington Avenue, Rensselaer, NY 12144 USA
| |
Collapse
|
41
|
Steven B, Hyde J, LaReau JC, Brackney DE. The Axenic and Gnotobiotic Mosquito: Emerging Models for Microbiome Host Interactions. Front Microbiol 2021; 12:714222. [PMID: 34322111 PMCID: PMC8312643 DOI: 10.3389/fmicb.2021.714222] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/15/2021] [Indexed: 01/14/2023] Open
Abstract
The increasing availability of modern research tools has enabled a revolution in studies of non-model organisms. Yet, one aspect that remains difficult or impossible to control in many model and most non-model organisms is the presence and composition of the host-associated microbiota or the microbiome. In this review, we explore the development of axenic (microbe-free) mosquito models and what these systems reveal about the role of the microbiome in mosquito biology. Additionally, the axenic host is a blank template on which a microbiome of known composition can be introduced, also known as a gnotobiotic organism. Finally, we identify a "most wanted" list of common mosquito microbiome members that show the greatest potential to influence host phenotypes. We propose that these are high-value targets to be employed in future gnotobiotic studies. The use of axenic and gnotobiotic organisms will transition the microbiome into another experimental variable that can be manipulated and controlled. Through these efforts, the mosquito will be a true model for examining host microbiome interactions.
Collapse
Affiliation(s)
- Blaire Steven
- Department of Environmental Sciences, Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Josephine Hyde
- Department of Environmental Sciences, Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Jacquelyn C. LaReau
- Department of Environmental Sciences, Connecticut Agricultural Experiment Station, New Haven, CT, United States
| | - Doug E. Brackney
- Department of Environmental Sciences, Connecticut Agricultural Experiment Station, New Haven, CT, United States
- Center for Vector Biology and Zoonotic Diseases, Connecticut Agricultural Experiment Station, New Haven, CT, United States
| |
Collapse
|
42
|
Rosendo Machado S, van der Most T, Miesen P. Genetic determinants of antiviral immunity in dipteran insects - Compiling the experimental evidence. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104010. [PMID: 33476667 DOI: 10.1016/j.dci.2021.104010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
The genetic basis of antiviral immunity in dipteran insects is extensively studied in Drosophila melanogaster and advanced technologies for genetic manipulation allow a better characterization of immune responses also in non-model insect species. Especially, immunity in vector mosquitoes is recently in the spotlight, due to the medical impact that these insects have by transmitting viruses and other pathogens. Here, we review the current state of experimental evidence that supports antiviral functions for immune genes acting in different cellular pathways. We discuss the well-characterized RNA interference mechanism along with the less well-defined JAK-STAT, Toll, and IMD signaling pathways. Furthermore, we highlight the initial evidence for antiviral activity observed for the autophagy pathway, transcriptional pausing, as well as piRNA production from endogenous viral elements. We focus our review on studies from Drosophila and mosquito species from the lineages Aedes, Culex, and Anopheles, which contain major vector species responsible for virus transmission.
Collapse
Affiliation(s)
- Samara Rosendo Machado
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Tom van der Most
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical Center, P.O. Box 9101, 6500 HB, Nijmegen, the Netherlands.
| |
Collapse
|
43
|
Cansado-Utrilla C, Zhao SY, McCall PJ, Coon KL, Hughes GL. The microbiome and mosquito vectorial capacity: rich potential for discovery and translation. MICROBIOME 2021; 9:111. [PMID: 34006334 PMCID: PMC8132434 DOI: 10.1186/s40168-021-01073-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/07/2021] [Indexed: 05/09/2023]
Abstract
Microbiome research has gained considerable interest due to the emerging evidence of its impact on human and animal health. As in other animals, the gut-associated microbiota of mosquitoes affect host fitness and other phenotypes. It is now well established that microbes can alter pathogen transmission in mosquitoes, either positively or negatively, and avenues are being explored to exploit microbes for vector control. However, less attention has been paid to how microbiota affect phenotypes that impact vectorial capacity. Several mosquito and pathogen components, such as vector density, biting rate, survival, vector competence, and the pathogen extrinsic incubation period all influence pathogen transmission. Recent studies also indicate that mosquito gut-associated microbes can impact each of these components, and therefore ultimately modulate vectorial capacity. Promisingly, this expands the options available to exploit microbes for vector control by also targeting parameters that affect vectorial capacity. However, there are still many knowledge gaps regarding mosquito-microbe interactions that need to be addressed in order to exploit them efficiently. Here, we review current evidence of impacts of the microbiome on aspects of vectorial capacity, and we highlight likely opportunities for novel vector control strategies and areas where further studies are required. Video abstract.
Collapse
Affiliation(s)
- Cintia Cansado-Utrilla
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Serena Y Zhao
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Philip J McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Kerri L Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
44
|
Abstract
In nature, insects face a constant threat of infection by numerous exogeneous viruses, and their intestinal tracts are the predominant ports of entry. Insects can acquire these viruses orally during either blood feeding by hematophagous insects or sap sucking and foliage feeding by insect herbivores. However, the insect intestinal tract forms several physical and immunological barriers to defend against viral invasion, including cell intrinsic antiviral immunity, the peritrophic matrix and the mucin layer, and local symbiotic microorganisms. Whether an infection can be successfully established in the intestinal tract depends on the complex interactions between viruses and those barriers. In this review, we summarize recent progress on virus-intestinal tract interplay in insects, in which various underlying mechanisms derived from nutritional status, dynamics of symbiotic microorganisms, and virus-encoded components play intricate roles in the regulation of virus invasion in the intestinal tract, either directly or indirectly. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Enhao Ma
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
| | - Yibin Zhu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; .,Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518000, China.,Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Ziwen Liu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
| | - Taiyun Wei
- Vector-Borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; .,Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518000, China.,Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| |
Collapse
|
45
|
Wu X, Xia Y, He F, Zhu C, Ren W. Intestinal mycobiota in health and diseases: from a disrupted equilibrium to clinical opportunities. MICROBIOME 2021; 9:60. [PMID: 33715629 PMCID: PMC7958491 DOI: 10.1186/s40168-021-01024-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/04/2021] [Indexed: 05/08/2023]
Abstract
Bacteria, viruses, protozoa, and fungi establish a complex ecosystem in the gut. Like other microbiota, gut mycobiota plays an indispensable role in modulating intestinal physiology. Notably, the most striking characteristics of intestinal fungi are their extraintestinal functions. Here, we provide a comprehensive review of the importance of gut fungi in the regulation of intestinal, pulmonary, hepatic, renal, pancreatic, and brain functions, and we present possible opportunities for the application of gut mycobiota to alleviate/treat human diseases. Video Abstract.
Collapse
Affiliation(s)
- Xiaoyan Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Yaoyao Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| | - Fang He
- College of Animal Science and Technology, Southwest University, Chongqing, 400716 China
| | - Congrui Zhu
- College of Veterinary Medicine, Kansas State University, Manhattan, KS USA
| | - Wenkai Ren
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
46
|
Talyuli OAC, Bottino-Rojas V, Polycarpo CR, Oliveira PL, Paiva-Silva GO. Non-immune Traits Triggered by Blood Intake Impact Vectorial Competence. Front Physiol 2021; 12:638033. [PMID: 33737885 PMCID: PMC7960658 DOI: 10.3389/fphys.2021.638033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Blood-feeding arthropods are considered an enormous public health threat. They are vectors of a plethora of infectious agents that cause potentially fatal diseases like Malaria, Dengue fever, Leishmaniasis, and Lyme disease. These vectors shine due to their own physiological idiosyncrasies, but one biological aspect brings them all together: the requirement of blood intake for development and reproduction. It is through blood-feeding that they acquire pathogens and during blood digestion that they summon a collection of multisystemic events critical for vector competence. The literature is focused on how classical immune pathways (Toll, IMD, and JAK/Stat) are elicited throughout the course of vector infection. Still, they are not the sole determinants of host permissiveness. The dramatic changes that are the hallmark of the insect physiology after a blood meal intake are the landscape where a successful infection takes place. Dominant processes that occur in response to a blood meal are not canonical immunological traits yet are critical in establishing vector competence. These include hormonal circuitries and reproductive physiology, midgut permeability barriers, midgut homeostasis, energy metabolism, and proteolytic activity. On the other hand, the parasites themselves have a role in the outcome of these blood triggered physiological events, consistently using them in their favor. Here, to enlighten the knowledge on vector-pathogen interaction beyond the immune pathways, we will explore different aspects of the vector physiology, discussing how they give support to these long-dated host-parasite relationships.
Collapse
Affiliation(s)
- Octavio A C Talyuli
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Bottino-Rojas
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carla R Polycarpo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| | - Gabriela O Paiva-Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, Brazil
| |
Collapse
|
47
|
Nattoh G, Bargul JL, Magoma G, Mbaisi L, Butungi H, Mararo E, Teal E, Herren JK. The fungus Leptosphaerulina persists in Anopheles gambiae and induces melanization. PLoS One 2021; 16:e0246452. [PMID: 33617536 PMCID: PMC7899377 DOI: 10.1371/journal.pone.0246452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 01/20/2021] [Indexed: 12/13/2022] Open
Abstract
Anopheles mosquitoes are colonized by diverse microorganisms that may impact on host biology and vectorial capacity. Eukaryotic symbionts such as fungi have been isolated from Anopheles, but whether they are stably associated with mosquitoes and transmitted transstadially across mosquito life stages or to subsequent generations remains largely unexplored. Here, we show that a Leptosphaerulina sp. fungus isolated from the midgut of An. gambiae can be stably associated with An. gambiae host and that it imposes low fitness cost when re-introduced through co-feeding. This fungus is transstadially transmitted across An. gambiae developmental stages and to their progeny. It is present in field-caught larvae and adult mosquitoes at moderate levels across geographical regions. We observed that Leptosphaerulina sp. induces a distinctive melanotic phenotype across the developmental stages of mosquito. As a eukaryotic symbiont that is stably associated with An. gambiae Leptosphaerulina sp. can be explored for paratransgenesis.
Collapse
Affiliation(s)
- Godfrey Nattoh
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Pan African University Institute for Basic Sciences Technology and Innovation, Nairobi, Kenya
- * E-mail:
| | - Joel L. Bargul
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Science and Technology, Nairobi, Kenya
| | - Gabriel Magoma
- Pan African University Institute for Basic Sciences Technology and Innovation, Nairobi, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Science and Technology, Nairobi, Kenya
| | - Lilian Mbaisi
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Hellen Butungi
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Wits Research Institute for Malaria, University of the Witwatersrand, Johannesburg, South Africa
| | - Enock Mararo
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Evan Teal
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | | |
Collapse
|
48
|
Schmidt K, Engel P. Mechanisms underlying gut microbiota-host interactions in insects. J Exp Biol 2021; 224:224/2/jeb207696. [PMID: 33509844 DOI: 10.1242/jeb.207696] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insects are the most diverse group of animals and colonize almost all environments on our planet. This diversity is reflected in the structure and function of the microbial communities inhabiting the insect digestive system. As in mammals, the gut microbiota of insects can have important symbiotic functions, complementing host nutrition, facilitating dietary breakdown or providing protection against pathogens. There is an increasing number of insect models that are experimentally tractable, facilitating mechanistic studies of gut microbiota-host interactions. In this Review, we will summarize recent findings that have advanced our understanding of the molecular mechanisms underlying the symbiosis between insects and their gut microbiota. We will open the article with a general introduction to the insect gut microbiota and then turn towards the discussion of particular mechanisms and molecular processes governing the colonization of the insect gut environment as well as the diverse beneficial roles mediated by the gut microbiota. The Review highlights that, although the gut microbiota of insects is an active field of research with implications for fundamental and applied science, we are still in an early stage of understanding molecular mechanisms. However, the expanding capability to culture microbiomes and to manipulate microbe-host interactions in insects promises new molecular insights from diverse symbioses.
Collapse
Affiliation(s)
- Konstantin Schmidt
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| | - Philipp Engel
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
49
|
Harsh S, Eleftherianos I. Flavivirus Infection and Regulation of Host Immune and Tissue Homeostasis in Insects. Front Immunol 2020; 11:618801. [PMID: 33329613 PMCID: PMC7733989 DOI: 10.3389/fimmu.2020.618801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 11/16/2020] [Indexed: 11/28/2022] Open
Affiliation(s)
- Sneh Harsh
- Infection and Innate Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC, United States.,Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|
50
|
Frankel-Bricker J. Shifts in the microbiota associated with male mosquitoes (Aedes aegypti) exposed to an obligate gut fungal symbiont (Zancudomyces culisetae). Sci Rep 2020; 10:12886. [PMID: 32733002 PMCID: PMC7393158 DOI: 10.1038/s41598-020-69828-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/20/2020] [Indexed: 11/16/2022] Open
Abstract
Research characterizing arthropod-associated microbiota has revealed that microbial dynamics can have an important impact on host phenotypic traits. The influence of fungi on these interactions are emerging as targets for research, especially in organisms associated with global human health. A recent study demonstrated colonization of a widespread gut fungus (Zancudomyces culisetae) in a larval mosquito (Aedes aegypti) digestive tract affected microbiomes in larvae and newly emerged adult females (Frankel-Bricker et al. Appl Environ Microbiol, 2020. 10.1128/AEM.02334-19) but did not investigate these processes in males. The objective of the study presented here was to assess fungal influences on adult male mosquito microbiomes to enable a more complete assessment of fungal–bacterial–host interactions in the A. aegypti–Z. culisetae system. Sequencing of 16S rRNA gene amplicons from microbiomes harbored in adult males directly after emerging from pupae revealed larval fungal exposure significantly decreased overall microbial community diversity, altered microbiome composition and structure, and decreased within-group microbiome variation across individuals. Further, bacteria in the family Burkholderiaceae were present in high abundance in fungal-exposed males, likely contributing to the disparate microbiota between treatment groups. Comparisons between male and the female microbiomes analyzed in Frankel-Bricker et al. (2020), showed distinct shifts in bacterial communities incurred by larval exposure to fungi, potentially revealing sex-specific fungal–bacterial–host dynamics in A. aegypti. These findings highlight the complex role a gut fungus can play in influencing the microbial communities harbored in an important insect and emphasize the significance of accounting for an organism’s sex when studying fungal–bacterial–host dynamics.
Collapse
|