1
|
Yang Q, Wei J, Ye C, Pei J, Pei X, Wang Y, Dong Y, Zhang H, Jiang D, Yang X, Ma H, Cheng L, Liu H, Zhang L, Lei Y, Xu Z, Yu P, Zhang F, Ye W. Establishment and optimization of a rapid and convenient viral RNA transcript copy reduction neutralization test (VcRNT) for quantification of hantaan orthohantavirus (HTNV) neutralizing antibodies. Virology 2025; 608:110542. [PMID: 40267591 DOI: 10.1016/j.virol.2025.110542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/24/2025] [Accepted: 04/11/2025] [Indexed: 04/25/2025]
Abstract
Rodent-borne orthohantavirus causes severe hemorrhagic fever worldwide, with hemorrhagic fever with renal syndrome (HFRS) in Eurasia, and hantavirus cardiopulmonary syndrome (HCPS) in the Amrerica. In East Asia, Hantaan orthohantavirus (HTNV) is the main pathogen responsible for severe HFRS, with a case fatality rate up to 10 % with no specific treatment available. The antisera or neutralizing antibody (NAb) is able to block virus infection, however, the traditional NAb titer measuring based on focus reduction neutralization test (FRNT) is quite labour-extensive and takes 7-10 days. This study aims to shorten the measuring time of NAb neutralization efficiency by 1-2 days based on quantitative RT-PCR. For this purpose, we developed an in vitro transcripted viral RNA standard and generated a viral RNA copy number standard curve. Using this standard curve, we compared the HTNV propagation kinetics between viral RNA copy numbers and secreted infectious virion. The detection limit and suitable timeframe and condition for qRT-PCR based viral RNA copy numbers measuring was also determined. In addition, when applying this method to measuring the NAb neutralization efficiency of HFRS convalescent serum samples, we could obtain the NAb neutralization efficiency within 1 or 2 days. Furthermore, this method was also nicely correlated with the FRNT - based NAb measurement. To conclude, we established a rapid and convenient viral RNA transcripts copy reduction neutralization test (VcRNT) to measure NAb neutralization efficiency that could finish within 1 or 2 days, and provided a reliable and efficient alternative for FRNT.
Collapse
Affiliation(s)
- Qiqi Yang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - Jing Wei
- Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, Shaanxi, China
| | - Chuantao Ye
- The Center of Diagnosis and Treatment of Infectious Diseases, The Second Affiliated Hospital, Air Force Medical University: Fourth Military Medical University, Xi'an, China
| | - Jiawei Pei
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - Xuemin Pei
- School of Medicine, Northwest University, Xi'an, China
| | - Yuan Wang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - Yangchao Dong
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - Hui Zhang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - Dongshen Jiang
- School of Medicine, Yan'an University, Yan'an Key Laboratory of Zoological and Zoonotic Parasitic Diseases, Yan'an, Shaanxi, China
| | - Xiaojing Yang
- School of Life Sciences, Yan'an University, Yan'an, Shaanxi, China
| | - Hongwei Ma
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - Linfeng Cheng
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - He Liu
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - Liang Zhang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - Yingfeng Lei
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - Zhikai Xu
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China
| | - Pengbo Yu
- Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, Shaanxi, China.
| | - Fanglin Zhang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China.
| | - Wei Ye
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' An, Shaanxi, China.
| |
Collapse
|
2
|
Tran MH, Martina CE, Moretti R, Nagel M, Schey KL, Meiler J. RosettaHDX: Predicting antibody-antigen interaction from hydrogen-deuterium exchange mass spectrometry data. J Struct Biol 2025; 217:108166. [PMID: 39765317 PMCID: PMC12010952 DOI: 10.1016/j.jsb.2025.108166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/06/2024] [Accepted: 01/04/2025] [Indexed: 01/20/2025]
Abstract
High-throughput characterization of antibody-antigen complexes at the atomic level is critical for understanding antibody function and enabling therapeutic development. Hydrogen-deuterium exchange mass spectrometry (HDX-MS) enables rapid epitope mapping, but its data are too sparse for independent structure determination. In this study, we introduce RosettaHDX, a hybrid method that combines computational docking with differential HDX-MS data to enhance the accuracy of antibody-antigen complex models beyond what either method can achieve individually. By incorporating HDX data as both distance restraints and a scoring term in the RosettaDock algorithm, RosettaHDX successfully generated near-native models (interface root-mean square deviation ≤ 4 Å) for all 9 benchmark complexes examined, averaging 3.6 times more near-native models than Rosetta alone. Near-native models among the top 10 scoring were identified in 3/9 cases, compared to 1/9 with Rosetta alone. Additionally, we developed a predictive metric based on docking results with HDX restraints to identify allosteric peptides in HDX datasets.
Collapse
Affiliation(s)
- Minh H Tran
- Chemical and Physical Biology Program, Vanderbilt University, Nashville, TN, USA; Center of Structural Biology, Vanderbilt University, Nashville, TN, USA.
| | - Cristina E Martina
- Center of Structural Biology, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Rocco Moretti
- Center of Structural Biology, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | - Marcus Nagel
- Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University, Nashville, TN, USA
| | - Kevin L Schey
- Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University, Nashville, TN, USA.
| | - Jens Meiler
- Center of Structural Biology, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Institute for Drug Discovery, Institute for Computer Science, Wilhelm Ostwald Institute for Physical and Theoretical Chemistry, University Leipzig, Leipzig, Germany; Center for Scalable Data Analytics and Artificial Intelligence ScaDS.AI and School of Embedded Composite Artificial Intelligence SECAI, Dresden/Leipzig, Germany; Department of Pharmacology, Institute of Chemical Biology, Center for Applied Artificial Intelligence in Protein Dynamics, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
3
|
Wei J, Zhang H, Pei J, Yang Q, Wang Y, Jin X, Liu H, Zhang L, Ma H, Cheng L, Dong Y, Lei Y, Bai Y, Xu Z, Yu P, Zhang F, Ye W. Standardization, validation, and comparative evaluation of a convenient surrogate recombinant vesicular stomatitis virus plaque reduction test for quantification of Hantaan orthohantavirus (HTNV) neutralizing antibodies. Virol J 2025; 22:31. [PMID: 39923054 PMCID: PMC11806752 DOI: 10.1186/s12985-024-02613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 12/17/2024] [Indexed: 02/10/2025] Open
Abstract
Hantaan orthohantavirus (HTNV) is responsible for severe hemorrhagic fever with renal syndrome (HFRS), which has a case fatality rate of 1% to 10%. Currently, the inactive vaccine licensed in endemic areas elicit low levels of neutralizing antibodies (NAbs). Early NAbs administration is helpful for patients recovery from HFRS. Therefore, measuring NAbs is crucial for evaluating the immune response following infection or vaccination. The golden standard for HTNV NAbs measurement is the focus reduction neutralization test (FRNT), which typically requires skilled technicians and is performed under high biosafety containment facility. Here, we established a surrogate NAbs titration method with replication-competent vesicular stomatitis virus (VSV) bearing HTNV glycoprotein (rVSV-HTNV-GP) based plaque reduction neutralization test (PRNT). Then compared and correlated this method with the authentic HTNV based FRNT, and applied it to measure the NAbs level in 47 serum samples from HFRS patients, healthy donors and inactive vaccine recipients. We observed positive correlations between two neutralization assays among HFRS patients and inactive vaccine recipients (R2 = 0.5994 and 0.3440, respectively) and confirmed the clear specificity with healthy donors without vaccinated and reproducibility with three more assays. Our results suggest that rVSV-HTNV-GP based PRNT is a reliable lower-biosafety level surrogate for HTNV NAbs evaluation, which is easy to perform with higher sensitivity.
Collapse
Affiliation(s)
- Jing Wei
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
- Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, Shaanxi, China
| | - Hui Zhang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Jiawei Pei
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Qiqi Yang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Yuan Wang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Xiaolei Jin
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
- Student Brigade, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - He Liu
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Liang Zhang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Hongwei Ma
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Linfeng Cheng
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Yangchao Dong
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Yingfeng Lei
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Yinlan Bai
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China
| | - Zhikai Xu
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China.
| | - Pengbo Yu
- Shaanxi Provincial Center for Disease Control and Prevention, Xi'an, Shaanxi, China.
| | - Fanglin Zhang
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China.
| | - Wei Ye
- Department of Microbiology, School of Basic Medicine, Air Force Medical University: Fourth Military Medical University, Xi' an, Shaanxi, China.
| |
Collapse
|
4
|
McFadden E, Monticelli SR, Wang A, Ramamohan AR, Batchelor TG, Kuehne AI, Bakken RR, Tse AL, Chandran K, Herbert AS, McLellan JS. Engineering and structures of Crimean-Congo hemorrhagic fever virus glycoprotein complexes. Cell 2025; 188:303-315.e13. [PMID: 39701101 PMCID: PMC11761392 DOI: 10.1016/j.cell.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/30/2024] [Accepted: 11/08/2024] [Indexed: 12/21/2024]
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tickborne virus that can cause severe disease in humans with case fatality rates of 10%-40%. Although structures of CCHFV glycoproteins GP38 and Gc have provided insights into viral entry and defined epitopes of neutralizing and protective antibodies, the structure of glycoprotein Gn and its interactions with GP38 and Gc have remained elusive. Here, we use structure-guided protein engineering to produce a stabilized GP38-Gn-Gc heterotrimeric glycoprotein complex (GP38-GnH-DS-Gc). A cryo-electron microscopy (cryo-EM) structure of this complex provides the molecular basis for GP38's association on the viral surface, reveals the structure of Gn, and demonstrates that GP38-Gn restrains the Gc fusion loops in the prefusion conformation, facilitated by an N-linked glycan attached to Gn. Immunization with GP38-GnH-DS-Gc conferred 40% protection against lethal IbAr10200 challenge in mice. These data define the architecture of a GP38-Gn-Gc protomer and provide a template for structure-guided vaccine antigen development.
Collapse
Affiliation(s)
- Elizabeth McFadden
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Stephanie R Monticelli
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA; The Geneva Foundation, Tacoma, WA 98402, USA
| | - Albert Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ajit R Ramamohan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Thomas G Batchelor
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Ana I Kuehne
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Russell R Bakken
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Alexandra L Tse
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Andrew S Herbert
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
5
|
Hooper JW, Kwilas SA, Josleyn M, Norris S, Hutter JN, Hamer M, Livezey J, Paolino K, Twomey P, Koren M, Keiser P, Moon JE, Nwaeze U, Koontz J, Ledesma-Feliciano C, Landry N, Wellington T. Phase 1 clinical trial of Hantaan and Puumala virus DNA vaccines delivered by needle-free injection. NPJ Vaccines 2024; 9:221. [PMID: 39551791 PMCID: PMC11570633 DOI: 10.1038/s41541-024-00998-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 10/16/2024] [Indexed: 11/19/2024] Open
Abstract
Hantaan virus (HTNV) and Puumala virus (PUUV) are pathogenic zoonoses found in Asia and Europe, respectively. We conducted a randomized Phase 1 clinical trial of individual HTNV and PUUV DNA vaccines targeting the envelope glycoproteins (GnGc), as well as a combined HTNV/PUUV DNA vaccine delivered at varying doses using the PharmaJet Stratis® needle-free injection system (NCT02776761). Cohort 1 and 2 vaccines consisted of 2 mg/vaccination of HTNV or PUUV plasmid, respectively. Cohort 3 vaccine consisted of 2 mg/vaccination of 1:1 mixture of HTNV and PUUV vaccines. Vaccinations were administered on Days 0, 28, 56, and 168. The vaccines were safe and well tolerated. Neutralizing antibody responses were elicited in 7/7 (100%) subjects who received the HTNV DNA (Cohort 1) and 6/6 (100%) subjects who received the PUUV DNA (Cohort 2) vaccines alone. The combination vaccine resulted in 4/9 (44%) seroconversion against both viruses. After the first two vaccinations, the seroconversion rates for the HTNV and PUUV vaccines were >80%.
Collapse
Affiliation(s)
- Jay W Hooper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, USA.
| | - Steven A Kwilas
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, USA
| | - Matthew Josleyn
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, USA
| | - Sarah Norris
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, USA
| | - Jack N Hutter
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Melinda Hamer
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Jeffrey Livezey
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Kristopher Paolino
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Patrick Twomey
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Michael Koren
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Paul Keiser
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - James E Moon
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| | - Ugo Nwaeze
- US Army Medical Research and Development Command Office of Regulated Activities, Fort Detrick, MD, 21702, USA
| | - Jason Koontz
- US Army Medical Research and Development Command Office of Regulated Activities, Fort Detrick, MD, 21702, USA
| | | | | | - Trevor Wellington
- Clinical Trials Center, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, USA
| |
Collapse
|
6
|
Brocato RL, Wu H, Kwilas SA, Principe LM, Josleyn M, Shamblin J, Chivukula P, Bausch C, Luke T, Sullivan EJ, Hooper JW. Preclinical evaluation of a fully human, quadrivalent-hantavirus polyclonal antibody derived from a non-human source. mBio 2024; 15:e0160024. [PMID: 39258903 PMCID: PMC11481879 DOI: 10.1128/mbio.01600-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
Hantaviruses are rodent-borne viruses that cause severe disease in infected humans. In the New World, major hantaviruses include Andes virus (ANDV) and Sin Nombre virus (SNV) causing hantavirus pulmonary syndrome. In the Old World, major hantaviruses include Hantaan virus (HTNV) and Puumala virus (PUUV) causing hemorrhagic fever with renal syndrome. Here, we produced a pan-hantavirus therapeutic (SAB-163) comprised of fully human immunoglobulin purified from the plasma of transchromosomic bovines (TcB) vaccinated with hantavirus DNA plasmids coding for the major glycoproteins of ANDV, SNV, HTNV, and PUUV. SAB-163 has potent neutralizing antibodies (PRNT50 > 200,000) against the four targeted hantavirus and cross-neutralization against several other heterotypic hantaviruses. At a dosage of 10 mg/kg, SAB-163 is bioavailable in Syrian hamsters out to 70 days post-treatment with a half-life of 10-15 days. At this same dosage, SAB-163 administered 1 day before, or 5 days after exposure, protected all hamsters from lethal disease caused by ANDV. At a higher dose, partial but significant protection was achieved as late as day 6. SAB-163 also protected hamsters in the HTNV, PUUV, and SNV infection models when administered 1 day before or up to 3 days after challenge. This pan-hantavirus therapeutic is attractive because it is fully human, multi-targeted, safe, stable at 4°C, and effective in animal models. SAB-163 was evaluated for safety in GLP human tissue binding studies and a GLP rabbit toxicity study at 365 and 730 mg/kg and is investigational new drug enabled for phase 1 clinical trial(s). IMPORTANCE This candidate polyclonal human IgG product was produced using synthetic gene-based vaccines and transgenic cows. Having now gone through cGMP production, GLP safety testing, and efficacy testing in animals, SAB-163 is the world's most advanced anti-hantavirus antibody-based medical countermeasure, aside from convalescent human plasma. Importantly, SAB-163 targets the most prevalent hantaviruses on four continents.
Collapse
Affiliation(s)
- Rebecca L. Brocato
- Virology Division, USA Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, USA
| | - Hua Wu
- SAB Biotherapeutics Inc., Sioux Falls, South Dakota, USA
| | - Steven A. Kwilas
- Virology Division, USA Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, USA
| | - Lucia M. Principe
- Virology Division, USA Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, USA
| | - Matthew Josleyn
- Virology Division, USA Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, USA
| | - Joshua Shamblin
- Virology Division, USA Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, USA
| | | | | | - Thomas Luke
- SAB Biotherapeutics Inc., Sioux Falls, South Dakota, USA
| | | | - Jay W. Hooper
- Virology Division, USA Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Maryland, USA
| |
Collapse
|
7
|
Jiang D, Zhang J, Shen W, Sun Y, Wang Z, Wang J, Zhang J, Zhang G, Zhang G, Wang Y, Cai S, Zhang J, Wang Y, Liu R, Bai T, Sun Y, Yang S, Ma Z, Li Z, Li J, Ma C, Cheng L, Sun B, Yang K. DNA Vaccines Encoding HTNV GP-Derived Th Epitopes Benefited from a LAMP-Targeting Strategy and Established Cellular Immunoprotection. Vaccines (Basel) 2024; 12:928. [PMID: 39204051 PMCID: PMC11359959 DOI: 10.3390/vaccines12080928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Vaccines has long been the focus of antiviral immunotherapy research. Viral epitopes are thought to be useful biomarkers for immunotherapy (both antibody-based and cellular). In this study, we designed a novel vaccine molecule, the Hantaan virus (HTNV) glycoprotein (GP) tandem Th epitope molecule (named the Gnc molecule), in silico. Subsequently, computer analysis was used to conduct a comprehensive and in-depth study of the various properties of the molecule and its effects as a vaccine molecule in the body. The Gnc molecule was designed for DNA vaccines and optimized with a lysosomal-targeting membrane protein (LAMP) strategy. The effects of GP-derived Th epitopes and multiepitope vaccines were initially verified in animals. Our research has resulted in the design of two vaccines based on effective antiviral immune targets. The effectiveness of molecular therapies has also been preliminarily demonstrated in silico and in laboratory animals, which lays a foundation for the application of a vaccines strategy in the field of antivirals.
Collapse
Affiliation(s)
- Dongbo Jiang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
- Department of Microbiology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China;
| | - Junqi Zhang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Wenyang Shen
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Yubo Sun
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Zhenjie Wang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Jiawei Wang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Jinpeng Zhang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Guanwen Zhang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Gefei Zhang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Yueyue Wang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Sirui Cai
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Jiaxing Zhang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Yongkai Wang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Ruibo Liu
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Tianyuan Bai
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Yuanjie Sun
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Shuya Yang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Zilu Ma
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Zhikui Li
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Jijin Li
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Chenjin Ma
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| | - Linfeng Cheng
- Department of Microbiology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China;
| | - Baozeng Sun
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
- Yingtan Detachment, Jiangxi General Hospital, Chinese People’s Armed Police Force, Nanchang 330001, China
| | - Kun Yang
- Department of Immunology, The Key Laboratory of Bio-Hazard Damage and Prevention Medicine, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (D.J.); (J.Z.); (W.S.); (Y.S.); (Z.W.); (J.W.); (J.Z.); (G.Z.); (G.Z.); (Y.W.); (S.C.); (J.Z.); (Y.W.); (R.L.); (T.B.); (Y.S.); (S.Y.); (Z.M.); (Z.L.); (J.L.); (C.M.)
| |
Collapse
|
8
|
Ren X, Sun J, Kuang W, Yu F, Wang B, Wang Y, Deng W, Xu Z, Yang S, Wang H, Hu Y, Deng Z, Ning YJ, Zhao H. A broadly protective antibody targeting glycoprotein Gn inhibits severe fever with thrombocytopenia syndrome virus infection. Nat Commun 2024; 15:7009. [PMID: 39147753 PMCID: PMC11327358 DOI: 10.1038/s41467-024-51108-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging bunyavirus that causes severe viral hemorrhagic fever and thrombocytopenia syndrome with a fatality rate of up to 30%. No licensed vaccines or therapeutics are currently available for humans. Here, we develop seven monoclonal antibodies (mAbs) against SFTSV surface glycoprotein Gn. Mechanistic studies show that three neutralizing mAbs (S2A5, S1G3, and S1H7) block multiple steps during SFTSV infection, including viral attachment and membrane fusion, whereas another neutralizing mAb (B1G11) primarily inhibits the viral attachment step. Epitope binning and X-ray crystallographic analyses reveal four distinct antigenic sites on Gn, three of which have not previously been reported, corresponding to domain I, domain II, and spanning domain I and domain II. One of the most potent neutralizing mAbs, S2A5, binds to a conserved epitope on Gn domain I and broadly neutralizes infection of six SFTSV strains corresponding to genotypes A to F. A single dose treatment of S2A5 affords both pre- and post-exposure protection of mice against lethal SFTSV challenge without apparent weight loss. Our results support the importance of glycoprotein Gn for eliciting a robust humoral response and pave a path for developing prophylactic and therapeutic antibodies against SFTSV infection.
Collapse
Affiliation(s)
- Xuanxiu Ren
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Jiawen Sun
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenhua Kuang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Feiyang Yu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Bingjie Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yong Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Deng
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhao Xu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shangyu Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Hualin Wang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| | - Yangbo Hu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China
| | - Zengqin Deng
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China.
| | - Yun-Jia Ning
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China.
- Hubei Jiangxia Laboratory, Wuhan, Hubei, China.
| | - Haiyan Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
9
|
Kuzmin IV, Soto Acosta R, Pruitt L, Wasdin PT, Kedarinath K, Hernandez KR, Gonzales KA, Hill K, Weidner NG, Mire C, Engdahl TB, Moon WJ, Popov V, Crowe JE, Georgiev IS, Garcia-Blanco MA, Abbott RK, Bukreyev A. Comparison of uridine and N1-methylpseudouridine mRNA platforms in development of an Andes virus vaccine. Nat Commun 2024; 15:6421. [PMID: 39080316 PMCID: PMC11289437 DOI: 10.1038/s41467-024-50774-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 07/19/2024] [Indexed: 08/02/2024] Open
Abstract
The rodent-borne Andes virus (ANDV) causes a severe disease in humans. We developed an ANDV mRNA vaccine based on the M segment of the viral genome, either with regular uridine (U-mRNA) or N1-methylpseudouridine (m1Ψ-mRNA). Female mice immunized by m1Ψ-mRNA developed slightly greater germinal center (GC) responses than U-mRNA-immunized mice. Single cell RNA and BCR sequencing of the GC B cells revealed similar levels of activation, except an additional cluster of cells exhibiting interferon response in animals vaccinated with U-mRNA but not m1Ψ-mRNA. Similar immunoglobulin class-switching and somatic hypermutations were observed in response to the vaccines. Female Syrian hamsters were immunized via a prime-boost regimen with two doses of each vaccine. The titers of glycoprotein-binding antibodies were greater for U-mRNA construct than for m1Ψ-mRNA construct; however, the titers of ANDV-neutralizing antibodies were similar. Vaccinated animals were challenged with a lethal dose of ANDV, along with a naïve control group. All control animals and two animals vaccinated with a lower dose of m1Ψ-mRNA succumbed to infection whereas other vaccinated animals survived without evidence of virus replication. The data demonstrate the development of a protective vaccine against ANDV and the lack of a substantial effect of m1Ψ modification on immunogenicity and protection in rodents.
Collapse
MESH Headings
- Animals
- Female
- Mice
- Mesocricetus
- Uridine
- Viral Vaccines/immunology
- Viral Vaccines/administration & dosage
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Messenger/immunology
- Antibodies, Viral/immunology
- Orthohantavirus/immunology
- Orthohantavirus/genetics
- Antibodies, Neutralizing/immunology
- Germinal Center/immunology
- Pseudouridine/immunology
- Cricetinae
- mRNA Vaccines
- Hemorrhagic Fever, American/prevention & control
- Hemorrhagic Fever, American/immunology
- Hemorrhagic Fever, American/virology
- RNA, Viral/genetics
- RNA, Viral/immunology
- B-Lymphocytes/immunology
- Humans
- Vaccine Development
Collapse
Affiliation(s)
- Ivan V Kuzmin
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Ruben Soto Acosta
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Layne Pruitt
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Perry T Wasdin
- Vanderbilt University Medical Center, Vanderbilt Vaccine Center, Nashville, TN, USA
| | - Kritika Kedarinath
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Keziah R Hernandez
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Kristyn A Gonzales
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Kharighan Hill
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nicole G Weidner
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - Chad Mire
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
- Galveston National Laboratory, Galveston, TX, USA
| | - Taylor B Engdahl
- Vanderbilt University Medical Center, Vanderbilt Vaccine Center, Nashville, TN, USA
| | | | - Vsevolod Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | - James E Crowe
- Vanderbilt University Medical Center, Vanderbilt Vaccine Center, Nashville, TN, USA
| | - Ivelin S Georgiev
- Vanderbilt University Medical Center, Vanderbilt Vaccine Center, Nashville, TN, USA
| | - Mariano A Garcia-Blanco
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Robert K Abbott
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA.
- Galveston National Laboratory, Galveston, TX, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
10
|
McFadden E, Monticelli SR, Wang A, Ramamohan AR, Batchelor TG, Kuehne AI, Bakken RR, Tse AL, Chandran K, Herbert AS, McLellan JS. Engineering, structure, and immunogenicity of a Crimean-Congo hemorrhagic fever virus pre-fusion heterotrimeric glycoprotein complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.20.590419. [PMID: 38659837 PMCID: PMC11042304 DOI: 10.1101/2024.04.20.590419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne virus that can cause severe disease in humans with case fatality rates of 10-40%. Although structures of CCHFV glycoproteins GP38 and Gc have provided insights into viral entry and defined epitopes of neutralizing and protective antibodies, the structure of glycoprotein Gn and its interactions with GP38 and Gc have remained elusive. Here, we used structure-guided protein engineering to produce a stabilized GP38-Gn-Gc heterotrimeric glycoprotein complex (GP38-GnH-DS-Gc). A cryo-EM structure of this complex provides the molecular basis for GP38's association on the viral surface, reveals the structure of Gn, and demonstrates that GP38-Gn restrains the Gc fusion loops in the prefusion conformation, facilitated by an N-linked glycan attached to Gn. Immunization with GP38-GnH-DS-Gc conferred 40% protection against lethal IbAr10200 challenge in mice. These data define the architecture of a GP38-Gn-Gc protomer and provide a template for structure-guided vaccine antigen development.
Collapse
Affiliation(s)
- Elizabeth McFadden
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Stephanie R. Monticelli
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
- The Geneva Foundation, Tacoma, WA, USA
| | - Albert Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ajit R. Ramamohan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Thomas G. Batchelor
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
- Oak Ridge Institute of Science Education, Oak Ridge, TN, USA
| | - Ana I. Kuehne
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Russell R. Bakken
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Alexandra L. Tse
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andrew S. Herbert
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
11
|
Alatrash R, Herrera BB. The Adaptive Immune Response against Bunyavirales. Viruses 2024; 16:483. [PMID: 38543848 PMCID: PMC10974645 DOI: 10.3390/v16030483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 05/23/2024] Open
Abstract
The Bunyavirales order includes at least fourteen families with diverse but related viruses, which are transmitted to vertebrate hosts by arthropod or rodent vectors. These viruses are responsible for an increasing number of outbreaks worldwide and represent a threat to public health. Infection in humans can be asymptomatic, or it may present with a range of conditions from a mild, febrile illness to severe hemorrhagic syndromes and/or neurological complications. There is a need to develop safe and effective vaccines, a process requiring better understanding of the adaptive immune responses involved during infection. This review highlights the most recent findings regarding T cell and antibody responses to the five Bunyavirales families with known human pathogens (Peribunyaviridae, Phenuiviridae, Hantaviridae, Nairoviridae, and Arenaviridae). Future studies that define and characterize mechanistic correlates of protection against Bunyavirales infections or disease will help inform the development of effective vaccines.
Collapse
Affiliation(s)
- Reem Alatrash
- Rutgers Global Health Institute, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Medicine, Division of Allergy, Immunology, and Infectious Diseases and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Bobby Brooke Herrera
- Rutgers Global Health Institute, Rutgers University, New Brunswick, NJ 08901, USA
- Department of Medicine, Division of Allergy, Immunology, and Infectious Diseases and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| |
Collapse
|
12
|
Marceau J, Safronetz D, Martellaro C, Marzi A, Rosenke K, Feldmann H. Bivalent VSV Vectors Mediate Rapid and Potent Protection from Andes Virus Challenge in Hamsters. Viruses 2024; 16:279. [PMID: 38400054 PMCID: PMC10893017 DOI: 10.3390/v16020279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Orthohantaviruses may cause hemorrhagic fever with renal syndrome or hantavirus cardiopulmonary syndrome. Andes virus (ANDV) is the only orthohantavirus associated with human-human transmission. Therefore, emergency vaccination would be a valuable public health measure to combat ANDV-derived infection clusters. Here, we utilized a promising vesicular stomatitis virus (VSV)-based vaccine to advance the approach for emergency applications. We compared monovalent and bivalent VSV vectors containing the Ebola virus (EBOV), glycoprotein (GP), and ANDV glycoprotein precursor (GPC) for protective efficacy in pre-, peri- and post-exposure immunization by the intraperitoneal and intranasal routes. Inclusion of the EBOV GP was based on its favorable immune cell targeting and the strong innate responses elicited by the VSV-EBOV vaccine. Our data indicates no difference of ANDV GPC expressing VSV vectors in pre-exposure immunization independent of route, but a potential benefit of the bivalent VSVs following peri- and post-exposure intraperitoneal vaccination.
Collapse
Affiliation(s)
- Joshua Marceau
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (J.M.); (D.S.); (C.M.)
- Department of Biomedical and Pharmaceutical Sciences, The University of Montana, Missoula, MT 59812, USA
| | - David Safronetz
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (J.M.); (D.S.); (C.M.)
| | - Cynthia Martellaro
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (J.M.); (D.S.); (C.M.)
| | - Andrea Marzi
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (J.M.); (D.S.); (C.M.)
| | - Kyle Rosenke
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (J.M.); (D.S.); (C.M.)
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA; (J.M.); (D.S.); (C.M.)
| |
Collapse
|
13
|
Demirev AV, Lee S, Park S, Kim H, Cho S, Lee K, Kim K, Song JW, Park MS, Kim JI. Exploring the Genetic Diversity and Molecular Evolution of Seoul and Hantaan Orthohantaviruses. Viruses 2024; 16:105. [PMID: 38257805 PMCID: PMC10818986 DOI: 10.3390/v16010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
Seoul (SEOV) and Hantaan (HTNV) orthohantaviruses are significant zoonotic pathogens responsible for hemorrhagic fever with renal syndrome. Here, we investigated the molecular evolution of SEOV and HTNV through phylogenetic and bioinformatic analyses using complete genome sequences of their large (L), medium (M), and small (S) gene segments. Despite similar epizootic cycles and clinical symptoms, SEOV and HTNV exhibited distinct genetic and evolutionary dynamics. The phylogenetic trees of each segment consistently showed major genetic clades associated with the geographical distribution of both viruses. Remarkably, SEOV M and S segments exhibit higher evolutionary rates, rapidly increasing genetic diversity, and a more recent origin in contrast to HTNV. Reassortment events were infrequent, but both viruses appear to utilize the M gene segment in genetic exchanges. SEOV favors the L or M segment reassortment, while HTNV prefers the M or S segment exchange. Purifying selection dominates in all three gene segments of both viruses, yet SEOV experiences an elevated positive selection in its glycoprotein Gc ectodomain. Key amino acid differences, including a positive 'lysine fence' (through residues K77, K82, K231, K307, and K310) located at the tip of the Gn, alongside the physical stability around an RGD-like motif through M108-F334 interaction, may contribute to the unique antigenic properties of SEOV. With the increasing global dispersion and potential implications of SEOV for the global public health landscape, this study highlights the unique evolutionary dynamics and antigenic properties of SEOV and HTNV in informing vaccine design and public health preparedness.
Collapse
Affiliation(s)
- Atanas V. Demirev
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea (S.L.); (S.P.); (H.K.); (S.C.); (K.L.); (K.K.); (J.-W.S.)
| | - Sangyi Lee
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea (S.L.); (S.P.); (H.K.); (S.C.); (K.L.); (K.K.); (J.-W.S.)
| | - Sejik Park
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea (S.L.); (S.P.); (H.K.); (S.C.); (K.L.); (K.K.); (J.-W.S.)
| | - Hyunbeen Kim
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea (S.L.); (S.P.); (H.K.); (S.C.); (K.L.); (K.K.); (J.-W.S.)
| | - Seunghye Cho
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea (S.L.); (S.P.); (H.K.); (S.C.); (K.L.); (K.K.); (J.-W.S.)
| | - Kyuyoung Lee
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea (S.L.); (S.P.); (H.K.); (S.C.); (K.L.); (K.K.); (J.-W.S.)
| | - Kisoon Kim
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea (S.L.); (S.P.); (H.K.); (S.C.); (K.L.); (K.K.); (J.-W.S.)
- Vaccine Innovation Center, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea (S.L.); (S.P.); (H.K.); (S.C.); (K.L.); (K.K.); (J.-W.S.)
- Vaccine Innovation Center, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea (S.L.); (S.P.); (H.K.); (S.C.); (K.L.); (K.K.); (J.-W.S.)
- Vaccine Innovation Center, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Biosafety Center, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jin Il Kim
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea (S.L.); (S.P.); (H.K.); (S.C.); (K.L.); (K.K.); (J.-W.S.)
- Vaccine Innovation Center, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Biosafety Center, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
14
|
Jacob AT, Ziegler BM, Farha SM, Vivian LR, Zilinski CA, Armstrong AR, Burdette AJ, Beachboard DC, Stobart CC. Sin Nombre Virus and the Emergence of Other Hantaviruses: A Review of the Biology, Ecology, and Disease of a Zoonotic Pathogen. BIOLOGY 2023; 12:1413. [PMID: 37998012 PMCID: PMC10669331 DOI: 10.3390/biology12111413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023]
Abstract
Sin Nombre virus (SNV) is an emerging virus that was first discovered in the Four Corners region of the United States in 1993. The virus causes a disease known as Hantavirus Pulmonary Syndrome (HPS), sometimes called Hantavirus Cardiopulmonary Syndrome (HCPS), a life-threatening illness named for the predominance of infection of pulmonary endothelial cells. SNV is one of several rodent-borne hantaviruses found in the western hemisphere with the capability of causing this disease. The primary reservoir of SNV is the deer mouse (Peromyscus maniculatus), and the virus is transmitted primarily through aerosolized rodent excreta and secreta. Here, we review the history of SNV emergence and its virus biology and relationship to other New World hantaviruses, disease, treatment, and prevention options.
Collapse
Affiliation(s)
- Andrew T. Jacob
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | | | - Stefania M. Farha
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Lyla R. Vivian
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Cora A. Zilinski
- Department of Biology, DeSales University, Center Valley, PA 18034, USA
| | | | - Andrew J. Burdette
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
| | - Dia C. Beachboard
- Department of Biology, DeSales University, Center Valley, PA 18034, USA
| | - Christopher C. Stobart
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208, USA
- Interdisciplinary Program in Public Health, Butler University, Indianapolis, IN 46208, USA
| |
Collapse
|
15
|
Plyusnin A, Kedari A, Rissanen I, Iheozor-Ejiofor RP, Lundkvist Å, Vapalahti O, Levanov L. Validation of an antigenic site targeted by monoclonal antibodies against Puumala virus. J Gen Virol 2023; 104. [PMID: 37801017 DOI: 10.1099/jgv.0.001901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Identification of B-cell epitopes facilitates the development of vaccines, therapeutic antibodies and diagnostic tools. Previously, the binding site of the bank vole monoclonal antibody (mAb) 4G2 against Puumala virus (PUUV, an orthohantavirus in the Hantaviridae family of the Bunyavirales order) was predicted using a combination of methods, including pepscan, phage-display, and site-directed mutagenesis of vesicular stomatitis virus (VSV) particles pseudotyped with Gn and Gc glycoproteins from PUUV. These techniques led to the identification of the neutralization escape mutation F915A. To our surprise, a recent crystal structure of PUUV Gc in complex with Fab 4G2 revealed that residue F915 is distal from epitope of mAb 4G2. To clarify this issue and explore potential explanations for the inconsistency, we designed a mutagenesis experiment to probe the 4G2 epitope, with three PUUV pseudoviruses carrying amino acid changes E725A, S944F, and S946F, located within the structure-based 4G2 epitope on the Gc. These amino acid changes were able to convey neutralization escape from 4G2, and S944F and S946F also conveyed escape from neutralization by human mAb 1C9. Furthermore, our mapping of all the known neutralization evasion sites from hantaviral Gcs onto PUUV Gc revealed that over 60 % of these sites reside within or close to the epitope of mAb 4G2, indicating that this region may represent a crucial area targeted by neutralizing antibodies against PUUV, and to a lesser extent, other hantaviruses. The identification of this site of vulnerability could guide the creation of subunit vaccines against PUUV and other hantaviruses in the future.
Collapse
Affiliation(s)
- Alexander Plyusnin
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
| | - Ashwini Kedari
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ilona Rissanen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | | | - Åke Lundkvist
- Department of Medical Biochemistry and Microbiology, Microbiology-Immunology, Uppsala University, Uppsala, Sweden
| | - Olli Vapalahti
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
- Department of Virology and Immunology, HUSLAB, Helsinki University Hospital, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Lev Levanov
- Department of Virology, Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Mittler E, Serris A, Esterman ES, Florez C, Polanco LC, O’Brien CM, Slough MM, Tynell J, Gröning R, Sun Y, Abelson DM, Wec AZ, Haslwanter D, Keller M, Ye C, Bakken RR, Jangra RK, Dye JM, Ahlm C, Rappazzo CG, Ulrich RG, Zeitlin L, Geoghegan JC, Bradfute SB, Sidoli S, Forsell MN, Strandin T, Rey FA, Herbert AS, Walker LM, Chandran K, Guardado-Calvo P. Structural and mechanistic basis of neutralization by a pan-hantavirus protective antibody. Sci Transl Med 2023; 15:eadg1855. [PMID: 37315110 PMCID: PMC11721787 DOI: 10.1126/scitranslmed.adg1855] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/18/2023] [Indexed: 06/16/2023]
Abstract
Emerging rodent-borne hantaviruses cause severe diseases in humans with no approved vaccines or therapeutics. We recently isolated a monoclonal broadly neutralizing antibody (nAb) from a Puumala virus-experienced human donor. Here, we report its structure bound to its target, the Gn/Gc glycoprotein heterodimer comprising the viral fusion complex. The structure explains the broad activity of the nAb: It recognizes conserved Gc fusion loop sequences and the main chain of variable Gn sequences, thereby straddling the Gn/Gc heterodimer and locking it in its prefusion conformation. We show that the nAb's accelerated dissociation from the divergent Andes virus Gn/Gc at endosomal acidic pH limits its potency against this highly lethal virus and correct this liability by engineering an optimized variant that sets a benchmark as a candidate pan-hantavirus therapeutic.
Collapse
Affiliation(s)
- Eva Mittler
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Alexandra Serris
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Structural Virology Unit, F-75015 Paris, France
| | | | - Catalina Florez
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
| | - Laura C. Polanco
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Cecilia M. O’Brien
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
- The Geneva Foundation, Tacoma, WA 98402, USA
| | - Megan M. Slough
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Janne Tynell
- Department of Clinical Microbiology, Umeå University, 90187 Umeå, Sweden
- Zoonosis Unit, Department of Virology, Medical Faculty, University of Helsinki, 00290 Helsinki, Finland
| | - Remigius Gröning
- Department of Clinical Microbiology, Umeå University, 90187 Umeå, Sweden
| | - Yan Sun
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | - Denise Haslwanter
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Markus Keller
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
| | - Chunyan Ye
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Russel R. Bakken
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Rohit K. Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - John M. Dye
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Clas Ahlm
- Department of Clinical Microbiology, Umeå University, 90187 Umeå, Sweden
| | | | - Rainer G. Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, 17493 Greifswald-Insel Riems, Germany
- Partner site: Hamburg-Lübeck-Borstel-Riems, German Centre for Infection Research (DZIF), 17493 Greifswald-Insel Riems, Germany
| | - Larry Zeitlin
- Mapp Biopharmaceutical Inc., San Diego, CA 92121, USA
| | | | - Steven B. Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Science Center, Albuquerque, NM 87131, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Tomas Strandin
- Zoonosis Unit, Department of Virology, Medical Faculty, University of Helsinki, 00290 Helsinki, Finland
| | - Felix A. Rey
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Structural Virology Unit, F-75015 Paris, France
| | - Andrew S. Herbert
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | | | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Pablo Guardado-Calvo
- Institut Pasteur, Université Paris Cité, CNRS UMR3569, Structural Virology Unit, F-75015 Paris, France
| |
Collapse
|
17
|
Engdahl TB, Binshtein E, Brocato RL, Kuzmina NA, Principe LM, Kwilas SA, Kim RK, Chapman NS, Porter MS, Guardado-Calvo P, Rey FA, Handal LS, Diaz SM, Zagol-Ikapitte IA, Tran MH, McDonald WH, Meiler J, Reidy JX, Trivette A, Bukreyev A, Hooper JW, Crowe JE. Antigenic mapping and functional characterization of human New World hantavirus neutralizing antibodies. eLife 2023; 12:e81743. [PMID: 36971354 PMCID: PMC10115451 DOI: 10.7554/elife.81743] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 03/27/2023] [Indexed: 03/29/2023] Open
Abstract
Hantaviruses are high-priority emerging pathogens carried by rodents and transmitted to humans by aerosolized excreta or, in rare cases, person-to-person contact. While infections in humans are relatively rare, mortality rates range from 1 to 40% depending on the hantavirus species. There are currently no FDA-approved vaccines or therapeutics for hantaviruses, and the only treatment for infection is supportive care for respiratory or kidney failure. Additionally, the human humoral immune response to hantavirus infection is incompletely understood, especially the location of major antigenic sites on the viral glycoproteins and conserved neutralizing epitopes. Here, we report antigenic mapping and functional characterization for four neutralizing hantavirus antibodies. The broadly neutralizing antibody SNV-53 targets an interface between Gn/Gc, neutralizes through fusion inhibition and cross-protects against the Old World hantavirus species Hantaan virus when administered pre- or post-exposure. Another broad antibody, SNV-24, also neutralizes through fusion inhibition but targets domain I of Gc and demonstrates weak neutralizing activity to authentic hantaviruses. ANDV-specific, neutralizing antibodies (ANDV-5 and ANDV-34) neutralize through attachment blocking and protect against hantavirus cardiopulmonary syndrome (HCPS) in animals but target two different antigenic faces on the head domain of Gn. Determining the antigenic sites for neutralizing antibodies will contribute to further therapeutic development for hantavirus-related diseases and inform the design of new broadly protective hantavirus vaccines.
Collapse
Affiliation(s)
- Taylor B Engdahl
- Department of Pathology, Microbiology and Immunology, Vanderbilt UniversityNashvilleUnited States
| | - Elad Binshtein
- Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashvilleUnited States
| | - Rebecca L Brocato
- Virology Division, United States Army Medical Research Institute of Infectious DiseasesFt DetrickUnited States
| | - Natalia A Kuzmina
- Department of Pathology, The University of Texas Medical Branch at GalvestonGalvestonUnited States
- Galveston National LaboratoryGalvestonUnited States
| | - Lucia M Principe
- Virology Division, United States Army Medical Research Institute of Infectious DiseasesFt DetrickUnited States
| | - Steven A Kwilas
- Virology Division, United States Army Medical Research Institute of Infectious DiseasesFt DetrickUnited States
| | - Robert K Kim
- Virology Division, United States Army Medical Research Institute of Infectious DiseasesFt DetrickUnited States
| | - Nathaniel S Chapman
- Department of Pathology, Microbiology and Immunology, Vanderbilt UniversityNashvilleUnited States
| | - Monique S Porter
- Department of Pathology, Microbiology and Immunology, Vanderbilt UniversityNashvilleUnited States
| | | | - Félix A Rey
- Institut Pasteur, Université Paris CitéParisFrance
| | - Laura S Handal
- Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashvilleUnited States
| | - Summer M Diaz
- Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashvilleUnited States
| | - Irene A Zagol-Ikapitte
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt UniversityNashvilleUnited States
| | - Minh H Tran
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt UniversityNashvilleUnited States
| | - W Hayes McDonald
- Department of Biochemistry and Mass Spectrometry Research Center, Vanderbilt UniversityNashvilleUnited States
| | - Jens Meiler
- Department of Chemistry, Vanderbilt UniversityNashvilleUnited States
| | - Joseph X Reidy
- Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashvilleUnited States
| | - Andrew Trivette
- Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashvilleUnited States
| | - Alexander Bukreyev
- Department of Pathology, The University of Texas Medical Branch at GalvestonGalvestonUnited States
- Galveston National LaboratoryGalvestonUnited States
- Department of Microbiology and Immunology, University of Texas Medical BranchGalvestonUnited States
| | - Jay W Hooper
- Virology Division, United States Army Medical Research Institute of Infectious DiseasesFt DetrickUnited States
| | - James E Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt UniversityNashvilleUnited States
- Vanderbilt Vaccine Center, Vanderbilt University Medical CenterNashvilleUnited States
- Department of Pediatrics, Vanderbilt University Medical CenterNashvilleUnited States
| |
Collapse
|