1
|
Hetland MAK, Winkler MA, Kaspersen HP, Håkonsholm F, Bakksjø RJ, Bernhoff E, Delgado-Blas JF, Brisse S, Correia A, Fostervold A, Lam MMC, Lunestad BT, Marathe NP, Raffelsberger N, Samuelsen Ø, Sunde M, Sundsfjord A, Urdahl AM, Wick RR, Löhr IH, Holt KE. A genome-wide One Health study of Klebsiella pneumoniae in Norway reveals overlapping populations but few recent transmission events across reservoirs. Genome Med 2025; 17:42. [PMID: 40296028 PMCID: PMC12039103 DOI: 10.1186/s13073-025-01466-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 04/01/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Members of the Klebsiella pneumoniae species complex (KpSC) are opportunistic pathogens that cause severe and difficult-to-treat infections. KpSC are common in non-human niches, but the clinical relevance of these populations is disputed. METHODS In this study, we analysed 3255 whole-genome sequenced isolates from human, animal and marine sources collected in Norway between 2001 and 2020. We used population genomics in a One Health context to assess the diversity of strains, genes and other clinically relevant genetic features within and between sources. We further explored niche-enriched traits using genome-wide association studies and investigated evidence of spillover and connectivity across the KpSC populations from the three niches. RESULTS We found that the KpSC populations in different niches were distinct but overlapping. Overall, there was high genetic diversity both between and within sources, with nearly half (49%) of the genes in the accessory genome overlapping the ecological niches. Further, several sublineages (SLs) including SL17, SL35, SL37, SL45, SL107 and SL3010 were common across sources. There were few niche-enriched traits, except for aerobactin-encoding plasmids and the bacteriocin colicin a, which were associated with KpSC from animal sources. Human infection isolates showed the greatest connectivity with each other, followed by isolates from human carriage, pigs, and bivalves. Nearly 5% of human infection isolates had close relatives (≤22 substitutions) amongst animal and marine isolates, despite temporally and geographically distant sampling of these sources. There were limited but notable recent spillover events, including the movement of plasmids encoding the virulence locus iuc3 between pigs and humans. CONCLUSIONS Our large One Health genomic study highlights that human-to-human transmission of KpSC is more common than transmission between ecological niches. Still, spillover of clinically relevant strains and genetic features between human and non-human sources does occur and should not be overlooked. Infection prevention measures are essential to limit transmission within human clinical settings and reduce infections. However, preventing transmission that leads to colonisation, e.g. from direct contact with animals or via the food chain, could also play an important role in reducing the KpSC disease burden.
Collapse
Affiliation(s)
- Marit A K Hetland
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway.
- Department of Biological Sciences, Faculty of Science and Technology, University of Bergen, Bergen, Norway.
| | - Mia A Winkler
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Håkon P Kaspersen
- Research Section Food Safety and Animal Health, Department of Animal Health and Food Safety, Norwegian Veterinary Institute, Ås, Norway
| | - Fredrik Håkonsholm
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
- Institute of Marine Research, Bergen, Norway
| | - Ragna-Johanne Bakksjø
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway
| | - Eva Bernhoff
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway
| | - Jose F Delgado-Blas
- Biodiversity and Epidemiology of Bacterial Pathogens Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Sylvain Brisse
- Biodiversity and Epidemiology of Bacterial Pathogens Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Annapaula Correia
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London, School of Hygiene & Tropical Medicine, London, UK
| | - Aasmund Fostervold
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Margaret M C Lam
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Bjørn-Tore Lunestad
- Department of Biological Sciences, Faculty of Science and Technology, University of Bergen, Bergen, Norway
- Institute of Marine Research, Bergen, Norway
| | | | - Niclas Raffelsberger
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
- Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Ørjan Samuelsen
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Marianne Sunde
- Section for Bacteriology, Department for Analysis and Diagnostics, Norwegian Veterinary Institute, Ås, Norway
| | - Arnfinn Sundsfjord
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, Tromsø, Norway
| | - Anne Margrete Urdahl
- Research Section Food Safety and Animal Health, Department of Animal Health and Food Safety, Norwegian Veterinary Institute, Ås, Norway
| | - Ryan R Wick
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Iren H Löhr
- Department of Medical Microbiology, Stavanger University Hospital, Stavanger, Norway
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Kathryn E Holt
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London, School of Hygiene & Tropical Medicine, London, UK
- Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Australia
| |
Collapse
|
2
|
Guan X, Verma AK, Liu Q, Palacios M, Odle AE, Perlman S, Du L. Glycosylated Receptor-Binding-Domain-Targeting Mucosal Vaccines Protect Against SARS-CoV-2 Omicron and MERS-CoV. Vaccines (Basel) 2025; 13:293. [PMID: 40266218 PMCID: PMC11946235 DOI: 10.3390/vaccines13030293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/23/2025] [Accepted: 03/05/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND The pathogenic coronaviruses (CoVs) MERS-CoV and SARS-CoV-2, which are responsible for the MERS outbreak and the COVID-19 pandemic, respectively, continue to infect humans, with significant adverse outcomes. There is a continuing need to develop mucosal vaccines against these respiratory viral pathogens to prevent entry and replication at mucosal sites. The receptor-binding domain (RBD) of the CoV spike (S) protein is a critical vaccine target, and glycan masking is a unique approach for designing subunit vaccines with improved neutralizing activity. METHODS We evaluated the efficacy of mucosal immunity, broad neutralizing activity, and cross-protection afforded by a combined glycosylated mucosal subunit vaccine encoding the RBDs of the original SARS-CoV-2 strain (SARS2-WT-RBD), the Omicron-XBB.1.5 variant (SARS2-Omi-RBD), and MERS-CoV (MERS-RBD). RESULTS Intranasal administration of the three-RBD protein cocktail induced effective, durable IgA and systemic IgG antibodies specific for the S protein of these CoVs, thereby neutralizing infection by pseudotyped SARS-CoV-2-WT, Omicron-XBB.1.5, and MERS-CoV. The mucosal vaccine cocktail protected immunized mice from challenge with SARS-CoV-2 Omicron-XBB.1.5 and MERS-CoV, leading to a significant reduction in the viral titers in the lungs. By contrast, the individual glycosylated RBD proteins only induced such immune responses and neutralizing antibodies against either SARS-CoV-2 or MERS-CoV, protecting against subsequent challenge with either SARS-CoV-2 or MERS-CoV; they did not provide simultaneous protection against both CoVs. CONCLUSIONS This study describes a unique strategy for designing efficacious mucosal subunit vaccines that induce durable mucosal immunity, cross-neutralizing activity, and cross-protection against SARS-CoV-2 and MERS-CoV, highlighting the potential for the design of mucosal vaccines against other pathogens.
Collapse
Affiliation(s)
- Xiaoqing Guan
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Abhishek K. Verma
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Qian Liu
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Melissa Palacios
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Abby E. Odle
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Lanying Du
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
3
|
Wasik BR, Damodaran L, Maltepes MA, Voorhees IEH, Leutenegger CM, Newbury S, Moncla LH, Dalziel BD, Goodman LB, Parrish CR. The evolution and epidemiology of H3N2 canine influenza virus after 20 years in dogs. Epidemiol Infect 2025; 153:e47. [PMID: 40040347 PMCID: PMC11920924 DOI: 10.1017/s0950268825000251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/31/2025] [Accepted: 02/22/2025] [Indexed: 03/06/2025] Open
Abstract
The H3N2 canine influenza virus (CIV) emerged from an avian reservoir in Asia to circulate entirely among dogs for the last 20 years. The virus was first seen circulating outside Asian dog populations in 2015, in North America. Utilizing viral genomic data in addition to clinical reports and diagnostic testing data, we provide an updated analysis of the evolution and epidemiology of the virus in its canine host. CIV in dogs in North America is marked by a complex life history - including local outbreaks, regional lineage die-outs, and repeated reintroductions of the virus (with diverse genotypes) from different regions of Asia. Phylogenetic and Bayesian analysis reveal multiple CIV clades, and viruses from China have seeded recent North American outbreaks, with 2 or 3 introductions in the past 3 years. Genomic epidemiology confirms that within North America the virus spreads very rapidly among dogs in kennels and shelters in different regions - but then dies out locally. The overall epidemic therefore requires longer-distance dispersal of virus to maintain outbreaks over the long term. With a constant evolutionary rate over 20 years, CIV still appears best adapted to transmission in dense populations and has not gained properties for prolonged circulation among dogs.
Collapse
Affiliation(s)
- Brian R. Wasik
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Lambodhar Damodaran
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maria A. Maltepes
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian E. H. Voorhees
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | | | - Sandra Newbury
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Louise H. Moncla
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benjamin D. Dalziel
- Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
- Department of Mathematics, Oregon State University, Corvallis, OR, USA
| | - Laura B. Goodman
- Baker Institute for Animal Health, Department of Public and Ecosystems Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Colin R. Parrish
- Baker Institute for Animal Health, Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| |
Collapse
|
4
|
Yan W, Zhu Y, Zou C, Liu W, Jia B, Niu J, Zhou Y, Chen B, Li R, Ding SW, Wu Q, Guo Z. Virome Characterization of Native Wild-Rice Plants Discovers a Novel Pathogenic Rice Polerovirus With World-Wide Circulation. PLANT, CELL & ENVIRONMENT 2025; 48:1005-1020. [PMID: 39390751 DOI: 10.1111/pce.15204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/09/2024] [Accepted: 09/29/2024] [Indexed: 10/12/2024]
Abstract
Pandemics originating from zoonotic viruses have posed significant threats to human health and agriculture. Recent discoveries have revealed that wild-rice plants also harbour viral pathogens capable of severely impacting rice production, a cornerstone food crop. In this study, we conducted virome analysis on ~1000 wild-rice individual colonies and discovered a novel single-strand positive-sense RNA virus prevalent in these plants. Through comprehensive genomic characterization and comparative sequence analysis, this virus was classified as a new species in the genus Polerovirus, designated Rice less tiller virus (RLTV). Our investigations elucidated that RLTV could be transmitted from wild rice to cultivated rice via a specific insect vector, the aphid Rhopalosiphum padi, causing less tiller disease symptoms in rice plants. We generated an infectious cDNA clone for RLTV and demonstrated systemic infection of rice cultivars and induction of severe disease symptoms following mechanical inoculation or stable genetic transformation. We further illustrated transmission of RLTV from stable transgenic lines to healthy rice plants by the aphid vector, leading to the development of disease symptoms. Notably, our database searches showed that RLTV and another polerovirus isolated from a wild plant species are widely circulating not only in wild rice but also cultivated rice around the world. Our findings provide strong evidence for a wild plant origin for rice viruses and underscore the imminent threat posed by aphid-transmitted rice Polerovirus to rice cultivar.
Collapse
Affiliation(s)
- Wenkai Yan
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Zhu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chengwu Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Wencheng Liu
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bei Jia
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiangshuai Niu
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yaogui Zhou
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources and Key Laboratory for Microbial and Plant Genetic Engineering, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Shou-Wei Ding
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Qingfa Wu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhongxin Guo
- Vector-borne Virus Research Center, State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
5
|
Li B, Raghwani J, Hill SC, François S, Lefrancq N, Liang Y, Wang Z, Dong L, Lemey P, Pybus OG, Tian H. Association of poultry vaccination with interspecies transmission and molecular evolution of H5 subtype avian influenza virus. SCIENCE ADVANCES 2025; 11:eado9140. [PMID: 39841843 PMCID: PMC11753422 DOI: 10.1126/sciadv.ado9140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025]
Abstract
The effectiveness of poultry vaccination in preventing the transmission of highly pathogenic avian influenza viruses (AIVs) has been debated, and its impact on wild birds remains uncertain. Here, we reconstruct the movements of H5 subtype AIV lineages among vaccinated poultry, unvaccinated poultry, and wild birds, worldwide, from 1996 to 2023. We find that there is a time lag in viral transmission among different host populations and that movements from wild birds to unvaccinated poultry were more frequent than those from wild birds to vaccinated poultry. Furthermore, our findings suggest that the HA (hemagglutinin) gene of the AIV lineage that circulated predominately in Chinese poultry experienced greater nonsynonymous divergence and adaptive fixation than other lineages. Our results indicate that the epidemiological, ecological, and evolutionary consequences of widespread AIV vaccination in poultry may be linked in complex ways and that much work is needed to better understand how such interventions may affect AIV transmission to, within, and from wild birds.
Collapse
Affiliation(s)
- Bingying Li
- State Key Laboratory of Remote Sensing Science, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Research Center for Respiratory Infectious Diseases, School of National Safety and Emergency Management, Center for Global Change and Public Health, Beijing Normal University, Beijing, China
| | - Jayna Raghwani
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London, UK
| | - Sarah C. Hill
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London, UK
| | - Sarah François
- Department of Biology, University of Oxford, Oxford, UK
- UMR DGIMI, University of Montpellier, INRAE, Montpellier, France
| | - Noémie Lefrancq
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Yilin Liang
- State Key Laboratory of Remote Sensing Science, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Research Center for Respiratory Infectious Diseases, School of National Safety and Emergency Management, Center for Global Change and Public Health, Beijing Normal University, Beijing, China
| | - Zengmiao Wang
- State Key Laboratory of Remote Sensing Science, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Research Center for Respiratory Infectious Diseases, School of National Safety and Emergency Management, Center for Global Change and Public Health, Beijing Normal University, Beijing, China
| | - Lu Dong
- Ministry of Education Key Laboratory for Biodiversity and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Phillipe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, Clinical and Epidemiological Virology, KU Leuven, 3000 Leuven, Belgium
| | - Oliver G. Pybus
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London, UK
- Department of Biology, University of Oxford, Oxford, UK
| | - Huaiyu Tian
- State Key Laboratory of Remote Sensing Science, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Research Center for Respiratory Infectious Diseases, School of National Safety and Emergency Management, Center for Global Change and Public Health, Beijing Normal University, Beijing, China
| |
Collapse
|
6
|
Abu-Basha EA, Ismail ZB, Alboom MH, Alkofahi A, Amarneh BH, Al-Omari O, Fahmawi A, Alshammari A, Lakaideh M, Shaban S, Al-Omari B, Talafha H, Hijazeen Z, Daradkeh Y, El-Shesheny R, Kayali G, Bagge W, Karesh WB. Molecular diagnosis and phylogenetic analysis of a Middle East respiratory syndrome coronavirus human case in Jordan. Eur J Public Health 2025; 35:i55-i59. [PMID: 39801333 PMCID: PMC11725956 DOI: 10.1093/eurpub/ckae106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is an important zoonotic pathogen. The aim of this paper is to report one polymerase chain reaction (PCR)-positive case of MERS-CoV in a 27-year-old man who was involved in a nationwide longitudinal surveillance study of certain zoonotic diseases in Jordan including MERS-CoV. Whole-blood and nasal swab samples were collected from the man and five camels in the vicinity of his living area. The samples were subjected to enzyme-linked immunosorbent assay (ELISA) and real-time reverse-transcription PCR (RT-PCR) to detect MERS-CoV-specific antibodies and MERS-CoV genetic material, respectively. Genomic sequencing and phylogenetic analysis were also performed to detect similarities with known strains of the virus in the region. In January 2021, an ongoing surveillance study detected a MERS-CoV-positive nasal swab sample from an asymptomatic male and camels using RT-PCR. Phylogenetically, the MERS-CoV isolated in this case belonged to clade B and is clustered with other strains originating in the Arabian Peninsula. The case report represents the first PCR-positive case of MERS-CoV in an asymptomatic individual in Jordan, indicating active circulation of the virus within the population.
Collapse
Affiliation(s)
| | | | | | | | | | - Omar Al-Omari
- Jordan University of Science and Technology, Irbid, Jordan
| | - Alaa Fahmawi
- Jordan University of Science and Technology, Irbid, Jordan
| | | | - Mais Lakaideh
- Jordan University of Science and Technology, Irbid, Jordan
| | - Shereen Shaban
- Jordan University of Science and Technology, Irbid, Jordan
| | - Bilal Al-Omari
- Jordan University of Science and Technology, Irbid, Jordan
| | - Hani Talafha
- Jordan University of Science and Technology, Irbid, Jordan
| | | | | | - Rabeh El-Shesheny
- Division of Environmental Research, National Research Centre, Giza, Egypt
| | | | | | | |
Collapse
|
7
|
Hassan AM, Mühlemann B, Al-Subhi TL, Rodon J, El-Kafrawy SA, Memish Z, Melchert J, Bleicker T, Mauno T, Perlman S, Zumla A, Jones TC, Müller MA, Corman VM, Drosten C, Azhar EI. Ongoing Evolution of Middle East Respiratory Syndrome Coronavirus, Saudi Arabia, 2023-2024. Emerg Infect Dis 2025; 31:57-65. [PMID: 39641462 DOI: 10.3201/eid3101.241030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) circulates in dromedary camels in the Arabian Peninsula and occasionally causes spillover infections in humans. MERS-CoV diversity is poorly understood because of the lack of sampling during the COVID-19 pandemic. We collected 558 swab samples from dromedary camels in Saudi Arabia during November 2023-January 2024. We found 39% were positive for MERS-CoV RNA by reverse transcription PCR. We sequenced 42 MERS-CoVs and 7 human 229E-related coronaviruses from camel swab samples by using high-throughput sequencing. Sequences from both viruses formed monophyletic clades apical to recently available genomes. MERS-CoV sequences were most similar to B5 lineage sequences and harbored unique genetic features, including novel amino acid polymorphisms in the spike protein. Further characterization will be required to understand their effects. MERS-CoV spillover into humans poses considerable public health concerns. Our findings indicate surveillance and phenotypic studies are needed to identify and monitor MERS-CoV pandemic potential.
Collapse
|
8
|
Damodaran L, Jaeger A, Moncla LH. Intensive transmission in wild, migratory birds drove rapid geographic dissemination and repeated spillovers of H5N1 into agriculture in North America. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.16.628739. [PMID: 39763879 PMCID: PMC11702765 DOI: 10.1101/2024.12.16.628739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Since late 2021, a panzootic of highly pathogenic H5N1 avian influenza virus has driven significant morbidity and mortality in wild birds, domestic poultry, and mammals. In North America, infections in novel avian and mammalian species suggest the potential for changing ecology and establishment of new animal reservoirs. Outbreaks among domestic birds have persisted despite aggressive culling, necessitating a re-examination of how these outbreaks were sparked and maintained. To recover how these viruses were introduced and disseminated in North America, we analyzed 1,818 Hemagglutinin (HA) gene sequences sampled from North American wild birds, domestic birds and mammals from November 2021-September 2023 using Bayesian phylodynamic approaches. Using HA, we infer that the North American panzootic was driven by ~8 independent introductions into North America via the Atlantic and Pacific Flyways, followed by rapid dissemination westward via wild, migratory birds. Transmission was primarily driven by Anseriformes, shorebirds, and Galliformes, while species such as songbirds, raptors, and owls mostly acted as dead-end hosts. Unlike the epizootic of 2015, outbreaks in domestic birds were driven by ~46-113 independent introductions from wild birds, with some onward transmission. Backyard birds were infected ~10 days earlier on average than birds in commercial poultry production settings, suggesting that they could act as "early warning signals" for transmission upticks in a given area. Our findings support wild birds as an emerging reservoir for HPAI transmission in North America and suggest continuous surveillance of wild Anseriformes and shorebirds as crucial for outbreak inference. Future prevention of agricultural outbreaks may require investment in strategies that reduce transmission at the wild bird/agriculture interface, and investigation of backyard birds as putative early warning signs.
Collapse
Affiliation(s)
- Lambodhar Damodaran
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania
| | - Anna Jaeger
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania
| | - Louise H. Moncla
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania
| |
Collapse
|
9
|
Carlson CJ, Garnier R, Tiu A, Luby SP, Bansal S. Strategic vaccine stockpiles for regional epidemics of emerging viruses: A geospatial modeling framework. Vaccine 2024; 42:126051. [PMID: 38902187 DOI: 10.1016/j.vaccine.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
Multinational epidemics of emerging infectious diseases are increasingly common, due to anthropogenic pressure on ecosystems and the growing connectivity of human populations. Early and efficient vaccination can contain outbreaks and prevent mass mortality, but optimal vaccine stockpiling strategies are dependent on pathogen characteristics, reservoir ecology, and epidemic dynamics. Here, we model major regional outbreaks of Nipah virus and Middle East respiratory syndrome, and use these to develop a generalized framework for estimating vaccine stockpile needs based on spillover geography, spatially-heterogeneous healthcare capacity and spatially-distributed human mobility networks. Because outbreak sizes were highly skewed, we found that most outbreaks were readily contained (median stockpile estimate for MERS-CoV: 2,089 doses; Nipah: 1,882 doses), but the maximum estimated stockpile need in a highly unlikely large outbreak scenario was 2-3 orders of magnitude higher (MERS-CoV: ∼87,000 doses; Nipah ∼ 1.1 million doses). Sensitivity analysis revealed that stockpile needs were more dependent on basic epidemiological parameters (i.e., death and recovery rate) and healthcare availability than any uncertainty related to vaccine efficacy or deployment strategy. Our results highlight the value of descriptive epidemiology for real-world modeling applications, and suggest that stockpile allocation should consider ecological, epidemiological, and social dimensions of risk.
Collapse
Affiliation(s)
- Colin J Carlson
- Department of Biology, Georgetown University; Department of Epidemiology of Microbial Diseases, Yale University School of Public Health
| | | | - Andrew Tiu
- Department of Biology, Georgetown University
| | | | | |
Collapse
|
10
|
Featherstone LA, Rambaut A, Duchene S, Wirth W. Clockor2: Inferring Global and Local Strict Molecular Clocks Using Root-to-Tip Regression. Syst Biol 2024; 73:623-628. [PMID: 38366939 PMCID: PMC11377183 DOI: 10.1093/sysbio/syae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/19/2024] Open
Abstract
Molecular sequence data from rapidly evolving organisms are often sampled at different points in time. Sampling times can then be used for molecular clock calibration. The root-to-tip (RTT) regression is an essential tool to assess the degree to which the data behave in a clock-like fashion. Here, we introduce Clockor2, a client-side web application for conducting RTT regression. Clockor2 allows users to quickly fit local and global molecular clocks, thus handling the increasing complexity of genomic datasets that sample beyond the assumption of homogeneous host populations. Clockor2 is efficient, handling trees of up to the order of 104 tips, with significant speed increases compared with other RTT regression applications. Although clockor2 is written as a web application, all data processing happens on the client-side, meaning that data never leave the user's computer. Clockor2 is freely available at https://clockor2.github.io/.
Collapse
Affiliation(s)
- Leo A Featherstone
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Andrew Rambaut
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | - Sebastian Duchene
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Computational Biology, Institut Pasteur, Paris, France
| | - Wytamma Wirth
- Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
11
|
Stancheva VG, Sanyal S. Positive-strand RNA virus replication organelles at a glance. J Cell Sci 2024; 137:jcs262164. [PMID: 39254430 PMCID: PMC11423815 DOI: 10.1242/jcs.262164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Membrane-bound replication organelles (ROs) are a unifying feature among diverse positive-strand RNA viruses. These compartments, formed as alterations of various host organelles, provide a protective niche for viral genome replication. Some ROs are characterised by a membrane-spanning pore formed by viral proteins. The RO membrane separates the interior from immune sensors in the cytoplasm. Recent advances in imaging techniques have revealed striking diversity in RO morphology and origin across virus families. Nevertheless, ROs share core features such as interactions with host proteins for their biogenesis and for lipid and energy transfer. The restructuring of host membranes for RO biogenesis and maintenance requires coordinated action of viral and host factors, including membrane-bending proteins, lipid-modifying enzymes and tethers for interorganellar contacts. In this Cell Science at a Glance article and the accompanying poster, we highlight ROs as a universal feature of positive-strand RNA viruses reliant on virus-host interplay, and we discuss ROs in the context of extensive research focusing on their potential as promising targets for antiviral therapies and their role as models for understanding fundamental principles of cell biology.
Collapse
Affiliation(s)
- Viktoriya G. Stancheva
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| |
Collapse
|
12
|
Maestri R, Perez-Lamarque B, Zhukova A, Morlon H. Recent evolutionary origin and localized diversity hotspots of mammalian coronaviruses. eLife 2024; 13:RP91745. [PMID: 39196812 PMCID: PMC11357359 DOI: 10.7554/elife.91745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024] Open
Abstract
Several coronaviruses infect humans, with three, including the SARS-CoV2, causing diseases. While coronaviruses are especially prone to induce pandemics, we know little about their evolutionary history, host-to-host transmissions, and biogeography. One of the difficulties lies in dating the origination of the family, a particularly challenging task for RNA viruses in general. Previous cophylogenetic tests of virus-host associations, including in the Coronaviridae family, have suggested a virus-host codiversification history stretching many millions of years. Here, we establish a framework for robustly testing scenarios of ancient origination and codiversification versus recent origination and diversification by host switches. Applied to coronaviruses and their mammalian hosts, our results support a scenario of recent origination of coronaviruses in bats and diversification by host switches, with preferential host switches within mammalian orders. Hotspots of coronavirus diversity, concentrated in East Asia and Europe, are consistent with this scenario of relatively recent origination and localized host switches. Spillovers from bats to other species are rare, but have the highest probability to be towards humans than to any other mammal species, implicating humans as the evolutionary intermediate host. The high host-switching rates within orders, as well as between humans, domesticated mammals, and non-flying wild mammals, indicates the potential for rapid additional spreading of coronaviruses across the world. Our results suggest that the evolutionary history of extant mammalian coronaviruses is recent, and that cases of long-term virus-host codiversification have been largely over-estimated.
Collapse
Affiliation(s)
- Renan Maestri
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
- Departamento de Ecologia, Instituto de Biociências, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
| | - Benoît Perez-Lamarque
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
- Institut de Systématique, Évolution, Biodiversité (ISYEB), Muséum national d’histoire naturelle, CNRS, Sorbonne Université, EPHE, UAParisFrance
| | - Anna Zhukova
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics HubParisFrance
| | - Hélène Morlon
- Institut de Biologie de l'École Normale Supérieure (IBENS), École Normale Supérieure, CNRS, INSERM, Université PSLParisFrance
| |
Collapse
|
13
|
Catanzaro NJ, Wu Z, Fan C, Schäfer A, Yount BL, Bjorkman PJ, Baric R, Letko M. ACE2 from Pipistrellus abramus bats is a receptor for HKU5 coronaviruses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584892. [PMID: 38559009 PMCID: PMC10980018 DOI: 10.1101/2024.03.13.584892] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The merbecovirus subgenus of coronaviruses includes Middle East Respiratory Syndrome Coronavirus (MERS-CoV), a zoonotic pathogen transmitted from dromedary camels to humans that causes severe respiratory disease. Viral discovery efforts have uncovered hundreds of merbecoviruses in different species across multiple continents, but few have been studied under laboratory conditions, leaving basic questions regarding their human threat potential unresolved. Viral entry into host cells is a critical step for transmission between hosts. Here, a scalable approach that assesses novel merbecovirus cell entry was developed and used to evaluate receptor use across the entire merbecovirus subgenus. Merbecoviruses are sorted into clades based on the receptor-binding domain of the spike glycoprotein. Receptor tropism is clade-specific, with the clade including MERS-CoV using DPP4 and multiple clades using ACE2, including HKU5 bat coronaviruses. Mutational analysis identified possible structural limitations to HKU5 adaptability and a cryo-EM structure of the HKU5-20s spike trimer revealed only 'down' RBDs.
Collapse
Affiliation(s)
- Nicholas J. Catanzaro
- Department of Epidemiology, Gillings School of Global Public Heath, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Ziyan Wu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, 91125
| | - Chengcheng Fan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, 91125
| | - Alexandra Schäfer
- Department of Epidemiology, Gillings School of Global Public Heath, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Boyd L. Yount
- Department of Epidemiology, Gillings School of Global Public Heath, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Pamela J. Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, 91125
| | - Ralph Baric
- Department of Epidemiology, Gillings School of Global Public Heath, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599
| | - Michael Letko
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, 99163
| |
Collapse
|
14
|
Sohrab SS, Alsaqaf F, Hassan AM, Tolah AM, Bajrai LH, Azhar EI. Genomic Diversity and Recombination Analysis of the Spike Protein Gene from Selected Human Coronaviruses. BIOLOGY 2024; 13:282. [PMID: 38666894 PMCID: PMC11048170 DOI: 10.3390/biology13040282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Human coronaviruses (HCoVs) are seriously associated with respiratory diseases in humans and animals. The first human pathogenic SARS-CoV emerged in 2002-2003. The second was MERS-CoV, reported from Jeddah, the Kingdom of Saudi Arabia, in 2012, and the third one was SARS-CoV-2, identified from Wuhan City, China, in late December 2019. The HCoV-Spike (S) gene has the highest mutation/insertion/deletion rate and has been the most utilized target for vaccine/antiviral development. In this manuscript, we discuss the genetic diversity, phylogenetic relationships, and recombination patterns of selected HCoVs with emphasis on the S protein gene of MERS-CoV and SARS-CoV-2 to elucidate the possible emergence of new variants/strains of coronavirus in the near future. The findings showed that MERS-CoV and SARS-CoV-2 have significant sequence identity with the selected HCoVs. The phylogenetic tree analysis formed a separate cluster for each HCoV. The recombination pattern analysis showed that the HCoV-NL63-Japan was a probable recombinant. The HCoV-NL63-USA was identified as a major parent while the HCoV-NL63-Netherland was identified as a minor parent. The recombination breakpoints start in the viral genome at the 142 nucleotide position and end at the 1082 nucleotide position with a 99% CI and Bonferroni-corrected p-value of 0.05. The findings of this study provide insightful information about HCoV-S gene diversity, recombination, and evolutionary patterns. Based on these data, it can be concluded that the possible emergence of new strains/variants of HCoV is imminent.
Collapse
Affiliation(s)
- Sayed Sartaj Sohrab
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (F.A.); (A.M.H.); (A.M.T.); (L.H.B.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Fatima Alsaqaf
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (F.A.); (A.M.H.); (A.M.T.); (L.H.B.)
| | - Ahmed Mohamed Hassan
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (F.A.); (A.M.H.); (A.M.T.); (L.H.B.)
| | - Ahmed Majdi Tolah
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (F.A.); (A.M.H.); (A.M.T.); (L.H.B.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Science, King Abdulaziz University, P.O. Box 21911, Rabigh 344, Saudi Arabia
| | - Leena Hussein Bajrai
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (F.A.); (A.M.H.); (A.M.T.); (L.H.B.)
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| | - Esam Ibraheem Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia; (F.A.); (A.M.H.); (A.M.T.); (L.H.B.)
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia
| |
Collapse
|
15
|
Seo H, Jang Y, Kwak D. Inactivated Split MERS-CoV Antigen Prevents Lethal Middle East Respiratory Syndrome Coronavirus Infections in Mice. Vaccines (Basel) 2024; 12:436. [PMID: 38675818 PMCID: PMC11053775 DOI: 10.3390/vaccines12040436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/14/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) causes fatal infections, with about 36% mortality in humans, and is endemic to the Middle East. MERS-CoV uses human dipeptidyl peptidase 4 (hDPP4) as a receptor for infection. Despite continued research efforts, no licensed vaccine is available for protection against this disease in humans. Therefore, this study sought to develop an inactivated fragmented MERS-CoV vaccine grown in Vero cells in an hDPP4-transgenic mouse model. Two-dose immunisation in mice with 15, 20, or 25 μg of spike proteins of inactivated split MERS-CoV antigens induced neutralising antibodies, with titres ranging from NT 80 to 1280. In addition, all immunised mice were completely protected, with no virus detection in tissues, weight loss, or mortality. The immunised splenocytes produced more cytokines that stimulate immune response (IFN-γ and TNF-α) than those that regulate it (IL-4 and IL-10). Taken together, the inactivated fragmented MERS-CoV vaccine is effective for the protection of mice against lethal MERS-CoV. Thus, the inactivated fragmented MERS-CoV vaccine warrants further testing in other hosts.
Collapse
Affiliation(s)
- Heejeong Seo
- PioneerVaccine, Inc., Chungnam National University, Daejeon 34134, Republic of Korea;
- College of Veterinary Medicine, Kyunpook National University, Daegu 41566, Republic of Korea
| | - Yunyueng Jang
- PioneerVaccine, Inc., Chungnam National University, Daejeon 34134, Republic of Korea;
| | - Dongmi Kwak
- College of Veterinary Medicine, Kyunpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
16
|
Tran-Kiem C, Bedford T. Estimating the reproduction number and transmission heterogeneity from the size distribution of clusters of identical pathogen sequences. Proc Natl Acad Sci U S A 2024; 121:e2305299121. [PMID: 38568971 PMCID: PMC11009662 DOI: 10.1073/pnas.2305299121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
Quantifying transmission intensity and heterogeneity is crucial to ascertain the threat posed by infectious diseases and inform the design of interventions. Methods that jointly estimate the reproduction number R and the dispersion parameter k have however mainly remained limited to the analysis of epidemiological clusters or contact tracing data, whose collection often proves difficult. Here, we show that clusters of identical sequences are imprinted by the pathogen offspring distribution, and we derive an analytical formula for the distribution of the size of these clusters. We develop and evaluate an inference framework to jointly estimate the reproduction number and the dispersion parameter from the size distribution of clusters of identical sequences. We then illustrate its application across a range of epidemiological situations. Finally, we develop a hypothesis testing framework relying on clusters of identical sequences to determine whether a given pathogen genetic subpopulation is associated with increased or reduced transmissibility. Our work provides tools to estimate the reproduction number and transmission heterogeneity from pathogen sequences without building a phylogenetic tree, thus making it easily scalable to large pathogen genome datasets.
Collapse
Affiliation(s)
- Cécile Tran-Kiem
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA98109
- HHMI, Seattle, WA98109
| |
Collapse
|
17
|
Addetia A, Stewart C, Seo AJ, Sprouse KR, Asiri AY, Al-Mozaini M, Memish ZA, Alshukairi A, Veesler D. Mapping immunodominant sites on the MERS-CoV spike glycoprotein targeted by infection-elicited antibodies in humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.31.586409. [PMID: 38617298 PMCID: PMC11014493 DOI: 10.1101/2024.03.31.586409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Middle-East respiratory syndrome coronavirus (MERS-CoV) first emerged in 2012 and causes human infections in endemic regions. Most vaccines and therapeutics in development against MERS-CoV focus on the spike (S) glycoprotein to prevent viral entry into target cells. These efforts, however, are limited by a poor understanding of antibody responses elicited by infection along with their durability, fine specificity and contribution of distinct S antigenic sites to neutralization. To address this knowledge gap, we analyzed S-directed binding and neutralizing antibody titers in plasma collected from individuals infected with MERS-CoV in 2017-2019 (prior to the COVID-19 pandemic). We observed that binding and neutralizing antibodies peak 1 to 6 weeks after symptom onset/hospitalization, persist for at least 6 months, and broadly neutralize human and camel MERS-CoV strains. We show that the MERS-CoV S1 subunit is immunodominant and that antibodies targeting S1, particularly the RBD, account for most plasma neutralizing activity. Antigenic site mapping revealed that polyclonal plasma antibodies frequently target RBD epitopes, particularly a site exposed irrespective of the S trimer conformation, whereas targeting of S2 subunit epitopes is rare, similar to SARS-CoV-2. Our data reveal in unprecedented details the humoral immune responses elicited by MERS-CoV infection, which will guide vaccine and therapeutic design.
Collapse
Affiliation(s)
- Amin Addetia
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington, USA
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Albert J Seo
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Ayed Y Asiri
- Al-Hayat National Hospital, Riyadh, Saudi Arabia
| | - Maha Al-Mozaini
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ziad A Memish
- King Saud Medical City, Ministry of Health, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Kyung Hee University, Seoul, South Korea
| | - Abeer Alshukairi
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| |
Collapse
|
18
|
Tran T, Xie S. Mitigating Wildlife Spillover in the Clinical Setting: How Physicians and Veterinarians Can Help Prevent Future Disease Outbreaks. AJPM FOCUS 2024; 3:100193. [PMID: 38379958 PMCID: PMC10876620 DOI: 10.1016/j.focus.2024.100193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Introduction The transmission of pathogens from wildlife to humans is a major global health threat that has been highlighted by the proposed origins of the COVID-19 pandemic. Numerous barriers impede pathogen spillover events from ensuing widespread human transmission, but human activity has accelerated the frequency of spillovers and subsequent disease outbreaks, in part through a booming wildlife trade whose impacts on health are not well understood. Methods A literature review was conducted to examine the risk that the wildlife trade poses to public health and the degree to which these risks are recognized and addressed in clinical practice and medical and veterinary education. Results The illicit aspects of the wildlife trade challenge efforts to understand its impacts on health. The U.S. and Europe play a leading role in the global wildlife trade that often goes unacknowledged. In particular, the consumption of wild meat and ownership of exotic pets poses public health risks. The potential role of clinicians is underutilized, both in the clinical setting and in clinical education. Discussion Physicians and veterinarians have the unique opportunity to utilize their clinical roles to address these knowledge gaps and mitigate future outbreaks. We outline a multifaceted approach that includes increasing clinical knowledge about the ecology of zoonotic diseases, leveraging opportunities for mitigation during patient/client-clinician interactions, and incorporating One Health core competencies into medical and veterinary school curricula.
Collapse
Affiliation(s)
- Tam Tran
- Department of Biology, Penn Arts & Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sherrie Xie
- Department of Biostatistics, Epidemiology & Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Müller NF, Bouckaert RR, Wu CH, Bedford T. MASCOT-Skyline integrates population and migration dynamics to enhance phylogeographic reconstructions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583734. [PMID: 38496513 PMCID: PMC10942421 DOI: 10.1101/2024.03.06.583734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The spread of infectious diseases is shaped by spatial and temporal aspects, such as host population structure or changes in the transmission rate or number of infected individuals over time. These spatiotemporal dynamics are imprinted in the genome of pathogens and can be recovered from those genomes using phylodynamics methods. However, phylodynamic methods typically quantify either the temporal or spatial transmission dynamics, which leads to unclear biases, as one can potentially not be inferred without the other. Here, we address this challenge by introducing a structured coalescent skyline approach, MASCOT-Skyline that allows us to jointly infer spatial and temporal transmission dynamics of infectious diseases using Markov chain Monte Carlo inference. To do so, we model the effective population size dynamics in different locations using a non-parametric function, allowing us to approximate a range of population size dynamics. We show, using a range of different viral outbreak datasets, potential issues with phylogeographic methods. We then use these viral datasets to motivate simulations of outbreaks that illuminate the nature of biases present in the different phylogeographic methods. We show that spatial and temporal dynamics should be modeled jointly even if one seeks to recover just one of the two. Further, we showcase conditions under which we can expect phylogeographic analyses to be biased, particularly different subsampling approaches, as well as provide recommendations of when we can expect them to perform well. We implemented MASCOT-Skyline as part of the open-source software package MASCOT for the Bayesian phylodynamics platform BEAST2.
Collapse
Affiliation(s)
- Nicola F. Müller
- Division of HIV, ID and Global Medicine, University of California San Francisco, San Francisco, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
| | - Remco R. Bouckaert
- Centre for Computational Evolution, The University of Auckland, New Zealand
| | - Chieh-Hsi Wu
- School of Mathematical Sciences, University of Southampton, UK
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, USA
- Howard Hughes Medical Institute, Seattle, USA
| |
Collapse
|
20
|
Wong W, Schaffner SF, Thwing J, Seck MC, Gomis J, Diedhiou Y, Sy N, Ndiop M, Ba F, Diallo I, Sene D, Diallo MA, Ndiaye YD, Sy M, Sene A, Sow D, Dieye B, Tine A, Ribado J, Suresh J, Lee A, Battle KE, Proctor JL, Bever CA, MacInnis B, Ndiaye D, Hartl DL, Wirth DF, Volkman SK. Evaluating the performance of Plasmodium falciparum genetic metrics for inferring National Malaria Control Programme reported incidence in Senegal. Malar J 2024; 23:68. [PMID: 38443939 PMCID: PMC10916253 DOI: 10.1186/s12936-024-04897-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/29/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Genetic surveillance of the Plasmodium falciparum parasite shows great promise for helping National Malaria Control Programmes (NMCPs) assess parasite transmission. Genetic metrics such as the frequency of polygenomic (multiple strain) infections, genetic clones, and the complexity of infection (COI, number of strains per infection) are correlated with transmission intensity. However, despite these correlations, it is unclear whether genetic metrics alone are sufficient to estimate clinical incidence. METHODS This study examined parasites from 3147 clinical infections sampled between the years 2012-2020 through passive case detection (PCD) across 16 clinic sites spread throughout Senegal. Samples were genotyped with a 24 single nucleotide polymorphism (SNP) molecular barcode that detects parasite strains, distinguishes polygenomic (multiple strain) from monogenomic (single strain) infections, and identifies clonal infections. To determine whether genetic signals can predict incidence, a series of Poisson generalized linear mixed-effects models were constructed to predict the incidence level at each clinical site from a set of genetic metrics designed to measure parasite clonality, superinfection, and co-transmission rates. RESULTS Model-predicted incidence was compared with the reported standard incidence data determined by the NMCP for each clinic and found that parasite genetic metrics generally correlated with reported incidence, with departures from expected values at very low annual incidence (< 10/1000/annual [‰]). CONCLUSIONS When transmission is greater than 10 cases per 1000 annual parasite incidence (annual incidence > 10‰), parasite genetics can be used to accurately infer incidence and is consistent with superinfection-based hypotheses of malaria transmission. When transmission was < 10‰, many of the correlations between parasite genetics and incidence were reversed, which may reflect the disproportionate impact of importation and focal transmission on parasite genetics when local transmission levels are low.
Collapse
Affiliation(s)
- Wesley Wong
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Stephen F Schaffner
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Julie Thwing
- Malaria Branch, Division of Parasitic Diseases and Malaria, Global Health Center, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Mame Cheikh Seck
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Jules Gomis
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Younouss Diedhiou
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Ngayo Sy
- Section de Lutte Anti-Parasitaire (SLAP) Clinic, Thies, Senegal
| | - Medoune Ndiop
- Programme National de Lutte contre le Paludisme (PNLP), Dakar, Senegal
| | - Fatou Ba
- Programme National de Lutte contre le Paludisme (PNLP), Dakar, Senegal
| | - Ibrahima Diallo
- Programme National de Lutte contre le Paludisme (PNLP), Dakar, Senegal
| | - Doudou Sene
- Programme National de Lutte contre le Paludisme (PNLP), Dakar, Senegal
| | - Mamadou Alpha Diallo
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Yaye Die Ndiaye
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Mouhamad Sy
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Aita Sene
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Djiby Sow
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Baba Dieye
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Abdoulaye Tine
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Jessica Ribado
- Institute for Disease Modeling at the Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Joshua Suresh
- Institute for Disease Modeling at the Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Albert Lee
- Institute for Disease Modeling at the Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Katherine E Battle
- Institute for Disease Modeling at the Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Joshua L Proctor
- Institute for Disease Modeling at the Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Caitlin A Bever
- Institute for Disease Modeling at the Bill and Melinda Gates Foundation, Seattle, WA, USA
| | - Bronwyn MacInnis
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Daouda Ndiaye
- Centre International de recherche, de formation en Genomique Appliquee et de Surveillance Sanitaire (CIGASS), Dakar, Senegal
| | - Daniel L Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA
| | - Sarah K Volkman
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
- Infectious Disease and Microbiome Program, The Broad Institute, Cambridge, MA, USA.
- College of Natural, Behavioral, and Health Sciences, Simmons University, Boston, MA, USA.
| |
Collapse
|
21
|
Mihaescu G, Chifiriuc MC, Filip R, Bleotu C, Ditu LM, Constantin M, Cristian RE, Grigore R, Bertesteanu SV, Bertesteanu G, Vrancianu CO. Role of interferons in the antiviral battle: from virus-host crosstalk to prophylactic and therapeutic potential in SARS-CoV-2 infection. Front Immunol 2024; 14:1273604. [PMID: 38288121 PMCID: PMC10822962 DOI: 10.3389/fimmu.2023.1273604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Mammalians sense antigenic messages from infectious agents that penetrate the respiratory and digestive epithelium, as well as signals from damaged host cells through membrane and cytosolic receptors. The transduction of these signals triggers a personalized response, depending on the nature of the stimulus and the host's genetics, physiological condition, and comorbidities. Interferons (IFNs) are the primary effectors of the innate immune response, and their synthesis is activated in most cells within a few hours after pathogen invasion. IFNs are primarily synthesized in infected cells, but their anti-infective effect is extended to the neighboring cells by autocrine and paracrine action. The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in 2019 was a stark reminder of the potential threat posed by newly emerging viruses. This pandemic has also triggered an overwhelming influx of research studies aiming to unveil the mechanisms of protective versus pathogenic host immune responses induced by SARS-CoV-2. The purpose of this review is to describe the role of IFNs as vital players in the battle against SARS-CoV-2 infection. We will briefly characterize and classify IFNs, present the inductors of IFN synthesis, their sensors, and signaling pathways, and then discuss the role of IFNs in controlling the evolution of SARS-CoV-2 infection and its clinical outcome. Finally, we will present the perspectives and controversies regarding the prophylactic and therapeutic potential of IFNs in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Grigore Mihaescu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Department of Life, Medical and Agricultural Sciences, Biological Sciences Section, Academy of Romanian Scientists, Bucharest, Romania
| | - Roxana Filip
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, Suceava, Romania
- Microbiology Department, Suceava Emergency County Hospital, Suceava, Romania
| | - Coralia Bleotu
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Lia Mara Ditu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Marian Constantin
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Institute of Biology of Romanian Academy, Bucharest, Romania
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Raluca Grigore
- ENT Department, University of Medicine and Pharmacy Carol Davila and Coltea Clinical Hospital, Bucharest, Romania
| | - Serban Vifor Bertesteanu
- ENT Department, University of Medicine and Pharmacy Carol Davila and Coltea Clinical Hospital, Bucharest, Romania
| | - Gloria Bertesteanu
- ENT Department, University of Medicine and Pharmacy Carol Davila and Coltea Clinical Hospital, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- DANUBIUS Department, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| |
Collapse
|
22
|
Khalafalla AI. Zoonotic diseases transmitted from the camels. Front Vet Sci 2023; 10:1244833. [PMID: 37929289 PMCID: PMC10620500 DOI: 10.3389/fvets.2023.1244833] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Zoonotic diseases, infections transmitted naturally from animals to humans, pose a significant public health challenge worldwide. After MERS-CoV was discovered, interest in camels was raised as potential intermediate hosts for zoonotic viruses. Most published review studies pay little attention to case reports or zoonotic epidemics where there is epidemiological proof of transmission from camels to humans. Accordingly, any pathogen found in camels known to cause zoonotic disease in other animals or humans is reported. METHODS Here, zoonotic diseases linked to camels are reviewed in the literature, focusing on those with epidemiological or molecular evidence of spreading from camels to humans. This review examines the risks posed by camel diseases to human health, emphasizing the need for knowledge and awareness in mitigating these risks. RESULTS A search of the literature revealed that eight (36.4%) of the 22 investigations that offered convincing evidence of camel-to-human transmission involved MERS, five (22.7%) Brucellosis, four (18.2%) plague caused by Yersinia pestis, three (13.6%) camelpox, one (4.5%) hepatitis E, and one (4.5%) anthrax. The reporting of these zoonotic diseases has been steadily increasing, with the most recent period, from 2010 to the present, accounting for 59% of the reports. Additionally, camels have been associated with several other zoonotic diseases, including toxoplasmosis, Rift Valley fever, TB, Crimean-Congo hemorrhagic fever, and Q fever, despite having no evidence of a transmission event. Transmission of human zoonotic diseases primarily occurs through camel milk, meat, and direct or indirect contact with camels. The above-mentioned diseases were discussed to determine risks to human health. CONCLUSION MERS, Brucellosis, plague caused by Y. pestis, camelpox, hepatitis E, and anthrax are the main zoonotic diseases associated with human disease events or outbreaks. Transmission to humans primarily occurs through camel milk, meat, and direct contact with camels. There is a need for comprehensive surveillance, preventive measures, and public health interventions based on a one-health approach to mitigate the risks of zoonotic infections linked to camels.
Collapse
Affiliation(s)
- Abdelmalik Ibrahim Khalafalla
- Development and Innovation Sector, Biosecurity Affairs Division, Abu Dhabi Agriculture and Food Safety Authority (ADAFSA), Abu Dhabi, United Arab Emirates
| |
Collapse
|
23
|
David D, Asiku J, Storm N, Lapin K, Berkowitz A, Kovtunenko A, Edery N, King R, Sol A. Identification, Isolation, and Molecular Characterization of Betacoronavirus in Oryx leucoryx. Microbiol Spectr 2023; 11:e0484822. [PMID: 37428095 PMCID: PMC10433975 DOI: 10.1128/spectrum.04848-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Coronaviruses (CoVs) are enveloped viruses with a large RNA genome (26 to 32 kb) and are classified into four genera: Alphacoronavirus, Betacoronavirus, Gammacoronavirus, and Deltacoronavirus. CoV infections cause respiratory, enteric, and neurologic disorders in mammalian and avian species. In 2019, Oryx leucoryx animals suffered from severe hemorrhagic diarrhea and high morbidity rates. Upon initial diagnosis, we found that the infected animals were positive for coronavirus by pancoronavirus reverse transcriptase RT-PCR. Next, we detected the presence of CoV particles in these samples by electron microscopy and immunohistochemistry. CoV was isolated and propagated on the HRT-18G cell line, and its full genome was sequenced. Full-genome characterization and amino acid comparisons of this viral agent demonstrated that this virus is an evolutionarily distinct Betacoronavirus belonging to the subgenus Embecovirus and the Betacoronavirus 1 species. Furthermore, we found that it is most similar to the subspecies dromedary camel coronavirus HKU23 by phylogenetic analysis. Here, we present the first report of isolation and characterization of Betacoronavirus associated with enteric disease in Oryx leucoryx. IMPORTANCE CoVs cause enteric and respiratory infections in humans and animal hosts. The ability of CoVs to cross interspecies barriers is well recognized, as emphasized by the ongoing pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The identification of novel CoV strains and surveillance of CoVs in both humans and animals are relevant and important to global health. In this study, we isolated and characterized a newly identified Betacoronavirus that causes enteric disease in a wild animal, Oryx leucoryx (the Arabian oryx). This work is the first report describing CoV infection in Oryx leucoryx and provides insights into its origin.
Collapse
Affiliation(s)
- Dan David
- Kimron Veterinary Institute, Beit Dagan, Israel
| | - Jimmy Asiku
- Kimron Veterinary Institute, Beit Dagan, Israel
- The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nick Storm
- Kimron Veterinary Institute, Beit Dagan, Israel
| | - Katya Lapin
- Kimron Veterinary Institute, Beit Dagan, Israel
| | | | | | - Nir Edery
- Kimron Veterinary Institute, Beit Dagan, Israel
| | - Roni King
- Israel Nature and Parks Authority, Jerusalem, Israel
| | - Asaf Sol
- Kimron Veterinary Institute, Beit Dagan, Israel
| |
Collapse
|
24
|
Hamdy ME, El Deeb AH, Hagag NM, Shahein MA, Alaidi O, Hussein HA. Interspecies transmission of SARS CoV-2 with special emphasis on viral mutations and ACE-2 receptor homology roles. Int J Vet Sci Med 2023; 11:55-86. [PMID: 37441062 PMCID: PMC10334861 DOI: 10.1080/23144599.2023.2222981] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 07/15/2023] Open
Abstract
COVID-19 outbreak was first reported in 2019, Wuhan, China. The spillover of the disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), to a wide range of pet, zoo, wild, and farm animals has emphasized potential zoonotic and reverse zoonotic viral transmission. Furthermore, it has evoked inquiries about susceptibility of different animal species to SARS-CoV-2 infection and role of these animals as viral reservoirs. Therefore, studying susceptible and non-susceptible hosts for SARS-CoV-2 infection could give a better understanding for the virus and will help in preventing further outbreaks. Here, we review structural aspects of SARS-CoV-2 spike protein, the effect of the different mutations observed in the spike protein, and the impact of ACE2 receptor variations in different animal hosts on inter-species transmission. Moreover, the SARS-CoV-2 spillover chain was reviewed. Combination of SARS-CoV-2 high mutation rate and homology of cellular ACE2 receptors enable the virus to transcend species barriers and facilitate its transmission between humans and animals.
Collapse
Affiliation(s)
- Mervat E. Hamdy
- Genome Research Unit, Animal Health Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Ayman H. El Deeb
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Virology, Faculty of Veterinary Medicine, King Salman International University, South Sinai, Egypt
| | - Naglaa M. Hagag
- Genome Research Unit, Animal Health Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Momtaz A. Shahein
- Department of Virology, Animal Health Research Institute, Agriculture Research Centre, Giza, Egypt
| | - Osama Alaidi
- Biocomplexity for Research and Consulting Co., Cairo, Egypt
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Hussein A. Hussein
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
25
|
Luu B, McCoy-Hass V, Kadiu T, Ngo V, Kadiu S, Lien J. Severe Acute Respiratory Syndrome Associated Infections. PHYSICIAN ASSISTANT CLINICS 2023; 8:495-530. [PMID: 37197227 PMCID: PMC10015106 DOI: 10.1016/j.cpha.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Viral infections are some of the most common sources of respiratory illness in pediatric and adult populations worldwide. Influenza and coronaviruses are viral pathogens that could lead to severe respiratory illness and death. More recently, respiratory illness from coronaviruses, accounts for more than 1 million deaths in the United States alone. This article will explore the epidemiology, pathogenesis, diagnosis, treatment, and prevention of severe acute respiratory syndrome caused by coronavirus-2, and Middle Eastern respiratory syndrome.
Collapse
Affiliation(s)
- Brent Luu
- UC Davis Betty Irene Moore School of Nursing, 2450 48th Street, Sacramento, CA 95817, USA
| | - Virginia McCoy-Hass
- UC Davis Betty Irene Moore School of Nursing, 2450 48th Street, Sacramento, CA 95817, USA
| | - Teuta Kadiu
- UC Davis Betty Irene Moore School of Nursing, 2450 48th Street, Sacramento, CA 95817, USA
| | - Victoria Ngo
- UC Davis Betty Irene Moore School of Nursing, 2450 48th Street, Sacramento, CA 95817, USA
| | - Sara Kadiu
- Partners Pharmacy, 181 Cedar Hill Road Suite 1610, Marlborough, MA 01752, USA
| | - Jeffrey Lien
- Walgreens, 227 Shoreline Highway, Mill Valley, CA 94941, USA
| |
Collapse
|
26
|
Islam MM, Khanom H, Farag E, Mim ZT, Naidoo P, Mkhize-Kwitshana ZL, Tibbo M, Islam A, Soares Magalhaes RJ, Hassan MM. Global patterns of Middle East respiratory syndrome coronavirus (MERS-CoV) prevalence and seroprevalence in camels: A systematic review and meta-analysis. One Health 2023; 16:100561. [PMID: 37200564 PMCID: PMC10166617 DOI: 10.1016/j.onehlt.2023.100561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023] Open
Abstract
The Middle East respiratory syndrome Coronavirus (MERS-CoV) is one of the human coronaviruses that causes severe respiratory infection. Bats are considered to be the natural reservoir, where dromedary camels (DC) are the intermediate hosts of the virus. The current study was undertaken to provide an update on global distribution of the virus in camels, and to investigate the pooled prevalence and camel-associated risk factors of infection. After registration of the review protocol in the Open Science Framework, data searches were conducted on 18 April 2023 through Embase, PubMed, Scopus, and Web of Science. Considering only natural MERS-CoV infection in camels, 94 articles were selected for data curation through blind screening by two authors. Meta-analysis was conducted to estimate the pooled prevalence and to evaluate camel-associated risk factors. Finally, the results were presented in forest plots. The reviewed articles tested 34 countries, of which camels of 24 countries were seropositive and in 15 countries they were positive by molecular method. Viral RNA was detected in DC. Non-DC, such as bactrian camels, alpaca, llama, and hybrid camels were only seropositive. The global estimated pooled seroprevalence and viral RNA prevalence in DC were 77.53% and 23.63%, respectively, with the highest prevalence in West Asia (86.04% and 32.37% respectively). In addition, 41.08% of non-DC were seropositive. The estimated pooled prevalence of MERS-CoV RNA significantly varied by sample types with the highest in oral (45.01%) and lowest in rectal (8.42%) samples; the estimated pooled prevalence in nasal (23.10%) and milk (21.21%) samples were comparable. The estimated pooled seroprevalence in <2 years, 2-5 years, and > 5 years age groups were 56.32%, 75.31%, and 86.31%, respectively, while viral RNA prevalence was 33.40%, 15.87%, and 13.74%, respectively. Seroprevalence and viral RNA prevalence were generally higher in females (75.28% and 19.70%, respectively) than in males (69.53% and 18.99%, respectively). Local camels had lower estimated pooled seroprevalence (63.34%) and viral RNA prevalence (17.78%) than those of imported camels (89.17% and 29.41%, respectively). The estimated pooled seroprevalence was higher in camels of free-herds (71.70%) than confined herds (47.77%). Furthermore, estimated pooled seroprevalence was higher in samples from livestock markets, followed by abattoirs, quarantine, and farms but viral RNA prevalence was the highest in samples from abattoirs, followed by livestock markets, quarantine, and farms. Risk factors, such as sample type, young age, female sex, imported camels, and camel management must be considered to control and prevent the spread and emergence of MERS-CoV.
Collapse
Affiliation(s)
| | - Hamida Khanom
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | | | - Zarin Tasnim Mim
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
| | - Pragalathan Naidoo
- Discipline of Medical Microbiology, College of Health Sciences, University of KwaZulu Natal, Durban 4000, South Africa
- Division of Research Capacity Development, Medical Research Council, Tygerberg, Cape Town 7505, South Africa
| | - Zilungile Lynette Mkhize-Kwitshana
- Discipline of Medical Microbiology, College of Health Sciences, University of KwaZulu Natal, Durban 4000, South Africa
- Division of Research Capacity Development, Medical Research Council, Tygerberg, Cape Town 7505, South Africa
| | - Markos Tibbo
- Food and Agriculture Organization of the United Nations (FAO), Subregional Office for the Gulf Cooperation Council States and Yemen, Abu Dhabi, United Arab Emirates
| | | | - Ricardo J. Soares Magalhaes
- Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, QLD 4343, Australia
- Children Health and Environment Program, UQ Child Health Research Centre, The University of Queensland, QLD 4343, Australia
| | - Mohammad Mahmudul Hassan
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh
- Queensland Alliance for One Health Sciences, School of Veterinary Science, The University of Queensland, QLD 4343, Australia
| |
Collapse
|
27
|
Weidinger P, Kolodziejek J, Loney T, Kannan DO, Osman BM, Khafaga T, Howarth B, Sher Shah M, Mazrooei H, Wolf N, Karuvantevida N, Abou Tayoun A, Alsheikh-Ali A, Camp JV, Nowotny N. MERS-CoV Found in Hyalomma dromedarii Ticks Attached to Dromedary Camels at a Livestock Market, United Arab Emirates, 2019. Viruses 2023; 15:1288. [PMID: 37376588 DOI: 10.3390/v15061288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/23/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
The main mode of transmission of Middle East respiratory syndrome-related coronavirus (MERS-CoV) between dromedaries is likely via the respiratory route. However, there must be other modes to explain how the infection is brought to MERS-CoV-negative closed herds, such as transmission by ticks. Here, we present a study performed at three different locations in the United Arab Emirates (UAE) involving 215 dromedary camels (Camelus dromedarius) and the ticks attached to them. We tested the camels and ticks via RT-(q)PCR for the presence of MERS-CoV nucleic acids, as well as flaviviruses that may be present in the region (e.g., Alkhumra hemorrhagic fever virus). Camel sera were additionally analyzed for evidence of previous exposure to MERS-CoV. In total, 8 out of 242 tick pools were positive for MERS-CoV RNA (3.3%; Ct 34.6-38.3), 7 of which contained Hyalomma dromedarii ticks, and one contained a Hyalomma sp. tick (species not identified). All of the virus-positive ticks' host camels were also positive for MERS-CoV RNA in their nasal swab samples. Short sequences established in the N gene region from two positive tick pools were identical to viral sequences from their hosts' nasal swabs. In total, 59.3% of dromedaries at the livestock market had MERS-CoV RNA in their nasal swabs (Ct 17.7-39.5). While dromedaries at all locations were negative for MERS-CoV RNA in their serum samples, antibodies were detected in 95.2% and 98.7% of them (tested by ELISA and indirect immunofluorescence test, respectively). Given the probably transient and/or low level of MERS-CoV viremia in dromedaries and the rather high Ct values observed in the ticks, it seems unlikely that Hyalomma dromedarii is a competent vector for MERS-CoV; however, its role in mechanical or fomite transmission between camels should be investigated.
Collapse
Affiliation(s)
- Pia Weidinger
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Jolanta Kolodziejek
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Tom Loney
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Dafalla O Kannan
- Al Ain City Municipality, Al Ain P.O. Box 1003, United Arab Emirates
| | | | - Tamer Khafaga
- Dubai Desert Conservation Reserve, Emirates Group, Dubai P.O. Box 686, United Arab Emirates
| | - Brigitte Howarth
- Natural History Museum Abu Dhabi (NHMAD), Department of Culture and Tourism, Abu Dhabi P.O. Box 94000, United Arab Emirates
| | - Moayyed Sher Shah
- Dubai Desert Conservation Reserve, Emirates Group, Dubai P.O. Box 686, United Arab Emirates
| | - Hessa Mazrooei
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Nadine Wolf
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Noushad Karuvantevida
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Ahmad Abou Tayoun
- Al Jalila Genomics Center of Excellence, Al Jalila Children's Specialty Hospital, Dubai P.O. Box 7662, United Arab Emirates
- Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Alawi Alsheikh-Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Jeremy V Camp
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| |
Collapse
|
28
|
Ruis C, Peacock TP, Polo LM, Masone D, Alvarez MS, Hinrichs AS, Turakhia Y, Cheng Y, McBroome J, Corbett-Detig R, Parkhill J, Floto RA. A lung-specific mutational signature enables inference of viral and bacterial respiratory niche. Microb Genom 2023; 9. [PMID: 37185044 DOI: 10.1099/mgen.0.001018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Exposure to different mutagens leaves distinct mutational patterns that can allow inference of pathogen replication niches. We therefore investigated whether SARS-CoV-2 mutational spectra might show lineage-specific differences, dependent on the dominant site(s) of replication and onwards transmission, and could therefore rapidly infer virulence of emergent variants of concern (VOCs). Through mutational spectrum analysis, we found a significant reduction in G>T mutations in the Omicron variant, which replicates in the upper respiratory tract (URT), compared to other lineages, which replicate in both the URT and lower respiratory tract (LRT). Mutational analysis of other viruses and bacteria indicates a robust, generalizable association of high G>T mutations with replication within the LRT. Monitoring G>T mutation rates over time, we found early separation of Omicron from Beta, Gamma and Delta, while mutational patterns in Alpha varied consistent with changes in transmission source as social restrictions were lifted. Mutational spectra may be a powerful tool to infer niches of established and emergent pathogens.
Collapse
Affiliation(s)
- Christopher Ruis
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
| | - Thomas P Peacock
- Department of Infectious Disease, Imperial College London, London, UK
| | - Luis M Polo
- Instituto de Histología y Embriología de Mendoza - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Diego Masone
- Instituto de Histología y Embriología de Mendoza - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo, Mendoza, Argentina
- Facultad de Ingeniería, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Maria Soledad Alvarez
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina
| | - Angie S Hinrichs
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Yatish Turakhia
- Department of Electrical and Computer Engineering, University of California San Diego, San Diego, CA, USA
| | - Ye Cheng
- Department of Electrical and Computer Engineering, University of California San Diego, San Diego, CA, USA
| | - Jakob McBroome
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Russell Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - R Andres Floto
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC-Laboratory of Molecular Biology, Cambridge, UK
- Cambridge Centre for Lung Infection, Papworth Hospital, Cambridge, UK
- Cambridge Centre for AI in Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
29
|
Zabiegala A, Kim Y, Chang KO. Roles of host proteases in the entry of SARS-CoV-2. ANIMAL DISEASES 2023; 3:12. [PMID: 37128508 PMCID: PMC10125864 DOI: 10.1186/s44149-023-00075-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/07/2023] [Indexed: 05/03/2023] Open
Abstract
The spike protein (S) of SARS-CoV-2 is responsible for viral attachment and entry, thus a major factor for host susceptibility, tissue tropism, virulence and pathogenicity. The S is divided with S1 and S2 region, and the S1 contains the receptor-binding domain (RBD), while the S2 contains the hydrophobic fusion domain for the entry into the host cell. Numerous host proteases have been implicated in the activation of SARS-CoV-2 S through various cleavage sites. In this article, we review host proteases including furin, trypsin, transmembrane protease serine 2 (TMPRSS2) and cathepsins in the activation of SARS-CoV-2 S. Many betacoronaviruses including SARS-CoV-2 have polybasic residues at the S1/S2 site which is subjected to the cleavage by furin. The S1/S2 cleavage facilitates more assessable RBD to the receptor ACE2, and the binding triggers further conformational changes and exposure of the S2' site to proteases such as type II transmembrane serine proteases (TTPRs) including TMPRSS2. In the presence of TMPRSS2 on the target cells, SARS-CoV-2 can utilize a direct entry route by fusion of the viral envelope to the cellular membrane. In the absence of TMPRSS2, SARS-CoV-2 enter target cells via endosomes where multiple cathepsins cleave the S for the successful entry. Additional host proteases involved in the cleavage of the S were discussed. This article also includes roles of 3C-like protease inhibitors which have inhibitory activity against cathepsin L in the entry of SARS-CoV-2, and discussed the dual roles of such inhibitors in virus replication.
Collapse
Affiliation(s)
- Alexandria Zabiegala
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506 USA
| | - Yunjeong Kim
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506 USA
| | - Kyeong-Ok Chang
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506 USA
| |
Collapse
|
30
|
Naderi S, Chen PE, Murall CL, Poujol R, Kraemer S, Pickering BS, Sagan SM, Shapiro BJ. Zooanthroponotic transmission of SARS-CoV-2 and host-specific viral mutations revealed by genome-wide phylogenetic analysis. eLife 2023; 12:e83685. [PMID: 37014792 PMCID: PMC10072876 DOI: 10.7554/elife.83685] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a generalist virus, infecting and evolving in numerous mammals, including captive and companion animals, free-ranging wildlife, and humans. Transmission among non-human species poses a risk for the establishment of SARS-CoV-2 reservoirs, makes eradication difficult, and provides the virus with opportunities for new evolutionary trajectories, including the selection of adaptive mutations and the emergence of new variant lineages. Here, we use publicly available viral genome sequences and phylogenetic analysis to systematically investigate the transmission of SARS-CoV-2 between human and non-human species and to identify mutations associated with each species. We found the highest frequency of animal-to-human transmission from mink, compared with lower transmission from other sampled species (cat, dog, and deer). Although inferred transmission events could be limited by sampling biases, our results provide a useful baseline for further studies. Using genome-wide association studies, no single nucleotide variants (SNVs) were significantly associated with cats and dogs, potentially due to small sample sizes. However, we identified three SNVs statistically associated with mink and 26 with deer. Of these SNVs, ~⅔ were plausibly introduced into these animal species from local human populations, while the remaining ~⅓ were more likely derived in animal populations and are thus top candidates for experimental studies of species-specific adaptation. Together, our results highlight the importance of studying animal-associated SARS-CoV-2 mutations to assess their potential impact on human and animal health.
Collapse
Affiliation(s)
- Sana Naderi
- Department of Microbiology & Immunology, McGill UniversityMontrealCanada
| | - Peter E Chen
- Department of Microbiology & Immunology, McGill UniversityMontrealCanada
- Département de sciences biologiques, Université de MontréalMontrealCanada
| | - Carmen Lia Murall
- Department of Microbiology & Immunology, McGill UniversityMontrealCanada
- Public Health Agency of CanadaWinnipegCanada
| | | | - Susanne Kraemer
- Department of Microbiology & Immunology, McGill UniversityMontrealCanada
| | - Bradley S Pickering
- National Centre for Foreign Animal Disease, Canadian Food Inspection AgencyWinnipegCanada
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State UniversityAmesUnited States
- Department of Medical Microbiology and Infectious Diseases, University of ManitobaWinnipegCanada
| | - Selena M Sagan
- Department of Microbiology & Immunology, McGill UniversityMontrealCanada
- Department of Biochemistry, McGill UniversityMontrealCanada
| | - B Jesse Shapiro
- Department of Microbiology & Immunology, McGill UniversityMontrealCanada
- McGill Genome CentreMontrealCanada
- McGill Centre for Microbiome ResearchMontrealCanada
| |
Collapse
|
31
|
Weidinger P, Kolodziejek J, Khafaga T, Loney T, Howarth B, Sher Shah M, Abou Tayoun A, Alsheikh-Ali A, Camp JV, Nowotny N. Potentially Zoonotic Viruses in Wild Rodents, United Arab Emirates, 2019—A Pilot Study. Viruses 2023; 15:v15030695. [PMID: 36992404 PMCID: PMC10054371 DOI: 10.3390/v15030695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/10/2023] Open
Abstract
The majority of emerging viral infectious diseases in humans originate from wildlife reservoirs, such as rodents and bats. We investigated a possible reservoir, namely wild gerbils and mice trapped in a desert reserve within the emirate of Dubai, United Arab Emirates (UAE). In total, 52 gerbils and 1 jird (Gerbillinae), 10 house mice (Mus musculus), and 1 Arabian spiny mouse (Acomys dimidiatus) were sampled. Oro-pharyngeal swabs, fecal samples, attached ticks, and organ samples (where available) were screened by (RT-q)PCR for the following viruses: Middle East respiratory syndrome-related coronavirus, Crimean-Congo hemorrhagic fever orthonairovirus, Alkhumra hemorrhagic fever virus, hantaviruses, Lymphocytic choriomeningitis mammarenavirus, Rustrela virus, poxviruses, flaviviruses, and herpesviruses. All of the samples were negative for all investigated viruses, except for herpesviruses: 19 gerbils (35.8%) and 7 house mice (70.0%) were positive. The resulting sequences were only partly identical to sequences in GenBank. Phylogenetic analysis revealed three novel betaherpesviruses and four novel gammaherpesviruses. Interestingly, species identification of the positive gerbils resulted in eight individuals clustering in a separate clade, most closely related to Dipodillus campestris, the North African gerbil, indicating either the expansion of the geographic range of this species, or the existence of a closely related, yet undiscovered species in the UAE. In conclusion, we could not find evidence of persistence or shedding of potentially zoonotic viruses in the investigated rodent cohorts of limited sample size.
Collapse
Affiliation(s)
- Pia Weidinger
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Jolanta Kolodziejek
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Tamer Khafaga
- Dubai Desert Conservation Reserve, Emirates Group, Dubai P.O. Box 686, United Arab Emirates
| | - Tom Loney
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Brigitte Howarth
- American University in Dubai, Al Sufouh 2, Dubai P.O. Box 28282, United Arab Emirates
| | - Moayyed Sher Shah
- Dubai Desert Conservation Reserve, Emirates Group, Dubai P.O. Box 686, United Arab Emirates
| | - Ahmad Abou Tayoun
- Al Jalila Genomics Center of Excellence, Al Jalila Children’s Specialty Hospital, Dubai 7662, United Arab Emirates
- Center for Genomic Discovery, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
| | - Alawi Alsheikh-Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
- Dubai Health Authority, Dubai P.O. Box 4545, United Arab Emirates
| | - Jeremy V. Camp
- Center for Virology, Medical University of Vienna, 1090 Vienna, Austria
| | - Norbert Nowotny
- Viral Zoonoses, Emerging and Vector-Borne Infections Group, Institute of Virology, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai P.O. Box 505055, United Arab Emirates
- Correspondence: ; Tel.: +43-1-25077-2704
| |
Collapse
|
32
|
Hill V, Koch RT, Bialosuknia SM, Ngo K, Zink SD, Koetzner CA, Maffei JG, Dupuis AP, Backenson PB, Oliver J, Bransfield AB, Misencik MJ, Petruff TA, Shepard JJ, Warren JL, Gill MS, Baele G, Vogels CB, Gallagher G, Burns P, Hentoff A, Smole S, Brown C, Osborne M, Kramer LD, Armstrong PM, Ciota AT, Grubaugh ND. Dynamics of Eastern equine encephalitis virus during the 2019 outbreak in the Northeast United States. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.03.06.23286851. [PMID: 36945576 PMCID: PMC10029029 DOI: 10.1101/2023.03.06.23286851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Eastern equine encephalitis virus (EEEV) causes a rare but severe disease in horses and humans, and is maintained in an enzootic transmission cycle between songbirds and Culiseta melanura mosquitoes. In 2019, the largest EEEV outbreak in the United States for more than 50 years occurred, centered in the Northeast. To explore the dynamics of the outbreak, we sequenced 80 isolates of EEEV and combined them with existing genomic data. We found that, like previous years, cases were driven by frequent short-lived virus introductions into the Northeast from Florida. Once in the Northeast, we found that Massachusetts was important for regional spread. We found no evidence of any changes in viral, human, or bird factors which would explain the increase in cases in 2019. By using detailed mosquito surveillance data collected by Massachusetts and Connecticut, however, we found that the abundance of Cs. melanura was exceptionally high in 2019, as was the EEEV infection rate. We employed these mosquito data to build a negative binomial regression model and applied it to estimate early season risks of human or horse cases. We found that the month of first detection of EEEV in mosquito surveillance data and vector index (abundance multiplied by infection rate) were predictive of cases later in the season. We therefore highlight the importance of mosquito surveillance programs as an integral part of public health and disease control.
Collapse
Affiliation(s)
- Verity Hill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Robert T. Koch
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Sean M. Bialosuknia
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
| | - Kiet Ngo
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
| | - Steven D. Zink
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
| | - Cheri A. Koetzner
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
| | - Joseph G. Maffei
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
| | - Alan P. Dupuis
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
| | - P. Bryon Backenson
- New York State Department of Health, Bureau of Communicable Disease Control, Albany, NY, USA
| | - JoAnne Oliver
- New York State Department of Health, Bureau of Communicable Disease Control, Syracuse, NY, USA
- Division of Environmental and Renewable Resources, State University of New York at Morrisville - School of Agriculture, Business and Technology, Morrisville, NY, USA
| | - Angela B. Bransfield
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Michael J. Misencik
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Tanya A. Petruff
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - John J. Shepard
- Center for Vector Biology and Zoonotic Diseases, Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Joshua L. Warren
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
- Public Health Modeling Unit, Yale School of Public Health, New Haven, CT, USA
| | - Mandev S. Gill
- Department of Statistics, University of Georgia, Athens, GA, USA
| | - Guy Baele
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Chantal B.F. Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Glen Gallagher
- Massachusetts Department of Public Health, Boston, MA, USA
- Rhode Island State Health Laboratory, Rhode Island Department of Health, Providence, RI, USA
| | - Paul Burns
- Massachusetts Department of Public Health, Boston, MA, USA
| | - Aaron Hentoff
- Massachusetts Department of Public Health, Boston, MA, USA
| | - Sandra Smole
- Massachusetts Department of Public Health, Boston, MA, USA
| | | | | | - Laura D. Kramer
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, USA
| | - Philip M. Armstrong
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Division of Environmental and Renewable Resources, State University of New York at Morrisville - School of Agriculture, Business and Technology, Morrisville, NY, USA
| | - Alexander T. Ciota
- The Arbovirus Laboratory, New York State Department of Health, Wadsworth Center, Slingerlands, NY, USA
- Department of Biomedical Sciences, State University of New York at Albany School of Public Health, Albany, NY, USA
| | - Nathan D. Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
33
|
Tosta S, Moreno K, Schuab G, Fonseca V, Segovia FMC, Kashima S, Elias MC, Sampaio SC, Ciccozzi M, Alcantara LCJ, Slavov SN, Lourenço J, Cella E, Giovanetti M. Global SARS-CoV-2 genomic surveillance: What we have learned (so far). INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 108:105405. [PMID: 36681102 PMCID: PMC9847326 DOI: 10.1016/j.meegid.2023.105405] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
The COVID-19 pandemic has brought significant challenges for genomic surveillance strategies in public health systems worldwide. During the past thirty-four months, many countries faced several epidemic waves of SARS-CoV-2 infections, driven mainly by the emergence and spread of novel variants. In that line, genomic surveillance has been a crucial toolkit to study the real-time SARS-CoV-2 evolution, for the assessment and optimization of novel diagnostic assays, and to improve the efficacy of existing vaccines. During the pandemic, the identification of emerging lineages carrying lineage-specific mutations (particularly those in the Receptor Binding domain) showed how these mutations might significantly impact viral transmissibility, protection from reinfection and vaccination. So far, an unprecedented number of SARS-CoV-2 viral genomes has been released in public databases (i.e., GISAID, and NCBI), achieving 14 million genome sequences available as of early-November 2022. In the present review, we summarise the global landscape of SARS-CoV-2 during the first thirty-four months of viral circulation and evolution. It demonstrates the urgency and importance of sustained investment in genomic surveillance strategies to timely identify the emergence of any potential viral pathogen or associated variants, which in turn is key to epidemic and pandemic preparedness.
Collapse
Affiliation(s)
- Stephane Tosta
- Interunit Postgraduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Keldenn Moreno
- Interunit Postgraduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gabriel Schuab
- Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil; Laboratório de Flavivirus, Instituto Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vagner Fonseca
- Organização Pan-Americana da Saúde/Organização Mundial da Saúde, Brasília, Distrito Federal, Brazil.
| | | | - Simone Kashima
- Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo,Brazil
| | | | | | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, University Campus Bio-Medico of Rome, Italy
| | - Luiz Carlos Junior Alcantara
- Interunit Postgraduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Flavivirus, Instituto Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Svetoslav Nanev Slavov
- Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo,Brazil; Butantan Institute, São Paulo, Brazil
| | - José Lourenço
- BioISI (Biosystems and Integrative Sciences Institute), Faculdade de Ciências da Universidade de Lisboa, Lisboa,Portugal
| | - Eleonora Cella
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32827, USA.
| | - Marta Giovanetti
- Interunit Postgraduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Flavivirus, Instituto Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil; Department of Science and Technology for Humans and the Environment, University of Campus Bio-Medico di Roma, Rome, Italy.
| |
Collapse
|
34
|
Engineering potent live attenuated coronavirus vaccines by targeted inactivation of the immune evasive viral deubiquitinase. Nat Commun 2023; 14:1141. [PMID: 36854765 PMCID: PMC9973250 DOI: 10.1038/s41467-023-36754-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/16/2023] [Indexed: 03/02/2023] Open
Abstract
Coronaviruses express a papain-like protease (PLpro) that is required for replicase polyprotein maturation and also serves as a deubiquitinating enzyme (DUB). In this study, using a Middle East respiratory syndrome virus (MERS-CoV) PLpro modified virus in which the DUB is selectively inactivated, we show that the PLpro DUB is an important MERS-CoV interferon antagonist and virulence factor. Although the DUB-negative rMERS-CoVMA replicates robustly in the lungs of human dipeptidyl peptidase 4 knock-in (hDPP4 KI) mice, it does not cause clinical symptoms. Interestingly, a single intranasal vaccination with DUB-negative rMERS-CoVMA induces strong and sustained neutralizing antibody responses and sterilizing immunity after a lethal wt virus challenge. The survival of naïve animals also significantly increases when sera from animals vaccinated with the DUB-negative rMERS-CoVMA are passively transferred, prior to receiving a lethal virus dose. These data demonstrate that DUB-negative coronaviruses could be the basis of effective modified live attenuated vaccines.
Collapse
|
35
|
Layan M, Müller NF, Dellicour S, De Maio N, Bourhy H, Cauchemez S, Baele G. Impact and mitigation of sampling bias to determine viral spread: Evaluating discrete phylogeography through CTMC modeling and structured coalescent model approximations. Virus Evol 2023; 9:vead010. [PMID: 36860641 PMCID: PMC9969415 DOI: 10.1093/ve/vead010] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/06/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Bayesian phylogeographic inference is a powerful tool in molecular epidemiological studies, which enables reconstruction of the origin and subsequent geographic spread of pathogens. Such inference is, however, potentially affected by geographic sampling bias. Here, we investigated the impact of sampling bias on the spatiotemporal reconstruction of viral epidemics using Bayesian discrete phylogeographic models and explored different operational strategies to mitigate this impact. We considered the continuous-time Markov chain (CTMC) model and two structured coalescent approximations (Bayesian structured coalescent approximation [BASTA] and marginal approximation of the structured coalescent [MASCOT]). For each approach, we compared the estimated and simulated spatiotemporal histories in biased and unbiased conditions based on the simulated epidemics of rabies virus (RABV) in dogs in Morocco. While the reconstructed spatiotemporal histories were impacted by sampling bias for the three approaches, BASTA and MASCOT reconstructions were also biased when employing unbiased samples. Increasing the number of analyzed genomes led to more robust estimates at low sampling bias for the CTMC model. Alternative sampling strategies that maximize the spatiotemporal coverage greatly improved the inference at intermediate sampling bias for the CTMC model, and to a lesser extent, for BASTA and MASCOT. In contrast, allowing for time-varying population sizes in MASCOT resulted in robust inference. We further applied these approaches to two empirical datasets: a RABV dataset from the Philippines and a SARS-CoV-2 dataset describing its early spread across the world. In conclusion, sampling biases are ubiquitous in phylogeographic analyses but may be accommodated by increasing the sample size, balancing spatial and temporal composition in the samples, and informing structured coalescent models with reliable case count data.
Collapse
Affiliation(s)
| | | | | | | | - Hervé Bourhy
- Lyssavirus Epidemiology and Neuropathology Unit, Institut Pasteur, Université Paris Cité, 25-28 rue du Docteur Roux, Paris 75014, France,WHO Collaborating Centre for Reference and Research on Rabies, Institut Pasteur, Université Paris Cité, 28 rue du Docteur Roux, Paris 75724, France
| | | | | |
Collapse
|
36
|
Li Q, Shah T, Wang B, Qu L, Wang R, Hou Y, Baloch Z, Xia X. Cross-species transmission, evolution and zoonotic potential of coronaviruses. Front Cell Infect Microbiol 2023; 12:1081370. [PMID: 36683695 PMCID: PMC9853062 DOI: 10.3389/fcimb.2022.1081370] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Coronaviruses (CoVs) continuously evolve, crossing species barriers and spreading across host ranges. Over the last two decades, several CoVs (HCoV-229E, HCoV-NL63, HCoV-HKU1, HCoV-OC43, SARS-CoV, MERS-CoV, and SARS-CoV-2) have emerged in animals and mammals, causing significant economic and human life losses. Due to CoV cross-species transmission and the evolution of novel viruses, it is critical to identify their natural reservoiurs and the circumstances under which their transmission occurs. In this review, we use genetic and ecological data to disentangle the evolution of various CoVs in wildlife, humans, and domestic mammals. We thoroughly investigate several host species and outline the epidemiology of CoVs toward specific hosts. We also discuss the cross-species transmission of CoVs at the interface of wildlife, animals, and humans. Clarifying the epidemiology and diversity of species reservoirs will significantly impact our ability to respond to the future emergence of CoVs in humans and domestic animals.
Collapse
Affiliation(s)
- Qian Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
- The First Affiliated Hospital & Clinical Medical College, Dali University, Dali, Yunnan, China
| | - Taif Shah
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Binghui Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Linyu Qu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Rui Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Yutong Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Zulqarnain Baloch
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, China
- Affiliated Anning First People’s Hospital, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
37
|
Enveloped viruses show increased propensity to cross-species transmission and zoonosis. Proc Natl Acad Sci U S A 2022; 119:e2215600119. [PMID: 36472956 PMCID: PMC9897429 DOI: 10.1073/pnas.2215600119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The transmission of viruses between different host species is a major source of emerging diseases and is of particular concern in the case of zoonotic transmission from mammals to humans. Several zoonosis risk factors have been identified, but it is currently unclear which viral traits primarily determine this process as previous work has focused on a few hundred viruses that are not representative of actual viral diversity. Here, we investigate fundamental virological traits that influence cross-species transmissibility and zoonotic propensity by interrogating a database of over 12,000 mammalian virus-host associations. Our analysis reveals that enveloped viruses tend to infect more host species and are more likely to be zoonotic than nonenveloped viruses, while other viral traits such as genome composition, structure, size, or the viral replication compartment play a less obvious role. This contrasts with the previous notion that viral envelopes did not significantly impact or even reduce zoonotic risk and should help better prioritize outbreak prevention efforts. We suggest several mechanisms by which viral envelopes could promote cross-species transmissibility, including structural flexibility of receptor-binding proteins and evasion of viral entry barriers.
Collapse
|
38
|
Dittmer DP, Eason AB, Juarez A. Scaling Biosafety Up During and Down After the COVID-19 Pandemic. APPLIED BIOSAFETY 2022; 27:247-254. [PMID: 36761994 PMCID: PMC9902049 DOI: 10.1089/apb.2022.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Purpose The aim of this work was to review and analyze changes to the practice of biosafety imposed by pandemics. Methods A narrative review of the COVID-19 pandemic that began in 2020 and prior pandemics from the perspective of a working virologist. Results By definition, pandemics, outbreaks, and other emergencies are transient phenomena. They manifest as waves of events that induce unforeseen needs and present unknown challenges. After a pandemic, the return to normality is as crucial as the scale-up during the exponential growth phase. The COVID-19 pandemic presents an example to study operational biosafety and biocontainment issues during community transmission of infectious agents with established pandemic potential, the propensity to induce severe disease, and the ability to disrupt aspects of human society. Conclusions Scaling down heightened biocontainment measures after a pandemic is as important as scaling up during a pandemic. The availability of preventive vaccines, and therapeutic drug regimens, should be considered in risk assessments for laboratory studies. There exists the need to preserve situational memory at the personal and institutional levels that can be served by professional societies.
Collapse
Affiliation(s)
- Dirk P. Dittmer
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anthony B. Eason
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Angelica Juarez
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
39
|
Alhetheel A, Albarrag A, Shakoor Z, Somily A, Barry M, Altalhi H, Bakhrebah M, Nassar M, Alfageeh M, Assiri A, Alfaraj S, Memish ZA. Differential expression of carcinoembryonic antigen-related cell adhesion molecule-5 (CEACAM5) and dipeptidyl peptidase-4 (DPP4) with detection of Middle East respiratory syndrome-coronavirus in peripheral blood. J Infect Public Health 2022; 15:1315-1320. [PMID: 36279687 PMCID: PMC9576204 DOI: 10.1016/j.jiph.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/13/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Middle East respiratory syndrome-coronavirus (MERS-CoV) utilizes CD26 (dipeptidyl peptidase-4) and CD66e or CEACAM5 (carcinoembryonic antigen-related cell adhesion molecule 5) receptors for cell infection. Peripheral blood mononuclear cells (PBMCs) play a critical role in mounting adaptive immune response against the virus. This study was performed to assess the expression of CD26 and CD66e on PBMCs and their susceptibility to MERS-CoV infection. METHODS Surface expression of CD26 and CD66e receptors on PBMCs from MERS-CoV patients (n = 20) and healthy controls (n = 20) was assessed by flow cytometry and the soluble forms were determined by enzyme-linked immunosorbent assay (ELISA). MERS-CoV UpE and Orf1a genes in PBMCs were detected by using Altona diagnostics reverse transcription polymerase chain reaction (RT-PCR) kit. RESULTS Mean fluorescent intensity (MFI) of CD66e was significantly higher on CD4 + lymphocytes (462.4 ± 64.35 vs 325.1 ± 19.69; p < 0.05) and CD8 + lymphocytes (533.8 ± 55.32 vs 392.4 ± 37.73; p < 0.04) from patients with MERS-CoV infection compared to the normal controls. No difference in MFI for CD66e was observed on monocytes (381.8 ± 40.34 vs 266.8 ± 20.6; p = 0.3) between the patients and controls. Soluble form of CD66e among MERS-CoV patients was also higher than the normal controls (mean= 338.7 ± 58.75 vs 160.7 ± 29.49 ng/mL; p < 0.01). Surface expression of CD26 on PBMCs and its soluble form were no different between the groups. MERS-CoV was detected by RT-PCR in 16/20 (80%) patients from whole blood, among them 8 patients were tested in PBMCs, 4/8 (50%) patients were positive. CONCLUSION Increased expression levels of CD66e (CEACAM5) may contribute to increased susceptibility of PBMCs to MERS-CoV infection and disease progression.
Collapse
Affiliation(s)
- Abdulkarim Alhetheel
- King Khalid University Hospital, Riyadh, Saudi Arabia; Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Ahmed Albarrag
- King Khalid University Hospital, Riyadh, Saudi Arabia; Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Zahid Shakoor
- King Khalid University Hospital, Riyadh, Saudi Arabia; Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ali Somily
- King Khalid University Hospital, Riyadh, Saudi Arabia; Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mazin Barry
- King Khalid University Hospital, Riyadh, Saudi Arabia; Department of Infectious Diseases, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hifa Altalhi
- King Khalid University Hospital, Riyadh, Saudi Arabia
| | | | - Majed Nassar
- King Abdulaziz city for Science and Technology, Riyadh, Saudi Arabia
| | - Mohamed Alfageeh
- King Abdulaziz city for Science and Technology, Riyadh, Saudi Arabia
| | - Ayed Assiri
- Critical Care Unit, Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia
| | - Sarah Alfaraj
- Corona Center, Prince Mohammed Bin Abdulaziz Hospital, Ministry of Health, Riyadh, Saudi Arabia
| | - Ziad A Memish
- Research and Innovation Center, King Saud Medical City, Ministry of Health, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia; Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
40
|
Abdelmissih S. A Bitter Experience That Enlightens the Future: COVID-19 Neurological Affection and Perspectives on the Orexigenic System. Cureus 2022; 14:e30788. [DOI: 10.7759/cureus.30788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
|
41
|
Pekar JE, Magee A, Parker E, Moshiri N, Izhikevich K, Havens JL, Gangavarapu K, Malpica Serrano LM, Crits-Christoph A, Matteson NL, Zeller M, Levy JI, Wang JC, Hughes S, Lee J, Park H, Park MS, Ching KZY, Lin RTP, Mat Isa MN, Noor YM, Vasylyeva TI, Garry RF, Holmes EC, Rambaut A, Suchard MA, Andersen KG, Worobey M, Wertheim JO. The molecular epidemiology of multiple zoonotic origins of SARS-CoV-2. Science 2022; 377:960-966. [PMID: 35881005 PMCID: PMC9348752 DOI: 10.1126/science.abp8337] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/18/2022] [Indexed: 01/08/2023]
Abstract
Understanding the circumstances that lead to pandemics is important for their prevention. We analyzed the genomic diversity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) early in the coronavirus disease 2019 (COVID-19) pandemic. We show that SARS-CoV-2 genomic diversity before February 2020 likely comprised only two distinct viral lineages, denoted "A" and "B." Phylodynamic rooting methods, coupled with epidemic simulations, reveal that these lineages were the result of at least two separate cross-species transmission events into humans. The first zoonotic transmission likely involved lineage B viruses around 18 November 2019 (23 October to 8 December), and the separate introduction of lineage A likely occurred within weeks of this event. These findings indicate that it is unlikely that SARS-CoV-2 circulated widely in humans before November 2019 and define the narrow window between when SARS-CoV-2 first jumped into humans and when the first cases of COVID-19 were reported. As with other coronaviruses, SARS-CoV-2 emergence likely resulted from multiple zoonotic events.
Collapse
Affiliation(s)
- Jonathan E. Pekar
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
- Department of Biomedical Informatics, University of California San Diego, La Jolla, CA 92093, USA
| | - Andrew Magee
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Edyth Parker
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Niema Moshiri
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Katherine Izhikevich
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Mathematics, University of California San Diego, La Jolla, CA 92093, USA
| | - Jennifer L. Havens
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA 92093, USA
| | - Karthik Gangavarapu
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | - Alexander Crits-Christoph
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
| | - Nathaniel L. Matteson
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mark Zeller
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Joshua I. Levy
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jade C. Wang
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY 11101, USA
| | - Scott Hughes
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY 11101, USA
| | - Jungmin Lee
- Department of Microbiology, Institute for Viral Diseases, Biosafety Center, College of Medicine, Korea University, Seoul, South Korea
| | - Heedo Park
- Department of Microbiology, Institute for Viral Diseases, Biosafety Center, College of Medicine, Korea University, Seoul, South Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, Biosafety Center, College of Medicine, Korea University, Seoul, South Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | | | - Raymond Tzer Pin Lin
- National Public Health Laboratory, National Centre for Infectious Diseases, Singapore
| | - Mohd Noor Mat Isa
- Malaysia Genome and Vaccine Institute, Jalan Bangi, 43000 Kajang, Selangor, Malaysia
| | - Yusuf Muhammad Noor
- Malaysia Genome and Vaccine Institute, Jalan Bangi, 43000 Kajang, Selangor, Malaysia
| | - Tetyana I. Vasylyeva
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Robert F. Garry
- Tulane University, School of Medicine, Department of Microbiology and Immunology, New Orleans, LA 70112, USA
- Zalgen Labs, LCC, Frederick, MD 21703 USA
- Global Virus Network (GVN), Baltimore, MD 21201, USA
| | - Edward C. Holmes
- Sydney Institute for Infectious Diseases, School of Life and Environmental Sciences and School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew Rambaut
- Institute of Evolutionary Biology, University of Edinburgh, King's Buildings, Edinburgh, EH9 3FL, UK
| | - Marc A. Suchard
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomathematics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Kristian G. Andersen
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Scripps Research Translational Institute, La Jolla, CA 92037, USA
| | - Michael Worobey
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Joel O. Wertheim
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
42
|
Guinat C, Valenzuela Agüí C, Vaughan TG, Scire J, Pohlmann A, Staubach C, King J, Świętoń E, Dán Á, Černíková L, Ducatez MF, Stadler T. Disentangling the role of poultry farms and wild birds in the spread of highly pathogenic avian influenza virus in Europe. Virus Evol 2022; 8:veac073. [PMID: 36533150 PMCID: PMC9752641 DOI: 10.1093/ve/veac073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/21/2022] [Accepted: 08/18/2022] [Indexed: 08/12/2023] Open
Abstract
In winter 2016-7, Europe was severely hit by an unprecedented epidemic of highly pathogenic avian influenza viruses (HPAIVs), causing a significant impact on animal health, wildlife conservation, and livestock economic sustainability. By applying phylodynamic tools to virus sequences collected during the epidemic, we investigated when the first infections occurred, how many infections were unreported, which factors influenced virus spread, and how many spillover events occurred. HPAIV was likely introduced into poultry farms during the autumn, in line with the timing of wild birds' migration. In Germany, Hungary, and Poland, the epidemic was dominated by farm-to-farm transmission, showing that understanding of how farms are connected would greatly help control efforts. In the Czech Republic, the epidemic was dominated by wild bird-to-farm transmission, implying that more sustainable prevention strategies should be developed to reduce HPAIV exposure from wild birds. Inferred transmission parameters will be useful to parameterize predictive models of HPAIV spread. None of the predictors related to live poultry trade, poultry census, and geographic proximity were identified as supportive predictors of HPAIV spread between farms across borders. These results are crucial to better understand HPAIV transmission dynamics at the domestic-wildlife interface with the view to reduce the impact of future epidemics.
Collapse
Affiliation(s)
- Claire Guinat
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse, Basel 4058, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge, Lausanne 1015, Switzerland
| | - Cecilia Valenzuela Agüí
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse, Basel 4058, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge, Lausanne 1015, Switzerland
| | - Timothy G Vaughan
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse, Basel 4058, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge, Lausanne 1015, Switzerland
| | - Jérémie Scire
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse, Basel 4058, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge, Lausanne 1015, Switzerland
| | - Anne Pohlmann
- Friedrich-Loeffler-Institut, Suedufer 10, Greifswald – Insel Riems 17489, Germany
| | - Christoph Staubach
- Friedrich-Loeffler-Institut, Suedufer 10, Greifswald – Insel Riems 17489, Germany
| | - Jacqueline King
- Friedrich-Loeffler-Institut, Suedufer 10, Greifswald – Insel Riems 17489, Germany
| | - Edyta Świętoń
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantow 57, Pulawy 24-100, Poland
| | - Ádám Dán
- DaNAm Vet Molbiol, Herman Ottó utca 5, Kőszeg 9730, Hungary
| | - Lenka Černíková
- State Veterinary Institute Prague, Sidlistni 136/24, Prague 165 03, Czech Republic
| | - Mariette F Ducatez
- IHAP, Université de Toulouse, INRAE, ENVT, 23 chemin des capelles, Toulouse 31076, France
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse, Basel 4058, Switzerland
- Swiss Institute of Bioinformatics, Quartier Sorge, Lausanne 1015, Switzerland
| |
Collapse
|
43
|
Sánchez CA, Li H, Phelps KL, Zambrana-Torrelio C, Wang LF, Zhou P, Shi ZL, Olival KJ, Daszak P. A strategy to assess spillover risk of bat SARS-related coronaviruses in Southeast Asia. Nat Commun 2022; 13:4380. [PMID: 35945197 PMCID: PMC9363439 DOI: 10.1038/s41467-022-31860-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 06/15/2022] [Indexed: 01/19/2023] Open
Abstract
Emerging diseases caused by coronaviruses of likely bat origin (e.g., SARS, MERS, SADS, COVID-19) have disrupted global health and economies for two decades. Evidence suggests that some bat SARS-related coronaviruses (SARSr-CoVs) could infect people directly, and that their spillover is more frequent than previously recognized. Each zoonotic spillover of a novel virus represents an opportunity for evolutionary adaptation and further spread; therefore, quantifying the extent of this spillover may help target prevention programs. We derive current range distributions for known bat SARSr-CoV hosts and quantify their overlap with human populations. We then use probabilistic risk assessment and data on human-bat contact, human viral seroprevalence, and antibody duration to estimate that a median of 66,280 people (95% CI: 65,351-67,131) are infected with SARSr-CoVs annually in Southeast Asia. These data on the geography and scale of spillover can be used to target surveillance and prevention programs for potential future bat-CoV emergence.
Collapse
Affiliation(s)
| | | | | | | | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Peng Zhou
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zheng-Li Shi
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | | | | |
Collapse
|
44
|
Rochman ND, Wolf YI, Koonin EV. Molecular adaptations during viral epidemics. EMBO Rep 2022; 23:e55393. [PMID: 35848484 PMCID: PMC9346483 DOI: 10.15252/embr.202255393] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/18/2022] [Accepted: 06/27/2022] [Indexed: 07/20/2023] Open
Abstract
In 1977, the world witnessed both the eradication of smallpox and the beginning of the modern age of genomics. Over the following half-century, 7 epidemic viruses of international concern galvanized virologists across the globe and led to increasingly extensive virus genome sequencing. These sequencing efforts exerted over periods of rapid adaptation of viruses to new hosts, in particular, humans provide insight into the molecular mechanisms underpinning virus evolution. Investment in virus genome sequencing was dramatically increased by the unprecedented support for phylogenomic analyses during the COVID-19 pandemic. In this review, we attempt to piece together comprehensive molecular histories of the adaptation of variola virus, HIV-1 M, SARS, H1N1-SIV, MERS, Ebola, Zika, and SARS-CoV-2 to the human host. Disruption of genes involved in virus-host interaction in animal hosts, recombination including genome segment reassortment, and adaptive mutations leading to amino acid replacements in virus proteins involved in host receptor binding and membrane fusion are identified as the key factors in the evolution of epidemic viruses.
Collapse
Affiliation(s)
- Nash D Rochman
- National Center for Biotechnology InformationNational Library of MedicineBethesdaMDUSA
| | - Yuri I Wolf
- National Center for Biotechnology InformationNational Library of MedicineBethesdaMDUSA
| | - Eugene V Koonin
- National Center for Biotechnology InformationNational Library of MedicineBethesdaMDUSA
| |
Collapse
|
45
|
Müller NF, Kistler KE, Bedford T. A Bayesian approach to infer recombination patterns in coronaviruses. Nat Commun 2022; 13:4186. [PMID: 35859071 PMCID: PMC9297283 DOI: 10.1038/s41467-022-31749-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/30/2022] [Indexed: 02/06/2023] Open
Abstract
As shown during the SARS-CoV-2 pandemic, phylogenetic and phylodynamic methods are essential tools to study the spread and evolution of pathogens. One of the central assumptions of these methods is that the shared history of pathogens isolated from different hosts can be described by a branching phylogenetic tree. Recombination breaks this assumption. This makes it problematic to apply phylogenetic methods to study recombining pathogens, including, for example, coronaviruses. Here, we introduce a Markov chain Monte Carlo approach that allows inference of recombination networks from genetic sequence data under a template switching model of recombination. Using this method, we first show that recombination is extremely common in the evolutionary history of SARS-like coronaviruses. We then show how recombination rates across the genome of the human seasonal coronaviruses 229E, OC43 and NL63 vary with rates of adaptation. This suggests that recombination could be beneficial to fitness of human seasonal coronaviruses. Additionally, this work sets the stage for Bayesian phylogenetic tracking of the spread and evolution of SARS-CoV-2 in the future, even as recombinant viruses become prevalent.
Collapse
Affiliation(s)
- Nicola F Müller
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.
| | - Kathryn E Kistler
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
46
|
Otieno JR, Cherry JL, Spiro DJ, Nelson MI, Trovão NS. Origins and Evolution of Seasonal Human Coronaviruses. Viruses 2022; 14:1551. [PMID: 35891531 PMCID: PMC9320361 DOI: 10.3390/v14071551] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
Four seasonal human coronaviruses (sHCoVs) are endemic globally (229E, NL63, OC43, and HKU1), accounting for 5-30% of human respiratory infections. However, the epidemiology and evolution of these CoVs remain understudied due to their association with mild symptomatology. Using a multigene and complete genome analysis approach, we find the evolutionary histories of sHCoVs to be highly complex, owing to frequent recombination of CoVs including within and between sHCoVs, and uncertain, due to the under sampling of non-human viruses. The recombination rate was highest for 229E and OC43 whereas substitutions per recombination event were highest in NL63 and HKU1. Depending on the gene studied, OC43 may have ungulate, canine, or rabbit CoV ancestors. 229E may have origins in a bat, camel, or an unsampled intermediate host. HKU1 had the earliest common ancestor (1809-1899) but fell into two distinct clades (genotypes A and B), possibly representing two independent transmission events from murine-origin CoVs that appear to be a single introduction due to large gaps in the sampling of CoVs in animals. In fact, genotype B was genetically more diverse than all the other sHCoVs. Finally, we found shared amino acid substitutions in multiple proteins along the non-human to sHCoV host-jump branches. The complex evolution of CoVs and their frequent host switches could benefit from continued surveillance of CoVs across non-human hosts.
Collapse
Affiliation(s)
- James R. Otieno
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.C.); (D.J.S.); (M.I.N.)
| | - Joshua L. Cherry
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.C.); (D.J.S.); (M.I.N.)
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - David J. Spiro
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.C.); (D.J.S.); (M.I.N.)
| | - Martha I. Nelson
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.C.); (D.J.S.); (M.I.N.)
| | - Nídia S. Trovão
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA; (J.L.C.); (D.J.S.); (M.I.N.)
| |
Collapse
|
47
|
Schindell BG, Allardice M, McBride JA, Dennehy B, Kindrachuk J. SARS-CoV-2 and the Missing Link of Intermediate Hosts in Viral Emergence - What We Can Learn From Other Betacoronaviruses. FRONTIERS IN VIROLOGY 2022; 2. [DOI: 10.3389/fviro.2022.875213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
The emergence of SARS-CoV-2 in 2019 has resulted in a global pandemic with devastating human health and economic consequences. The development of multiple vaccines, antivirals and supportive care modalities have aided in our efforts to gain control of the pandemic. However, the emergence of multiple variants of concern and spillover into numerous nonhuman animal species could protract the pandemic. Further, these events also increase the difficulty in simultaneously monitoring viral evolution across multiple species and predicting future spillback potential into the human population. Here, we provide historic context regarding the roles of reservoir and intermediate hosts in coronavirus circulation and discuss current knowledge of these for SARS-CoV-2. Increased understanding of SARS-CoV-2 zoonoses are fundamental for efforts to control the global health and economic impacts of COVID-19.
Collapse
|
48
|
Wertheim JO, Wang JC, Leelawong M, Martin DP, Havens JL, Chowdhury MA, Pekar JE, Amin H, Arroyo A, Awandare GA, Chow HY, Gonzalez E, Luoma E, Morang'a CM, Nekrutenko A, Shank SD, Silver S, Quashie PK, Rakeman JL, Ruiz V, Torian LV, Vasylyeva TI, Kosakovsky Pond SL, Hughes S. Detection of SARS-CoV-2 intra-host recombination during superinfection with Alpha and Epsilon variants in New York City. Nat Commun 2022; 13:3645. [PMID: 35752633 PMCID: PMC9233664 DOI: 10.1038/s41467-022-31247-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/08/2022] [Indexed: 01/26/2023] Open
Abstract
Recombination is an evolutionary process by which many pathogens generate diversity and acquire novel functions. Although a common occurrence during coronavirus replication, detection of recombination is only feasible when genetically distinct viruses contemporaneously infect the same host. Here, we identify an instance of SARS-CoV-2 superinfection, whereby an individual was infected with two distinct viral variants: Alpha (B.1.1.7) and Epsilon (B.1.429). This superinfection was first noted when an Alpha genome sequence failed to exhibit the classic S gene target failure behavior used to track this variant. Full genome sequencing from four independent extracts reveals that Alpha variant alleles comprise around 75% of the genomes, whereas the Epsilon variant alleles comprise around 20% of the sample. Further investigation reveals the presence of numerous recombinant haplotypes spanning the genome, specifically in the spike, nucleocapsid, and ORF 8 coding regions. These findings support the potential for recombination to reshape SARS-CoV-2 genetic diversity.
Collapse
Affiliation(s)
- Joel O Wertheim
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Jade C Wang
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA.
| | - Mindy Leelawong
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Darren P Martin
- Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Jennifer L Havens
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Moinuddin A Chowdhury
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Jonathan E Pekar
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Helly Amin
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Anthony Arroyo
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Hoi Yan Chow
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Edimarlyn Gonzalez
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Elizabeth Luoma
- Bureau of the Communicable Diseases, New York City Department of Health and Mental Hygiene, Long Island City, NY, USA
| | - Collins M Morang'a
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Anton Nekrutenko
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, State College, PA, USA
| | - Stephen D Shank
- Department of Biology, Temple University, Philadelphia, PA, USA
| | - Stefan Silver
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Peter K Quashie
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), University of Ghana, Accra, Ghana
| | - Jennifer L Rakeman
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Victoria Ruiz
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Lucia V Torian
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| | - Tetyana I Vasylyeva
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | - Scott Hughes
- New York City Public Health Laboratory, New York City Department of Health and Mental Hygiene, New York, NY, USA
| |
Collapse
|
49
|
Lerch A, Ten Bosch QA, L'Azou Jackson M, Bettis AA, Bernuzzi M, Murphy GAV, Tran QM, Huber JH, Siraj AS, Bron GM, Elliott M, Hartlage CS, Koh S, Strimbu K, Walters M, Perkins TA, Moore SM. Projecting vaccine demand and impact for emerging zoonotic pathogens. BMC Med 2022; 20:202. [PMID: 35705986 PMCID: PMC9200440 DOI: 10.1186/s12916-022-02405-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 05/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Despite large outbreaks in humans seeming improbable for a number of zoonotic pathogens, several pose a concern due to their epidemiological characteristics and evolutionary potential. To enable effective responses to these pathogens in the event that they undergo future emergence, the Coalition for Epidemic Preparedness Innovations is advancing the development of vaccines for several pathogens prioritized by the World Health Organization. A major challenge in this pursuit is anticipating demand for a vaccine stockpile to support outbreak response. METHODS We developed a modeling framework for outbreak response for emerging zoonoses under three reactive vaccination strategies to assess sustainable vaccine manufacturing needs, vaccine stockpile requirements, and the potential impact of the outbreak response. This framework incorporates geographically variable zoonotic spillover rates, human-to-human transmission, and the implementation of reactive vaccination campaigns in response to disease outbreaks. As proof of concept, we applied the framework to four priority pathogens: Lassa virus, Nipah virus, MERS coronavirus, and Rift Valley virus. RESULTS Annual vaccine regimen requirements for a population-wide strategy ranged from > 670,000 (95% prediction interval 0-3,630,000) regimens for Lassa virus to 1,190,000 (95% PrI 0-8,480,000) regimens for Rift Valley fever virus, while the regimens required for ring vaccination or targeting healthcare workers (HCWs) were several orders of magnitude lower (between 1/25 and 1/700) than those required by a population-wide strategy. For each pathogen and vaccination strategy, reactive vaccination typically prevented fewer than 10% of cases, because of their presently low R0 values. Targeting HCWs had a higher per-regimen impact than population-wide vaccination. CONCLUSIONS Our framework provides a flexible methodology for estimating vaccine stockpile needs and the geographic distribution of demand under a range of outbreak response scenarios. Uncertainties in our model estimates highlight several knowledge gaps that need to be addressed to target vulnerable populations more accurately. These include surveillance gaps that mask the true geographic distribution of each pathogen, details of key routes of spillover from animal reservoirs to humans, and the role of human-to-human transmission outside of healthcare settings. In addition, our estimates are based on the current epidemiology of each pathogen, but pathogen evolution could alter vaccine stockpile requirements.
Collapse
Affiliation(s)
- Anita Lerch
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Quirine A Ten Bosch
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Alison A Bettis
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | - Mauro Bernuzzi
- Coalition for Epidemic Preparedness Innovations (CEPI), London, UK
| | | | - Quan M Tran
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - John H Huber
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Amir S Siraj
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Gebbiena M Bron
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Margaret Elliott
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Carson S Hartlage
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Sojung Koh
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Kathyrn Strimbu
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Magdalene Walters
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - T Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA.
| | - Sean M Moore
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
50
|
Duault H, Michelet L, Boschiroli ML, Durand B, Canini L. A Bayesian evolutionary model towards understanding wildlife contribution to F4-family Mycobacterium bovis transmission in the South-West of France. Vet Res 2022; 53:28. [PMID: 35366933 PMCID: PMC8976416 DOI: 10.1186/s13567-022-01044-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 03/06/2022] [Indexed: 12/16/2022] Open
Abstract
In two “départements” in the South-West of France, bovine tuberculosis (bTB) outbreaks due to Mycobacterium bovis spoligotype SB0821 have been identified in cattle since 2002 and in wildlife since 2013. Using whole genome sequencing, the aim of our study was to clarify badger contribution to bTB transmission in this area. We used a Bayesian evolutionary model, to infer phylogenetic trees and migration rates between two pathogen populations defined by their host-species. In order to account for sampling bias, sub-population structure was inferred using the marginal approximation of the structured coalescent (Mascot) implemented in BEAST2. We included 167 SB0821 strains (21 isolated from badgers and 146 from cattle) and identified 171 single nucleotide polymorphisms. We selected a HKY model and a strict molecular clock. We estimated a badger-to-cattle transition rate (median: 2.2 transitions/lineage/year) 52 times superior to the cattle-to-badger rate (median: 0.042 transitions/lineage/year). Using the maximum clade credibility tree, we identified that over 75% of the lineages from 1989 to 2000 were present in badgers. In addition, we calculated a median of 64 transition events from badger-to-cattle (IQR: 10–91) and a median of zero transition event from cattle-to-badger (IQR: 0–3). Our model enabled us to infer inter-species transitions but not intra-population transmission as in previous epidemiological studies, where relevant units were farms and badger social groups. Thus, while we could not confirm badgers as possible intermediaries in farm-to-farm transmission, badger-to-cattle transition rate was high and we confirmed long-term presence of M.bovis in the badger population in the South-West of France.
Collapse
|