1
|
Chen L, Wu Y, Lv T, Tuo R, Xiao Y. Mesenchymal stem cells enchanced by salidroside to inhibit ferroptosis and improve premature ovarian insufficiency via Keap1/Nrf2/GPX4 signaling. Redox Rep 2025; 30:2455914. [PMID: 39874130 PMCID: PMC11776066 DOI: 10.1080/13510002.2025.2455914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Regenerative medicine researches have shown that mesenchymal stem cells (MSCs) may be an effective treatment method for premature ovarian insufficiency (POI). However, the efficacy of MSCs is still limited. PURPOSE This study aims to explain whether salidroside and MSCs combination is a therapeutic strategy to POI and to explore salidroside-enhanced MSCs inhibiting ferroptosis via Keap1/Nrf2/GPX4 signaling. METHODS The effect of salidroside and MSCs on ovarian granular cells (GCs) was analyzed. After treatment, hormone levels and -fertility of rats were measured. Lipid peroxidation levels, iron deposition and mitochondrial morphology were detected. The genes and proteins of Keap1/Nrf2/GPX4 signaling were examined. RESULTS Salidroside and MSCs were found to inhibit cell death of GCs by reducing peroxidation and intracellular ferrous. Salidroside promotes the proliferation of MSCs and supports cell survival in ovary. Salidroside combined with MSCs therapy restored ovarian function, which was better than MSCs monotherapy. Salidroside-enhanced MSCs to inhibit ferroptosis. The results showed activation of the Keap1/Nrf2/GPX4 signaling and an increase in anti-ferroptosis molecule. CONCLUSIONS Salidroside-enhanced MSCs as a ferroptosis inhibitor and provide new therapeutic strategies for POI. The possible mechanisms of MSCs were related to maintaining redox homeostasis via a Keap1/Nrf2/GPX4 signaling.
Collapse
Affiliation(s)
- Lixuan Chen
- Department of Hematology, Shenzhen Qianhai Shekou Pilot Free Trade Zone Hospital, Shenzhen, People’s Republic of China
| | - Yingnan Wu
- Translational Medicine Center, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Tiying Lv
- Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Rui Tuo
- Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Yang Xiao
- Department of Hematology, Shenzhen Qianhai Shekou Pilot Free Trade Zone Hospital, Shenzhen, People’s Republic of China
- Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| |
Collapse
|
2
|
Poyraz M, Poyraz AK, Dogan Y, Gunes S, Mir HS, Paul JK, Barua PD, Baygin M, Dogan S, Tuncer T, Molinari F, Acharya R. BrainNeXt: novel lightweight CNN model for the automated detection of brain disorders using MRI images. Cogn Neurodyn 2025; 19:53. [PMID: 40124704 PMCID: PMC11929658 DOI: 10.1007/s11571-025-10235-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/19/2024] [Accepted: 02/28/2025] [Indexed: 03/25/2025] Open
Abstract
The main aim of this study is to propose a novel convolutional neural network, named BrainNeXt, for the automated brain disorders detection using magnetic resonance images (MRI) images. Furthermore, we aim to investigate the performance of our proposed network on various medical applications. To achieve high/robust image classification performance, we gathered a new MRI dataset belonging to four classes: (1) Alzheimer's disease, (2) chronic ischemia, (3) multiple sclerosis, and (4) control. Inspired by ConvNeXt, we designed BrainNeXt as a lightweight classification model by incorporating the structural elements of the Swin Transformers Tiny model. By training our model on the collected dataset, a pretrained BrainNeXt model was obtained. Additionally, we have suggested a feature engineering (FE) approach based on the pretrained BrainNeXt, which extracted features from fixed-sized patches. To select the most discriminative/informative features, we employed the neighborhood component analysis selector in the feature selection phase. As the classifier for our patch-based FE approach, we utilized the support vector machine classifier. Our recommended BrainNeXt approach achieved an accuracy of 100% and 91.35% for training and validation. The recommended model obtained the test classification accuracy of 94.21%. To further improve the classification performance, we suggested a patch-based DFE approach, which achieved a test accuracy of 99.73%. The obtained results, surpassing 90% accuracy on the test dataset, demonstrate the effectiveness and high classification performance of the proposed models.
Collapse
Affiliation(s)
- Melahat Poyraz
- Department of Radiology, Elazig Fethi Sekin City Hospital, Elazig, Turkey
| | - Ahmet Kursad Poyraz
- Department of Radiology, School of Medicine, Firat University, 23119 Elazig, Turkey
| | - Yusuf Dogan
- Department of Radiology, School of Medicine, Firat University, 23119 Elazig, Turkey
| | - Selva Gunes
- Department of Radiology, School of Medicine, Firat University, 23119 Elazig, Turkey
| | - Hasan S. Mir
- Department of Electrical Engineering, American University of Sharjah, Sharjah, UAE
| | - Jose Kunnel Paul
- Department of Neurology, Government Medical College, Thiruvananthapuram, Kerala India
| | - Prabal Datta Barua
- School of Business (Information System), University of Southern Queensland, Springfield, Australia
| | - Mehmet Baygin
- Department of Computer Engineering, Engineering Faculty, Erzurum Technical University, Erzurum, Turkey
| | - Sengul Dogan
- Department of Digital Forensics Engineering, Technology Faculty, Firat University, Elazig, Turkey
| | - Turker Tuncer
- Department of Digital Forensics Engineering, Technology Faculty, Firat University, Elazig, Turkey
| | - Filippo Molinari
- Department of Electronics and Telecommunications, Politecnico Di Torino, Turin, Italy
| | - Rajendra Acharya
- School of Mathematics, Physics and Computing, University of Southern Queensland, Springfield, Australia
| |
Collapse
|
3
|
Xiang Z, Ma B, Pei X, Wang W, Gong W. Mechanism of action of genistein on breast cancer and differential effects of different age stages. PHARMACEUTICAL BIOLOGY 2025; 63:141-155. [PMID: 39996512 PMCID: PMC11864014 DOI: 10.1080/13880209.2025.2469607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
CONTEXT Genistein, a soy-derived isoflavone, exhibits structural similarities with 17β-estradiol and demonstrates antioxidant, anti-inflammatory, and estrogenic properties. Despite its low bioavailability limiting its clinical application, it shows potential for breast cancer prevention and treatment. OBJECTIVE This review aims to summarize the pharmacological effects and molecular mechanisms of genistein in breast cancer, focusing on its therapeutic potential, strategies to overcome bioavailability limitations, and its role in personalized medicine. Differential impacts among population subgroups are also discussed. METHODS A systematic review was conducted using PubMed, ScienceDirect, and Google Scholar databases. Studies were selected based on their focus on genistein's mechanisms of action, strategies to enhance its bioavailability, and interactions with other therapies. RESULTS Genistein exerted anticancer effects by modulating estrogen receptor β (ERβ), inhibiting angiogenesis, arresting the cell cycle, and inducing apoptosis. Its antioxidant properties help mitigate tumor-associated oxidative stress. Bioavailability enhancement strategies, such as nanoparticle and lipid-based formulations, show promise. Age-dependent effects were evident, with distinct responses observed in prepubertal, menopausal, and postmenopausal populations, underscoring its potential for personalized therapies. Furthermore, genistein influences epigenetic modifications, including DNA methylation and miRNA expression, bolstering its anticancer efficacy. CONCLUSION Genistein is a promising candidate for breast cancer therapy, particularly for personalized treatment. Strategies to enhance bioavailability and further clinical research are essential to optimize its therapeutic potential and evaluate its efficacy in combination therapies.
Collapse
Affiliation(s)
- Zhebin Xiang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Ma
- Zhejiang Hospital, Hangzhou, China
| | - Xiujun Pei
- Shandong Provincial Hospital, Shandong, China
| | - Wenjie Wang
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Weilun Gong
- Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Yuan Y, Kuang M, Yu T, Huang S, Jiang F, Lu B, Cai M, Lu X. Adipogenic dedifferentiation enhances survival of human umbilical cord-derived mesenchymal stem cells under oxidative stress. Adipocyte 2025; 14:2467150. [PMID: 39976240 PMCID: PMC11845070 DOI: 10.1080/21623945.2025.2467150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/16/2024] [Accepted: 02/05/2025] [Indexed: 02/21/2025] Open
Abstract
Mesenchymal stem cells (MSCs) serve as ideal candidates for a broad range of cell-based therapies. However, cell ageing caused by long-term in vitro expansion and poor survival after in vivo delivery greatly limits their success in preclinical and clinical applications. Dedifferentiation represents a potential strategy for enhancing the retention and function of MSCs in hostile environments. In this study, we evaluated the cell phenotype, proliferation, and differentiation potential, as well as the anti-oxidative stress ability of human umbilical cord-derived MSCs (hMSCs) manipulated with adipogenic priming and subsequent dedifferentiation. After an in vitro differentiation and dedifferentiation procedure, the resultant dedifferentiated hMSCs (De-hMSCs) displayed properties similar to their original counterparts, including immunophenotype and mesodermal potential. Upon re-induction, De-hMSCs exhibited a significantly higher adipogenic differentiation capability than unmanipulated hMSCs. Importantly, De-hMSCs showed a significantly enhanced ability to resist tert-butyl hydroperoxide (t-BHP) induced apoptosis compared to undifferentiated hMSCs. Mechanisms involving bcl-2 family proteins and autophagy may contribute to the demonstrated advantages of dedifferentiation-reprogrammed hMSCs. These results indicate that adipogenic dedifferentiation promotes adipogenesis and cell persistence, as well as preserves the stemness of human umbilical cord-derived MSCs that have been committed to the adipocytic lineage. As a unique stem cell population, dedifferentiated MSCs may represent an attractive and promising candidate for MSC-based therapy.
Collapse
Affiliation(s)
- Yin Yuan
- School of Life Science & Biopharmacology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Meina Kuang
- School of Life Science & Biopharmacology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tengye Yu
- School of Life Science & Biopharmacology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Sirui Huang
- School of Life Science & Biopharmacology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Fujie Jiang
- School of Life Science & Biopharmacology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Biyi Lu
- School of Life Science & Biopharmacology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Mingen Cai
- School of Life Science & Biopharmacology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xin Lu
- School of Life Sciences, South China Normal University, Guangzhou, China
| |
Collapse
|
5
|
Vidman S, Ma YHE, Fullenkamp N, Plant GW. Human induced pluripotent stem cell-derived therapies for regeneration after central nervous system injury. Neural Regen Res 2025; 20:3063-3075. [PMID: 39715081 PMCID: PMC11881715 DOI: 10.4103/nrr.nrr-d-24-00901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/26/2024] [Accepted: 10/29/2024] [Indexed: 12/25/2024] Open
Abstract
In recent years, the progression of stem cell therapies has shown great promise in advancing the nascent field of regenerative medicine. Considering the non-regenerative nature of the mature central nervous system, the concept that "blank" cells could be reprogrammed and functionally integrated into host neural networks remained intriguing. Previous work has also demonstrated the ability of such cells to stimulate intrinsic growth programs in post-mitotic cells, such as neurons. While embryonic stem cells demonstrated great potential in treating central nervous system pathologies, ethical and technical concerns remained. These barriers, along with the clear necessity for this type of treatment, ultimately prompted the advent of induced pluripotent stem cells. The advantage of pluripotent cells in central nervous system regeneration is multifaceted, permitting differentiation into neural stem cells, neural progenitor cells, glia, and various neuronal subpopulations. The precise spatiotemporal application of extrinsic growth factors in vitro, in addition to microenvironmental signaling in vivo, influences the efficiency of this directed differentiation. While the pluri- or multipotency of these cells is appealing, it also poses the risk of unregulated differentiation and teratoma formation. Cells of the neuroectodermal lineage, such as neuronal subpopulations and glia, have been explored with varying degrees of success. Although the risk of cancer or teratoma formation is greatly reduced, each subpopulation varies in effectiveness and is influenced by a myriad of factors, such as the timing of the transplant, pathology type, and the ratio of accompanying progenitor cells. Furthermore, successful transplantation requires innovative approaches to develop delivery vectors that can mitigate cell death and support integration. Lastly, host immune responses to allogeneic grafts must be thoroughly characterized and further developed to reduce the need for immunosuppression. Translation to a clinical setting will involve careful consideration when assessing both physiologic and functional outcomes. This review will highlight both successes and challenges faced when using human induced pluripotent stem cell-derived cell transplantation therapies to promote endogenous regeneration.
Collapse
Affiliation(s)
- Stephen Vidman
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Yee Hang Ethan Ma
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Nolan Fullenkamp
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Giles W. Plant
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| |
Collapse
|
6
|
Aldali F, Deng C, Nie M, Chen H. Advances in therapies using mesenchymal stem cells and their exosomes for treatment of peripheral nerve injury: state of the art and future perspectives. Neural Regen Res 2025; 20:3151-3171. [PMID: 39435603 PMCID: PMC11881730 DOI: 10.4103/nrr.nrr-d-24-00235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/26/2024] [Accepted: 08/26/2024] [Indexed: 10/23/2024] Open
Abstract
"Peripheral nerve injury" refers to damage or trauma affecting nerves outside the brain and spinal cord. Peripheral nerve injury results in movements or sensation impairments, and represents a serious public health problem. Although severed peripheral nerves have been effectively joined and various therapies have been offered, recovery of sensory or motor functions remains limited, and efficacious therapies for complete repair of a nerve injury remain elusive. The emerging field of mesenchymal stem cells and their exosome-based therapies hold promise for enhancing nerve regeneration and function. Mesenchymal stem cells, as large living cells responsive to the environment, secrete various factors and exosomes. The latter are nano-sized extracellular vesicles containing bioactive molecules such as proteins, microRNA, and messenger RNA derived from parent mesenchymal stem cells. Exosomes have pivotal roles in cell-to-cell communication and nervous tissue function, offering solutions to changes associated with cell-based therapies. Despite ongoing investigations, mesenchymal stem cells and mesenchymal stem cell-derived exosome-based therapies are in the exploratory stage. A comprehensive review of the latest preclinical experiments and clinical trials is essential for deep understanding of therapeutic strategies and for facilitating clinical translation. This review initially explores current investigations of mesenchymal stem cells and mesenchymal stem cell-derived exosomes in peripheral nerve injury, exploring the underlying mechanisms. Subsequently, it provides an overview of the current status of mesenchymal stem cell and exosome-based therapies in clinical trials, followed by a comparative analysis of therapies utilizing mesenchymal stem cells and exosomes. Finally, the review addresses the limitations and challenges associated with use of mesenchymal stem cell-derived exosomes, offering potential solutions and guiding future directions.
Collapse
Affiliation(s)
- Fatima Aldali
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Chunchu Deng
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Mingbo Nie
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hong Chen
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
7
|
García-Briega MI, Plá-Salom J, Clara-Trujillo S, Tolosa L, Cordón L, Sempere A, Ribelles JLG. Co-culture of multiple myeloma cell lines and bone marrow mesenchymal stem cells in a 3D microgel environment. BIOMATERIALS ADVANCES 2025; 172:214243. [PMID: 40054228 DOI: 10.1016/j.bioadv.2025.214243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/20/2024] [Accepted: 02/24/2025] [Indexed: 03/17/2025]
Abstract
This study reproduces the complex relationships between tumour plasma cells and their bone marrow microenvironment in multiple myeloma in vitro. These relationships are established both with other cells and with the extracellular matrix and are key factors in tumour progression, generating resistance to antitumour drugs in the cellular and non-cellular environments. This paper proposes a 3D microenvironment model designed to capture the main components of the multiple myeloma tumour microenvironment. Multiple myeloma cells (MMCs) were dispersed in a microgel medium formed by gel-textured microspheres. The proteins and polysaccharides considered important in the interaction of the MMCs with their non-cellular environment were successfully grafted onto the surface of the microspheres, while human mesenchymal stem cells (MSCs) were cultured in a pellet with non-functionalised microspheres. The MSCs pellet was placed in the well plate together with the microgel and the MMCs and orbitally shaken to maintain them in suspension. The viability, cell cycle and proliferation of the RPMI8226, MM1S and U266 multiple myeloma cell lines and the direct adhesion of MMCs to the MSC pellet were quantified. The results revealed that all three cell lines are able to grow satisfactorily. In addition, the normal behaviour of the MMCs is not modified in any of the culture conditions studied.
Collapse
Affiliation(s)
- M Inmaculada García-Briega
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022, Valencia, Spain; Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Spain.
| | - Júlia Plá-Salom
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022, Valencia, Spain
| | - Sandra Clara-Trujillo
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022, Valencia, Spain; Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Spain; Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat de València-Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain; Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Centro de Investigación Príncipe Felipe, Universitat Politècnica de València, Valencia 46013, Spain
| | - Laia Tolosa
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Spain; Experimental Hepatology Unit, Health Research Institute La Fe (IIS La Fe), Valencia 46026, Spain
| | - Lourdes Cordón
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe (IISLAFE), 46022, Valencia, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 28029 Madrid, Spain
| | - Amparo Sempere
- Hematology Research Group, Instituto de Investigación Sanitaria La Fe (IISLAFE), 46022, Valencia, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 28029 Madrid, Spain; Haematology Department, Hospital Universitari i Politècnic La Fe, 46026, Valencia, Spain
| | - José Luís Gómez Ribelles
- Centre for Biomaterials and Tissue Engineering, CBIT, Universitat Politècnica de València, 46022, Valencia, Spain; Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Spain
| |
Collapse
|
8
|
Akhtar M, Nashwan AJ. Evaluating Wharton’s jelly-derived stem cell therapy in autism: Insights from a case study. World J Methodol 2025; 15:100074. [DOI: 10.5662/wjm.v15.i2.100074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 11/27/2024] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder affecting over 2% of the global population, marked by social communication deficits and repetitive behaviors. Kabatas et al explored the efficacy and safety of Wharton’s jelly-derived mesenchymal stem cell (WJ-MSC) therapy in a 4-year-old child with ASD. Using the childhood autism rating scale and Denver II developmental screening test, significant improvements were seen after six WJ-MSC sessions, with no adverse events over 2 years. Despite promising results, the study’s single-case design limits generalizability. Larger, multi-center trials are needed to validate the findings and assess long-term effects of WJ-MSC therapy in ASD.
Collapse
Affiliation(s)
- Muzamil Akhtar
- College of Medicine, Gujranwala Medical College, Gujranwala 52250, Punjab, Pakistan
| | - Abdulqadir J Nashwan
- Department of Nursing and Midwifery Research, Hamad Medical Corporation, Doha 3050, Qatar
| |
Collapse
|
9
|
Li Y, Xue J, Ma Y, Ye K, Zhao X, Ge F, Zheng F, Liu L, Gao X, Wang D, Xia Q. The complex roles of m 6 A modifications in neural stem cell proliferation, differentiation, and self-renewal and implications for memory and neurodegenerative diseases. Neural Regen Res 2025; 20:1582-1598. [PMID: 38845217 PMCID: PMC11688559 DOI: 10.4103/nrr.nrr-d-23-01872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 08/07/2024] Open
Abstract
N6-methyladenosine (m 6 A), the most prevalent and conserved RNA modification in eukaryotic cells, profoundly influences virtually all aspects of mRNA metabolism. mRNA plays crucial roles in neural stem cell genesis and neural regeneration, where it is highly concentrated and actively involved in these processes. Changes in m 6 A modification levels and the expression levels of related enzymatic proteins can lead to neurological dysfunction and contribute to the development of neurological diseases. Furthermore, the proliferation and differentiation of neural stem cells, as well as nerve regeneration, are intimately linked to memory function and neurodegenerative diseases. This paper presents a comprehensive review of the roles of m 6 A in neural stem cell proliferation, differentiation, and self-renewal, as well as its implications in memory and neurodegenerative diseases. m 6 A has demonstrated divergent effects on the proliferation and differentiation of neural stem cells. These observed contradictions may arise from the time-specific nature of m 6 A and its differential impact on neural stem cells across various stages of development. Similarly, the diverse effects of m 6 A on distinct types of memory could be attributed to the involvement of specific brain regions in memory formation and recall. Inconsistencies in m 6 A levels across different models of neurodegenerative disease, particularly Alzheimer's disease and Parkinson's disease, suggest that these disparities are linked to variations in the affected brain regions. Notably, the opposing changes in m 6 A levels observed in Parkinson's disease models exposed to manganese compared to normal Parkinson's disease models further underscore the complexity of m 6 A's role in neurodegenerative processes. The roles of m 6 A in neural stem cell proliferation, differentiation, and self-renewal, and its implications in memory and neurodegenerative diseases, appear contradictory. These inconsistencies may be attributed to the time-specific nature of m 6 A and its varying effects on distinct brain regions and in different environments.
Collapse
Affiliation(s)
- Yanxi Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jing Xue
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yuejia Ma
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ke Ye
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xue Zhao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Fangliang Ge
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Feifei Zheng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Lulu Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Xu Gao
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- Basic Medical Institute, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
- Key Laboratory of Heilongjiang Province for Genetically Modified Animals, Harbin Medical University, Harbin, Heilongjiang Province, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Dayong Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- College of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang Province, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, Heilongjiang Province, China
| | - Qing Xia
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
10
|
Abd Rahman F, Azwa FN. Comparative Dental Pulp Stem Cells (DPSCs) and Periodontal Ligament Stem Cells (PDLSCs): Difference in effect of aspirin on osteoblast potential of PDLSCs and DPSCs. Tissue Cell 2025; 94:102776. [PMID: 40022908 DOI: 10.1016/j.tice.2025.102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/27/2025] [Accepted: 02/01/2025] [Indexed: 03/04/2025]
Abstract
Periodontal Ligament Stem Cells (PDLSCs) and Dental Pulp Stem Cells (DPSCs) are mesenchymal stem cells with the ability to self-renew and differentiate into three lineages. One significant advantage of dental stem cells, such as PDLSCs and DPSCs, is their ease of harvest compared to other types of mesenchymal stem cells (MSCs). While MSCs are highly valued in bone tissue engineering, MSCs sourced from dental tissues, such as PDLSCs and DPSCs, offer promising options for periodontal regeneration because they are more easily accessible and can be collected through minimally invasive methods. Currently, PDLSCs and DPSCs exhibit a strong ability to undergo osteogenic differentiation when stimulated by factors such as growth factors, chemicals, and paracrine signaling. It has been shown that aspirin (ASA) can enhance the osteoblastic potential of PDLSCs and DPSCs, although the exact mechanism remains unclear. This article examines the origin and features of mesenchymal stem cells, the bone regeneration potential of DPSCs and PDLSCs, the factors that enhance their osteogenic differentiation, and a comparison of PDLSCs and DPSCs regarding their proliferation and differentiation abilities. Additionally, we will examine the effects of aspirin on PDLSCs and DPSCs. In conclusion, PDLSCs show a greater effect on osteoblast differentiation.
Collapse
Affiliation(s)
- Fazliny Abd Rahman
- School of Dentistry (SoD), Management & Science University (MSU), University Drive, Off Persiaran Olahraga, 40100 Shah Alam, Selangor.
| | - Fatin Nur Azwa
- Faculty of Dentistry, Oral Cancer Research Centre (ORCC), University of Malaya (UM), Wilayah Persekutuan, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
11
|
Maeda T, Sobajima S, Matsumoto T, Tsubosaka M, Matsushita T, Iwaguro H, Kuroda R. Comparison of short-term clinical outcomes of intra-articular injection of micro-fragmented adipose tissue and stromal vascular fraction cells for knee osteoarthritis treatment: A retrospective single-center cohort study. Regen Ther 2025; 29:91-99. [PMID: 40129683 PMCID: PMC11932757 DOI: 10.1016/j.reth.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/15/2025] [Accepted: 02/27/2025] [Indexed: 03/26/2025] Open
Abstract
Background Stromal vascular fraction (SVF) cells and micro-fragmented adipose tissue (MFAT) have potential for treating knee osteoarthritis (OA), but their efficacy has not been compared. This study aimed to compare the clinical outcomes of SVF and MFAT for knee OA. We hypothesized that SVF provides stronger short-term effects, while MFAT offers more sustained benefits. Methods A retrospective single-center cohort study was conducted on patients with knee OA, with 36 SVF and 36 MFAT cases selected through propensity score matching between September 2017 and February 2022. Patients with KL grades I-IV varus knee OA, significant pain (VAS ≥40), and functional impairment despite conservative treatments were included. Those with knee trauma, severe bony defects, infections, genu valgus, osteonecrosis, rheumatoid arthritis, or severe deformities were excluded. Clinical outcomes were assessed using the visual analog scale, KOOS, knee range of motion, extension/flexion strength, and MRI T2 mapping. Results SVF and MFAT groups demonstrated significant improvements in VAS (p < 0.01 for both groups). Both groups showed notable improvements in extension angle, extension/flexion muscle strength, and KOOS, with no significant differences between them. However, the MFAT group demonstrated significantly greater improvement in flexion angle compared to the SVF group (p = 0.03). No serious adverse events were reported. T2 mapping showed significant improvements in cartilage quality in both groups, with the MFAT group demonstrating superior improvements in specific lateral regions. Responder rate in SVF group initially improved but declined over time; however, the MFAT group showed sustained improvement from six months onward. Conclusion T2 mapping revealed that MFAT had better cartilage preservation than that of SVF cells in less-loaded areas, with a potentially longer-lasting therapeutic effect. These findings offer important insights for clinicians to tailor treatment strategies based on patient needs and disease progression.
Collapse
Affiliation(s)
- Takuma Maeda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Orthopaedic Surgery, Sobajima Clinic, Higashiosaka, Japan
| | - Satoshi Sobajima
- Department of Orthopaedic Surgery, Sobajima Clinic, Higashiosaka, Japan
| | - Tomoyuki Matsumoto
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masanori Tsubosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takehiko Matsushita
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hideki Iwaguro
- Department of Orthopaedic Surgery, Sobajima Clinic, Higashiosaka, Japan
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
12
|
Saeedi P, Nilchiani LS, Zand B, Hajimirghasemi M, Halabian R. An overview of stem cells and cell products involved in trauma injury. Regen Ther 2025; 29:60-76. [PMID: 40143930 PMCID: PMC11938091 DOI: 10.1016/j.reth.2025.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/01/2025] [Accepted: 02/20/2025] [Indexed: 03/28/2025] Open
Abstract
Trauma injuries represent a significant public health burden worldwide, often leading to long-term disability and reduced quality of life. This review provides a comprehensive overview of the therapeutic potential of stem cells and cell products for traumatic injuries. The extraordinary characteristics of stem cells, such as self-renewal and transdifferentiation, make them definitive candidates for tissue regeneration. Mesenchymal stem cells (MSCs), neural stem cells (NSCs), and hematopoietic stem cells (HSCs) have been tested in preclinical studies for treating distinct traumatic injuries. Stem cell mechanisms of action are addressed through paracrine signaling, immunomodulation, differentiation, and neuroprotection. Cell products such as conditioned media, exosomes, and secretomes offer cell-free resources, thereby avoiding the risks of live cell transplantation. Clinical trials have reported many effective outcomes; however, variability exists across trauma types. Some challenges include tumorigenicity, standardized protocols, and regulatory issues. Collaboration and interdisciplinary research are being conducted to harness stem cells and products for trauma treatment. This emerging field is promising for improving patient recovery and quality of life after traumatic injuries.
Collapse
Affiliation(s)
- Pardis Saeedi
- Research Center for Health Management in Mass Gathering, Red Crescent Society of the Islamic Republic of Iran, Tehran, Iran
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Leila Sadat Nilchiani
- Department of Molecular and Cell Biology, Faculty of Advanced Sciences and Technology, Islamic Azad University Tehran Medical Sciences, Tehran, Iran
| | - Bita Zand
- Department of Molecular and Cell Biology, Faculty of Advanced Sciences and Technology, Islamic Azad University Tehran Medical Sciences, Tehran, Iran
| | - Maryam Hajimirghasemi
- Department of Internal Medicine, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Álvarez-Barrera L, Mateos-Nava RA, Hernández-Córdova KN, Lezama-Sánchez E, Alcántara-Mejía VA, Rodríguez-Mercado JJ. Transplacental and genotoxicity effects of thallium(I) during organogenesis in mice. Toxicol Rep 2025; 14:101896. [PMID: 39897402 PMCID: PMC11783430 DOI: 10.1016/j.toxrep.2025.101896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/20/2024] [Accepted: 01/03/2025] [Indexed: 02/04/2025] Open
Abstract
The increased concentration of thallium (Tl) in the environment is a cause for concern because the entire population, including pregnant women, is exposed, and this metal crosses the placenta and reaches the conceptus during development. In biological models such as mice, some abnormalities and delays in ossification occur in the fetuses of mice administered Tl on day 7 of gestation, but exposure to environmental Tl is constant during fetal development; therefore, in this study, the effects of several administrations of TI during organogenesis on the external morphology, skeletal development and genotoxicity of fetuses were evaluated. Four groups of 10 pregnant mice were administered 5.28, 6.16, 7.4 or 9.25 mg/kg body weight Tl(I) acetate intraperitoneally during fetal organogenesis. Additionally, samples were taken from fetuses from pregnant mice treated with 5.28 and 6.16 mg/kg body weight to evaluate the transplacental genotoxicity. The results revealed that the 9.25 mg/kg body weight dose produced maternal and fetal toxicity, and all of the treatment groups presented relatively high percentages of fetuses with external abnormalities, reduced bone ossification, and an increased percentage of liver cells with structural chromosomal aberrations (SCAs) and micronuclei (MNs) in blood cells. These results show that Tl(I) acetate administered during organogenesis produces abnormalities, including a delay in ossification and transplacental genotoxicity, in mouse fetuses. These findings are important because Tl has negative effects on development and may affect the health of offspring in the future because it can damage genetic material.
Collapse
Affiliation(s)
- Lucila Álvarez-Barrera
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z). Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Ciudad de México, Mexico
- Carrera Médico Cirujano, Ciencias Biomédicas, BQ. FES-Zaragoza, UNAM, Mexico
| | - Rodrigo Aníbal Mateos-Nava
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z). Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Ciudad de México, Mexico
| | - Keyla Nahomi Hernández-Córdova
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z). Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Ciudad de México, Mexico
| | - Eduardo Lezama-Sánchez
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z). Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Ciudad de México, Mexico
| | - Víctor Alan Alcántara-Mejía
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z). Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Ciudad de México, Mexico
| | - Juan José Rodríguez-Mercado
- Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIEZ-Z). Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM, Ciudad de México, Mexico
| |
Collapse
|
14
|
Inafuku N, Sowa Y, Kishida T, Sawai S, Ntege EH, Numajiri T, Yamamoto K, Shimizu Y, Mazda O. Investigation of the stemness and wound-healing potential of long-term cryopreserved stromal vascular fraction cells. Regen Ther 2025; 29:128-139. [PMID: 40162021 PMCID: PMC11952815 DOI: 10.1016/j.reth.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/26/2025] [Accepted: 02/12/2025] [Indexed: 04/02/2025] Open
Abstract
Introduction Stromal vascular fraction (SVF), a heterogeneous cell population primarily derived from adipose tissue, is widely utilized in regenerative therapies for its wound-healing properties and accessibility. While its immediate availability is advantageous, repeated harvesting can be burdensome, especially for elderly patients, and the regenerative capacity of SVF declines with donor age. Long-term cryopreservation offers a potential solution by allowing the banking of SVF from younger donors for future use; however, the impact of this process on SVF functionality remains elusive. This study investigates the stemness and wound-healing potential of SVF following prolonged cryopreservation. Methods SVF cells were isolated from adipose tissue harvested from twelve patients and cryopreserved for either two months (short-term cryopreserved SVF, S-SVF) or 12-13 years (long-term cryopreserved SVF, L-SVF), with six patients in each group. In vitro assays assessed cell viability and stemness, while in vivo assays evaluated wound-healing ability by administering thawed SVF cells from each group to dorsal wounds in immunodeficient mice, compared with a control group. Non-parametric statistical tests analyzed the differences between groups. Results L-SVF exhibited significantly lower stemness compared to S-SVF. Importantly, the L-SVF group showed significantly improved wound healing compared with the control group, although the wound-healing effect of L-SVF was inferior to that of the S-SVF. Conclusion This study demonstrated that, despite reduced stemness, L-SVF retains partial wound-healing potential after 12-13 years of cryopreservation. These findings highlight the need for optimized cryopreservation protocols to enhance SVF viability and regenerative capacity for clinical applications.
Collapse
Affiliation(s)
- Naoki Inafuku
- Department of Plastic and Reconstructive Surgery, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto, Japan
| | - Yoshihiro Sowa
- Department of Plastic Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Tsunao Kishida
- Department of Immunology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto, Japan
| | - Seiji Sawai
- Department of Orthopedics, Jyujyo Takeda Rehabilitation Hospital, Kyoto, Japan
| | - Edward Hosea Ntege
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Toshiaki Numajiri
- Department of Plastic and Reconstructive Surgery, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto, Japan
| | - Kenta Yamamoto
- Department of Immunology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto, Japan
| | - Yusuke Shimizu
- Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Osam Mazda
- Department of Immunology, Kyoto Prefectural University of Medicine, Kamigyo, Kyoto, Japan
| |
Collapse
|
15
|
Mojtahedi A, Ghaderi S, Ghiasi M, Halabian R, Dehghan H, Padash A, Eftekhari E, Salimi A. Investigating the enhancement of neural differentiation of adipose-derived mesenchymal stem cell with Foeniculum vulgare nanoemulsions: An in vitro research. Tissue Cell 2025; 94:102806. [PMID: 40022910 DOI: 10.1016/j.tice.2025.102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 02/15/2025] [Accepted: 02/15/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Neurons, distributed throughout the body, regulate various bodily functions. The recovery of the nervous system is often slow and can be irreversible. Currently, the approach of using mesenchymal stem cells (MSCs) in conjunction with conventional treatments for nervous system injuries is being explored. Nanoemulsions are systems designed for the nanoscale delivery of drug cargoes. Foeniculum vulgare (F. vulgare), a medicinal plant long utilized in complementary medicine, is the focus of this study. The aim is to utilize nanoemulsions of fennel to induce the differentiation of MSCs into neural-like cells in vitro. MATERIALS AND METHODS Human adipose-derived mesenchymal stem cells (hADSCs) were commercially purchased. These cells were cultured in DMEM medium containing 10 % fetal bovine serum and 1 % penicillin-streptomycin antibiotic. Based on a sequential extraction method, n-hexane (Hex), ethyl acetate (EtAc), and ethanolic extracts were obtained from the seeds of F. vulgare. To prepare the F. vulgare extract nanoemulsion, the aqueous phase (distilled water), the oily part (F. vulgare extract), Span 80 and Tween 20 were used. The optimal dose of F. vulgare nanoemulsion was determined using the MTT assay and acridine orange/ethidium bromide (AO/EB) staining. Neural differentiation was induced using a specialized differentiation medium on the MSCs, with the prepared nanoemulsions acting as inducers. The neural differentiation of the human differentiated hADSCs was studied and evaluated through Real-time PCR and immunocytochemistry (ICC) techniques on days 7 and 14. RESULTS The results obtained from the MTT and AO/EB tests indicated that the optimal dose of F. vulgare nanoemulsions is 1 μg/ml. Analysis of neural differentiation index gene expression revealed a significant (P ≤ 0.05) upregulation of MAP-2, β-tubulin III, and NSE genes on days 7 and 14 following treatment with the nanoemulsions. It is noteworthy that the nanoemulsion prepared from the hexane extract of the plant showed a significant increase in the expression of marker genes in the process of neural differentiation. Protein expression analysis demonstrated an increase in MAP-2, β-tubulin III, and NSE (gamma enolase) proteins in response to the nanoemulsion inducers compared to the control group (TCPS). DISCUSSION Overall, our findings indicate that F. vulgare nanoemulsions have a positive effect on the expression of genes and proteins related to neural differentiation in hADSCs. The proposed protocol may serve as a potential therapeutic strategy in complementary medicine for patients seeking to improve injuries to the nervous system. However, further studies and performance measurements are necessary in future research to confirm these results.
Collapse
Affiliation(s)
- Arya Mojtahedi
- Department of Biology, Borujerd Branch, Islamic Azad University, Borujerd, Iran
| | - Shima Ghaderi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Ghiasi
- Cardiovascular Research Center, Rajaie Cardiovascular Institute, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Dehghan
- Department of Basic Sciences, Medicinal Plants Research Center, Shahed University, Tehran, Iran
| | - Arash Padash
- Department of Medical Nanotechnology, Faculty of Advanced Sciences and Technology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Elahe Eftekhari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Salimi
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Kaka GR, Modarresi F. Conditioned medium derived from mesenchymal stem cells and spinal cord injury: A review of the current therapeutic capacities. IBRO Neurosci Rep 2025; 18:293-299. [PMID: 40026846 PMCID: PMC11869877 DOI: 10.1016/j.ibneur.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
Spinal cord injury (SCI) is a debilitating condition of the nervous system that imposes considerable challenges for subjects, such as bladder and bowel incontinence and infections. The standard therapeutic strategy is methylprednisolone utilization accompanied by surgical decompression. However, achieving an effective therapy with the minimum side effects for SCI is still a puzzle. Nowadays, mesenchymal stem cell (MSC) therapy has received much consideration in scientific communities in light of its pharmacological and therapeutic properties, for instance, anti-inflammatory, regenerative, analgesic, and immunomodulatory influences. Despite the mentioned advantages for MSCs, their tumorigenic potential is a limiting agent for its wide therapeutic application. Recent documents show that the use of conditioned medium (CM) derived from MSCs can largely solve these problems. CM encompasses neuroprotective growth factors and cytokines, such as stem cell factor (SCF), vascular endothelial growth factor (VEGF), and glial cell line-derived neurotrophic factor (GDNF). The persuasive evidence from experimental studies revealed that CM originating from MSCs can have a considerable role in the amelioration of SCI. Hence, in the current papers, we will review and summarize evidence indicating the anti-SCI mechanisms of MSC-derived CM by relying the current experimental data.
Collapse
Affiliation(s)
- Gholam Reza Kaka
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Department of Anatomy, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Farrokh Modarresi
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL) Baqiyatallah University of Medical Sciences, Tehran, Iran
- Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Salem MB, El-Lakkany NM, Hammam OA, Seif el-Din SH. Bacillus clausii spores maintain gut homeostasis in murine ulcerative colitis via modulating microbiota, apoptosis, and the TXNIP/NLRP3 inflammasome cascade. Toxicol Rep 2025; 14:101858. [PMID: 39802600 PMCID: PMC11721221 DOI: 10.1016/j.toxrep.2024.101858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 01/16/2025] Open
Abstract
Ulcerative colitis (UC), a persistent immune-mediated disorder lacking effective treatment, is distinguished by gut microbiota dysbiosis, abnormal activation of the NLRP3 inflammasome pathway, and apoptosis. Despite growing attention to these factors, understanding their significance in UC pathogenesis remains a challenge. The present study explores the potential therapeutic impact of Bacillus clausii (Bc) spores in a murine UC model induced by drinking 4 % (w/v) dextran sulfate sodium (DSS) in C57BL/6 mice. Subsequently, the DSS-induced mice were orally administered either Bc at varying concentrations (105 and 1010 Colony forming unit, CFU) or sulfasalazine (SSZ) at a dosage of 200 mg/kg for 7 days. The disease-specific activity index (DAI) was calculated daily utilizing parameters such as body weight, diarrhea, and bloody stool. Changes in fecal Firmicutes and Bacteroidetes abundance, colonic TXNIP and NLRP3 contents, as well as colonic caspase-1, IL-1β, Bax, and Bcl-2 expression, were investigated. Additionally, markers related to oxidative stress and inflammation, histopathological changes and caspase-3 immunohistochemistry testing were conducted. DSS-treated mice had significantly higher DAI scores compared to controls, indicating severe colitis. However, SSZ treatment or Bc (105 CFU) dramatically lowered DAI scores, with the highest Bc dosage (1010 CFU) producing the greatest improvement. Furthermore, Bc (1010 CFU) substantially (p < 0.05) boosted fecal Firmicutes while decreased Bacteroidetes, indicating reversal of gut dysbiosis. Bc effectively reduced colonic oxidative stress and inflammation by replenishing GSH and catalase and modulating the NF-κB, Nrf2/HO-1, and TXNIP/NLRP3 pathways. Additionally, Bc (1010 CFU) exhibited histologically almost normal mucosa, with maintained architecture and reduced apoptosis, as seen by normalization of Bcl2 and Bax with decreased caspase-3. Collectively, these findings point to the potential usefulness of Bc spores in preventing and treating DSS-induced colitis, positioning them as a promising candidate for UC management.
Collapse
Affiliation(s)
- Maha B. Salem
- Pharmcology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | | | - Olfat A. Hammam
- Pathology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | | |
Collapse
|
18
|
Nair SR, Nihad M, Shenoy P S, Gupta S, Bose B. Unveiling the effects of micro and nano plastics in embryonic development. Toxicol Rep 2025; 14:101954. [PMID: 40104046 PMCID: PMC11914762 DOI: 10.1016/j.toxrep.2025.101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 03/20/2025] Open
Abstract
The improper disposal and degradation of plastics causes the formation and spread of micro and nano-sized plastic particles in the ecosystem. The widespread presence of these micro and nanoplastics leads to their accumulation in the biotic and abiotic components of the environment, thereby affecting the cellular and metabolic functions of organisms. Despite being classified as xenobiotic agents, information about their sources and exposure related to reproductive health is limited. Micro and nano plastic exposure during early developmental stages can cause abnormal embryonic development. It can trigger neurotoxicity and inflammatory responses as well in the developing embryo. In embryonic development, a comprehensive study of their role in pluripotency, gastrulation, and multi-differentiation potential is scarce. Due to ethical concerns associated with the direct use of human embryos, pluripotent cells and its 3D in vitro models (with cell lines) are an alternative source for effective research. Thus, the 3D Embryoid body (EB) model provides a platform for conducting embryotoxicity and multi-differentiation potential research. Pluripotent stem cells such as embryonic and induced pluripotent stem cells derived embryoid bodies (EBs) serve as a robust 3D in vitro model that mimics characteristics similar to that of human embryos. Thus, the 3D EB model provides a platform for conducting embryotoxicity and multi-differentiation potential research. Accordingly, this review discusses the significance of 3D in vitro models in conducting effective embryotoxicity research. Further, we also evaluated the possible sources/routes of microplastic generation and analyzed their surface chemistry and cytotoxic effects reported till date.
Collapse
Affiliation(s)
- Sanjay R Nair
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| | - Muhammad Nihad
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| | - Sebanti Gupta
- Division of Data Analytics, Bioinformatics and Structural Biology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| |
Collapse
|
19
|
Berk Ş. Comprehensive bibliometric analysis and perspectives on therapies targeting colon cancer stem cells over a 40-year period. Regen Ther 2025; 29:19-34. [PMID: 40124468 PMCID: PMC11930536 DOI: 10.1016/j.reth.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/12/2025] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
The presence of cancer stem cells (CSCs) is one of the primary causes of recurring therapy resistance because they have two main capacities: self-renewal and avoiding apoptotic pathways. Despite their relevance, no full bibliometric analysis has yet been done in this topic. The goal of this work is to use bibliometric analysis to map the fundamental and emergent areas in therapeutics targeting colon cancer stem cells. To perform bibliometric analysis on colon cancer stem cells (CCSCs) literature, spanning roughly the last 40 years, in order to establish a firm base for future projections by emphasizing the findings of the most notable research. All information pertinent to CCSCs was accessed from Web of Science Core Collection database. In order to identify and analyze the research hotspots and trends related to this topic, Biblioshiny (RStudio) and VOSviewer were utilized to ascertain the countries/regions, institutions, journals, authors, references, and keywords involved. The targeted time span covered 1735 research-, and review articles. The most frequent keywords were "colorectal cancer," "cancer stem cells," and "colon cancer," while the most trending keywords in the last few years were "protein stability," "spheroid formation," "ubiquitination," "exosomes," "patient-derived organoids," and "gut microbiota." Over the past 40 years, there has been a significant advancement in researchers' understanding of colon cancer stem cells. In addition, the cluster map of co-cited literature showed that colon cancer stem cell research has emerged as a research hotspot. It was also anticipated that the main focus of the future efforts appears to involve clinical applications of cell-targeted colon cancer therapy. These results provide researchers with a comprehensive understanding of this field and provide insightful ideas for further research.
Collapse
Affiliation(s)
- Şeyda Berk
- Department of Molecular Biology and Genetics, Faculty of Science, Sivas Cumhuriyet University, Sivas, 58140, Turkey
| |
Collapse
|
20
|
Nagase K, Kuramochi H, Grainger DW, Takahashi H. Functional aligned mesenchymal stem cell sheets fabricated using micropatterned thermo-responsive cell culture surfaces. Mater Today Bio 2025; 32:101657. [PMID: 40166377 PMCID: PMC11957804 DOI: 10.1016/j.mtbio.2025.101657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are frequently applied for cell transplantation and regenerative therapy because they secrete diverse therapeutic cytokines that prompt immuno-stimulatory and tissue repair processes. Furthermore, cultured MSC sheets exhibit enhanced cytokine secretion compared to their MSC suspensions, and represent a durable, versatile format for tissue engineering as singular, multi-layered, or multi-cell type sandwiched, transplantable constructs. Tissue engineered implants with various cellular orientations have been reported. In this study, patterned, temperature-responsive culture surfaces were used to prepare oriented MSC sheets. Patterned culture surfaces were fabricated by grafting polyacrylamide (PAAm) onto commercial poly(N-isopropylacrylamide) (PNIPAAm)-modified plastic via photopolymerization using a stripe-patterned photomask. Patterned surfaces were characterized using x-ray photoelectron spectroscopy, fluorescently labelled fibronectin and albumin adsorption assays, wetting (contact angle) measurements, atomic force microscopy, and scanning electron microscopy. Striped grafted patterns of PAAm were fabricated on the PNIPAAm-coated culture substrates, and PAAm polymerized within the PNIPAAm overlayer. Cell-aligned MSC sheets were then produced from MSC culture on this patterned surface, secreting higher amounts of therapeutic cytokines (vascular endothelial growth factor, hepatocyte growth factor, and transforming growth factor-β) than non-aligned MSC control sheets. In addition, aligned MSC sheets maintained enhanced cell multi-potent differentiation capabilities. New, aligned MSC sheets might exhibit improved functional properties for cell sheet transplant therapies.
Collapse
Affiliation(s)
- Kenichi Nagase
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima City, Hiroshima, 734-8553, Japan
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - Hasumi Kuramochi
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato, Tokyo, 105-8512, Japan
| | - David W. Grainger
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
- Cell Sheet Tissue Engineering Center (CSTEC), Department of Molecular Pharmaceutics, University of Utah, Health Sciences, Salt Lake City, UT, 84112, USA
| | - Hironobu Takahashi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku, Tokyo, 162-8666, Japan
| |
Collapse
|
21
|
Wang T, Wang X, Ren W, Sun Z, Zhang Y, Wu N, Diao H. Cardiomyocyte proliferation: Advances and insights in macrophage-targeted therapy for myocardial injury. Genes Dis 2025; 12:101332. [PMID: 39935606 PMCID: PMC11810708 DOI: 10.1016/j.gendis.2024.101332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/18/2024] [Accepted: 03/20/2024] [Indexed: 02/13/2025] Open
Abstract
In the mammalian heart, cardiomyocytes undergo a transient window of proliferation that leads to regenerative impairment, limiting cardiomyocyte proliferation and myocardial repair capacity. Cardiac developmental patterns exacerbate the progression of heart disease characterized by myocardial cell loss, ultimately leading to cardiac dysfunction and heart failure. Myocardial infarction causes the death of partial cardiomyocytes, which triggers an immune response to remove debris and restore tissue integrity. Interestingly, when transient myocardial injury triggers irreversible loss of cardiomyocytes, the subsequent macrophages responsible for proliferation and regeneration have a unique immune phenotype that promotes the formation of pre-existing new cardiomyocytes. During mammalian regeneration, mononuclear-derived macrophages and self-renewing resident cardiac macrophages provide multiple cytokines and molecular signals that create a regenerative environment and cellular plasticity capacity in postnatal cardiomyocytes, a pivotal strategy for achieving myocardial repair. Consistent with other human tissues, cardiac macrophages originating from the embryonic endothelium produce a hierarchy of contributions to monocyte recruitment and fate specification. In this review, we discuss the novel functions of macrophages in triggering cardiac regeneration and repair after myocardial infarction and provide recent advances and prospective insights into the phenotypic transformation and heterogeneous features involving cardiac macrophages. In conclusion, macrophages contribute critically to regeneration, repair, and remodeling, and are challenging targets for cardiovascular therapeutic interventions.
Collapse
Affiliation(s)
- Tao Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
| | - Xueyao Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
| | - Weibin Ren
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
| | - Zeyu Sun
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Yanhui Zhang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
| | - Nanping Wu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
| | - Hongyan Diao
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, Shandong 250117, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| |
Collapse
|
22
|
Wang J, Li S, Ye J, Yan Y, Liu Q, Jia Q, Jia Y, Wang L. Mesencephalic astrocyte-derived neurotrophic factor (MANF): A novel therapeutic target for chemotherapy-induced peripheral neuropathy via regulation of integrated stress response and neuroinflammation. Neuropharmacology 2025; 268:110342. [PMID: 39909174 DOI: 10.1016/j.neuropharm.2025.110342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/20/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) represents a severe complication, impacting up to 90% of cancer patients administered with chemotherapeutic agents such as oxaliplatin. The purpose of our study was to examine the potential role and therapeutic efficacy of Mesencephalic Astrocyte-derived Neurotrophic Factor (MANF), given its recognized neuroprotective and immunomodulatory properties in diverse neurological disorders. Utilizing an oxaliplatin-induced CIPN mouse model, we investigated MANF expression in the dorsal root ganglia (DRG) and spinal cord, and evaluated the impacts of AAV-mediated MANF overexpression on CIPN. Our findings revealed substantial downregulation of MANF expression in both the DRG and spinal cord of CIPN inflicted mice, with MANF majorly localized in neurons as opposed to glial cells. Intrathecal administration of AAV-MANF preceding oxaliplatin treatment yielded several beneficial results. MANF overexpression diminished mechanical hypersensitivity and decreased Calcitonin Gene-Related Peptide (CGRP) expression in DRG and the spinal dorsal horn. These enhancements were concomitant with modulation of the integrated stress response (ISR) and neuroinflammation. Intervention with AAV-MANF effectively regulated ISR markers (BiP, CHOP, and p-eIF2α), mitigated activation of microglia and astrocytes in the DRG and spinal dorsal horn, and inhibited NFκB and ERK inflammatory signaling pathways. To conclude, our study underscores the potential of MANF as a viable therapeutic target for CIPN, manifesting its ability to modulate ISR and neuroinflammation. These insights recommend that continued exploration of MANF-centered approaches could facilitate the advancement of more efficacious interventions for this incapacitating chemotherapy complication.
Collapse
Affiliation(s)
- Juan Wang
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Shenghong Li
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Jishi Ye
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Yafei Yan
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Qi Liu
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Qiang Jia
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Yifan Jia
- Department of Pain, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China.
| | - Long Wang
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
23
|
Surico PL, Barone V, Singh RB, Coassin M, Blanco T, Dohlman TH, Basu S, Chauhan SK, Dana R, Di Zazzo A. Potential applications of mesenchymal stem cells in ocular surface immune-mediated disorders. Surv Ophthalmol 2025; 70:467-479. [PMID: 39097173 DOI: 10.1016/j.survophthal.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
We explore the interaction between corneal immunity and mesenchymal stem/stromal cells (MSCs) and their potential in treating corneal and ocular surface disorders. We outline the cornea's immune privilege mechanisms and the immunomodulatory substances involved. In this realm, MSCs are characterized by their immunomodulatory properties and regenerative potential, making them promising for therapeutic application. Therefore, we focus on the role of MSCs in immune-mediated corneal diseases such as dry eye disease, corneal transplantation rejection, limbal stem cell deficiency, and ocular graft-versus-host disease. Preclinical and clinical studies demonstrate MSCs' efficacy in promoting corneal healing and reducing inflammation in these conditions. Overall, we emphasize the potential of MSCs as innovative therapies in ophthalmology, offering promising solutions for managing various ocular surface pathologies.
Collapse
Affiliation(s)
- Pier Luigi Surico
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA; Department of Ophthalmology, Campus Bio-Medico University Hospital, Rome 00128, Italy; Cornea Rare Diseases Center, Fondazione Policlinico Campus Bio-Medico, Rome 00128, Italy
| | - Vincenzo Barone
- Department of Ophthalmology, Campus Bio-Medico University Hospital, Rome 00128, Italy; Cornea Rare Diseases Center, Fondazione Policlinico Campus Bio-Medico, Rome 00128, Italy
| | - Rohan Bir Singh
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Marco Coassin
- Department of Ophthalmology, Campus Bio-Medico University Hospital, Rome 00128, Italy; Cornea Rare Diseases Center, Fondazione Policlinico Campus Bio-Medico, Rome 00128, Italy
| | - Tomas Blanco
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Thomas H Dohlman
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Sayan Basu
- Brien Holden Eye Research Centre (BHERC), L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Sunil K Chauhan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Reza Dana
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Antonio Di Zazzo
- Department of Ophthalmology, Campus Bio-Medico University Hospital, Rome 00128, Italy; Cornea Rare Diseases Center, Fondazione Policlinico Campus Bio-Medico, Rome 00128, Italy.
| |
Collapse
|
24
|
Maartens M, Vlok M, van de Vyver M. Antioxidants improve the viability of diabetic bone marrow MSCs without rescuing their pro-regenerative secretome function. Mol Cell Endocrinol 2025; 601:112519. [PMID: 40057223 DOI: 10.1016/j.mce.2025.112519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/25/2025] [Accepted: 03/05/2025] [Indexed: 04/01/2025]
Abstract
Bone marrow mesenchymal stem cell (BM-MSC) dysfunction and poor viability are prominent in diabetes and limit their therapeutic efficacy. A proteomic investigation was performed to assess disease associated alterations and the efficacy of antioxidants to rescue cellular function. BM-MSCs were isolated from obese diabetic mice (B6.Cg-Lepob/J) cultured in the presence or absence of N-acetylcysteine (NAC) and ascorbic acid-2phosphate (AAP). Label free Liquid Chromatography and Mass Spectrometry (LC-MS) analysis detected 5079 proteins with 251 being differentially expressed between treatment groups. NAC/AAP improved cellular growth/viability post isolation by up-regulating proteins involved in redox status, ATP synthesis, Rho-GTPase signaling and modulated the immunophenotype of BM-MSCs. Despite a single application of the secretome not providing any advantage for wound bed regeneration in full thickness excisional diabetic wounds, the intracellular proteome illustrated the potential mechanisms of action by which NAC/AAP targeted the respiratory chain and modulated the immune phenotype of BM-MSCs. Given these observations, antioxidant supplementation might be more effective as prophylactic strategy to protect MSCs against functional decline instead of using it as a restorative agent and warrants further investigation.
Collapse
Affiliation(s)
- Michelle Maartens
- Experimental Medicine Research Group, Department of Medicine, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Mare Vlok
- Proteomics Unit, Central Analytical Facility, Stellenbosch University, South Africa
| | - Mari van de Vyver
- Experimental Medicine Research Group, Department of Medicine, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
25
|
Liu C, Shao FH, He XC, Du HZ, Liu CM, Zhou B, Teng ZQ. Single-Cell RNA Sequencing Uncovers Molecular Features Underlying the Disrupted Neurogenesis Following Traumatic Brain Injury. Glia 2025; 73:1036-1050. [PMID: 39760225 DOI: 10.1002/glia.24671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, with limited effective treatment strategies. Endogenous neural stem cells (NSCs) give rise to neurons and glial cells throughout life. However, NSCs are more likely to differentiate into glial cells rather than neurons at the lesion site after TBI and the underlying molecular mechanism remains largely unknown. Here, we performed large-scale single-cell transcriptome sequencing of subventricular zone (SVZ) NSCs and NSCs-derived cells in the mouse brain, and provide molecular evidence for previous observations that glial differentiation of NSCs prevails after TBI. In addition, we show that the disrupted neurogenesis following TBI is caused by the reduction of a NSC subcluster (NSC-4) expressing the neuronal gene Tubb3. Finally, we demonstrate that the transcriptional factor Dlx2 is significantly downregulated in NSC-4, and Dlx2 overexpression is sufficient to drive NSCs towards neuronal lineage differentiation at the expense of astrocytic lineage differentiation under pro-inflammatory conditions.
Collapse
Affiliation(s)
- Cong Liu
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute of Mental Health and Drug Discovery, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Mental Health, Wenzhou Medical University, Zhejiang, China
| | - Fang-Hong Shao
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xuan-Cheng He
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Chinese Academy of Sciences, Institute for Stem Cell and Regeneration, Beijing, China
| | - Hong-Zhen Du
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Chinese Academy of Sciences, Institute for Stem Cell and Regeneration, Beijing, China
| | - Chang-Mei Liu
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Chinese Academy of Sciences, Institute for Stem Cell and Regeneration, Beijing, China
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Bing Zhou
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Chinese Academy of Sciences, Institute for Stem Cell and Regeneration, Beijing, China
| | - Zhao-Qian Teng
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Chinese Academy of Sciences, Institute for Stem Cell and Regeneration, Beijing, China
- Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Xu J, Brown J, Shaik R, Soto-Garcia L, Liao J, Nguyen K, Zhang G, Hong Y. Injectable myocardium-derived hydrogels with SDF-1α releasing for cardiac repair. BIOMATERIALS ADVANCES 2025; 170:214203. [PMID: 39908684 DOI: 10.1016/j.bioadv.2025.214203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 02/07/2025]
Abstract
Myocardial infarction (MI) is a predominant cause of morbidity and mortality globally. Therapeutic chemokines, such as stromal cell-derived factor 1α (SDF-1α), present a promising opportunity to treat the profibrotic remodeling post-MI if they can be delivered effectively to the injured tissue. However, direct injection of SDF-1α or physical entrapment in a hydrogel has shown limited efficacy. Here, we developed a sustained-release system consisting of SDF-1α loaded poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) and an injectable porcine cardiac decellularized extracellular matrix (cdECM) hydrogel. This system demonstrated a sustained release of SDF-1α over four weeks while there is one week release for SDF-1α directly encapsulated in the cdECM hydrogel during in vitro testing. The incorporation of PLGA NPs into the cdECM hydrogel significantly enhanced its mechanical properties, increasing the Young's modulus from 561 ± 228 kPa to 1007 ± 2 kPa and the maximum compressive strength from 639 ± 42 kPa to 1014 ± 101 kPa. This nanocomposite hydrogel showed good cell compatibility after 7 days of culture with H9C2 cells, while the released SDF-1α retained its bioactivity, as evidenced by its chemotactic effects in vitro. Furthermore, in vivo studies further highlighted its significant ability to promote angiogenesis in the infarcted area and improve cardiac function after intramyocardial injection. These results demonstrated the therapeutic potential of combining local release of SDF-1α with the cdECM hydrogel for MI treatment.
Collapse
Affiliation(s)
- Jiazhu Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Jacob Brown
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, United States of America
| | - Rubia Shaik
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, United States of America
| | - Luis Soto-Garcia
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Kytai Nguyen
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, United States of America
| | - Ge Zhang
- Department of Biomedical Engineering, The University of Akron, Akron, OH 44325, United States of America.
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019, United States of America.
| |
Collapse
|
27
|
Zheng X, Wang J, Zhou H, Chai Y, Li Z, Chen M, Yang Z, Xu C, Lei C, He Y, Zou D, Ye Q. Dental pulp stem cells alleviate Schwann cell pyroptosis via mitochondrial transfer to enhance facial nerve regeneration. Bioact Mater 2025; 47:313-326. [PMID: 40026822 PMCID: PMC11869962 DOI: 10.1016/j.bioactmat.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 03/05/2025] Open
Abstract
Dental pulp stem cells (DPSCs) have demonstrated remarkable potential in enhancing peripheral nerve regeneration, though the precise mechanisms remain largely unknown. This study investigates how DPSCs alleviate Schwann cell pyroptosis and restore mitochondrial homeostasis through intercellular mitochondrial transfer. In a crab-eating macaque model, we first observed that DPSC-loaded nerve conduits significantly promoted long-term nerve regeneration, facilitating tissue proliferation and myelin recovery. We further established a rat facial nerve injury (FNI) model and found that DPSC treatment reduced pyroptosis and mitochondrial ROS production in Schwann cells. A pivotal mitochondrial protective mechanism, resembling the effects of a ROS-targeted inhibitor, involved the transfer of mitochondria from DPSCs to pyroptosis-induced Schwann cells via tunneling nanotubes, while blocking intercellular junctions or mitochondrial function diminished the therapeutic effects. TNFα secreted by pyroptosis-induced Schwann cells activated the NF-κB pathway in DPSCs, enhancing mitochondrial transfer and adaptive stress responses, thereby promoting mitochondrial protection against pyroptosis in Schwann cells, as reflected in the improved therapeutic efficacy of TNFα-preconditioned DPSCs in the FNI model. These findings unveil a mechanism through which DPSCs foster nerve regeneration via mitochondrial transfer, presenting a promising strategy for enhancing stem cell-based therapies for nerve injuries.
Collapse
Affiliation(s)
- Xiaoyu Zheng
- Centre of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Juan Wang
- Centre of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Heng Zhou
- Centre of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Ying Chai
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, China
| | - Ziwei Li
- Centre of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
| | - Minjie Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, China
| | - Zihan Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, China
| | - Chun Xu
- Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Chang Lei
- Charles Perkins Centre, The University of Sydney, Camperdown, NSW, 2006, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital of Wuhan University of Science and Technology, Wuhan, Hubei, 430064, China
| | - Duohong Zou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, China
| | - Qingsong Ye
- Centre of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China
- Sydney Dental School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| |
Collapse
|
28
|
Duan G, Zou T, Wu X, Zhang Y, Liu H, Mei C. Neuroprotective role of geniposide-loaded UMSC nanovesicles in depression via P2ry12 downregulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156581. [PMID: 40085991 DOI: 10.1016/j.phymed.2025.156581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 02/05/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Depression is a prevalent mental disorder characterized by persistent low mood, loss of interest, and cognitive impairment. Oxidative stress and inflammation play crucial roles in its pathogenesis. Novel therapeutic strategies targeting these mechanisms are needed to improve treatment outcomes. PURPOSE The purpose of this study is to gauge the therapeutic effectiveness of geniposide (GEN)-loaded umbilical cord-derived mesenchymal stem cell membrane biomimetic nanovesicles (CSPG@UMSC NPs) targeting the P2ry12 factor for depression management, considering its association with oxidative stress and inflammatory pathways. STUDY DESIGN A combination of in vitro neuronal cell culture experiments and an in vivo chronic unpredictable mild stress (CUMS) mouse model was used to assess the effects of CSPG@UMSC NPs. METHODS In vitro investigations involved culture and characterization of CSPG@UMSC NPs and transcriptome sequencing analysis to identify DEGs in neurons. In vivo experiments utilized a depression mouse model treated with CSPG@UMSC NPs, followed by behavioral tests, biomarker analysis, and histological assessments. RESULTS CSPG@UMSC NPs successfully downregulated P2ry12 expression, leading to improved neuronal activity, decreased inflammation, reduced cell apoptosis, and lowered reactive oxygen species levels in both in vitro and in vivo settings. CONCLUSION CSPG@UMSC NPs loaded with GEN inhibit oxidative stress and inflammation by downregulating P2ry12. This research unveils, for the initial instance, the vital role of P2ry12 in depression and proposes a novel nano-therapy strategy based on MSCs and GEN, offering new insights and potential clinical applications for the treatment of depression.
Collapse
Affiliation(s)
- Guoxiang Duan
- Department of Acupuncture, Heilongjiang Academy of Chinese Medical Sciences, Room 602, Zone C, No. 33 Xidazhi Street, Nangang District, Harbin, Heilongjiang Province 150001, China
| | - Tianyu Zou
- Department of Encephalopathy, Shenzhen Luohu District Hospital of Traditional Chinese Medicine, Shenzhen 518000, China
| | - Xue Wu
- Department of Nephrology, Heilongjiang Academy of Chinese Medical Sciences, Harbin 150001, China
| | - Yiming Zhang
- Department of Continuing Education, Heilongjiang Academy of Chinese Medical Sciences, Harbin 150001, China
| | - Hongmei Liu
- Department of Acupuncture, Heilongjiang Academy of Chinese Medical Sciences, Room 602, Zone C, No. 33 Xidazhi Street, Nangang District, Harbin, Heilongjiang Province 150001, China
| | - Cheng Mei
- Department of Acupuncture, Heilongjiang Academy of Chinese Medical Sciences, Room 602, Zone C, No. 33 Xidazhi Street, Nangang District, Harbin, Heilongjiang Province 150001, China.
| |
Collapse
|
29
|
Varisli L, Zoumpourlis P, Spandidos DA, Zoumpourlis V, Vlahopoulos S. ALDH1A1 in breast cancer: A prospective target to overcome therapy resistance (Review). Oncol Lett 2025; 29:213. [PMID: 40093866 PMCID: PMC11905208 DOI: 10.3892/ol.2025.14959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/06/2025] [Indexed: 03/19/2025] Open
Abstract
The expression of cytosolic aldehyde dehydrogenases (ALDHs), which mediate the last step in the pathway of the synthesis of all-trans retinoic acid, is dysregulated in various types of human cancer, and has been associated with the development of cancer stem cells (CSCs) in solid tumors and hematological malignancies. CSCs are considered a minor fraction of cancer cells with the capacity to initiate neoplastic tumors. ALDH1A1 serves a crucial role in the emergence of the CSC phenotype, induces the malignant behavior of cancer cells and promotes treatment resistance. Notably, ALDH1A1-induced therapy resistance is not exclusive to just one group of drugs, but affects diverse types of drugs that use different mechanisms to kill cells. This diversity of drug resistance-inducing effects is associated with the stemness-supporting functions of ALDH1A1. The inhibition of ALDH1A1 activity using chemicals or the depletion of ALDH1A1 via genetic approaches, such as the use of small interfering RNA, can overcome diverse pathways of therapy resistance. In the context of breast cancer, it is critical that only a fraction of malignant cells are expected to manifest stem-like features, which include increased expression of ALDH1A1. From the angle of disease prognosis, the extent of the association of ALDH1A1 with increased malignant behavior and drug resistance remains to be determined through the application of cutting-edge methods that detect the expression of tracked biomarkers within tumors.
Collapse
Affiliation(s)
- Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey
| | - Panagiotis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Vassilis Zoumpourlis
- Biomedical Applications Unit, Institute of Chemical Biology, National Hellenic Research Foundation, 11635 Athens, Greece
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
30
|
Tian Y, Pan P, Luo X, Sun Y, Yang X, Gao H, Yang Y. Palmitic acid-induced insulin resistance triggers granulosa cell senescence by disruption of the UPR mt/mitophagy/lysosome axis. Chem Biol Interact 2025; 411:111450. [PMID: 40023272 DOI: 10.1016/j.cbi.2025.111450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/18/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Insulin resistance (IR) is the main pathological feature of polycystic ovary syndrome (PCOS), but the adverse impacts of IR on ovary and granulosa cells (GCs) are unknown. Therefore, the role of palmitic acid (PA) induced IR in GCs, and a mitochondrial proteostasis and mitochondrial homeostasis control system, the mitochondrial unfolded protein response (UPRmt)/mitophagy/lysosome axis were investigated to uncover the side effect and the mechanism of IR on GCs. Our results revealed that IR in GC was successfully constructed by 100 μM PA treatment accompanied with cell senescence. In addition, mitochondrial function was impaired by IR-induced GC senescence accompanied by significantly increased reactive oxygen species (ROS) and decreased mitochondrial membrane potential, and mitochondrial proteostasis was impaired by a dysfunctional UPRmt and increased protein aggregation, leading to more unfolded and misfolded proteins accumulating in mitochondria. Mitochondrial homeostasis was maintained by the mitophagy/lysosome degradation system, although mitophagy was significantly increased, lysosomes were damaged; hence, malfunctional mitochondria were not cleared by the mitophagy/lysosome degradation system, more ROS were produced by malfunctional mitochondria. Therefore, accelerated GC senescence was triggered by excessive ROS, and reversed by the mitophagy inhibitor cyclosporin A (CsA) accompanied with reduced IR. Additionally, the mice were administered with PA, and results revealed that the accelerated ovarian aging was caused by PA, which might be attributed to GC senescence. In conclusion, GC senescence was triggered in PA-induced IR by disruption of the UPRmt/mitophagy/lysosome axis, and IR induced GC senescence was reversed by the CsA.
Collapse
Affiliation(s)
- Yuan Tian
- General Hospital, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, PR China
| | - Pengge Pan
- General Hospital, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, PR China
| | - Xiaoqiang Luo
- Department of Clinical Laboratory, Ningxia Women and Children's Hospital, Beijing University Hospital, Yinchuan, Ningxia, PR China
| | - Yaqi Sun
- General Hospital, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, PR China
| | - Xintong Yang
- General Hospital, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, PR China
| | - Hui Gao
- General Hospital, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, PR China
| | - Yanzhou Yang
- General Hospital, Key Laboratory of Fertility Preservation and Maintenance, Ministry of Education, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia, PR China; Emergency Department, The First People's Hospital of Yinchuan, The Second Clinical Medical College, Ningxia Medical University, Yinchuan, Ningxia, PR China.
| |
Collapse
|
31
|
Shao M, Jin M, Feizhou L, Ma X, Wei Z. Administration of hypoxic pretreated adipose-derived mesenchymal stem cell exosomes promotes spinal cord repair after injury via delivery of circ-Astn1 and activation of autophagy. Int Immunopharmacol 2025; 152:114324. [PMID: 40049089 DOI: 10.1016/j.intimp.2025.114324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 03/24/2025]
Abstract
BACKGROUND The aim of this study was to investigate the role and mechanism of exosomes isolated from adipose-derived mesenchymal stem cells (ADSCs) on spinal cord repair. METHODS High-throughput sequencing was used to investigate abnormal expression of circular RNA (circRNA) in ADSC exosomes pretreated under hypoxic conditions (HExos) and ADSCs exosomes under normal conditions (Exos). The abnormal expression of mRNA in spinal cord tissues was also analyzed using high-throughput sequencing. Bioinformatics and luciferase reporter analyses were used to clarify the relationship among circRNA, micro RNA (miRNA), and mRNA. BV2 cells were used to analyze apoptosis levels and inflammatory cytokine expression under oxygen-glucose deprivation (OGD) conditions by using immunofluorescence and enzyme-linked immunosorbent assay (ELISAs). An SCI mouse model was also constructed and the therapeutic effect of Exos was detected using immunohistochemistry and immunofluorescence. RESULTS High-throughput sequencing results showed that circ-Astn1 played a role in HExo-mediated spinal cord repair after SCI. Downregulation of circ-Astn1 decreased the therapeutic effect of HExos. We also found that Atg7 played a role in HExo-mediated spinal cord repair after SCI. Luciferase reporter analysis confirmed that both miR-138-5p and Atg7 were downstream targets of circ-Astn1. Downregulation of Atg7 or overexpression of miR-138-5p reversed the protective effect of circ-Astn1 on BV2 cells after exposure to OGD conditions. In contrast, upregulation of circ-Astn1 increased the therapeutic effects of Exo-mediated spinal cord repair after SCI via autophagy activation. CONCLUSIONS Taken together, the results indicate that ADSC-Exos containing circ-Astn1 promoted spinal cord repair after SCI by targeting the miR-138-5p/Atg7 pathway, which mediated autophagy.
Collapse
Affiliation(s)
- Minghao Shao
- Department of Spine Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Department of Spine Surgery, Xingguo Hospital Affiliated to Gannan Medical University, No. 699 Wenming Avenue, Xingguo County, Ganzhou 342400, Jiangxi Province, China
| | - Mingming Jin
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Lv Feizhou
- Department of Spine Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Xiaosheng Ma
- Department of Spine Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China.
| | - Zhu Wei
- Department of Spine Surgery, Huashan Hospital, Fudan University, Shanghai 200040, China; Department of Spine Surgery, Xingguo Hospital Affiliated to Gannan Medical University, No. 699 Wenming Avenue, Xingguo County, Ganzhou 342400, Jiangxi Province, China.
| |
Collapse
|
32
|
Chu T, Xiao Z, Xun C, Yang C, Lu M, Wang Y, Chen H, Chen P. Peptidomic profiling of mesenchymal stem cell-derived extracellular vesicles and anti-inflammatory activity of degraded peptides. Int Immunopharmacol 2025; 152:114452. [PMID: 40096816 DOI: 10.1016/j.intimp.2025.114452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
Mesenchymal stem cell derived extracellular vesicles (MSC-EVs) are key paracrine mediators involved in various autoimmune diseases. While current research on EVs predominantly focuses on their protein and nucleic acid components, small peptides received less attention. In this study, we found IFN-γ-treated MSC-EVs, as engineered EVs, exhibit better anti-inflammatory effects both in vitro and in vivo. Through LC-MS/MS and bioinformatics analysis, we identified four peptides-C3-1, C3-2, B2M-1, and IFIT3-1-that are highly expressed in IFN-γ-treated MSCs-EVs. These peptides significantly mitigate the proliferation inhibition of HUVEC cells induced by H₂O₂ and enhance their migratory capacity. Furthermore, they downregulate the expression of inflammatory cytokines TNF-α and IL-6 in H₂O₂-induced oxidative stress models of HUVEC and LPS-induced inflammatory models of RAW264.7 macrophages. The peptides also upregulate p-AKT and HIF-1α, with C3-1 demonstrating superior anti-inflammatory efficacy in both cell models. Consistent with the in vitro findings, in vivo experiments revealed that C3-1 reduces LPS-induced inflammatory cell infiltration in liver tissue and restores hepatocyte structural integrity, as evidenced by HE-stained liver sections. Western blot analysis further confirmed that C3-1 upregulates p-AKT expression and suppresses inflammatory cytokines. Collectively, these findings suggest that C3-1 exerts its anti-inflammatory effects via activation of the AKT signaling pathway and regulation of TNF-α and IL-6. This study not only highlights the anti-inflammatory potential of IFN-γ-treated MSC-derived EVs but also identifies C3-1 as a promising candidate for anti-inflammatory drug development. Notably, this is the first study to identify degraded peptides within EVs, providing a foundation for future research in this area.
Collapse
Affiliation(s)
- Tianqi Chu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China
| | - Zixuan Xiao
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Chengfeng Xun
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Hunan Academy of Forestry, Changsha 410081, China
| | - Chunyan Yang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Mengqi Lu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yuqiu Wang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Haiyan Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; East China Institute of Digital Medical Engineering, Shangrao 334000, China.
| | - Ping Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha 410081, China; Peptide and Small Molecule Drug R&D Platform, Furong Laboratory, Hunan Normal University, Changsha 410081, Hunan, China; Institute of Interdisciplinary Studies, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
33
|
Chen Y, Yang ZR, Cheng Z, Shi P, Zhang A, Fan JW, Zhao Z, Jiang H, Zhu J, Zhang Y. Injectable hydrogel microspheres promoting inflammation modulation and nucleus pulposus-like differentiation for intervertebral disc regeneration. J Control Release 2025; 380:599-614. [PMID: 39938720 DOI: 10.1016/j.jconrel.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/03/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
Local inflammation modulation and stem cell therapy have attracted much attention in the treatment of intervertebral disc degeneration (IDD). However, severe oxidative stress and limited nucleus pulposus (NP)-like differentiation of stem cells largely impair biomaterial implantation's therapeutic efficacy. Due to their excellent performance in injectability and flowability, and minor compression to NP tissue, hydrogel microspheres have become an attractive carrier for IDD treatment. Herein, an injectable hydrogel microsphere consisting of Wnt5a-mimetic peptide Foxy5- and the antioxidative peptide-grafted gelatin methacryloyl matrix (GFA), was developed as a stem cell delivery system for IDD therapy. Being fabricated and encapsulating bone marrow-derived mesenchymal stem cells (BMSCs) using the microfluidic technology, GFA hydrogel microspheres ameliorate IDD by promoting inflammation inhibition, NP-like differentiation and extracellular matrix regeneration. They efficiently eliminated reactive oxygen species, and downregulated the inflammation level through the inhibition of interleukin-17B/nuclear factor-κB signaling pathway. Moreover, the NP-like differentiation of BMSCs was effectively stimulated by Foxy5 via the calcium/calmodulin dependent protein kinase kinase 2/protein kinase A/sex determining region Y box protein 9 signaling pathway, thereby leading to a rebalance between the generation and degradation of NP matrix. In vivo rat IDD model demonstrated that BMSC-loaded GFA hydrogel microspheres mitigated local inflammation, preserved disc height, and promoted intervertebral disc regeneration. In conclusion, this study introduces an BMSC-loaded injectable hydrogel microspheres as a promising therapy for regulating the microenvironment and alleviating the progression of IDD.
Collapse
Affiliation(s)
- Yuhang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
| | - Zhuo-Ran Yang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, HUST, Wuhan 430074, China
| | - Zhangrong Cheng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
| | - Pengzhi Shi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
| | - Anran Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China
| | - Jing-Wen Fan
- Department of Radiology, Xijing Hospital, Air Force Medical University (AFMU) (The Forth Military Medical University, FMMU), Xi'an 710032, China
| | - Zhiguo Zhao
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, HUST, Wuhan 430074, China
| | - Hao Jiang
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, HUST, Wuhan 430074, China.
| | - Jintao Zhu
- Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, HUST, Wuhan 430074, China.
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, China.
| |
Collapse
|
34
|
Rasouli M, Safari F, Roudi R, Sobhani N. Investigation of mesenchymal stem cell secretome on breast cancer gene expression: A bioinformatic approach to identify differentially expressed genes, functional networks, and potential therapeutic targets. Comput Biol Chem 2025; 115:108331. [PMID: 39752852 DOI: 10.1016/j.compbiolchem.2024.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/11/2024] [Accepted: 12/24/2024] [Indexed: 02/26/2025]
Abstract
The mesenchymal stem cell (MSC) secretome plays a pivotal role in shaping the tumor microenvironment, influencing both cancer progression and potential therapeutic outcomes. In this research, by using publicly available dataset GSE196312, we investigated the role of MSC secretome on breast cancer cell gene expression. Our results raveled differentially expressed genes, including the upregulation of Phosphatidylinositol-3,4,5-Trisphosphate Dependent Rac Exchange Factor 1 (PREX1), C-C Motif Chemokine Ligand 28 (CCL28), and downregulation of Collagen Type I Alpha 1 Chain (COL1A1), Collagen Type I Alpha 3 Chain (COL1A3), Collagen Type III Alpha 1 Chain (COL3A1), which contributing to extra cellular matrix (ECM) weakening and promoting cell migration. Functional enrichment analyses also highlighted suppression of ECM remodeling pathways, and activation of calcium ion binding and Rap1 signaling pathway. We proposed that Ca2 + medicated activation of Ras-related protein 1 (Rap1) through its its downstream pathways such as Matrix Metalloprotease (MMP), PI3K/Akt, and MEK/ERK signaling pathway contribute to promotion of cell migration. However, the co-culture model by reducing Fibronectin 1 (FN1) and Secreted Protein Acidic and Cysteine Rich (SPARC) gene expression in cancer cells, emphasized on therapeutical aspects of MSC secretome. These findings emphasize on the dual edge sword nature of MSC secretome on cancer cell behaviors, while our major results emphasize on the cancer progression through ECM remodeling, the therapeutic aspects should not be underscored.
Collapse
Affiliation(s)
- Mohammad Rasouli
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran.
| | - Raheleh Roudi
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University, Stanford, CA 94305, USA.
| | - Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
35
|
Reza E, Azizi H, Skutella T. Investigating the expression and role of N-Myc in spermatogonial stem cells and male infertility. Ann Anat 2025; 259:152391. [PMID: 39947263 DOI: 10.1016/j.aanat.2025.152391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 01/07/2025] [Accepted: 02/06/2025] [Indexed: 02/16/2025]
Abstract
BACKGROUND In order to sustain reproduction, this study aims to investigate the role of N-Myc in the regulation of spermatogonial stem cell differentiation and the consequent generation of sperm during spermatogenesis. By analyzing specific gene expression patterns associated with N-Myc signaling pathways, we seek to identify potential targets for infertility treatments. MAIN METHODS In this study on mice, we constructed a PPI network in embryonic stem cells, germ cells, SSCs and pluripotent stem cells using the GEO datasets, NCBI, STRING, and Cytoscape databases. Then, after isolating spermatogonial stem cells from 6 C57BL/6 mice, ES-like cells were prepared. We further examined N-Myc, Oct4, Sox9, Vasa, and Plzf expression in testes, SSCs, and ES-like cells by immunohistochemistry (IHC) and immunocytochemistry (ICC), also the expression of N-Myc using RT-PCR. Finally, we performed gene set enrichment and miRNA analysis for N-Myc using Enrichr and miRTarBase. FINDINGS N-Myc has a central role in PPIs for genes maintaining pluripotency. In addition, this gene is coexpressed with Oct4, and positive expression of the Vasa and Plzf genes was observed in seminiferous tubule cells. The interaction network of N-Myc with microRNAs and lncRNAs was constructed, and the biological roles of N-Myc in spermatogenesis, such as glycolysis, were revealed. CONCLUSION The result highlight that N-Myc is essential for orchestrating the differentiation of spermatogonial stem cells into mature sperm by interacting with key regulatory factors. This underscores its pivotal role in both maintaining pluripotency and facilitating successful spermatogenesis, which may inform future strategies for addressing infertility.
Collapse
Affiliation(s)
- Emad Reza
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran.
| | - Hossein Azizi
- Faculty of Biotechnology, Amol University of Special Modern Technologies, Amol, Iran.
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Germany.
| |
Collapse
|
36
|
Gholami K, Izadi M, Heshmat R, Aghamir SMK. Exploring the potential of solid and liquid amniotic membrane biomaterial in 3D models for prostate cancer research: A comparative analysis with 2D models. Tissue Cell 2025; 93:102726. [PMID: 39808865 DOI: 10.1016/j.tice.2025.102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 12/13/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025]
Abstract
OBJECTIVE Research and tools are necessary for understanding prostate cancer biology. 3D cell culture models have been created to overcome the limitations of animal models and 2D cell culture. The amniotic membrane (AM), a natural biomaterial, emerges as an ideal scaffold for 3D cultures due to its accessibility and incorporation of the extracellular matrix (ECM) in both solid and liquid forms. METHODS In this study, decellularized human amniotic membranes (DAM) and AM hydrogel were obtained and characterized. The solid DAM scaffold was employed to analyse cell proliferation, cell cycle, migration, apoptosis, and the content of epithelial-mesenchymal transition (EMT) proteins in prostate cancer cells in comparison to traditional 2D culture conditions under androgen deprivation treatment. Additionally, the liquid form of AM was assessed for its potential for 3D cultures of prostate cancer cells such as cells embedded in ECM, spheroid encapsulation, and invasion, with a parallel comparison to collagen. RESULTS The 3D DAM scaffold significantly impacted cancer cell migration, morphology, proliferation, and EMT protein expression compared to 2D models. AM hydrogel effectively preserved the structural integrity of spheroids and led to lower proliferated cells embedded in AM hydrogel compared to 2D culture. AM hydrogel, like collagen, has the potential to be utilized for simulating in vitro cellular invasion from the ECM. CONCLUSION In summary, the potential of the biomaterial of DAM and AM hydrogel in creating 3D culture models, combined with the brief duration required for decellularizing the AM, suggests that these materials offer an ideal tool for in vitro prostate cancer research.
Collapse
Affiliation(s)
- Keykavos Gholami
- Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrnaz Izadi
- Department of Stem Cells Technology and Tissue Regeneration, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Ramin Heshmat
- Chronic Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
37
|
Guo XJ, Zhu BB, Li J, Guo P, Niu YB, Shi JL, Yokoyama W, Huang QS, Shao DY. Cholesterol metabolism in tumor immunity: Mechanisms and therapeutic opportunities for cancer. Biochem Pharmacol 2025; 234:116802. [PMID: 39954742 DOI: 10.1016/j.bcp.2025.116802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/25/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Cholesterol is an essential component of the cell membrane which plays a critical role in the survival of immune and tumor cells. Reprogramming of cholesterol metabolism in both tumor cells and immune cells can impact tumor progression and anti-tumor immune responses. Strategies aimed at modulating cholesterol metabolism have been demonstrated to be effective in hindering tumor growth and boosting anti-tumor immune functions. This review provides a thorough analysis of intracellular cholesterol homeostasis regulation in cells, focusing on key genes and signaling pathways. It particularly emphasizes the regulatory mechanisms and importance of the cholesterol presence state (esterified/free), levels of cholesterol, and its metabolites in immune and tumor cells. Additionally, the review thoroughly explores how cholesterol metabolism and sources (endogenous/exogenous) in the tumor microenvironment (TME) contribute to the interplay among tumor cells, immune suppressor cells, and immune effector cells, promoting cancer progression and immune evasion. It also delves into current insights on the influence of cholesterol metabolites and related drugs in regulating tumor development or immunotherapy. Finally, it presents an overview of recent advancements in clinical and preclinical trials investigating the efficacy of targeted cholesterol metabolism treatments and combination therapies in cancer management, while proposing potential future research directions in tumor immunity. This review is poised to offer fresh perspectives and avenues for examining the potential of cancer immunotherapy centered on cholesterol metabolism regulation.
Collapse
Affiliation(s)
- Xiao-Jia Guo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China
| | - Bo-Bo Zhu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China
| | - Jing Li
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an 710072, PR China
| | - Ping Guo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China
| | - Yin-Bo Niu
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China
| | - Jun-Ling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China
| | - Wallace Yokoyama
- Processed Foods Research Unit, Western Regional Research Center, Agricultural Research Service, USDA, Albany, CA 94710, USA
| | - Qing-Sheng Huang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China.
| | - Dong-Yan Shao
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi West Road, Xi'an, Shaanxi 710072, PR China; Research & Development Institute of Northwestern Polytechnical University in Shenzhen, No. 45th, Gaoxin South 9th Road, Nanshan District, Shenzhen City 518063, PR China.
| |
Collapse
|
38
|
Hoseini SM, Montazeri F. Cell origin and microenvironment: The players of differentiation capacity in human mesenchymal stem cells. Tissue Cell 2025; 93:102709. [PMID: 39765135 DOI: 10.1016/j.tice.2024.102709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/12/2024] [Accepted: 12/26/2024] [Indexed: 03/05/2025]
Abstract
Mesenchymal stem cells (MSCs) have several important properties that make them desirable for regenerative medicine. These properties include immunomodulatory ability, growth factor production, and differentiation into various cell types. Despite extensive research and promising results in clinical trials, our understanding of MSC biology, their mechanism of action, and their targeted and routine use in clinics is limited. Differentiation of human MSCs (hMSCs) is a complex process influenced by various elements such as growth factors, pharmaceutical compounds, microRNAs, 3D scaffolds, and mechanical and electrical stimulation. Research has shown that different culture conditions can affect the differentiation potential of hMSCs obtained from multiple fetal and adult sources. Additionally, it seems that what affects the differentiation capacities of these cells is their secretory characteristics, which are influenced by the origin of the cells and the local microenvironment where the cells are located. The review can provide insights into the microenvironment-based mechanisms involved in MSC differentiation, which can be valuable for future therapeutic applications.
Collapse
Affiliation(s)
- Seyed Mehdi Hoseini
- Biotechnology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran; Hematology and Oncology Research Center, Non-communicable Diseases Research Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fateme Montazeri
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran.
| |
Collapse
|
39
|
Khorrami-Nejad M, Hashemian H, Majdi A, Jadidi K, Aghamollaei H, Hadi A. Application of stem cell-derived exosomes in anterior segment eye diseases: A comprehensive update review. Ocul Surf 2025; 36:209-219. [PMID: 39884389 DOI: 10.1016/j.jtos.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/11/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Mesenchymal stem cell (MSC) therapy has emerged as a promising approach for addressing various eye-related conditions. Yet, its clinical application faces challenges due to issues such as limited biocompatibility and difficulties in effectively delivering treatment to specific ocular tissues. Recent studies have shifted attention towards MSC-derived exosomes, which share similar regenerative, reparative, and immunomodulatory capabilities with their origin cells. This review delves into the latest research on the use of MSC-derived exosomes for treating anterior segment diseases of the eye. It explores the exosomes' composition, biological functions, and the methods used for their isolation, as well as their roles in disease progression, diagnosis, and therapy. The review critically assesses the therapeutic advantages and mechanisms of action of MSC-derived exosomes in treating conditions like dry eye disease, Sjogren's syndrome, keratoconus, corneal lesions, and corneal allograft rejection. Additionally, it discusses the obstacles and future prospects of employing MSC-derived exosomes as innovative therapies for anterior segment eye diseases. This comprehensive overview underscores the significant potential of MSC-derived exosomes in transforming the treatment paradigm for anterior segment eye disorders, while also highlighting the necessity for further research to enhance their clinical application.
Collapse
Affiliation(s)
- Masoud Khorrami-Nejad
- Optometry Department, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran; Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hesam Hashemian
- Translational Ophthalmology Research Center, Farabi Eye Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Majdi
- Optical Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001, Babylon, Iraq
| | - Khosrow Jadidi
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Hossein Aghamollaei
- Vision Health Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Ali Hadi
- Optometry Department, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Li C, Tang S, Hu T, Zhou C, Chen Y, Hu Z, Pan J, Chen J, Wang Y. Exploring the potential mechanism of action of Wutou-Guizhi decoction in the treatment of rheumatoid arthritis through network pharmacology analysis. Comput Biol Chem 2025; 115:108314. [PMID: 39765191 DOI: 10.1016/j.compbiolchem.2024.108314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 11/29/2024] [Accepted: 12/07/2024] [Indexed: 02/26/2025]
Abstract
As a widely recognized traditional Chinese medicine (TCM) decoction prescription in China, numerous studies have shown that Wutou-Guizhi decoction (WTGZD) exhibits significant therapeutic efficacy for Rheumatoid arthritis (RA). Nevertheless, the underlying molecular mechanisms have yet to be fully elucidated. This study aims to establish a database of active ingredients for WTGZD and identify RA-related target genes. The WTGZD-RA-Potential target gene network and protein-protein interaction network were constructed, followed by gene ontology (GO) analysis and functional enrichment analysis utilizing the Kyoto Encyclopedia of Genes and Genomes (KEGG). Cell proliferation was confirmed through CCK8 assay. Target gene identification was performed via real-time PCR using quantitative methods, and western blot analysis was conducted. In the course of this investigation, 95 active components of drugs and 34 targets associated with rheumatoid arthritis were identified. Through the utilization of network pharmacology analysis, we were able to identify a total of 17 essential active components of WTGZD and pinpoint 12 significant targets linked to rheumatoid arthritis (RA). Our findings suggest a consistent interaction between the key components of WTGZD and the critical targets associated with RA. Subsequent qPCR analysis revealed that stigmasterol, a principal constituent of WTGZD, exhibited inhibitory effects on the expression of various RA-related factors, such as TNF-α, IL-1β, MAPK8, MMP1, MMP3, and MMP9. Moreover, WTGZD effectively mitigated the increased protein expression of MMP-1 and MAPK8 induced by LPS stimulation, both of which are integral components of the IL-17 signaling pathway. These results suggest that WTGZD may play a significant role in the therapeutic intervention of rheumatoid arthritis by suppressing inflammatory immune responses.
Collapse
Affiliation(s)
- Changhong Li
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Shiyi Tang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Tianqi Hu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Chenkang Zhou
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Yuxin Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Zhaoting Hu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Jingjing Pan
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Jie Chen
- Department of ICU, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
| | - Yumin Wang
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China; Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou 325015, China.
| |
Collapse
|
41
|
Entezami S, Sam MR. The role of mesenchymal stem cells-derived from oral and teeth in regenerative and reconstructive medicine. Tissue Cell 2025; 93:102766. [PMID: 39908767 DOI: 10.1016/j.tice.2025.102766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/07/2025]
Abstract
Defects and abnormalities of the skull, jaw, and face tissues due to various physiological problems such as speech, chewing, and swallowing disorders, cause illness and psychological effects with creation of significant public health challenges. Both autograft and allograft reconstruction methods, have different limitations, especially in the complete reconstruction of complex tissues such as sensory and periodontal tissues, which cannot be wholly relied on for treatment. Recently, mesenchymal stem cells (MSCs)-derived from oral and teeth have emerged as a promising alternative way in regenerative and reconstructive medicine. These types of stem cells with the high differentiation potential and self-renewal capabilities include dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDs), periodontal stem cells (PDLSCs) and gum-derived stem cells (GMSCs). These stem cells can be easily collected from accessible and numerous sources, such as extracted molars and milk teeth, with minimal invasiveness, playing pivotal roles in clinical application. This review explains the applications and therapeutic effects of the above-mentioned MSCs-derived from oral and dental tissues. Each of these stem cells, have unique characteristics and used for the treatment of specific abnormalities and defects. In this article, we aims to elucidate the indispensable and pivotal roles of MSCs-derived from the oral and teeth in addressing intractable and complex challenges in restorative and reconstructive medicine.
Collapse
Affiliation(s)
- Sara Entezami
- Department of orthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz University, Tabriz, Iran
| | - Mohammad Reza Sam
- Department of Biotechnology, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran.
| |
Collapse
|
42
|
Bonelli F, Moosavizadeh S, Fasolo E, Di Nella A, Barbaro V, Zorzi I, Krampera M, Tóthová JD, Ponzin D, Ritter T, Ferrari S, Rodella U. Development and optimization of an ex vivo model of corneal epithelium damage with 1-heptanol: Investigating the influence of donor clinical parameters and MSC-sEV treatment on healing capacity. Ocul Surf 2025; 36:224-236. [PMID: 39914484 DOI: 10.1016/j.jtos.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025]
Abstract
PURPOSE To develop and characterize a reproducible human corneal epithelial wound-healing model using 1-heptanol, and to investigate the healing potential of Bone Marrow-derived Mesenchymal Stromal Cell small Extracellular Vesicles (MSC-sEV) and the influence of donor characteristics on epithelial healing. METHODS Eighty-eight (n = 88) human corneoscleral tissues unsuitable for transplantation were employed. Corneal epithelial damage was induced with 1-heptanol and monitored every 24 h up to 96 h using fluorescein and trypan blue staining. Histological assessment was performed on untreated and damaged tissues. Damaged areas were measured with FIJI software, and healing rates were calculated. MSC-sEV were isolated with size exclusion chromatography and characterized for their size, morphology and biomarkers. Their impact on healing was assessed in both in vitro scratch assays on cultured human corneal epithelial cells and on ex vivo 1-heptanol-damaged corneas. RESULTS Histological analysis revealed detached corneal epithelium in the central area, while other layers remained unaffected. Healing rate peaked at 48 h post-damage. Trypan blue and Fluorescein staining correlated and the former highlighted a higher initial healing rate than the latter. Diabetic and heart-beating brain-deceased donors showed impaired healing rates. MSC-sEV (79.8 nm, spherical bilayer, positive for TSG101, CD9, CD63, and CD81) significantly improved epithelial wound healing in both in vitro and ex vivo models. CONCLUSION 1-heptanol effectively induces reproducible corneal epithelial damage, and the ex vivo organ-cultured human cornea heals the epithelium within 96 h. Diabetes and donation from heart-beating brain-deceased donors reduce healing capacity. MSC-sEV boost epithelial repair in damaged corneas.
Collapse
Affiliation(s)
| | - Seyedmohammad Moosavizadeh
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Science, University of Galway, Galway, Ireland; SFI Research Centre for Medical Devices (Curam), University of Galway, Galway, Ireland
| | - Elisa Fasolo
- Fondazione Banca Degli Occhi Del Veneto ETS, Venice, Italy
| | - Alessia Di Nella
- Hematology and Bone Marrow Transplant Unit, Section of Biomedicine of Innovation, Department of Engineering for Innovative Medicine (DIMI), University of Verona, Italy
| | | | - Ilaria Zorzi
- Fondazione Banca Degli Occhi Del Veneto ETS, Venice, Italy
| | - Mauro Krampera
- Hematology and Bone Marrow Transplant Unit, Section of Biomedicine of Innovation, Department of Engineering for Innovative Medicine (DIMI), University of Verona, Italy
| | | | - Diego Ponzin
- Fondazione Banca Degli Occhi Del Veneto ETS, Venice, Italy
| | - Thomas Ritter
- Regenerative Medicine Institute (REMEDI), School of Medicine, College of Medicine Nursing and Health Science, University of Galway, Galway, Ireland; SFI Research Centre for Medical Devices (Curam), University of Galway, Galway, Ireland
| | | | - Umberto Rodella
- Fondazione Banca Degli Occhi Del Veneto ETS, Venice, Italy; Research and Development, AL.CHI.MI.A. S.R.L, Ponte San Nicolò, Italy
| |
Collapse
|
43
|
Song J, Zhu J, Jiang Y, Guo Y, Liu S, Qiao Y, Du Y, Li J. Advancements in immunotherapy for gastric cancer: Unveiling the potential of immune checkpoint inhibitors and emerging strategies. Biochim Biophys Acta Rev Cancer 2025; 1880:189277. [PMID: 39938663 DOI: 10.1016/j.bbcan.2025.189277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 01/08/2025] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Gastric cancer (GC) is linked to high morbidity and mortality rates. Approximately two-thirds of GC patients are diagnosed at an advanced or metastatic stage. Conventional treatments for GC, including surgery, radiotherapy, and chemotherapy, offer limited prognostic improvement. Recently, immunotherapy has gained attention for its promising therapeutic effects in various tumors. Immunotherapy functions by activating and regulating the patient's immune cells to target and eliminate tumor cells, thereby reducing the tumor burden in the body. Among immunotherapies, immune checkpoint inhibitors (ICIs) are the most advanced. ICIs disrupt the inhibitory protein-small molecule (PD-L1, CTLA4, VISTA, TIM-3 and LAG3) interactions produced by immune cells, reactivating these cells to recognize and attack tumor cells. However, adverse reactions and resistance to ICIs hinder their further clinical and experimental development. Therefore, a comprehensive understanding of the advancements in ICIs for GC is crucial. This article discusses the latest developments in clinical trials of ICIs for GC and examines combination therapies involving ICIs (targeted therapy, chemotherapy, radiotherapy), alongside ongoing clinical trials. Additionally, the review investigates the tumor immune microenvironment and its role in non-responsiveness to ICIs, highlighting the function of tumor immune cells in ICI efficacy. Finally, the article explores the prospects and limitations of new immunotherapy-related technologies, such as tumor vaccines, nanotechnologies, and emerging therapeutic strategies, aiming to advance research into personalized and optimized immunotherapy for patients with locally advanced gastric cancer.
Collapse
Affiliation(s)
- Jiawei Song
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China; Department of Experimental Surgery, Xijing Hospital, Xi'an 710038, China
| | - Jun Zhu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yu Jiang
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yajie Guo
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Shuai Liu
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yihuan Qiao
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Yongtao Du
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China
| | - Jipeng Li
- Division of Digestive Surgery, Xijing Hospital of Digestive Diseases, Air force Medical University, Xi'an 710038, China; Department of Experimental Surgery, Xijing Hospital, Xi'an 710038, China.
| |
Collapse
|
44
|
Lee WS, Choi SJ, Shin YH, Kim JK. Mesenchymal Stem Cells Expressing Baculovirus-Engineered Brain-Derived Neurotrophic Factor Improve Peripheral Nerve Regeneration in a Rat Model. Tissue Eng Regen Med 2025; 22:351-362. [PMID: 39962026 PMCID: PMC11926320 DOI: 10.1007/s13770-025-00703-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/20/2024] [Accepted: 01/13/2025] [Indexed: 03/21/2025] Open
Abstract
BACKGROUND Peripheral nerve injuries are a major clinical challenge because of their complex nature and limited regenerative capacity. This study aimed to improve peripheral nerve regeneration using Wharton's jelly mesenchymal stem cells (WJ-MSCs) engineered to express brain-derived neurotrophic factor (BDNF) via a baculovirus (BV) vector. The cells were evaluated for efficacy when seeded into acellular nerve grafts (ANGs) in a rat sciatic nerve defect model. METHODS WJ-MSCs were transfected with recombinant BV to upregulate BDNF expression. Conditioned medium (CM) from these cells was utilized to treat Schwann cells (SCs), and the impact on myelination-related markers, including KROX20, myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), and S100 calcium-binding protein β (S100β), and the activation of the mammalian target of rapamycin (mTOR)/ protein kinase B (AKT)/p38 signaling pathways were evaluated. In vivo, BDNF-expressing WJ-MSCs were seeded into ANGs and implanted into a rat sciatic nerve defect model. Functional recovery was evaluated via video gait analysis, isometric tetanic force measurement, muscle weight evaluation, ankle contracture angle measurement, and histological analysis using toluidine blue staining. RESULTS BDNF expression was significantly upregulated in WJ-MSCs post-transfection. BDNF-MSC CM substantially promoted the expression of myelination markers in SCs and activated the mTOR/AKT/p38 signaling pathway. In the rat model, seeding of ANGs with BDNF-expressing WJ-MSCs resulted in improved functional outcomes, including enhanced toe-off angles, increased isometric tetanic force, greater muscle weight recovery, and a higher total number of myelinated axons compared with controls. CONCLUSION WJ-MSCs engineered to express BDNF significantly enhanced peripheral nerve regeneration when utilized in conjunction with ANGs. These findings indicate BDNF-expressing WJ-MSCs are a promising therapeutic approach for treating peripheral nerve injuries.
Collapse
Affiliation(s)
- Won Sun Lee
- Department of Orthopedic Surgery Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic Road 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Soon Jin Choi
- Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - Young Ho Shin
- Department of Orthopedic Surgery Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic Road 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea
| | - Jae Kwang Kim
- Department of Orthopedic Surgery Asan Medical Center, University of Ulsan College of Medicine, 88, Olympic Road 43-Gil, Songpa-Gu, Seoul, 05505, Republic of Korea.
| |
Collapse
|
45
|
Dong R, Zheng S, Cheng X. Designing hydrogel for application in spinal surgery. Mater Today Bio 2025; 31:101536. [PMID: 39990734 PMCID: PMC11847550 DOI: 10.1016/j.mtbio.2025.101536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/07/2025] [Accepted: 02/01/2025] [Indexed: 02/25/2025] Open
Abstract
Spinal diseases and injuries are prevalent in clinical settings and impose a substantial burden on healthcare systems. Current treatments for spinal diseases are predominantly limited to surgical interventions, drug injections, and conservative treatments. Generally, these treatment modalities have limited or no long-term benefits. Hydrogel-based treatments have emerged as potentially powerful paradigms for improving therapeutic outcomes and the quality of life of patients. Hydrogels can be injected into target sites, including the epidural, intraspinal, and nucleus pulposus spaces, in a minimally invasive manner and fill defects to provide mechanical support. Hydrogels can be designed for the localized and controlled delivery of pharmacological agents to enhance therapeutic effects and reduce adverse reactions. Hydrogels can act as structural supports for transplanted cells to improve cell survival, proliferation, and differentiation, as well as integration into adjacent host tissues. In this review, we summarize recent advances in the design of hydrogels for the treatment of spinal diseases and injuries commonly found in clinical settings, including intervertebral disc degeneration, spinal cord injury, and dural membrane injury. We introduce the design considerations for different hydrogel systems, including precursor polymers and crosslinking mechanisms. Herein, we discuss the therapeutic outcomes of these hydrogels in terms of providing mechanical support, delivering cells/bioactive agents, regulating local inflammation, and promoting tissue regeneration and functional recovery.
Collapse
Affiliation(s)
- Rongpeng Dong
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, 130014, Jilin, China
| | - Shuang Zheng
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, 130014, Jilin, China
| | - Xueliang Cheng
- Department of Orthopedics, The Second Norman Bethune Hospital of Jilin University, Changchun, 130014, Jilin, China
| |
Collapse
|
46
|
Groux-Degroote S, Martin K, Yamakawa N, Coddeville B, Guérardel Y, Sackstein R. Ganglioside expression delineates human mesenchymal stem/stromal cell populations derived from different tissue sources. Cytotherapy 2025; 27:446-456. [PMID: 39895443 DOI: 10.1016/j.jcyt.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 02/04/2025]
Abstract
Prior studies have indicated that human embryonic stem cells can be distinguished from those of other mammals based on variable expression of a class of membrane glycolipids known as glycosphingolipids (GSLs), raising the question as to whether GSL display could be utilized to phenotypically define subsets of human adult stem cell populations. Adult stem cells known as "mesenchymal stem/stromal cells" (MSCs) have shown immense promise in therapeutic applications for a variety of clinical indications. Most commonly, these cells are harnessed and then culture-expanded from bone-marrow (BM-MSCs) or from adipose tissue (A-MSCs) sources. Though operational differences exist between human BM-MSCs and A-MSCs, no surface markers have been characterized to date that distinguish these as distinct subsets of culture-expanded human adult stem cells. Accordingly, we isolated GSLs from primary cultures of marrow- and adipose-derived human MSCs and an unbiased screen was performed by mass spectrometry (via matrix-assisted laser desorption/ionization (MALDI)-quadrupole ion trap (QIT)-time-of-flight (TOF), hence, via "MALDI-QIT-TOF") to analyze all component glycans. Flow cytometry was then undertaken to assess the relative levels of expression of MS-defined glycan determinants, followed by RT-qPCR to measure transcripts of genes encoding key enzymes involved in glycolipid biosynthesis. Notably, our data indicate that neither BM- nor A-MSCs display any significant level of either lacto-series or neolacto-series GSLs, but distinct differences exist in GSL species among A-MSCs and BM-MSCs: while both cell types express GSLs of the ganglio- and the globo-series, the ganglio-series GSLs GD3 and GD2 and the globo-series GSL SSEA-4 (also known as sialylGb5) are dominantly expressed only among human BM-MSCs. These structural features are shaped by divergent patterns of glycosyltransferase gene expression, with striking differences between BM- and A-MSCs in the expression of transcripts encoding GD3 synthase, GM2/GD2 synthase, and Gb5 synthase. Importantly, expression of GD3, GD2, and SSEA-4 is markedly diminished on differentiation of BM-MSCs, and co-cultures of A-MSCs and BM-MSCs show that the expression of GD3, GD2, and SSEA-4 is a cell-intrinsic feature of BM-MSCs. These data stratify the glycosignature(s) of human MSCs derived from different tissue sources, provide direct evidence that expression of these structures is cell stage-/lineage-specific, unveil the mechanistic basis of the differential expression of these glycan determinants, and draw attention to how knowledge of the MSC glycosignature can impact cytotherapeutic strategies.
Collapse
Affiliation(s)
- Sophie Groux-Degroote
- Univ Lille, CNRS, UMR 8576-UGSF- Unité de Glycosylation Structurale et Fonctionnelle, Villeneuve d'Ascq, France
| | - Kyle Martin
- Translational Glycobiology Institute, and Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA
| | - Nao Yamakawa
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Bernadette Coddeville
- Univ Lille, CNRS, UMR 8576-UGSF- Unité de Glycosylation Structurale et Fonctionnelle, Villeneuve d'Ascq, France
| | - Yann Guérardel
- Univ Lille, CNRS, UMR 8576-UGSF- Unité de Glycosylation Structurale et Fonctionnelle, Villeneuve d'Ascq, France; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Robert Sackstein
- Translational Glycobiology Institute, and Department of Translational Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida, USA.
| |
Collapse
|
47
|
Fischinger I, Tetz M, Odame A, Kulas H, Abel M. Ocular Sticks for Routine Ophthalmic Surgery: A Randomized Controlled Monocentric Trial. Ophthalmol Ther 2025; 14:659-673. [PMID: 39955441 PMCID: PMC11920446 DOI: 10.1007/s40123-025-01107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/04/2025] [Indexed: 02/17/2025] Open
Abstract
INTRODUCTION Ocular sticks are used to absorb fluids during ophthalmic surgeries. Hence, this prospective study was conducted to evaluate the clinical performance, safety, and usability of Pro-optha® Ocular Sticks in comparison to an alternative device under the conditions of routine ophthalmic surgeries. METHODS Patients requiring eye surgery were randomly allocated into two equal groups, with the investigational device, Pro-ophta® Ocular Sticks, as the intervention group (IG) and the alternative stick as the comparator group (CG). Two types of surgery were performed. The study is also registered on the German Clinical Trials Register with ID DRKS00025690. RESULTS 106 patients were included in the analyses. In both treatment groups, the investigator's/surgeon's general user satisfaction was rated as either "good" or "very good." The non-inferiority hypothesis that the Pro-ophta® Ocular Stick is not rated worse in satisfaction than the alternative device was confirmed with statistical significance (p = 0.0005). At least 98.12% were rated as "good" and "very good" in both treatment groups for the additional endpoints. Pro-ophta® Ocular Stick was rated better for almost all the additional endpoints and within the surgery subgroups. The mean number of sticks and surgery duration were 3.5 ± 2.74 and 11.5 (± 8.88) min, respectively, with a positive correlation (r = 0.580) for the Pro-ophta® Ocular Stick and 3.9 ± 2.45 and 9.5 (± 5.90) min, respectively, with a positive correlation (r = 0.025) for the alternative device. No device-related adverse events occurred. CONCLUSIONS Effective ocular sticks play an instrumental role in the outcome of ophthalmic surgeries. The investigational device demonstrated efficiency, yielding good surgical results, usability, and an exceptionally good safety profile.
Collapse
Affiliation(s)
- Isaak Fischinger
- Augentagesklinik Spreebogen Berlin, Alt-Moabit 101B, 10557, Berlin, Germany
| | - Manfred Tetz
- Augentagesklinik Spreebogen Berlin, Alt-Moabit 101B, 10557, Berlin, Germany
| | - Angela Odame
- Lohmann & Rauscher GmbH & Co. KG, Irlicher Strasse 55, 56567, Neuwied, Rhineland-Palatinate, Germany.
| | - Heidi Kulas
- IGES Institut GmbH, Friedrichstraße 180, 10117, Berlin, Germany
| | - Martin Abel
- Lohmann & Rauscher GmbH & Co. KG, Irlicher Strasse 55, 56567, Neuwied, Rhineland-Palatinate, Germany
| |
Collapse
|
48
|
Wang Y, Siebzehnrubl D, Weller M, Weiss T, Siebzehnrubl FA, Newland B. Vortioxetine: A Potential Drug for Repurposing for Glioblastoma Treatment via a Microsphere Local Delivery System. ACS Biomater Sci Eng 2025. [PMID: 40167528 DOI: 10.1021/acsbiomaterials.5c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Drug repurposing is an attractive route for finding new therapeutics for brain cancers such as glioblastoma. Local administration of drugs to brain tumors or the postsurgical resection cavity holds promise to deliver a high dose to the target site with minimal off-target effects. Drug delivery systems aim to sustain the release of the drug at the target site but typically exhibit drawbacks such as a poor safety profile, uncontrolled/rapid drug release, or poor control over synthesis parameters/material dimensions. Herein, we analyzed the antidepressant vortioxetine and showed in vitro that it causes a greater loss of viability in glioblastoma cells than it does to normal primary human astrocytes. We developed a new droplet microfluidic-based emulsion method to reproducibly produce vortioxetine-loaded poly(lactic-co-glycolic) acid (PLGA) microspheres with tight size control (36.80 ± 1.96 μm). The drug loading efficiency was around 90% when 9.1% (w/w) drug was loaded into the microspheres, and drug release could be sustained for three to 4 weeks. The vortioxetine microspheres showed robust antiglioblastoma efficacy in both 2D monolayer and 3D spheroid patient-derived glioblastoma cells, highlighting the potential of combining an antidepressant with sustained local delivery as a new therapeutic strategy.
Collapse
Affiliation(s)
- Yu Wang
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom
| | - Dorit Siebzehnrubl
- Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff CF24 4HQ, United Kingdom
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich 8091, Switzerland
| | - Tobias Weiss
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich 8091, Switzerland
| | - Florian A Siebzehnrubl
- Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff CF24 4HQ, United Kingdom
| | - Ben Newland
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, King Edward VII Avenue, Cardiff CF10 3NB, United Kingdom
| |
Collapse
|
49
|
Khalilzad MA, Mohammadi J, Amirsaadat S, Najafi S, Zare S, Nilforoushzadeh MA, Khalilzad M, Amirkhani MA, Peyrovan A, Khalili SFS, Farahani A, Zare S. Therapeutic potential of apoptotic vesicles in modulating inflammation, immune responses, and tissue regeneration. J Nanobiotechnology 2025; 23:260. [PMID: 40170079 DOI: 10.1186/s12951-025-03278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 02/24/2025] [Indexed: 04/03/2025] Open
Abstract
The process of apoptosis plays a crucial role in tissue homeostasis, immune system regulation, and organ formation. Apoptotic vesicles (ApoEVs) are involved in efferocytosis, the process by which phagocytes ingest dead cells. ApoEVs also have potential therapeutic applications in cancer treatment, ischemic diseases, and their anti-inflammatory properties make them incredibly versatile for medical applications. These vesicles can induce apoptosis in cancer cells, provide tumor antigens for cancer vaccines, and even serve as effective drug delivery systems. Moreover, they can target hypoxic cells, inhibit inflammatory cell death pathways, and promote tissue regeneration. Also, their potential in addressing inflammatory disorders such as gastrointestinal ailments, osteoarthritis, and diabetes is promising. Additionally, ApoEVs can polarize anti-inflammatory immune cells and suppress inflammatory immune responses which make them a viable option for addressing the unmet need for novel anti-inflammatory medications. Despite a wealth of reviews examining the applications of ApoEVs, very few have thoroughly investigated the mechanisms underlying their anti-inflammatory effects. This distinctive approach positions the current review as timely and immensely relevant, illuminating the intriguing ways these entities function beyond their established advantages.
Collapse
Affiliation(s)
- Mohammad Amin Khalilzad
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 143951561, Iran
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Mohammadi
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 143951561, Iran.
| | - Soumayeh Amirsaadat
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Sona Zare
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Laserin Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Stem Cell and Regenerative Medicine Institute, Sharif University of Technology, Tehran, Iran.
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Mohammad Ali Nilforoushzadeh
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Skin Repair Research Center, Jordan Dermatology and Hair Transplantation Center, Tehran, Iran.
| | - Mitra Khalilzad
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Aysan Peyrovan
- Skin and Stem Cell Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Atefeh Farahani
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Solmaz Zare
- Laserin Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
50
|
Abdelwahed MHAE, Badreldin MH, Ibrahim IH, Zittoon RF, Galhom RA, Mohammed SS, Ashry YM. The potential of bone marrow derived mesenchymal stem cells in treating cisplatin induced sensorineural hearing loss in a guinea pig animal model. Tissue Cell 2025; 93:102703. [PMID: 39756116 DOI: 10.1016/j.tice.2024.102703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/05/2024] [Accepted: 12/21/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Sensorineural hearing loss (SNHL) is the most common sensory deficit worldwide. Current solutions for SNHL, including hearing aids, cochlear implants, and hearing assistive devices, do not provide consistent results and fail to address the underlying pathology of hair cell and ganglion cell damage. Stem cell therapy is a cornerstone in regenerative medicine. It provides new hope to treat SNHL by replacing/regenerating damaged hair cells and ganglion cells. Mesenchymal stem cells are an interesting choice in stem cell therapy. AIM OF THE WORK Evaluation of bone marrow derived mesenchymal stem cell (BM-MSC) transplantation to improve SNHL management. METHODS An experimental study was conducted using 40 recipient guinea pigs, randomly divided into four groups, along with 4 donor guinea pigs for bone marrow harvesting to isolate BM-MSC. Group I (12 animals) served as the control, receiving neither ototoxic drugs nor stem cell treatment. Group II (12 animals) received intraperitoneal cisplatin (1.5 mg/kg/day for 8 days) to induce sensorineural hearing loss, but no stem cell treatment. Group III (12 animals) received IP cisplatin to induce SNHL, followed by BM-MSC transplantation via round window injection one week later. Groups I, II, and III were euthanized 5 weeks after the last cisplatin injection, and their cochleae were examined using light microscopy, scanning electron microscopy, and fluorescent light microscopy to assess the effect of stem cell transplantation on the recovery of neurosensory tissue in the cochlea after cisplatin treatment. Group IV (4 animals) received IP cisplatin to induce SNHL, followed by transplantation of fluorescein-labeled BM-MSC (FLBM-MSC) via round window injection one week later and were euthanized after one week to study stem cell migration and homing. RESULTS Light Microscopy: Group I exhibited a normal structure in the organ of Corti, spiral ganglion, and stria vascularis. In contrast, Group II demonstrated degeneration in these areas. Group III showed a preserved structure in the organ of Corti, spiral ganglion, and stria vascularis, with statistically significant differences compared to Group II (p < .05). Scanning Electron Microscopy: Group I displayed normal ultrastructure of the organ of Corti, while Group II showed a loss of outer hair cells. Group III demonstrated preserved ultrastructure of the organ of Corti. Fluorescent Light Microscopy: In Group IV, transplanted cells were observed to home into the cochlear lateral wall, organ of Corti, and spiral ganglion. CONCLUSION The study showed that BM-MSCs, delivered via round window injection, can migrate to cochlear regions and protect key structures after cisplatin-induced SNHL in guinea pigs, suggesting their potential as a treatment for SNHL.
Collapse
Affiliation(s)
| | | | | | | | - Rania A Galhom
- Human Anatomy and Embryology, Faculty of Medicine, Suez Canal University, Tissue culture unit, Center of Excellence of Molecular and Cellular Medicine (CEMCM), Suez Canal University, Assistant Professor of Human Anatomy and Embryology, Faculty of Medicine, Galala University, Egypt.
| | - Sally S Mohammed
- Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | - Yehia Mohamed Ashry
- ENT Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|