1
|
Aranda AJ, Aguilar-Tipacamú G, Perez DR, Bañuelos-Hernandez B, Girgis G, Hernandez-Velasco X, Escorcia-Martinez SM, Castellanos-Huerta I, Petrone-Garcia VM. Emergence, migration and spreading of the high pathogenicity avian influenza virus H5NX of the Gs/Gd lineage into America. J Gen Virol 2025; 106:002081. [PMID: 40279164 PMCID: PMC12032427 DOI: 10.1099/jgv.0.002081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/31/2025] [Indexed: 04/26/2025] Open
Abstract
The high pathogenicity avian influenza virus H5N1, which first emerged in the winter of 2021, has resulted in multiple outbreaks across the American continent through the summer of 2023 and they continue based on early 2025 records, presenting significant challenges for global health and food security. The viruses causing the outbreaks belong to clade 2.3.4.4b, which are descendants of the lineage A/Goose/Guangdong/1/1996 (Gs/Gd) through genetic reassortments with several low pathogenicity avian influenza viruses present in populations of Anseriformes and Charadriiformes orders. This review addresses these issues by thoroughly analysing available epidemiological databases and specialized literature reviews. This project explores the mechanisms behind the resurgence of the H5N1 virus. It provides a comprehensive overview of the origin, timeline and factors contributing to its prevalence among wild bird populations on the American continent.
Collapse
Affiliation(s)
- Alejandro J. Aranda
- Maestría en Salud y Producción Animal Sustentable, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Gabriela Aguilar-Tipacamú
- Maestría en Salud y Producción Animal Sustentable, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, Mexico
- Licenciatura en Medicina Veterinaria y Zootecnia, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Querétaro, México
| | - Daniel R. Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Bernardo Bañuelos-Hernandez
- Facultad de Veterinaria, Universidad De La Salle Bajío, Avenida Universidad 602, Lomas del Campestre, León, México
| | - George Girgis
- Nevysta Laboratory, Iowa State University Research Park, Ames, Lowa, USA
| | - Xochitl Hernandez-Velasco
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Cd. de México, México
| | - Socorro M. Escorcia-Martinez
- Departamento de Medicina y Zootecnia de Aves, Facultad de Medicina Veterinaria y Zootecnia (FMVZ), Universidad Nacional Autónoma de México (UNAM), Cd. de México, México
| | | | - Victor M. Petrone-Garcia
- Departamento de Ciencias Pecuarias, Facultad de Estudios Superiores de Cuautitlán (FESC), Universidad Nacional Autónoma de México (UNAM), Cuautitlán, Mexico
| |
Collapse
|
2
|
Xu N, Chen Y, Wu Y, Guo Y, Wang C, Qin T, Chen S, Peng D, Liu X. The evolution of hemagglutinin-158 and neuraminidase-88 glycosylation sites modulates antigenicity and pathogenicity of clade 2.3.2.1 H5N1 avian influenza viruses. Vet Microbiol 2025; 300:110333. [PMID: 39647217 DOI: 10.1016/j.vetmic.2024.110333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Clade 2.3.2.1 of the H5N1 avian influenza virus (AIV) evolved into several subclades. However, the effect of glycosylation on the biological characteristics of hemagglutinin (HA) and/or neuraminidase (NA) from H5N1 AIVs remains unclear. Here, we determined that the global prevalence of clade 2.3.2.1 H5N1 AIVs with deglycosylated residue 158 on HA (HA158-) and glycosylated residue 88 on NA (NA88+) were predominant via multiple sequence analysis. The deglycosylation of residue on NA 88 (NA88-) was observed in clade 2.3.2.1a (new) and clade 2.3.2.1e H5N1 AIVs. Interestingly, NA88- was coupled with the acquisition of 158 glycosylation sites on HA (HA158+) in clade 2.3.2.1e H5N1 AIVs from China, and clade 2.3.2.1a (new) H5N1 AIVs exhibiting the HA158-NA88- pattern were predominant in Bangladesh. Meanwhile, the temporal distribution of strain HA158+ NA88- was highly consistent with the implementation of Re-6 vaccine in China. The recombinant H5N1 AIVs constructed using a reverse genetic system showed that the acquisition of the HA158 glycosylation site facilitated viral evasion from Re-6 antisera, and the virus lacking glycosylation sites at HA158 and NA88 resulted in reduced NA activity, replication in mammalian cells, and pathogenicity in both chickens and mice compared to that of the viruses with alternative glycosylation patterns. Therefore, the acquisition of HA158+ in clade 2.3.2.1e H5N1 AIVs enables evasion of Re-6 vaccination pressure, and the virulence of clade 2.3.2.1 H5N1 AIVs is modulated by the absence of glycosylation sites at HA158 and NA88. Our finding highlighted the importance of epidemiological surveillance and timely updating vaccines of H5 AIVs.
Collapse
Affiliation(s)
- Nuo Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Yulian Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Yuwei Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Yijie Guo
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Chenrong Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Tao Qin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, China.
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, China.
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, China; Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry Disease, Yangzhou, Jiangsu 225009, China; Jiangsu Key Laboratory of Zoonosis, Yangzhou University, China.
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China; The International Joint Laboratory for Cooperation in Agriculture and Agricultural Product Safety, Ministry of Education, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
3
|
Dao DT, Coleman KK, Bui VN, Bui AN, Tran LH, Nguyen QD, Than S, Pulscher LA, Marushchak LV, Robie ER, Nguyen-Viet H, Pham PD, Christy NC, Brooks JS, Nguyen HC, Rubrum AM, Webby RJ, Gray GC. High Prevalence of Highly Pathogenic Avian Influenza: A Virus in Vietnam's Live Bird Markets. Open Forum Infect Dis 2024; 11:ofae355. [PMID: 39015351 PMCID: PMC11250224 DOI: 10.1093/ofid/ofae355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024] Open
Abstract
Background In recent years, Vietnam has suffered multiple epizootics of influenza in poultry. Methods From 10 January 2019 to 26 April 2021, we employed a One Health influenza surveillance approach at live bird markets (LBMs) and swine farms in Northern Vietnam. When the COVID-19 pandemic permitted, each month, field teams collected oral secretion samples from poultry and pigs, animal facility bioaerosol and fecal samples, and animal worker nasal washes at 4 LBMs and 5 swine farms across 5 sites. Initially samples were screened with molecular assays followed by culture in embryonated eggs (poultry swabs) or Madin-Darby canine kidney cells (human or swine swabs). Results Many of the 3493 samples collected had either molecular or culture evidence for influenza A virus, including 314 (37.5%) of the 837 poultry oropharyngeal swabs, 144 (25.1%) of the 574 bioaerosol samples, 438 (34.9%) of the 1257 poultry fecal swab samples, and 16 (1.9%) of the 828 human nasal washes. Culturing poultry samples yielded 454 influenza A isolates, 83 of which were H5, and 70 (84.3%) of these were highly pathogenic. Additionally, a positive human sample had a H9N2 avian-like PB1 gene. In contrast, the prevalence of influenza A in the swine farms was much lower with only 6 (0.4%) of the 1700 total swine farm samples studied, having molecular evidence for influenza A virus. Conclusions This study suggests that Vietnam's LBMs continue to harbor high prevalences of avian influenza A viruses, including many highly pathogenic H5N6 strains, which will continue to threaten poultry and humans.
Collapse
Affiliation(s)
- Duy Tung Dao
- Virology Department, National Institute of Veterinary Research, Hanoi, Vietnam
| | - Kristen K Coleman
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
- Department of Global, Environmental, and Occupational Health, University of Maryland School of Public Health, College Park, Maryland, USA
- Department of Veterinary Medicine, College of Agriculture and Natural Resources, University of Maryland, College Park, Maryland, USA
| | - Vuong N Bui
- Virology Department, National Institute of Veterinary Research, Hanoi, Vietnam
| | - Anh N Bui
- Virology Department, National Institute of Veterinary Research, Hanoi, Vietnam
| | - Long H Tran
- Virology Department, National Institute of Veterinary Research, Hanoi, Vietnam
| | - Quy D Nguyen
- Virology Department, National Institute of Veterinary Research, Hanoi, Vietnam
| | - Son Than
- Virology Department, National Institute of Veterinary Research, Hanoi, Vietnam
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Laura A Pulscher
- Division of Infectious Diseases, Department of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Lyudmyla V Marushchak
- Division of Infectious Diseases, Department of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Emily R Robie
- Global Health Institute, Duke University, Durham, North Carolina, USA
| | | | - Phuc Duc Pham
- Center for Public Health and Ecosystem Research, Hanoi University of Public Health, Hanoi, Vietnam
| | | | - John S Brooks
- U.S. Naval Medical Research Unit INDO PACIFIC, Singapore, Singapore
| | - Huy C Nguyen
- U.S. Naval Medical Research Unit INDO PACIFIC, Singapore, Singapore
| | - Adam M Rubrum
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richard J Webby
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Gregory C Gray
- Division of Infectious Diseases, Department of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Global Health, School of Public and Population Health, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
4
|
Chen N, Wang R, Zhu W, Hao X, Wang J, Chen G, Qiao C, Li X, Liu C, Shen B, Feng J, Chai L, Yu Z, Xiao H. Development and characterization of an antibody that recognizes influenza virus N1 neuraminidases. PLoS One 2024; 19:e0302865. [PMID: 38723016 PMCID: PMC11081314 DOI: 10.1371/journal.pone.0302865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/14/2024] [Indexed: 05/13/2024] Open
Abstract
Influenza A viruses (IAVs) continue to pose a huge threat to public health, and their prevention and treatment remain major international issues. Neuraminidase (NA) is the second most abundant surface glycoprotein on influenza viruses, and antibodies to NA have been shown to be effective against influenza infection. In this study, we generated a monoclonal antibody (mAb), named FNA1, directed toward N1 NAs. FNA1 reacted with H1N1 and H5N1 NA, but failed to react with the NA proteins of H3N2 and H7N9. In vitro, FNA1 displayed potent antiviral activity that mediated both NA inhibition (NI) and blocking of pseudovirus release. Moreover, residues 219, 254, 358, and 388 in the NA protein were critical for FNA1 binding to H1N1 NA. However, further validation is necessary to confirm whether FNA1 mAb is indeed a good inhibitor against NA for application against H1N1 and H5N1 viruses.
Collapse
Affiliation(s)
- Nan Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Renxi Wang
- Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Institute of Brain Disorders, Capital Medical University, Ministry of Science and Technology, Beijing, China
| | - Wanlu Zhu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Xiangjun Hao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Jing Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Guojiang Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - ChunXia Qiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xinying Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Chenghua Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Beifen Shen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Lihui Chai
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Zuyin Yu
- Department of Experimental Hematology and Biochemistry, Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - He Xiao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
5
|
Zhi S, Wu W, Ding Y, Zhang Y, Pan L, Liu G, Li W. Development of rapid nucleic acid testing techniques for common respiratory infectious diseases in the Chinese population. Front Chem 2024; 12:1381738. [PMID: 38694405 PMCID: PMC11061412 DOI: 10.3389/fchem.2024.1381738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/01/2024] [Indexed: 05/04/2024] Open
Abstract
Background: Most respiratory viruses can cause serious lower respiratory diseases at any age. Therefore, timely and accurate identification of respiratory viruses has become even more important. This study focused on the development of rapid nucleic acid testing techniques for common respiratory infectious diseases in the Chinese population. Methods: Multiplex fluorescent quantitative polymerase chain reaction (PCR) assays were developed and validated for the detection of respiratory pathogens including the novel coronavirus (SARS-CoV-2), influenza A virus (FluA), parainfluenza virus (PIV), and respiratory syncytial virus (RSV). Results: The assays demonstrated high specificity and sensitivity, allowing for the simultaneous detection of multiple pathogens in a single reaction. These techniques offer a rapid and reliable method for screening, diagnosis, and monitoring of respiratory pathogens. Conclusion: The implementation of these techniques might contribute to effective control and prevention measures, leading to improved patient care and public health outcomes in China. Further research and validation are needed to optimize and expand the application of these techniques to a wider range of respiratory pathogens and to enhance their utility in clinical and public health settings.
Collapse
Affiliation(s)
- Shenshen Zhi
- Department of Blood Transfusion, Chongqing Emergency Medical Center, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Wenyan Wu
- Clinical Laboratory, Chongqing Emergency Medical Center, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Yan Ding
- Clinical Laboratory, Chongqing Emergency Medical Center, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Yuanyuan Zhang
- Clinical Laboratory, Chongqing Emergency Medical Center, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Liyan Pan
- Clinical Laboratory, Chongqing Emergency Medical Center, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| | - Guo Liu
- Zeal Dental, Chongqing, China
| | - Wei Li
- Clinical Laboratory, Chongqing Emergency Medical Center, School of Medicine, Chongqing University Central Hospital, Chongqing University, Chongqing, China
| |
Collapse
|
6
|
Meseko C, Ameji NO, Kumar B, Culhane M. Rational approach to vaccination against highly pathogenic avian influenza in Nigeria: a scientific perspective and global best practice. Arch Virol 2023; 168:263. [PMID: 37775596 DOI: 10.1007/s00705-023-05888-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/21/2023] [Indexed: 10/01/2023]
Abstract
Since 2006, highly pathogenic avian influenza (HPAI) subtypes H5Nx have adversely affected poultry production in Nigeria. Successive waves of infections in the last two decades have raised concerns about the ability to contain infections by biosecurity alone, and evidence of recurrent outbreaks suggests a need for adoption of additional control measures such as vaccination. Although vaccination can be used to control virus spread and reduce the morbidity and mortality caused by HPAI, no country using vaccination alone as a control measure against HPAI has been able to eliminate or prevent re-infection. To inform policy in Nigeria, we examined the intricacies of HPAI vaccination, government regulations, and scientific data regarding what kind of vaccines can be used based on subtype, whether inactivated or live attenuated should be used, when to deliver vaccine either proactively or reactively, where to apply vaccination either in disease control zones, regionally, or nationally, and how to vaccinate the targeted poultry population for optimum success. A resurgence of HPAI outbreaks in Nigeria since 2018, after the country was declared free of the epidemic following the first outbreak in 2006, has led to enhanced intervention. Controlled vaccination entails monitoring the application of vaccines, the capacity to differentiate vaccinated from infected (DIVA) flocks, and assessing seroconversion or other immune correlates of protection. Concurrent surveillance for circulating avian influenza virus (AIV) and analyzing AIV isolates obtained via surveillance efforts for genetic and/or antigenic mismatch with vaccine strains are also important. Countries with high investment in commercial poultry farms like Nigeria may identify and zone territories where vaccines can be applied. This may include ring vaccination to control HPAI in areas or production systems at risk of infection. Before adoption of vaccination as an additional control measure on commercial poultry farms, two outcomes must be considered. First, vaccination is an admission of endemicity. Secondly, vaccinated flocks may no longer be made accessible to international poultry markets in accordance with WOAH trade regulations. Vaccination must therefore be approached with utmost caution and be guided by science-based evidence throughout the implementation strategy after thorough risk assessment. Influenza vaccine research, development, and controlled application in addition to biosecurity may be a precautionary measure in the evolving HPAI scenario in Nigeria.
Collapse
Affiliation(s)
- Clement Meseko
- Regional Laboratory for Animal Influenza and Transboundary Diseases, National Veterinary Research Institute, vom plateau, Nigeria.
- Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, University of Jos, Jos, Nigeria.
| | - Negedu Onogu Ameji
- Department of Veterinary Medicine, Surgery and Radiology, University of Jos, Jos, Nigeria
| | - Binod Kumar
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| | - Marie Culhane
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Minnesota, USA
| |
Collapse
|
7
|
Park J, Song CS, Chung DH, Choi S, Kwon J, Youk S, Lee DH. Chimeric H5 influenza virus-like particle vaccine elicits broader cross-clade antibody responses in chickens than in ducks. Front Vet Sci 2023; 10:1158233. [PMID: 37396994 PMCID: PMC10310301 DOI: 10.3389/fvets.2023.1158233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/31/2023] [Indexed: 07/04/2023] Open
Abstract
Eurasian-lineage highly pathogenic avian influenza (HPAI) H5 viruses have spread throughout Asia, the Middle East, Europe, Africa, and most recently, North and South America. These viruses are independently evolving into genetically and antigenically divergent clades, and broad-spectrum vaccines protecting against these divergent clades are needed. In this study, we developed a chimeric virus-like particle (VLP) vaccine co-expressing hemagglutinins from two clades (clades 1 and 2.3.2.1) of HPAI H5 viruses and performed comparative cross-clade hemagglutination inhibition (HI) analysis in chickens and ducks. The chimeric VLP immunization induced a significantly broader spectrum of antibodies against various clades of HPAI H5 viruses than monovalent VLPs both in chickens and ducks. While the chimeric VLP led to broadened antibody responses in both species, significantly lower levels of HI antibodies were elicited in ducks than in chickens. Moreover, boost immunization failed to increase antibody responses in ducks regardless of the VLPs used, in contrast to chickens that showed significantly enhanced antibody responses upon boost immunization. These results suggest (1) the potential application of the chimeric VLP technology in poultry to help control HPAI H5 viruses by offering broader antibody responses against antigenically different strains and (2) possible obstacles in generating high levels of antibody responses against HPAI H5 viruses in ducks via vaccination, implying the need for advanced vaccination strategies for ducks.
Collapse
Affiliation(s)
- Jaekeun Park
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea
- Department of Veterinary Medicine, Virginia-Maryland College of Veterinary Medicine, University of Maryland, College Park, MD, United States
| | - Chang-Seon Song
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - David Hyunjung Chung
- Department of Pathobiology and Veterinary Sciences, University of Connecticut, Storrs, CT, United States
| | - Sangyong Choi
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT, United States
| | - Junghoon Kwon
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sungsu Youk
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Republic of Korea
| | - Dong-Hun Lee
- College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| |
Collapse
|
8
|
Russo G, Crispino E, Maleki A, Di Salvatore V, Stanco F, Pappalardo F. Beyond the state of the art of reverse vaccinology: predicting vaccine efficacy with the universal immune system simulator for influenza. BMC Bioinformatics 2023; 24:231. [PMID: 37271819 PMCID: PMC10239721 DOI: 10.1186/s12859-023-05374-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023] Open
Abstract
When it was first introduced in 2000, reverse vaccinology was defined as an in silico approach that begins with the pathogen's genomic sequence. It concludes with a list of potential proteins with a possible, but not necessarily, list of peptide candidates that need to be experimentally confirmed for vaccine production. During the subsequent years, reverse vaccinology has dramatically changed: now it consists of a large number of bioinformatics tools and processes, namely subtractive proteomics, computational vaccinology, immunoinformatics, and in silico related procedures. However, the state of the art of reverse vaccinology still misses the ability to predict the efficacy of the proposed vaccine formulation. Here, we describe how to fill the gap by introducing an advanced immune system simulator that tests the efficacy of a vaccine formulation against the disease for which it has been designed. As a working example, we entirely apply this advanced reverse vaccinology approach to design and predict the efficacy of a potential vaccine formulation against influenza H5N1. Climate change and melting glaciers are critical due to reactivating frozen viruses and emerging new pandemics. H5N1 is one of the potential strains present in icy lakes that can raise a pandemic. Investigating structural antigen protein is the most profitable therapeutic pipeline to generate an effective vaccine against H5N1. In particular, we designed a multi-epitope vaccine based on predicted epitopes of hemagglutinin and neuraminidase proteins that potentially trigger B-cells, CD4, and CD8 T-cell immune responses. Antigenicity and toxicity of all predicted CTL, Helper T-lymphocytes, and B-cells epitopes were evaluated, and both antigenic and non-allergenic epitopes were selected. From the perspective of advanced reverse vaccinology, the Universal Immune System Simulator, an in silico trial computational framework, was applied to estimate vaccine efficacy using a cohort of 100 digital patients.
Collapse
Affiliation(s)
- Giulia Russo
- Department of Health and Drug Sciences, Università degli Studi di Catania, Catania, Italy
| | - Elena Crispino
- Department of Biomedical and Biotechnological Sciences, Università degli Studi di Catania, Catania, Italy
| | - Avisa Maleki
- Department of Mathematics and Computer Science, Università degli Studi di Catania, Catania, Italy
| | - Valentina Di Salvatore
- Department of Health and Drug Sciences, Università degli Studi di Catania, Catania, Italy
| | - Filippo Stanco
- Department of Mathematics and Computer Science, Università degli Studi di Catania, Catania, Italy
| | - Francesco Pappalardo
- Department of Health and Drug Sciences, Università degli Studi di Catania, Catania, Italy.
| |
Collapse
|
9
|
Guan L, Zhong G, Fan S, Plisch EM, Presler R, Gu C, Babujee L, Pattinson D, Le Khanh Nguyen H, Hoang VMP, Le MQ, van Bakel H, Neumann G, Kawaoka Y. Highly Pathogenic H5 Influenza Viruses Isolated between 2016 and 2017 in Vietnamese Live Bird Markets. Viruses 2023; 15:1093. [PMID: 37243179 PMCID: PMC10223276 DOI: 10.3390/v15051093] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Routine surveillance in live poultry markets in the northern regions of Vietnam from 2016 to 2017 resulted in the isolation of 27 highly pathogenic avian H5N1 and H5N6 viruses of 3 different clades (2.3.2.1c, 2.3.4.4f, and 2.3.4.4g). Sequence and phylogenetic analysis of these viruses revealed reassortment with various subtypes of low pathogenic avian influenza viruses. Deep-sequencing identified minor viral subpopulations encoding variants that may affect pathogenicity and sensitivity to antiviral drugs. Interestingly, mice infected with two different clade 2.3.2.1c viruses lost body weight rapidly and succumbed to virus infection, whereas mice infected with clade 2.3.4.4f or 2.3.4.4g viruses experienced non-lethal infections.
Collapse
Affiliation(s)
- Lizheng Guan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Gongxun Zhong
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Shufang Fan
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Erin M. Plisch
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Robert Presler
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Chunyang Gu
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Lavanya Babujee
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - David Pattinson
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | | | | | - Mai Quynh Le
- National Institute of Hygiene and Epidemiology, Hanoi 100000, Vietnam
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI 53711, USA
- Division of Virology, Department of Microbiology and Immunology, and International Research Center for Infectious Diseases, The Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- Research Center for Global Viral Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
- Infection and Advanced Research (UTOPIA) Center, The University of Tokyo, Pandemic Preparedness, Tokyo 108-8639, Japan
| |
Collapse
|
10
|
Noisumdaeng P, Phadungsombat J, Weerated S, Wiriyarat W, Puthavathana P. Genetic evolution of hemagglutinin and neuraminidase genes of H5N1 highly pathogenic avian influenza viruses in Thailand. PeerJ 2022; 10:e14419. [PMID: 36518286 PMCID: PMC9744161 DOI: 10.7717/peerj.14419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/28/2022] [Indexed: 12/05/2022] Open
Abstract
Background Ongoing outbreaks of H5N1 highly pathogenic avian influenza (HPAI) viruses and the emergence of the genetic-related hemagglutinin (HA) gene of reassortant H5Nx viruses currently circulating in wild birds and poultries pose a great global public health concern. In this study, we comprehensively analyzed the genetic evolution of Thai H5N1 HA and neuraminidase (NA) genes between 2003 and 2010. The H5N1 Thailand virus clade 2.3.4 was also genetically compared to the currently circulating clade 2.3.4.4 of H5Nx viruses. Methods Full-length nucleotide sequences of 178 HA and 143 NA genes of H5N1 viruses circulating between 2003 and 2010 were phylogenetically analyzed using maximum likelihood (ML) phylogenetic construction. Bayesian phylogenetic trees were reconstructed using BEAST analysis with a Bayesian Markov chain Monte Carlo (MCMC) approach. The maximum clade credibility (MCC) tree was determined, and the time of the most recent common ancestor (tMRCA) was estimated. The H5N1 HA nucleotide sequences of clade 2.3.4 Thailand viruses were phylogenetically analyzed using ML phylogenetic tree construction and analyzed for nucleotide similarities with various subtypes of reassortant H5Nx HA clade 2.3.4.4. Results ML phylogenetic analysis revealed two distinct HA clades, clade 1 and clade 2.3.4, and two distinct NA groups within the corresponding H5 clade 1 viruses. Bayesian phylogenetic reconstruction for molecular clock suggested that the Thai H5N1 HA and NA emerged in 2001.87 (95% HPD: 2001.34-2002.49) and 2002.38 (95% HPD: 2001.99-2002.82), respectively, suggesting that the virus existed before it was first reported in 2004. The Thai H5N1 HA clade 2.3.4 was grouped into corresponding clades 2.3.4, 2.3.4.1, 2.3.4.2, and 2.3.4.3, and shared nucleotide similarities to reassortant H5Nx clade 2.3.4.4 ranged from 92.4-96.8%. Phylogenetic analysis revealed monophyletic H5Nx clade 2.3.4.4 evolved from H5N1 clade 2.3.4. Conclusion H5N1 viruses existed, and were presumably introduced and circulated in avian species in Thailand, before they were officially reported in 2004. HA and NA genes continuously evolved during circulation between 2004 and 2010. This study provides a better understanding of genetic evolution with respect to molecular epidemiology. Monitoring and surveillance of emerging variants/reassortants should be continued.
Collapse
Affiliation(s)
- Pirom Noisumdaeng
- Faculty of Public Health, Thammasat University, Khlong Luang, Pathum Thani, Thailand,Thammasat University Research Unit in Modern Microbiology and Public Health Genomics, Thammasat University, Khlong Luang, Pathum Thani, Thailand
| | - Juthamas Phadungsombat
- Mahidol-Osaka Center for Infectious Diseases (MOCID), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand,Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Sasrinakarn Weerated
- Faculty of Public Health, Thammasat University, Khlong Luang, Pathum Thani, Thailand
| | | | - Pilaipan Puthavathana
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
11
|
Amirgazin A, Shevtsov A, Karibayev T, Berdikulov M, Kozhakhmetova T, Syzdykova L, Ramankulov Y, Shustov AV. Highly pathogenic avian influenza virus of the A/H5N8 subtype, clade 2.3.4.4b, caused outbreaks in Kazakhstan in 2020. PeerJ 2022; 10:e13038. [PMID: 35256921 PMCID: PMC8898005 DOI: 10.7717/peerj.13038] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/09/2022] [Indexed: 01/11/2023] Open
Abstract
Background Large poultry die-offs happened in Kazakhstan during autumn of 2020. The birds' disease appeared to be avian influenza. Northern Kazakhstan was hit first and then the disease propagated across the country affecting eleven provinces. This study reports the results of full-genome sequencing of viruses collected during the outbreaks and investigation of their relationship to avian influenza virus isolates in the contemporary circulation in Eurasia. Methods Samples were collected from diseased birds during the 2020 outbreaks in Kazakhstan. Initial virus detection and subtyping was done using RT-PCR. Ten samples collected during expeditions to Northern and Southern Kazakhstan were used for full-genome sequencing of avian influenza viruses. Phylogenetic analysis was used to compare viruses from Kazakhstan to viral isolates from other world regions. Results Phylogenetic trees for hemagglutinin and neuraminidase show that viruses from Kazakhstan belong to the A/H5N8 subtype and to the hemagglutinin H5 clade 2.3.4.4b. Deduced hemagglutinin amino acid sequences in all Kazakhstan's viruses in this study contain the polybasic cleavage site (KRRKR-G) indicative of the highly pathogenic phenotype. Building phylogenetic trees with the Bayesian phylogenetics results in higher statistical support for clusters than using distance methods. The Kazakhstan's viruses cluster with isolates from Southern Russia, the Russian Caucasus, the Ural region, and southwestern Siberia. Other closely related prototypes are from Eastern Europe. The Central Asia Migratory Flyway passes over Kazakhstan and birds have intermediate stops in Northern Kazakhstan. It is postulated that the A/H5N8 subtype was introduced with migrating birds. Conclusion The findings confirm the introduction of the highly pathogenic avian influenza viruses of the A/Goose/Guangdong/96 (Gs/GD) H5 lineage in Kazakhstan. This virus poses a tangible threat to public health. Considering the results of this study, it looks justifiable to undertake measures in preparation, such as install sentinel surveillance for human cases of avian influenza in the largest pulmonary units, develop a human A/H5N8 vaccine and human diagnostics capable of HPAI discrimination.
Collapse
Affiliation(s)
- Asylulan Amirgazin
- National Center for Biotechnology, Nur-Sultan, Akmola Region, Kazakhstan
| | - Alexandr Shevtsov
- National Center for Biotechnology, Nur-Sultan, Akmola Region, Kazakhstan
| | - Talgat Karibayev
- National Reference Veterinary Center, Nur-Sultan, Akmola Region, Kazakhstan
| | - Maxat Berdikulov
- National Reference Veterinary Center, Nur-Sultan, Akmola Region, Kazakhstan
| | | | - Laura Syzdykova
- National Center for Biotechnology, Nur-Sultan, Akmola Region, Kazakhstan
| | - Yerlan Ramankulov
- National Center for Biotechnology, Nur-Sultan, Akmola Region, Kazakhstan,National Laboratory Astana, Nazarbayev University, Nur-Sultan, Akmola Region, Kazakhstan
| | | |
Collapse
|
12
|
Guo J, Song W, Ni X, Liu W, Wu J, Xia W, Zhou X, Wang W, He F, Wang X, Fan G, Zhou K, Chen H, Chen S. Pathogen change of avian influenza virus in the live poultry market before and after vaccination of poultry in southern China. Virol J 2021; 18:213. [PMID: 34715890 PMCID: PMC8554751 DOI: 10.1186/s12985-021-01683-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/18/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The fifth wave of H7N9 avian influenza virus caused a large number of human infections and a large number of poultry deaths in China. Since September 2017, mainland China has begun to vaccinate poultry with H5 + H7 avian influenza vaccine. We investigated the avian influenza virus infections in different types of live poultry markets and samples before and after genotype H5 + H7 vaccination in Nanchang, and analyzed the changes of the HA subtypes of AIVs. METHODS From 2016 to 2019, we monitored different live poultry markets and collected specimens, using real-time reverse transcription polymerase chain reaction (RT-PCR) technology to detect the nucleic acid of type A avian influenza virus in the samples. The H5, H7 and H9 subtypes of influenza viruses were further classified for the positive results. The χ2 test was used to compare the differences in the separation rates of different avian influenza subtypes. RESULTS We analyzed 5,196 samples collected before and after vaccination and found that the infection rate of AIV in wholesale market (21.73%) was lower than that in retail market (24.74%) (P < 0.05). Among all the samples, the positive rate of sewage samples (33.90%) was the highest (P < 0.001). After vaccination, the positive rate of H5 and H7 subtypes decreased, and the positive rate of H9 subtype and untypable HA type increased significantly (P < 0.001). The positive rates of H9 subtype in different types of LPMs and different types of samples increased significantly (P < 0.01), and the positive rates of untypable HA type increased significantly in all environmental samples (P < 0.05). CONCLUSIONS Since vaccination, the positive rates of H5 and H7 subtypes have decreased, but the positive rates of H9 subtypes have increased to varying degrees in different testing locations and all samples. This results show that the government should establish more complete measures to achieve long-term control of the avian influenza virus.
Collapse
Affiliation(s)
- Jin Guo
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, 330038, People's Republic of China.,School of Public Health, Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Wentao Song
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, 330038, People's Republic of China
| | - Xiansheng Ni
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, 330038, People's Republic of China
| | - Wei Liu
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, 330038, People's Republic of China
| | - Jingwen Wu
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, 330038, People's Republic of China
| | - Wen Xia
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, 330038, People's Republic of China
| | - Xianfeng Zhou
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, 330038, People's Republic of China
| | - Wei Wang
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, 330038, People's Republic of China
| | - Fenglan He
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, 330038, People's Republic of China
| | - Xi Wang
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, 330038, People's Republic of China
| | - Guoyin Fan
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, 330038, People's Republic of China
| | - Kun Zhou
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, 330038, People's Republic of China
| | - Haiying Chen
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, 330038, People's Republic of China
| | - Shengen Chen
- The Collaboration Unit for Field Epidemiology of State Key Laboratory of Infectious Disease Prevention and Control, Jiangxi Provincial Key Laboratory of Animal-Origin and Vector-Borne Diseases, Nanchang Center for Disease Control and Prevention, Nanchang, 330038, People's Republic of China.
| |
Collapse
|
13
|
Mon HH, Hadrill D, Brioudes A, Mon CCS, Sims L, Win HH, Thein WZ, Mok WS, Kyin MM, Maw MT, Win YT. Longitudinal Analysis of Influenza A(H5) Sero-Surveillance in Myanmar Ducks, 2006-2019. Microorganisms 2021; 9:2114. [PMID: 34683435 PMCID: PMC8540498 DOI: 10.3390/microorganisms9102114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/30/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022] Open
Abstract
Between 2006 and 2019, serological surveys in unvaccinated domestic ducks reared outdoors in Myanmar were performed, using a haemagglutination inhibition (HI) test, to confirm H5 avian influenza virus circulation and assess temporal and spatial distribution. Positive test results occurred every year that samples were collected. The annual proportion of positive farms ranged from 7.1% to 77.2%. The results revealed silent/sub-clinical influenza A (H5) virus circulation, even in years and States/Regions with no highly pathogenic avian influenza (HPAI) outbreaks reported. Further analysis of the 2018/19 results revealed considerable differences in seroconversion rates between four targeted States/Regions and between years, and showed seroconversion before and during the sampling period. By the end of the trial, a high proportion of farms were seronegative, leaving birds vulnerable to infection when sold. Positive results likely indicate infection with Gs/GD/96-lineage H5Nx HPAI viruses rather than other H5 subtype low-pathogenicity avian influenza viruses. The findings suggested persistent, but intermittent, circulation of Gs/GD/96-lineage H5Nx HPAI viruses in domestic ducks, despite the veterinary services' outbreak detection and control efforts. The role of wild birds in transmission remains unclear but there is potential for spill-over in both directions. The findings of this study assist the national authorities in the design of appropriate, holistic avian influenza control programs.
Collapse
Affiliation(s)
- Hla Hla Mon
- Livestock Breeding and Veterinary Department, Ministry of Agriculture, Livestock and Irrigation, Nay Pyi Taw 15015, Myanmar; (H.H.M.); (H.H.W.); (W.Z.T.); (M.T.M.); (Y.T.W.)
| | - David Hadrill
- Emergency Centre for Transboundary Animal Diseases, Food and Agriculture Organization of the United Nations, Yangon 11011, Myanmar; (A.B.); (C.C.S.M.); (L.S.); (W.S.M.); (M.M.K.)
| | - Aurélie Brioudes
- Emergency Centre for Transboundary Animal Diseases, Food and Agriculture Organization of the United Nations, Yangon 11011, Myanmar; (A.B.); (C.C.S.M.); (L.S.); (W.S.M.); (M.M.K.)
| | - Cho Cho Su Mon
- Emergency Centre for Transboundary Animal Diseases, Food and Agriculture Organization of the United Nations, Yangon 11011, Myanmar; (A.B.); (C.C.S.M.); (L.S.); (W.S.M.); (M.M.K.)
| | - Leslie Sims
- Emergency Centre for Transboundary Animal Diseases, Food and Agriculture Organization of the United Nations, Yangon 11011, Myanmar; (A.B.); (C.C.S.M.); (L.S.); (W.S.M.); (M.M.K.)
| | - Htay Htay Win
- Livestock Breeding and Veterinary Department, Ministry of Agriculture, Livestock and Irrigation, Nay Pyi Taw 15015, Myanmar; (H.H.M.); (H.H.W.); (W.Z.T.); (M.T.M.); (Y.T.W.)
| | - Way Zin Thein
- Livestock Breeding and Veterinary Department, Ministry of Agriculture, Livestock and Irrigation, Nay Pyi Taw 15015, Myanmar; (H.H.M.); (H.H.W.); (W.Z.T.); (M.T.M.); (Y.T.W.)
| | - Wing Sum Mok
- Emergency Centre for Transboundary Animal Diseases, Food and Agriculture Organization of the United Nations, Yangon 11011, Myanmar; (A.B.); (C.C.S.M.); (L.S.); (W.S.M.); (M.M.K.)
| | - Maung Maung Kyin
- Emergency Centre for Transboundary Animal Diseases, Food and Agriculture Organization of the United Nations, Yangon 11011, Myanmar; (A.B.); (C.C.S.M.); (L.S.); (W.S.M.); (M.M.K.)
| | - Min Thein Maw
- Livestock Breeding and Veterinary Department, Ministry of Agriculture, Livestock and Irrigation, Nay Pyi Taw 15015, Myanmar; (H.H.M.); (H.H.W.); (W.Z.T.); (M.T.M.); (Y.T.W.)
| | - Ye Tun Win
- Livestock Breeding and Veterinary Department, Ministry of Agriculture, Livestock and Irrigation, Nay Pyi Taw 15015, Myanmar; (H.H.M.); (H.H.W.); (W.Z.T.); (M.T.M.); (Y.T.W.)
| |
Collapse
|
14
|
Reassortant Highly Pathogenic H5N6 Avian Influenza Virus Containing Low Pathogenic Viral Genes in a Local Live Poultry Market, Vietnam. Curr Microbiol 2021; 78:3835-3842. [PMID: 34546415 PMCID: PMC8486720 DOI: 10.1007/s00284-021-02661-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/08/2021] [Indexed: 11/25/2022]
Abstract
Sites of live poultry trade and marketing are hot spots for avian influenza virus (AIV) transmission. We conducted active surveillance at a local live poultry market (LPM) in northern Vietnamese provinces in December 2016. Feces samples from the market were collected and tested for AIV. A new reassorted AIV strain was isolated from female chickens, named A/chicken/Vietnam/AI-1606/2016 (H5N6), and was found to belong to group C of clade 2.3.4.4 H5N6 highly pathogenic (HP) AIVs. The neuraminidase gene belongs to the reassortant B type. The viral genome also contained polymerase basic 2 and polymerase acidic, which were most closely related to domestic-duck-origin low pathogenic AIVs in Japan (H3N8) and Mongolia (H4N6). The other six genes were most closely related to poultry-origin H5N6 HP AIVs in Vietnam and had over 97% sequence identity with human AIV isolate A/Guangzhou/39715/2014 (H5N6). The new reassorted AIV isolate A/chicken/Vietnam/AI-1606/2016 (H5N6) identified in this study exemplifies AIVs reassortment and evolution through contact among wild birds, poultry farms, and LPMs. Therefore, active surveillance of AIVs is necessary to prevent potential threats to human and animal health.
Collapse
|
15
|
Temporal Dynamics of Influenza A(H5N1) Subtype before and after the Emergence of H5N8. Viruses 2021; 13:v13081565. [PMID: 34452430 PMCID: PMC8412109 DOI: 10.3390/v13081565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 01/10/2023] Open
Abstract
Highly pathogenic avian influenza (HPAI) viruses continue to circulate worldwide, causing numerous outbreaks among bird species and severe public health concerns. H5N1 and H5N8 are the two most fundamental HPAI subtypes detected in birds in the last two decades. The two viruses may compete with each other while sharing the same host population and, thus, suppress the spread of one of the viruses. In this study, we performed a statistical analysis to investigate the temporal correlation of the HPAI H5N1 and HPAI H5N8 subtypes using globally reported data in 2015-2020. This was joined with an in-depth analysis using data generated via our national surveillance program in Egypt. A total of 6412 outbreaks were reported worldwide during this period, with 39% (2529) as H5N1 and 61% (3883) as H5N8. In Egypt, 65% of positive cases were found in backyards, while only 12% were found in farms and 23% in live bird markets. Overall, our findings depict a trade-off between the number of positive H5N1 and H5N8 samples around early 2017, which is suggestive of the potential replacement between the two subtypes. Further research is still required to elucidate the underpinning mechanisms of this competitive dynamic. This, in turn, will implicate the design of effective strategies for disease control.
Collapse
|
16
|
|
17
|
Do PC, Nguyen TH, Vo UHM, Le L. iBRAB: In silico based-designed broad-spectrum Fab against H1N1 influenza A virus. PLoS One 2020; 15:e0239112. [PMID: 33382708 PMCID: PMC7774956 DOI: 10.1371/journal.pone.0239112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/15/2020] [Indexed: 11/19/2022] Open
Abstract
Influenza virus A is a significant agent involved in the outbreak of worldwide epidemics, causing millions of fatalities around the world by respiratory diseases and seasonal illness. Many projects had been conducting to investigate recovered infected patients for therapeutic vaccines that have broad-spectrum activity. With the aid of the computational approach in biology, the designation for a vaccine model is more accessible. We developed an in silico protocol called iBRAB to design a broad-reactive Fab on a wide range of influenza A virus. The Fab model was constructed based on sequences and structures of available broad-spectrum Abs or Fabs against a wide range of H1N1 influenza A virus. As a result, the proposed Fab model followed iBRAB has good binding affinity over 27 selected HA of different strains of H1 influenza A virus, including wild-type and mutated ones. The examination also took by computational tools to fasten the procedure. This protocol could be applied for a fast-designed therapeutic vaccine against different types of threats.
Collapse
MESH Headings
- Amino Acid Sequence
- Antibodies, Viral/chemistry
- Antibodies, Viral/genetics
- Antigens, Viral/chemistry
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Binding Sites
- Computer Simulation
- Drug Design
- Hemagglutinin Glycoproteins, Influenza Virus/chemistry
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Immunoglobulin Fab Fragments/chemistry
- Immunoglobulin Fab Fragments/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/biosynthesis
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Molecular Docking Simulation
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Sequence Alignment
- Sequence Homology, Amino Acid
- Thermodynamics
Collapse
Affiliation(s)
- Phuc-Chau Do
- School of Biotechnology, International University, Thu Duc District, Hochiminh City, Vietnam
- Vietnam National University Ho Chi Minh City, Thu Duc District, Hochiminh City, Vietnam
| | - Trung H. Nguyen
- School of Biotechnology, International University, Thu Duc District, Hochiminh City, Vietnam
- Vietnam National University Ho Chi Minh City, Thu Duc District, Hochiminh City, Vietnam
| | - Uyen H. M. Vo
- School of Biotechnology, International University, Thu Duc District, Hochiminh City, Vietnam
- Vietnam National University Ho Chi Minh City, Thu Duc District, Hochiminh City, Vietnam
| | - Ly Le
- School of Biotechnology, International University, Thu Duc District, Hochiminh City, Vietnam
- Vietnam National University Ho Chi Minh City, Thu Duc District, Hochiminh City, Vietnam
- Vingroup Big Data Institute, Hai Ba Trung District, Ha Noi, Vietnam
| |
Collapse
|
18
|
Generation and properties of one strain of H3N2 influenza virus with enhanced replication. Vet Microbiol 2020; 253:108970. [PMID: 33421685 DOI: 10.1016/j.vetmic.2020.108970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/20/2020] [Indexed: 11/23/2022]
Abstract
H3N2 canine influenza virus (CIV) has been circulating in many countries since 2008. The epidemic spread of CIV could be a concern for public health because of the close contact between humans and companion animals. In this study, we used Madin-Darby canine kidney (MDCK) cells as a coinfection model of H3N2 CIV and the pandemic (2009) H1N1 influenza virus to investigate the possibility of genetic mutation or recombination. One of the resultant progeny viruses, designated as CP15, was identified with a significantly increased replication ability. For this viral strain all segments exhibit a homology close to 100 % with its parental strain A/Canine/Jiangsu/06/2010 (JS/10), except for two site mutations K156E and R201 K which occur in the receptor-binding sites of hemagglutinin (HA) and antigen binding sites of neuraminidase (NA), respectively. Virus growth in MDCK cells showed that CP15 had a higher virus titer (more than 10 times) than JS/10. Consistent with this, CP15 exhibited extensive tissue tropism and higher viral RNA loads in the spleen, kidney and lung of mice challenged with this virus compared to JS/10. However, body weight loss and lung injure score due to CP15 infection were greatly reduced. Importantly, anti-CP15 serum antibodies could confer a high neutralization activity against JS/10. These findings indicated that the CP15 strain of high replication ability represents a promising candidate to develop an efficient CIV vaccine.
Collapse
|
19
|
Improvement of PR8-Derived Recombinant Clade 2.3.4.4c H5N6 Vaccine Strains by Optimization of Internal Genes and H103Y Mutation of Hemagglutinin. Vaccines (Basel) 2020; 8:vaccines8040781. [PMID: 33419331 PMCID: PMC7766170 DOI: 10.3390/vaccines8040781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/04/2022] Open
Abstract
Clade 2.3.4.4c H5N6 avian influenza A viruses (AIVs) may have originally adapted to infect chickens and have caused highly pathogenic avian influenza (HPAI) in poultry and human fatalities. Although A/Puerto Rico/8/1934 (H1N1) (PR8)-derived recombinant clade 2.3.4.4c H5N6 vaccine strains have been effective in embryonated chicken eggs-based vaccine production system, they need to be improved in terms of immunogenicity and potential mammalian pathogenicity. We replaced the PB2 gene alone or the PB2 (polymerase basic protein 2), NP (nucleoprotein), M (matrix protein) and NS (non-structural protein) genes together in the PR8 strain with corresponding genes from AIVs with low pathogenicity to remove mammalian pathogenicity and to match CD8+ T cell epitopes with contemporary HPAI viruses, respectively, without loss of viral fitness. Additionally, we tested the effect of the H103Y mutation of hemagglutinin (HA) on antigen productivity, mammalian pathogenicity and heat/acid stability. The replacement of PB2 genes and the H103Y mutation reduced the mammalian pathogenicity but increased the antigen productivity of the recombinant vaccine strains. The H103Y mutation increased heat stability but unexpectedly decreased acid stability, probably resulting in increased activation pH for HA. Interestingly, vaccination with inactivated recombinant virus with replaced NP, M and NS genes halted challenge virus shedding earlier than the recombinant vaccine without internal genes replacement. In conclusion, we successfully generated recombinant clade 2.3.4.4c H5N6 vaccine strains that were less pathogenic to mammals and more productive and heat stable than conventional PR8-derived recombinant strains by optimization of internal genes and the H103Y mutation of HA.
Collapse
|
20
|
Jafari D, Malih S, Gomari MM, Safari M, Jafari R, Farajollahi MM. Designing a chimeric subunit vaccine for influenza virus, based on HA2, M2e and CTxB: a bioinformatics study. BMC Mol Cell Biol 2020; 21:89. [PMID: 33276715 PMCID: PMC7716444 DOI: 10.1186/s12860-020-00334-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 11/25/2020] [Indexed: 11/10/2022] Open
Abstract
Background Type A influenza viruses are contagious and even life-threatening if left untreated. So far, no broadly protective vaccine is available due to rapid antigenic changes and emergence of new subtypes of influenza virus. In this study, we exploited bioinformatics tools in order to design a subunit chimeric vaccine from the antigenic and highly conserved regions of HA and M2 proteins of H7N9 subtype of influenza virus. We used mucosal adjuvant candidates, including CTxB, STxB, ASP-1, and LTB to stimulate mucosal immunity and analyzed the combination of HA2, M2e, and the adjuvant. Furthermore, to improve the antigen function and to maintain their three-dimensional structure, 12 different linkers including six rigid linkers and six flexible linkers were used. The 3D structure model was generated using a combination of homology and ab initio modeling methods and the molecular dynamics of the model were analyzed, either. Results Analysis of different adjuvants showed that using CtxB as an adjuvant, results in higher overall vaccine stability and higher half-life among four adjuvant candidates. Fusion of antigens and the CTxB in the form of M2e-linker-CTxB-linker-HA2 has the most stability and half life compared to other combination forms. Furthermore, the KPKPKP rigid linker showed the best result for this candidate vaccine among 12 analyzed linkers. The changes in the vaccine 3D structure made by linker insertion found to be negligible, however, although small, the linker insertion between the antigens causes the structure to change slightly. Eventually, using predictive tools such as Ellipro, NetMHCpan I and II, CD4episcore, CTLpred, BepiPred and other epitope analyzing tools, we analyzed the conformational and linear epitopes of the vaccine. The solubility, proteasome cleavage sites, peptidase and potential chemical cutters, codon optimization, post translational modification were also carried out on the final vaccine. Conclusions It is concluded that M2e-Linker-CTxB-Linker-HA2 combination of chimeric vaccine retains its 3D structure and antigenicity when KPKPKP used as linker and CTxB used as adjuvant. Supplementary Information The online version contains supplementary material available at 10.1186/s12860-020-00334-6.
Collapse
Affiliation(s)
- Davod Jafari
- Student Research Committee, Faculty of Allied Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran. .,Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Sara Malih
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Mahmoudi Gomari
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Safari
- Department of Microbiology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Rasool Jafari
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Morad Farajollahi
- Student Research Committee, Faculty of Allied Medicine, Iran University of Medical Sciences, Hemmat Highway, Tehran, Iran.
| |
Collapse
|
21
|
Chen X, Wang W, Wang Y, Lai S, Yang J, Cowling BJ, Horby PW, Uyeki TM, Yu H. Serological evidence of human infections with highly pathogenic avian influenza A(H5N1) virus: a systematic review and meta-analysis. BMC Med 2020; 18:377. [PMID: 33261599 PMCID: PMC7709391 DOI: 10.1186/s12916-020-01836-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/02/2020] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Highly pathogenic avian influenza A(H5N1) virus poses a global public health threat given severe and fatal zoonotic infections since 1997 and ongoing A(H5N1) virus circulation among poultry in several countries. A comprehensive assessment of the seroprevalence of A(H5N1) virus antibodies remains a gap and limits understanding of the true risk of A(H5N1) virus infection. METHODS We conducted a systematic review and meta-analysis of published serosurveys to assess the risk of subclinical and clinically mild A(H5N1) virus infections. We assessed A(H5N1) virus antibody titers and changes in titers among populations with variable exposures to different A(H5N1) viruses. RESULTS Across studies using the World Health Organization-recommended seropositive definition, the point estimates of the seroprevalence of A(H5N1) virus-specific antibodies were higher in poultry-exposed populations (range 0-0.6%) and persons exposed to both human A(H5N1) cases and infected birds (range 0.4-1.8%) than in close contacts of A(H5N1) cases or the general population (none to very low frequencies). Seroprevalence was higher in persons exposed to A(H5N1) clade 0 virus (1.9%, range 0.7-3.2%) than in participants exposed to other clades of A(H5N1) virus (range 0-0.5%) (p < 0.05). Seroprevalence was higher in poultry-exposed populations (range 0-1.9%) if such studies utilized antigenically similar A(H5N1) virus antigens in assays to A(H5N1) viruses circulating among poultry. CONCLUSIONS These low seroprevalences suggest that subclinical and clinically mild human A(H5N1) virus infections are uncommon. Standardized serological survey and laboratory methods are needed to fully understand the extent and risk of human A(H5N1) virus infections.
Collapse
Affiliation(s)
- Xinhua Chen
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Wei Wang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Yan Wang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Shengjie Lai
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
- WorldPop, School of Geography and Environmental Science, University of Southampton, Southampton, SO17 1BJ, UK
| | - Juan Yang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China
| | - Benjamin J Cowling
- WHO Collaborating Centre for Infectious Disease Epidemiology and Control, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Special Administrative Region, China
| | - Peter W Horby
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Timothy M Uyeki
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, USA
| | - Hongjie Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, 200032, China.
| |
Collapse
|
22
|
Phan HT, Pham VT, Ho TT, Pham NB, Chu HH, Vu TH, Abdelwhab EM, Scheibner D, Mettenleiter TC, Hanh TX, Meister A, Gresch U, Conrad U. Immunization with Plant-Derived Multimeric H5 Hemagglutinins Protect Chicken against Highly Pathogenic Avian Influenza Virus H5N1. Vaccines (Basel) 2020; 8:E593. [PMID: 33050224 PMCID: PMC7712794 DOI: 10.3390/vaccines8040593] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022] Open
Abstract
Since 2003, H5N1 highly pathogenic avian influenza viruses (HPAIV) have not only caused outbreaks in poultry but were also transmitted to humans with high mortality rates. Vaccination is an efficient and economical means of increasing immunity against infections to decrease the shedding of infectious agents in immunized animals and to reduce the probability of further infections. Subunit vaccines from plants are the focus of modern vaccine developments. In this study, plant-made hemagglutinin (H5) trimers were purified from transiently transformed N. benthamiana plants. All chickens immunized with purified H5 trimers were fully protected against the severe HPAIV H5N1 challenge. We further developed a proof-of-principle approach by using disulfide bonds, homoantiparallel peptides or homodimer proteins to combine H5 trimers leading to production of H5 oligomers. Mice vaccinated with crude leaf extracts containing H5 oligomers induced neutralizing antibodies better than those induced by crude leaf extracts containing trimers. As a major result, eleven out of twelve chickens (92%) immunized with adjuvanted H5 oligomer crude extracts were protected from lethal disease while nine out of twelve chickens (75%) vaccinated with adjuvanted H5 trimer crude extracts survived. The solid protective immune response achieved by immunization with crude extracts and the stability of the oligomers form the basis for the development of inexpensive protective veterinary vaccines.
Collapse
Affiliation(s)
- Hoang Trong Phan
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland OT Gatersleben, Germany; (A.M.); (U.G.)
| | - Van Thi Pham
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam; (V.T.P.); (T.T.H.); (N.B.P.); (H.H.C.); (T.H.V.)
- Faculty of Biotechnology, Graduate University of Science and Technology (GUST), VAST, Hanoi 10000, Vietnam
| | - Thuong Thi Ho
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam; (V.T.P.); (T.T.H.); (N.B.P.); (H.H.C.); (T.H.V.)
| | - Ngoc Bich Pham
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam; (V.T.P.); (T.T.H.); (N.B.P.); (H.H.C.); (T.H.V.)
- Faculty of Biotechnology, Graduate University of Science and Technology (GUST), VAST, Hanoi 10000, Vietnam
| | - Ha Hoang Chu
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam; (V.T.P.); (T.T.H.); (N.B.P.); (H.H.C.); (T.H.V.)
- Faculty of Biotechnology, Graduate University of Science and Technology (GUST), VAST, Hanoi 10000, Vietnam
| | - Trang Huyen Vu
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam; (V.T.P.); (T.T.H.); (N.B.P.); (H.H.C.); (T.H.V.)
- Faculty of Biotechnology, Graduate University of Science and Technology (GUST), VAST, Hanoi 10000, Vietnam
| | - Elsayed M. Abdelwhab
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, D-17493 Greifswald-Insel Riems, Germany; (E.M.A.); (D.S.); (T.C.M.)
| | - David Scheibner
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, D-17493 Greifswald-Insel Riems, Germany; (E.M.A.); (D.S.); (T.C.M.)
| | - Thomas C. Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, D-17493 Greifswald-Insel Riems, Germany; (E.M.A.); (D.S.); (T.C.M.)
| | - Tran Xuan Hanh
- National Veterinary Joint Stock Company (NAVETCO), 29 Nguyen Dinh Chieu, Dist 1, Ho Chi Minh City 700000, Vietnam;
| | - Armin Meister
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland OT Gatersleben, Germany; (A.M.); (U.G.)
| | - Ulrike Gresch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland OT Gatersleben, Germany; (A.M.); (U.G.)
| | - Udo Conrad
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Seeland OT Gatersleben, Germany; (A.M.); (U.G.)
| |
Collapse
|
23
|
Hoang HTT, Nguyen CH, Nguyen NTT, Pham AD, Nguyen HTT, Le TH, Tran HX, Chu HH, Nguyen NT. Immunization with the H5N1 Recombinant Vaccine Candidate Induces High Protection in Chickens against Vietnamese Highly Pathogenic Avian Influenza Virus Strains. Vaccines (Basel) 2020; 8:vaccines8020159. [PMID: 32252383 PMCID: PMC7348806 DOI: 10.3390/vaccines8020159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 11/25/2022] Open
Abstract
Vietnam is one of the countries most affected worldwide by the highly pathogenic avian influenza (HPAI) virus, which caused enormous economic loss and posed threats to public health. Over nearly two decades, with the antigenic changes in the diversified H5Ny viruses, the limited protective efficacy of the available vaccines was encountered. Therefore, it is necessary to approach a technology platform for the country to accelerate vaccine production that enables quick response to new influenza subtypes. This study utilized a powerful reverse genetics technique to successfully generate a recombinant H5N1 vaccine strain (designated as IBT-RG02) containing two surface proteins (haemagglutinin (HA) and neuraminidase (NA)) from the HPAI H5N1 (A/duck/Vietnam/HT2/2014(H5N1)) of the dominant clade 2.3.2.1c in Vietnam during 2012–2014. Importantly, the IBT-RG02 vaccine candidate has elicited high antibody titres in chickens (geometric mean titre (GMT) of 6.42 and 6.92, log2 on day 14 and day 28 p.i., respectively). To test the efficacy, immunized chickens were challenged with the circulating virulent strains. As results, there was a high protection rate of 91.6% chickens against the virulent A/DK/VN/Bacninh/NCVD-17A384/2017 of the same clade and a cross-protection of 83.3% against A/duck/TG/NAVET(3)/2013 virus of clade 1.1. Our promising results showed that we can independently master the reverse genetics technology for generation of highly immunogenic vaccine candidates, and henceforth, it is a timely manner to reformulate avian influenza virus vaccines against variable H5 clade HPAI viruses in Vietnam.
Collapse
Affiliation(s)
- Hang Thi Thu Hoang
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam; (H.T.T.H.); (C.H.N.); (N.T.T.N.); (A.D.P.); (T.H.L.); (H.H.C.)
- Graduate University of Science and Technology (GUST), VAST, Hanoi 100000, Vietnam
| | - Chi Hung Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam; (H.T.T.H.); (C.H.N.); (N.T.T.N.); (A.D.P.); (T.H.L.); (H.H.C.)
| | - Ngan Thi Thuy Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam; (H.T.T.H.); (C.H.N.); (N.T.T.N.); (A.D.P.); (T.H.L.); (H.H.C.)
| | - An Dang Pham
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam; (H.T.T.H.); (C.H.N.); (N.T.T.N.); (A.D.P.); (T.H.L.); (H.H.C.)
| | | | - Thanh Hoa Le
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam; (H.T.T.H.); (C.H.N.); (N.T.T.N.); (A.D.P.); (T.H.L.); (H.H.C.)
| | - Hanh Xuan Tran
- National Veterinary Joint Stock Company (NAVETCO), 29 Nguyen Dinh Chieu, Dist 1, Ho Chi Minh City 700000, Vietnam;
| | - Ha Hoang Chu
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam; (H.T.T.H.); (C.H.N.); (N.T.T.N.); (A.D.P.); (T.H.L.); (H.H.C.)
- Graduate University of Science and Technology (GUST), VAST, Hanoi 100000, Vietnam
| | - Nam Trung Nguyen
- Institute of Biotechnology (IBT), Vietnam Academy of Science and Technology (VAST), Hanoi 100000, Vietnam; (H.T.T.H.); (C.H.N.); (N.T.T.N.); (A.D.P.); (T.H.L.); (H.H.C.)
- Graduate University of Science and Technology (GUST), VAST, Hanoi 100000, Vietnam
- Correspondence: ; Tel.: +84-24-37910065
| |
Collapse
|
24
|
Novel Mutations Evading Avian Immunity around the Receptor Binding Site of the Clade 2.3.2.1c Hemagglutinin Gene Reduce Viral Thermostability and Mammalian Pathogenicity. Viruses 2019; 11:v11100923. [PMID: 31600990 PMCID: PMC6832455 DOI: 10.3390/v11100923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/06/2019] [Accepted: 10/08/2019] [Indexed: 11/22/2022] Open
Abstract
Since 2007, highly pathogenic clade 2.3.2 H5N1 avian influenza A (A(H5N1)) viruses have evolved to clade 2.3.2.1a, b, and c; currently only 2.3.2.1c A(H5N1) viruses circulate in wild birds and poultry. During antigenic evolution, clade 2.3.2.1a and c A(H5N1) viruses acquired both S144N and V223I mutations around the receptor binding site of hemagglutinin (HA), with S144N generating an N-glycosylation sequon. We introduced single or combined reverse mutations, N144S and/or I223V, into the HA gene of the clade 2.3.2.1c A(H5N1) virus and generated PR8-derived, 2 + 6 recombinant A(H5N1) viruses. When we compared replication efficiency in embryonated chicken eggs, mammalian cells, and mice, the recombinant virus containing both N144S and I223V mutations showed increased replication efficiency in avian and mammalian hosts and pathogenicity in mice. The N144S mutation significantly decreased avian receptor affinity and egg white inhibition, but not all mutations increased mammalian receptor affinity. Interestingly, the combined reverse mutations dramatically increased the thermostability of HA. Therefore, the adaptive mutations possibly acquired to evade avian immunity may decrease viral thermostability as well as mammalian pathogenicity.
Collapse
|
25
|
Zhong G, Fan S, Lopes TJS, Le MQ, van Bakel H, Dutta J, Smith GJD, Jayakumar J, Nguyen HLK, Hoang PVM, Halfmann P, Hatta M, Su YCF, Neumann G, Kawaoka Y. Isolation of Highly Pathogenic H5N1 Influenza Viruses in 2009-2013 in Vietnam. Front Microbiol 2019; 10:1411. [PMID: 31293548 PMCID: PMC6603144 DOI: 10.3389/fmicb.2019.01411] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 06/05/2019] [Indexed: 11/13/2022] Open
Abstract
Routine surveillance and surveillance in response to influenza outbreaks in avian species in Vietnam in 2009-2013 resulted in the isolation of numerous H5N1 influenza viruses of clades 1.1.2, 2.3.2.1a, 2.3.2.1b, 2.3.2.1c, and 2.3.4.1. Consistent with other studies, we found that viruses of clade 2.3.2.1c were dominant in Vietnam in 2013 and circulated in the northern, central, and southern parts of the country. Phylogenetic analysis revealed reassortment among viruses of clades 2.3.2.1a, 2.3.2.1b, and 2.3.2.1c; in contrast, no reassortment was detected between clade 2.3.2.1 viruses and viruses of clades 1.1.2 or 2.3.4.1, respectively. Deep-sequencing of 42 of the 53 isolated H5N1 viruses revealed viral subpopulations encoding variants that may affect virulence, host range, or sensitivity to antiviral compounds; virus isolates containing these subpopulations may have a higher potential to transmit and adapt to mammals. Among the viruses sequenced, a relatively high number of non-synonymous nucleotide polymorphisms was detected in a virus isolated from a barn swallow, possibly suggesting influenza virus adaption to this host.
Collapse
Affiliation(s)
- Gongxun Zhong
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Shufang Fan
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Tiago J S Lopes
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Mai Quynh Le
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jayeeta Dutta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gavin J D Smith
- Duke-NUS Medical School, Singapore, Singapore.,Duke Global Health Institute, Duke University, Durham, NC, United States
| | | | | | | | - Peter Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Masato Hatta
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| |
Collapse
|
26
|
A systematic study towards evolutionary and epidemiological dynamics of currently predominant H5 highly pathogenic avian influenza viruses in Vietnam. Sci Rep 2019; 9:7723. [PMID: 31118431 PMCID: PMC6531488 DOI: 10.1038/s41598-019-42638-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 03/07/2019] [Indexed: 12/02/2022] Open
Abstract
This study aimed to elucidate virus, host and environmental dynamics of Vietnamese H5 highly pathogenic avian influenza viruses (HPAIVs) during 2014–2017. Epidemiologically, H5 HPAIVs were frequently detected in apparently healthy domestic and Muscovy ducks and therefore these are preferred species for H5 HPAIV detection in active surveillance. Virologically, clade 2.3.2.1c and 2.3.4.4 H5 HPAIVs were predominant and exhibited distinct phylogeographic evolution. Clade 2.3.2.1c viruses clustered phylogenetically in North, Central and South regions, whilst clade 2.3.4.4 viruses only detected in North and Central regions formed small groups. These viruses underwent diverse reassortment with existence of at least 12 genotypes and retained typical avian-specific motifs. These H5 HPAIVs exhibited large antigenic distance from progenitor viruses and commercial vaccines currently used in poultry. Bayesian phylodynamic analysis inferred that clade 2.3.2.1c viruses detected during 2014–2017 were likely descended from homologous clade viruses imported to Vietnam previously and/or preexisting Chinese viruses during 2012–2013. Vietnamese clade 2.3.4.4 viruses closely shared genetic traits with contemporary foreign spillovers, suggesting that there existed multiple transboundary virus dispersals to Vietnam. This study provides insights into the evolution of Vietnamese H5 HPAIVs and highlights the necessity of strengthening control measures such as, preventive surveillance and poultry vaccination.
Collapse
|
27
|
Huynh HTT, Truong LT, Meeyam T, Le HT, Punyapornwithaya V. Individual and flock immunity responses of naïve ducks on smallholder farms after vaccination with H5N1 Avian Influenza vaccine: a study in a province of the Mekong Delta, Vietnam. PeerJ 2019; 7:e6268. [PMID: 30671307 PMCID: PMC6339474 DOI: 10.7717/peerj.6268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/11/2018] [Indexed: 11/20/2022] Open
Abstract
In Vietnam, vaccination has played a crucial role in the national strategy for the prevention and control of H5 highly pathogenic avian influenza (HPAI). This study aimed to evaluate antibody responses of immunologically naïve domestic ducks to H5N1 avian influenza vaccine currently used in the national mass vaccination program of Vietnam. Blood samples of 166 ducks reared on smallholder farms were individually collected at three sampling time points, namely, right before vaccination, 21 days after primary vaccination, and 21 days after booster vaccination. Vaccine-induced antibody titers of duck sera were measured by the hemagglutination inhibition assay. Temporal differences in mean antibody titers were analyzed using the generalized least-squares method. No sampled ducks showed anti-H5 seropositivity pre-vaccination. The geometric mean titer (GMT) of the vaccinated ducks was 5.30 after primary vaccination, with 80% of the vaccinated ducks showing seropositivity. This result indicates that the immunity of duck flocks met the targets of the national poultry H5N1 HPAI mass vaccination program. GMT and seropositive rates of the ducks were 6.48 and 96.3%, respectively, after booster vaccination, which were significantly higher than those after primary vaccination. Flock-level seroprotection rate significantly increased from 68% to 84.7%, whereas variability in GMT titers decreased from 34.87% to 26.3%. This study provided important information on humoral immune responses of ducks to the currently used H5N1 vaccine under field conditions. Our findings may help guide veterinary authorities in planning effective vaccine protocols for the prevention and control of H5N1 in the target poultry population.
Collapse
Affiliation(s)
| | - Liem Tan Truong
- Sub-Department of Animal Health (SDAH) Ben Tre Province, Ben Tre, Vietnam
| | - Tongkorn Meeyam
- Veterinary Public Health Centre for Asia Pacific (VPHCAP) and Excellent Center of Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Veterinary Biosciences and Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Hien Thanh Le
- Department of Infectious Diseases and Veterinary Public Health, Faculty of Animal Science and Veterinary Medicine, Nong Lam University, Ho Chi Minh City, Vietnam
| | - Veerasak Punyapornwithaya
- Veterinary Public Health Centre for Asia Pacific (VPHCAP) and Excellent Center of Veterinary Public Health, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Food Animal Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
28
|
Ren Z, Zhao Y, Liu J, Ji X, Meng L, Wang T, Sun W, Zhang K, Sang X, Yu Z, Li Y, Feng N, Wang H, Yang S, Yang Z, Wang Z, Gao Y, Xia X. Inclusion of membrane-anchored LTB or flagellin protein in H5N1 virus-like particles enhances protective responses following intramuscular and oral immunization of mice. Vaccine 2018; 36:5990-5998. [PMID: 30172635 DOI: 10.1016/j.vaccine.2018.08.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 08/10/2018] [Accepted: 08/18/2018] [Indexed: 12/24/2022]
Abstract
We previously demonstrated that intramuscular immunization with virus-like particles (VLPs) composed of the haemagglutinin (HA), neuraminidase (NA), and matrix (M1) proteins of A/meerkat/Shanghai/SH-1/2012 (clade 2.3.2.1) protected mice from lethal challenge with viruses from other H5 HPAI clades. The inclusion of additional proteins that can serve as immunological adjuvants in VLPs may enhance adaptive immune responses following vaccination, and oral vaccines may represent the safest choice. Here, we report the generation of H5N1 VLPs composed of the viral HA, NA, and M1 proteins and membrane-anchored forms of the Escherichia coli heat-labile enterotoxin B subunit protein (LTB) or the Toll-like receptor 5 ligand flagellin (Flic). Mice intramuscularly or orally immunized with VLPs containing LTB or Flic generated greater humoural and cellular immune responses than those administered H5N1 VLPs without LTB or Flic. Intramuscular immunization with VLPs protected mice from lethal challenge with homologous or heterologous H5N1 viruses irrespective of whether the VLPs additionally included LTB or Flic. In contrast, oral immunization of mice with LTB- or Flic-VLPs conferred substantial protection against lethal challenge with both homologous and heterologous H5N1 influenza viruses, whereas mice immunized orally with VLPs lacking LTB and Flic universally succumbed to infection. Mice immunized orally with LTB- or Flic-VLPs showed 10-fold higher virus-specific IgG titres than mice immunized with H5N1-VLPs lacking LTB or Flic. Collectively, these results indicate that the inclusion of immunostimulatory proteins, such as LTB and Flic, in VLP-based vaccines may represent a promising new approach for the control of current H5N1 HPAI outbreaks by eliciting higher humoural and cellular immune responses and conferring improved cross-clade protection.
Collapse
Affiliation(s)
- Zhiguang Ren
- Joint National Laboratory for Antibody Drug Engineering, Henan University, School of Basic Medical Sciences, Kaifeng, Henan Province, China; Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China; Key Lab of Cellular and Molecular Immunology, Henan University, School of Basic Medical Sciences, Kaifeng, Henan Province, China.
| | - Yongkun Zhao
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Jing Liu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China; Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xianliang Ji
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Lingnan Meng
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Tiecheng Wang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Weiyang Sun
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Kun Zhang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Xiaoyu Sang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Zhijun Yu
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Yuanguo Li
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Na Feng
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Hualei Wang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Songtao Yang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Zhengyan Yang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, School of Basic Medical Sciences, Kaifeng, Henan Province, China; Key Lab of Cellular and Molecular Immunology, Henan University, School of Basic Medical Sciences, Kaifeng, Henan Province, China
| | - Zhizeng Wang
- Joint National Laboratory for Antibody Drug Engineering, Henan University, School of Basic Medical Sciences, Kaifeng, Henan Province, China; Key Lab of Cellular and Molecular Immunology, Henan University, School of Basic Medical Sciences, Kaifeng, Henan Province, China
| | - Yuwei Gao
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China.
| | - Xianzhu Xia
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China.
| |
Collapse
|
29
|
Arai Y, Kawashita N, Hotta K, Hoang PVM, Nguyen HLK, Nguyen TC, Vuong CD, Le TT, Le MTQ, Soda K, Ibrahim MS, Daidoji T, Takagi T, Shioda T, Nakaya T, Ito T, Hasebe F, Watanabe Y. Multiple polymerase gene mutations for human adaptation occurring in Asian H5N1 influenza virus clinical isolates. Sci Rep 2018; 8:13066. [PMID: 30166556 PMCID: PMC6117316 DOI: 10.1038/s41598-018-31397-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 08/15/2018] [Indexed: 12/31/2022] Open
Abstract
The role of the influenza virus polymerase complex in host range restriction has been well-studied and several host range determinants, such as the polymerase PB2-E627K and PB2-D701N mutations, have been identified. However, there may be additional, currently unknown, human adaptation polymerase mutations. Here, we used a database search of influenza virus H5N1 clade 1.1, clade 2.3.2.1 and clade 2.3.4 strains isolated from 2008-2012 in Southern China, Vietnam and Cambodia to identify polymerase adaptation mutations that had been selected in infected patients. Several of these mutations acted either alone or together to increase viral polymerase activity in human airway cells to levels similar to the PB2-D701N and PB2-E627K single mutations and to increase progeny virus yields in infected mouse lungs to levels similar to the PB2-D701N single mutation. In particular, specific mutations acted synergistically with the PB2-D701N mutation and showed synergistic effects on viral replication both in human airway cells and mice compared with the corresponding single mutations. Thus, H5N1 viruses in infected patients were able to acquire multiple polymerase mutations that acted cooperatively for human adaptation. Our findings give new insight into the human adaptation of AI viruses and help in avian influenza virus risk assessment.
Collapse
Affiliation(s)
- Yasuha Arai
- Department of Infectious Diseases, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Norihito Kawashita
- Graduate School of Science and Engineering, Kindai University, Osaka, Japan.,Graduate School of Pharmaceutical Science, Osaka University, Osaka, Japan
| | - Kozue Hotta
- Vietnam Research Station, Center for Infectious Disease Research in Asia and Africa, Institute of Tropical Medicine, Nagasaki University, Hanoi, Vietnam.,Laboratory of Veterinary Public Health, Department of Veterinary Medical Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Phuong Vu Mai Hoang
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Hang Le Khanh Nguyen
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Thach Co Nguyen
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Cuong Duc Vuong
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Thanh Thi Le
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Mai Thi Quynh Le
- Department of Virology, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - Kosuke Soda
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Madiha S Ibrahim
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Tomo Daidoji
- Department of Infectious Diseases, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tatsuya Takagi
- Graduate School of Pharmaceutical Science, Osaka University, Osaka, Japan
| | - Tatsuo Shioda
- Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshihiro Ito
- Avian Zoonosis Research Center, Faculty of Agriculture, Tottori University, Tottori, Japan
| | - Futoshi Hasebe
- Vietnam Research Station, Center for Infectious Disease Research in Asia and Africa, Institute of Tropical Medicine, Nagasaki University, Hanoi, Vietnam
| | - Yohei Watanabe
- Department of Infectious Diseases, Graduate School of Medical Sciences, Kyoto Prefectural University of Medicine, Kyoto, Japan. .,Department of Viral Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.
| |
Collapse
|
30
|
Thanh HD, Tran VT, Nguyen DT, Hung VK, Kim W. Novel reassortant H5N6 highly pathogenic influenza A viruses in Vietnamese quail outbreaks. Comp Immunol Microbiol Infect Dis 2018; 56:45-57. [PMID: 29406283 DOI: 10.1016/j.cimid.2018.01.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/06/2017] [Accepted: 01/08/2018] [Indexed: 10/18/2022]
Abstract
Avian influenza A H5N6 virus is a highly contagious infectious agent that affects domestic poultry and humans in South Asian countries. Vietnam may be an evolutionary hotspot for influenza viruses and therefore could serve as a source of pandemic strains. In 2015, two novel reassortant H5N6 influenza viruses designated as A/quail/Vietnam/CVVI01/2015 and A/quail/Vietnam/CVVI03/2015 were isolated from dead quails during avian influenza outbreaks in central Vietnam, and the whole genome sequences were analyzed. The genetic analysis indicated that hemagglutinin, neuraminidase, and polymerase basic protein 2 genes of the two H5N6 viruses are most closely related to an H5N2 virus (A/chicken/Zhejiang/727079/2014) and H10N6 virus (A/chicken/Jiangxi/12782/2014) from China and an H6N6 virus (A/duck/Yamagata/061004/2014) from Japan. The HA gene of the isolates belongs to clade 2.3.4.4, which caused human fatalities in China during 2014-2016. The five other internal genes showed high identity to an H5N2 virus (A/chicken/Heilongjiang/S7/2014) from China. A whole-genome phylogenetic analysis revealed that these two outbreak strains are novel H6N6-like PB2 gene reassortants that are most closely related to influenza virus strain A/environment/Guangdong/ZS558/2015, which was detected in a live poultry market in China. This report describes the first detection of novel H5N6 reassortants in poultry during an outbreak as well as genetic characterization of these strains to better understand the antigenic evolution of influenza viruses.
Collapse
Affiliation(s)
- Hien Dang Thanh
- Department of Microbiology, Chung-Ang University, College of Medicine, Seoul, South Korea; Central Vietnam Veterinary Institute, Nha Trang, Viet Nam
| | - Van Trung Tran
- Department of Microbiology, Chung-Ang University, College of Medicine, Seoul, South Korea
| | - Duc Tan Nguyen
- Central Vietnam Veterinary Institute, Nha Trang, Viet Nam
| | - Vu-Khac Hung
- Central Vietnam Veterinary Institute, Nha Trang, Viet Nam
| | - Wonyong Kim
- Department of Microbiology, Chung-Ang University, College of Medicine, Seoul, South Korea.
| |
Collapse
|
31
|
Diagnosis and typing of influenza using fluorescent barcoded probes. Sci Rep 2017; 7:18092. [PMID: 29273754 PMCID: PMC5741751 DOI: 10.1038/s41598-017-18333-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/08/2017] [Indexed: 11/25/2022] Open
Abstract
In this work, we explore a new hybridization technology using barcoded probes which has large-scale multiplexing capability. We used influenza virus to test whether the technology has application in virus diagnostics. Typing of influenza virus strains is an important aspect of global health surveillance. Standard typing procedures use serological or amplification-based assays performed sequentially. By comparison, the hybridization technology was correctly able to detect, type and subtype influenza A and B virus strains directly from clinical samples in a single reaction without prior virus isolation or amplification. Whilst currently not as sensitive as amplification-based assays, these results are a first-step towards application of this technology to the detection and typing of influenza and other viruses.
Collapse
|
32
|
Lyoo KS, Na W, Phan LV, Yoon SW, Yeom M, Song D, Jeong DG. Experimental infection of clade 1.1.2 (H5N1), clade 2.3.2.1c (H5N1) and clade 2.3.4.4 (H5N6) highly pathogenic avian influenza viruses in dogs. Transbound Emerg Dis 2017; 64:1669-1675. [PMID: 29024492 DOI: 10.1111/tbed.12731] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Indexed: 12/23/2022]
Abstract
Since the emergence of highly pathogenic avian influenza (HPAI) H5N1 in Asia, the haemagglutinin (HA) gene of this virus lineage has continued to evolve in avian populations, and H5N1 lineage viruses now circulate concurrently worldwide. Dogs may act as an intermediate host, increasing the potential for zoonotic transmission of influenza viruses. Virus transmission and pathologic changes in HPAI clade 1.1.2 (H5N1)-, 2.3.2.1c (H5N1)- and 2.3.4.4 (H5N6)-infected dogs were investigated. Mild respiratory signs and antibody response were shown in dogs intranasally infected with the viruses. Lung histopathology showed lesions that were associated with moderate interstitial pneumonia in the infected dogs. In this study, HPAI H5N6 virus replication in dogs was demonstrated for the first time. Dogs have been suspected as a "mixing vessel" for reassortments between avian and human influenza viruses to occur. The replication of these three subtypes of the H5 lineage of HPAI viruses in dogs suggests that dogs could serve as intermediate hosts for avian-human influenza virus reassortment if they are also co-infected with human influenza viruses.
Collapse
Affiliation(s)
- K S Lyoo
- Zoonosis Research Institute, Chonbuk National University, Iksan, Korea
| | - W Na
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong, Korea
| | - L V Phan
- Department of Microbiology and Infectious Diseases, College of Veterinary Medicine, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - S W Yoon
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - M Yeom
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong, Korea
| | - D Song
- Department of Pharmacy, College of Pharmacy, Korea University, Sejong, Korea
| | - D G Jeong
- Viral Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| |
Collapse
|
33
|
Fasanmi OG, Odetokun IA, Balogun FA, Fasina FO. Public health concerns of highly pathogenic avian influenza H5N1 endemicity in Africa. Vet World 2017; 10:1194-1204. [PMID: 29184365 PMCID: PMC5682264 DOI: 10.14202/vetworld.2017.1194-1204] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 09/13/2017] [Indexed: 02/05/2023] Open
Abstract
Highly pathogenic avian influenza virus (HPAIV) H5N1 was first officially reported in Africa in 2006; thereafter this virus has spread rapidly from Nigeria to 11 other African countries. This study was aimed at utilizing data from confirmed laboratory reports to carry out a qualitative evaluation of the factors responsible for HPAI H5N1 persistence in Africa and the public health implications; and to suggest appropriate control measures. Relevant publications were sought from data banks and repositories of FAO, OIE, WHO, and Google scholars. Substantiated data on HPAI H5N1 outbreaks in poultry in Africa and in humans across the world were mined. HPAI H5N1 affects poultry and human populations, with Egypt having highest human cases (346) globally. Nigeria had a reinfection from 2014 to 2015, with outbreaks in Côte d'Ivoire, Ghana, Niger, Nigeria, and Burkina Faso throughout 2016 unabated. The persistence of this virus in Africa is attributed to the survivability of HPAIV, ability to evolve other subtypes through genetic reassortment, poor biosecurity compliance at the live bird markets and poultry farms, husbandry methods and multispecies livestock farming, poultry vaccinations, and continuous shedding of HPAIV, transboundary transmission of HPAIV through poultry trades; and transcontinental migratory birds. There is, therefore, the need for African nations to realistically reassess their status, through regular surveillance and be transparent with HPAI H5N1 outbreak data. Also, it is important to have an understanding of HPAIV migration dynamics which will be helpful in epidemiological modeling, disease prevention, control and eradication measures.
Collapse
Affiliation(s)
- Olubunmi Gabriel Fasanmi
- Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
- Department of Animal Health, Federal Colleges of Animal Health and Production Technology, Ibadan, Nigeria
| | - Ismail Ayoade Odetokun
- Department of Veterinary Public Health & Preventive Medicine, University of Ilorin, Ilorin, Nigeria
| | - Fatima Adeola Balogun
- Department of Animal Health, Federal Colleges of Animal Health and Production Technology, Ibadan, Nigeria
| | - Folorunso Oludayo Fasina
- Emergency Centre for Transboundary Animal Diseases – Food and Agriculture Organisation, Gigiri, Nairobi, Kenya
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| |
Collapse
|
34
|
Risk factors for avian influenza virus contamination of live poultry markets in Zhejiang, China during the 2015-2016 human influenza season. Sci Rep 2017; 7:42722. [PMID: 28256584 PMCID: PMC5335333 DOI: 10.1038/srep42722] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/12/2017] [Indexed: 11/13/2022] Open
Abstract
Live bird markets (LBMs), being a potential source of avian influenza virus, require effective environmental surveillance management. In our study, a total of 2865 environmental samples were collected from 292 LBMs during the 2015–2016 human influenza season from 10 cities in Zhejiang province, China. The samples were tested by real-time quantitative polymerase chain reaction (RT-PCR). Field investigations were carried out to investigate probable risk factors. Of the environmental samples, 1519 (53.0%) were contaminated by A subtype. The highest prevalence of the H9 subtype was 30.2%, and the frequencies of the H5 and H7 subtype were 9.3% and 17.3%, respectively. Hangzhou and Jinhua cities were contaminated more seriously than the others. The prevalence of H5/H7/H9 in drinking water samples was highest, at 50.9%, and chopping board swabs ranked second, at 49.3%. Duration of sales per day, types of live poultry, LBM location and the number of live poultry were the main risk factors for environmental contamination, according to logistic regression analysis. In conclusion, LBMs in Zhejiang were contaminated by avian influenza. Our study has provided clues for avian influenza prevention and control during the human influenza season, especially in areas where LBMs are not closed.
Collapse
|
35
|
Oliveira Cavalcanti M, Vaughn E, Capua I, Cattoli G, Terregino C, Harder T, Grund C, Vega C, Robles F, Franco J, Darji A, Arafa AS, Mundt E. A genetically engineered H5 protein expressed in insect cells confers protection against different clades of H5N1 highly pathogenic avian influenza viruses in chickens. Avian Pathol 2017; 46:224-233. [PMID: 27807985 DOI: 10.1080/03079457.2016.1250866] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The evolution of highly pathogenic H5N1 avian influenza viruses (HPAI-H5N1) has resulted in the appearance of a number of diverse groups of HPAI-H5N1 based on the presence of genetically similar clusters of their haemagglutinin sequences (clades). An H5 antigen encoded by a recombinant baculovirus and expressed in insect cells was used for oil-emulsion-based vaccine prototypes. In several experiments, vaccination was performed at 10 days of age, followed by challenge infection on day 21 post vaccination (PV) with HPAI-H5N1 clades 2.2, 2.2.1, and 2.3.2. A further challenge infection with HPAI-H5N1 clade 2.2.1 was performed at day 42 PV. High haemagglutination inhibition titres were observed for the recH5 vaccine antigen, and lower haemagglutination inhibition titres for the challenge virus antigens. Nevertheless, the rate of protection from mortality and clinical signs was 100% when challenged at 21 days PV and 42 days PV, indicating protection over the entire broiler chicken rearing period without a second vaccination. The unvaccinated control chickens mostly died between two and five days after challenge infection. A low level of viral RNA was detected by reverse transcription followed by a quantitative polymerase chain reaction in a limited number of birds for a short period after challenge infection, indicating a limited spread of HPAI-H5N1 at flock level. Furthermore, it was observed that the vaccine can be used in a differentiation infected from vaccinated animals (DIVA) approach, based on the detection of nucleoprotein antibodies in vaccinated/challenged chickens. The vaccine fulfilled all expectations of an inactivated vaccine after one vaccination against challenge with different clades of H5N1-HPAI and is suitable for a DIVA approach.
Collapse
Affiliation(s)
| | - Eric Vaughn
- b Boehringer Ingelheim Vetmedica, Inc. , Ames , IA , USA
| | - Ilaria Capua
- c OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza , Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università , Legnaro , Italy
| | - Giovanni Cattoli
- c OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza , Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università , Legnaro , Italy
| | - Calogero Terregino
- c OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza , Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Università , Legnaro , Italy
| | - Timm Harder
- d Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald-Insel Riems , Germany
| | - Christian Grund
- d Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health , Greifswald-Insel Riems , Germany
| | - Carlos Vega
- e Boehringer Ingelheim Vetmedica, S.A. de C.V , Guadalajara , Mexico
| | - Francisco Robles
- e Boehringer Ingelheim Vetmedica, S.A. de C.V , Guadalajara , Mexico
| | - Julio Franco
- e Boehringer Ingelheim Vetmedica, S.A. de C.V , Guadalajara , Mexico
| | - Ayub Darji
- f Centre de Recerca en Sanitat Animal , CReSA, UAB-IRTA , Barcelona , Spain
| | - Abdel-Satar Arafa
- g National Laboratory for Veterinary Quality Control on Poultry Production , Animal Health Research Institute , Giza , Egypt
| | - Egbert Mundt
- a Boehringer Ingelheim Veterinary Research Center , Hannover , Germany
| |
Collapse
|
36
|
Characterization of Clade 7.2 H5 Avian Influenza Viruses That Continue To Circulate in Chickens in China. J Virol 2016; 90:9797-9805. [PMID: 27558424 PMCID: PMC5068530 DOI: 10.1128/jvi.00855-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/13/2016] [Indexed: 11/20/2022] Open
Abstract
The H5N1 avian influenza viruses emerged in Southeast Asia in the late 20th century and have evolved into multiple phylogenetic clades based on their hemagglutinin (HA)-encoding genes. The clade 7.2 viruses were first detected in chickens in northern China in 2006, and vaccines specifically targeted to the clade were developed and have been used in poultry in China since 2006. During routine surveillance and disease diagnosis, we isolated seven H5 viruses between 2011 and 2014 that bear the clade 7.2 HA genes. Here, we performed extensive studies to understand how the clade 7.2 H5 viruses have evolved in chickens in China. Full genome sequence analysis revealed that the seven viruses formed two subtypes (four H5N1 viruses and three H5N2 viruses) and four genotypes by deriving genes from other influenza viruses. All of the viruses had antigenically drifted from the clade 7.2 viruses that were isolated in 2006. Pathogenicity studies of four viruses, one from each genotype, revealed that all of the viruses are highly pathogenic in chickens, but none of them could replicate in ducks. The four viruses exclusively bound to avian-type receptors and replicated only in the turbinates and/or lungs of mice; none of them were lethal to mice at a dosage of 106 50% egg infective doses (EID50). Our study indicates that although the clade 7.2 viruses have not been eradicated from poultry through vaccination, they have not become more dangerous to other animals (e.g., ducks and mice) and humans. IMPORTANCE Animal influenza viruses can acquire the ability to infect and kill humans. The H5N1 viruses have been a concern in recent decades because of their clear pandemic potential. We sorted H5N1 influenza viruses into different phylogenetic clades based on their HA genes. The clade 7.2 viruses were detected in chickens in several provinces of northern China in 2006. Vaccines for these viruses were subsequently developed and have been used ever since to control infection of poultry. Here, we analyzed the genetic and biologic properties of seven clade 7.2 viruses that were isolated from chickens between 2011 and 2014. We found that after nearly 9 years of circulation in chickens, the clade 7.2 viruses still exclusively bind to avian-type receptors and are of low pathogenicity to mice, suggesting that these H5 viruses pose a low risk to human public health.
Collapse
|
37
|
Genetic and antigenic characterization of H5, H6 and H9 avian influenza viruses circulating in live bird markets with intervention in the center part of Vietnam. Vet Microbiol 2016; 192:194-203. [PMID: 27527783 DOI: 10.1016/j.vetmic.2016.07.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 07/19/2016] [Accepted: 07/22/2016] [Indexed: 11/20/2022]
Abstract
A total of 3,045 environmental samples and oropharyngeal and cloacal swabs from apparently healthy poultry have been collected at three live bird markets (LBMs) at which practices were applied to reduce avian influenza (AI) virus transmission (intervention LBMs) and six conventional LBMs (non-intervention LBMs) in Thua Thien Hue province in 2014 to evaluate the efficacy of the intervention LBMs. The 178 AI viruses, including H3 (19 viruses), H4 (2), H5 (8), H6 (30), H9 (114), and H11 (5), were isolated from domestic ducks, muscovy ducks, chickens, and the environment. The prevalence of AI viruses in intervention LBMs (6.1%; 95% CI: 5.0-7.5) was similar to that in non-intervention LBMs (5.6%; 95% CI: 4.5-6.8; χ(2)=0.532; df=1; P=0.53) in the study area. Eight H5N6 highly pathogenic avian influenza (HPAI) viruses were isolated from apparently healthy ducks, muscovy ducks, and an environmental sample in an intervention LBM. The hemagglutinin genes of the H5N6 HPAI viruses belonged to the genetic clade 2.3.4.4, and the antigenicity of the H5N6 HPAI viruses differed from the H5N1 HPAI viruses previously circulating in Vietnam. Phylogenetic and antigenic analyses of the H6 and H9 viruses isolated in both types of LBMs revealed that they were closely related to the viruses isolated from domestic birds in China, Group II of H6 viruses and Y280 lineage of H9 viruses. These results indicate that the interventions currently applied in LBMs are insufficient to control AI. A risk analysis should be conducted to identify the key factors contributing to AI virus prevalence in intervention LBMs.
Collapse
|
38
|
Kurebayashi Y, Takahashi T, Tamoto C, Sahara K, Otsubo T, Yokozawa T, Shibahara N, Wada H, Minami A, Ikeda K, Suzuki T. High-Efficiency Capture of Drug Resistant-Influenza Virus by Live Imaging of Sialidase Activity. PLoS One 2016; 11:e0156400. [PMID: 27232333 PMCID: PMC4883822 DOI: 10.1371/journal.pone.0156400] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 05/13/2016] [Indexed: 11/18/2022] Open
Abstract
Influenza A and B viruses possess a neuraminidase protein that shows sialidase activity. Influenza virus-specific neuraminidase inhibitors (NAIs) are commonly used for clinical treatment of influenza. However, some influenza A and B viruses that are resistant to NAIs have emerged in nature. NAI-resistant viruses have been monitored in public hygiene surveys and the mechanism underlying the resistance has been studied. Here, we describe a new assay for selective detection and isolation of an NAI-resistant virus in a speedy and easy manner by live fluorescence imaging of viral sialidase activity, which we previously developed, in order to achieve high-efficiency capture of an NAI-resistant virus. An NAI-resistant virus maintains sialidase activity even at a concentration of NAI that leads to complete deactivation of the virus. Infected cells and focuses (infected cell populations) of an oseltamivir-resistant virus were selectively visualized by live fluorescence sialidase imaging in the presence of oseltamivir, resulting in high-efficiency isolation of the resistant viruses. The use of a combination of other NAIs (zanamivir, peramivir, and laninamivir) in the imaging showed that the oseltamivir-resistant virus isolated in 2008 was sensitive to zanamivir and laninamivir but resistant to peramivir. Fluorescence imaging in the presence of zanamivir also succeeded in selective live-cell visualization of cells that expressed zanamivir-resistant NA. Fluorescence imaging of NAI-resistant sialidase activity will be a powerful method for study of the NAI resistance mechanism, for public monitoring of NAI-resistant viruses, and for development of a new NAI that shows an effect on various NAI-resistant mutations.
Collapse
Affiliation(s)
- Yuuki Kurebayashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka, Japan
| | - Tadanobu Takahashi
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka, Japan
| | - Chihiro Tamoto
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka, Japan
| | - Keiji Sahara
- Shizuoka Institute of Environment and Hygiene, Shizuoka-shi, Shizuoka, Japan
| | - Tadamune Otsubo
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, Kure-shi, Hiroshima, Japan
| | - Tatsuya Yokozawa
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka, Japan
| | - Nona Shibahara
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka, Japan
- Shizuoka City Institute of Environmental Sciences and Public Health, Shizuoka-shi, Shizuoka, Japan
| | - Hirohisa Wada
- Shizuoka City Institute of Environmental Sciences and Public Health, Shizuoka-shi, Shizuoka, Japan
| | - Akira Minami
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka, Japan
| | - Kiyoshi Ikeda
- Department of Organic Chemistry, School of Pharmaceutical Sciences, Hiroshima International University, Kure-shi, Hiroshima, Japan
| | - Takashi Suzuki
- Department of Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka-shi, Shizuoka, Japan
| |
Collapse
|
39
|
Cuong NV, Truc VNT, Nhung NT, Thanh TT, Chieu TTB, Hieu TQ, Men NT, Mai HH, Chi HT, Boni MF, van Doorn HR, Thwaites GE, Carrique-Mas JJ, Hoa NT. Highly Pathogenic Avian Influenza Virus A/H5N1 Infection in Vaccinated Meat Duck Flocks in the Mekong Delta of Vietnam. Transbound Emerg Dis 2016; 63:127-35. [PMID: 26748550 PMCID: PMC4819680 DOI: 10.1111/tbed.12470] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Indexed: 11/26/2022]
Abstract
We investigated episodes of suspected highly pathogenic avian influenza (HPAI)-like illness among 12 meat duck flocks in two districts in Tien Giang province (Mekong Delta, Vietnam) in November 2013. In total, duck samples from 8 of 12 farms tested positive for HPAI virus subtype A/haemagglutinin 5 and neuraminidase 1 (H5N1) by real-time RT-PCR. Sequencing results confirmed clade of 2.3.2.1.c as the cause of the outbreaks. Most (7/8) laboratory-confirmed positive flocks had been vaccinated with inactivated HPAI H5N1 clade 2.3.4 vaccines <6 days prior to onset of clinical signs. A review of vaccination data in relation to estimated production in the area suggested that vaccination efforts were biased towards larger flocks and that vaccination coverage was low [21.2% ducks vaccinated with two shots (range by district 7.4-34.9%)]. The low-coverage data, the experimental evidence of lack of cross-protection conferred by the currently used vaccines based on clade 2.3.4 together with the short lifespan of meat duck flocks (60-70 days), suggest that vaccination is not likely to be effective as a tool for control of H5N1 infection in meat duck flocks in the area.
Collapse
Affiliation(s)
- N V Cuong
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - V N T Truc
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
- University of Science, Ho Chi Minh City, Vietnam
| | - N T Nhung
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - T T Thanh
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - T T B Chieu
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
| | - T Q Hieu
- Sub-Department of Animal Health, Tien Giang Province, Vietnam
| | - N T Men
- Sub-Department of Animal Health, Tien Giang Province, Vietnam
| | - H H Mai
- Sub-Department of Animal Health, Tien Giang Province, Vietnam
| | - H T Chi
- Sub-Department of Animal Health, Tien Giang Province, Vietnam
| | - M F Boni
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, UK
| | - H R van Doorn
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, UK
| | - G E Thwaites
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, UK
| | - J J Carrique-Mas
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, UK
| | - N T Hoa
- Oxford University Clinical Research Unit, Wellcome Trust Major Overseas Programme, Hospital for Tropical Disease, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, UK
| |
Collapse
|
40
|
Nguyen TH, Than VT, Thanh HD, Hung VK, Nguyen DT, Kim W. Intersubtype Reassortments of H5N1 Highly Pathogenic Avian Influenza Viruses Isolated from Quail. PLoS One 2016; 11:e0149608. [PMID: 26900963 PMCID: PMC4765837 DOI: 10.1371/journal.pone.0149608] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/03/2016] [Indexed: 11/18/2022] Open
Abstract
H5N1 highly pathogenic avian influenza (HPAI) viruses are considered a threat to national animal industries, causing production losses and high mortality in domestic poultry. In recent years, quail has become a popular terrestrial poultry species raised for production of meat and eggs in Asia. In this study, to better understand the roles of quail in H5N1 viral evolution, two H5N1-positive samples, designated A/quail/Vietnam/CVVI-49/2010 (CVVI-49/2010) and A/quail/Vietnam/CVVI-50/2014 (CVVI-50/2014), were isolated from quail during H5N1 outbreaks in Vietnam, and their whole genome were analyzed. The phylogenetic analysis reveals new evolutionary variation in the worldwide H5N1 viruses. The quail HA genes were clustered into clades 1.1.1 (CVVI-49/2010) and clade 2.3.2.1c (CVVI-50/2014), which may have evolved from viruses circulating from chickens and/or ducks in Cambodia, mainland of China, Taiwan, Indonesia, and South Korea in recent years. Interestingly, the M2 gene of the CVVI-49/2010 strain contained amino acid substitutions at position 26L-I and 31S-N that are related to amantadine-resistance. In particular, the CVVI-50/2014 strain revealed evidence of multiple intersubtype reassortment events between virus clades 2.3.2.1c, 2.3.2.1b, and 2.3.2.1a. Data from this study supports the possible role of quail as an important intermediate host in avian influenza virus evolution. Therefore, additional surveillance is needed to monitor these HPAI viruses both serologically and virologically in quail.
Collapse
Affiliation(s)
- Tinh Huu Nguyen
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, South Korea
- Central Vietnam Veterinary Institute, Nha Trang, Vietnam
| | - Van Thai Than
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, South Korea
| | - Hien Dang Thanh
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, South Korea
- Central Vietnam Veterinary Institute, Nha Trang, Vietnam
| | - Vu-Khac Hung
- Central Vietnam Veterinary Institute, Nha Trang, Vietnam
| | - Duc Tan Nguyen
- Central Vietnam Veterinary Institute, Nha Trang, Vietnam
| | - Wonyong Kim
- Department of Microbiology, Chung-Ang University College of Medicine, Seoul, South Korea
- * E-mail:
| |
Collapse
|
41
|
Zhang S, Gu D, Ouyang X, Xie W. Proinflammatory effects of the hemagglutinin protein of the avian influenza A (H7N9) virus and microRNA‑mediated homeostasis response in THP‑1 cells. Mol Med Rep 2015; 12:6241-6. [PMID: 26238163 DOI: 10.3892/mmr.2015.4142] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 07/10/2015] [Indexed: 11/06/2022] Open
Abstract
The pathology and immunological responses to hemagglutinin (HA) from H7N9 avian influenza viruses in humans remain unclear. The present study aimed to investigate the proinflammatory activity of the HA protein obtained from H7N9 viruses and the mechanisms underlying the homeostasis of microRNAs (miRNAs) in response to inflammatory stimuli. The expression of proinflammatory factors and miRNAs was assayed in the THP‑1 cells using reverse transcription‑quantitative polymerase chain reaction. Results showed that HA significantly increased the expression of interleukin (IL)‑1α, IL‑1β and IL‑6 in the THP‑1 cells. Furthermore, HA and lipopolysaccharide exhibited synergic effects on the expression of IL‑1α, IL‑1β and IL‑6 in the THP‑1 cells. Let‑7e can target IL‑6 and inhibit its expression. Notably, HA significantly increased let‑7e expression in THP‑1 cells and decreased the let‑7e levels in the medium. However, the knockdown of toll‑like receptor 4 (TLR4) significantly attenuated the effects of HA. These results indicate that the HA can induce inflammatory stress and may trigger an miRNA‑mediated homeostasis response to this stress. The effects of HA appeared to be mediated by the TLR4 pathway.
Collapse
Affiliation(s)
- Shaobo Zhang
- Shenzhen Key Lab of Health Science and Technology, Division of Life Science & Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China
| | - Dayong Gu
- Central Laboratory of Health Quarantine, International Travel Health Care Center, Shenzhen Entry-exit Inspection and Quarantine Bureau, Shenzhen, Guangdong 518033, P.R. China
| | - Xiaoxi Ouyang
- Department of Health Inspection and Quarantine, School of Public Health, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Weidong Xie
- Shenzhen Key Lab of Health Science and Technology, Division of Life Science & Health, Graduate School at Shenzhen, Tsinghua University, Shenzhen, Guangdong 518055, P.R. China
| |
Collapse
|
42
|
Bertran K, Moresco K, Swayne DE. Impact of vaccination on infection with Vietnam H5N1 high pathogenicity avian influenza virus in hens and the eggs they lay. Vaccine 2015; 33:1324-30. [PMID: 25657093 DOI: 10.1016/j.vaccine.2015.01.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/01/2014] [Accepted: 01/21/2015] [Indexed: 11/17/2022]
Abstract
High pathogenicity avian influenza virus (HPAIV) infections in chickens negatively impact egg production and cause egg contamination. Previously, vaccination maintained egg production and reduced egg contamination when challenged with a North American H5N2 HPAIV. However, Asian H5N1 HPAIV infection has some characteristics of increased pathogenicity compared to other H5 HPAIV such as more rapid drop and complete cessation in egg production. Sham (vaccinated at 25 and 28 weeks of age), inactivated H5N1 Once (1X-H5-Vax; vaccinated at 28 weeks of age only) and inactivated H5N1 Twice (2X-H5-Vax; vaccinated at 25 and 28 weeks of age) vaccinated adult White Leghorn hens were challenged intranasally at 31 weeks of age with 6.1 log10 mean embryo infectious doses (EID50) of clade 2.3.2.1a H5N1 HPAIV (A/chicken/Vietnam/NCVD-675/2011) which was homologous to the inactivated vaccine. Sham-vaccinated layers experienced 100% mortality within 3 days post-challenge; laid soft and thin-shelled eggs; had recovery of virus from oral swabs and in 53% of the eggs from eggshell surface (35%), yolk (24%), and albumin (41%); and had very high titers of virus (average 7.91 log10 EID50/g) in all segments of the oviduct and ovary. By comparison, 1X- and 2X-H5-Vax challenged hens survived infection, laid similar number of eggs pre- and post-challenge, all eggs had normal egg shell quality, and had significantly fewer contaminated eggs with reduced virus quantity. The 2X-H5-Vax hens had significantly higher HI titers by the day of challenge (304 GMT) and at termination (512 GMT) than 1X-H5-Vax hens (45 GMT and 128 GMT). The current study demonstrated that AIV infections caused by clade 2.3.2.1a H5N1 variants can be effectively controlled by either double or single homologous vaccination.
Collapse
Affiliation(s)
- Kateri Bertran
- Exotic and Emerging Avian Viral Diseases Research Unit, USDA-ARS, 934 College Station Rd, 30605 Athens, GA, USA
| | - Kira Moresco
- Exotic and Emerging Avian Viral Diseases Research Unit, USDA-ARS, 934 College Station Rd, 30605 Athens, GA, USA
| | - David E Swayne
- Exotic and Emerging Avian Viral Diseases Research Unit, USDA-ARS, 934 College Station Rd, 30605 Athens, GA, USA.
| |
Collapse
|
43
|
He B, Zheng BJ, Wang Q, Du L, Jiang S, Lu L. Adenovirus-based vaccines against avian-origin H5N1 influenza viruses. Microbes Infect 2015; 17:135-41. [PMID: 25479556 PMCID: PMC7110517 DOI: 10.1016/j.micinf.2014.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 02/03/2023]
Abstract
Since 1997, human infection with avian H5N1, having about 60% mortality, has posed a threat to public health. In this review, we describe the epidemiology of H5N1 transmission, advantages and disadvantages of different influenza vaccine types, and characteristics of adenovirus, finally summarizing advances in adenovirus-based H5N1 systemic and mucosal vaccines.
Collapse
Affiliation(s)
- Biao He
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai 200032, China
| | - Bo-jian Zheng
- Department of Microbiology, University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai 200032, China
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai 200032, China; Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai 200032, China.
| |
Collapse
|
44
|
Bui C, Bethmont A, Chughtai AA, Gardner L, Sarkar S, Hassan S, Seale H, MacIntyre CR. A Systematic Review of the Comparative Epidemiology of Avian and Human Influenza A H5N1 and H7N9 - Lessons and Unanswered Questions. Transbound Emerg Dis 2015; 63:602-620. [DOI: 10.1111/tbed.12327] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Indexed: 11/29/2022]
Affiliation(s)
- C. Bui
- School of Public Health and Community Medicine; University of New South Wales; Sydney NSW Australia
| | - A. Bethmont
- School of Public Health and Community Medicine; University of New South Wales; Sydney NSW Australia
| | - A. A. Chughtai
- School of Public Health and Community Medicine; University of New South Wales; Sydney NSW Australia
| | - L. Gardner
- School of Civil and Environmental Engineering; University of New South Wales; Sydney NSW Australia
| | - S. Sarkar
- Section of Integrative Biology; University of Texas at Austin; Austin TX USA
| | - S. Hassan
- School of Public Health and Community Medicine; University of New South Wales; Sydney NSW Australia
| | - H. Seale
- School of Public Health and Community Medicine; University of New South Wales; Sydney NSW Australia
| | - C. R. MacIntyre
- School of Public Health and Community Medicine; University of New South Wales; Sydney NSW Australia
| |
Collapse
|
45
|
Ren Z, Ji X, Meng L, Wei Y, Wang T, Feng N, Zheng X, Wang H, Li N, Gao X, Jin H, Zhao Y, Yang S, Qin C, Gao Y, Xia X. H5N1 influenza virus-like particle vaccine protects mice from heterologous virus challenge better than whole inactivated virus. Virus Res 2015; 200:9-18. [PMID: 25599603 DOI: 10.1016/j.virusres.2015.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 01/06/2015] [Accepted: 01/10/2015] [Indexed: 12/20/2022]
Abstract
The highly pathogenic avian influenza (HPAI) H5N1 virus has become highly enzootic since 2003 and has dynamically evolved to undergo substantial evolution. Clades 2.3.2.1 and 2.3.4 have become the most dominant lineage in recent years, and H5N8 avian influenza outbreaks have been reported Asia. The current approach to generate influenza virus vaccines uses embryonated chicken eggs for large-scale production, although such vaccines have been poorly immunogenic to heterologous virus challenge. In the current study, virus-like particles (VLP) based on A/meerkat/Shanghai/SH-1/2012 (clade 2.3.2.1) and comprising hemagglutinin (HA), neuraminidase (NA), and matrix (M1) were produced using a baculovirus expression system to develop effective protection for different H5 HPAI clade challenges. Mice immunized with VLP demonstrated stronger humoral and cellular immune responses than mice immunized with whole influenza virus (WIV), with 20-fold higher IgG antibody titers against A/meerkat/Shanghai/SH-1/2012 after boost. Notably, the WIV vaccine group showed partial protection (80% survival) to homologous challenge, little protection (40% survival) to heterologous challenge, and 20% survival to H5N8 challenge, whereas all mice in the VLP+CFA group survived. These results provide insight for the development of effective prophylactic vaccines based on VLPs with cross-clade protection for the control of current H5 HPAI outbreaks in humans.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/immunology
- Chick Embryo
- Cross Protection
- Female
- Humans
- Influenza A Virus, H5N1 Subtype/genetics
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A virus/classification
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/genetics
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Influenza, Human/virology
- Mice
- Mice, Inbred BALB C
- Vaccines, Virus-Like Particle/administration & dosage
- Vaccines, Virus-Like Particle/genetics
- Vaccines, Virus-Like Particle/immunology
Collapse
Affiliation(s)
- Zhiguang Ren
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Xianliang Ji
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China; College of veterinary Medicine, Inner Mongolia Agricultural University, Inner Mongolia Autonomous Region, Huhhot, China
| | - Lingnan Meng
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China; College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Yurong Wei
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China; College of Animal Science and Technology, Shihezi University, Shihezi, Xinjiang Province, China
| | - Tiecheng Wang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Na Feng
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Xuexing Zheng
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Hualei Wang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Nan Li
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Xiaolong Gao
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Hongli Jin
- Changchun SR Biological Technology Co., Ltd, Changchun, Jilin Province, China
| | - Yongkun Zhao
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Songtao Yang
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuwei Gao
- Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China.
| | - Xianzhu Xia
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Institute of Military Veterinary, Academy of Military Medical Sciences, Changchun, Jilin Province, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu Province, China; Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, Jilin Province, China.
| |
Collapse
|
46
|
Zhang N, Zheng BJ, Lu L, Zhou Y, Jiang S, Du L. Advancements in the development of subunit influenza vaccines. Microbes Infect 2014; 17:123-34. [PMID: 25529753 DOI: 10.1016/j.micinf.2014.12.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/07/2014] [Accepted: 12/08/2014] [Indexed: 12/19/2022]
Abstract
The ongoing threat of influenza epidemics and pandemics has emphasized the importance of developing safe and effective vaccines against infections from divergent influenza viruses. In this review, we first introduce the structure and life cycle of influenza A viruses, describing major influenza A virus-caused pandemics. We then compare different types of influenza vaccines and discuss current advancements in the development of subunit influenza vaccines, particularly those based on nucleoprotein (NP), extracellular domain of matrix protein 2 (M2e) and hemagglutinin (HA) proteins. We also illustrate potential strategies for improving the efficacy of subunit influenza vaccines.
Collapse
Affiliation(s)
- Naru Zhang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA
| | - Bo-Jian Zheng
- Department of Microbiology, University of Hong Kong, Pokfulam, Hong Kong
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, China
| | - Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA; Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College and Institute of Medical Microbiology, Fudan University, Shanghai, China.
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, USA.
| |
Collapse
|