1
|
Zhang J, Wang J, Jiang T, Gong X, Gan Q, Teng Y, Zou Y, Dawadi AA, Yan Y. Engineering an Overflow-Responsive Regulation System for Balancing Cellular Redox and Optimizing Microbial Production. Biotechnol Bioeng 2025; 122:1561-1573. [PMID: 40119535 PMCID: PMC12067040 DOI: 10.1002/bit.28976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/20/2025] [Accepted: 03/07/2025] [Indexed: 03/24/2025]
Abstract
Escherichia coli accumulates acetate as a byproduct in fast growth aerobic conditions when using glucose as carbon source. This phenomenon, known as overflow metabolism, has negative impacts on cell growth and protein expression, also causes carbon loss during biosynthesis in most microbial production scenarios. In this study, we regarded the "waste" metabolite as a useful metabolism indicator, constructed an overflow biosensor to monitor the change of acetate concentration and converted the signal into various regulation outputs. Phloroglucinol is a phenolic compound with several derivatives that exhibit various pharmacological activities. By applying the bifunctional dynamic regulation system on the phloroglucinol production, we released the cellular redox pressure in real-time and reduced the waste of carbon flux on overflow metabolism. Finally, carbon flux was redirected more favorably towards the desired product, resulting in a boosted phloroglucinol titer of 1.30 g/L, increased by 2.04-fold. Overall, this study explored the use of a central byproduct-responsive biosensor system on improving cellular metabolic status, providing a general approach for enhancing bioproduction.
Collapse
Affiliation(s)
- Jianli Zhang
- School of Chemical, Materials and Biomedical Engineering, College of EngineeringThe University of GeorgiaAthensGeorgiaUSA
| | - Jian Wang
- School of Chemical, Materials and Biomedical Engineering, College of EngineeringThe University of GeorgiaAthensGeorgiaUSA
| | - Tian Jiang
- School of Chemical, Materials and Biomedical Engineering, College of EngineeringThe University of GeorgiaAthensGeorgiaUSA
| | - Xinyu Gong
- School of Chemical, Materials and Biomedical Engineering, College of EngineeringThe University of GeorgiaAthensGeorgiaUSA
| | - Qi Gan
- School of Chemical, Materials and Biomedical Engineering, College of EngineeringThe University of GeorgiaAthensGeorgiaUSA
| | - Yuxi Teng
- School of Chemical, Materials and Biomedical Engineering, College of EngineeringThe University of GeorgiaAthensGeorgiaUSA
| | - Yusong Zou
- School of Chemical, Materials and Biomedical Engineering, College of EngineeringThe University of GeorgiaAthensGeorgiaUSA
| | - Ainoor Anwar Dawadi
- School of Chemical, Materials and Biomedical Engineering, College of EngineeringThe University of GeorgiaAthensGeorgiaUSA
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of EngineeringThe University of GeorgiaAthensGeorgiaUSA
| |
Collapse
|
2
|
Jakowec N, Finkel SE. Controlled burn: interconnections between energy-spilling pathways and metabolic signaling in bacteria. J Bacteriol 2025; 207:e0054224. [PMID: 40162839 PMCID: PMC12096831 DOI: 10.1128/jb.00542-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
Abstract
Bacterial energy-spilling pathways-such as overflow metabolism and futile cycles-have been considered inefficient forms of metabolism that result from poor regulatory control or function as mechanisms to cope with excess energy. However, mounting evidence places these seemingly wasteful reactions at the fulcrum between metabolic signaling and stress adaptation in bacteria. Specifically, energy-spilling pathways may mediate the metabolic reprogramming observed when cells encounter growth-limiting constraints (i.e., nutrient limitation). Recent insights spotlight microbial metabolism as an intricate signaling network that coordinates physiological programming with energy and nutrient conditions. Such intracellular metabolic cross stalk is pivotal to survival in competitive, fluctuating environments that bacteria frequently encounter in nature. In light of this paradigm of metabolic signaling, energy-spilling pathways are increasingly recognized as regulatory strategies that enable metabolic rewiring in response to stress. Overflow metabolism or futile cycles may generate secondary metabolites with signaling properties, alter the flux of metabolic pathways and the rate of nutrient acquisition, or stimulate regulatory nodes to trigger specific metabolic programs in response to environmental challenges. Furthermore, the observation of such expensive pathways under laboratory conditions purported to be "energy limiting" may in fact suggest energy sufficiency, compelling us to rethink how we model energy limitation and starvation for bacteria.
Collapse
Affiliation(s)
- Nicolaus Jakowec
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Steven E. Finkel
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
3
|
Guleria A, Fatima N, Shukla A, Raj R, Sahu C, Prasad N, Pathak A, Kumar D. Synergistic Potential of Curcumin-Vancomycin Therapy in Combating Methicillin-Resistant Staphylococcus aureus Infections: Exploring a Novel Approach to Address Antibiotic Resistance and Toxicity. Microb Drug Resist 2025; 31:65-74. [PMID: 39950983 DOI: 10.1089/mdr.2024.0231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infections pose serious treatment challenges, particularly in peritoneal dialysis patients due to their increased susceptibility to infections and antibiotic resistance. Vancomycin, a standard antibiotic treatment for MRSA, is currently being compromised due to the evolution of multidrug-resistant microorganisms. Therefore, there is an urgent need for alternative therapeutic strategies to obstruct the increasing antibiotic resistance and bacterial biofilm formation. The present study explores curcumin, a natural bioactive compound possessing antimicrobial and anti-inflammatory properties, as a potential therapeutic for MRSA. The standard optical density method confirmed the antibacterial activity of curcumin against Staphylococcus aureus (MTCC-3160). Furthermore, we investigated the impact of curcumin on bacterial metabolism. Metabolic analysis of S. aureus culture media over a 20-h period revealed that curcumin exerts bacteriostatic effects by inhibiting specific metabolic pathways, potentially linked to energy and sugar metabolism. Furthermore, the synergistic effect of curcumin combined with vancomycin was assessed against 20 clinical MRSA strains using the broth microdilution method. The results demonstrated that curcumin enhanced the antibacterial activity of vancomycin in 17 strains by reducing its minimum inhibitory concentration (MIC) significantly. The MIC of curcumin and vancomycin has been found to decrease significantly when used in combination, with curcumin's MIC decreased to as low as 0.5 µg/mL and vancomycin's MIC to 0.5 µg/mL for all strains. Synergistic effects were seen in 17 out of 20 strains, having fractional inhibitory concentration index values between 0.04 and 0.56. These findings suggest that curcumin-vancomycin combination therapy could offer an effective treatment strategy for MRSA infections which may combat antibiotic resistance and reduce treatment-related toxicity.
Collapse
Affiliation(s)
- Anupam Guleria
- Department of Nephrology, SGPGIMS, Lucknow, Uttar Pradesh, India
| | - Nida Fatima
- Department of Microbiology, SGPGIMS, Lucknow, Uttar Pradesh, India
| | - Anuj Shukla
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Lucknow, India
| | - Ritu Raj
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Lucknow, India
| | - Chinmoy Sahu
- Department of Microbiology, SGPGIMS, Lucknow, Uttar Pradesh, India
| | - Narayan Prasad
- Department of Nephrology, SGPGIMS, Lucknow, Uttar Pradesh, India
| | - Ashutosh Pathak
- Department of Microbiology, SGPGIMS, Lucknow, Uttar Pradesh, India
| | - Dinesh Kumar
- Department of Advanced Spectroscopy and Imaging, Centre of Biomedical Research (CBMR), SGPGIMS Campus, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
4
|
Molina-Vázquez ER, Caspeta L, Gosset G, Martínez A. Tailoring Escherichia coli BL21 (DE3) for preferential xylose utilization via metabolic and regulatory engineering. Appl Microbiol Biotechnol 2025; 109:54. [PMID: 40019617 PMCID: PMC11870883 DOI: 10.1007/s00253-025-13430-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/21/2025] [Accepted: 02/06/2025] [Indexed: 03/01/2025]
Abstract
Xylose is the most abundant pentose in nature. However, it is usually obtained in mixtures with glucose, leading to carbon catabolite repression in many microorganisms. Among E. coli lineages, significant metabolic and regulatory differences exist, requiring distinct metabolic engineering strategies to develop a xylose-selective phenotype in the strains W, K-12, and C. In this study, strain ES02 was engineered from Escherichia coli BL21 (DE3) as a xylose-selective strain by deleting the glk, ptsG, and manZ genes. However, when grown in a mixture of xylose and glucose, this strain's specific growth rate and xylose consumption rate decreased by about 50% compared to cultures with only xylose. A modified version of the xylose-responsive transcriptional activator XylRQ31K was utilized to overcome this issue. The resulting strain ES04 (BL21 (DE3) Δglk, ΔmanZ, ΔptsG, xylR::Kmr, lacZ::xylRC91A-Gmr) efficiently used xylose as carbon source either alone or in a mixture with glucose, with a specific xylose consumption rate 75% higher than that of the wild-type strain BL21(DE3). Unexpectedly, strain ES04 partially recovers the ability to grow and consume glucose at a low rate, preferentially consuming xylose over glucose in sugar mixtures, revealing an altered carbon catabolite repression phenotype. Transcriptomics analysis suggested that glucose assimilation in this strain was related to the overexpression of the galactitol operon gatDCBAZY. Further inactivation of this operon confirmed its participation in glucose assimilation. KEY POINTS: • XylRQ31K alleviates carbon catabolite repression in the xylose-selective strain ES04. • Galactitol operon overexpression in ES04 links to partial glucose utilization. • ES04 strain preferentially uses xylose over glucose, revealing altered CCR.
Collapse
Affiliation(s)
- Eliseo R Molina-Vázquez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Luis Caspeta
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Guillermo Gosset
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico
| | - Alfredo Martínez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
5
|
Choi SH, Lee JS, Lee S, Jeong HS, Choi SJ. Dual-Hydrogen Bond Donor-Functionalized Carbon Nanotube Fibers: Enhancing Anion-Sensing Performance Through Functionalization Approaches. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405070. [PMID: 39388442 DOI: 10.1002/smll.202405070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/25/2024] [Indexed: 10/12/2024]
Abstract
In this study, chemiresistive anion sensors are developed using carbon nanotube fibers (CNTFs) functionalized with squaramide-based dual-hydrogen bond donors (SQ1 and SQ2) and systematically compared the sensing properties attained by two different functionalization methods. Model structures of the selectors are synthesized based on a squaramide motif incorporating an electron-withdrawing group. Anion-binding studies of SQ1 and SQ2 are conducted using UV-vis titrations to elucidate the anion-binding properties of the selectors. These studies revealed that the chemical interaction with acetate (AcO-) induced the deprotonation of both SQ1 and SQ2. Selectors are functionalized onto the CNTFs using either covalent or non-covalent functionalization. For covalent functionalization, SQ1 is chemically formed on the surface of the CNTFs, whereas SQ2 is non-covalently functionalized to the surface of the CNTFs assisted by poly(4-vinylpyridine). The results showed that non-covalently functionalized CNTFs exhibited a 3.6-fold higher sensor response toward 33.33 mm AcO- than covalently functionalized CNTFs. The selector library is expanded using diverse selectors, such as TU- and CA-based selectors, which are non-covalently functionalized on CNTFs and presented selective AcO--sensing properties. To demonstrate on-site and real-time anion detection, anion sensors are integrated into a sensor module that transferred the sensor resistance to a smartphone via wireless communication.
Collapse
Affiliation(s)
- Seung-Ho Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Joon-Seok Lee
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Sungju Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do, 55324, Republic of Korea
| | - Hyeon Su Jeong
- Institute of Advanced Composite Materials, Korea Institute of Science and Technology, 92 Chudong-ro, Bongdong-eup, Jeonrabuk-do, Wanju-gun, 55324, Republic of Korea
| | - Seon-Jin Choi
- Division of Materials of Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
6
|
Zhou HY, Chen YH, Chen DD, Wang ZW, Jin LQ, Liu ZQ, Zheng YG. Metabolically Modifying the Central and Competitive Metabolic Pathways for Enhanced D-Pantoic Acid Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2077-2087. [PMID: 39772599 DOI: 10.1021/acs.jafc.4c10512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
D-Pantoic acid is an essential precursor for the synthesis of vitamin B5. However, the microbial synthesis of D-pantoic acid suffers from a low yield. Herein, to improve D-pantoic acid biosynthesis in Escherichia coli, the central metabolic and byproduct-forming pathways were first engineered, increasing the D-pantoic acid titer to 1.55 g/L from 0.75 g/L. Subsequently, the modification was focused on preventing the accumulation of α-ketoglutarate (α-KG). Six genes (ppc, mdh, icd, sucA, kgtP, and dcuA) related to α-KG metabolism and transport were screened by the CRISPRi system and further genetically manipulated. Ultimately, significantly improved D-pantoic acid biosynthesis (2.03 g/L in a shake flask and 14.78 g/L in a 5-L bioreactor) with dramatically reduced formation of byproducts was achieved. To our best knowledge, this is the first attempt to modify the key metabolic targets related to α-KG accumulation for enhanced D-pantoic acid biosynthesis. These findings would also offer valuable insights into the metabolic regulation of other related metabolites.
Collapse
Affiliation(s)
- Hai-Yan Zhou
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yi-Hong Chen
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Dou-Dou Chen
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zi-Wen Wang
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Li-Qun Jin
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhi-Qiang Liu
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Yu-Guo Zheng
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| |
Collapse
|
7
|
Galvis J, Guyon J, Daubon T, Nikolski M. Using DIMet for Differential Analysis of Labeled Metabolomics Data: A Step-by-step Guide Showcasing the Glioblastoma Metabolism. Bio Protoc 2025; 15:e5168. [PMID: 39872723 PMCID: PMC11769753 DOI: 10.21769/bioprotoc.5168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 01/30/2025] Open
Abstract
Stable-isotope resolved metabolomics (SIRM) is a powerful approach for characterizing metabolic states in cells and organisms. By incorporating isotopes, such as 13C, into substrates, researchers can trace reaction rates across specific metabolic pathways. Integrating metabolomics data with gene expression profiles further enriches the analysis, as we demonstrated in our prior study on glioblastoma metabolic symbiosis. However, the bioinformatics tools for analyzing tracer metabolomics data have been limited. In this protocol, we encourage the researchers to use SIRM and transcriptomics data and to perform the downstream analysis using our software tool DIMet. Indeed, DIMet is the first comprehensive tool designed for the differential analysis of tracer metabolomics data, alongside its integration with transcriptomics data. DIMet facilitates the analysis of stable-isotope labeling and metabolic abundances, offering a streamlined approach to infer metabolic changes without requiring complex flux analysis. Its pathway-based "metabologram" visualizations effectively integrate metabolomics and transcriptomics data, offering a versatile platform capable of analyzing corrected tracer datasets across diverse systems, organisms, and isotopes. We provide detailed steps for sample preparation and data analysis using DIMet through its intuitive, web-based Galaxy interface. To showcase DIMet's capabilities, we analyzed LDHA/B knockout glioblastoma cell lines compared to controls. Accessible to all researchers through Galaxy, DIMet is free, user-friendly, and open source, making it a valuable resource for advancing metabolic research. Key features • Glioblastoma tumor spheroids in vitro replicate tumors' three-dimensional structure and natural nutrient, metabolite, and gas gradients, providing a more realistic model of tumor biology. • Joint analysis of tracer metabolomics and transcriptomics datasets provides deeper insights into the metabolic states of cells. • DIMet is a web-based tool for differential analysis and seamless integration of metabolomics and transcriptomics data, making it accessible and user-friendly. • DIMet enables researchers to infer metabolic changes, offering intuitive and visually appealing "metabologram" outputs, surpassing conventional visual representations commonly used in the field.
Collapse
Affiliation(s)
- Johanna Galvis
- University of Bordeaux, CNRS, IBGC UMR 5095, Bordeaux, France
- University of Bordeaux, Bordeaux Bioinformatics Center CBiB, Bordeaux, France
| | - Joris Guyon
- University of Bordeaux, INSERM, BRIC, UMR1312, Bordeaux, France
- Department of Medical Pharmacology, CHU Bordeaux, Bordeaux, France
| | - Thomas Daubon
- University of Bordeaux, CNRS, IBGC UMR 5095, Bordeaux, France
| | - Macha Nikolski
- University of Bordeaux, CNRS, IBGC UMR 5095, Bordeaux, France
- University of Bordeaux, Bordeaux Bioinformatics Center CBiB, Bordeaux, France
| |
Collapse
|
8
|
Kostyanovskaya E, Lasser MC, Wang B, Schmidt J, Bader E, Buteo C, Arbelaez J, Sindledecker AR, McCluskey KE, Castillo O, Wang S, Dea J, Helde KA, Graglia JM, Brimble E, Kastner DB, Ehrlich AT, State MW, Willsey AJ, Willsey HR. Convergence of autism proteins at the cilium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.05.626924. [PMID: 39677731 PMCID: PMC11643032 DOI: 10.1101/2024.12.05.626924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Hundreds of high-confidence autism genes have been identified, yet the relevant etiological mechanisms remain unclear. Gene ontology analyses have repeatedly identified enrichment of proteins with annotated functions in gene expression regulation and neuronal communication. However, proteins are often pleiotropic and these annotations are inherently incomplete. Our recent autism functional genetics work has suggested that these genes may share a common mechanism at the cilium, a membrane-bound organelle critical for neurogenesis, brain patterning, and neuronal activity-all processes strongly implicated in autism. Moreover, autism commonly co-occurs with conditions that are known to involve ciliary-related pathologies, including congenital heart disease, hydrocephalus, and blindness. However, the role of autism genes at the cilium has not been systematically investigated. Here we demonstrate that autism proteins spanning disparate functional annotations converge in expression, localization, and function at cilia, and that patients with pathogenic variants in these genes have cilia-related co-occurring conditions and biomarkers of disrupted ciliary function. This degree of convergence among genes spanning diverse functional annotations strongly suggests that cilia are relevant to autism, as well as to commonly co-occurring conditions, and that this organelle should be explored further for therapeutic potential.
Collapse
Affiliation(s)
- Elina Kostyanovskaya
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Micaela C. Lasser
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Belinda Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - James Schmidt
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Ethel Bader
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Chad Buteo
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Juan Arbelaez
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Aria Rani Sindledecker
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Kate E. McCluskey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Octavio Castillo
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Sheng Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Jeanselle Dea
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | | | | | | | - David B. Kastner
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Aliza T. Ehrlich
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Matthew W. State
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - A. Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA
| |
Collapse
|
9
|
Yang H, Zhou S. Rewiring the reductive TCA pathway and glyoxylate shunt of Escherichia coli for succinate production from corn stover hydrolysate using a two-phase fermentation strategy. BIORESOURCE TECHNOLOGY 2024; 412:131364. [PMID: 39209227 DOI: 10.1016/j.biortech.2024.131364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/25/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Succinate was found extensive applications in the food additives, pharmaceutical, and biopolymers industries. However, the succinate biosynthesis in E. coli required IPTG, lacked NADH, and produced high yields only under anaerobic conditions, unsuitable for cell growth. To overcome these limitations, the glyoxylate shunt and reductive TCA pathway were simultaneously enhanced to produce succinate in both aerobic and anaerobic conditions and achieve a high cell growth meanwhile. On this basis, NADH availability and sugars uptake were increased. Furthermore, an oxygen-dependent promoter was used to dynamically regulate the expression level of key genes of reductive TCA pathway to avoid the usage of IPTG. The final strain E. coli Mgls7-32 could produce succinate from corn stover hydrolysate without an inducer, achieving a titer of 72.8 g/L in 5 L bioreactor (1.2 mol/mol of total sugars). Those findings will aid in the industrial production of succinate.
Collapse
Affiliation(s)
- Haining Yang
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shenghu Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
10
|
de Paula Mozella A, Alexandre de Araujo Barros Cobra H, Monteiro da Palma I, Salim R, Antonio Matheus Guimarães J, Costa G, Carolina Leal A. Synovial fluid NMR-based metabolomics in septic and aseptic revision total knee arthroplasty: Implications on diagnosis and treatment. J Orthop Res 2024; 42:2336-2344. [PMID: 38725379 DOI: 10.1002/jor.25870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 03/26/2024] [Accepted: 04/22/2024] [Indexed: 10/19/2024]
Abstract
Periprosthetic joint infection (PJI) is one of the most challenging complications following total knee arthroplasty. Despite its importance, there is a paucity of reports in the literature regarding its pathogenesis. Recently, cellular metabolic reprogramming has been shown to play an important role in the progression and outcome of infectious diseases. Therefore, the aim of this study was to evaluate the metabolites composition of the synovial fluid from patients with PJI or aseptic failure of total knee arthroplasties. The synovial fluids from 21 patients scheduled for revision total knee arthroplasty (11 with the diagnosis of PJI and 10 with aseptic failures) were analyzed using 1D 1H NMR spectroscopy. Univariate and multivariate statistical analyzes were used to identify metabolites that were differentially abundant between those groups. A total of 28 metabolites were identified and five of them found to be differentially abundant between infected and non-infected synovial fluids. Lactate, acetate and 3-hydroxybutyrate were found to be in a higher concentration, and glucose and creatine were found reduced in the synovial fluid from PJI patients. Synovial fluid from patients with PJI exhibit a distinct metabolic profile, possibly reflecting metabolic adaptation that occurs in the infected periprosthetic microenvironment. Further research and studies are warranted to gain a broader insight into the metabolic pathways engaged by both pathogen and immune cells in the context of a PJI.
Collapse
Affiliation(s)
- Alan de Paula Mozella
- Department of Knee Surgery, National Institute of Traumatology and Orthopaedics, Rio de Janeiro, Brazil
| | | | - Idemar Monteiro da Palma
- Department of Knee Surgery, Rios D'or Hospital, Rio de Janeiro, Brazil
- Department of Knee Surgery, Montese Medical Center, Rio de Janeiro, Brazil
| | - Rodrigo Salim
- Department of Orthopaedics and Anaesthesiology, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil
| | | | - Gilson Costa
- Department of Genetics, IBRAG, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina Leal
- Teaching and Research Division, National Institute of Traumatology and Orthopaedics, Rio de Janeiro, Brazil
| |
Collapse
|
11
|
Sun X, Favier A, Folmar J, Pyenson NC, Sanchez A, Rebolleda-Gómez M. Metabolic Plasticity Shapes Microbial Communities across a Temperature Gradient. Am Nat 2024; 204:381-399. [PMID: 39326062 DOI: 10.1086/731997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
AbstractA central challenge in community ecology is understanding and predicting the effects of abiotic factors on community assembly. In particular, microbial communities play a central role in the ecosystem, but we do not understand how changing factors like temperature are going to affect community composition or function. In this article, we studied the self-assembly of multiple communities in synthetic environments to understand changes in microbial community composition based on metabolic responses of different functional groups along a temperature gradient. In many microbial communities, different microbial functional groups coexist through the partitioning of carbon sources in an emergent trophic structure (cross-feeding). In this system, respirofermentative bacteria display a preference for the sugars supplied as the only carbon source but secrete secondary carbon sources (organic acids) that are more efficiently consumed by obligate respirators. As a consequence of this trophic structure, the metabolic plasticity of the respirofermenters has downstream consequences for the relative abundance of respirators across temperatures. We found that the effects of different temperatures on microbial composition can largely be described by an increase in fermentation by-products with increasing temperatures from the respirofermentative bacteria. This research highlights the importance of metabolic plasticity and metabolic trade-offs in predicting species interactions and community dynamics across abiotic gradients.
Collapse
|
12
|
Weimer A, Pause L, Ries F, Kohlstedt M, Adrian L, Krömer J, Lai B, Wittmann C. Systems biology of electrogenic Pseudomonas putida - multi-omics insights and metabolic engineering for enhanced 2-ketogluconate production. Microb Cell Fact 2024; 23:246. [PMID: 39261865 PMCID: PMC11389600 DOI: 10.1186/s12934-024-02509-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/10/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Pseudomonas putida KT2440 has emerged as a promising host for industrial bioproduction. However, its strictly aerobic nature limits the scope of applications. Remarkably, this microbe exhibits high bioconversion efficiency when cultured in an anoxic bio-electrochemical system (BES), where the anode serves as the terminal electron acceptor instead of oxygen. This environment facilitates the synthesis of commercially attractive chemicals, including 2-ketogluconate (2KG). To better understand this interesting electrogenic phenotype, we studied the BES-cultured strain on a systems level through multi-omics analysis. Inspired by our findings, we constructed novel mutants aimed at improving 2KG production. RESULTS When incubated on glucose, P. putida KT2440 did not grow but produced significant amounts of 2KG, along with minor amounts of gluconate, acetate, pyruvate, succinate, and lactate. 13C tracer studies demonstrated that these products are partially derived from biomass carbon, involving proteins and lipids. Over time, the cells exhibited global changes on both the transcriptomic and proteomic levels, including the shutdown of translation and cell motility, likely to conserve energy. These adaptations enabled the cells to maintain significant metabolic activity for several weeks. Acetate formation was shown to contribute to energy supply. Mutants deficient in acetate production demonstrated superior 2KG production in terms of titer, yield, and productivity. The ∆aldBI ∆aldBII double deletion mutant performed best, accumulating 2KG at twice the rate of the wild type and with an increased yield (0.96 mol/mol). CONCLUSIONS By integrating transcriptomic, proteomic, and metabolomic analyses, this work provides the first systems biology insight into the electrogenic phenotype of P. putida KT2440. Adaptation to anoxic-electrogenic conditions involved coordinated changes in energy metabolism, enabling cells to sustain metabolic activity for extended periods. The metabolically engineered mutants are promising for enhanced 2KG production under these conditions. The attenuation of acetate synthesis represents the first systems biology-informed metabolic engineering strategy for enhanced 2KG production in P. putida. This non-growth anoxic-electrogenic mode expands our understanding of the interplay between growth, glucose phosphorylation, and glucose oxidation into gluconate and 2KG in P. putida.
Collapse
Affiliation(s)
- Anna Weimer
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Laura Pause
- Systems Biotechnology Group, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Fabian Ries
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Lorenz Adrian
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Jens Krömer
- Systems Biotechnology Group, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Bin Lai
- BMBF Junior Research Group Biophotovoltaics, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
13
|
Bertelmann C, Bühler B. Strategies found not to be suitable for stabilizing high steroid hydroxylation activities of CYP450 BM3-based whole-cell biocatalysts. PLoS One 2024; 19:e0309965. [PMID: 39240904 PMCID: PMC11379211 DOI: 10.1371/journal.pone.0309965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/21/2024] [Indexed: 09/08/2024] Open
Abstract
The implementation of biocatalytic steroid hydroxylation processes plays a crucial role in the pharmaceutical industry due to a plethora of medicative effects of hydroxylated steroid derivatives and their crucial role in drug approval processes. Cytochrome P450 monooxygenases (CYP450s) typically constitute the key enzymes catalyzing these reactions, but commonly entail drawbacks such as poor catalytic rates and the dependency on additional redox proteins for electron transfer from NAD(P)H to the active site. Recently, these bottlenecks were overcome by equipping Escherichia coli cells with highly active variants of the self-sufficient single-component CYP450 BM3 together with hydrophobic outer membrane proteins facilitating cellular steroid uptake. The combination of the BM3 variant KSA14m and the outer membrane pore AlkL enabled exceptionally high testosterone hydroxylation rates of up to 45 U gCDW-1 for resting (i.e., living but non-growing) cells. However, a rapid loss of specific activity heavily compromised final product titers and overall space-time yields. In this study, several stabilization strategies were evaluated on enzyme-, cell-, and reaction level. However, neither changes in biocatalyst configuration nor variation of cultivation media, expression systems, or inducer concentrations led to considerable improvement. This qualified the so-far used genetic construct pETM11-ksa14m-alkL, M9 medium, and the resting-cell state as the best options enabling comparatively efficient activity along with fast growth prior to biotransformation. In summary, we report several approaches not enabling a stabilization of the high testosterone hydroxylation rates, providing vital guidance for researchers tackling similar CYP450 stability issues. A comparison with more stable natively steroid-hydroxylating CYP106A2 and CYP154C5 in equivalent setups further highlighted the high potential of the investigated CYP450 BM3-based whole-cell biocatalysts. The immense and continuously developing repertoire of enzyme engineering strategies provides promising options to stabilize the highly active biocatalysts.
Collapse
Affiliation(s)
- Carolin Bertelmann
- Department of Solar Materials Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Saxony, Germany
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Saxony, Germany
| | - Bruno Bühler
- Department of Solar Materials Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Saxony, Germany
- Department of Microbial Biotechnology, Helmholtz Centre for Environmental Research GmbH - UFZ, Leipzig, Saxony, Germany
| |
Collapse
|
14
|
Duport C, Armengaud J, Schmitt C, Morin D, Lacapère JJ. Elucidating the pivotal role of TSPO in porphyrin-related cellular processes, in Bacillus cereus. Biochimie 2024; 224:51-61. [PMID: 38423451 DOI: 10.1016/j.biochi.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
A structural homolog of the mammalian TSPO has been identified in the human pathogen Bacillus cereus. BcTSPO, in its recombinant form, has previously been shown to bind and degrade porphyrins. In this study, we generated a ΔtspO mutant strain in B. cereus ATCC 14579 and assessed the impact of the absence of BcTSPO on cellular proteomics and physiological characteristics. The proteomic analysis revealed correlations between the lack of BcTSPO and the observed growth defects, increased oxygen consumption, ATP deficiency, heightened tryptophan catabolism, reduced motility, and impaired biofilm formation in the ΔtspO mutant strain. Our results also suggested that BcTSPO plays a crucial role in regulating intracellular levels of metabolites from the coproporphyrin-dependent branch of the heme biosynthetic pathway. This regulation potentially underlies alterations in the metabolic landscape, emphasizing the pivotal role of BcTSPO in B. cereus aerobic metabolism. Notably, our study unveils, for the first time, the involvement of TSPO in tryptophan metabolism. These findings underscore the multifaceted role of TSPO, not only in metabolic pathways but also potentially in the microorganism's virulence mechanisms.
Collapse
Affiliation(s)
| | - Jean Armengaud
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200, Bagnols-sur-Cèze, France
| | - Caroline Schmitt
- Assistance Publique Hôpitaux de Paris (AP-HP), Centre Français des Porphyries, Hôpital Louis Mourier, 92700, Colombes, France; INSERM U1149, Center for Research on Inflammation (CRI), Université de Paris, 75018, Paris, France
| | - Didier Morin
- INSERM, U955, équipe 3, Faculté de Médecine, Université Paris Est, 94010, Creteil, France
| | - Jean-Jacques Lacapère
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS UMR 7203, Laboratoire des BioMolécules (LBM), 4 place Jussieu, F-75005, Paris, France
| |
Collapse
|
15
|
Jallet D, Soldan V, Shayan R, Stella A, Ismail N, Zenati R, Cahoreau E, Burlet-Schiltz O, Balor S, Millard P, Heux S. Integrative in vivo analysis of the ethanolamine utilization bacterial microcompartment in Escherichia coli. mSystems 2024; 9:e0075024. [PMID: 39023255 PMCID: PMC11334477 DOI: 10.1128/msystems.00750-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 07/20/2024] Open
Abstract
Bacterial microcompartments (BMCs) are self-assembling protein megacomplexes that encapsulate metabolic pathways. Although approximately 20% of sequenced bacterial genomes contain operons encoding putative BMCs, few have been thoroughly characterized, nor any in the most studied Escherichia coli strains. We used an interdisciplinary approach to gain deep molecular and functional insights into the ethanolamine utilization (Eut) BMC system encoded by the eut operon in E. coli K-12. The eut genotype was linked with the ethanolamine utilization phenotype using deletion and overexpression mutants. The subcellular dynamics and morphology of the E. coli Eut BMCs were characterized in cellula by fluorescence microscopy and electron (cryo)microscopy. The minimal proteome reorganization required for ethanolamine utilization and the in vivo stoichiometric composition of the Eut BMC were determined by quantitative proteomics. Finally, the first flux map connecting the Eut BMC with central metabolism in cellula was obtained by genome-scale modeling and 13C-fluxomics. Our results reveal that contrary to previous suggestions, ethanolamine serves both as a nitrogen and a carbon source in E. coli K-12, while also contributing to significant metabolic overflow. Overall, this study provides a quantitative molecular and functional understanding of the BMCs involved in ethanolamine assimilation by E. coli.IMPORTANCEThe properties of bacterial microcompartments make them an ideal tool for building orthogonal network structures with minimal interactions with native metabolic and regulatory networks. However, this requires an understanding of how BMCs work natively. In this study, we combined genetic manipulation, multi-omics, modeling, and microscopy to address this issue for Eut BMCs. We show that the Eut BMC in Escherichia coli turns ethanolamine into usable carbon and nitrogen substrates to sustain growth. These results improve our understanding of compartmentalization in a widely used bacterial chassis.
Collapse
Affiliation(s)
- Denis Jallet
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Vanessa Soldan
- Plateforme de Microscopie Electronique Intégrative, Centre de Biologie Intégrative, Université de Toulouse, CNRS, Toulouse, France
| | - Ramteen Shayan
- Plateforme de Microscopie Electronique Intégrative, Centre de Biologie Intégrative, Université de Toulouse, CNRS, Toulouse, France
| | - Alexandre Stella
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
- Infrastructure nationale de protéomique, ProFI, Toulouse, France
| | - Nour Ismail
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Rania Zenati
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Edern Cahoreau
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- MetaToul-MetaboHUB, National infrastructure of metabolomics and fluxomics, Toulouse, France
| | - Odile Burlet-Schiltz
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III—Paul Sabatier (UT3), Toulouse, France
- Infrastructure nationale de protéomique, ProFI, Toulouse, France
| | - Stéphanie Balor
- Plateforme de Microscopie Electronique Intégrative, Centre de Biologie Intégrative, Université de Toulouse, CNRS, Toulouse, France
| | - Pierre Millard
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- MetaToul-MetaboHUB, National infrastructure of metabolomics and fluxomics, Toulouse, France
| | - Stéphanie Heux
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| |
Collapse
|
16
|
Kang H, Park D, Kim J. Logical regulation of endogenous gene expression using programmable, multi-input processing CRISPR guide RNAs. Nucleic Acids Res 2024; 52:8595-8608. [PMID: 38943344 DOI: 10.1093/nar/gkae549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/01/2024] Open
Abstract
The CRISPR-Cas system provides a versatile RNA-guided approach for a broad range of applications. Thanks to advances in RNA synthetic biology, the engineering of guide RNAs (gRNAs) has enabled the conditional control of the CRISPR-Cas system. However, achieving precise regulation of the CRISPR-Cas system for efficient modulation of internal metabolic processes remains challenging. In this work, we developed a robust dCas9 regulator with engineered conditional gRNAs to enable tight control of endogenous genes. Our conditional gRNAs in Escherichia coli can control gene expression upon specific interaction with trigger RNAs with a dynamic range as high as 130-fold, evaluating up to a three-input logic A OR (B AND C). The conditional gRNA-mediated targeting of endogenous metabolic genes, lacZ, malT and poxB, caused differential regulation of growth in Escherichia coli via metabolic flux control. Further, conditional gRNAs could regulate essential cytoskeleton genes, ftsZ and mreB, to control cell filamentation and division. Finally, three types of two-input logic gates could be applied for the conditional control of ftsZ regulation, resulting in morphological changes. The successful operation and application of conditional gRNAs based on programmable RNA interactions suggests that our system could be compatible with other Cas-effectors and implemented in other host organisms.
Collapse
Affiliation(s)
- Hansol Kang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Dongwon Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Jongmin Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 37673, Korea
| |
Collapse
|
17
|
Teerikorpi N, Lasser MC, Wang S, Kostyanovskaya E, Bader E, Sun N, Dea J, Nowakowski TJ, Willsey AJ, Willsey HR. Ciliary biology intersects autism and congenital heart disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.602578. [PMID: 39131273 PMCID: PMC11312554 DOI: 10.1101/2024.07.30.602578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Autism spectrum disorder (ASD) commonly co-occurs with congenital heart disease (CHD), but the molecular mechanisms underlying this comorbidity remain unknown. Given that children with CHD come to clinical attention by the newborn period, understanding which CHD variants carry ASD risk could provide an opportunity to identify and treat individuals at high risk for developing ASD far before the typical age of diagnosis. Therefore, it is critical to delineate the subset of CHD genes most likely to increase the risk of ASD. However, to date there is relatively limited overlap between high confidence ASD and CHD genes, suggesting that alternative strategies for prioritizing CHD genes are necessary. Recent studies have shown that ASD gene perturbations commonly dysregulate neural progenitor cell (NPC) biology. Thus, we hypothesized that CHD genes that disrupt neurogenesis are more likely to carry risk for ASD. Hence, we performed an in vitro pooled CRISPR interference (CRISPRi) screen to identify CHD genes that disrupt NPC biology similarly to ASD genes. Overall, we identified 45 CHD genes that strongly impact proliferation and/or survival of NPCs. Moreover, we observed that a cluster of physically interacting ASD and CHD genes are enriched for ciliary biology. Studying seven of these genes with evidence of shared risk (CEP290, CHD4, KMT2E, NSD1, OFD1, RFX3, TAOK1), we observe that perturbation significantly impacts primary cilia formation in vitro. While in vivo investigation of TAOK1 reveals a previously unappreciated role for the gene in motile cilia formation and heart development, supporting its prediction as a CHD risk gene. Together, our findings highlight a set of CHD risk genes that may carry risk for ASD and underscore the role of cilia in shared ASD and CHD biology.
Collapse
Affiliation(s)
- Nia Teerikorpi
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Micaela C. Lasser
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Sheng Wang
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elina Kostyanovskaya
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ethel Bader
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Nawei Sun
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeanselle Dea
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Tomasz J. Nowakowski
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco CA 94158, USA
- Department of Anatomy, University of California, San Francisco, San Francisco CA 94158, USA
- Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research University of California, San Francisco, San Francisco CA 94158, USA
| | - A. Jeremy Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Helen Rankin Willsey
- Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94143, USA
- Chan Zuckerberg Biohub – San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
18
|
Forsberg J, Rasmussen CT, van den Berg FWJ, Engelsen SB, Aru V. Fermentation Analytical Technology (FAT): Monitoring industrial E. coli fermentations using absolute quantitative 1H NMR spectroscopy. Anal Chim Acta 2024; 1311:342722. [PMID: 38816156 DOI: 10.1016/j.aca.2024.342722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND To perform fast, reproducible, and absolute quantitative measurements in an automated manner has become of paramount importance when monitoring industrial processes, including fermentations. Due to its numerous advantages - including its inherent quantitative nature - Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy provides an ideal tool for the time-resolved monitoring of fermentations. However, analytical conditions, including non-automated sample preparation and long relaxation times (T1) of some metabolites, can significantly lengthen the experimental time and make implementation in an industrial set up unfeasible. RESULTS We present a high throughput method based on Standard Operating Procedures (SOPs) and 1H NMR, which lays the foundation for what we call Fermentation Analytical Technology (FAT). Our method was developed for the accurate absolute quantification of metabolites produced during Escherichia coli industrial fermentations. The method includes: (1) a stopped flow system for non-invasive sample collection followed by sample quenching, (2) automatic robot-assisted sample preparation, (3) fast 1H NMR measurements, (4) metabolites quantification using multivariate curve resolution (MCR), and (5) metabolites absolute quantitation using a novel correction factor (k) to compensate for the short recycle delay (D1) employed in the 1H NMR measurements. The quantification performance was tested using two sample types: buffer solutions of chemical standards and real fermentation samples. Five metabolites - glucose, acetate, alanine, phenylalanine and betaine - were quantified. Absolute quantitation ranged between 0.64 and 3.40 mM in pure buffer, and 0.71-7.76 mM in real samples. SIGNIFICANCE The proposed method is generic and can be straight forward implemented to other types of fermentations, such as lactic acid, ethanol and acetic acid fermentations. It provides a high throughput automated solution for monitoring fermentation processes and for quality control through absolute quantification of key metabolites in fermentation broth. It can be easily implemented in an at-line industrial setting, facilitating the optimization of the manufacturing process towards higher yields and more efficient and sustainable use of resources.
Collapse
Affiliation(s)
- Jakob Forsberg
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark; Novo Nordisk A/S, Hagedornsvej 1, 2820, Gentofte, Denmark.
| | | | - Frans W J van den Berg
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Søren Balling Engelsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Violetta Aru
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark.
| |
Collapse
|
19
|
Shin J, Zielinski DC, Palsson BO. Deciphering nutritional stress responses via knowledge-enriched transcriptomics for microbial engineering. Metab Eng 2024; 84:34-47. [PMID: 38825177 DOI: 10.1016/j.ymben.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
Understanding diverse bacterial nutritional requirements and responses is foundational in microbial research and biotechnology. In this study, we employed knowledge-enriched transcriptomic analytics to decipher complex stress responses of Vibrio natriegens to supplied nutrients, aiming to enhance microbial engineering efforts. We computed 64 independently modulated gene sets that comprise a quantitative basis for transcriptome dynamics across a comprehensive transcriptomics dataset containing a broad array of nutrient conditions. Our approach led to the i) identification of novel transporter systems for diverse substrates, ii) a detailed understanding of how trace elements affect metabolism and growth, and iii) extensive characterization of nutrient-induced stress responses, including osmotic stress, low glycolytic flux, proteostasis, and altered protein expression. By clarifying the relationship between the acetate-associated regulon and glycolytic flux status of various nutrients, we have showcased its vital role in directing optimal carbon source selection. Our findings offer deep insights into the transcriptional landscape of bacterial nutrition and underscore its significance in tailoring strain engineering strategies, thereby facilitating the development of more efficient and robust microbial systems for biotechnological applications.
Collapse
Affiliation(s)
- Jongoh Shin
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Daniel C Zielinski
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA, 92093, USA; Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, 2800, Denmark; Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
20
|
Mu X, Evans TD, Zhang F. ATP biosensor reveals microbial energetic dynamics and facilitates bioproduction. Nat Commun 2024; 15:5299. [PMID: 38906854 PMCID: PMC11192931 DOI: 10.1038/s41467-024-49579-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024] Open
Abstract
Adenosine-5'-triphosphate (ATP), the primary energy currency in cellular processes, drives metabolic activities and biosynthesis. Despite its importance, understanding intracellular ATP dynamics' impact on bioproduction and exploiting it for enhanced bioproduction remains largely unexplored. Here, we harness an ATP biosensor to dissect ATP dynamics across different growth phases and carbon sources in multiple microbial strains. We find transient ATP accumulations during the transition from exponential to stationary growth phases in various conditions, coinciding with fatty acid (FA) and polyhydroxyalkanoate (PHA) production in Escherichia coli and Pseudomonas putida, respectively. We identify carbon sources (acetate for E. coli, oleate for P. putida) that elevate steady-state ATP levels and boost FA and PHA production. Moreover, we employ ATP dynamics as a diagnostic tool to assess metabolic burden, revealing bottlenecks that limit limonene bioproduction. Our results not only elucidate the relationship between ATP dynamics and bioproduction but also showcase its value in enhancing bioproduction in various microbial species.
Collapse
Affiliation(s)
- Xinyue Mu
- Department of Energy Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Trent D Evans
- Department of Energy Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA
| | - Fuzhong Zhang
- Department of Energy Environmental and Chemical Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
- Division of Biological & Biomedical Sciences, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
- Institute of Materials Science & Engineering, Washington University in St. Louis, Saint Louis, MO, 63130, USA.
| |
Collapse
|
21
|
Galvis J, Guyon J, Dartigues B, Hecht H, Grüning B, Specque F, Soueidan H, Karkar S, Daubon T, Nikolski M. DIMet: an open-source tool for differential analysis of targeted isotope-labeled metabolomics data. Bioinformatics 2024; 40:btae282. [PMID: 38656970 PMCID: PMC11109473 DOI: 10.1093/bioinformatics/btae282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024] Open
Abstract
MOTIVATION Many diseases, such as cancer, are characterized by an alteration of cellular metabolism allowing cells to adapt to changes in the microenvironment. Stable isotope-resolved metabolomics (SIRM) and downstream data analyses are widely used techniques for unraveling cells' metabolic activity to understand the altered functioning of metabolic pathways in the diseased state. While a number of bioinformatic solutions exist for the differential analysis of SIRM data, there is currently no available resource providing a comprehensive toolbox. RESULTS In this work, we present DIMet, a one-stop comprehensive tool for differential analysis of targeted tracer data. DIMet accepts metabolite total abundances, isotopologue contributions, and isotopic mean enrichment, and supports differential comparison (pairwise and multi-group), time-series analyses, and labeling profile comparison. Moreover, it integrates transcriptomics and targeted metabolomics data through network-based metabolograms. We illustrate the use of DIMet in real SIRM datasets obtained from Glioblastoma P3 cell-line samples. DIMet is open-source, and is readily available for routine downstream analysis of isotope-labeled targeted metabolomics data, as it can be used both in the command line interface or as a complete toolkit in the public Galaxy Europe and Workfow4Metabolomics web platforms. AVAILABILITY AND IMPLEMENTATION DIMet is freely available at https://github.com/cbib/DIMet, and through https://usegalaxy.eu and https://workflow4metabolomics.usegalaxy.fr. All the datasets are available at Zenodo https://zenodo.org/records/10925786.
Collapse
Affiliation(s)
- Johanna Galvis
- University of Bordeaux, CNRS, IBGC UMR 5095, Bordeaux, France
- University of Bordeaux, Bordeaux Bioinformatics Center CBiB, Bordeaux, France
| | - Joris Guyon
- University of Bordeaux, INSERM, BPH U1219, Bordeaux, France
- Medical Pharmacology Department, Bordeaux University Hospital, Bordeaux, France
| | - Benjamin Dartigues
- University of Bordeaux, Bordeaux Bioinformatics Center CBiB, Bordeaux, France
| | - Helge Hecht
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
- Galaxy Europe, University of Freiburg, Freiburg, Baden-Württemberg, Germany
| | - Björn Grüning
- Galaxy Europe, University of Freiburg, Freiburg, Baden-Württemberg, Germany
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, 79110 Freiburg, Germany
| | - Florian Specque
- University of Bordeaux, CNRS, IBGC UMR 5095, Bordeaux, France
| | - Hayssam Soueidan
- University of Bordeaux, Bordeaux Bioinformatics Center CBiB, Bordeaux, France
| | - Slim Karkar
- University of Bordeaux, CNRS, IBGC UMR 5095, Bordeaux, France
- University of Bordeaux, Bordeaux Bioinformatics Center CBiB, Bordeaux, France
| | - Thomas Daubon
- University of Bordeaux, CNRS, IBGC UMR 5095, Bordeaux, France
| | - Macha Nikolski
- University of Bordeaux, CNRS, IBGC UMR 5095, Bordeaux, France
- University of Bordeaux, Bordeaux Bioinformatics Center CBiB, Bordeaux, France
| |
Collapse
|
22
|
Labourel FJF, Daubin V, Menu F, Rajon E. Proteome allocation and the evolution of metabolic cross-feeding. Evolution 2024; 78:849-859. [PMID: 38376478 DOI: 10.1093/evolut/qpae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/21/2024]
Abstract
In a common instance of metabolic cross-feeding (MCF), an organism incompletely metabolizes nutrients and releases metabolites that are used by another to produce energy or building blocks. Why would the former waste edible food, and why does this preferentially occur at specific locations in a metabolic pathway have challenged evolutionary theory for decades. To address these questions, we combine adaptive dynamics with an explicit model of cell metabolism, including enzyme-driven catalysis of metabolic reactions and the cellular constraints acting on the proteome that may incur a cost to expressing all enzymes along a pathway. After pointing out that cells should in principle prioritize upstream reactions when metabolites are restrained inside the cell, we show that the occurrence of permeability-driven MCF is rare and requires that an intermediate metabolite be extremely diffusive. Indeed, only at very high levels of membrane permeability (consistent with those of acetate and glycerol, for instance) and under distinctive sets of parameters should the population diversify and MCF evolve. These results help understand the origins of simple microbial communities, such as those that readily evolve in short-term evolutionary experiments, and may later be extended to investigate how evolution has progressively built up today's extremely diverse ecosystems.
Collapse
Affiliation(s)
- Florian J F Labourel
- Univ Lyon, Universite Lyon 1, CNRS, Laboratoire de Biometrie et Biologie Evolutive UMR5558, Villeurbanne, France
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Vincent Daubin
- Univ Lyon, Universite Lyon 1, CNRS, Laboratoire de Biometrie et Biologie Evolutive UMR5558, Villeurbanne, France
| | - Frédéric Menu
- Univ Lyon, Universite Lyon 1, CNRS, Laboratoire de Biometrie et Biologie Evolutive UMR5558, Villeurbanne, France
| | - Etienne Rajon
- Univ Lyon, Universite Lyon 1, CNRS, Laboratoire de Biometrie et Biologie Evolutive UMR5558, Villeurbanne, France
| |
Collapse
|
23
|
Matsliah A, Yu SC, Kruk K, Bland D, Burke A, Gager J, Hebditch J, Silverman B, Willie K, Willie RW, Sorek M, Sterling AR, Kind E, Garner D, Sancer G, Wernet MF, Kim SS, Murthy M, Seung HS. Neuronal "parts list" and wiring diagram for a visual system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.12.562119. [PMID: 37873160 PMCID: PMC10592826 DOI: 10.1101/2023.10.12.562119] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A catalog of neuronal cell types has often been called a "parts list" of the brain, and regarded as a prerequisite for understanding brain function. In the optic lobe of Drosophila, rules of connectivity between cell types have already proven essential for understanding fly vision. Here we analyze the fly connectome to complete the list of cell types intrinsic to the optic lobe, as well as the rules governing their connectivity. We more than double the list of known types. Most new cell types contain between 10 and 100 cells, and integrate information over medium distances in the visual field. Some existing type families (Tm, Li, and LPi) at least double in number of types. We introduce a new Sm interneuron family, which contains more types than any other, and three new families of cross-neuropil types. Self-consistency of cell types is demonstrated through automatic assignment of cells to types by distance in high-dimensional feature space, and further validation is provided by algorithms that select small subsets of discriminative features. Cell types with similar connectivity patterns divide into clusters that are interpretable in terms of motion, object, and color vision. Our work showcases the advantages of connectomic cell typing: complete and unbiased sampling, a rich array of features based on connectivity, and reduction of the connectome to a drastically simpler wiring diagram of cell types, with immediate relevance for brain function and development.
Collapse
Affiliation(s)
| | - Szi-Chieh Yu
- Neuroscience Institute, Princeton University, USA
| | | | - Doug Bland
- Neuroscience Institute, Princeton University, USA
| | - Austin Burke
- Neuroscience Institute, Princeton University, USA
| | - Jay Gager
- Neuroscience Institute, Princeton University, USA
| | | | | | - Kyle Willie
- Neuroscience Institute, Princeton University, USA
| | | | | | | | - Emil Kind
- Institut für Biologie - Neurobiologie, Freie Universität B erlin, Germany
| | - Dustin Garner
- Molecular, Cellular, and Developmental Biology, Univ. C alifornia Santa Barbara, USA
| | - Gizem Sancer
- Institut für Biologie - Neurobiologie, Freie Universität B erlin, Germany
| | - Mathias F Wernet
- Institut für Biologie - Neurobiologie, Freie Universität B erlin, Germany
| | - Sung Soo Kim
- Molecular, Cellular, and Developmental Biology, Univ. C alifornia Santa Barbara, USA
| | - Mala Murthy
- Neuroscience Institute, Princeton University, USA
| | - H Sebastian Seung
- Neuroscience Institute, Princeton University, USA
- Computer Science Department, Princeton University, U SA
| |
Collapse
|
24
|
Snoeck S, Guidi C, De Mey M. "Metabolic burden" explained: stress symptoms and its related responses induced by (over)expression of (heterologous) proteins in Escherichia coli. Microb Cell Fact 2024; 23:96. [PMID: 38555441 PMCID: PMC10981312 DOI: 10.1186/s12934-024-02370-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Engineering bacterial strains to redirect the metabolism towards the production of a specific product has enabled the development of industrial biotechnology. However, rewiring the metabolism can have severe implications for a microorganism, rendering cells with stress symptoms such as a decreased growth rate, impaired protein synthesis, genetic instability and an aberrant cell size. On an industrial scale, this is reflected in processes that are not economically viable. MAIN TEXT In literature, most stress symptoms are attributed to "metabolic burden", however the actual triggers and stress mechanisms involved are poorly understood. Therefore, in this literature review, we aimed to get a better insight in how metabolic engineering affects Escherichia coli and link the observed stress symptoms to its cause. Understanding the possible implications that chosen engineering strategies have, will help to guide the reader towards optimising the envisioned process more efficiently. CONCLUSION This review addresses the gap in literature and discusses the triggers and effects of stress mechanisms that can be activated when (over)expressing (heterologous) proteins in Escherichia coli. It uncovers that the activation of the different stress mechanisms is complex and that many are interconnected. The reader is shown that care has to be taken when (over)expressing (heterologous) proteins as the cell's metabolism is tightly regulated.
Collapse
Affiliation(s)
- Sofie Snoeck
- Department of Biotechnology, Centre for Synthetic Biology, Coupure Links 653, Gent, 9000, Belgium
| | - Chiara Guidi
- Department of Biotechnology, Centre for Synthetic Biology, Coupure Links 653, Gent, 9000, Belgium
| | - Marjan De Mey
- Department of Biotechnology, Centre for Synthetic Biology, Coupure Links 653, Gent, 9000, Belgium.
| |
Collapse
|
25
|
Eskandari A, Nezhad NG, Leow TC, Rahman MBA, Oslan SN. Essential factors, advanced strategies, challenges, and approaches involved for efficient expression of recombinant proteins in Escherichia coli. Arch Microbiol 2024; 206:152. [PMID: 38472371 DOI: 10.1007/s00203-024-03871-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 12/31/2023] [Accepted: 01/25/2024] [Indexed: 03/14/2024]
Abstract
Producing recombinant proteins is a major accomplishment of biotechnology in the past century. Heterologous hosts, either eukaryotic or prokaryotic, are used for the production of these proteins. The utilization of microbial host systems continues to dominate as the most efficient and affordable method for biotherapeutics and food industry productions. Hence, it is crucial to analyze the limitations and advantages of microbial hosts to enhance the efficient production of recombinant proteins on a large scale. E. coli is widely used as a host for the production of recombinant proteins. Researchers have identified certain obstacles with this host, and given the growing demand for recombinant protein production, there is an immediate requirement to enhance this host. The following review discusses the elements contributing to the manifestation of recombinant protein. Subsequently, it sheds light on innovative approaches aimed at improving the expression of recombinant protein. Lastly, it delves into the obstacles and optimization methods associated with translation, mentioning both cis-optimization and trans-optimization, producing soluble recombinant protein, and engineering the metal ion transportation. In this context, a comprehensive description of the distinct features will be provided, and this knowledge could potentially enhance the expression of recombinant proteins in E. coli.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Biochemistry, FacultyofBiotechnologyand BiomolecularSciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Biochemistry, FacultyofBiotechnologyand BiomolecularSciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-Ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| |
Collapse
|
26
|
Gecse G, Labunskaite R, Pedersen M, Kilstrup M, Johanson T. Minimizing acetate formation from overflow metabolism in Escherichia coli: comparison of genetic engineering strategies to improve robustness toward sugar gradients in large-scale fermentation processes. Front Bioeng Biotechnol 2024; 12:1339054. [PMID: 38419731 PMCID: PMC10899681 DOI: 10.3389/fbioe.2024.1339054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/15/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction: Escherichia coli, a well characterized workhorse in biotechnology, has been used to produce many recombinant proteins and metabolites, but have a major drawback in its tendency to revert to overflow metabolism. This phenomenon occurs when excess sugar triggers the production of mainly acetate under aerobic conditions, a detrimental by-product that reduces carbon efficiency, increases cell maintenance, and ultimately inhibits growth. Although this can be prevented by controlled feeding of the sugar carbon source to limit its availability, gradients in commercial-scale bioreactors can still induce it in otherwise carbon-limited cells. While the underlying mechanisms have been extensively studied, these have mostly used non-limited cultures. In contrast, industrial production typically employs carbon-limited processes, which results in a substantially different cell physiology. Objective: The objective of this study was to evaluate and compare the efficiency of different metabolic engineering strategies with the aim to reduce overflow metabolism and increase the robustness of an industrial 2'-O-fucosyllactose producing strain under industrially relevant conditions. Methods: Three distinct metabolic engineering strategies were compared: i) alterations to pathways leading to and from acetate, ii) increased flux towards the tricarboxylic acid (TCA) cycle, and iii) reduced glucose uptake rate. The engineered strains were evaluated for growth, acetate formation, and product yield under non-limiting batch conditions, carbon limited fed-batch conditions, and after a glucose pulse in fed-batch mode. Results and Discussion: The findings demonstrated that blockage of the major acetate production pathways by deletion of the pta and poxB genes or increased carbon flux into the TCA cycle by overexpression of the gltA and deletion of the iclR genes, were efficient ways to reduce acetate accumulation. Surprisingly, a reduced glucose uptake rate did not reduce acetate formation despite it having previously been shown as a very effective strategy. Interestingly, overexpression of gltA was the most efficient way to reduce acetate accumulation in non-limited cultures, whereas disruption of the poxB and pta genes was more effective for carbon-limited cultures exposed to a sudden glucose shock. Strains from both strategies showed increased tolerance towards a glucose pulse during carbon-limited growth indicating feasible ways to engineer industrial E. coli strains with enhanced robustness.
Collapse
Affiliation(s)
| | | | | | - Mogens Kilstrup
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | |
Collapse
|
27
|
Wahjudi SMW, Petrzik T, Oudenne F, Lera Calvo C, Büchs J. Unraveling the potential and constraints associated with corn steep liquor as a nutrient source for industrial fermentations. Biotechnol Prog 2023; 39:e3386. [PMID: 37634939 DOI: 10.1002/btpr.3386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/02/2023] [Accepted: 08/09/2023] [Indexed: 08/29/2023]
Abstract
Costly complex media components such as yeast extract and peptone are still widely used in industrial bioprocesses, despite their ill-defined composition. Side stream products such as corn steep liquor (CSL) present a compelling economical alternative that contains valuable nutrients required for microbial growth, that is, nitrogen and amino acids, but also vitamins, trace elements, and other minerals. However, as a side stream product, CSL may be subject to batch-to-batch variations and compositional heterogeneity. In this study, the Respiration Activity MOnitoring System designed for shake flasks (RAMOS) and 96-well microtiter plates (μTOM) were applied to investigate the potential and constraints of CSL utilization for two model microorganisms: E. coli and B. subtilis. Considering the dry substance content of complex nutrients involved, CSL-based media are more efficient in biomass production than the common lysogeny broth (LB) medium, containing 5 g/L yeast extract, 10 g/L peptone, and 5 g/L NaCl. At a glucose to CSL (glucose/CSL, g/g) ratio of 1/1 (g/g) and 2/1 (g/g), a secondary substrate limitation occurred in E. coli and B. subtilis cultivations, respectively. The study sheds light on differences in the metabolic activity of the two applied model organisms between varying CSL batches, which relate to CSL origin and production process, as well as the effect of targeted nutrient supplementation. Through a targeted nutrient supplementation, the most limiting component of the CSL-glucose medium used for these applied model microorganisms was identified to be ammonium nitrogen. This study proves the suitability of CSL as an alternative nutrient source for E. coli and B. subtilis. The RAMOS and μTOM technique detected differences between CSL batches, allowing easy and early identification of varying batches. A consistent performance of the CSL batches in E. coli and B. subtilis cultivations was demonstrated.
Collapse
Affiliation(s)
| | - Thomas Petrzik
- AVT-Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | | | | | - Jochen Büchs
- AVT-Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
28
|
Pokorzynski ND, Groisman EA. How Bacterial Pathogens Coordinate Appetite with Virulence. Microbiol Mol Biol Rev 2023; 87:e0019822. [PMID: 37358444 PMCID: PMC10521370 DOI: 10.1128/mmbr.00198-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023] Open
Abstract
Cells adjust growth and metabolism to nutrient availability. Having access to a variety of carbon sources during infection of their animal hosts, facultative intracellular pathogens must efficiently prioritize carbon utilization. Here, we discuss how carbon source controls bacterial virulence, with an emphasis on Salmonella enterica serovar Typhimurium, which causes gastroenteritis in immunocompetent humans and a typhoid-like disease in mice, and propose that virulence factors can regulate carbon source prioritization by modifying cellular physiology. On the one hand, bacterial regulators of carbon metabolism control virulence programs, indicating that pathogenic traits appear in response to carbon source availability. On the other hand, signals controlling virulence regulators may impact carbon source utilization, suggesting that stimuli that bacterial pathogens experience within the host can directly impinge on carbon source prioritization. In addition, pathogen-triggered intestinal inflammation can disrupt the gut microbiota and thus the availability of carbon sources. By coordinating virulence factors with carbon utilization determinants, pathogens adopt metabolic pathways that may not be the most energy efficient because such pathways promote resistance to antimicrobial agents and also because host-imposed deprivation of specific nutrients may hinder the operation of certain pathways. We propose that metabolic prioritization by bacteria underlies the pathogenic outcome of an infection.
Collapse
Affiliation(s)
- Nick D. Pokorzynski
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| |
Collapse
|
29
|
Worthan SB, McCarthy RDP, Behringer MG. Case Studies in the Assessment of Microbial Fitness: Seemingly Subtle Changes Can Have Major Effects on Phenotypic Outcomes. J Mol Evol 2023; 91:311-324. [PMID: 36752825 PMCID: PMC10276084 DOI: 10.1007/s00239-022-10087-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 12/21/2022] [Indexed: 02/09/2023]
Abstract
Following the completion of an adaptive evolution experiment, fitness evaluations are routinely conducted to assess the magnitude of adaptation. In doing so, proper consideration should be given when determining the appropriate methods as trade-offs may exist between accuracy and throughput. Here, we present three instances in which small changes in the framework or execution of fitness evaluations significantly impacted the outcomes. The first case illustrates that discrepancies in fitness conclusions can arise depending on the approach to evaluating fitness, the culture vessel used, and the sampling method. The second case reveals that variations in environmental conditions can occur associated with culture vessel material. Specifically, these subtle changes can greatly affect microbial physiology leading to changes in the culture pH and distorting fitness measurements. Finally, the last case reports that heterogeneity in CFU formation time can result in inaccurate fitness conclusions. Based on each case, considerations and recommendations are presented for future adaptive evolution experiments.
Collapse
Affiliation(s)
- Sarah B Worthan
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA
| | - Robert D P McCarthy
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Megan G Behringer
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA.
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
30
|
Pouresmaeil M, Azizi-Dargahlou S. Factors involved in heterologous expression of proteins in E. coli host. Arch Microbiol 2023; 205:212. [PMID: 37120438 PMCID: PMC10148705 DOI: 10.1007/s00203-023-03541-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/26/2023] [Accepted: 04/05/2023] [Indexed: 05/01/2023]
Abstract
The production of recombinant proteins is one of the most significant achievements of biotechnology in the last century. These proteins are produced in the eukaryotic or prokaryotic heterologous hosts. By increasing the omics data especially related to different heterologous hosts as well as the presence of new amenable genetic engineering tools, we can artificially engineer heterologous hosts to produce recombinant proteins in sufficient quantities. Numerous recombinant proteins have been produced and applied in various industries, and the global recombinant proteins market size is expected to be cast to reach USD 2.4 billion by 2027. Therefore, identifying the weakness and strengths of heterologous hosts is critical to optimize the large-scale biosynthesis of recombinant proteins. E. coli is one of the popular hosts to produce recombinant proteins. Scientists reported some bottlenecks in this host, and due to the increasing demand for the production of recombinant proteins, there is an urgent need to improve this host. In this review, we first provide general information about the E. coli host and compare it with other hosts. In the next step, we describe the factors involved in the expression of the recombinant proteins in E. coli. Successful expression of recombinant proteins in E. coli requires a complete elucidation of these factors. Here, the characteristics of each factor will be fully described, and this information can help to improve the heterologous expression of recombinant proteins in E. coli.
Collapse
Affiliation(s)
- Mahin Pouresmaeil
- Agricultural Biotechnology, Department of Biotechnology, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Shahnam Azizi-Dargahlou
- Agricultural Biotechnology, Department of Biotechnology, Azarbaijan Shahid Madani University, Tabriz, Iran.
| |
Collapse
|
31
|
Xiao Z, Connor AJ, Worland AM, Tang YJ, Zha RH, Koffas M. Silk fibroin production in Escherichia coli is limited by a positive feedback loop between metabolic burden and toxicity stress. Metab Eng 2023; 77:231-241. [PMID: 37024071 DOI: 10.1016/j.ymben.2023.03.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/11/2023] [Accepted: 03/25/2023] [Indexed: 04/08/2023]
Abstract
To investigate the metabolic elasticity and production bottlenecks for recombinant silk proteins in Escherichia coli, we performed a comprehensive characterization of one elastin-like peptide strain (ELP) and two silk protein strains (A5 4mer, A5 16mer). Our approach included 13C metabolic flux analysis, genome-scale modeling, transcription analysis, and 13C-assisted media optimization experiments. Three engineered strains maintained their central flux network during growth, while measurable metabolic flux redistributions (such as the Entner-Doudoroff pathway) were detected. Under metabolic burdens, the reduced TCA fluxes forced the engineered strain to rely more on substrate-level phosphorylation for ATP production, which increased acetate overflow. Acetate (as low as 10 mM) in the media was highly toxic to silk-producing strains, which reduced 4mer production by 43% and 16mer by 84%, respectively. Due to the high toxicity of large-size silk proteins, 16mer's productivity was limited, particularly in the minimal medium. Therefore, metabolic burden, overflow acetate, and toxicity of silk proteins may form a vicious positive feedback loop that fractures the metabolic network. Three solutions could be applied: 1) addition of building block supplements (i.e., eight key amino acids: His, Ile, Phe, Pro, Tyr, Lys, Met, Glu) to reduce metabolic burden; 2) disengagement of growth and production; and 3) use of non-glucose based substrate to reduce acetate overflow. Other reported strategies were also discussed in light of decoupling this positive feedback loop.
Collapse
Affiliation(s)
- Zhengyang Xiao
- Department of Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Alexander J Connor
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Alyssa M Worland
- Department of Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Yinjie J Tang
- Department of Chemical Engineering, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - R Helen Zha
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
32
|
Rasor BJ, Chirania P, Rybnicky GA, Giannone RJ, Engle NL, Tschaplinski TJ, Karim AS, Hettich RL, Jewett MC. Mechanistic Insights into Cell-Free Gene Expression through an Integrated -Omics Analysis of Extract Processing Methods. ACS Synth Biol 2023; 12:405-418. [PMID: 36700560 DOI: 10.1021/acssynbio.2c00339] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cell-free systems derived from crude cell extracts have developed into tools for gene expression, with applications in prototyping, biosensing, and protein production. Key to the development of these systems is optimization of cell extract preparation methods. However, the applied nature of these optimizations often limits investigation into the complex nature of the extracts themselves, which contain thousands of proteins and reaction networks with hundreds of metabolites. Here, we sought to uncover the black box of proteins and metabolites in Escherichia coli cell-free reactions based on different extract preparation methods. We assess changes in transcription and translation activity from σ70 promoters in extracts prepared with acetate or glutamate buffer and the common post-lysis processing steps of a runoff incubation and dialysis. We then utilize proteomic and metabolomic analyses to uncover potential mechanisms behind these changes in gene expression, highlighting the impact of cold shock-like proteins and the role of buffer composition.
Collapse
Affiliation(s)
- Blake J Rasor
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Payal Chirania
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.,Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Grant A Rybnicky
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States.,Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Richard J Giannone
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Nancy L Engle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Timothy J Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Robert L Hettich
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States.,Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
33
|
Vogt SL, Serapio-Palacios A, Woodward SE, Santos AS, de Vries SP, Daigneault MC, Brandmeier LV, Grant AJ, Maskell DJ, Allen-Vercoe E, Finlay BB. Enterohemorrhagic Escherichia coli responds to gut microbiota metabolites by altering metabolism and activating stress responses. Gut Microbes 2023; 15:2190303. [PMID: 36951510 PMCID: PMC10038027 DOI: 10.1080/19490976.2023.2190303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 03/08/2023] [Indexed: 03/24/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a major cause of severe bloody diarrhea, with potentially lethal complications, such as hemolytic uremic syndrome. In humans, EHEC colonizes the colon, which is also home to a diverse community of trillions of microbes known as the gut microbiota. Although these microbes and the metabolites that they produce represent an important component of EHEC's ecological niche, little is known about how EHEC senses and responds to the presence of gut microbiota metabolites. In this study, we used a combined RNA-Seq and Tn-Seq approach to characterize EHEC's response to metabolites from an in vitro culture of 33 human gut microbiota isolates (MET-1), previously demonstrated to effectively resolve recurrent Clostridioides difficile infection in human patients. Collectively, the results revealed that EHEC adjusts to growth in the presence of microbiota metabolites in two major ways: by altering its metabolism and by activating stress responses. Metabolic adaptations to the presence of microbiota metabolites included increased expression of systems for maintaining redox balance and decreased expression of biotin biosynthesis genes, reflecting the high levels of biotin released by the microbiota into the culture medium. In addition, numerous genes related to envelope and oxidative stress responses (including cpxP, spy, soxS, yhcN, and bhsA) were upregulated during EHEC growth in a medium containing microbiota metabolites. Together, these results provide insight into the molecular mechanisms by which pathogens adapt to the presence of competing microbes in the host environment, which ultimately may enable the development of therapies to enhance colonization resistance and prevent infection.
Collapse
Affiliation(s)
- Stefanie L. Vogt
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Sarah E. Woodward
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew S. Santos
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stefan P.W. de Vries
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Michelle C. Daigneault
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Lisa V. Brandmeier
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrew J. Grant
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Duncan J. Maskell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - B. Brett Finlay
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
34
|
El-Mansi M. Control of central metabolism’s architecture in Escherichia coli: An overview. Microbiol Res 2023; 266:127224. [DOI: 10.1016/j.micres.2022.127224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 11/06/2022]
|
35
|
Chiang CJ, Hu MC, Ta T, Chao YP. Glutamate as a non-conventional substrate for high production of the recombinant protein in Escherichia coli. Front Microbiol 2022; 13:991963. [PMID: 36187956 PMCID: PMC9515452 DOI: 10.3389/fmicb.2022.991963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
The economic viability of the biomass-based biorefinery is readily acknowledged by implementation of a cascade process that produces value-added products such as enzymes prior to biofuels. Proteins from the waste stream of biorefinery processes generally contain glutamate (Glu) in abundance. Accordingly, this study was initiated to explore the potential of Glu for production of recombinant proteins in Escherichia coli. The approach was first adopted by expression of D-hydantoinase (HDT) in commercially-available BL21(DE3) strain. Equipped with the mutant gltS (gltS*), the strain grown on Glu produced the maximum HDT as compared to the counterpart on glucose, glycerol, or acetate. The Glu-based production scheme was subsequently reprogrammed based on the L-arabinose-regulated T7 expression system. The strain with gltS* was further engineered by rewiring metabolic pathways. With low ammonium, the resulting strain produced 1.63-fold more HDT. The result indicates that Glu can serve as a carbon and nitrogen source. Overall, our proposed approach may open up a new avenue for the enzyme biorefinery platform based on Glu.
Collapse
Affiliation(s)
- Chung-Jen Chiang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung, Taiwan
| | - Mu-Chen Hu
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
| | - Thanh Ta
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
| | - Yun-Peng Chao
- Department of Chemical Engineering, Feng Chia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan
- *Correspondence: Yun-Peng Chao,
| |
Collapse
|
36
|
Koley S, Chu KL, Gill SS, Allen DK. An efficient LC-MS method for isomer separation and detection of sugars, phosphorylated sugars, and organic acids. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2938-2952. [PMID: 35560196 DOI: 10.1093/jxb/erac062] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/15/2022] [Indexed: 06/15/2023]
Abstract
Assessing central carbon metabolism in plants can be challenging due to the dynamic range in pool sizes, with low levels of important phosphorylated sugars relative to more abundant sugars and organic acids. Here, we report a sensitive liquid chromatography-mass spectrometry method for analysing central metabolites on a hybrid column, where both anion-exchange and hydrophilic interaction chromatography (HILIC) ligands are embedded in the stationary phase. The liquid chromatography method was developed for enhanced selectivity of 27 central metabolites in a single run with sensitivity at femtomole levels observed for most phosphorylated sugars. The method resolved phosphorylated hexose, pentose, and triose isomers that are otherwise challenging. Compared with a standard HILIC approach, these metabolites had improved peak areas using our approach due to ion enhancement or low ion suppression in the biological sample matrix. The approach was applied to investigate metabolism in high lipid-producing tobacco leaves that exhibited increased levels of acetyl-CoA, a precursor for oil biosynthesis. The application of the method to isotopologue detection and quantification was considered through evaluating 13C-labeled seeds from Camelina sativa. The method provides a means to analyse intermediates more comprehensively in central metabolism of plant tissues.
Collapse
Affiliation(s)
- Somnath Koley
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Kevin L Chu
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
- United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Saba S Gill
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
- United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| | - Doug K Allen
- Donald Danforth Plant Science Center, St Louis, MO 63132, USA
- United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St Louis, MO 63132, USA
| |
Collapse
|
37
|
Development of Methylorubrum extorquens AM1 as a promising platform strain for enhanced violacein production from co-utilization of methanol and acetate. Metab Eng 2022; 72:150-160. [PMID: 35301124 DOI: 10.1016/j.ymben.2022.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/16/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022]
Abstract
Violacein, a blue-violet compound with a wide range of beneficial bioactivities, is an attractive product for microbial production. Currently, violacein production has been demonstrated in several sugar heterotrophs through metabolic engineering; however, the cost of production remains an obstacle for business ventures. To address this issue, the development of host strains that can utilize inexpensive alternative substrates to reduce production costs would enable the commercialization of violacein. In this study, we engineered a facultative methylotroph, Methylorubrum extorquens AM1, to develop a methanol-based platform for violacein production. By optimizing expression vectors as well as inducer concentrations, 11.7 mg/L violacein production was first demonstrated using methanol as the sole substrate. Considering that unidentified bottlenecks for violacein biosynthesis in the shikimate pathway of M. extorquens AM1 would be difficult to address using generic metabolic engineering approaches, random mutagenesis and site-directed mutagenesis were implemented, and a 2-fold improvement in violacein production was achieved. Finally, by co-utilization of methanol and acetate, a remarkable enhancement of violacein production to 118 mg/L was achieved. Our results establish a platform strain for violacein production from non-sugar feedstocks, which may contribute to the development of an economically efficient large-scale fermentation system for violacein production.
Collapse
|
38
|
The oxidative stress and metabolic response of Acinetobacter baumannii for aPDT multiple photosensitization. Sci Rep 2022; 12:1913. [PMID: 35115588 PMCID: PMC8814140 DOI: 10.1038/s41598-022-05650-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 01/11/2022] [Indexed: 01/10/2023] Open
Abstract
The use of antimicrobial photodynamic inactivation as a non-antibiotic alternative method to inactivate Acinetobacter baumannii was described in response to the ever-growing problem of antibiotic resistance. It was found that irradiation of the bacterial suspension for 10 min reduced the number of viable cells by approximately 99% and this energy fluence was considered to be sub-lethal phototherapy. The lethal dose of laser light (cell mortality about 99.9%) was 9.54 J cm−2, which corresponds to 30 min of irradiation. After a 15-fold phototherapy cycle, the tolerance to aPDT decreased, resulting in a decrease in the number of viable cells by 2.15 and 3.23 log10 CFU/ml units with the use of sub-lethal and lethal light doses, respectively. Multiple photosensitizations decreased the biofilm formation efficiency by 25 ± 1% and 35 ± 1%, respectively. No changes in antibiotic resistance were observed, whereas the cells were more sensitive to hydrogen peroxide. Metabolomic changes after multiple photosensitization were studied and 1H NMR measurements were used in statistical and multivariate data analysis. Many significant changes in the levels of the metabolites were detected demonstrating the response of A. baumannii to oxidative stress.
Collapse
|
39
|
Heme A Synthase Deficiency Affects the Ability of Bacillus cereus to Adapt to a Nutrient-Limited Environment. Int J Mol Sci 2022; 23:ijms23031033. [PMID: 35162964 PMCID: PMC8835132 DOI: 10.3390/ijms23031033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 11/30/2022] Open
Abstract
The branched aerobic respiratory chain in Bacillus cereus comprises three terminal oxidases: cytochromes aa3, caa3, and bd. Cytochrome caa3 requires heme A for activity, which is produced from heme O by heme A synthase (CtaA). In this study, we deleted the ctaA gene in B. cereus AH187 strain, this deletion resulted in loss of cytochrome caa3 activity. Proteomics data indicated that B. cereus grown in glucose-containing medium compensates for the loss of cytochrome caa3 activity by remodeling its respiratory metabolism. This remodeling involves up-regulation of cytochrome aa3 and several proteins involved in redox stress response—to circumvent sub-optimal respiratory metabolism. CtaA deletion changed the surface-composition of B. cereus, affecting its motility, autoaggregation phenotype, and the kinetics of biofilm formation. Strikingly, proteome remodeling made the ctaA mutant more resistant to cold and exogenous oxidative stresses compared to its parent strain. Consequently, we hypothesized that ctaA inactivation could improve B. cereus fitness in a nutrient-limited environment.
Collapse
|
40
|
Rabbers I, Gottstein W, Feist AM, Teusink B, Bruggeman FJ, Bachmann H. Selection for Cell Yield Does Not Reduce Overflow Metabolism in Escherichia coli. Mol Biol Evol 2022; 39:msab345. [PMID: 34893866 PMCID: PMC8789295 DOI: 10.1093/molbev/msab345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Overflow metabolism is ubiquitous in nature, and it is often considered inefficient because it leads to a relatively low biomass yield per consumed carbon. This metabolic strategy has been described as advantageous because it supports high growth rates during nutrient competition. Here, we experimentally evolved bacteria without nutrient competition by repeatedly growing and mixing millions of parallel batch cultures of Escherichia coli. Each culture originated from a water-in-oil emulsion droplet seeded with a single cell. Unexpectedly we found that overflow metabolism (acetate production) did not change. Instead, the numerical cell yield during the consumption of the accumulated acetate increased as a consequence of a reduction in cell size. Our experiments and a mathematical model show that fast growth and overflow metabolism, followed by the consumption of the overflow metabolite, can lead to a higher numerical cell yield and therefore a higher fitness compared with full respiration of the substrate. This provides an evolutionary scenario where overflow metabolism can be favorable even in the absence of nutrient competition.
Collapse
Affiliation(s)
- Iraes Rabbers
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Willi Gottstein
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Adam M Feist
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Bas Teusink
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Frank J Bruggeman
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Herwig Bachmann
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- NIZO Food Research, Ede, The Netherlands
| |
Collapse
|
41
|
Taymaz-Nikerel H, Lara AR. Vitreoscilla Haemoglobin: A Tool to Reduce Overflow Metabolism. Microorganisms 2021; 10:microorganisms10010043. [PMID: 35056491 PMCID: PMC8779101 DOI: 10.3390/microorganisms10010043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022] Open
Abstract
Overflow metabolism is a phenomenon extended in nature, ranging from microbial to cancer cells. Accumulation of overflow metabolites pose a challenge for large-scale bioprocesses. Yet, the causes of overflow metabolism are not fully clarified. In this work, the underlying mechanisms, reasons and consequences of overflow metabolism in different organisms have been summarized. The reported effect of aerobic expression of Vitreoscilla haemoglobin (VHb) in different organisms are revised. The use of VHb to reduce overflow metabolism is proposed and studied through flux balance analysis in E. coli at a fixed maximum substrate and oxygen uptake rates. Simulations showed that the presence of VHb increases the growth rate, while decreasing acetate production, in line with the experimental measurements. Therefore, aerobic VHb expression is considered a potential tool to reduce overflow metabolism in cells.
Collapse
Affiliation(s)
- Hilal Taymaz-Nikerel
- Department of Genetics and Bioengineering, Istanbul Bilgi University, İstanbul 34060, Turkey;
| | - Alvaro R. Lara
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Mexico City 05348, Mexico
- Correspondence:
| |
Collapse
|
42
|
Mahmoodi M, Nassireslami E. Control algorithms and strategies of feeding for fed-batch fermentation of Escherichia coli: a review of 40 years of experience. Prep Biochem Biotechnol 2021; 52:823-834. [PMID: 34730470 DOI: 10.1080/10826068.2021.1998112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Fed-batch cultivation is a well-known type of submerged fermentation that is frequently used in manufacture of recombinant proteins and various kinds of enzymes, owing to its ability to produce products with high concentrations and high efficiency. In fed-batch culture, several issues must be considered; most of them are also presented in batch culture. However, feed flow rate calculation only corresponds to fed-batch fermentation and its value has a significant impact on productivity, efficiency, final concentration of product, formation of by-products, and viscosity of the culture. From this background, the present review article is an effort to gather the information on feeding strategies for fed-batch cultivation of Escherichia coli, which is a well-known microorganism in the production of recombinant proteins and industrial enzymes, especially for therapeutic applications. Moreover, this review is an aid to comprehend and compare the fundamental concept of different feeding strategies and their advantages and drawbacks.
Collapse
Affiliation(s)
- Mohammad Mahmoodi
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Ehsan Nassireslami
- Department of Pharmacology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran.,Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Functional Analysis of Deoxyhexose Sugar Utilization in Escherichia coli Reveals Fermentative Metabolism under Aerobic Conditions. Appl Environ Microbiol 2021; 87:e0071921. [PMID: 34047632 DOI: 10.1128/aem.00719-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
l-Rhamnose and l-fucose are the two main 6-deoxyhexoses Escherichia coli can use as carbon and energy sources. Deoxyhexose metabolism leads to the formation of lactaldehyde, whose fate depends on oxygen availability. Under anaerobic conditions, lactaldehyde is reduced to 1,2-propanediol, whereas under aerobic conditions, it should be oxidized into lactate and then channeled into the central metabolism. However, although this all-or-nothing view is accepted in the literature, it seems overly simplistic since propanediol is also reported to be present in the culture medium during aerobic growth on l-fucose. To clarify the functioning of 6-deoxyhexose sugar metabolism, a quantitative metabolic analysis was performed to determine extra- and intracellular fluxes in E. coli K-12 MG1655 (a laboratory strain) and in E. coli Nissle 1917 (a human commensal strain) during anaerobic and aerobic growth on l-rhamnose and l-fucose. As expected, lactaldehyde is fully reduced to 1,2-propanediol under anoxic conditions, allowing complete reoxidation of the NADH produced by glyceraldehyde-3-phosphate-dehydrogenase. We also found that net ATP synthesis is ensured by acetate production. More surprisingly, lactaldehyde is also primarily reduced into 1,2-propanediol under aerobic conditions. For growth on l-fucose, 13C-metabolic flux analysis revealed a large excess of available energy, highlighting the need to better characterize ATP utilization processes. The probiotic E. coli Nissle 1917 strain exhibits similar metabolic traits, indicating that they are not the result of the K-12 strain's prolonged laboratory use. IMPORTANCE E. coli's ability to survive in, grow in, and colonize the gastrointestinal tract stems from its use of partially digested food and hydrolyzed glycosylated proteins (mucins) from the intestinal mucus layer as substrates. These include l-fucose and l-rhamnose, two 6-deoxyhexose sugars, whose catabolic pathways have been established by genetic and biochemical studies. However, the functioning of these pathways has only partially been elucidated. Our quantitative metabolic analysis provides a comprehensive picture of 6-deoxyhexose sugar metabolism in E. coli under anaerobic and aerobic conditions. We found that 1,2-propanediol is a major by-product under both conditions, revealing the key role of fermentative pathways in 6-deoxyhexose sugar metabolism. This metabolic trait is shared by both E. coli strains studied here, a laboratory strain and a probiotic strain. Our findings add to our understanding of E. coli's metabolism and of its functioning in the bacterium's natural environment.
Collapse
|
44
|
Millard P, Sokol S, Kohlstedt M, Wittmann C, Létisse F, Lippens G, Portais JC. IsoSolve: An Integrative Framework to Improve Isotopic Coverage and Consolidate Isotopic Measurements by Mass Spectrometry and/or Nuclear Magnetic Resonance. Anal Chem 2021; 93:9428-9436. [PMID: 34197087 DOI: 10.1021/acs.analchem.1c01064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Stable-isotope labeling experiments are widely used to investigate the topology and functioning of metabolic networks. Label incorporation into metabolites can be quantified using a broad range of mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy methods, but in general, no single approach can completely cover isotopic space, even for small metabolites. The number of quantifiable isotopic species could be increased and the coverage of isotopic space improved by integrating measurements obtained by different methods; however, this approach has remained largely unexplored because no framework able to deal with partial, heterogeneous isotopic measurements has yet been developed. Here, we present a generic computational framework based on symbolic calculus that can integrate any isotopic data set by connecting measurements to the chemical structure of the molecules. As a test case, we apply this framework to isotopic analyses of amino acids, which are ubiquitous to life, central to many biological questions, and can be analyzed by a broad range of MS and NMR methods. We demonstrate how this integrative framework helps to (i) clarify and improve the coverage of isotopic space, (ii) evaluate the complementarity and redundancy of different techniques, (iii) consolidate isotopic data sets, (iv) design experiments, and (v) guide future analytical developments. This framework, which can be applied to any labeled element, isotopic tracer, metabolite, and analytical platform, has been implemented in IsoSolve (available at https://github.com/MetaSys-LISBP/IsoSolve and https://pypi.org/project/IsoSolve), an open-source software that can be readily integrated into data analysis pipelines.
Collapse
Affiliation(s)
- Pierre Millard
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse 31077, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse 31077, France
| | - Serguei Sokol
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse 31077, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse 31077, France
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbrücken 66123, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbrücken 66123, Germany
| | - Fabien Létisse
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse 31077, France.,Université Toulouse III - Paul Sabatier, Toulouse 31077, France
| | - Guy Lippens
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse 31077, France
| | - Jean-Charles Portais
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse 31077, France.,MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse 31077, France.,Université Toulouse III - Paul Sabatier, Toulouse 31077, France.,RESTORE, Université de Toulouse, INSERM U1031, CNRS 5070, Université Toulouse III - Paul Sabatier, EFS, Toulouse 31077, France
| |
Collapse
|