1
|
Bartlett JA, Huntemann ED, Krishnamurthy S, Hartwig SM, Pewa A, Thurman AL, Chimenti MS, Taylor EB, Varga SM, McCray PB. CF airway epithelia display exaggerated host defense responses and prolonged cilia loss during RSV infection. J Cyst Fibros 2025:S1569-1993(25)00055-4. [PMID: 39956716 DOI: 10.1016/j.jcf.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/31/2025] [Accepted: 02/04/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND In individuals with cystic fibrosis (CF), respiratory viral infections frequently result in hospitalization and have been linked to secondary bacterial infection and colonization, highlighting viral infections as possible contributors to CF lung disease progression. We hypothesized that expression of antiviral host defense genes is dysregulated in CF airway epithelia. METHODS We infected primary CF and Non-CF airway epithelia with respiratory syncytial virus (RSV) and characterized their responses at 12 hr, 24 hr, 48 hr, 72 hr, and 120 hr post infection (hpi) by RNA sequencing (RNAseq). RESULTS Our analysis revealed strikingly different gene expression profiles for the CF and Non-CF epithelia over the course of the infection. While both CF and Non-CF cells exhibited an early signature for interferon signaling and antiviral defense pathways, this response was relatively exaggerated and sustained in CF epithelia. We also observed, in both genotypes, a transient downregulation of cilia-associated genes and loss of ciliary activity by 72 hpi. Interestingly, recovery of cilia activity was delayed in the CF epithelia. CONCLUSIONS These findings further our understanding of innate immune dysfunction in the CF airway epithelium and suggest that virus-induced cilia injury may further compromise host defenses in CF airways.
Collapse
Affiliation(s)
- Jennifer A Bartlett
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Eric D Huntemann
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Sateesh Krishnamurthy
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Stacey M Hartwig
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Alvin Pewa
- Fraternal Order of Eagles Diabetes Research Center Metabolomics Core Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Andrew L Thurman
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Michael S Chimenti
- Iowa Institute of Human Genetics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Eric B Taylor
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Steven M Varga
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Pathology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - Paul B McCray
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
2
|
Alnajjar S, Larios-Mora A, Van-Geelen A, Gallup J, Koul A, Rigaux P, Roymans D, Ackermann M. Therapeutic efficacy of JNJ-49214698, an RSV fusion inhibitor, in RSV-infected neonatal lambs. J Gen Virol 2024; 105:002056. [PMID: 39661432 PMCID: PMC11634040 DOI: 10.1099/jgv.0.002056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/20/2024] [Indexed: 12/12/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of respiratory infection, hospitalization and death in infants worldwide. No fully effective RSV therapy using direct antivirals is marketed. Since clinical efficacy data from naturally infected patients for such antivirals are not available yet, animal studies are indispensable to predict therapeutic intervention. Here, we report the impact of an RSV fusion inhibitor, JNJ-49214698, on severe RSV-associated acute lower respiratory tract infection (ALRTI) in neonatal lambs. Randomized animals were treated once daily with 25 mg/kg JNJ-49214698, starting either before RSV infection, 1 day post-infection or as late as peak lung viral load on Day 3 post-infection. Treatment efficacy was assessed by scoring clinical signs of illness, development of RSV-induced gross and microscopic lung lesions and measuring virus titres in the lungs. Treatment with JNJ-49214698 was very effective in all treatment groups. Even in animals for which treatment was delayed until peak viral load was reached, a reduced amount and severity of gross and microscopic lesions, as well as RSV titres and RNA levels, were found. These results strongly suggest that treatment with small-molecule fusion inhibitors is an effective strategy to treat patients who are diagnosed with an RSV-induced ALRTI.
Collapse
Affiliation(s)
- Sarhad Alnajjar
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK
- Lambcure, LLC, Portland, OR, USA
| | - Alejandro Larios-Mora
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | | | | | - Anil Koul
- Respiratory Infections Discovery, Janssen Infectious Diseases, Beerse, Belgium
| | - Peter Rigaux
- Respiratory Infections Discovery, Janssen Infectious Diseases, Beerse, Belgium
| | - Dirk Roymans
- Respiratory Infections Discovery, Janssen Infectious Diseases, Beerse, Belgium
| | | |
Collapse
|
3
|
Zhang G, Zhao B, Liu J. The Development of Animal Models for Respiratory Syncytial Virus (RSV) Infection and Enhanced RSV Disease. Viruses 2024; 16:1701. [PMID: 39599816 PMCID: PMC11598872 DOI: 10.3390/v16111701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The development of immunoprophylactic products against respiratory syncytial virus (RSV) has resulted in notable advancements, leading to an increased demand for preclinical experiments and placing greater demands on animal models. Nevertheless, the field of RSV research continues to face the challenge of a lack of ideal animal models. Despite the demonstration of efficacy in animal studies, numerous RSV vaccine candidates have been unsuccessful in clinical trials, primarily due to the lack of suitable animal models. The most commonly utilized animal models for RSV research are cotton rats, mice, lambs, and non-human primates. These animals have been extensively employed in mechanistic studies and in the development and evaluation of vaccines and therapeutics. However, each model only exemplifies some, but not all, aspects of human RSV disease. The aim of this study was to provide a comprehensive summary of the disease symptoms, viral replication, pathological damage, and enhanced RSV disease (ERD) conditions across different RSV animal models. Furthermore, the advantages and disadvantages of each model are discussed, with the intention of providing a valuable reference for related RSV research.
Collapse
Affiliation(s)
| | - Binbin Zhao
- NHC Key Laboratory of Human Disease Comparative Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China;
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100021, China;
| |
Collapse
|
4
|
Cai L, Xu H, Cui Z. Factors Limiting the Translatability of Rodent Model-Based Intranasal Vaccine Research to Humans. AAPS PharmSciTech 2022; 23:191. [PMID: 35819736 PMCID: PMC9274968 DOI: 10.1208/s12249-022-02330-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022] Open
Abstract
The intranasal route of vaccination presents an attractive alternative to parenteral routes and offers numerous advantages, such as the induction of both mucosal and systemic immunity, needle-free delivery, and increased patient compliance. Despite demonstrating promising results in preclinical studies, however, few intranasal vaccine candidates progress beyond early clinical trials. This discrepancy likely stems in part from the limited predictive value of rodent models, which are used frequently in intranasal vaccine research. In this review, we explored the factors that limit the translatability of rodent-based intranasal vaccine research to humans, focusing on the differences in anatomy, immunology, and disease pathology between rodents and humans. We also discussed approaches that minimize these differences and examined alternative animal models that would produce more clinically relevant research.
Collapse
Affiliation(s)
- Lucy Cai
- University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, USA
| | - Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, 2409 University Ave., A1900, Austin, Texas, 78712, USA
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, 2409 University Ave., A1900, Austin, Texas, 78712, USA.
| |
Collapse
|
5
|
Roberts LB, Berkachy R, Wane M, Patel DF, Schnoeller C, Lord GM, Gounaris K, Ryffel B, Quesniaux V, Darby M, Horsnell WGC, Selkirk ME. Differential Regulation of Allergic Airway Inflammation by Acetylcholine. Front Immunol 2022; 13:893844. [PMID: 35711456 PMCID: PMC9196131 DOI: 10.3389/fimmu.2022.893844] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/03/2022] [Indexed: 01/14/2023] Open
Abstract
Acetylcholine (ACh) from neuronal and non-neuronal sources plays an important role in the regulation of immune responses and is associated with the development of several disease pathologies. We have previously demonstrated that group 2 innate lymphoid cell (ILC2)-derived ACh is required for optimal type 2 responses to parasitic infection and therefore sought to determine whether this also plays a role in allergic inflammation. RoraCre+ChatLoxP mice (in which ILC2s cannot synthesize ACh) were exposed to an allergenic extract of the fungus Alternaria alternata, and immune responses in the airways and lung tissues were analyzed. Airway neutrophilia and expression of the neutrophil chemoattractants CXCL1 and CXCL2 were enhanced 24 h after exposure, suggesting that ILC2-derived ACh plays a role in limiting excessive pulmonary neutrophilic inflammation. The effect of non-selective depletion of ACh was examined by intranasal administration of a stable parasite-secreted acetylcholinesterase. Depletion of airway ACh in this manner resulted in a more profound enhancement of neutrophilia and chemokine expression, suggesting multiple cellular sources for the release of ACh. In contrast, depletion of ACh inhibited Alternaria-induced activation of ILC2s, suppressing the expression of IL-5, IL-13, and subsequent eosinophilia. Depletion of ACh reduced macrophages with an alternatively activated M2 phenotype and an increase in M1 macrophage marker expression. These data suggest that ACh regulates allergic airway inflammation in several ways, enhancing ILC2-driven eosinophilia but suppressing neutrophilia through reduced chemokine expression.
Collapse
Affiliation(s)
- Luke B. Roberts
- Department of Life Sciences, Imperial College London, London, United Kingdom,School of Immunology and Microbial Sciences, King’s College London, Great Maze Pond, London, United Kingdom,*Correspondence: Luke B. Roberts, ; Murray E. Selkirk,
| | - Rita Berkachy
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Madina Wane
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Dhiren F. Patel
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Corinna Schnoeller
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Graham M. Lord
- School of Immunology and Microbial Sciences, King’s College London, Great Maze Pond, London, United Kingdom,Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Kleoniki Gounaris
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Bernhard Ryffel
- Laboratory of Molecular and Experimental Immunology and Neurogenetics, UMR 7355, CNRS-University of Orleans and Le Studium Institute for Advanced Studies, Rue Dupanloup, Orléans, France
| | - Valerie Quesniaux
- Laboratory of Molecular and Experimental Immunology and Neurogenetics, UMR 7355, CNRS-University of Orleans and Le Studium Institute for Advanced Studies, Rue Dupanloup, Orléans, France
| | - Matthew Darby
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - William G. C. Horsnell
- Laboratory of Molecular and Experimental Immunology and Neurogenetics, UMR 7355, CNRS-University of Orleans and Le Studium Institute for Advanced Studies, Rue Dupanloup, Orléans, France,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa,College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Murray E. Selkirk
- Department of Life Sciences, Imperial College London, London, United Kingdom,*Correspondence: Luke B. Roberts, ; Murray E. Selkirk,
| |
Collapse
|
6
|
Walsh P, Chaigneau FRC, Lebedev M, Mutua V, McEligot H, Lam SHF, Hwang B, Bang H, Gershwin LJ. Validating a bovine model for lung ultrasound of bronchiolitis. J Ultrasound 2022; 25:611-624. [PMID: 35067896 PMCID: PMC8784226 DOI: 10.1007/s40477-021-00635-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 10/28/2021] [Indexed: 02/06/2023] Open
Affiliation(s)
- Paul Walsh
- Pediatric Emergency Medicine, Sutter Medical Center Sacramento, 2825 Capitol Avenue, Sacramento, CA, 95816, USA.
| | - Francisco R Carvallo Chaigneau
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, USA
- California Animal Health and Food Safety Laboratory, San Bernardino Branch, 105 W Central Ave, San Bernardino, CA, 92408, USA
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24060, USA
| | - Maxim Lebedev
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - Victoria Mutua
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - Heather McEligot
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - Samuel H F Lam
- Pediatric Emergency Medicine, Sutter Medical Center Sacramento, 2825 Capitol Avenue, Sacramento, CA, 95816, USA
| | - Benjamin Hwang
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, USA
| | - Heejung Bang
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Laurel J Gershwin
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA, 95616, USA.
| |
Collapse
|
7
|
Thakur N, Conceicao C, Isaacs A, Human S, Modhiran N, McLean RK, Pedrera M, Tan TK, Rijal P, Townsend A, Taylor G, Young PR, Watterson D, Chappell KJ, Graham SP, Bailey D. Micro-fusion inhibition tests: quantifying antibody neutralization of virus-mediated cell-cell fusion. J Gen Virol 2021; 102:jgv001506. [PMID: 33054904 PMCID: PMC8116787 DOI: 10.1099/jgv.0.001506] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Although enveloped viruses canonically mediate particle entry through virus-cell fusion, certain viruses can spread by cell-cell fusion, brought about by receptor engagement and triggering of membrane-bound, viral-encoded fusion proteins on the surface of cells. The formation of pathogenic syncytia or multinucleated cells is seen in vivo, but their contribution to viral pathogenesis is poorly understood. For the negative-strand paramyxoviruses respiratory syncytial virus (RSV) and Nipah virus (NiV), cell-cell spread is highly efficient because their oligomeric fusion protein complexes are active at neutral pH. The recently emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has also been reported to induce syncytia formation in infected cells, with the spike protein initiating cell-cell fusion. Whilst it is well established that fusion protein-specific antibodies can block particle attachment and/or entry into the cell (canonical virus neutralization), their capacity to inhibit cell-cell fusion and the consequences of this neutralization for the control of infection are not well characterized, in part because of the lack of specific tools to assay and quantify this activity. Using an adapted bimolecular fluorescence complementation assay, based on a split GFP-Renilla luciferase reporter, we have established a micro-fusion inhibition test (mFIT) that allows the identification and quantification of these neutralizing antibodies. This assay has been optimized for high-throughput use and its applicability has been demonstrated by screening monoclonal antibody (mAb)-mediated inhibition of RSV and NiV fusion and, separately, the development of fusion-inhibitory antibodies following NiV vaccine immunization in pigs. In light of the recent emergence of coronavirus disease 2019 (COVID-19), a similar assay was developed for SARS-CoV-2 and used to screen mAbs and convalescent patient plasma for fusion-inhibitory antibodies. Using mFITs to assess antibody responses following natural infection or vaccination is favourable, as this assay can be performed entirely at low biocontainment, without the need for live virus. In addition, the repertoire of antibodies that inhibit cell-cell fusion may be different to those that inhibit particle entry, shedding light on the mechanisms underpinning antibody-mediated neutralization of viral spread.
Collapse
Affiliation(s)
- Nazia Thakur
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Carina Conceicao
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Ariel Isaacs
- University of Queensland, Brisbane, Queensland 4071, Australia
| | - Stacey Human
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Naphak Modhiran
- University of Queensland, Brisbane, Queensland 4071, Australia
| | - Rebecca K McLean
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Miriam Pedrera
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Tiong Kit Tan
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Pramila Rijal
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Alain Townsend
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Geraldine Taylor
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Paul R Young
- University of Queensland, Brisbane, Queensland 4071, Australia
| | | | | | - Simon P Graham
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| | - Dalan Bailey
- The Pirbright Institute, Ash Road, Pirbright, Woking, GU24 0NF, UK
| |
Collapse
|
8
|
Groves HT, Higham SL, Moffatt MF, Cox MJ, Tregoning JS. Respiratory Viral Infection Alters the Gut Microbiota by Inducing Inappetence. mBio 2020; 11:e03236-19. [PMID: 32071269 PMCID: PMC7029140 DOI: 10.1128/mbio.03236-19] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 01/09/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory viral infections are extremely common, but their impacts on the composition and function of the gut microbiota are poorly understood. We previously observed a significant change in the gut microbiota after viral lung infection. Here, we show that weight loss during respiratory syncytial virus (RSV) or influenza virus infection was due to decreased food consumption, and that the fasting of mice altered gut microbiota composition independently of infection. While the acute phase tumor necrosis factor alpha (TNF-α) response drove early weight loss and inappetence during RSV infection, this was not sufficient to induce changes in the gut microbiota. However, the depletion of CD8+ cells increased food intake and prevented weight loss, resulting in a reversal of the gut microbiota changes normally observed during RSV infection. Viral infection also led to changes in the fecal gut metabolome, with a significant shift in lipid metabolism. Sphingolipids, polyunsaturated fatty acids (PUFAs), and the short-chain fatty acid (SCFA) valerate were all increased in abundance in the fecal metabolome following RSV infection. Whether this and the impact of infection-induced anorexia on the gut microbiota are part of a protective anti-inflammatory response during respiratory viral infections remains to be determined.IMPORTANCE The gut microbiota has an important role in health and disease: gut bacteria can generate metabolites that alter the function of immune cells systemically. Understanding the factors that can lead to changes in the gut microbiome may help to inform therapeutic interventions. This is the first study to systematically dissect the pathway of events from viral lung infection to changes in gut microbiota. We show that the cellular immune response to viral lung infection induces inappetence, which in turn alters the gut microbiome and metabolome. Strikingly, there was an increase in lipids that have been associated with the resolution of disease. This opens up new paths of investigation: first, what is the (presumably secreted) factor made by the T cells that can induce inappetence? Second, is inappetence an adaptation that accelerates recovery from infection, and if so, does the microbiome play a role in this?
Collapse
Affiliation(s)
- Helen T Groves
- Mucosal Infection and Immunity Group, Section of Virology, Department of Medicine, St Mary's Campus, Imperial College London, London, United Kingdom
| | - Sophie L Higham
- Mucosal Infection and Immunity Group, Section of Virology, Department of Medicine, St Mary's Campus, Imperial College London, London, United Kingdom
| | - Miriam F Moffatt
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
- Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, United Kingdom
| | - Michael J Cox
- National Heart & Lung Institute, Imperial College London, London, United Kingdom
- Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Trust, London, United Kingdom
| | - John S Tregoning
- Mucosal Infection and Immunity Group, Section of Virology, Department of Medicine, St Mary's Campus, Imperial College London, London, United Kingdom
| |
Collapse
|
9
|
Navarro T, Ramos J, Ruíz de Arcaute M, González J. Predisposing factors inducing ovine respiratory complex in intensive-reared lambs. Small Rumin Res 2019. [DOI: 10.1016/j.smallrumres.2019.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
10
|
Looi K, Evans DJ, Garratt LW, Ang S, Hillas JK, Kicic A, Simpson SJ. Preterm birth: Born too soon for the developing airway epithelium? Paediatr Respir Rev 2019; 31:82-88. [PMID: 31103368 DOI: 10.1016/j.prrv.2018.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/31/2018] [Accepted: 11/23/2018] [Indexed: 12/17/2022]
Abstract
Birth prior to term interrupts the normal development of the respiratory system and consequently results in poor respiratory outcomes that persist throughout childhood. The mechanisms underpinning these poor respiratory outcomes are not well understood, but intrinsic abnormalities within the airway epithelium may be a contributing factor. Current evidence suggests that the airway epithelium is both structurally and functionally abnormal after preterm birth, with reports of epithelial thickening and goblet cell hyperplasia in addition to increased inflammation and apoptosis in the neonatal intensive care unit. However, studies focusing on the airway epithelium are limited and many questions remain unanswered; including whether abnormalities are a direct result of interrupted development, a consequence of exposure to inflammatory stimuli in the perinatal period or a combination of the two. In addition, the difficulty of accessing airway tissue has resulted in the majority of evidence being collected in the pre-surfactant era which may not reflect contemporary preterm birth. This review examines the consequences of preterm birth on the airway epithelium and explores the clinical relevance of currently available models whilst highlighting the need to develop a clinically relevant in vitro model to help further our understanding of the airway epithelium in preterm birth.
Collapse
Affiliation(s)
- Kevin Looi
- Telethon Kids Institute, Nedlands 6009, Western Australia, Australia
| | - Denby J Evans
- Telethon Kids Institute, Nedlands 6009, Western Australia, Australia
| | - Luke W Garratt
- Telethon Kids Institute, Nedlands 6009, Western Australia, Australia
| | - Sherlynn Ang
- Telethon Kids Institute, Nedlands 6009, Western Australia, Australia
| | - Jessica K Hillas
- Telethon Kids Institute, Nedlands 6009, Western Australia, Australia
| | - Anthony Kicic
- Telethon Kids Institute, Nedlands 6009, Western Australia, Australia; Occupation and Environment, School of Public Health, Curtin University, Bentley 6845, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, WA 6009, Australia; UWA Centre for Child Health Research & School of Biomedical Sciences, Nedlands 6009, Western Australia, Australia
| | - Shannon J Simpson
- Telethon Kids Institute, Nedlands 6009, Western Australia, Australia.
| |
Collapse
|
11
|
Altamirano-Lagos MJ, Díaz FE, Mansilla MA, Rivera-Pérez D, Soto D, McGill JL, Vasquez AE, Kalergis AM. Current Animal Models for Understanding the Pathology Caused by the Respiratory Syncytial Virus. Front Microbiol 2019; 10:873. [PMID: 31130923 PMCID: PMC6510261 DOI: 10.3389/fmicb.2019.00873] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 04/04/2019] [Indexed: 12/14/2022] Open
Abstract
The human respiratory syncytial virus (hRSV) is the main etiologic agent of severe lower respiratory tract infections that affect young children throughout the world, associated with significant morbidity and mortality, becoming a serious public health problem globally. Up to date, no licensed vaccines are available to prevent severe hRSV-induced disease, and the generation of safe-effective vaccines has been a challenging task, requiring constant biomedical research aimed to overcome this ailment. Among the difficulties presented by the study of this pathogen, it arises the fact that there is no single animal model that resembles all aspects of the human pathology, which is due to the specificity that this pathogen has for the human host. Thus, for the study of hRSV, different animal models might be employed, depending on the goal of the study. Of all the existing models, the murine model has been the most frequent model of choice for biomedical studies worldwide and has been of great importance at contributing to the development and understanding of vaccines and therapies against hRSV. The most notable use of the murine model is that it is very useful as a first approach in the development of vaccines or therapies such as monoclonal antibodies, suggesting in this way the direction that research could have in other preclinical models that have higher maintenance costs and more complex requirements in its management. However, several additional different models for studying hRSV, such as other rodents, mustelids, ruminants, and non-human primates, have been explored, offering advantages over the murine model. In this review, we discuss the various applications of animal models to the study of hRSV-induced disease and the advantages and disadvantages of each model, highlighting the potential of each model to elucidate different features of the pathology caused by the hRSV infection.
Collapse
Affiliation(s)
- María José Altamirano-Lagos
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fabián E. Díaz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Miguel Andrés Mansilla
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniela Rivera-Pérez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Daniel Soto
- Sección Biotecnología, Instituto de Salud Pública de Chile, Santiago, Chile
| | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Abel E. Vasquez
- Sección Biotecnología, Instituto de Salud Pública de Chile, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Providencia, Santiago, Chile
| | - Alexis M. Kalergis
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Millennium Institute on Immunology and Immunotherapy, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
12
|
Guerra-Maupome M, Palmer MV, McGill JL, Sacco RE. Utility of the Neonatal Calf Model for Testing Vaccines and Intervention Strategies for Use against Human RSV Infection. Vaccines (Basel) 2019; 7:vaccines7010007. [PMID: 30626099 PMCID: PMC6466205 DOI: 10.3390/vaccines7010007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/26/2018] [Accepted: 01/04/2019] [Indexed: 01/23/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a significant cause of pediatric respiratory tract infections. It is estimated that two-thirds of infants are infected with RSV during the first year of life and it is one of the leading causes of death in this age group worldwide. Similarly, bovine RSV is a primary viral pathogen in cases of pneumonia in young calves and plays a significant role in bovine respiratory disease complex. Importantly, naturally occurring infection of calves with bovine RSV shares many features in common with human RSV infection. Herein, we update our current understanding of RSV infection in cattle, with particular focus on similarities between the calf and human infection, and the recent reports in which the neonatal calf has been employed for the development and testing of vaccines and therapeutics which may be applied to hRSV infection in humans.
Collapse
Affiliation(s)
- Mariana Guerra-Maupome
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Mitchell V Palmer
- Infectious Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA.
| | - Jodi L McGill
- Department of Veterinary Microbiology and Preventative Medicine, Iowa State University, Ames, IA 50011, USA.
| | - Randy E Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA 50010, USA.
| |
Collapse
|
13
|
Muralidharan A, Li C, Wang L, Li X. Immunopathogenesis associated with formaldehyde-inactivated RSV vaccine in preclinical and clinical studies. Expert Rev Vaccines 2016; 16:351-360. [DOI: 10.1080/14760584.2017.1260452] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Abenaya Muralidharan
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologics, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Changgui Li
- Department of Viral Vaccine III, National Institutes for Food and Drug Control and WHO Collaborating Center for Standardization and Evaluation of Biologicals, Beijing, PR China
| | - Lisheng Wang
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Xuguang Li
- Centre for Biologics Evaluation, Biologics and Genetic Therapies Directorate, Health Canada and WHO Collaborating Center for Standardization and Evaluation of Biologics, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
14
|
Cheung MB, Sampayo-Escobar V, Green R, Moore ML, Mohapatra S, Mohapatra SS. Respiratory Syncytial Virus-Infected Mesenchymal Stem Cells Regulate Immunity via Interferon Beta and Indoleamine-2,3-Dioxygenase. PLoS One 2016; 11:e0163709. [PMID: 27695127 PMCID: PMC5047639 DOI: 10.1371/journal.pone.0163709] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 09/13/2016] [Indexed: 12/25/2022] Open
Abstract
Respiratory syncytial virus (RSV) has been reported to infect human mesenchymal stem cells (MSCs) but the consequences are poorly understood. MSCs are present in nearly every organ including the nasal mucosa and the lung and play a role in regulating immune responses and mediating tissue repair. We sought to determine whether RSV infection of MSCs enhances their immune regulatory functions and contributes to RSV-associated lung disease. RSV was shown to replicate in human MSCs by fluorescence microscopy, plaque assay, and expression of RSV transcripts. RSV-infected MSCs showed differentially altered expression of cytokines and chemokines such as IL-1β, IL6, IL-8 and SDF-1 compared to epithelial cells. Notably, RSV-infected MSCs exhibited significantly increased expression of IFN-β (~100-fold) and indoleamine-2,3-dioxygenase (IDO) (~70-fold) than in mock-infected MSCs. IDO was identified in cytosolic protein of infected cells by Western blots and enzymatic activity was detected by tryptophan catabolism assay. Treatment of PBMCs with culture supernatants from RSV-infected MSCs reduced their proliferation in a dose dependent manner. This effect on PBMC activation was reversed by treatment of MSCs with the IDO inhibitors 1-methyltryptophan and vitamin K3 during RSV infection, a result we confirmed by CRISPR/Cas9-mediated knockout of IDO in MSCs. Neutralizing IFN-β prevented IDO expression and activity. Treatment of MSCs with an endosomal TLR inhibitor, as well as a specific inhibitor of the TLR3/dsRNA complex, prevented IFN-β and IDO expression. Together, these results suggest that RSV infection of MSCs alters their immune regulatory function by upregulating IFN-β and IDO, affecting immune cell proliferation, which may account for the lack of protective RSV immunity and for chronicity of RSV-associated lung diseases such as asthma and COPD.
Collapse
Affiliation(s)
- Michael B. Cheung
- James A Haley Veterans Affairs Hospital, Tampa, Florida, United States of America
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
| | - Viviana Sampayo-Escobar
- James A Haley Veterans Affairs Hospital, Tampa, Florida, United States of America
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
| | - Ryan Green
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
| | - Martin L. Moore
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Children’s Healthcare of Atlanta, Atlanta, Georgia, United States of America
| | - Subhra Mohapatra
- James A Haley Veterans Affairs Hospital, Tampa, Florida, United States of America
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
| | - Shyam S. Mohapatra
- James A Haley Veterans Affairs Hospital, Tampa, Florida, United States of America
- Department of Molecular Medicine, University of South Florida Morsani College of Medicine, Tampa, Florida, United States of America
- University of South Florida College of Pharmacy, Tampa, Florida, United States of America
| |
Collapse
|
15
|
Jorquera PA, Anderson L, Tripp RA. Understanding respiratory syncytial virus (RSV) vaccine development and aspects of disease pathogenesis. Expert Rev Vaccines 2015; 15:173-87. [PMID: 26641318 DOI: 10.1586/14760584.2016.1115353] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Respiratory syncytial virus (RSV) is the most important cause of lower respiratory tract infections causing bronchiolitis and some mortality in young children and the elderly. Despite decades of research there is no licensed RSV vaccine. Although significant advances have been made in understanding the immune factors responsible for inducing vaccine-enhanced disease in animal models, less information is available for humans. In this review, we discuss the different types of RSV vaccines and their target population, the need for establishing immune correlates for vaccine efficacy, and how the use of different animal models can help predict vaccine efficacy and clinical outcomes in humans.
Collapse
Affiliation(s)
- Patricia A Jorquera
- a Department of Infectious Disease, College of Veterinary Medicine , University of Georgia , Athens , GA , Georgia
| | - Lydia Anderson
- a Department of Infectious Disease, College of Veterinary Medicine , University of Georgia , Athens , GA , Georgia
| | - Ralph A Tripp
- a Department of Infectious Disease, College of Veterinary Medicine , University of Georgia , Athens , GA , Georgia
| |
Collapse
|
16
|
Abraha HY, Lanctôt KL, Paes B. Risk of respiratory syncytial virus infection in preterm infants: reviewing the need for prevention. Expert Rev Respir Med 2015; 9:779-99. [PMID: 26457970 DOI: 10.1586/17476348.2015.1098536] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Premature infants are at substantial risk for a spectrum of morbidities that are gestational age dependent. Respiratory syncytial virus (RSV) infection is most common in the first two years of life with the highest burden in children aged <6 months. Preterm infants ≤35 weeks' gestation are handicapped by incomplete immunological and pulmonary maturation and immature premorbid lung function with the added risk of bronchopulmonary dysplasia. Superimposed RSV infection incites marked neutrophilic airway inflammation and innate immunological responses that further compromise normal airway modeling. This review addresses the epidemiology and burden of RSV disease, focusing on the preterm population. Risk factors that determine RSV-disease severity and hospitalization and the impact on healthcare resource utilization and potential long-term respiratory sequelae are discussed. The importance of disease prevention and the evidence-based rationale for prophylaxis with palivizumab is explored, while awaiting the development of a universal vaccine.
Collapse
Affiliation(s)
- Haben Y Abraha
- a Medical Outcomes and Research in Economics (MORE®) Research Group, Sunnybrook Health Sciences Centre , University of Toronto , Toronto , Ontario , Canada
| | - Krista L Lanctôt
- a Medical Outcomes and Research in Economics (MORE®) Research Group, Sunnybrook Health Sciences Centre , University of Toronto , Toronto , Ontario , Canada
| | - Bosco Paes
- b Division of Neonatology, Department of Pediatrics , McMaster University , Hamilton , Ontario , Canada
| |
Collapse
|
17
|
Gerdts V, Wilson HL, Meurens F, van Drunen Littel - van den Hurk S, Wilson D, Walker S, Wheler C, Townsend H, Potter AA. Large Animal Models for Vaccine Development and Testing. ILAR J 2015; 56:53-62. [DOI: 10.1093/ilar/ilv009] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
18
|
Persson BD, Jaffe AB, Fearns R, Danahay H. Respiratory syncytial virus can infect basal cells and alter human airway epithelial differentiation. PLoS One 2014; 9:e102368. [PMID: 25033192 PMCID: PMC4102526 DOI: 10.1371/journal.pone.0102368] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 06/18/2014] [Indexed: 12/30/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of morbidity and mortality worldwide, causing severe respiratory illness in infants and immune compromised patients. The ciliated cells of the human airway epithelium have been considered to be the exclusive target of RSV, although recent data have suggested that basal cells, the progenitors for the conducting airway epithelium, may also become infected in vivo. Using either mechanical or chemical injury models, we have demonstrated a robust RSV infection of p63+ basal cells in air-liquid interface (ALI) cultures of human bronchial epithelial cells. In addition, proliferating basal cells in 2D culture were also susceptible to RSV infection. We therefore tested the hypothesis that RSV infection of this progenitor cell would influence the differentiation status of the airway epithelium. RSV infection of basal cells on the day of seeding (MOI≤0.0001), resulted in the formation of an epithelium that showed a profound loss of ciliated cells and gain of secretory cells as assessed by acetylated α-tubulin and MUC5AC/MUC5B immunostaining, respectively. The mechanism driving the switch in epithelial phenotype is in part driven by the induced type I and type III interferon response that we demonstrate is triggered early following RSV infection. Neutralization of this response attenuates the RSV-induced loss of ciliated cells. Together, these data show that through infection of proliferating airway basal cells, RSV has the potential to influence the cellular composition of the airway epithelium. The resulting phenotype might be expected to contribute towards both the severity of acute infection, as well as to the longer-term consequences of viral exacerbations in patients with pre-existing respiratory diseases.
Collapse
Affiliation(s)
- B. David Persson
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Aron B. Jaffe
- Developmental and Molecular Pathways, Novartis Institutes for BioMedical Research, Cambridge, Massachusetts, United States of America
| | - Rachel Fearns
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Henry Danahay
- Respiratory Disease Area, Novartis Institutes for BioMedical Research, Horsham, United Kingdom
| |
Collapse
|
19
|
Derscheid RJ, van Geelen A, Gallup JM, Kienzle T, Shelly DA, Cihlar T, King RR, Ackermann MR. Human respiratory syncytial virus memphis 37 causes acute respiratory disease in perinatal lamb lung. Biores Open Access 2014; 3:60-9. [PMID: 24804166 PMCID: PMC3994985 DOI: 10.1089/biores.2013.0044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of hospitalization due to respiratory illness among infants and young children of industrialized countries. There is a lack of understanding of the severe disease mechanisms as well as limited treatment options, none of which are fully satisfactory. This is partly due to lack of a relevant animal model of perinatal RSV infection that mimics moderate to severe disease in infants. We and others have shown mild disease in perinatal lambs with either a bovine or a human A2 strain of RSV. The Memphis 37 clinical strain of human RSV has been used to produce mild to moderate upper respiratory disease in healthy adult volunteers. We hypothesized that the Memphis 37 strain of RSV would infect perinatal lambs and produce clinical disease similar to that in human infants. Perinatal (3- to 5-day-old) lambs were inoculated intranasally with 2 mL/nostril of 1×105 focus-forming units (FFU)/mL (n=2) or 2.1×108 FFU/mL (n=3) of RSV Memphis 37. Clinical signs, gross and histological lesions, and immune and inflammatory responses were assessed. Memphis 37 caused moderate to severe gross and histologic lesions along with increased mRNA expression of macrophage inflammatory protein. Clinically, four of the five infected lambs had a mild to severe increase in expiratory effort. Intranasally administered RSV strain Memphis 37 infects neonatal lambs with gross, histologic, and immune responses similar to those observed in human infants.
Collapse
Affiliation(s)
- Rachel J Derscheid
- Department of Veterinary Pathology, Iowa State University , College of Veterinary Medicine, Ames, Iowa
| | - Albert van Geelen
- Department of Veterinary Pathology, Iowa State University , College of Veterinary Medicine, Ames, Iowa
| | - Jack M Gallup
- Department of Veterinary Pathology, Iowa State University , College of Veterinary Medicine, Ames, Iowa
| | | | | | | | - Robert R King
- Department of Veterinary Clinical Sciences, Iowa State University , College of Veterinary Medicine, Ames, Iowa
| | - Mark R Ackermann
- Department of Veterinary Pathology, Iowa State University , College of Veterinary Medicine, Ames, Iowa
| |
Collapse
|
20
|
Derscheid RJ, van Geelen A, Berkebile AR, Gallup JM, Hostetter SJ, Banfi B, McCray PB, Ackermann MR. Increased concentration of iodide in airway secretions is associated with reduced respiratory syncytial virus disease severity. Am J Respir Cell Mol Biol 2014; 50:389-97. [PMID: 24053146 DOI: 10.1165/rcmb.2012-0529oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Recent studies have revealed that the human and nonrodent mammalian airway mucosa contains an oxidative host defense system. This three-component system consists of the hydrogen peroxide (H2O2)-producing enzymes dual oxidase (Duox)1 and Duox2, thiocyanate (SCN(-)), and secreted lactoperoxidase (LPO). The LPO-catalyzed reaction between H2O2 and SCN(-) yields the bactericidal hypothiocyanite (OSCN(-)) in airway surface liquid (ASL). Although SCN(-) is the physiological substrate of LPO, the Duox/LPO/halide system can generate hypoiodous acid when the iodide (I(-)) concentration is elevated in ASL. Because hypoiodous acid, but not OSCN(-), inactivates respiratory syncytial virus (RSV) in cell culture, we used a lamb model of RSV to test whether potassium iodide (KI) could enhance this system in vivo. Newborn lambs received KI by intragastric gavage or were left untreated before intratracheal inoculation of RSV. KI treatment led to a 10-fold increase in ASL I(-) concentration, and this I(-) concentration was approximately 30-fold higher than that measured in the serum. Also, expiratory effort, gross lung lesions, and pulmonary expression of an RSV antigen and IL-8 were reduced in the KI-treated lambs as compared with nontreated control lambs. Inhibition of LPO activity significantly increased lesions, RSV mRNA, and antigen. Similar experiments in 3-week-old lambs demonstrated that KI administration was associated with reduced gross lesions, decreased RSV titers in bronchoalveolar lavage fluid, and reduced RSV antigen expression. Overall, these data indicate that high-dose KI supplementation can be used in vivo to lessen the severity of RSV infections, potentially through the augmentation of mucosal oxidative defenses.
Collapse
Affiliation(s)
- Rachel J Derscheid
- 1 Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa; Departments of
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Ackermann MR. Lamb model of respiratory syncytial virus-associated lung disease: insights to pathogenesis and novel treatments. ILAR J 2014; 55:4-15. [PMID: 24936027 PMCID: PMC4158344 DOI: 10.1093/ilar/ilu003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Preterm birth is a risk factor for respiratory syncytial virus (RSV) bronchiolitis and hospitalization. The pathogenesis underlying this is not fully understood, and in vivo studies are needed to better clarify essential cellular features and molecular mechanisms. Such studies include analysis of lung tissue from affected human infants and various animal models. The preterm and newborn lamb lung has developmental, structural, cellular, physiologic, and immunologic features similar to that of human infants. Also, the lamb lung is susceptible to various strains of RSV that infect infants and cause similar bronchiolar lesions. Studies in lambs suggest that viral replication in airways (especially bronchioles) is extensive by 4 days after infection, along with bronchiolitis characterized by degeneration and necrosis of epithelial cells, syncytial cell formation, neutrophil infiltration, epithelial cell hypertrophy and hyperplasia, and innate and adaptive immune responses. RSV bronchiolitis greatly affects airflow and gaseous exchange. RSV disease severity is increased in preterm lambs compared with full-term lambs; similar to human infants. The lamb is conducive to experimental assessment of novel, mechanistic therapeutic interventions such as delivery of vascular endothelial growth factor and enhancement of airway epithelial oxidative responses, Club (Clara) cell protein 10, and synthesized compounds such as nanobodies. In contrast, exposure of the fetal ovine lung in vivo to ethanol, a risk factor for preterm birth, reduces pulmonary alveolar development and surfactant protein A expression. Because the formalin-inactivated RSV vaccination enhances some inflammatory responses to RSV infection in lambs, this model has the potential to assess mechanisms of formalin-inactivated RSV enhanced disease as well as newly developed vaccines.
Collapse
|
22
|
Derscheid RJ, Gallup JM, Knudson CJ, Varga SM, Grosz DD, van Geelen A, Hostetter SJ, Ackermann MR. Effects of formalin-inactivated respiratory syncytial virus (FI-RSV) in the perinatal lamb model of RSV. PLoS One 2013; 8:e81472. [PMID: 24324695 PMCID: PMC3855688 DOI: 10.1371/journal.pone.0081472] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/14/2013] [Indexed: 12/24/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most frequent cause of bronchiolitis in infants and children worldwide. There are currently no licensed vaccines or effective antivirals. The lack of a vaccine is partly due to increased caution following the aftermath of a failed clinical trial of a formalin-inactivated RSV vaccine (FI-RSV) conducted in the 1960’s that led to enhanced disease, necessitating hospitalization of 80% of vaccine recipients and resulting in two fatalities. Perinatal lamb lungs are similar in size, structure and physiology to those of human infants and are susceptible to human strains of RSV that induce similar lesions as those observed in infected human infants. We sought to determine if perinatal lambs immunized with FI-RSV would develop key features of vaccine-enhanced disease. This was tested in colostrum-deprived lambs immunized at 3–5 days of age with FI-RSV followed two weeks later by RSV infection. The FI-RSV-vaccinated lambs exhibited several key features of RSV vaccine-enhanced disease, including reduced RSV titers in bronchoalveolar lavage fluid and lung, and increased infiltration of peribronchiolar and perivascular lymphocytes compared to lambs either undergoing an acute RSV infection or naïve controls; all features of RSV vaccine-enhanced disease. These results represent a first step proof-of-principle demonstration that the lamb can develop altered responses to RSV following FI-RSV vaccination. The lamb model may be useful for future mechanistic studies as well as the assessment of RSV vaccines designed for infants.
Collapse
Affiliation(s)
- Rachel J. Derscheid
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Jack M. Gallup
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Cory J. Knudson
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Steven M. Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Microbiology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Pathology, University of Iowa, Iowa City, Iowa, United States of America
| | - Drew D. Grosz
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Albert van Geelen
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Shannon J. Hostetter
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Mark R. Ackermann
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
23
|
Human respiratory syncytial virus Memphis 37 grown in HEp-2 cells causes more severe disease in lambs than virus grown in Vero cells. Viruses 2013; 5:2881-97. [PMID: 24284879 PMCID: PMC3856420 DOI: 10.3390/v5112881] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 12/16/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most common cause of bronchiolitis in infants and young children. A small percentage of these individuals develop severe and even fatal disease. To better understand the pathogenesis of severe disease and develop therapies unique to the less-developed infant immune system, a model of infant disease is needed. The neonatal lamb pulmonary development and physiology is similar to that of infants, and sheep are susceptible to ovine, bovine, or human strains of RSV. RSV grown in Vero (African green monkey) cells has a truncated attachment G glycoprotein as compared to that grown in HEp-2 cells. We hypothesized that the virus grown in HEp-2 cells would cause more severe clinical symptoms and cause more severe pathology. To confirm the hypothesis, lambs were inoculated simultaneously by two different delivery methods (intranasal and nebulized inoculation) with either Vero-grown or HEp-2-grown RSV Memphis 37 (M37) strain of virus to compare viral infection and disease symptoms. Lambs infected with HEp-2 cell-derived virus by either intranasal or nebulization inoculation had significantly higher levels of viral RNA in lungs as well as greater clinical disease including both gross and histopathologic lesions compared to lambs similarly inoculated with Vero-grown virus. Thus, our results provide convincing in vivo evidence for differences in viral infectivity that corroborate previous in vitro mechanistic studies demonstrating differences in the G glycoprotein expression by RSV grown in Vero cells.
Collapse
|
24
|
Redondo E, Gázquez A, Vadillo S, García A, Franco A, Masot AJ. Induction of interleukin-8 and interleukin-12 in neonatal ovine lung following experimental inoculation of bovine respiratory syncytial virus. J Comp Pathol 2013; 150:434-48. [PMID: 24854063 DOI: 10.1016/j.jcpa.2013.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 07/05/2013] [Accepted: 08/18/2013] [Indexed: 10/26/2022]
Abstract
This study aimed to determine the immunohistochemical expression of interleukin (IL)-1β, tumour necrosis factor alpha (TNF)-α, interferon (IFN)-γ, IL-4, IL-6, IL-8, IL-10 and IL-12 and to measure the concentrations of these cytokines in lung tissue from lambs infected experimentally with bovine respiratory syncytial virus (BRSV). Lambs (n = 15) were inoculated at 2 days of age with 20 ml of viral inoculum (1.26 × 10(6) TCID50 per ml) or sterile medium (n = 15). Rectal temperature, pulse and respiratory rates were monitored daily in control and infected lambs. Lambs were killed and subject to necropsy examination at 1, 3, 5, 7 and 15 days post inoculation (dpi). There was a temporal association between pulmonary expression of these cytokines and lung pathology in BRSV-infected lambs. The cytokines IL-4 and IL-10 were not elevated, but there was a significant increase in IL-1β, TNF-α, IFN-γ and IL-6 proteins and labelled cells, suggesting that these cytokines may play a role in the biological response to BRSV infection and contribute to the development of lung lesions. There was also a significant increase in the cytokine concentration and number of immunolabelled cells expressing IL-8 and IL-12 in infected lungs, suggesting that these cytokines might be used as therapeutic targets in the management of BRSV, in conjunction with measures to combat the causative pathogen and prophylactic methods aimed at preventing infection.
Collapse
Affiliation(s)
- E Redondo
- Histology and Pathology Unit, Animal Medicine Department, Veterinary Faculty, University of Extremadura, Avenue of the University, 10003 Cáceres, Spain.
| | - A Gázquez
- Histology and Pathology Unit, Animal Medicine Department, Veterinary Faculty, University of Extremadura, Avenue of the University, 10003 Cáceres, Spain
| | - S Vadillo
- Microbiology Unit, Animal Health Department, Veterinary Faculty, University of Extremadura, Avenue of the University, 10003 Cáceres, Spain
| | - A García
- Histology and Pathology Unit, Animal Medicine Department, Veterinary Faculty, University of Extremadura, Avenue of the University, 10003 Cáceres, Spain
| | - A Franco
- Anatomy and Embryology Unit, Animal Medicine Department, Veterinary Faculty, University of Extremadura, Avenue of the University, 10003 Cáceres, Spain
| | - A J Masot
- Histology and Pathology Unit, Animal Medicine Department, Veterinary Faculty, University of Extremadura, Avenue of the University, 10003 Cáceres, Spain
| |
Collapse
|
25
|
Sperandio D, Mackman R. Respiratory Syncytial Virus Fusion Inhibitors. SUCCESSFUL STRATEGIES FOR THE DISCOVERY OF ANTIVIRAL DRUGS 2013. [DOI: 10.1039/9781849737814-00029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Infections with the respiratory syncytical virus (RSV) are the leading cause of lower respiratory tract infections and a serious health concern in infants less than 2 years of age, the immunocompromised and the geriatric population. Numerous research programs directed at small‐molecule inhibitors of RSV have been initiated over the last 50 years. RSV inhibitors that target the fusion event have shown a lot of promise and are reviewed in this chapter. However, none of these programs have yet reached the market or late‐stage clinical development. Therefore, focus in this review is given to the challenges in the preclinical development phase and the ideal target product profile. The challenges in clinical development are also discussed, including the use of a new RSV challenge strain (Memphis 37), clinical trial design in immunosupressed patients, patients with chronic obstructive pulmonary disease (COPD) and chronic heart failure (CHF) and clinical trials in infants.
Collapse
Affiliation(s)
- David Sperandio
- Gilead Sciences, Inc. 333 Lakeside Drive, Foster City, CA 94404 USA
| | - Richard Mackman
- Gilead Sciences, Inc. 333 Lakeside Drive, Foster City, CA 94404 USA
| |
Collapse
|
26
|
Animal models for neonatal diseases in humans. Vaccine 2013; 31:2489-99. [DOI: 10.1016/j.vaccine.2012.11.089] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 11/20/2012] [Accepted: 11/28/2012] [Indexed: 01/09/2023]
|
27
|
Neonatal calf infection with respiratory syncytial virus: drawing parallels to the disease in human infants. Viruses 2013; 4:3731-53. [PMID: 23342375 PMCID: PMC3528288 DOI: 10.3390/v4123731] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most common viral cause of childhood acute lower respiratory tract infections. It is estimated that RSV infections result in more than 100,000 deaths annually worldwide. Bovine RSV is a cause of enzootic pneumonia in young dairy calves and summer pneumonia in nursing beef calves. Furthermore, bovine RSV plays a significant role in bovine respiratory disease complex, the most prevalent cause of morbidity and mortality among feedlot cattle. Infection of calves with bovine RSV shares features in common with RSV infection in children, such as an age-dependent susceptibility. In addition, comparable microscopic lesions consisting of bronchiolar neutrophilic infiltrates, epithelial cell necrosis, and syncytial cell formation are observed. Further, our studies have shown an upregulation of pro-inflammatory mediators in RSV-infected calves, including IL-12p40 and CXCL8 (IL-8). This finding is consistent with increased levels of IL-8 observed in children with RSV bronchiolitis. Since rodents lack IL-8, neonatal calves can be useful for studies of IL-8 regulation in response to RSV infection. We have recently found that vitamin D in milk replacer diets can be manipulated to produce calves differing in circulating 25-hydroxyvitamin D3. The results to date indicate that although the vitamin D intracrine pathway is activated during RSV infection, pro-inflammatory mediators frequently inhibited by the vitamin D intacrine pathway in vitro are, in fact, upregulated or unaffected in lungs of infected calves. This review will summarize available data that provide parallels between bovine RSV infection in neonatal calves and human RSV in infants.
Collapse
|
28
|
Tian J, Huang K, Krishnan S, Svabek C, Rowe DC, Brewah Y, Sanjuan M, Patera AC, Kolbeck R, Herbst R, Sims GP. RAGE inhibits human respiratory syncytial virus syncytium formation by interfering with F-protein function. J Gen Virol 2013; 94:1691-1700. [PMID: 23559480 PMCID: PMC3749528 DOI: 10.1099/vir.0.049254-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Human respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infection. Infection is critically dependent on the RSV fusion (F) protein, which mediates fusion between the viral envelope and airway epithelial cells. The F protein is also expressed on infected cells and is responsible for fusion of infected cells with adjacent cells, resulting in the formation of multinucleate syncytia. The receptor for advanced glycation end products (RAGE) is a pattern-recognition receptor that is constitutively highly expressed by type I alveolar epithelial cells. Here, we report that RAGE protected HEK cells from RSV-induced cell death and reduced viral titres in vitro. RAGE appeared to interact directly with the F protein, but, rather than inhibiting RSV entry into host cells, virus replication and budding, membrane-expressed RAGE or soluble RAGE blocked F-protein-mediated syncytium formation and sloughing. These data indicate that RAGE may contribute to protecting the lower airways from RSV by inhibiting the formation of syncytia, viral spread, epithelial damage and airway obstruction.
Collapse
Affiliation(s)
- Jane Tian
- Research Department, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Kelly Huang
- Research Department, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Subramaniam Krishnan
- Research Department, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Catherine Svabek
- Research Department, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Daniel C Rowe
- Research Department, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Yambasu Brewah
- Research Department, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Miguel Sanjuan
- Research Department, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Andriani C Patera
- Research Department, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Roland Kolbeck
- Research Department, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Ronald Herbst
- Research Department, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| | - Gary P Sims
- Research Department, MedImmune LLC, One MedImmune Way, Gaithersburg, MD 20878, USA
| |
Collapse
|
29
|
Derscheid RJ, Ackermann MR. The Innate Immune System of the Perinatal Lung and Responses to Respiratory Syncytial Virus Infection. Vet Pathol 2013; 50:827-41. [DOI: 10.1177/0300985813480216] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The response of the preterm and newborn lung to airborne pathogens, particles, and other insults is initially dependent on innate immune responses since adaptive responses may not fully mature and require weeks for sufficient responses to antigenic stimuli. Foreign material and microbial agents trigger soluble, cell surface, and cytoplasmic receptors that activate signaling cascades that invoke release of surfactant proteins, defensins, interferons, lactoferrin, oxidative products, and other innate immune substances that have antimicrobial activity, which can also influence adaptive responses. For viral infections such as respiratory syncytial virus (RSV), the pulmonary innate immune responses has an essential role in defense as there are no fully effective vaccines or therapies for RSV infections of humans and reinfections are common. Understanding the innate immune response by the preterm and newborn lung may lead to preventive strategies and more effective therapeutic regimens.
Collapse
Affiliation(s)
- R. J. Derscheid
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - M. R. Ackermann
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| |
Collapse
|
30
|
Abstract
As the threat of exposure to emerging and reemerging viruses within a naive population increases, it is vital that the basic mechanisms of pathogenesis and immune response be thoroughly investigated. By using animal models in this endeavor, the response to viruses can be studied in a more natural context to identify novel drug targets, and assess the efficacy and safety of new products. This is especially true in the advent of the Food and Drug Administration's animal rule. Although no one animal model is able to recapitulate all the aspects of human disease, understanding the current limitations allows for a more targeted experimental design. Important facets to be considered before an animal study are the route of challenge, species of animals, biomarkers of disease, and a humane endpoint. This chapter covers the current animal models for medically important human viruses, and demonstrates where the gaps in knowledge exist.
Collapse
|
31
|
Derscheid RJ, Ackermann MR. Perinatal lamb model of respiratory syncytial virus (RSV) infection. Viruses 2012; 4:2359-78. [PMID: 23202468 PMCID: PMC3497056 DOI: 10.3390/v4102359] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 10/17/2012] [Accepted: 10/18/2012] [Indexed: 12/13/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most frequent cause of bronchiolitis in infants and children worldwide. Many animal models are used to study RSV, but most studies investigate disease in adult animals which does not address the unique physiology and immunology that makes infants more susceptible. The perinatal (preterm and term) lamb is a useful model of infant RSV disease as lambs have similar pulmonary structure including airway branching, Clara and type II cells, submucosal glands and Duox/lactoperoxidase (LPO) oxidative system, and prenatal alveologenesis. Lambs can be born preterm (90% gestation) and survive for experimentation although both preterm and term lambs are susceptible to ovine, bovine and human strains of RSV and develop clinical symptoms including fever, tachypnea, and malaise as well as mild to moderate gross and histologic lesions including bronchiolitis with epithelial injury, neutrophil infiltration and syncytial cell formation. RSV disease in preterm lambs is more severe than in term lambs; disease is progressively less in adults and age-dependent susceptibility is a feature similar to humans. Innate and adaptive immune responses by perinatal lambs closely parallel those of infants. The model is used to test therapeutic regimens, risk factors such as maternal ethanol consumption, and formalin inactivated RSV vaccines.
Collapse
Affiliation(s)
- Rachel J Derscheid
- Department of Veterinary Pathology, 2738 College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, USA.
| | | |
Collapse
|
32
|
Sacco RE, Nonnecke BJ, Palmer MV, Waters WR, Lippolis JD, Reinhardt TA. Differential expression of cytokines in response to respiratory syncytial virus infection of calves with high or low circulating 25-hydroxyvitamin D3. PLoS One 2012; 7:e33074. [PMID: 22412984 PMCID: PMC3297628 DOI: 10.1371/journal.pone.0033074] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 02/09/2012] [Indexed: 12/20/2022] Open
Abstract
Deficiency of serum levels of 25-hydroxyvitamin D3 has been related to increased risk of lower respiratory tract infections in children. Respiratory syncytial virus (RSV) is a leading cause of low respiratory tract infections in infants and young children. The neonatal calf model of RSV infection shares many features in common with RSV infection in infants and children. In the present study, we hypothesized that calves with low circulating levels of 25-hydroxyvitamin D3 (25(OH)D3) would be more susceptible to RSV infection than calves with high circulating levels of 25(OH)D3. Calves were fed milk replacer diets with different levels of vitamin D for a 10 wk period to establish two treatment groups, one with high (177 ng/ml) and one with low (32.5 ng/ml) circulating 25(OH)D3. Animals were experimentally infected via aerosol challenge with RSV. Data on circulating 25(OH)D3 levels showed that high and low concentrations of 25(OH)D3 were maintained during infection. At necropsy, lung lesions due to RSV were similar in the two vitamin D treatment groups. We show for the first time that RSV infection activates the vitamin D intracrine pathway in the inflamed lung. Importantly, however, we observed that cytokines frequently inhibited by this pathway in vitro are, in fact, either significantly upregulated (IL-12p40) or unaffected (IFN-γ) in the lungs of RSV-infected calves with high circulating levels of 25(OH)D3. Our data indicate that while vitamin D does have an immunomodulatory role during RSV infection, there was no significant impact on pathogenesis during the early phases of RSV infection. Further examination of the potential effects of vitamin D status on RSV disease resolution will require longer-term studies with immunologically sufficient and deficient vitamin D levels.
Collapse
Affiliation(s)
- Randy E Sacco
- Ruminant Diseases and Immunology Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, Iowa, United States of America.
| | | | | | | | | | | |
Collapse
|
33
|
Pathogenesis of respiratory syncytial virus. Curr Opin Virol 2012; 2:300-5. [PMID: 22709517 DOI: 10.1016/j.coviro.2012.01.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 01/29/2012] [Indexed: 01/12/2023]
Abstract
While affecting all age groups, respiratory syncytial virus (RSV) infections can be particularly severe in infants, who develop functionally distinct immune responses, as well as in immunocompromised individuals. The extent to which environmental, viral and host factors contribute to the pathogenesis of RSV varies considerably between infected individuals. A correlation between the level of virus replication and pathogenesis has been established, and several viral proteins, in particular NS1 and NS2, modulate the immune response. Host immunity clearly contributes to RSV pathogenesis, and a number of specific cell populations may be involved. Ultimately, whether the response induced by RSV is protective or pathogenic depends on a combination of host factors, young age being one of the most important ones.
Collapse
|
34
|
Sow FB, Gallup JM, Derscheid R, Krishnan S, Ackermann MR. Ontogeny of the immune response in the ovine lung. Immunol Invest 2011; 41:304-16. [PMID: 22122502 DOI: 10.3109/08820139.2011.631657] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Perinatal lambs are increasingly appreciated as a model to study respiratory infections of premature and newborn human infants. To explore the relationship between developmental age and immunological competence in the respiratory tract, the basal levels of expression of genes involved in innate and adaptive immune functions in the lung were examined in pre-term lambs (115 days and 130 days), at birth (145 days) and post-partum (15 days and 3 years old). Our results show that innate immune genes (TLRs-3, -4, -7, -8; SP-A, SP-D, and SBD1) were differentially expressed through development; cytokines (IFN-γ, IL-6, TNF-α) and chemokines (IL-8, MCP-1) were low during gestation and post-partum but maximal at birth; genes involved in adaptive immunity (PD-1, PD-L1, TGF-β) were present in pre-term and newborn lung, but were lower in adult lung. The results suggest that pre-term and neonatal lambs may be able to mount an immune response following infection, but that the response may not be optimal. Our studies provide an important set of comparative data on the ontogeny of lung immunity in sheep and set a framework for studies on age-dependent susceptibility to respiratory pathogens.
Collapse
Affiliation(s)
- Fatoumata B Sow
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011, USA.
| | | | | | | | | |
Collapse
|
35
|
Sow FB, Gallup JM, Krishnan S, Patera AC, Suzich J, Ackermann MR. Respiratory syncytial virus infection is associated with an altered innate immunity and a heightened pro-inflammatory response in the lungs of preterm lambs. Respir Res 2011; 12:106. [PMID: 21827668 PMCID: PMC3170232 DOI: 10.1186/1465-9921-12-106] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 08/09/2011] [Indexed: 05/26/2023] Open
Abstract
Introduction Factors explaining the greater susceptibility of preterm infants to severe lower respiratory infections with respiratory syncytial virus (RSV) remain poorly understood. Fetal/newborn lambs are increasingly appreciated as a model to study key elements of RSV infection in newborn infants due to similarities in lung alveolar development, immune response, and susceptibility to RSV. Previously, our laboratory demonstrated that preterm lambs had elevated viral antigen and developed more severe lesions compared to full-term lambs at seven days post-infection. Here, we compared the pathogenesis and immunological response to RSV infection in lungs of preterm and full-term lambs. Methods Lambs were delivered preterm by Caesarian section or full-term by natural birth, then inoculated with bovine RSV (bRSV) via the intratracheal route. Seven days post-infection, lungs were collected for evaluation of cytokine production, histopathology and cellular infiltration. Results Compared to full-term lambs, lungs of preterm lambs had a heightened pro-inflammatory response after infection, with significantly increased MCP-1, MIP-1α, IFN-γ, TNF-α and PD-L1 mRNA. RSV infection in the preterm lung was characterized by increased epithelial thickening and periodic acid-Schiff staining, indicative of glycogen retention. Nitric oxide levels were decreased in lungs of infected preterm lambs compared to full-term lambs, indicating alternative macrophage activation. Although infection induced significant neutrophil recruitment into the lungs of preterm lambs, neutrophils produced less myeloperoxidase than those of full-term lambs, suggesting decreased functional activation. Conclusions Taken together, our data suggest that increased RSV load and inadequate immune response may contribute to the enhanced disease severity observed in the lungs of preterm lambs.
Collapse
Affiliation(s)
- Fatoumata B Sow
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Bem RA, Domachowske JB, Rosenberg HF. Animal models of human respiratory syncytial virus disease. Am J Physiol Lung Cell Mol Physiol 2011; 301:L148-56. [PMID: 21571908 PMCID: PMC3154630 DOI: 10.1152/ajplung.00065.2011] [Citation(s) in RCA: 156] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 05/05/2011] [Indexed: 11/22/2022] Open
Abstract
Infection with the human pneumovirus pathogen, respiratory syncytial virus (hRSV), causes a wide spectrum of respiratory disease, notably among infants and the elderly. Laboratory animal studies permit detailed experimental modeling of hRSV disease and are therefore indispensable in the search for novel therapies and preventative strategies. Present animal models include several target species for hRSV, including chimpanzees, cattle, sheep, cotton rats, and mice, as well as alternative animal pneumovirus models, such as bovine RSV and pneumonia virus of mice. These diverse animal models reproduce different features of hRSV disease, and their utilization should therefore be based on the scientific hypothesis under investigation. The purpose of this review is to summarize the strengths and limitations of each of these animal models. Our intent is to provide a resource for investigators and an impetus for future research.
Collapse
Affiliation(s)
- Reinout A Bem
- Pediatric Intensive Care Unit, Emma Children’s Hospital, Academic Medical Center, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
37
|
Abstract
Respiratory syncytial virus (RSV) is an important cause of respiratory disease causing high rates of hospitalizations in infants, significant morbidity in children and adults, and excess mortality in the elderly. Major barriers to vaccine development include early age of RSV infection, capacity of RSV to evade innate immunity, failure of RSV-induced adaptive immunity to prevent reinfection, history of RSV vaccine-enhanced disease, and lack of an animal model fully permissive to human RSV infection. These biological challenges, safety concerns, and practical issues have significantly prolonged the RSV vaccine development process. One great advantage compared to other difficult viral vaccine targets is that passively administered neutralizing monoclonal antibody is known to protect infants from severe RSV disease. Therefore, the immunological goals for vaccine development are to induce effective neutralizing antibody to prevent infection and to avoid inducing T-cell response patterns associated with enhanced disease. Live-attenuated RSV and replication-competent chimeric viruses are in advanced clinical trials. Gene-based strategies, which can control the specificity and phenotypic properties of RSV-specific T-cell responses utilizing replication-defective vectors and which may improve on immunity from natural infection, are progressing through preclinical testing. Atomic level structural information on RSV envelope glycoproteins in complex with neutralizing antibodies is guiding design of new vaccine antigens that may be able to elicit RSV-specific antibody responses without induction of RSV-specific T-cell responses. These new technologies may allow development of vaccines that can protect against RSV-mediated disease in infants and establish a new immunological paradigm in the host to achieve more durable protection against reinfection.
Collapse
Affiliation(s)
- Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-3017, USA.
| |
Collapse
|
38
|
Wurth MA, Schowalter RM, Smith EC, Moncman CL, Dutch RE, McCann RO. The actin cytoskeleton inhibits pore expansion during PIV5 fusion protein-promoted cell-cell fusion. Virology 2010; 404:117-26. [PMID: 20537366 PMCID: PMC2885465 DOI: 10.1016/j.virol.2010.04.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Accepted: 04/22/2010] [Indexed: 11/27/2022]
Abstract
Paramyxovirus fusion (F) proteins promote both virus-cell fusion, required for viral entry, and cell-cell fusion, resulting in syncytia formation. We used the F-actin stabilizing drug, jasplakinolide, and the G-actin sequestrant, latrunculin A, to examine the role of actin dynamics in cell-cell fusion mediated by the parainfluenza virus 5 (PIV5) F protein. Jasplakinolide treatment caused a dose-dependent increase in cell-cell fusion as measured by both syncytia and reporter gene assays, and latrunculin A treatment also resulted in fusion stimulation. Treatment with jasplakinolide or latrunculin A partially rescued a fusion pore opening defect caused by deletion of the PIV5 F protein cytoplasmic tail, but these drugs had no effect on fusion inhibited at earlier stages by either temperature arrest or by a PIV5 heptad repeat peptide. These data suggest that the cortical actin cytoskeleton is an important regulator of fusion pore enlargement, an energetically costly stage of viral fusion protein-mediated membrane merger.
Collapse
Affiliation(s)
- Mark A. Wurth
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington KY 40536
| | - Rachel M. Schowalter
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington KY 40536
| | - Everett Clinton Smith
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington KY 40536
| | - Carole L. Moncman
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington KY 40536
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington KY 40536
| | - Richard O. McCann
- Mercer University School of Medicine, Division of Basic Medical Sciences, Macon, GA 31207
| |
Collapse
|
39
|
Radi ZA, Meyerholz DK, Ackermann MR. Pulmonary cyclooxygenase-1 (COX-1) and COX-2 cellular expression and distribution after respiratory syncytial virus and parainfluenza virus infection. Viral Immunol 2010; 23:43-8. [PMID: 20121401 DOI: 10.1089/vim.2009.0042] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Prostaglandins (PGs) play an important role in pulmonary physiology and various pathophysiological processes following infection. The initial step in the biosynthesis of PGs is regulated by two distinct cyclooxygenase enzymes, cyclooxygenase-1 (COX-1) and COX-2. The goal of this study was to investigate the pulmonary cellular localization and distribution of COX-1 and COX-2 in a neonatal lamb model following respiratory syncytial virus (RSV) and parainfluenza virus 3 (PI3) infection, organisms that also cause significant respiratory disease in children. No significant differences were seen in pulmonary COX-1 expression at various microanatomical locations following RSV or PI3 infection compared to controls. In contrast, COX-2 was upregulated following RSV and PI3 infection. Strong expression was restricted to bronchial and bronchiolar epithelial cells and macrophages, while minimal expression was present in the same microanatomical locations in the uninfected lungs. Other microanatomical locations in both the controls and the infected lungs lacked expression. This work suggests that during RSV or PI3 infection: (1) COX-1 cellular expression is not altered, (2) COX-2 cellular expression is upregulated in airway bronchiolar and bronchial epithelial cells and macrophages, (3) respiratory epithelium along with macrophages are important microanatomical compartments regulating the host inflammatory response during viral infection, and (4) COX-2 may be a potential target for RSV and PI3 therapy.
Collapse
Affiliation(s)
- Zaher A Radi
- Drug Safety Research and Development, Pfizer Global Research and Development, St. Louis Laboratories, St. Louis, Missouri 63017, USA.
| | | | | |
Collapse
|
40
|
Lazic T, Matic M, Gallup JM, Van Geelen A, Meyerholz DK, Grubor B, Imerman PM, de-Macedo MMMA, Ackermann MR. Effects of nicotine on pulmonary surfactant proteins A and D in ovine lung epithelia. Pediatr Pulmonol 2010; 45:255-62. [PMID: 20131324 PMCID: PMC2981073 DOI: 10.1002/ppul.21153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Maternal smoking during pregnancy increases the incidence and severity of respiratory infections in neonates. Surfactant proteins A and D (SP-A and SP-D, respectively) are components of pulmonary innate immunity and have an important role in defense against inhaled pathogens. The purpose of this study was to determine if nicotine exposure during the third trimester of pregnancy alters the expression of SP-A and SP-D of fetal lung epithelia. Pregnant ewes were assigned to four groups; a nicotine-exposed full-term and pre-term group, and control full-term and pre-term group. Lung tissue was collected for Western blot and IHC analysis of SP-A level, Western blot analysis of SP-D level and qPCR analysis of SP-A and SP-D mRNA expression. Exposure to nicotine significantly decreased SP-A gene expression (P = 0.01) and SP-A protein level in pre-term lambs. This finding suggests that maternal nicotine exposure during the last trimester of pregnancy alters a key component of lung innate immunity in offspring.
Collapse
Affiliation(s)
- Tatjana Lazic
- Department of Veterinary Pathology, 2740 College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Olivier A, Gallup J, de Macedo MMMA, Varga SM, Ackermann M. Human respiratory syncytial virus A2 strain replicates and induces innate immune responses by respiratory epithelia of neonatal lambs. Int J Exp Pathol 2009; 90:431-8. [PMID: 19659901 PMCID: PMC2741153 DOI: 10.1111/j.1365-2613.2009.00643.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 11/23/2008] [Indexed: 12/25/2022] Open
Abstract
Human respiratory syncytial virus (hRSV) is a pneumovirus that causes significant respiratory disease in premature and full-term infants. It was our hypothesis that a common strain of RSV, strain A2, would infect, cause pulmonary pathology, and alter respiratory epithelial innate immune responses in neonatal lambs similarly to RSV infection in human neonates. Newborn lambs between 2 and 3 days of age were inoculated intrabronchially with RSV strain A2. The lambs were sacrificed at days 3, 6, and 14 days postinoculation. Pulmonary lesions in the 6-day postinoculation group were typical of RSV infection including bronchiolitis with neutrophils and mild peribronchiolar interstitial pneumonia. RSV mRNA and antigen were detected by qPCR and immunohistochemistry, respectively with peak mRNA levels and antigen at day 6. Expression of surfactant proteins A and D, sheep beta-defensin-1 and thyroid transcription factor-1 mRNA were also assessed by real-time qPCR. There was a significant increase in surfactant A and D mRNA expression in RSV-infected animals at day 6 postinoculation. There were no significant changes in sheep beta-defensin-1 and thyroid transcription factor-1 mRNA expression. This study shows that neonatal lambs can be infected with RSV strain A2 and the pulmonary pathology mimics that of RSV infection in human infants thereby making the neonatal lamb a useful animal model to study disease pathogenesis and therapeutics. RSV infection induces increased expression of surfactant proteins A and D in lambs, which may also be an important feature of infection in newborn infants.
Collapse
Affiliation(s)
- Alicia Olivier
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA.
| | | | | | | | | |
Collapse
|
42
|
Lazic T, Wyatt TA, Matic M, Meyerholz DK, Grubor B, Gallup JM, Kersting KW, Imerman PM, Almeida-De-Macedo M, Ackermann MR. Maternal alcohol ingestion reduces surfactant protein A expression by preterm fetal lung epithelia. Alcohol 2007; 41:347-55. [PMID: 17889311 PMCID: PMC2083706 DOI: 10.1016/j.alcohol.2007.07.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 07/19/2007] [Accepted: 07/19/2007] [Indexed: 12/31/2022]
Abstract
In addition to neurodevelopmental effects, alcohol consumption at high levels during pregnancy is associated with immunomodulation and premature birth. Premature birth, in turn, is associated with increased susceptibility to various infectious agents such as respiratory syncytial virus (RSV). The initial line of pulmonary innate defense includes the mucociliary apparatus, which expels microorganisms trapped within the airway secretions. Surfactant proteins A and D (SP-A and SP-D, respectively) are additional components of pulmonary innate immunity and have an important role in pulmonary defense against inhaled pathogens. The purpose of this study was to determine if chronic alcohol consumption during the third trimester of pregnancy alters the function of the mucociliary apparatus and expression of SP-A and SP-D of fetal lung epithelia. Sixteen, date-mated ewes were assigned to two different groups; an ethanol-exposed group in which ewes received ethanol through surgically implanted intra-abomasal cannula during the third trimester of pregnancy, and a control group in which ewes received the equivalent amount of water instead of ethanol. Within these two groups, ewes were further randomly assigned to a full-term group in which the lambs were naturally delivered, and a preterm group in which the lambs were delivered prematurely via an abdominal incision and uterotomy. Ethanol was administered five times a week as a 40% solution at 1g/kg of body weight. The mean maternal serum alcohol concentration measured 6h postadministration was 16.3+/-4.36 mg/dl. Tracheas from six full-term lambs were collected to assess ciliary beat frequency (CBF). The lung tissue from all (24) lambs was collected for immunohistochemistry analysis of SP-A and SP-D protein production and fluorogenic real-time quantitative polymerase chain reaction analysis of SP-A and SP-D mRNA levels. Exposure to ethanol during pregnancy significantly blocked stimulated increase in CBF through ethanol-mediated desensitization of cAMP-dependent protein kinase. In addition, preterm born/ethanol-exposed lambs showed significantly decreased SP-A mRNA expression when compared with the preterm born/control group (P=.004); no significant changes were seen with SP-D. The full-term/ethanol-exposed lambs had no significant alterations in mRNA levels, but had significantly less detectable SP-A protein when compared with the full-term/control lambs (P=.02). These findings suggest that chronic maternal ethanol consumption during the third trimester of pregnancy alters innate immune gene expression in fetal lung. These alterations may underlie increased susceptibility of preterm infants, exposed to ethanol in utero, to RSV and other microbial agents.
Collapse
Affiliation(s)
- Tatjana Lazic
- Department of Veterinary Pathology, 2740 College of Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Peng W, Zhuang J, Harrod KS, Xu F. Respiratory syncytial virus infection in anesthetized weanling rather than adult rats prolongs the apneic responses to right atrial injection of capsaicin. J Appl Physiol (1985) 2007; 102:2201-6. [PMID: 17363622 DOI: 10.1152/japplphysiol.01436.2006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Apnea is a common complication in infants infected by respiratory syncytial virus (RSV). A recent study has shown that intranasal inoculation of RSV in conscious weanling rats strengthens the apneic responses to right atrial injection of capsaicin (CAP), leading to 66% mortality. The objectives of the present study were to determine 1) whether RSV infection changes baseline minute ventilation (Ve) and arterial blood gases in anesthetized rats; 2) what the effects of RSV infection are on the respiratory responses to CAP; and 3) whether the RSV-strengthened apneic responses are age dependent. Our experiments were conducted in anesthetized and spontaneously breathing rats divided into four groups of weanling and adult rats that received either intranasal inoculation of RSV or virus-free medium. Two days after RSV infection (0.7 ml/kg), animal blood gases, baseline Ve, and Ve responses to right atrial injection of three doses of CAP (4, 16, and 64 microg/kg) were measured and compared among the four groups. Our results showed that RSV infection increased respiratory frequency (approximately 25%, P<0.05) in weanling but not adult rats, with little effect on arterial blood gases. RSV infection amplified the apneic responses to CAP in weanling but not adult rats, characterized by increases in the initial (40%) and the longest apneic duration (650%), the number of apneic episodes (139%), and the total duration of apneas (60%). These amplifications led to 50% mortality (P<0.05). We conclude that RSV infection increases respiratory frequency and strengthens the apneic responses to CAP only in anesthetized weanling but not adult rats.
Collapse
Affiliation(s)
- Wenhong Peng
- Lovelace Respiratory Research Institute, Pathophysiology Program, 2425 Ridgecrest Dr. SE, Albuquerque, NM 87108, USA
| | | | | | | |
Collapse
|
44
|
Fach SJ, Meyerholz DK, Gallup JM, Ackermann MR, Lehmkuhl HD, Sacco RE. Neonatal ovine pulmonary dendritic cells support bovine respiratory syncytial virus replication with enhanced interleukin (IL)-4 And IL-10 gene transcripts. Viral Immunol 2007; 20:119-30. [PMID: 17425426 PMCID: PMC2791088 DOI: 10.1089/vim.2006.0056] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The lung microenvironment is constantly exposed to microorganisms and particulate matter. Lung dendritic cells (DCs) play a crucial role in the uptake and processing of antigens found within the respiratory tract. Respiratory syncytial virus (RSV) is a common respiratory tract pathogen in children that induces an influx of DCs to the mucosal surfaces of the lung. Using a neonatal lamb model, we examined the in vivo permissiveness of DCs to RSV infection, as well as overall cell surface changes and cytokine responses of isolated lung DCs after bovine RSV (BRSV) infection. We report that isolated lung DCs and alveolar macrophages support BRSV replication. Isolated lung DCs were determined to be susceptible to BRSV infection as demonstrated by quantification of BRSV non-structural protein 2 mRNA. BRSV infection induced an initial upregulation of CD14 expression on lung DCs, but by 5 d postinfection expression was similar to that on control cells. No significant changes in CD80/86 or MHC class I expression were seen on lung DCs after BRSV infection. Low to moderate expression of MHC class II and DEC-205 was detected by day 5 postinfection. Initially, on day 3 postinfection, lung DCs from BRSV-infected lambs had decreased endocytosis of fluorescein isothiocyanate (FITC)-ovalbumin (OVA). The amount of FITC-OVA endocytosed by lung DCs isolated on day 5 postinfection was similar to that of controls. The most interesting observation was the induction of immunomodulatory interleukin (IL)-4 and IL-10 cytokine gene transcription in lung DCs and alveolar macrophages after in vivo infection with BRSV. Overall, these findings are the first to demonstrate that neonatal lung DCs support in vivo BRSV replication and produce type II cytokines after viral infection.
Collapse
Affiliation(s)
- Sasha J Fach
- Immunobiology Graduate Program, Iowa State University, Ames, Iowa, USA
| | | | | | | | | | | |
Collapse
|
45
|
Meyerholz DK, Gallup JM, Lazic T, De Macedo MM, Lehmkuhl HD, Ackermann MR. Pretreatment with recombinant human vascular endothelial growth factor reduces virus replication and inflammation in a perinatal lamb model of respiratory syncytial virus infection. Viral Immunol 2007; 20:188-96. [PMID: 17425433 PMCID: PMC2791062 DOI: 10.1089/vim.2006.0089] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Vascular endothelial growth factor (VEGF) is increasingly recognized as a perinatal regulator of lung maturation and surfactant protein expression. Preterm and young infants are at increased risk for pulmonary immaturity characterized by insufficient surfactant production as well as increased risk for severe manifestations of respiratory syncytial virus (RSV) infection. Innate immune components including surfactant proteins A and D, and beta-defensins have putative antimicrobial activity against pulmonary pathogens including RSV. Our hypothesis was that recombinant human VEGF (rhVEGF) pretreatment therapy would decrease RSV disease in the perinatal lamb RSV model. Newborn lambs were pretreated with rhVEGF, betamethasone, or saline and then inoculated with bovine RSV or sterile medium. Tissues were collected 5 d postinoculation, corresponding to the initiation of severe lesions and peak viral replication. In RSV-infected lambs, rhVEGF therapy increased the mean daily body temperature, decreased airway neutrophil exudate, and reduced RSV replication compared with betamethasone or saline pretreatment. Furthermore, rhVEGF therapy significantly mitigated the RSV-induced increase in surfactant protein A mRNA expression and decrease in surfactant protein D mRNA expression. In control (non-RSV-infected) lambs, pretreatment with rhVEGF increased sheep beta-defensin-1 (SBD1) mRNA expression, but no alteration in surfactant proteins A and D was detected. This novel study demonstrates that rhVEGF pretreatment mitigates RSV disease and, in addition, rhVEGF regulation of innate immune genes is dependent on RSV infection status.
Collapse
Affiliation(s)
- David K. Meyerholz
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Jack M. Gallup
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Tatjana Lazic
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Marcia M.A. De Macedo
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| | - Howard D. Lehmkuhl
- National Animal Disease Center, Agricultural Research Service, U.S. Department of Agriculture, Ames, Iowa
| | - Mark R. Ackermann
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa
| |
Collapse
|
46
|
Spilki FR, Almeida RS, Ferreira HL, Gameiro J, Verinaud L, Arns CW. Effects of experimental inoculation of bovine respiratory syncytial virus in different inbred mice lineages: Establishment of a murine model for BRSV infection. Vet Microbiol 2006; 118:161-8. [PMID: 16959444 DOI: 10.1016/j.vetmic.2006.07.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 06/29/2006] [Accepted: 07/13/2006] [Indexed: 11/30/2022]
Abstract
Bovine respiratory syncytial virus (BRSV), a member of the subfamily Pneumovirinae, family Paramyxoviridae, is a major cause of respiratory disorders in young cattle. A number of studies were conducted to validate a reliable animal model for the infection, since BRSV inoculation on the natural host is costly and often unsuccessful. Unfortunately, after inoculation of BRSV in Balb/C mice, viral replication may be detected; however, evident pathological alterations are absent on the experimentally infected animals. In order to establish a mice model that could be used further for preliminary studies of pathological and immunological aspects of BRSV infection, three mice inbred lineages (Balb/C, A/J and C57BL6), possessing different genetic backgrounds, were tested about its susceptibility to the inoculation with BRSV. Animals were inoculated through the nasal and ocular routes and were observed after inoculation. At 7 days post-inoculation (dpi) animals were necropsied and virological (virus isolation and viral nucleic acid amplification) as well as histopathological examinations were performed. A/J and C57BL6 showed interstitial pneumonia, when compared to the Balb/C group. These findings shows that mice may constitute a suitable model for the study of BRSV infections, depending on the mice strain used for experimental inoculations.
Collapse
Affiliation(s)
- Fernando Rosado Spilki
- Depto de Microbiologia e Imunologia, Instituto de Biologia, Campus UNICAMP, Campinas, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
47
|
Meyerholz DK, DeGraaff JA, Gallup JM, Olivier AK, Ackermann MR. Depletion of alveolar glycogen corresponds with immunohistochemical development of CD208 antigen expression in perinatal lamb lung. J Histochem Cytochem 2006; 54:1247-53. [PMID: 16899762 PMCID: PMC2791090 DOI: 10.1369/jhc.6a7002.2006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CD208 DC lysosomal-associated protein is a marker of activated human dendritic cells; however, recently it was described as a marker of adult type II pneumocytes in many species including humans and sheep. Our hypothesis was that CD208 is developmentally regulated in lung pneumocytes. Lamb lungs at varying stages of development were stained immunohistochemically for CD208 and with Nile red (a fluorescent stain for lamellar bodies of type II cells) along with pulmonary markers of maturation (glycogen stores and surfactant protein A [SP-A] expression) or proliferation (Ki-67). CD208 staining and Nile red were localized to rare pneumocytes in young fetal lambs (day 115), increasing in frequency and stain intensity with age. Periodic acid-Schiff staining of glycogen granules was most prominent in the young lambs (day 115) with reduced staining through advancing lung development. SP-A was detected in pulmonary epithelia and staining in alveoli increased through gestation with decreased staining at 2 weeks of age. Intranuclear Ki-67 staining decreased through late gestation but was increased in 2-week-old lambs. Ontogeny of CD208 staining and depletion of glycogen were correlated (p<0.0001) and consistent with the premise that CD208 is localized to developing lamellar bodies. The findings suggest that CD208 antigen expression may serve as a marker for pneumocyte maturation in the developing fetal lung.
Collapse
Affiliation(s)
- David K Meyerholz
- DVM, DACVP Professor and J.G. Salsbury Endowed Chair, Department of Veterinary Pathology, 2738 Veterinary Medicine, Iowa State University, Ames, IA 50011-1250, USA
| | | | | | | | | |
Collapse
|
48
|
Gallup JM, Ackermann MR. Addressing fluorogenic real-time qPCR inhibition using the novel custom Excel file system 'FocusField2-6GallupqPCRSet-upTool-001' to attain consistently high fidelity qPCR reactions. Biol Proced Online 2006; 8:87-152. [PMID: 17033699 PMCID: PMC1592462 DOI: 10.1251/bpo122] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 07/03/2006] [Accepted: 07/10/2006] [Indexed: 11/25/2022] Open
Abstract
The purpose of this manuscript is to discuss fluorogenic real-time quantitative polymerase chain reaction (qPCR) inhibition and to introduce/define a novel Microsoft Excel-based file system which provides a way to detect and avoid inhibition, and enables investigators to consistently design dynamically-sound, truly LOG-linear qPCR reactions very quickly. The qPCR problems this invention solves are universal to all qPCR reactions, and it performs all necessary qPCR set-up calculations in about 52 seconds (using a pentium 4 processor) for up to seven qPCR targets and seventy-two samples at a time – calculations that commonly take capable investigators days to finish. We have named this custom Excel-based file system "FocusField2-6GallupqPCRSet-upTool-001" (FF2-6-001 qPCR set-up tool), and are in the process of transforming it into professional qPCR set-up software to be made available in 2007. The current prototype is already fully functional.
Collapse
Affiliation(s)
- Jack M Gallup
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, Iowa 50011-1250, USA.
| | | |
Collapse
|
49
|
Meyerholz DK, Grubor B, Lazic T, Gallup JM, de Macedo MMA, McCray PB, Ackermann MR. Monocytic/macrophagic pneumonitis after intrabronchial deposition of vascular endothelial growth factor in neonatal lambs. Vet Pathol 2006; 43:689-94. [PMID: 16966446 PMCID: PMC2791063 DOI: 10.1354/vp.43-5-689] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Preterm and young neonates are prone to inadequate surfactant production and are susceptible to respiratory distress syndrome characterized by alveolar damage and hyaline-membrane formation. Glucocorticoid therapy is commonly used in preterm and young infants to enhance lung maturation and surfactant synthesis. Recently, vascular endothelial growth factor (VEGF) was suggested to be a novel therapeutic agent for lung maturation that lacked adverse effects in mice. The purpose of this study was to assess the safety of incremental concentration (0.0005, 0.005, and 0.05 mg/ml) and duration (16, 24, and 32 hours) of recombinant human VEGF after bronchoscopic instillation (10 ml) in neonatal lambs. High-dose VEGF caused locally extensive plum-red consolidation that was microscopically characterized by interstitial and alveolar infiltrates of cells that were morphologically and phenotypically (CD68+) consistent with monocytes/macrophages. T cells (CD3+) and B cells (CD79+) were located primarily in bronchus/bronchiole-associated lymphoid tissue and were not consistently altered by treatment with VEGF. The dose of VEGF had significant effects on both gross lesions (P < .0047) and microscopic monocyte/macrophage recruitment scores (P < .0001). Thus, the VEGF dose instilled into the lung greatly influenced cellular recruitment and lesion development. The post-dosing interval of VEGF in this study had minor impact (no statistical significance) on cellular recruitment. This study showed that airway deposition of VEGF in the neonatal lamb induces monocyte/macrophage recruitment to the lung and high doses can cause severe lesions. The cellular recruitment suggests further research is needed to define dosages that are efficacious in enhancing lung maturation while minimizing potential adverse effects.
Collapse
Affiliation(s)
- D K Meyerholz
- Department of Pathology, University of Iowa Carver College of Medicine, 145 Medical Research Center, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Fach SJ, Brockmeier SL, Hobbs LA, Lehmkuhl HD, Sacco RE. Pulmonary dendritic cells isolated from neonatal and adult ovine lung tissue. Vet Immunol Immunopathol 2006; 112:171-82. [PMID: 16621027 DOI: 10.1016/j.vetimm.2006.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2005] [Revised: 01/17/2006] [Accepted: 02/15/2006] [Indexed: 01/20/2023]
Abstract
Lung dendritic cells (DCs) are potent antigen presenting cells (APCs) that initiate and modulate the adaptive immune response upon microbial infection within the pulmonary environment. For the first time, neonatal and adult lung DCs in a large animal model were compared in these studies. Here, we isolated and identified lung DCs in both neonatal and adult sheep, a valuable experimental animal utilized in pulmonary studies of naturally occurring respiratory diseases. Neonatal lung DCs exhibited characteristic dendrites and morphology when observed by transmission electron microscopy and expressed low to moderate DEC-205, CD80/86, MHC class II and CD 14. Regardless of age, lung DCs were functionally able to endocytose FITC conjugated ovalbumin but to a lesser degree than monocyte-derived DCs. In addition, neonatal lung DCs were demonstrated to be potent stimulators of allogeneic T cell proliferation. Together, these results demonstrate that neonatal and adult lung DCs are functionally similar. It is apparent from the data presented that neonatal pulmonary DCs do not exhibit an intrinsic functional defect that would impair their ability to take up antigen and stimulate naïve T cells. These data support growing evidence that neonatal immune responses may differ from adults due to different microenvironmental influences rather than differences in dendritic cell maturation states.
Collapse
Affiliation(s)
- Sasha J Fach
- Immunobiology Graduate Program, Iowa State University, Ames, IA, USA
| | | | | | | | | |
Collapse
|