1
|
Dhasmana A, Dobhal P, Sati A, Santhanam A, Preetam S, Malik S, Joshi N, Rustagi S, Deshwal RK. Synthesis of fungal polysaccharide-based nanoemulsions for cancer treatment. RSC Adv 2025; 15:13300-13312. [PMID: 40290748 PMCID: PMC12022750 DOI: 10.1039/d5ra01349f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Long valued for their therapeutic qualities, shiitake mushrooms (Lentinula edodes) are a staple of traditional Asian medicine and cuisine. They are high in bio-actives such as polysaccharides, proteins, lipids, vitamins, minerals, sterols, and phenolic compounds, which exhibit immunomodulatory, anticancer, antibacterial, anti-inflammatory, and anti-oxidant properties. Despite these advantages, the limited bioavailability and stability of shiitake's bio-active components often restrict their therapeutic use. Recent advances in nanotechnology have led to the development of nanoemulsions to encapsulate bioactives, which enhanced their bioavailability, stability, and therapeutic efficacy. In this study, we developed a biopolymeric blend of zein and chitosan as a nanoemulsion for the encapsulation of crude shiitake extract. Focusing on the synthesis and refinement of bio-compatible nanoemulsion formulations, this study investigates the medicinal potential of shiitake mushrooms and their nanoemulsions using several in vitro assays: the DPPH assay for anti-oxidant activity; the BSA denaturation assay for anti-inflammatory activity; the MIC test for antimicrobial activity; and the MTT assay for anticancer activity. This study aimed to attain three main goals: synthesis of nanoemulsions, biochemical analysis of shiitake extracts, and in vitro characterization of the therapeutic efficacy of the resulting formulations. This study found that shiitake nanoemulsions showed significantly improved bio-availability and therapeutic efficacy, suggesting promising applications in pharmaceuticals, nutraceuticals, cosmetics, medicine, and the food industry.
Collapse
Affiliation(s)
- Archna Dhasmana
- Himalayan School of Biosciences, Swami Rama Himalayan University 248104 Dehradun India
| | - Pooja Dobhal
- Himalayan School of Biosciences, Swami Rama Himalayan University 248104 Dehradun India
| | - Abhilekh Sati
- Himalayan School of Biosciences, Swami Rama Himalayan University 248104 Dehradun India
| | - Ayushi Santhanam
- Himalayan School of Biosciences, Swami Rama Himalayan University 248104 Dehradun India
| | - Subham Preetam
- Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand Ranchi Jharkhand 834001 India
- School of Applied and Life Sciences, Uttaranchal University 22 Dehradun 248007 Uttarakhand India
- University Center for Research & Development (UCRD) Chandigarh University NH-05 Chandigarh- Ludhiana Highway Mohali Punjab 140413 India
| | - Nupur Joshi
- Himalayan School of Biosciences, Swami Rama Himalayan University 248104 Dehradun India
| | - Sarvesh Rustagi
- Department of Food Technology, School of Agriculture, Maya Devi University Dehradun Uttarakhand India
| | | |
Collapse
|
2
|
Liu W, Xu X, Liu W, Zeng X, Shi S, Zhang J, Tang J, Li Y, Pang J, Wu C. Construction of fucoxanthin-loaded multi-functional pea protein isolate-fucoidan nanoparticles at neutral pH: Structural characterization and functional verification. Int J Biol Macromol 2025; 309:142966. [PMID: 40216116 DOI: 10.1016/j.ijbiomac.2025.142966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 04/17/2025]
Abstract
Fucoxanthin (FX), a marine-origin carotenoid, possesses various physiological activities. However, FX has instability and low water solubility. Encapsulation using nanoparticles effectively addresses these challenges. Nanoparticles loaded with FX were fabricated using a pH-driven method, with pea protein isolate (PPI) and fucoidan (FUC) serving as the raw materials. The optimal nanoparticles were prepared at pH = 7.0 with a PPI:FUC = 1:3, yielding a particle size of 166.60 ± 0.55 nm and a zeta potential of -40.88 ± 0.68 mV. The formation of FX@PPI/FUC nanoparticles were primarily driven by hydrogen bonding and hydrophobic interactions. Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and fluorescence spectroscopy were used to research structure of nanoparticle and interaction during the formation. The FX@PPI/FUC nanoparticles demonstrated excellent thermal and pH stability in neutral and alkaline environments, effectively released FX and showcased antioxidant properties. Additionally, a W/O/W FX@PPI-FUC Pickering emulsion was formulated, containing 65 % of the oil phase, which exhibited a favorable particle size of 26.5 ± 0.28 μm and a zeta potential of -67.2 ± 0.94 mV. Furthermore, the FX@PPI-FUC Pickering emulsion demonstrated outstanding thermal and storage stability, indicating its potential for application in functional food.
Collapse
Affiliation(s)
- Wenhao Liu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaoye Xu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wanjing Liu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xinxin Zeng
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Si Shi
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jianxi Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Junjie Tang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yuanzhao Li
- College of Equipment Management and Support, Chinese People's Armed Police Force Engineering University, China
| | - Jie Pang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| | - Chunhua Wu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China.
| |
Collapse
|
3
|
Zeng J, Ren X, Li X, Chen P, Zhu S. Development of pH-responsive active intelligent chitosan film incorporated with pomegranate cellulose nanocrystals and curcumin nanoparticles. Int J Biol Macromol 2025; 309:142051. [PMID: 40132719 DOI: 10.1016/j.ijbiomac.2025.142051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/17/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025]
Abstract
Casein Sodium coated curcumin nanocapsules (Cas@Cur) were fabricated by a pH shift method, which improved the water solubility of curcumin (Cur). Hydrogen bonds and hydrophobic interactions were the main forces for the formation of Cas@Cur. Chitosan films (CS) reinforced with pomegranate cellulose nanocrystals (PCNCs), Cas@Cur, PCNC/Cas@Cur, and PCNC/Cur were developed and named CP, CS-Cas@Cur, CP-Cas@Cur and CP-Cur, respectively. The addition of Cas@Cur decreased the moisture content, crystallinity and water contact angle of chitosan film, and increased its water solubility and light barrier property. The CP-Cur film presented the roughest cross-sectional SEM image owing to the hydrophobicity of Cur. CP-Cas@Cur film exhibited the excellent cumulative release of Cur, and was 1.60 and 3.70 times of that of CP-Cur in the semi-fatty and fatty food simulation systems at 2 h, respectively, owing to the controlled-release function of PCNCs and great water solubility of Cas@Cur. Furthermore, the CP-Cas@Cur film displayed excellent antioxidant property, antibacterial activity and sensitive color responsiveness to pH and NH3. Interestingly, the CP-Cas@Cur films exhibited a visible color change at pH 3-7. The application of CP-Cas@Cur film in the preservation of milk and shrimp indicated its potential for the visual monitoring of food freshness.
Collapse
Affiliation(s)
- Jun Zeng
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Key Laboratory of Biological Resources and Ecology of Pamirs Plateau of Xinjiang Uygur Autonomous Region, Kashi University, Kashi 844000, China
| | - Xiaona Ren
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China; Key Laboratory of Biological Resources and Ecology of Pamirs Plateau of Xinjiang Uygur Autonomous Region, Kashi University, Kashi 844000, China
| | - Xinpeng Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Ping Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Siming Zhu
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China; School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China.
| |
Collapse
|
4
|
Ullah R, Siraj M, Iqbal J, Abbasi BA. Potential of curcumin and its derivatives, modern insights on the anticancer properties: a comprehensive overview. Z NATURFORSCH C 2025:znc-2024-0220. [PMID: 40108840 DOI: 10.1515/znc-2024-0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 03/02/2025] [Indexed: 03/22/2025]
Abstract
Globally, cancer is the top cause of mortality, placing a heavy load on the medical system. One of the first known secondary metabolites is curcumin, a bioactive substance. This study aims to emphasize the chemopreventive and chemotherapeutic properties of curcumin and its derivatives, therefore, offering important insights for the possible creation of certain supplemental medications for the treatment of different cancers. Electronic Google databases, including Google scholar, ResearchGate, PubMed/Medline, and ScienceDirect, were searched to gather pertinent data about the chemopreventive and chemotherapeutic effects of curcumin and its derivatives. Various studies have revealed a diverse array of significant biological effects. The majority of investigations pertaining to the potential anticancer effects and associated processes are currently in the experimental preclinical stage and lack sufficient clinical trial data to validate their findings. Clinical research is further needed to clarify the molecular processes and specific targeted action of curcumin and its derivatives, as well as their potential for toxicity and side effects in humans, in order to open up new therapeutic avenues for treating cancer.
Collapse
Affiliation(s)
- Rafi Ullah
- Department of Botany, Bacha Khan University, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Siraj
- IBGE, University of Agriculture Peshawar, Peshawar, Pakistan
| | - Javed Iqbal
- Department of Botany, Bacha Khan University, Charsadda 24420, Khyber Pakhtunkhwa, Pakistan
| | - Banzeer Ahsan Abbasi
- Department of Botany, Rawalpindi Women University, 6th Road, Satellite Town, Rawalpindi, 46300, Pakistan
| |
Collapse
|
5
|
Ould Yahia Z, Xie L, Rashwan AK, Paul B, Liu S, Chen W. Gum Arabic modified nano-nutriosomes for curcumin encapsulation: Characterization, influence on physicochemical, microstructural and microbial properties of integrated yogurt. Int J Biol Macromol 2025; 308:142202. [PMID: 40120905 DOI: 10.1016/j.ijbiomac.2025.142202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/13/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
As a hydrophobic compound, curcumin (Cur) requires modification to enhance stability in aqueous media, allowing its application in hydrophilic food matrix. This study aimed to improve the physicochemical stability of curcumin encapsulated in nano-nutriosomes (NU) decorated with gum Arabic (GA) polymer and their incorporation influence on the yogurt (Ygr) properties during 21 days of cold storage. The novel NU were nanosized (< 200 nm), with high encapsulation efficiency >90 % for Cur, spherical in shape, with an acceptable PDI < 0.3. The GA-Cur-NU significantly (p < 0.05) improved the Cur stability under thermal, pH and ionic conditions, as well as controlling the in vitro Cur release in PBS and different food simulants, confirming the improving effect of GA for better Cur stability. However, due to NU dispersion commercializing challenges in food, freeze-drying was employed to facilitate its application. Interestingly, The Cur was highly protected in freeze-dried FZD GA-Cur-NU with an encapsulation efficiency of 97.35 % compared to FZD Cur-NU 93.68 %. The yogurt gel network was strengthened after Cur-NU and GA-Cur-NU addition, improving the physicochemical properties, water holding capacity, color, texture, microstructure and LAB count of yogurt. Overall, the GA-coated NU could be a nano-carrier for Cur encapsulation and controlled delivery.
Collapse
Affiliation(s)
- Zineb Ould Yahia
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Lianghua Xie
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Traditional Chinese Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
| | - Ahmed K Rashwan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Food and Dairy Sciences, Faculty of Agriculture, South Valley University, Qena 83523, Egypt
| | - Bolai Paul
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Shiyu Liu
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
6
|
Sha L, Raza H, Jia C, Khan IM, Yang H, Chen G. Genipin-enriched chitosan-Zein nanoparticles for improved curcumin encapsulation. Int J Biol Macromol 2025; 288:138555. [PMID: 39674455 DOI: 10.1016/j.ijbiomac.2024.138555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/17/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024]
Abstract
Polysaccharide-protein nanocomplexes are considered one of the desired systems to encapsulate bioactive compounds. The study prepared chitosan (CS)/genipin (GP)/zein nanoparticles with chemical cross-linkage for encapsulating and releasing curcumin. Fourier transform infrared spectra demonstrated that cross-linkage between molecules was attributed to electrostatic interactions and the formation of amido bonds and hydrogen bonding. Transmission electron microscopy showed that all prepared nanoparticles showed a spherical morphology. Particularly, cinnamaldehyde screening -NH2 groups in CS significantly reduced the encapsulation efficiency of nanoparticles, demonstrating the significant role of the -NH2 group in CS-coated zein nanoparticles. Additionally, the encapsulation efficiency was largely increased to 82.3 % at the ratio of CS/GP/zein (w/w, 20:1:100), compared with 38.4 % using zein as a single encapsulation for curcumin. In vitro digestion, the addition of GP and CS decreased the release of curcumin from 84.8 % to 57.1 % after the initial digestion of 2 h. The GP/CS/zein particles retained 12 % of curcumin after 6- h of digestion, indicating the improvements in encapsulation efficiency and release properties.
Collapse
Affiliation(s)
- Lingling Sha
- College of Food and Health, Zhejiang Agriculture and Forest University, 666, Wusu Street, Hangzhou, 311300, Zhejiang, China
| | - Husnain Raza
- Department of Food Science, Design and Consumer Behaviour, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiskberg, Copenhagen, Denmark
| | - Chengsheng Jia
- School of Food Science, Jiangnan University, 1800, Lihu Ave., Wuxi 214122, Jiangsu, China
| | - Imran Mahmood Khan
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315100, China.
| | - Huqing Yang
- College of Food and Health, Zhejiang Agriculture and Forest University, 666, Wusu Street, Hangzhou, 311300, Zhejiang, China
| | - Gang Chen
- College of Food and Health, Zhejiang Agriculture and Forest University, 666, Wusu Street, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
7
|
Huang M, Song Y, Wang H, Li H, Zhou R, Cao Q, Dong L, Ren G, Wu D, Lei Q, Fang W, Deng D, Xie H. Fabrication and characterization of lysozyme fibrils/Zein complexes for resveratrol encapsulation: Improving stability, antioxidant and antibacterial activities. Food Chem 2025; 464:141746. [PMID: 39454440 DOI: 10.1016/j.foodchem.2024.141746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/01/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024]
Abstract
Resveratrol (Res), a naturally occurring hydrophobic polyphenol, boasts numerous health-promoting bio-functionalities. However, its limited water solubility and stability impede further applications in the food industry. This study aims to address these challenges by fabricating stable Res-loaded lysozyme fibrils/zein (Ly-F/Z) complexes. The complexes were prepared using an antisolvent precipitation method. The interaction mechanism between Ly-F and zein was elucidated through dynamic light scattering, Fourier-transform infrared spectroscopy and dissociative experiments, revealing the involvement of hydrogen bonding, electrostatic forces and hydrophobic interactions in complex formation. The Ly-F/Z complexes were utilized to encapsulate Res, resulting in an encapsulation efficiency of 82.58 %. X-ray diffraction analysis confirmed the successful encapsulation of Res within Ly-F/Z complexes, presenting an amorphous state. The Ly-F/Z-Res complexes exhibited a "fruit tree" morphology with dense fruit, showcasing remarkable stability, antioxidant and antibacterial activities. Consequently, the Ly-F/Z complexes can serve as promising delivery systems for Res in functional foods.
Collapse
Affiliation(s)
- Min Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yuling Song
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Han Wang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hao Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Rongmi Zhou
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Qing Cao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Lijuan Dong
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| | - Gerui Ren
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Di Wu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qunfang Lei
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Wenjun Fang
- Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Dan Deng
- Hangzhou Linping Hospital of Traditional Chinese and Western Medicine, Linping, 311100, Zhejiang, China
| | - Hujun Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
8
|
Yang YQ, Gao Q, Yue SQ, Peng X, Wang N, Xin JL, Yu M, Rao JJ, Xue YL. Investigating the interaction mechanisms between arachin and resveratrol: Utilizing multi-spectroscopy and computational chemistry. Food Chem 2025; 463:141435. [PMID: 39378718 DOI: 10.1016/j.foodchem.2024.141435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/01/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
Arachin (ARA) and resveratrol (RES) are the primary protein and bioactive compound in peanuts and their processed products. However, the mechanism of interaction between these two substances remained unclear. To investigate protein structural changes, conformational variations, and molecular mechanisms in the interaction between them, multispectral analysis and computational chemistry methods were employed. Experimental results confirmed that RES quenched ARA's intrinsic fluorescence through static quenching, indicating their interaction. Thermodynamic analysis revealed the interaction between them was endothermic, spontaneous, and primarily hydrophobic. Molecular dynamics (MD) simulations highlighted strong affinity between RES and ARA, with key amino acids (His425, Val426, Phe405, and Phe464) facilitating their interaction. RES binding increased stability without significant protein conformational changes. The independent gradient model based on Hirshfeld partition (IGMH) validated their interaction, emphasizing van der Waals (VDW) interactions and hydrogen bonds (H-bonds) as crucial for stable binding. This research lays a theoretical foundation for potential applications of ARA-RES complex products in the food industry.
Collapse
Affiliation(s)
- Yu-Qi Yang
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Qi Gao
- College of Light Industry, Liaoning University, Shenyang 110036, China; Department of Regional Economic Development, Party School of Liaoning Provincial Party Committee, Shenyang 110161, China
| | - Shi-Qi Yue
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xue Peng
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Ning Wang
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Jing-Li Xin
- College of Light Industry, Liaoning University, Shenyang 110036, China
| | - Miao Yu
- Institute of Food and Processing, Liaoning, Academy of Agricultural Sciences, Shenyang 110161, China
| | - Jia-Jia Rao
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - You-Lin Xue
- College of Light Industry, Liaoning University, Shenyang 110036, China.
| |
Collapse
|
9
|
Wang Y, Jiang Y, Shi J. Fabrication of novel casein/oligochitosan nanocomplexes for lutein delivery: Enhanced stability, bioavailability, and antioxidant properties. Food Res Int 2024; 197:115241. [PMID: 39593323 DOI: 10.1016/j.foodres.2024.115241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024]
Abstract
This study aimed to prepare novel nanocomplexes for delivery of lutein using transglutaminase (TGase)-type glycation of casein. The effect of glycated casein nanoparticles on the environmental stability, bioavailability, and antioxidant properties of lutein was investigated. Glycated casein nanoparticles with uniform distribution and small particle size were successfully prepared by ultrasound technology. The structure analysis revealed intermolecular interactions between lutein and glycated casein, with the complexes having a spherical and stable structure. The fabricated nanoparticles exhibited a high encapsulation efficiency (91.89%) and loading capacity (3.06%) for lutein. TGase-type glycation of casein nanoparticles contributed to the strong thermal stability, pH stability, storage stability, and salt stability. Moreover, glycated casein/lutein nanoparticles exhibited resistance to gastric digestion, rapid intestinal release rate, increased lutein bioavailability, and antioxidant activity under simulated digestion. This study provides key support for the development of glycated casein-based nanoparticles as delivery systems and reinforcing stability of hydrophilic nutraceuticals.
Collapse
Affiliation(s)
- Yu Wang
- Department of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China
| | - Yujun Jiang
- Department of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China
| | - Jia Shi
- Department of Food Science, Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
10
|
Du Y, Zheng M. Silver nanoparticles/carbon dots nanocomposite with potent antibiofilm and long-term antimicrobial activity doped into chitosan/polyvinyl alcohol film for food preservation. Int J Biol Macromol 2024; 283:137744. [PMID: 39551308 DOI: 10.1016/j.ijbiomac.2024.137744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Exploration of robust antiseptics with antibiofilm performance and long-term antimicrobial activity is of great significance to effectively destroy foodborne pathogenic bacteria. Herein, a silver nanoparticles (Ag NPs) /carbon dots (CDs) nanocomposite (Ag@CDs) was constructed by the reaction of Ag+ with CDs, which has strong antibacterial ability, and mighty biofilm inhibition and destruction ability toward E. coli and S. aureus. Notably, low concentration of Ag@CDs (40.0 and 80.0 μg/mL) could ablate 86.11 % E. coli and 75.86 % S. aureus biomass of mature biofilm. To our knowledge, this is the first bactericide with powerful biofilm destruction activity. In addition, Ag@CDs exhibited long-term (30 d) antibacterial effect on the substrates of plastic, cotton, gauze, and glass. Ag@CDs was evenly dispersed into the matrix of chitosan (CS)/polyvinyl alcohol (PVA) to fabricate well-blended food packaging films. Among which, the 3 % Ag-CP film exhibited improved mechanical performance, excellent UV-Vis light blocking ability, and intensive antimicrobial activity. Despite seven days of storage, 3 % Ag-CP still could preserve the freshness and safety of the pork and shrimp, certifying it extends the storage life of packaged foods.
Collapse
Affiliation(s)
- Yidi Du
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin 130012, PR China
| | - Min Zheng
- School of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun, Jilin 130012, PR China.
| |
Collapse
|
11
|
Dikmetas DN, Yenipazar H, Can Karaca A. Recent advances in encapsulation of resveratrol for enhanced delivery. Food Chem 2024; 460:140475. [PMID: 39047495 DOI: 10.1016/j.foodchem.2024.140475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Due to its numerous biological activities, such as antioxidant, anti-inflammatory, antitumor, anti-atherosclerosis, anti-aging, anti-osteoporosis, anti-obesity, estrogenic, neuroprotective and cardioprotective effects, resveratrol has attracted a lot of attention in the food and pharmaceutical industries as a promising bioactive. However, low solubility in aqueous media, limited bioavailability, and low stability of resveratrol in hostile environments limit its applications. The necessity for a summary of recent developments is highlighted by the growing body of research on resveratrol encapsulation as a means of overcoming the mentioned application constraints. This review highlights the present developments in resveratrol delivery techniques, including spray drying, liposomes, emulsions, and nanoencapsulation. Bioaccessibility, bioavailability, stability, and release of resveratrol from encapsulating matrices are discussed. Future research should focus on encapsulation approaches with high loading capacity, targeted delivery, and controlled release. In light of the growing interest in resveratrol and the increasing complexity of resveratrol-based formulations, review of current encapsulation methods is crucial to address existing limitations and pave the way for the development of next-generation delivery systems. This review discusses how the delivery systems with different structures and release mechanisms can unlock the full potential and benefits of resveratrol by enhancing its bioavailability and stability.
Collapse
Affiliation(s)
- Dilara Nur Dikmetas
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR-34469 Istanbul, Turkey
| | - Hande Yenipazar
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR-34469 Istanbul, Turkey
| | - Asli Can Karaca
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, TR-34469 Istanbul, Turkey.
| |
Collapse
|
12
|
Chicea D, Nicolae-Maranciuc A. A Review of Chitosan-Based Materials for Biomedical, Food, and Water Treatment Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5770. [PMID: 39685206 DOI: 10.3390/ma17235770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024]
Abstract
Chitosan, a natural biopolymer with excellent biocompatibility, biodegradability, and modifiable structure, has broad applications in regenerative medicine, tissue engineering, food packaging, and environmental technology. Its abundance, solubility in acidic solutions, and capacity for chemical modification make it highly adaptable for creating specialized derivatives with enhanced properties. Recent advances have demonstrated chitosan's efficacy in composite systems for tissue regeneration, drug delivery, and antimicrobial applications. This review examines chitosan's unique properties, with a focus on its antibacterial activity as influenced by factors like pH, concentration, molecular weight, and deacetylation degree. Additionally, chitosan's potential as a sustainable, non-toxic material for eco-friendly packaging and water treatment is explored, highlighting the growing interest in chitosan composites with other polymers and metallic nanoparticles for enhanced biomedical and environmental applications.
Collapse
Affiliation(s)
- Dan Chicea
- Research Center for Complex Physical Systems, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
| | - Alexandra Nicolae-Maranciuc
- Research Center for Complex Physical Systems, Faculty of Sciences, Lucian Blaga University of Sibiu, 550012 Sibiu, Romania
- Institute for Interdisciplinary Studies and Research (ISCI), Lucian Blaga University of Sibiu, 550024 Sibiu, Romania
| |
Collapse
|
13
|
Costa CE, Romaní A, Domingues L. Overview of resveratrol properties, applications, and advances in microbial precision fermentation. Crit Rev Biotechnol 2024:1-17. [PMID: 39582165 DOI: 10.1080/07388551.2024.2424362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/03/2024] [Accepted: 07/13/2024] [Indexed: 11/26/2024]
Abstract
Resveratrol is an antioxidant abundant in plants like grapes and peanuts and has garnered significant attention for its potential therapeutic applications. This review explores its chemical attributes, stability, and solubility, influencing its diverse applications and bioavailability. Resveratrol's multifaceted therapeutic roles encompass: antioxidant, cardioprotective, anti-inflammatory, neuroprotective, anti-aging, and anticancer properties. While traditionally studied in preclinical settings, a surge in clinical trials underscores resveratrol's promise for human health. Over 250 recent clinical trials investigate its effects alone and in combination with other compounds. Commercially utilized in food, cosmetics, supplements, and pharmaceuticals, the resveratrol market is expanding, driven by microbial fermentation. Microbes offer advantages over plant extraction and chemical synthesis, providing cost-effective, pure, and sustainable production. Microbial biosynthesis can be attained from carbon sources, such as glucose or xylose, among others, which can be obtained from renewable resources or agro-industrial wastes. While Saccharomyces cerevisiae has been the most used host, non-conventional yeasts like Yarrowia lipolytica and bacteria like Escherichia coli have also demonstrated potential. Genetic modifications such as increasing acetyl-CoA/malonyl-CoA pools, boosting the shikimate pathway, or multi-copy expression of pathway genes, allied to the optimization of fermentation strategies have been promising in increasing titers. Microbial biosynthesis of resveratrol aligns with the shift toward sustainable and renewable bio-based compounds, exemplifying a circular bioeconomy. Concluding, microbial fermentation presents a promising avenue for efficient resveratrol production, driven by genetic engineering, pathway optimization, and fermentation strategies. These advances hold the key to unlocking the potential of resveratrol for diverse therapeutic applications, contributing to a greener and sustainable future.
Collapse
Affiliation(s)
- Carlos E Costa
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Aloia Romaní
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), Ourense, Spain
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
14
|
Ma D, Zhang X, Mahmood N, Zhao Q, Li Y, Zhang S. Utilization of soybean protein isolate hydrolysates as carriers: Improved encapsulation efficiency and stability of curcumin. Food Chem 2024; 467:141920. [PMID: 39662249 DOI: 10.1016/j.foodchem.2024.141920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/15/2024] [Accepted: 11/01/2024] [Indexed: 12/13/2024]
Abstract
This study aimed to explore the potential of soybean protein isolate hydrolysates (SPIH) prepared via Alcalase as delivery carriers and develop novel SPIH-Cur nanoparticles. Hydrolysis caused the varying degrees degradation in the 7S and 11S subunits, significantly enhancing SPI's antioxidant activity. The reduction in particle size and the exposure of hydrophobic groups in SPIH contributed to the formation of stable SPIH-Cur nanoparticles, due to their well binding capacity to curcumin (Cur). The 30 min SPIH-Cur sample exhibited the highest encapsulation efficiency (83.09 %), owing to its high binding affinity (Ka = 9.56 × 103 M-1). Encapsulation by SPIH also significantly improved Cur's thermal and light stability. Moreover, FTIR, fluorescence spectra, and molecular docking analyses revealed that the formation of SPIH-Cur were primarily driven by hydrophobic forces and hydrogen bonds. Above results provide a foundation for fabricating nanoparticles that deliver lipophilic bioactive compounds with high encapsulation efficiency and stability derived from SPIH.
Collapse
Affiliation(s)
- Danhua Ma
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xiaoying Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Naveed Mahmood
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Qingkui Zhao
- Shandong Guohong Biotechnology Co, Liaocheng, Shandong 252000, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Shuang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
15
|
Yu F, Luo H, Wang Y, Wei Z, Li B, Zhao Y, Wu P, Wang J, Yang H, Gao J, Li Q, Pan J, Chen K, Wang H, Qi Z, Chen XD. Preparation of curcumin-loaded chitosan/lecithin nanoparticles with increased anti-oxidant activity and in vivo bioavailability. Int J Biol Macromol 2024; 281:136659. [PMID: 39423985 DOI: 10.1016/j.ijbiomac.2024.136659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/15/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
As a natural polyphenol, curcumin (Cur) has exhibited a range of bioactive properties, including anti-inflammatory, anti-oxidant, and anti-infection properties. However, the chemical instability and low water solubility of Cur hinder its wide application. Herein, Cur-loaded chitosan/lecithin nanoparticles (CCL NPs) were prepared by the electrostatic self-assembly method. The prepared CCL NPs showed a small particle size (122.86 ± 1.53 nm) with homogeneous distribution (PDI = 0.17 ± 0.01). The high EE (79.34 ± 2.93 %) and LC (9.33 ± 0.34 %) indicated that most of Cur was encapsulated in CCL NPs. Meanwhile, the Cur was released from CCL NPs in a quick and sustained way after being exposed to simulated gastrointestinal fluids. The CCL NPs displayed superior anti-oxidant activity than that of free Cur. Moreover, the in vivo pharmacokinetic studies showed that the CCL NPs could lead to a ~ 2.64-fold increase in oral bioavailability compared with that of free Cur. All these findings indicated that the formation of CCL NPs would be a promising platform to deliver Cur in the food industry.
Collapse
Affiliation(s)
- Fei Yu
- Medical College, Guangxi University, Nanning 530004, China
| | - Hongcheng Luo
- Key Laboratory of Research and Development on Clinical Molecular Diagnosis for High-Incidence Diseases of Baise, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Yuqin Wang
- Medical College, Guangxi University, Nanning 530004, China
| | - Zizhan Wei
- Medical College, Guangxi University, Nanning 530004, China
| | - Bangda Li
- Medical College, Guangxi University, Nanning 530004, China
| | - Yuanyuan Zhao
- Medical College, Guangxi University, Nanning 530004, China
| | - Peng Wu
- Suzhou Key Lab of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jingjing Wang
- Xiao Dong Pro-health (Suzhou) Instrumentation Co Ltd, Suzhou 215152, China
| | - Hua Yang
- Medical College, Guangxi University, Nanning 530004, China
| | - Jie Gao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Quanyang Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Junheng Pan
- School of Physical Science and Technology, Guangxi University, Nanning 530004, China
| | - Kuncheng Chen
- Department of Intensive Care Unit, Zhongshan Hospital of Xiamen University, Xiamen 361005, China.
| | - Huiyun Wang
- Department of Pharmacy, Jining Medical University, Rizhao 276826, China.
| | - Zhongquan Qi
- Medical College, Guangxi University, Nanning 530004, China.
| | - Xiao Dong Chen
- Suzhou Key Lab of Green Chemical Engineering, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
16
|
Xu X, Zhao D, Li C, Yang H, Lu Q, Zhu M, Bao Y, Chen C. Protective effect of water-soluble nervonic acid micro-powder coated with chitosan oligosaccharide and silk fibroin on hippocampal neuronal HT22 cells. Int J Biol Macromol 2024; 282:136967. [PMID: 39490490 DOI: 10.1016/j.ijbiomac.2024.136967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Nervonic acid (NA) is an extremely long chain monounsaturated fatty acid that plays a crucial biological role in brain development and repair. However, its low solubility reduced bioavailability and limited its applications. In this study, spherical water-soluble nervonic acid composite micro-powder (NA-WM) was constructed by layer-by-layer self-assembly technology under electrostatic interaction and hydrogen bond, in which electronegative NA was used as the core material, and electropositive COS (Chitosan oligosaccharide) with neuroprotective properties and electronegative SF (Silk fibroin) with biocompatibility and anti-inflammatory synergism were used as the wall material. In the preparation process, the electronegative NA was first combined with electropositive COS by antisolvent method, and then the electropositive COS-NA complex was encapsulated with electronegative SF to form NA-WM. The optimal preparation conditions were screened and optimized via single-factor and BBD method. Under the optimum conditions, the average particle size of NA-WM was 420 ± 35 nm. The results of TGA (Thermogravimetric), SEM (Scanning electron microscopy), and FTIR (Fourier transform infrared spectroscopy) confirmed that NA-WM had good thermal stability and spherical-defined layer-to-layer structure. Additionally, at pH 1.5, the NA release rate of NA-WM was as high as 89.54 % within 2.5 h. Through measuring the levels of MDA (Malondialdehyde), CAT (Catalase), SOD (Superoxide dismutase), GSH-Px (Glutathione peroxidase), and LDH (Lactate dehydrogenase), as well as flow cytometry and SEM analysis, it was confirmed that NA-WM could protect Aβ1-42-induced HT22 by inhibiting oxidative stress and reducing mitochondrial membrane potential. This study provided data support for the development and application of NA.
Collapse
Affiliation(s)
- Xiaojie Xu
- College of Clhemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dandan Zhao
- School of Forestry, Food science and engineering, Northeast Forestry University, Harbin 150040, China
| | - Chenglin Li
- College of Clhemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Huiying Yang
- College of Clhemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Qi Lu
- College of Clhemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China.
| | - Minghua Zhu
- Harbin Vocational & Technical College, Harbin 150040, China.
| | - Yihong Bao
- School of Forestry, Food science and engineering, Northeast Forestry University, Harbin 150040, China
| | - Chunxia Chen
- College of Clhemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
17
|
Song H, Ren S, Wang X, Hu Y, Xu M, Zhang H, Cao H, Huang K, Wang C, Guan X. Encapsulation of caffeic acid phenethyl ester by self-assembled sorghum peptide nanoparticles: Fabrication, storage stability and interaction mechanisms. Food Chem 2024; 453:139642. [PMID: 38788643 DOI: 10.1016/j.foodchem.2024.139642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/28/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024]
Abstract
Caffeic acid phenethyl ester (CAPE) is a naturally occurring phenolic compound with various biological activities. However, poor water solubility and storage stability limit its application. In this context, sorghum peptides were used to encapsulate CAPE. Sorghum peptides could self-assemble into regularly spherical nanoparticles (SPNs) by hydrophobic interaction and hydrogen bonds. Solubility of encapsulated CAPE was greatly increased, with 9.44 times higher than unencapsulated CAPE in water. Moreover, the storage stability of CAPE in aqueous solution was significantly improved by SPNs encapsulation. In vitro release study indicated that SPNs were able to delay CAPE release during the process of gastrointestinal digestion. Besides, fluorescence quenching analysis showed that a static quenching existed between SPNs and CAPE. The interaction between CAPE and SPNs occurred spontaneously, mainly driven by hydrophobic interactions. The above results suggested that SPNs encapsulation was an effective approach to improve the water solubility and storage stability of CAPE.
Collapse
Affiliation(s)
- Hongdong Song
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Shaoxia Ren
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xinyue Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yawen Hu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Mingda Xu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hang Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hongwei Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Kai Huang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China
| | - Chengtao Wang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Xiao Guan
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; National Grain Industry (Urban Grain and Oil Security) Technology Innovation Center, Shanghai 200093, China.
| |
Collapse
|
18
|
Ge Z, Wang D, Zhao W, Wang P, Dong M, Zhao X. Characterization of Sayram ketteki freeze-dried yogurt with fortified resveratrol. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2024; 18:7388-7401. [DOI: 10.1007/s11694-024-02725-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 06/22/2024] [Indexed: 01/06/2025]
|
19
|
Yarahmadi A, Dousti B, Karami-Khorramabadi M, Afkhami H. Materials based on biodegradable polymers chitosan/gelatin: a review of potential applications. Front Bioeng Biotechnol 2024; 12:1397668. [PMID: 39157438 PMCID: PMC11327468 DOI: 10.3389/fbioe.2024.1397668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/04/2024] [Indexed: 08/20/2024] Open
Abstract
Increased mass manufacturing and the pervasive use of plastics in many facets of daily life have had detrimental effects on the environment. As a result, these worries heighten the possibility of climate change due to the carbon dioxide emissions from burning conventional, non-biodegradable polymers. Accordingly, biodegradable gelatin and chitosan polymers are being created as a sustainable substitute for non-biodegradable polymeric materials in various applications. Chitosan is the only naturally occurring cationic alkaline polysaccharide, a well-known edible polymer derived from chitin. The biological activities of chitosan, such as its antioxidant, anticancer, and antimicrobial qualities, have recently piqued the interest of researchers. Similarly, gelatin is a naturally occurring polymer derived from the hydrolytic breakdown of collagen protein and offers various medicinal advantages owing to its unique amino acid composition. In this review, we present an overview of recent studies focusing on applying chitosan and gelatin polymers in various fields. These include using gelatin and chitosan as food packaging, antioxidants and antimicrobial properties, properties encapsulating biologically active substances, tissue engineering, microencapsulation technology, water treatment, and drug delivery. This review emphasizes the significance of investigating sustainable options for non-biodegradable plastics. It showcases the diverse uses of gelatin and chitosan polymers in tackling environmental issues and driving progress across different industries.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Behrooz Dousti
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Mahdi Karami-Khorramabadi
- Department of Mechanical Engineering, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Alborz, Iran
| |
Collapse
|
20
|
Pei J, Palanisamy CP, Natarajan PM, Umapathy VR, Roy JR, Srinivasan GP, Panagal M, Jayaraman S. Curcumin-loaded polymeric nanomaterials as a novel therapeutic strategy for Alzheimer's disease: A comprehensive review. Ageing Res Rev 2024; 99:102393. [PMID: 38925479 DOI: 10.1016/j.arr.2024.102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/18/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Alzheimer's disease (AD) stands as a formidable challenge in modern medicine, characterized by progressive neurodegeneration, cognitive decline, and memory impairment. Despite extensive research, effective therapeutic strategies remain elusive. The antioxidant, anti-inflammatory, and neuroprotective properties of curcumin, found in turmeric, have demonstrated promise. The poor bioavailability and rapid systemic clearance of this drug limit its clinical application. This comprehensive review explores the potential of curcumin-loaded polymeric nanomaterials as an innovative therapeutic avenue for AD. It delves into the preparation and characteristics of diverse polymeric nanomaterial platforms, including liposomes, micelles, dendrimers, and polymeric nanoparticles. Emphasis is placed on how these platforms enhance curcumin's bioavailability and enable targeted delivery to the brain, addressing critical challenges in AD treatment. Mechanistic insights reveal how these nanomaterials modulate key AD pathological processes, including amyloid-beta aggregation, tau phosphorylation, oxidative stress, and neuroinflammation. The review also highlighted the preclinical studies demonstrate reduced amyloid-beta plaques and neuroinflammation, alongside improved cognitive function, while clinical trials show promise in enhancing curcumin's bioavailability and efficacy in AD. Additionally, it addresses the challenges of clinical translation, such as regulatory issues, large-scale production, and long-term stability. By synthesizing recent advancements, this review underscores the potential of curcumin-loaded polymeric nanomaterials to offer a novel and effective therapeutic approach for AD, aiming to guide future research and development in this field.
Collapse
Affiliation(s)
- JinJin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Prabhu Manickam Natarajan
- Department of Clinical Sciences, Center of Medical and Bio-allied Health Sciences and Research, College of Dentistry, Ajman University, Ajman, United Arab Emirates
| | - Vidhya Rekha Umapathy
- Department of Public Health Dentistry, Thai Moogambigai Dental College and Hospital, Dr. MGR Educational and Research Institute, Chennai 600 107, Tamil Nadu, India
| | - Jeane Rebecca Roy
- Department of Anatomy, Bhaarath Medical College and hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu 600073, India
| | - Guru Prasad Srinivasan
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Mani Panagal
- Department of Biotechnology, Annai College of Arts and Science, Kovilacheri, Kumbakonam, Tamil Nadu 612503, India
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India.
| |
Collapse
|
21
|
Wang X, Chen C, Bao Y, Wang Y, Leonidovna Strakh Y. Encapsulation of three different types of polyphenols in casein using a customized pH-driven method: Preparation and characterization. Food Res Int 2024; 189:114547. [PMID: 38876606 DOI: 10.1016/j.foodres.2024.114547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/14/2024] [Accepted: 05/25/2024] [Indexed: 06/16/2024]
Abstract
Phenolic compounds represent natural compounds endowed with diverse biological functionalities. However, their inherent limitations, characterized by poor water solubility and low oral bioavailability, limit their broader applications. Encapsulation delivery systems are emerging as a remedy, able to ameliorate these limitations by enhancing the stability and solubility of phenolic compounds. In this study, a novel, customized pH-driven approach was developed by determining the optimal deprotonation and protonation points of three different types of polyphenols: ferulic acid, resveratrol, and rhein. The polyphenols were successfully encapsulated in a casein carrier. The solubility, stability, LogD, and LogS curves of the three polyphenols at different pH values were analyzed to identify the optimal deprotonation points for ferulic acid (pH 9), resveratrol (pH 11), and rhein (pH 10). Based on these findings, three different nanoparticles were prepared. The encapsulation efficiencies of the three phenolic compounds were 95.86%, 94.62%, and 94.18%, respectively, and the casein nanoparticles remained stable at room temperature for seven days. FTIR spectroscopy, fluorescence spectroscopy, and molecular docking study substantiated the encapsulation of phenolic compounds within the hydrophobic core of casein-based complexes, facilitated by hydrogen bonding interactions and hydrophobic interactions. Furthermore, the analysis of antioxidant activity elucidated that casein nanoparticles heightened both the water solubility and antioxidant efficacy of the phenolic compounds. This customized encapsulation technique, by establishing a transitional pH value, resolves the challenges of chemical instability and facile degradation of polyphenols under alkaline conditions in the application process of pH-driven methods. It presents novel insights for the application of polyphenols in the domains of food and biomedical fields.
Collapse
Affiliation(s)
- Xiao Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chao Chen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, Jiangsu 210023, China.
| | - Yulong Bao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yuqing Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yana Leonidovna Strakh
- Belarusian State Technological University, Minsk, Belarus; Central Botanical Garden of the National Academy of Sciences of Belarus, Minsk, Belarus
| |
Collapse
|
22
|
Aghelinejad A, Golshan Ebrahimi N. Investigation of delivery mechanism of curcumin loaded in a core of zein with a double-layer shell of chitosan and alginate. Heliyon 2024; 10:e33205. [PMID: 39044993 PMCID: PMC11263642 DOI: 10.1016/j.heliyon.2024.e33205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/22/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024] Open
Abstract
The pursuit of efficient drug delivery systems has led to innovative approaches such as matrix and core-shell structures. This study explores these systems with a focus on enhancing the delivery and stability of curcumin, a bioactive compound with therapeutic potential. Matrix systems using zein protein were fabricated through coaxial airflow extrusion with a vibration generator, while core-shell systems were produced using concentric nozzles. Double-layer reservoir systems were also formed by coating chitosan-shelled structures with an alginate solution. Encapsulation of curcumin within each system was confirmed through FTIR and optical microscope analysis, followed by efficiency evaluation, which was measured approximately 86.5 ± 0.7 % for the matrix systems and 90 ± 0.8 % for the core-shell systems. Moreover, the particle sizes of matrix systems were measured in the range of 2000-2100 mμ and the particle sizes of single-layer and double-layer reservoir systems were in the ranges of 1600-1700 mμ and 1500-1700 mμ, respectively. The study investigated the stability of curcumin in these systems under various environmental conditions, including exposure to light, heat, pH variations, ions, and storage. Results demonstrated that the presence of multiple layers significantly enhanced the drug's stability. Afterwards, swelling and drug release profiles were assessed in simulated gastric, intestinal, and colon fluids. The swelling of the matrix, single-layer and double-layer reservoir systems after 29 h were 127.4 %, 146.9 % and 144 %, respectively. The matrix system showed 68.7 % drug release after 29 h, whereas single-layer chitosan-shelled and double-layer chitosan/alginate-shelled reservoir systems released 51.8 % and 45.6 % of the drug, respectively. The release mechanism was explored using zero-order, Korsmeyer-Peppas, and Kopcha kinetic models. Comparative analysis of the experimental results and model fittings indicated a deviation from Fickian diffusion, with erosion becoming more pronounced with each additional layer. In conclusion, the system with a zein core and double-layer chitosan/alginate shell displayed effective drug release regulation and enhanced stability of curcumin, making it a promising candidate for efficient drug delivery.
Collapse
Affiliation(s)
- Amitis Aghelinejad
- Polymer Engineering Department, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | - Nadereh Golshan Ebrahimi
- Polymer Engineering Department, Chemical Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
23
|
Sanmugam A, Sellappan LK, Sridharan A, Manoharan S, Sairam AB, Almansour AI, Veerasundaram S, Kim HS, Vikraman D. Chitosan-Integrated Curcumin-Graphene Oxide/Copper Oxide Hybrid Nanocomposites for Antibacterial and Cytotoxicity Applications. Antibiotics (Basel) 2024; 13:620. [PMID: 39061302 PMCID: PMC11273410 DOI: 10.3390/antibiotics13070620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
This study deals with the facile synthesis of a single-pot chemical technique for chitosan-curcumin (CUR)-based hybrid nanocomposites with nanostructured graphene oxide (GO) and copper oxide (CuO) as the antibacterial and cytotoxic drugs. The physicochemical properties of synthesized hybrid nanocomposites such as CS-GO, CS-CuO, CS-CUR-GO, and CS-CUR-GO/CuO were confirmed with various advanced tools. Moreover, the in vitro drug release profile of the CS-CUR-GO/CuO nanocomposite exhibited sustained and controlled release during different time intervals. Also, the antibacterial activity of the CS-CUR-GO/CuO hybrid nanocomposite presented the maximum bactericidal effect against Staphylococcus aureus and Escherichia coli pathogens. The hybrid nanocomposites revealed improved cytotoxicity behaviour against cultured mouse fibroblast cells (L929) via cell adhesion, DNA damage, and proliferation. Thus, the chitosan-based hybrid nanocomposites offer rich surface area, biocompatibility, high oxidative stress, and bacterial cell disruption functionalities as a potential candidate for antibacterial and cytotoxicity applications.
Collapse
Affiliation(s)
- Anandhavelu Sanmugam
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Sriperumbudur 602117, India; (A.S.); (A.B.S.)
| | - Logesh Kumar Sellappan
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, Kandi 502285, India;
| | | | - Swathy Manoharan
- Department of Biomedical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, India;
| | - Ananda Babu Sairam
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Sriperumbudur 602117, India; (A.S.); (A.B.S.)
| | - Abdulrahman I. Almansour
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Subha Veerasundaram
- Department of Chemistry, R.M.D. Engineering College, Tiruvallur 601206, India;
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea;
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea;
| |
Collapse
|
24
|
Liu J, Yu H, Kong J, Ge X, Sun Y, Mao M, Wang DY, Wang Y. Preparation, characterization, stability, and controlled release of chitosan-coated zein/shellac nanoparticles for the delivery of quercetin. Food Chem 2024; 444:138634. [PMID: 38330608 DOI: 10.1016/j.foodchem.2024.138634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/15/2024] [Accepted: 01/28/2024] [Indexed: 02/10/2024]
Abstract
Quercetin, an essential flavonoid compound, exhibits diverse biological activities including anti-inflammatory and antioxidant effects. Nevertheless, due to its inadequate solubility in water and vulnerability to degradation, pure quercetin is constrainedly utilized in pharmaceutical formulations and functional foods. Considering the existing scarcity of nanoparticles consisted of zein and hydrophobic biopolymers, this study developed a quercetin-loaded nanoencapsulation based on zein, shellac, and chitosan (QZSC). When the mass ratio of zein to chitosan was 4:1, the encapsulation efficiency of QZSC reached 74.95%. The ability of QZSC for scavenging DPPH radicals and ABTS radicals increased from 59.2% to 75.4% and from 47.0% to 70.2%, respectively, compared to Quercetin. For QZSC, the maximum release amount of quercetin reached 59.62% in simulated gastric fluid and 81.64% in simulated intestinal fluid, achieving controlled and regulated release in vitro. In summary, this study offers a highly promising encapsulation strategy for hydrophobic bioactive substances that are prone to instability.
Collapse
Affiliation(s)
- Jiawen Liu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Hongrui Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Jianglong Kong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Xiaohan Ge
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Yuting Sun
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Meiru Mao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - David Y Wang
- Hong Kong Baptist University, Hong Kong Special Administrative Region; Hong Kong Baptist University Institute of Research and Continuing Education, Shenzhen Virtual University Park, Shenzhen, 518057, China.
| | - Yi Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
25
|
de Souza JB, de Lacerda Coriolano D, dos Santos Silva RC, da Costa Júnior SD, de Almeida Campos LA, Cavalcanti IDL, Lira Nogueira MCDB, Pereira VRA, Brelaz-de-Castro MCA, Cavalcanti IMF. Ceftazidime and Usnic Acid Encapsulated in Chitosan-Coated Liposomes for Oral Administration against Colorectal Cancer-Inducing Escherichia coli. Pharmaceuticals (Basel) 2024; 17:802. [PMID: 38931469 PMCID: PMC11206294 DOI: 10.3390/ph17060802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Escherichia coli has been associated with the induction of colorectal cancer (CRC). Thus, combined therapy incorporating usnic acid (UA) and antibiotics such as ceftazidime (CAZ), co-encapsulated in liposomes, could be an alternative. Coating the liposomes with chitosan (Chi) could facilitate the oral administration of this nanocarrier. Liposomes were prepared using the lipid film hydration method, followed by sonication and chitosan coating via the drip technique. Characterization included particle size, polydispersity index, zeta potential, pH, encapsulation efficiency, and physicochemical analyses. The minimum inhibitory concentration and minimum bactericidal concentration were determined against E. coli ATCC 25922, NCTC 13846, and H10407 using the microdilution method. Antibiofilm assays were conducted using the crystal violet method. The liposomes exhibited sizes ranging from 116.5 ± 5.3 to 240.3 ± 3.5 nm and zeta potentials between +16.4 ± 0.6 and +28 ± 0.8 mV. The encapsulation efficiencies were 51.5 ± 0.2% for CAZ and 99.94 ± 0.1% for UA. Lipo-CAZ-Chi and Lipo-UA-Chi exhibited antibacterial activity, inhibited biofilm formation, and preformed biofilms of E. coli. The Lipo-CAZ-UA-Chi and Lipo-CAZ-Chi + Lipo-UA-Chi formulations showed enhanced activities, potentially due to co-encapsulation or combination effects. These findings suggest potential for in vivo oral administration in future antibacterial and antibiofilm therapies against CRC-inducing bacteria.
Collapse
Affiliation(s)
- Jaqueline Barbosa de Souza
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
| | - Davi de Lacerda Coriolano
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
| | - Rayza Camila dos Santos Silva
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
| | - Sérgio Dias da Costa Júnior
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
| | - Luís André de Almeida Campos
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
| | - Iago Dillion Lima Cavalcanti
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
- Laboratory of Nanotechnology, Biotechnology and Cell Culture (NanoBioCel), Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, PE, Brazil
| | - Mariane Cajubá de Britto Lira Nogueira
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
- Laboratory of Nanotechnology, Biotechnology and Cell Culture (NanoBioCel), Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, PE, Brazil
| | - Valéria Rêgo Alves Pereira
- Department of Immunology, Aggeu Magalhães Institute (IAM/FIOCRUZ), Federal University of Pernambuco (UFPE), Recife 50670-420, PE, Brazil;
| | - Maria Carolina Accioly Brelaz-de-Castro
- Department of Immunology, Aggeu Magalhães Institute (IAM/FIOCRUZ), Federal University of Pernambuco (UFPE), Recife 50670-420, PE, Brazil;
- Laboratory of Parasitology, Academic Center of Vitoria (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, PE, Brazil
| | - Isabella Macário Ferro Cavalcanti
- Institute Keizo Asami (iLIKA), Federal University of Pernambuco (UFPE), Recife 50670-901, PE, Brazil; (J.B.d.S.); (D.d.L.C.); (R.C.d.S.S.); (S.D.d.C.J.); (L.A.d.A.C.); (I.D.L.C.); (M.C.d.B.L.N.)
- Laboratory of Microbiology and Immunology, Academic Center of Vitória (CAV), Federal University of Pernambuco (UFPE), Vitória de Santo Antão 55608-680, PE, Brazil
| |
Collapse
|
26
|
Xie F, Zhu Z, Zeng J, Xia Y, Zhang H, Wu Y, Song Z, Ai L. Fabrication of zein-tamarind seed polysaccharide-curcumin nanocomplexes: their characterization and impact on alleviating colitis and gut microbiota dysbiosis in mice. Food Funct 2024; 15:2563-2576. [PMID: 38353040 DOI: 10.1039/d3fo04594c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
In this work, a zein-tamarind seed polysaccharide (TSP) co-delivery system was fabricated using an anti-solvent precipitation method. The formation mechanism, characterization, and effect on alleviating colitis and gut microbiota dysbiosis in mice of zein-TSP-curcumin (Z/T-Cur) nanocomplexes were investigated. Hydrogen bonding and the hydrophobic effect played a key role in the formation of Z/T-Cur nanocomplexes, and the interactions were spontaneous and driven by enthalpy. The encapsulation efficiency, loading capacity, and bioavailability increased from 60.8% (Zein-Cur) to 91.7% (Z/T-Cur1:1), from 6.1% (Zein-Cur) to 18.3% (Z/T-Cur1:1), and from 4.7% (Zein-Cur) to 20.0% (Z/T-Cur1:1), respectively. The Z/T-Cur significantly alleviated colitis symptoms in DSS-treated mice. Additionally, the prepared nanocomplexes rebalanced the gut microbiota composition of colitis mice by increasing the abundance of Akkermansia. Odoribacter and Monoglobus were rich in the Z-T-Cur treatment group, and Turicibacter and Bifidobacterium were rich in the zein-TSP treatment group. This study demonstrated that the TSP could be helpful in the targeted drug delivery system.
Collapse
Affiliation(s)
- Fan Xie
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Zengjin Zhu
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Jingyi Zeng
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Hui Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yan Wu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zibo Song
- Yunnan Maoduoli Group Food Co., Ltd, Yuxi 653100, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
27
|
El-Dakroury WA, Zewail MB, Asaad GF, Abdallah HMI, Shabana ME, Said AR, Doghish AS, Azab HA, Amer DH, Hassan AE, Sayed AS, Samra GM, Sallam AAM. Fexofenadine-loaded chitosan coated solid lipid nanoparticles (SLNs): A potential oral therapy for ulcerative colitis. Eur J Pharm Biopharm 2024; 196:114205. [PMID: 38311187 DOI: 10.1016/j.ejpb.2024.114205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
The targeting and mucoadhesive features of chitosan (CS)-linked solid lipid nanoparticles (SLNs) were exploited to efficiently deliver fexofenadine (FEX) into the colon, forming a novel and potential oral therapeutic option for ulcerative colitis (UC) treatment. Different FEX-CS-SLNs with varied molecular weights of CS were prepared and optimized. Optimized FEX-CS-SLNs exhibited 229 ± 6.08 nm nanometric size, 36.3 ± 3.18 mV zeta potential, 64.9 % EE, and a controlled release profile. FTIR, DSC, and TEM confirmed good drug entrapment and spherical particles. Mucoadhesive properties of FEX-CS-SLNs were investigated through mucin incubation and exhibited considerable mucoadhesion. The protective effect of FEX-pure, FEX-market, and FEX-CS-SLNs against acetic acid-induced ulcerative colitis in rats was examined. Oral administration of FEX-CS-SLNs for 14 days before ulcerative colitis induction reversed UC symptoms and almost restored the intestinal mucosa to normal integrity and inhibited Phosphatidylinositol-3 kinase (73.6 %), protein kinase B (73.28 %), and elevated nuclear factor erythroid 2-related factor 2 (185.9 %) in colonic tissue. Additionally, FEX-CS-SLNs inhibited tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6) to (70.79 % & 72.99 %) in colonic tissue. The ameliorative potential of FEX-CS-SLNs outperformed that of FEX-pure and FEX-market. The exceptional protective effect of FEX-CS-SLNs makes it a potentially effective oral system for managing ulcerative colitis.
Collapse
Affiliation(s)
- Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Moataz B Zewail
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Gihan F Asaad
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Heba M I Abdallah
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Marwa E Shabana
- Pathology Department, National Research Centre, Dokki, Giza, Egypt
| | - Abdelrahman R Said
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Cairo, Egypt; Department of Biochemistry and Molecular Biology Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11651, Cairo, Egypt
| | - Hadeer A Azab
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Dalia H Amer
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed E Hassan
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Alaa S Sayed
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ghada M Samra
- Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City 11829, Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Ain-Shams University, Abassia, Cairo 11566, Egypt
| |
Collapse
|
28
|
Gohari AS, Nateghi L, Rashidi L, Berenji S. Preparation and characterization of sodium caseinate-apricot tree gum/gum Arabic nanocomplex for encapsulation of conjugated linoleic acid (CLA). Int J Biol Macromol 2024; 261:129773. [PMID: 38296128 DOI: 10.1016/j.ijbiomac.2024.129773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/01/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Nanocomplexes (NCs) were formed through electrostatic complexation theory using Na-caseinate (NaCa), gum Arabic (GA), and Prunus armeniaca L. gum exudates (PAGE), aimed to encapsulate Conjugated linoleic acid (CLA). Encapsulation was optimized using NaCa (0.1 %-0.5 %), GA/PAGE (0.1 %-0.9 %) and CLA (1 %-5 %), and central composite design (CCD) was employed for numerical optimization. The optimum conditions for NC containing GA (NCGA) were 0.336 %, 0.437 %, and 3.10 % and for NC containing PAGE (NCPAGE) were 0.403 %, 0.730 %, and 4.177 %, of NaCa, GA/PAGE, and CLA, respectively. EE and particle size were 92.46 % and 52.89 nm for NCGA while 88.23 % and 54.76 nm for NCPAGE, respectively. Fourier transform infrared spectroscopy (FTIR) indicated that CLA was physically entrapped. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) confirmed the electrostatic complex formation. The elastic modulus was predominant for NCGA and NCPAGE dispersions while the complex viscosity of NCPAGE suspension was slightly higher than that of NCGA. The CLA in NCGA-CLA and NCPAGE-CLA exhibited higher oxidative stability than free CLA during 30 days of storage without a significant difference between the results of CLA oxidative stability tests obtained for NCs. Consequently, NCPAGE and NCGA could be applied for the entrapment and protection of nutraceuticals in the food industry.
Collapse
Affiliation(s)
- Alireza Saeed Gohari
- Department of Food Science and Technology, Faculty of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Leila Nateghi
- Department of Food Science and Technology, Faculty of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran.
| | - Ladan Rashidi
- Research Center of Food Technology and Agricultural Products, Standard Research Institute (SRI), P.O. Box 31745-139, Karaj, Iran.
| | - Shila Berenji
- Department of Food Science and Technology, Faculty of Agriculture, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| |
Collapse
|
29
|
Zou X, Zhao S, Xu K, Fang C, Shen Z, Yan C, Dong L, Qin Z, Zhao X, Zhao J, Liang X. Eco-friendly microalgae harvesting using lipid-cored particles with a comparative life-cycle assessment. BIORESOURCE TECHNOLOGY 2024; 392:130023. [PMID: 37972903 DOI: 10.1016/j.biortech.2023.130023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/13/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
This study proposed an innovative approach using lipid-cored particles (LCPs) aimed at addressing the efficiency, cost, and environmental impact challenges in microalgae harvesting. Cetyltrimethylammonium bromide (CTAB) and chitosan (CS) were used to modify LCPs and to optimize efficiency and investigate the mechanisms of harvesting with Chlorella vulgaris. Results showed that a maximum harvesting efficiency of 97.14 % was achieved using CS-LCPs. Zeta potential and microscopic images revealed the presence of embedded CS-LCPs within microalgal flocs. Fractal dimension data suggested looser aggregates of CS-LCPs and Chlorella vulgaris, corroborated by Excitation-emission matrices (EEM) analysis further confirmation the presence of bridging networks. Moreover, life cycle assessment of five harvesting methods pointed freshwater ecotoxicity potential (FEP) and terrestrial ecotoxicity potential (TEP) as major environmental impacts, mainly from flocculant use, carrier production, and electricity consumption. Notably, LCPs showed the lowest global warming potential (GWP) at 1.54 kg CO2 eq, offering a viable, low-carbon, cost-effective harvesting alternative.
Collapse
Affiliation(s)
- Xiaotong Zou
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, China; School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, 710048, China.
| | - Shaohua Zhao
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, China
| | - Kaiwei Xu
- College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Changqing Fang
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, China; School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an, 710048, China.
| | - Zhou Shen
- School of Life and Environmental Sciences, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Chang Yan
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, China
| | - Liming Dong
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, China
| | - Zhaoyue Qin
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, China
| | - Xinyue Zhao
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, China
| | - Jiajia Zhao
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, China
| | - Xiongbo Liang
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an, 710048, China
| |
Collapse
|
30
|
Li Q, Zhang L, Liao W, Liu J, Gao Y. Effects of chitosan molecular weight and mass ratio with natural blue phycocyanin on physiochemical and structural stability of protein. Int J Biol Macromol 2024; 256:128508. [PMID: 38040145 DOI: 10.1016/j.ijbiomac.2023.128508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Phycocyanin (PC), an algae-extracted colorant, has extensive applications for its water-solubility and fresh blue shade. When PC is added to acidified media, dispersions are prone to aggregate and decolorize into cloudy systems. For palliating this matter, chitosan with high, medium, and low molecular weights (HMC, MMC, and LMC) were adopted in PC dispersions, and their protective effects were compared based on physiochemical stabilities. The optimal mass ratio between chitosan and PC was identified as 1:5 based on preliminary evaluations and was supported by the higher ζ-potential (31.0-32.1 mV), lower turbidity (39.6-43.6 NTU), and polyacrylamide gel electrophoresis results. Through interfacial and antioxidant capacity analyses, LMC was found to display a higher affinity to PC, which was also confirmed by SEM images and the maximum increase in transition temperature of their complex (155.70 °C) in DSC measurements. The mechanism of electrostatic interaction reinforced by hydrophobic effects and hydrogen bonding was elucidated by FT-IR and Raman spectroscopy. Further comprehensive stability evaluations revealed that, without light exposure, LMC kept PC from internal secondary structure to external blueness luster to the maximum extent. While with light exposure, LMC was not so flexible as HMC, to protect chromophores from attack of free radicals.
Collapse
Affiliation(s)
- Qike Li
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; Department of Food Science, College of Agriculture & Life Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Liang Zhang
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wenyan Liao
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jinfang Liu
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| | - Yanxiang Gao
- Key Laboratory of Healthy Beverages, China National Light Industry Council, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
31
|
Zhang H, Song T, Kang R, Ren F, Liu J, Wang J. Plant bioactive compounds alleviate photoinduced retinal damage and asthenopia: Mechanisms, synergies, and bioavailability. Nutr Res 2023; 120:115-134. [PMID: 37980835 DOI: 10.1016/j.nutres.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/21/2023]
Abstract
The retina, an important tissue of the eye, is essential in visual transmission and sustaining adequate eyesight. However, oxidative stress and inflammatory reactions can harm retinal structure and function. Recent studies have demonstrated that exposure to light can induce oxidative stress and inflammatory reactions in retinal cells, thereby facilitating the progression of retinal damage-related diseases and asthenopia. Plant bioactive compounds such as anthocyanin, curcumin, resveratrol, lutein, zeaxanthin, epigallocatechin gallate, and quercetin are effective in alleviating retinal damage and asthenopia. Their strong oxidation resistance and unique chemical structure can prevent the retina from producing reactive oxygen species and regulating eye muscle relaxation, thus alleviating retinal damage and asthenopia. Additionally, the combination of these active ingredients produces a stronger antioxidant effect. Consequently, understanding the mechanism of retinal damage caused by light and the regulation mechanism of bioactive compounds can better protect the retina and reduce asthenopia.
Collapse
Affiliation(s)
- Huijuan Zhang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
| | - Tiancong Song
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Rui Kang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Feiyue Ren
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Jie Liu
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Jing Wang
- China-Canada Joint Lab of Food Nutrition and Health (Beijing), Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
| |
Collapse
|
32
|
Jiang M, Gan Y, Li Y, Qi Y, Zhou Z, Fang X, Jiao J, Han X, Gao W, Zhao J. Protein-polysaccharide-based delivery systems for enhancing the bioavailability of curcumin: A review. Int J Biol Macromol 2023; 250:126153. [PMID: 37558039 DOI: 10.1016/j.ijbiomac.2023.126153] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/15/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
In recent years, a wide attention has been paid to curcumin in medicine due to its excellent physiological activities, including anti-inflammatory, antioxidant, antibacterial, and nerve damage repair. However, the low solubility, poor stability, and rapid metabolism of curcumin make its bioavailability low, which affects its development and application. As a unique biopolymer structure, protein-polysaccharide (PRO-POL)-based delivery system has the advantages of low toxicity, biocompatibility, biodegradability, and delayed release. Many scholars have investigated PRO-POL -based delivery systems to improve the bioavailability of curcumin. In this paper, we focus on the interactions between different proteins (e.g. casein, whey protein, soybean protein isolate, pea protein, zein, etc.) and polysaccharides (chitosan, sodium alginate, hyaluronic acid, pectin, etc.) and their effects on complexes diameter, surface charge, encapsulation drive, and release characteristics. The mechanism of the PRO-POL-based delivery system to enhance the bioavailability of curcumin is highlighted. In addition, the application of PRO-POL complexes loaded with curcumin is summarized, aiming to provide a reference for the construction and application of PRO-POL delivery systems.
Collapse
Affiliation(s)
- Mengyuan Jiang
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Yulu Gan
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Yongli Li
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Yuanzheng Qi
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Zhe Zhou
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Xin Fang
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Junjie Jiao
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Xiao Han
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Weijia Gao
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China
| | - Jinghui Zhao
- Department of Dental Implantology, Hospital of Stomatology Jilin University, Changchun 130021, China; Jilin Province Key Laboratory of Tooth Department and Bone Remodeling, Changchun 130021, China.
| |
Collapse
|
33
|
Wu Z, Tang X, Liu S, Li S, Zhao X, Wang Y, Wang X, Li H. Mechanism underlying joint loading and controlled release of β-carotene and curcumin by octenylsuccinated Gastrodia elata starch aggregates. Food Res Int 2023; 172:113136. [PMID: 37689900 DOI: 10.1016/j.foodres.2023.113136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/20/2023] [Accepted: 06/10/2023] [Indexed: 09/11/2023]
Abstract
This study aimed to fabricate a novel codelivery system to simultaneously load β-carotene and curcumin in a controlled and synergistic manner. We hypothesized that the aggregates of octenylsuccinated Gastrodia elata starch (OSGES) could efficiently load and control the release of β-carotene and curcumin in combination. Mechanisms underlying the self-assembly of OSGES, coloading, and corelease of β-carotene and curcumin by relevant aggregates were studied. The OSGES could form aggregates with a size of 120.2 nm containing hydrophobic domains surrounded by hydrophilic domains. For coloading, the increased solubilities were attributed to favorable interactions between β-carotene and curcumin as well as interactions with octenyl and starch moieties via hydrophobic and hydrogen-bond interactions, respectively. The β-carotene and curcumin molecules occupied the interior and periphery of hydrophobic domains of OSGES aggregates, respectively, and they did not exist in isolation but interacted with each other. The β-carotene and curcumin combination-loaded OSGES aggregates with a size of 310.5 nm presented a more compact structure than β-carotene-only and curcumin-only loaded OSGES aggregates with sizes of 463.5 and 202.9 nm respectively, suggesting that a transition from a loose cluster to a compact cluster was accompanied by coloading. During in vitro digestion, the joint effect of β-carotene and curcumin prolonged their release and increased their bioaccessibility due to competition between favorable hydrophobic and hydrogen-bond interactions and the unfavorable structure erosion and relaxation of the loaded aggregates. Therefore, OSGES aggregates were designed for the codelivery of β-carotene and curcumin, indicating their potential to be applied in functional foods and dietary supplements.
Collapse
Affiliation(s)
- Zhen Wu
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 400065, PR China; Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing 400065, PR China.
| | - Xin Tang
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 400065, PR China; Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing 400065, PR China
| | - Simei Liu
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 400065, PR China
| | - Sheng Li
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 400065, PR China; Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing 400065, PR China
| | - Xiaowan Zhao
- College of Light Industry and Materials, Chengdu Textile College, Chengdu 611731, PR China
| | - Yongde Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 400065, PR China; Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing 400065, PR China
| | - Xiaogang Wang
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 400065, PR China; Chongqing Key Laboratory of Chinese Medicine & Health Science, Chongqing 400065, PR China
| | - Hong Li
- National Key Laboratory of Market Supervision (Condiment Supervision Technology), Chongqing Institute for Food and Drug Control, Chongqing 401121, PR China.
| |
Collapse
|
34
|
Liu Y, Ma M, Yuan Y. The potential of curcumin-based co-delivery systems for applications in the food industry: Food preservation, freshness monitoring, and functional food. Food Res Int 2023; 171:113070. [PMID: 37330831 DOI: 10.1016/j.foodres.2023.113070] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
Currently, curcumin-based co-delivery systems are receiving widespread attention. However, a systematic summary of the possibility of curcumin-based co-delivery systems used for the food industry from multiple directions based on the functional characteristics of curcumin is lacking. This review details the different forms of curcumin-based co-delivery systems including the single system of nanoparticle, liposome, double emulsion, and multiple systems composed of different hydrocolloids. The structural composition, stability, encapsulation efficiency, and protective effects of these forms are discussed comprehensively. The functional characteristics of curcumin-based co-delivery systems are summarized, involving biological activity (antimicrobial and antioxidant), pH-responsive discoloration, and bioaccessibility/bioavailability. Correspondingly, potential applications for food preservation, freshness detection, and functional foods are introduced. In the future, more novel co-delivery systems for active ingredients and food matrices should be developed. Besides, the synergistic mechanisms between active ingredients, delivery carrier/active ingredient, and external physical condition/active ingredient should be explored. In conclusion, curcumin-based co-delivery systems have the potential to be widely used in the food industry.
Collapse
Affiliation(s)
- Yueyue Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mengjie Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yongkai Yuan
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
35
|
An J, Liu M, Din ZU, Xie F, Cai J. Toward function starch nanogels by self-assembly of polysaccharide and protein: From synthesis to potential for polyphenol delivery. Int J Biol Macromol 2023; 247:125697. [PMID: 37423442 DOI: 10.1016/j.ijbiomac.2023.125697] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Nanogels formed by self-assembly of natural proteins and polysaccharides have attracted great interest as potential carriers of bioactive molecules. Herein, we reported that carboxymethyl starch-lysozyme nanogels (CMS-Ly NGs) were prepared using carboxymethyl starch and lysozyme by green and facile electrostatic self-assembly, and the nanogels served as epigallocatechin gallate (EGCG) delivery systems. The dimensions and structure of the prepared starch-based nanogels (i.e., CMS-Ly NGs) were characterized by dynamic light scattering (DLS), ζ-potential, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD) and thermal gravimetric analyzer (TGA). FT-IR and 1H NMR spectra together confirmed the formation of CMS; FT-IR spectra confirmed the formation of CMS-Ly NGs; XRD spectra confirmed the disruption of the crystal structure of lysozyme after electrostatic self-assembly with CMS, and further confirmed the formation of nanogels. TGA demonstrated the thermal stability of nanogels. More importantly, the nanogels showed a high EGCG encapsulation rate of 80.0 ± 1.4 %. The CMS-Ly NGs encapsulated with EGCG exhibited regular spherical structure and stable particle size. Under the simulated gastrointestinal environmental conditions, CMS-Ly NGs encapsulated with EGCG showed the controlled release potential, which increased its utilization. Additionally, anthocyanins can also be encapsulated in CMS-Ly NGs and showed slow-release properties during gastrointestinal digestion in the same way. Cytotoxicity assay also demonstrated good biocompatibility between CMS-Ly NGs and CMS-Ly NGs encapsulated with EGCG. The findings of this research suggested the potential application of protein and polysaccharides-based nanogels in the delivery system of bioactive compounds.
Collapse
Affiliation(s)
- Jiejie An
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Mingzhu Liu
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Zia-Ud Din
- Department of Food Science and Nutrition, Women University Swabi, Swabi 23430, Khyber Pakhtunkhawa, Pakistan
| | - Fang Xie
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Jie Cai
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
36
|
Fu L, Tan S, Si R, Qiang Y, Wei H, Huang B, Shi M, Fang L, Fu J, Zeng S. Characterization, stability and antioxidant activity of curcumin nanocomplexes with soy protein isolate and pectin. Curr Res Food Sci 2023; 6:100530. [PMID: 37377496 PMCID: PMC10290990 DOI: 10.1016/j.crfs.2023.100530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Curcumin (Cur) has antioxidant, anti-inflammatory and other biological activities, but its poor stability, low water solubility and other defects limit the application. Herein, Cur was nanocomposited with soy isolate protein (SPI) and pectin (PE) for the first time and its characterization, bioavailability and antioxidant activity were discussed. The optimal encapsulation process of SPI-Cur-PE was as follow: the addition amount of PE was 4 mg, Cur was 0.6 mg and at pH of 7. It was observed by SEM that SPI-Cur-PE were partially aggregated. The average particle size of SPI-Cur-PE was 210.1 nm and the zeta potential was -31.99 mV. Through XRD, FT-IR and DSC analysis, the SPI-Cur-PE was formed through hydrophobic interaction and electrostatic interaction. The SPI-Cur-PE released more slowly in simulated gastrointestinal treatment and displayed higher photostability and thermal stability. SPI-Cur-PE, SPI-Cur and free Cur had scavenging activities for 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radicals.
Collapse
Affiliation(s)
- Lijuan Fu
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Suo Tan
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Ruiru Si
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Yueyue Qiang
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hang Wei
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Biao Huang
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Mengzhu Shi
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Ling Fang
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
| | - Jianwei Fu
- Institute of Quality Standards & Testing Technology for Agro-products, Fujian Academy of Agricultural Sciences/Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, 350003, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
37
|
Tripathi S, Mahra S, J V, Tiwari K, Rana S, Tripathi DK, Sharma S, Sahi S. Recent Advances and Perspectives of Nanomaterials in Agricultural Management and Associated Environmental Risk: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101604. [PMID: 37242021 DOI: 10.3390/nano13101604] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023]
Abstract
The advancement in nanotechnology has enabled a significant expansion in agricultural production. Agri-nanotechnology is an emerging discipline where nanotechnological methods provide diverse nanomaterials (NMs) such as nanopesticides, nanoherbicides, nanofertilizers and different nanoforms of agrochemicals for agricultural management. Applications of nanofabricated products can potentially improve the shelf life, stability, bioavailability, safety and environmental sustainability of active ingredients for sustained release. Nanoscale modification of bulk or surface properties bears tremendous potential for effective enhancement of agricultural productivity. As NMs improve the tolerance mechanisms of the plants under stressful conditions, they are considered as effective and promising tools to overcome the constraints in sustainable agricultural production. For their exceptional qualities and usages, nano-enabled products are developed and enforced, along with agriculture, in diverse sectors. The rampant usage of NMs increases their release into the environment. Once incorporated into the environment, NMs may threaten the stability and function of biological systems. Nanotechnology is a newly emerging technology, so the evaluation of the associated environmental risk is pivotal. This review emphasizes the current approach to NMs synthesis, their application in agriculture, interaction with plant-soil microbes and environmental challenges to address future applications in maintaining a sustainable environment.
Collapse
Affiliation(s)
- Sneha Tripathi
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Shivani Mahra
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Victoria J
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Kavita Tiwari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Shweta Rana
- Department of Physical and Natural Sciences, FLAME University, Pune 412115, India
| | - Durgesh Kumar Tripathi
- Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida 201313, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, India
| | - Shivendra Sahi
- Department of Biology, St. Joseph's University, 600 S. 43rd St., Philadelphia, PA 19104, USA
| |
Collapse
|
38
|
Li X, He Y, Zhang S, Gu Q, McClements DJ, Chen S, Liu X, Liu F. Lactoferrin-Based Ternary Composite Nanoparticles with Enhanced Dispersibility and Stability for Curcumin Delivery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18166-18181. [PMID: 36893425 DOI: 10.1021/acsami.2c20816] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Curcumin has been reported to exhibit free radical antioxidant, anti-inflammatory, and anticancer activities, which are beneficial for nutraceutical applications. However, its application for this purpose is limited by its poor water solubility, stability, and bioavailability. These problems can be overcome using food-grade colloidal particles that encapsulate, protect, and deliver curcumin. These colloidal particles can be assembled from structure-forming food components that may also exhibit protective effects, such as proteins, polysaccharides, and polyphenols. In this study, lactoferrin (LF), (-)-epigallocatechin gallate (EGCG), and hyaluronic acid (HA) were used to fabricate composite nanoparticles using a simple pH-shift method. We showed that curcumin could be successfully loaded into these LF-EGCG-HA nanoparticles (d = 145 nm). The encapsulation efficiency (86%) and loading capacity (5.8%) of curcumin within these nanoparticles were relatively high. Encapsulation improved the thermal, light, and storage stabilities of the curcumin. Moreover, the curcumin-loaded nanoparticles exhibited good redispersibility after dehydration. The in vitro digestion properties, cellular uptake, and anticancer effects of the curcumin-loaded nanoparticles were then explored. Compared to free curcumin, the bioaccessibility and cellular uptake of the curcumin were significantly improved after encapsulation in the nanoparticles. Furthermore, the nanoparticles significantly promoted the apoptosis of colorectal cancer cells. This study suggests that food-grade biopolymer nanoparticles can be used to improve the bioavailability and bioactivity of an important nutraceutical.
Collapse
Affiliation(s)
- Xueqi Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yiyang He
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Sairui Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingzhuo Gu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Shuai Chen
- School of Public Health, Wuhan University, Wuhan 430000, Hubei, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
39
|
Ghobadi N, Asoodeh A. Co-administration of curcumin with other phytochemicals improves anticancer activity by regulating multiple molecular targets. Phytother Res 2023; 37:1688-1702. [PMID: 36883534 DOI: 10.1002/ptr.7794] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023]
Abstract
Natural plant phytochemicals are effective against different types of diseases, including cancer. Curcumin, a powerful herbal polyphenol, exerts inhibitory effects on cancer cell proliferation, angiogenesis, invasion, and metastasis through interaction with different molecular targets. However, the clinical use of curcumin is limited due to poor solubility in water and metabolism in the liver and intestine. The synergistic effects of curcumin with some phytochemicals such as resveratrol, quercetin, epigallocatechin-3-gallate, and piperine can improve its clinical efficacy in cancer treatment. The present review specifically focuses on anticancer mechanisms related to the co-administration of curcumin with other phytochemicals, including resveratrol, quercetin, epigallocatechin-3-gallate, and piperine. According to the molecular evidence, the phytochemical combinations exert synergistic effects on suppressing cell proliferation, reducing cellular invasion, and inducing apoptosis and cell cycle arrest. This review also emphasizes the significance of the co-delivery vehicles-based nanoparticles of such bioactive phytochemicals that could improve their bioavailability and reduce their systemic dose. Further high-quality studies are needed to firmly establish the clinical efficacy of the phytochemical combinations.
Collapse
Affiliation(s)
- Niloofar Ghobadi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Ahmad Asoodeh
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
40
|
Chen J, Yao Y. Phytoglycogen to Enhance the Solubility and in-vitro Permeation of Resveratrol. FOOD BIOPHYS 2023; 18:1-10. [PMID: 37362010 PMCID: PMC10063939 DOI: 10.1007/s11483-023-09785-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023]
Abstract
This study investigated the capability of phytoglycogen (PG) to improve the water-soluble amount and bioavailability of resveratrol (RES). RES and PG were incorporated through co-solvent mixing and spray-drying to form PG-RES solid dispersions. The soluble amount of RES of PG-RES solid dispersions reached 289.6 μg/mL at PG:RES ratio of 50:1, compared with 45.6 μg/mL for RES alone. X-ray powder diffraction and Fourier-transform infrared spectroscopy tests suggested a significant reduction of RES crystallinity in PG-RES solid dispersions and the formation of hydrogen bonds between RES and PG. Caco-2 monolayer permeation tests showed that, at low RES loading concentrations (15 and 30 μg/mL), PG-RES solid dispersions achieved greater permeation of RES (0.60 and 1.32 μg/well, respectively) than RES alone (0.32 and 0.90 μg/well, respectively). At an RES loading of 150 μg/mL, PG-RES solid dispersion realized RES permeation of 5.89 μg/well, suggesting the potential of PG in enhancing the bioavailability of RES.
Collapse
Affiliation(s)
- Jingfan Chen
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907 United States
| | - Yuan Yao
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907 United States
| |
Collapse
|
41
|
Lin Y, Li C, Shi L, Wang L. Anthocyanins: Modified New Technologies and Challenges. Foods 2023; 12:foods12071368. [PMID: 37048188 PMCID: PMC10093405 DOI: 10.3390/foods12071368] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/05/2023] [Accepted: 03/08/2023] [Indexed: 04/14/2023] Open
Abstract
Anthocyanins are bioactive compounds belonging to the flavonoid class which are commonly applied in foods due to their attractive color and health-promoting benefits. However, the instability of anthocyanins leads to their easy degradation, reduction in bioactivity, and color fading in food processing, which limits their application and causes economic losses. Therefore, the objective of this review is to provide a systematic evaluation of the published research on modified methods of anthocyanin use. Modification technology of anthocyanins mainly includes chemical modification (chemical acylation, enzymatic acylation, and formation of pyran anthocyanidin), co-pigmentation, and physical modification (microencapsulation and preparation of pickering emulsion). Modification technology of anthocyanins can not only increase bioavailability and stability of anthocyanin but also can improve effects of anthocyanin on disease prevention and treatment. We also propose potential challenges and perspectives for diversification of anthocyanin-rich products for food application. Overall, integrated strategies are warranted for improving anthocyanin stabilization and promoting their further application in the food industry, medicine, and other fields.
Collapse
Affiliation(s)
- Yang Lin
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
- Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co., Ltd., Shaoxing 312000, China
- Changshan Agriculture Development Center, Changshan 324200, China
| | - Cong Li
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lejuan Shi
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lixia Wang
- Changshan Agriculture Development Center, Changshan 324200, China
| |
Collapse
|
42
|
Cheng H, Chen W, Jiang J, Khan MA, Wusigale, Liang L. A comprehensive review of protein-based carriers with simple structures for the co-encapsulation of bioactive agents. Compr Rev Food Sci Food Saf 2023; 22:2017-2042. [PMID: 36938993 DOI: 10.1111/1541-4337.13139] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/28/2023] [Accepted: 02/21/2023] [Indexed: 03/21/2023]
Abstract
The rational design and fabrication of edible codelivery carriers are important to develop functional foods fortified with a plurality of bioactive agents, which may produce synergistic effects in increasing bioactivity and functionality to target specific health benefits. Food proteins possess considerable functional attributes that make them suitable for the delivery of a single bioactive agent in a wide range of platforms. Among the different types of protein-based carriers, protein-ligand nanocomplexes, micro/nanoparticles, and oil-in-water (O/W) emulsions have increasingly attracted attention in the codelivery of multiple bioactive agents, due to the simple and convenient preparation procedure, high stability, matrix compatibility, and dosage flexibility. However, the successful codelivery of bioactive agents with diverse physicochemical properties by using these simple-structure carriers is a daunting task. In this review, some effective strategies such as combined functional properties of proteins, self-assembly, composite, layer-by-layer, and interfacial engineering are introduced to redesign the carrier structure and explore the encapsulation of multiple bioactive agents. It then highlights success stories and challenges in the co-encapsulation of multiple bioactive agents within protein-based carriers with a simple structure. The partition, protection, and release of bioactive agents in these protein-based codelivery carriers are considered and discussed. Finally, safety and application as well as challenges of co-encapsulated bioactive agents in the food industry are also discussed. This work provides a state-of-the-art overview of protein-based particles and O/W emulsions in co-encapsulating bioactive agents, which is essential for the design and development of novel functional foods containing multiple bioactive agents.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wanwen Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiang Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Wusigale
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
| | - Li Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
43
|
Fabrication of zein–carboxymethyl cellulose nanoparticles for co-delivery of quercetin and resveratrol. J FOOD ENG 2023. [DOI: 10.1016/j.jfoodeng.2022.111322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Zhong M, Sun Y, Song H, Liao Y, Qi B, Li Y. Dithiothreitol-induced reassembly of soybean lipophilic protein as a carrier for resveratrol: Preparation, structural characterization, and functional properties. Food Chem 2023; 399:133964. [PMID: 36029675 DOI: 10.1016/j.foodchem.2022.133964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/29/2022] [Accepted: 08/14/2022] [Indexed: 11/30/2022]
Abstract
We employed dithiothreitol (DTT) to reassemble soy lipophilic protein (LP) and increased its solubility for encapsulating resveratrol (Res); we subsequently added hydroxypropyl methylcellulose (HPMC) to further stabilize Res. Physicochemical characterization, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and spectral analysis revealed that DTT triggered the breakage and reassembly of the disulfide bond. Consequently, the solubility of LP increased from 38.64 % to 71.49 %, and the number of free sulfhydryl groups increased to 7.84 mol·g-1. Furthermore, the encapsulation efficiency and structure of reassembled LP nanoparticles loaded with Res were found to be closely related to the DTT concentration used for induction. When HPMC was added, the LP-Res complex demonstrated spontaneous self-assembly, and the pH and temperature stability of the Res in the nanoparticles improved. An in vitro digestion simulation revealed that the reassembled LP was an efficient carrier for Res delivery. Particularly, HPMC improved the bioavailability and sustained release of Res.
Collapse
Affiliation(s)
- Mingming Zhong
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yufan Sun
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Hanyu Song
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yi Liao
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; National Research Center of Soybean Engineering and Technology, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China.
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; National Research Center of Soybean Engineering and Technology, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150028, China.
| |
Collapse
|
45
|
Falsafi SR, Wang Y, Ashaolu TJ, Sharma M, Rawal S, Patel K, Askari G, Javanmard SH, Rostamabadi H. Biopolymer Nanovehicles for Oral Delivery of Natural Anticancer Agents. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202209419] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Indexed: 01/06/2025]
Abstract
AbstractCancer is the second leading cause of death throughout the world. Nature‐inspired anticancer agents (NAAs) that are a gift of nature to humanity have been extensively utilized in the alleviation/prevention of the disease due to their numerous pharmacological activities. While the oral route is an ideal and common way of drug administration, the application of NAAs through the oral pathway has been extremely limited owing to their inherent features, e.g., poor solubility, gastrointestinal (GI) instability, and low bioavailability. With the development of nano‐driven encapsulation strategies, polymeric vehicles, especially those with natural origins, have demonstrated a potent platform, which can professionally shield versatile NAAs against GI barricades and safely deliver them to the site of action. In this review, the predicament of orally delivering NAAs and the encapsulation strategy solutions based on biopolymer matrices are summarized. Proof‐of‐concept in vitro/in vivo results are also discussed for oral delivery of these agents by various biopolymer vehicles, which can be found so far from the literature. Last but not the least, the challenges and new opportunities in the field are highlighted.
Collapse
Affiliation(s)
- Seid Reza Falsafi
- Isfahan Endocrine and Metabolism Research Center Isfahan University of Medical Sciences Isfahan 81746‐73461 Iran
| | - Yong Wang
- School of Chemical Engineering UNSW Sydney Sydney NSW 2052 Australia
| | - Tolulope Joshua Ashaolu
- Institute of Research and Development Duy Tan University Da Nang 550000 Viet Nam
- Faculty of Environmental and Chemical Engineering Duy Tan University Da Nang 550000 Viet Nam
| | - Minaxi Sharma
- Laboratoire de Chimie verte et Produits Biobasés Haute Ecole Provinciale de Hainaut‐Condorcet Département AgroBioscience et Chimie 11, Rue de la Sucrerie 7800 ATH Belgium
- Department of Applied Biology University of Science and Technology Ri‐Bhoi Meghalaya 793101 India
| | - Shruti Rawal
- Department of Pharmaceutical Technology L.J. Institute of Pharmacy L J University Ahmedabad 382210 India
- Department of Pharmaceutics Institute of Pharmacy Nirma University S.G. Highway, Chharodi Ahmedabad Gujarat 382481 India
| | - Kaushika Patel
- Department of Pharmaceutical Technology L.J. Institute of Pharmacy L J University Ahmedabad 382210 India
| | - Gholamreza Askari
- Department of Community Nutrition School of Nutrition and Food Science Nutrition and Food Security Research Center Isfahan University of Medical Sciences Isfahan 81746‐73461 Iran
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center Cardiovascular Research Institute Isfahan University of Medical Isfahan 81746‐73461 Iran
| | - Hadis Rostamabadi
- Nutrition and Food Security Research Center Isfahan University of Medical Sciences Isfahan 81746‐73461 Iran
| |
Collapse
|
46
|
Zhao Y, Liu J, Zhang S, Wang Z, Jia H, Oda H, Li R. Fabrication and characterization of the H/J-type aggregates astaxanthin/bovine serum albumin/chitosan nanoparticles. Int J Biol Macromol 2022; 223:1186-1195. [PMID: 36347379 DOI: 10.1016/j.ijbiomac.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Astaxanthin is a natural liposoluble ketocarotenoid with various biological activities. Hydrophobic astaxanthin with C2h symmetry can self-assembly form H-type aggregates and J-type aggregates in hydrated polar solvents. However, astaxanthin and its aggregates are limited by its water insolubility and chemical instability. Here, the biological macromolecules bovine serum albumin (BSA) and chitosan were chosen as protein-polysaccharides based delivery systems for astaxanthin aggregates by molecular self-assembly method. The precise prepared H-ABC-NPs and J-ABC-NPs suspensions were both near spheres with hydrodynamic size around 281 ± 9 nm and 368 ± 5 nm and zeta potentials around +26 mV and +30 mV, respectively. Two types of astaxanthin aggregates were distinguished, water-dispersible, and stable in nanocarriers through UV-vis spectra observation. The encapsulation efficiency of the astaxanthin in ABC-NPs was above 90 %. Fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) analyses indicated that the dominant driving forces of ABC-NPs formation mainly included electrostatic, hydrophobic interactions and hydrogen bonding. These results offer an elegant opportunity for the protein-polysaccharides delivery systems, and provide an important perspective for applying novel water-dispersed astaxanthin aggregates products in nutrition and medicine industry.
Collapse
Affiliation(s)
- Yingyuan Zhao
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Laboratory of Nutritional Biochemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan.
| | - Junxia Liu
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Shengmeng Zhang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Zhaoxuan Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Huihui Jia
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Hiroaki Oda
- Laboratory of Nutritional Biochemistry, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Ruifang Li
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, PR China; Key Laboratory of Functional Molecules for Biomedical Research, Zhengzhou 450001, PR China
| |
Collapse
|
47
|
Elgadir MA, Mariod AA. Gelatin and Chitosan as Meat By-Products and Their Recent Applications. Foods 2022; 12:60. [PMID: 36613275 PMCID: PMC9818858 DOI: 10.3390/foods12010060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022] Open
Abstract
Meat by-products such as bones, skin, horns, hooves, feet, skull, etc., are produced from slaughtered mammals. Innovative solutions are very important to achieving sustainability and obtaining the added value of meat by-products with the least impact on the environment. Gelatin, which is obtained from products high in collagen, such as dried skin and bones, is used in food processing, and pharmaceuticals. Chitosan is derived from chitin and is well recognized as an edible polymer. It is a natural product that is non-toxic and environmentally friendly. Recently, chitosan has attracted researchers' interests due to its biological activities, including antimicrobial, antitumor, and antioxidant properties. In this review, article, we highlighted the recent available information on the application of gelatin and chitosan as antioxidants, antimicrobials, food edible coating, enzyme immobilization, biologically active compound encapsulation, water treatment, and cancer diagnosis.
Collapse
Affiliation(s)
- M. Abd Elgadir
- Department of Food Science & Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Abdalbasit Adam Mariod
- Department of Biology, College of Science and Arts, Alkamil Branch, University of Jeddah, Alkamil 21931, Saudi Arabia
- Indigenous Knowledge and Heritage Centre, Ghibaish College of Science and Technology, Ghibaish P.O. Box 100, Sudan
| |
Collapse
|
48
|
Sun Y, Wei Z, Xue C. Development of zein-based nutraceutical delivery systems: A systematic overview based on recent researches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
49
|
Wang Z, Xu J, Ji F, Liu H, Wang C, Luo S, Zheng Z. Glycated Soy β-Conglycinin Nanoparticle for Efficient Nanocarrier of Curcumin: Formation Mechanism, Thermal Stability, and Storage Stability. Foods 2022; 11:3703. [PMID: 36429295 PMCID: PMC9688953 DOI: 10.3390/foods11223703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
In this study, soy β-conglycinin (7S) was glycated with dextran of different molecular masses (40, 70, 150, 500 kDa) by the dry-heating method to synthesize soy β-conglycinin-dextran (7S-DEX) conjugates. The curcumin (Cur) loaded nanocomplexes were prepared based on 7S-DEX conjugates by a pH-driven self-assemble strategy to enhance the solubility and thermal stability of curcumin. Results showed that the 7S-150 conjugates (glycated from 7S with dextran (150 kDa)) could remain stable in the pH 3.0-pH 8.0 range and during the heat treatment. The results of fluorescence quenching and FT-IR indicated that glycated 7S were combined with curcumin mainly by hydrogen bonding and hydrophobic interaction, and 7S-150 conjugates had higher binding affinity than natural 7S for curcumin. The loading capacity (μg/mg) and encapsulation efficiency (EE%) of 7S-150-Cur were 16.06 μg/mg and 87.51%, respectively, significantly higher than that of 7S-Cur (12.41 μg/mg, 51.15%). The XRD spectrum showed that curcumin was exhibited in an amorphous state within the 7S-150-Cur nanocomplexes. After heating at 65 °C for 30 min, the curcumin retention of the 7S-150-Cur nanocomplexes was about 1.4 times higher than that of free curcumin. The particle size of 7S-150-Cur nanocomplexes was stable (in the range of 10-100 nm) during the long storage time (21 days).
Collapse
Affiliation(s)
- Zijun Wang
- Key Laboratory for Agricultural Products, Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Jingjing Xu
- Key Laboratory for Agricultural Products, Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Fuyun Ji
- Key Laboratory for Agricultural Products, Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Huihui Liu
- Key Laboratory for Agricultural Products, Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Chuyan Wang
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Shuizhong Luo
- Key Laboratory for Agricultural Products, Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| | - Zhi Zheng
- Key Laboratory for Agricultural Products, Processing of Anhui Province, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China
| |
Collapse
|
50
|
Liang X, Cheng W, Liang Z, Zhan Y, McClements DJ, Hu K. Co-Encapsulation of Tannic Acid and Resveratrol in Zein/Pectin Nanoparticles: Stability, Antioxidant Activity, and Bioaccessibility. Foods 2022; 11:3478. [PMID: 36360091 PMCID: PMC9656218 DOI: 10.3390/foods11213478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/25/2022] [Accepted: 11/01/2022] [Indexed: 09/10/2023] Open
Abstract
Hydrophilic tannic acid and hydrophobic resveratrol were successfully co-encapsulated in zein nanoparticles prepared using antisolvent precipitation and then coated with pectin by electrostatic deposition. The encapsulation efficiencies of the tannic acid and resveratrol were 51.5 ± 1.9% and 77.2 ± 3.2%, respectively. The co-encapsulated nanoparticles were stable against aggregation at the investigated pH range of 2.0 to 8.0 when heated at 80 °C for 2 h and when the NaCl concentration was below 50 mM. The co-encapsulated tannic acid and resveratrol exhibited stronger in vitro antioxidant activity than ascorbic acid, as determined by 1,1-diphenyl-2-picrylhydrazyl free radical (DPPH·) and 2,2'-azinobis (3-ethylberizothiazoline-6-sulfonic acid) radical cation (ABTS+·) scavenging assays. The polyphenols-loaded nanoparticles significantly decreased the malondialdehyde (MDA) concentration and increased the superoxide dismutase (SOD) and catalase (CAT) activities in peroxide-treated human hepatoma cells (HepG2). An in vitro digestion model was used to study the gastrointestinal fate of the nanoparticles. In the stomach, encapsulation inhibited tannic acid release, but promoted resveratrol release. However, in the small intestine, it led to a relatively high bioaccessibility of 76% and 100% for resveratrol and tannic acid, respectively. These results suggest that pectin-coated zein nanoparticles have the potential for the co-encapsulation of both polar and nonpolar nutraceuticals or drugs.
Collapse
Affiliation(s)
- Xiao Liang
- Food Science School, Guangdong Pharmaceutical University, Zhongshan 528458, China
- Clinical Medicine Department, Guangdong Maoming Health Vocational College, Maoming 525400, China
| | - Wanting Cheng
- Food Science School, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Zhanhong Liang
- Food Science School, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Yiling Zhan
- Food Science School, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | | | - Kun Hu
- Food Science School, Guangdong Pharmaceutical University, Zhongshan 528458, China
| |
Collapse
|