1
|
Sahu M, Jain U. Activation, interaction and intimation of Nrf2 pathway and their mutational studies causing Nrf2 associated cancer. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167764. [PMID: 40088576 DOI: 10.1016/j.bbadis.2025.167764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/15/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025]
Abstract
Responses against infection trigger several signaling pathways that lead to the production of cytokines, these cytokines release ROS and RNS, damaging DNA and proteins turn into various diseases including cancer. To combat these harmful cytokines, the Nrf2 pathway is activated. The gene NFE2L2 encodes Nrf2, which is divided into seven conserved domains (Neh1-7). The DLG and ETGE motifs, conserved sequences of amino acid in the Neh2 domain of Nrf2, bind to the BTB domain of Keap1. BTB domain promotes Keap1's homodimerization resulting in Cul3 recruitment providing scaffold formation to E2 ubiquitin ligase to form ubiquitin complex. Under normal conditions, this complex regularly degrades Nrf2. However, once the cell is exposed to oxidative stress by ROS interaction with Keap1 resulting in conformational changes that stabilize the Nrf2. Nrf2 further concentrates on the nucleus where it binds with the transcriptional factor to perform the desired genes transcription for synthesizing SOD, GSH, CAT, and various other proteins which reduce the ROS levels preventing certain diseases. To prevent cells from oxidative stress, molecular hydrogen activates the Nrf2 pathway. To activate the Nrf2 pathway, molecular hydrogen oxidizes the iron porphyrin which acts as an electrophile and interacts with Keap1's cysteine residue.
Collapse
Affiliation(s)
- Mridul Sahu
- School of Health Sciences and Technology (SoHST), UPES, Bidholi, Dehradun - 248007, India
| | - Utkarsh Jain
- School of Health Sciences and Technology (SoHST), UPES, Bidholi, Dehradun - 248007, India.
| |
Collapse
|
2
|
Yu W, Jie S, Su G, Zhuangwei N, Yiqing Z, Suhong C, Guiyuan L. The ultrafine powder of atractylodis macrocephalae rhizoma improves immune function in naturally aging rats by regulating the PI3K/Akt/NF-κB signaling pathway. Front Pharmacol 2025; 16:1550357. [PMID: 40255567 PMCID: PMC12006087 DOI: 10.3389/fphar.2025.1550357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/21/2025] [Indexed: 04/22/2025] Open
Abstract
Background The phenomenon of population aging presents a significant global challenge, with the aging population in China steadily increasing. As individuals progress in age, there is a gradual deterioration of human organs and systems, as well as a decline in the immune system, referred to as immunosenescence. Atractylodis macrocephalae rhizoma (BZ) has been historically used in China for its medicinal properties, including gastrointestinal improvement, immunomodulation, anti-aging, antioxidant effects, and anti-tumor effects. Nevertheless, there remains a gap in understanding the pharmacological and molecular mechanisms underlying its anti-immunosenescence effects. Methods This study employed UPLC-ESI-MS and network pharmacology to create a network map of BZ ultrafine powder (BZU) and its aging targets. Enrichment analysis was then used to identify the primary mechanistic pathways underlying BZU's anti-immunosenescence effects. The primary components of BZU were quantitatively analyzed using high-performance liquid chromatography (HPLC). Naturally aging rats were used to examine the effects of different oral doses (0.25, 0.5, and 1 g/kg) of BZU over 5 weeks on aging performance, peripheral blood immunophenotyping and cell count, and splenic lymphocyte proliferation rate. To validate the findings of network pharmacology, quantitative RT-PCR, Western blotting, and immunofluorescence analyses were conducted. Results Our analyses demonstrated that BZU improved various indicators of aging in naturally aging rats, such as increasing the number of voluntary activities, enhance grip strength and fatigue resistance, increasing the microcirculatory blood flow and improving hematological levels. The BZU administration enhanced T and B lymphocyte proliferation and significantly improved the lymphocyte-to-T cell subpopulation ratio. It can elevate serum IL-2 and IL-4 levels while reducing IL-6, IFN-γ and TNF-α levels in naturally aging rats. Finally, it increased CD3 protein expression in the spleen while decreasing protein levels of PI3K, p-AKT, IKKα/β, and NF-κB. It also decreased the mRNA expression of Pik3cg, Akt1, Pdk1 and Nfκb1. Conclusion These findings suggest that BZU may enhance lymphocyte proliferation by inhibiting the PI3K/Akt/NF-κB signaling pathway, correcting immune cell imbalances, reducing inflammatory responses, and ultimately enhancing immune function and potentially delaying aging.
Collapse
Affiliation(s)
| | | | | | | | | | - Chen Suhong
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lv Guiyuan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Bian DD, Zhang X, Zhu XR, Tang WH, Peng Q, Chen YH, Wang G, Zhang DZ, Tang BP, Liu QN. The Nrf2-Keap1/ARE signaling pathway in aquatic animals. Int J Biol Macromol 2025; 308:142595. [PMID: 40158560 DOI: 10.1016/j.ijbiomac.2025.142595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 03/12/2025] [Accepted: 03/22/2025] [Indexed: 04/02/2025]
Abstract
The complex and fluctuating conditions of aquatic ecosystems make aquatic organisms vulnerable to oxidative stress. The Nrf2-Keap1/ARE signaling pathway serves as an important intracellular defense mechanism, particularly for aquatic organisms exposed to environmental stressors and toxic substances. Environmental stimuli can disrupt an organism's internal redox balance, leading to cellular oxidative stress responses. To counteract these effects, cells develop intricate defense mechanisms, with the Nrf2-Keap1/ARE signaling pathway is playing a crucial role. In this pathway, the nuclear transcription factor Nrf2 translocates into the nucleus to initiate the transcription of antioxidant genes, thereby reducing reactive oxygen species (ROS)-induced cellular damage and maintaining the organism's oxidative-antioxidative equilibrium. While research on this pathway in mammals is well-established, studies on aquatic organisms are still limited. This review provides a comprehensive analysis of the regulatory functions of the Nrf2-Keap1/ARE pathway on oxidative stress and delves into the molecular structures of Nrf2, Keap1, and ARE, offering insights into the physiological regulation of antioxidant defenses in aquatic organisms.
Collapse
Affiliation(s)
- Dan-Dan Bian
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; Anhui Key Laboratory of Resource Insect Biology and Innovative Utilization, College of Life Sciences, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Xue Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, College of Aquaculture and Life Science, Shanghai Ocean University, Shanghai 201306, People's Republic of China
| | - Xi-Rong Zhu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Wen-Hui Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Qin Peng
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Yao-Hui Chen
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Gang Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Wetlands, Yancheng Teachers University, Yancheng 224007, People's Republic of China.
| |
Collapse
|
4
|
Seke M, Stankovic A, Zivkovic M. Capacity of fullerenols to modulate neurodegeneration induced by ferroptosis: Focus on multiple sclerosis. Mult Scler Relat Disord 2025; 97:106378. [PMID: 40088719 DOI: 10.1016/j.msard.2025.106378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/10/2025] [Accepted: 03/05/2025] [Indexed: 03/17/2025]
Abstract
Multiple sclerosis is an inflammatory disease of the central nervous system (CNS), characterized by oligodendrocyte loss and demyelination of axons leading to neurodegeneration and severe neurological disability. Despite the existing drugs that have immunomodulatory effects an adequate therapy that slow down or stop neuronal death has not yet been found. Oxidative stress accompanied by excessive release of iron into the extracellular space, mitochondrial damage and lipid peroxidation are important factors in the controlled cell death named ferroptosis, latterly recognized in MS. As the fullerenols exhibit potent antioxidant activity, recent results imply that they could have protective effects by suppressing ferroptosis. Based on the current knowledge we addressed the main mechanisms of the protective effects of fullerenols in the CNS in relation to ferroptosis. Inhibition of inflammation, iron overload and lipid peroxidation through the signal transduction mechanism of Nuclear Factor Erythroid 2-Related Factor 2 (NRF2), chelation of heavy metals and free radical scavenging using fullerenols are proposed as benefitial strategy preventing MS progression. Current review connects ferroptosis molecular targets and important factors of MS progression, with biomedical properties and mechanisms of fullerenols' actions, to propose new treatment strategies that could be addaptobale in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Mariana Seke
- Laboratory for Radiobiology and Molecular Genetics, ˮVinčaˮ Institute of Nuclear Sciences -National Institute of The Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, Belgrade 11 000, Serbia
| | - Aleksandra Stankovic
- Laboratory for Radiobiology and Molecular Genetics, ˮVinčaˮ Institute of Nuclear Sciences -National Institute of The Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, Belgrade 11 000, Serbia
| | - Maja Zivkovic
- Laboratory for Radiobiology and Molecular Genetics, ˮVinčaˮ Institute of Nuclear Sciences -National Institute of The Republic of Serbia, University of Belgrade, Mike Petrovica Alasa 12-14, Belgrade 11 000, Serbia.
| |
Collapse
|
5
|
Sakita M, Isobe W, Nonaka K, Murakami S, Miyachi R, Sakane K, Sugimoto S, Yamaguchi A, Yamamoto K. Age‑related changes in endoplasmic reticulum stress response‑associated protein expression in rat tibial nerves. Biomed Rep 2025; 22:50. [PMID: 39882333 PMCID: PMC11775640 DOI: 10.3892/br.2025.1928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/13/2025] [Indexed: 01/31/2025] Open
Abstract
In age-related peripheral neurodegeneration, changes in the promotion or inhibition of endoplasmic reticulum (ER) stress response related to the ubiquitin-proteasome degradation system (UPS), autophagy and apoptosis signaling factors during aging remain unclear. In the present study, the expression of ER stress response signaling-related protein factors was examined in tibial nerves during aging in rats. Tibial nerves were extracted from continuously housed rats at 20, 50, 70, 90 and 105 weeks of age. Expression of factors associated with ER stress-related degradation, including X-box binding protein 1 (XBP1s), eukaryotic translation initiation factor 2 subunit 1 (eIF2α), Beclin-1 (Becn1), and Caspase-3 (Casp3); ER stress-related repair, including binding immunoglobulin protein [also known as 78 kDa glucose-regulated protein (BiP/GRP78)], protein disulfide isomerase (PDI), brain-derived neurotrophic factor (BDNF) and the inflammatory cytokine IL6, was assessed by western blotting of tibial nerves from rats in each age group. Expression of XBP1s and Becn1, which promote UPS and autophagy, decreased significantly after 50 weeks of age. However, expression of eIF2α and Casp3, which inhibit new protein biosynthesis and promote apoptosis, increased significantly after 50 weeks. Expression of BiP/GRP78 and PDI, which are refolding factors for denatured proteins, showed a significant decrease after 50 (or 70) weeks of age. The expression of BDNF, a ligand protein for the repair cascade, showed a significant increase after 70 weeks of age, while that of IL6 increased significantly after 50 weeks of age. These results indicate that ER stress-related degradation (UPS and autophagy) and refolding repair functions are reduced in rat tibial nerves after 50 weeks, followed by enhanced apoptosis and inflammation. These findings shed light on the progression of age-related peripheral neurodegeneration in rats.
Collapse
Affiliation(s)
- Masahiro Sakita
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan
| | - Wataru Isobe
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan
- Department of Rehabilitation, Mitsubishi Kyoto Hospital, Kyoto 615-8087, Japan
| | - Koji Nonaka
- Department of Rehabilitation, Faculty of Health Care Sciences, Naragakuen University, Nara 631-0003, Japan
| | - Shinichiro Murakami
- Department of Physical Therapy, Faculty of Health Care Sciences, Himeji-Dokkyo University, Himeji, Hyogo 670-0896, Japan
| | - Ryo Miyachi
- Department of Physical Therapy, Faculty of Health Care Sciences, Hokuriku University, Kanazawa, Ishikawa 920-1154, Japan
| | - Kento Sakane
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan
| | - Saki Sugimoto
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan
| | - Airi Yamaguchi
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan
| | - Koki Yamamoto
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Kyoto 607-8175, Japan
| |
Collapse
|
6
|
Baldión PA, Díaz CA, Betancourt DE. Myricetin Modulates Matrix Metalloproteinases Expression Induced by TEGDMA in Human Odontoblast-Like Cells. J Biomed Mater Res A 2025; 113:e37872. [PMID: 39893556 DOI: 10.1002/jbm.a.37872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 11/15/2024] [Accepted: 01/03/2025] [Indexed: 02/04/2025]
Abstract
The activity of matrix metalloproteinases (MMPs) plays a crucial role in the aging of the resin-dentin interface. The in situ action of MMP-2 and MMP-9 has been confirmed in the process of dentin-collagen degradation. However, the involvement of dental pulp cells in MMP secretion as a response to oxidative stress induced by contact with resin monomers has not been fully elucidated. Myricetin (MYR), like proanthocyanidin (PAC), has antioxidant properties and may help prevent extracellular matrix degradation. The objective was to evaluate the effect of MYR on the MMP expression and activity in response to reactive oxygen species (ROS) increase induced by triethylene glycol dimethacrylate (TEGDMA) in human odontoblast-like cells (hOLCs). hOLCs differentiated from dental pulp mesenchymal stem cells were exposed to TEGDMA released from dentin blocks using a barrier model with transwell inserts for 18, 24, and 36 h. Intracellular oxidation was evaluated using the 2',7'-dichlorofluorescein probe. The effect of 600 μM MYR on the MMP-2 and MMP-9 expression was determined by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The extracellular MMP levels were quantified using enzyme-linked immunosorbent assay, and their activation by means of a proteolytic fluorometric assay. The results were analyzed by one-way analysis of variance and Tukey's post hoc test, p ≤ 0.05. TEGDMA exposure increased intracellular ROS and upregulated MMP-2 and MMP-9 mRNA in hOLCs (p < 0.001). The levels of MMPs increased significantly 24 h after TEGDMA exposure (p = 0.013). These secreted proteases exhibited high activation ability. MYR reduced ROS production and downregulated MMP expression and activity at both mRNA and protein levels, similar to the effect found for PAC, which was used as a control. A relationship was observed between MMP-2 and MMP-9 expression, secretion, and early activation with ROS increase due to TEGDMA exposure. MYR showed potential as a therapeutic strategy to control MMP expression and modulate redox imbalance, offering a protective effect on cellular response.
Collapse
Affiliation(s)
- Paula Alejandra Baldión
- Departamento de Salud Oral, Facultad de Odontología, Sede Bogotá, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos Aldemar Díaz
- Departamento de Salud Oral, Facultad de Odontología, Sede Bogotá, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Diego Enrique Betancourt
- Departamento de Salud Oral, Facultad de Odontología, Sede Bogotá, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
7
|
Zhang H, Wang M, Zhou Y, Bao S, Wang F, Li C. Protective Effects of Astaxanthin against Oxidative Stress: Attenuation of TNF-α-Induced Oxidative Damage in SW480 Cells and Azoxymethane/Dextran Sulfate Sodium-Induced Colitis-Associated Cancer in C57BL/6 Mice. Mar Drugs 2024; 22:469. [PMID: 39452878 PMCID: PMC11509176 DOI: 10.3390/md22100469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
In this study, we investigated the protective effects of astaxanthin (AST) against oxidative stress induced by the combination of azoxymethane (AOM) and dextran sulfate sodium (DSS) in colitis-associated cancer (CAC) and TNF-α-induced human colorectal cancer cells (SW480), as well as the underlying mechanism. In vitro experiments revealed that astaxanthin reduced reactive oxygen species (ROS) generation and inhibited the expression of Phosphorylated JNK (P-JNK), Phosphorylated ERK (P-ERK), Phosphorylated p65 (P-p65), and the NF-κB downstream protein cyclooxygenase-2 (COX-2). In vivo experiments showed that astaxanthin ameliorated AOM/DSS-induced weight loss, shortened the colon length, and caused histomorphological changes. In addition, astaxanthin suppressed cellular inflammation by modulating the MAPK and NF-κB pathways and inhibiting the expression of the proinflammatory cytokines IL-6, IL-1β, and TNF-α. In conclusion, astaxanthin attenuates cellular inflammation and CAC through its antioxidant effects.
Collapse
Affiliation(s)
- Haifeng Zhang
- College of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China; (H.Z.); (M.W.); (F.W.)
- Engineering Research Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou 225127, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Department of Culinary Science, Ministry of Culture & Tourism, Yangzhou 225127, China
| | - Min Wang
- College of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China; (H.Z.); (M.W.); (F.W.)
| | - Yu Zhou
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.Z.); (S.B.)
| | - Shaojie Bao
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (Y.Z.); (S.B.)
| | - Feng Wang
- College of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China; (H.Z.); (M.W.); (F.W.)
| | - Chunmei Li
- College of Tourism and Cuisine, Yangzhou University, Yangzhou 225127, China; (H.Z.); (M.W.); (F.W.)
- Engineering Research Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou 225127, China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Department of Culinary Science, Ministry of Culture & Tourism, Yangzhou 225127, China
| |
Collapse
|
8
|
Chi F, Cheng C, Zhang M, Su B, Hou Y, Bai G. Resveratrol targeting NRF2 disrupts the binding between KEAP1 and NRF2-DLG motif to ameliorate oxidative stress damage in mice pulmonary infection. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118353. [PMID: 38762209 DOI: 10.1016/j.jep.2024.118353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The root of Polygonum cuspidatum Sieb. et Zucc (PC), known as 'Huzhang' in the Chinese Pharmacopoeia, has been traditionally employed for its anti-inflammatory, antiviral, antimicrobial, and other biological activities. Polydatin (PD) and its aglycone, resveratrol (RES), are key pharmacologically active components responsible for exerting anti-inflammatory and antioxidant effects. However, its specific targets and action mechanisms remain unclear. AIM OF THE STUDY The equilibrium of the KEAP1-NRF2 system serves as the primary protective response to oxidative and electrophilic stresses within the body, particularly in cases of acute lung injury caused by pathogenic microbial infection. In this study, the precise mechanisms by which RES alleviates oxidative stress damage in conjunction with NRF2 activators are discussed. MATERIALS AND METHODS The active components from PC were screened to evaluate their potential to inhibit reactive oxygen species (ROS) and activate antioxidant activity dependent on antioxidant response elements (ARE). RES was evaluated for its potential to alleviate the oxidative stress caused by pathogenic microbial infection. Functional probes were designed to study the RES distribution and identify its targets. A lipopolysaccharide (LPS)-induced oxidative injury model was used to evaluate the effects of RES on the KEAP1-NRF2/ARE pathway in RAW 264.7 cells. The interaction between RES and NRF2 was elucidated using drug-affinity responsive target stability (DARTS), cellular thermal shift assays (CETSA), co-immunoprecipitation (Co-IP), and microscale thermophoresis (MST) techniques. The key binding sites were predicted using molecular docking and validated in NRF2-knockdownand reconstructed cells. Finally, protective effects against pulmonary stress were verified in a mouse model of pathogenic infection. RESULTS The accumulation of RES in lung macrophages disrupted the binding between KEAP1 and NRF2, thereby preventing the ubiquitination degradation of NRF2 through its interaction with Ile28 on the NRF2-DLG motif. The activation of NRF2 resulted in the upregulation of nuclear transcription, enhances the expression of antioxidant genes dependent on ARE, suppresses ROS generation, and ameliorates oxidative damage both in vivo and in vitro. CONCLUSION These findings shed light on the potential of RES to mitigate oxidative stress damage caused by pathogenic microorganism-induced lung infections and facilitate the discovery of novel small molecule modulators targeting the KEAP1-NRF2 DLG motif interaction.
Collapse
Affiliation(s)
- Fuyun Chi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Chuanjing Cheng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Man Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Bo Su
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, 300353, China.
| |
Collapse
|
9
|
Zarei Shandiz S, Assaran Darban R, Javid H, Ghahremanloo A, Hashemy SI. The effect of SP/NK1R on expression and activity of glutaredoxin and thioredoxin proteins in prostate cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5875-5882. [PMID: 38334824 DOI: 10.1007/s00210-024-02996-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Substance P (SP), an important neuropeptide, has a crucial role in the progression of several cancers, including prostate cancer, through interacting with the neurokinin-1 receptor (NK1R). Oxidative stress is also involved in the onset and progression of prostate cancer. However, no studies have been performed on the cross-talk between the SP/NK1R system and cellular redox balance in prostate cancer, and how it is involved in tumorogenesis. We aimed to investigate the effect of the SP/NK1R system and the blockage of NK1R with its specific antagonist (aprepitant) on the cellular redox status of the prostate cancer cell line (PC3 and LNCaP). We performed the resazurin assay to evaluate the toxicity of the aprepitant on the PC3 and LNCaP cell lines. The intracellular reactive oxygen species (ROS) level was measured after SP and aprepitant treatment. The alterations of expression and activity of two crucial cellular oxidoreductases, glutaredoxin, and thioredoxin were evaluated by qRT-PCR and commercial kits (ZellBio GmbH), respectively. Our results revealed that SP increased ROS production and decreased the expression and activity of glutaredoxin and thioredoxin. On the other hand, treatment of cells with aprepitant showed reverse results. In conclusion, we found that the SP/NK1R system could promote prostate cancer progression by inducing oxidative stress. In addition, the inhibition of NK1R by aprepitant modulated the effect of the SP/NK1R system on the cellular redox system. Aprepitant might therefore be introduced as a candidate for the treatment of prostate cancer; however, more studies are required to confirm the validation of this hypothesis.
Collapse
Affiliation(s)
- Sara Zarei Shandiz
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Reza Assaran Darban
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran.
| | - Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Atefeh Ghahremanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Ting KKY. Revisiting the role of hypoxia-inducible factors and nuclear factor erythroid 2-related factor 2 in regulating macrophage inflammation and metabolism. Front Cell Infect Microbiol 2024; 14:1403915. [PMID: 39119289 PMCID: PMC11306205 DOI: 10.3389/fcimb.2024.1403915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
The recent birth of the immunometabolism field has comprehensively demonstrated how the rewiring of intracellular metabolism is critical for supporting the effector functions of many immune cell types, such as myeloid cells. Among all, the transcriptional regulation mediated by Hypoxia-Inducible Factors (HIFs) and Nuclear factor erythroid 2-related factor 2 (NRF2) have been consistently shown to play critical roles in regulating the glycolytic metabolism, redox homeostasis and inflammatory responses of macrophages (Mφs). Although both of these transcription factors were first discovered back in the 1990s, new advances in understanding their function and regulations have been continuously made in the context of immunometabolism. Therefore, this review attempts to summarize the traditionally and newly identified functions of these transcription factors, including their roles in orchestrating the key events that take place during glycolytic reprogramming in activated myeloid cells, as well as their roles in mediating Mφ inflammatory responses in various bacterial infection models.
Collapse
Affiliation(s)
- Kenneth K. Y. Ting
- Department of Immunology, University of Toronto, Toronto, ON, Canada
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
11
|
Muzammil K, Sabah Ghnim Z, Saeed Gataa I, Fawzi Al-Hussainy A, Ali Soud N, Adil M, Ali Shallan M, Yasamineh S. NRF2-mediated regulation of lipid pathways in viral infection. Mol Aspects Med 2024; 97:101279. [PMID: 38772081 DOI: 10.1016/j.mam.2024.101279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/14/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
The first line of defense against viral infection of the host cell is the cellular lipid membrane, which is also a crucial first site of contact for viruses. Lipids may sometimes be used as viral receptors by viruses. For effective infection, viruses significantly depend on lipid rafts during the majority of the viral life cycle. It has been discovered that different viruses employ different lipid raft modification methods for attachment, internalization, membrane fusion, genome replication, assembly, and release. To preserve cellular homeostasis, cells have potent antioxidant, detoxifying, and cytoprotective capabilities. Nuclear factor erythroid 2-related factor 2 (NRF2), widely expressed in many tissues and cell types, is one crucial component controlling electrophilic and oxidative stress (OS). NRF2 has recently been given novel tasks, including controlling inflammation and antiviral interferon (IFN) responses. The activation of NRF2 has two effects: it may both promote and prevent the development of viral diseases. NRF2 may also alter the host's metabolism and innate immunity during viral infection. However, its primary function in viral infections is to regulate reactive oxygen species (ROS). In several research, the impact of NRF2 on lipid metabolism has been examined. NRF2 is also involved in the control of lipids during viral infection. We evaluated NRF2's function in controlling viral and lipid infections in this research. We also looked at how lipids function in viral infections. Finally, we investigated the role of NRF2 in lipid modulation during viral infections.
Collapse
Affiliation(s)
- Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, 62561, Saudi Arabia
| | | | | | | | - Nashat Ali Soud
- Collage of Dentist, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | | | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
12
|
Sabi EM, AlAfaleq NO, Mujamammi AH, Al-Shouli ST, Althafar ZM, Bin Dahman LS, Sumaily KM. Gramine Exerts Cytoprotective Effects and Antioxidant Properties Against H2O2-Induced Oxidative Stress in HEK 293 Cells. Appl Biochem Biotechnol 2024; 196:3471-3487. [DOI: https:/doi.org/10.1007/s12010-023-04693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 11/05/2023]
|
13
|
Sabi EM, AlAfaleq NO, Mujamammi AH, Al-Shouli ST, Althafar ZM, Bin Dahman LS, Sumaily KM. Gramine Exerts Cytoprotective Effects and Antioxidant Properties Against H 2O 2-Induced Oxidative Stress in HEK 293 Cells. Appl Biochem Biotechnol 2024; 196:3471-3487. [PMID: 37668758 DOI: 10.1007/s12010-023-04693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/06/2023]
Abstract
Oxidative stress caused due to the perturbations in the oxidant-antioxidant system can damage molecules and cause cellular alteration leading to the pathogenesis of multiple diseases. This study was designed and performed to investigate the antioxidant and anti-inflammatory effects of an alkaloid, gramine on H2O2-induced oxidative stress on HEK 293 cells. Cell viability and morphometric analysis of cells treated with H2O2 and gramine were studied. Oxidative stress and inflammatory and antioxidant enzymes such as ROS, LPO, NO, SOD, GSH, and CAT were analyzed. Furthermore, mRNA expression of SOD, CAT, and COX-2 was also evaluated. H2O2 at concentration > 0.3 mM and gramine at concentration > 80 μg/mL affect the proliferation. Viability and morphometric analysis showed that gramine has protective effects. Treating cells with gramine suppressed oxidative stress and inflammatory enzymes, whereas antioxidant enzymes were enhanced. SOD and CAT mRNA levels were overexpressed and COX-2 mRNA levels were decreased in the treated groups. Gramine possesses effective antioxidant potential and can regulate oxidative stress and damages associated with it.
Collapse
Affiliation(s)
- Essa M Sabi
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, P.O. Box 2925, Riyadh, 11461, Saudi Arabia.
| | - Nouf O AlAfaleq
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ahmed H Mujamammi
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, P.O. Box 2925, Riyadh, 11461, Saudi Arabia
| | - Samia T Al-Shouli
- Immunology Unit, Department of Pathology, College of Medicine, King Saud University, P.O. Box 2925, Riyadh, 11461, Saudi Arabia
| | - Ziyad M Althafar
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences in Alquwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Lotfi S Bin Dahman
- Department of Medical Biochemistry, College of Medicine and Health Sciences, Hadhramout University, Mukalla, 50511, Yemen
| | - Khalid M Sumaily
- Clinical Biochemistry Unit, Department of Pathology, College of Medicine, King Saud University, P.O. Box 2925, Riyadh, 11461, Saudi Arabia
| |
Collapse
|
14
|
Li J, Zhang J, Jin X, Li S, Du Y, Zeng Y, Wang J, Chen W. Identification and functional prediction of long non-coding RNAs related to oxidative stress in the jejunum of piglets. Anim Biosci 2024; 37:193-202. [PMID: 37641831 PMCID: PMC10766486 DOI: 10.5713/ab.23.0202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE Oxidative stress (OS) is a pathological process arising from the excessive production of free radicals in the body. It has the potential to alter animal gene expression and cause damage to the jejunum. However, there have been few reports of changes in the expression of long noncoding RNAs (lncRNAs) in the jejunum in piglets under OS. The purpose of this research was to examine how lncRNAs in piglet jejunum change under OS. METHODS The abdominal cavities of piglets were injected with diquat (DQ) to produce OS. Raw reads were downloaded from the SRA database. RNA-seq was utilized to study the expression of lncRNAs in piglets under OS. Additionally, six randomly selected lncRNAs were verified using quantitative real-time polymerase chain reaction (qRT‒PCR) to examine the mechanism of oxidative damage. RESULTS A total of 79 lncRNAs were differentially expressed (DE) in the treatment group compared to the negative control group. The target genes of DE lncRNAs were enriched in gene ontology (GO) terms and Kyoto encyclopedia of genes and genomes (KEGG) signaling pathways. Chemical carcinogenesis-reactive oxygen species, the Foxo signaling pathway, colorectal cancer, and the AMPK signaling pathway were all linked to OS. CONCLUSION Our results demonstrated that DQ-induced OS causes differential expression of lncRNAs, laying the groundwork for future research into the processes involved in the jejunum's response to OS.
Collapse
Affiliation(s)
- Jinbao Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an City, 271018,
China
| | - Jianmin Zhang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an City, 271018,
China
| | - Xinlin Jin
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an City, 271018,
China
| | - Shiyin Li
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an City, 271018,
China
| | - Yingbin Du
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an City, 271018,
China
| | - Yongqing Zeng
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an City, 271018,
China
| | - Jin Wang
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an City, 271018,
China
| | - Wei Chen
- Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai’an City, 271018,
China
| |
Collapse
|
15
|
Ma Q, Lim CS. Molecular Activation of NLRP3 Inflammasome by Particles and Crystals: A Continuing Challenge of Immunology and Toxicology. Annu Rev Pharmacol Toxicol 2024; 64:417-433. [PMID: 37708431 PMCID: PMC10842595 DOI: 10.1146/annurev-pharmtox-031023-125300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Particles and crystals constitute a unique class of toxic agents that humans are constantly exposed to both endogenously and from the environment. Deposition of particulates in the body is associated with a range of diseases and toxicity. The mechanism by which particulates cause disease remains poorly understood due to the lack of mechanistic insights into particle-biological interactions. Recent research has revealed that many particles and crystals activate the NLRP3 inflammasome, an intracellular pattern-recognition receptor. Activated NLRP3 forms a supramolecular complex with an adaptor protein to activate caspase 1, which in turn activates IL-1β and IL-18 to instigate inflammation. Genetic ablation and pharmacological inhibition of the NLRP3 inflammasome dampen inflammatory responses to particulates. Nonetheless, how particulates activate NLRP3 remains a challenging question. From this perspective, we discuss our current understanding of and progress on revealing the function and mode of action of the NLRP3 inflammasome in mediating adaptive and pathologic responses to particulates in health and disease.
Collapse
Affiliation(s)
- Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA;
| | - Chol Seung Lim
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia, USA;
| |
Collapse
|
16
|
Fatkhutdinova LM, Gabidinova GF, Daminova AG, Dimiev AM, Khamidullin TL, Valeeva EV, Cokou AEE, Validov SZ, Timerbulatova GA. Mechanisms related to carbon nanotubes genotoxicity in human cell lines of respiratory origin. Toxicol Appl Pharmacol 2024; 482:116784. [PMID: 38070752 DOI: 10.1016/j.taap.2023.116784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/22/2023]
Abstract
Potential genotoxicity and carcinogenicity of carbon nanotubes (CNT), as well as the underlying mechanisms, remains a pressing topic. The study aimed to evaluate and compare the genotoxic effect and mechanisms of DNA damage under exposure to different types of CNT. Immortalized human cell lines of respiratory origin BEAS-2B, A549, MRC5-SV40 were exposed to three types of CNT: MWCNT Taunit-M, pristine and purified SWCNT TUBALL™ at concentrations in the range of 0.0006-200 μg/ml. Data on the CNT content in the workplace air were used to calculate the lower concentration limit. The genotoxic potential of CNTs was investigated at non-cytotoxic concentrations using a DNA comet assay. We explored reactive oxygen species (ROS) formation, direct genetic material damage, and expression of a profibrotic factor TGFB1 as mechanisms related to genotoxicity upon CNT exposure. An increase in the number of unstable DNA regions was observed at a subtoxic concentration of CNT (20 μg/ml), with no genotoxic effects at concentrations corresponding to industrial exposures being found. While the three test articles of CNTs exhibited comparable genotoxic potential, their mechanisms appeared to differ. MWCNTs were found to penetrate the nucleus of respiratory cells, potentially interacting directly with genetic material, as well as to enhance ROS production and TGFB1 gene expression. For A549 and MRC5-SV40, genotoxicity depended mainly on MWCNT concentration, while for BEAS-2B - on ROS production. Mechanisms of SWCNT genotoxicity were not so obvious. Oxidative stress and increased expression of profibrotic factors could not fully explain DNA damage under SWCNT exposure, and other mechanisms might be involved.
Collapse
Affiliation(s)
| | | | | | - Ayrat M Dimiev
- Kazan Federal University, Laboratory for Advanced Carbon Nanomaterials, Kazan 420008, Russian Federation
| | - Timur L Khamidullin
- Kazan Federal University, Laboratory for Advanced Carbon Nanomaterials, Kazan 420008, Russian Federation
| | - Elena V Valeeva
- Kazan State Medical University, Kazan 420012, Russian Federation
| | | | | | | |
Collapse
|
17
|
Meydan S, Barros GC, Simões V, Harley L, Cizubu BK, Guydosh NR, Silva GM. The ubiquitin conjugase Rad6 mediates ribosome pausing during oxidative stress. Cell Rep 2023; 42:113359. [PMID: 37917585 PMCID: PMC10755677 DOI: 10.1016/j.celrep.2023.113359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/26/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023] Open
Abstract
Oxidative stress causes K63-linked ubiquitination of ribosomes by the E2 ubiquitin conjugase Rad6. How Rad6-mediated ubiquitination of ribosomes affects translation, however, is unclear. We therefore perform Ribo-seq and Disome-seq in Saccharomyces cerevisiae and show that oxidative stress causes ribosome pausing at specific amino acid motifs, which also leads to ribosome collisions. However, these redox-pausing signatures are lost in the absence of Rad6 and do not depend on the ribosome-associated quality control (RQC) pathway. We also show that Rad6 is needed to inhibit overall translation in response to oxidative stress and that its deletion leads to increased expression of antioxidant genes. Finally, we observe that the lack of Rad6 leads to changes during translation that affect activation of the integrated stress response (ISR) pathway. Our results provide a high-resolution picture of the gene expression changes during oxidative stress and unravel an additional stress response pathway affecting translation elongation.
Collapse
Affiliation(s)
- Sezen Meydan
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Postdoctoral Research Associate Training Fellowship, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20982, USA
| | | | - Vanessa Simões
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Lana Harley
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | | - Nicholas R Guydosh
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Gustavo M Silva
- Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
18
|
De Vita S, Masullo M, Grambone S, Bescós PB, Piacente S, Bifulco G. Demethylcalabaxanthone from Garcinia mangostana Exerts Antioxidant Effects through the Activation of the Nrf2 Pathway as Assessed via Molecular Docking and Biological Evaluation. Antioxidants (Basel) 2023; 12:1980. [PMID: 38001833 PMCID: PMC10669650 DOI: 10.3390/antiox12111980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway activation promotes the expression of antioxidant enzymes in response to rising oxidative stress, resulting in reactive oxygen species (ROS) detoxification and playing a central role in the maintenance of intracellular redox homeostasis and regulation of inflammation. Moreover, the biological effects of Nrf2 pathway activation contribute to reducing apoptosis and enhancing cell survival. The activity of Nrf2 is negatively regulated by Kelch-like ECH-associated protein 1 (Keap1). Prompted by the recent results reporting the impact of xanthone metabolites on oxidative stress, cancer, and inflammation, the antioxidant properties of xanthones isolated from Garcinia mangostana (γ-mangostin, α-mangostin, 8-deoxygartanin, demethylcalabaxanthone, garcinone D) were assessed. In particular, the capability of these natural products to disrupt the interaction between Kelch-like ECH-associated protein 1 (Keap1) and nuclear factor erythroid 2-related factor 2 (Nrf2), triggering the activation of the Nrf2-mediated pathway, was evaluated using molecular docking experiments and in vitro tests. The modulation of some key Nrf2-related mediators like glutathione (GSH) and lactate dehydrogenase (LDH) to highlight a possible direct antioxidant effect was investigated. Among the tested compounds, demethylcalabaxanthone showed an indirect antioxidant effect, as corroborated by a Western blot assay, displaying a significant increase in the translocated protein upon its administration.
Collapse
Affiliation(s)
- Simona De Vita
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 134, 84084 Fisciano, Italy; (S.D.V.); (M.M.); (S.G.)
| | - Milena Masullo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 134, 84084 Fisciano, Italy; (S.D.V.); (M.M.); (S.G.)
| | - Sabrina Grambone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 134, 84084 Fisciano, Italy; (S.D.V.); (M.M.); (S.G.)
| | - Paloma Bermejo Bescós
- Departamento de Farmacología, Farmacognosia y Botánica, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Sonia Piacente
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 134, 84084 Fisciano, Italy; (S.D.V.); (M.M.); (S.G.)
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 134, 84084 Fisciano, Italy; (S.D.V.); (M.M.); (S.G.)
| |
Collapse
|
19
|
Qi R, Xiao G, Miao J, Zhou Y, Li Z, He Z, Zhang N, Song A, Pan L. Toxicity assessment and detoxification metabolism of sodium pentachlorophenol (PCP-Na) on marine economic species: a case study of Moerella iridescens and Exopalaemon carinicauda. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113587-113599. [PMID: 37851259 DOI: 10.1007/s11356-023-30438-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
Sodium pentachlorophenol (PCP-Na) is widespread in the marine environment; however, its impact on marine organisms remains under-researched. Moerella iridescens and Exopalaemon carinicauda are marine species of economic importance in China and under threat from PCP-Na pollution. Thus, this study aimed to assess the toxicity and detoxification metabolism of PCP-Na on M. iridescens and E. carinicauda. The study revealed that the 96 h median lethal concentration (LC50) of PCP-Na for M. iridescens and E. carinicauda were 9.895 mg/L and 14.143 mg/L, respectively. A species sensitivity distribution (SSD) for PCP-Na was developed specifically for marine organisms, determining a hazardous concentration to 5% of the species (HC5) of 0.047 mg/L. During the sub-chronic exposure period, PCP-Na accumulated significantly in M. iridescens and E. carinicauda, with highest concentrations of 41.22 mg/kg in the soft tissues of M. iridescens, 42.58 mg/kg in the hepatopancreas of E. carinicauda, and only 0.85 mg/kg in the muscle of E. carinicauda. Furthermore, the study demonstrated that detoxifying metabolic enzymes and antioxidant defense system enzymes of E. carinicauda responded stronger to PCP-Na compared to M. iridescens, suggesting that E. carinicauda may possess a stronger detoxification capacity. Notably, five biomarkers were identified and proposed for monitoring and evaluating PCP-Na contamination. Overall, the results indicated that M. iridescens and E. carinicauda exhibit greater tolerance to PCP-Na than other marine species, but they are susceptible to accumulating PCP-Na in their tissues, posing a significant health risk. Consequently, conducting aquatic health risk assessments in areas with potential PCP-Na contamination is strongly recommended.
Collapse
Affiliation(s)
- Ruicheng Qi
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, Qingdao, People's Republic of China
| | - Guoqiang Xiao
- Zhejiang Mariculture Research Institute, 325005, Wenzhou, People's Republic of China
| | - Jingjing Miao
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, Qingdao, People's Republic of China
| | - Yueyao Zhou
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, Qingdao, People's Republic of China
| | - Zeyuan Li
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, Qingdao, People's Republic of China
| | - Zhiheng He
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, Qingdao, People's Republic of China
| | - Ning Zhang
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, Qingdao, People's Republic of China
| | - Aimin Song
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, Qingdao, People's Republic of China
| | - Luqing Pan
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Yushan Road 5, Qingdao, 266003, Qingdao, People's Republic of China.
| |
Collapse
|
20
|
Béquignon OM, Gómez-Tamayo JC, Lenselink EB, Wink S, Hiemstra S, Lam CC, Gadaleta D, Roncaglioni A, Norinder U, Water BVD, Pastor M, van Westen GJP. Collaborative SAR Modeling and Prospective In Vitro Validation of Oxidative Stress Activation in Human HepG2 Cells. J Chem Inf Model 2023; 63:5433-5445. [PMID: 37616385 PMCID: PMC10498489 DOI: 10.1021/acs.jcim.3c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Indexed: 08/26/2023]
Abstract
Oxidative stress is the consequence of an abnormal increase of reactive oxygen species (ROS). ROS are generated mainly during the metabolism in both normal and pathological conditions as well as from exposure to xenobiotics. Xenobiotics can, on the one hand, disrupt molecular machinery involved in redox processes and, on the other hand, reduce the effectiveness of the antioxidant activity. Such dysregulation may lead to oxidative damage when combined with oxidative stress overpassing the cell capacity to detoxify ROS. In this work, a green fluorescent protein (GFP)-tagged nuclear factor erythroid 2-related factor 2 (NRF2)-regulated sulfiredoxin reporter (Srxn1-GFP) was used to measure the antioxidant response of HepG2 cells to a large series of drug and drug-like compounds (2230 compounds). These compounds were then classified as positive or negative depending on cellular response and distributed among different modeling groups to establish structure-activity relationship (SAR) models. A selection of models was used to prospectively predict oxidative stress induced by a new set of compounds subsequently experimentally tested to validate the model predictions. Altogether, this exercise exemplifies the different challenges of developing SAR models of a phenotypic cellular readout, model combination, chemical space selection, and results interpretation.
Collapse
Affiliation(s)
- Olivier
J. M. Béquignon
- Leiden
Academic Centre for Drug Research, Leiden
University, Wassenaarseweg 76, 2333 AL Leiden, The Netherlands
| | - Jose C. Gómez-Tamayo
- Research
Programme on Biomedical Informatics (GRIB), Department of Medicine
and Life Sciences, Hospital del Mar Medical Research Institute, Universitat Pompeu Fabra, Carrer del Dr. Aiguader 88, 08002 Barcelona, Spain
| | - Eelke B. Lenselink
- Leiden
Academic Centre for Drug Research, Leiden
University, Wassenaarseweg 76, 2333 AL Leiden, The Netherlands
| | - Steven Wink
- Leiden
Academic Centre for Drug Research, Leiden
University, Wassenaarseweg 76, 2333 AL Leiden, The Netherlands
| | - Steven Hiemstra
- Leiden
Academic Centre for Drug Research, Leiden
University, Wassenaarseweg 76, 2333 AL Leiden, The Netherlands
| | - Chi Chung Lam
- Leiden
Academic Centre for Drug Research, Leiden
University, Wassenaarseweg 76, 2333 AL Leiden, The Netherlands
| | - Domenico Gadaleta
- Laboratory
of Environmental Chemistry and Toxicology, Department of Environmental
Health Sciences, IRCCS—Istituto di
Ricerche Farmacologiche Mario Negri, Via la Masa 19, 20156 Milano, Italy
| | - Alessandra Roncaglioni
- Laboratory
of Environmental Chemistry and Toxicology, Department of Environmental
Health Sciences, IRCCS—Istituto di
Ricerche Farmacologiche Mario Negri, Via la Masa 19, 20156 Milano, Italy
| | - Ulf Norinder
- MTM
Research Centre, School of Science and Technology, Örebro University, SE-70182 Örebro, Sweden
| | - Bob van de Water
- Leiden
Academic Centre for Drug Research, Leiden
University, Wassenaarseweg 76, 2333 AL Leiden, The Netherlands
| | - Manuel Pastor
- Research
Programme on Biomedical Informatics (GRIB), Department of Medicine
and Life Sciences, Hospital del Mar Medical Research Institute, Universitat Pompeu Fabra, Carrer del Dr. Aiguader 88, 08002 Barcelona, Spain
| | - Gerard J. P. van Westen
- Leiden
Academic Centre for Drug Research, Leiden
University, Wassenaarseweg 76, 2333 AL Leiden, The Netherlands
| |
Collapse
|
21
|
Alamri HS, Mufti R, Sabir DK, Abuderman AA, Dawood AF, ShamsEldeen AM, Haidara MA, Isenovic ER, El-Bidawy MH. Forced Swimming-Induced Depressive-like Behavior and Anxiety Are Reduced by Chlorpheniramine via Suppression of Oxidative and Inflammatory Mediators and Activating the Nrf2-BDNF Signaling Pathway. Curr Issues Mol Biol 2023; 45:6449-6465. [PMID: 37623226 PMCID: PMC10453464 DOI: 10.3390/cimb45080407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/20/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
The first-generation antihistamine chlorpheniramine (CPA) is believed to have both anxiolytic and antidepressant properties. The current study sought to assess the mechanisms behind the antidepressant and anxiolytic effects of CPA therapy concerning oxidative stress, inflammation, and nuclear factor p45 for erythroid 2-Brain-derived neurotrophic factor (Nrf2-BDNF) signaling pathway in forced swimming-induced depressive-like behavior and anxiety. Eighteen male Wistar rats (180-200 gm) rats were separated into three groups (n = 6): a stressed group (acute stress) that underwent the forced swimming test (FST) and a stressed group that received pretreatment with CPA (10 mg/kg body weight) for 3 weeks (CPA + acute stress). Animals were subsequently put through the following behavioral tests after undergoing a forced swim test (FST) for 5 min: an immobility test, open field test, and elevated plus maze test. Serum cortisol levels were measured when the rats were euthanized at the end of the experiments. Brain neurotransmitters (cortisol, serotonin, and noradrenaline), oxidative stress (SOD and MDA), inflammatory (IL-6 and IL-1) biomarkers, and the Nrf2-BDNF signaling pathway in the hippocampus and cerebral cortex tissues was determined. CPA prevented stress-induced increases in cortisol levels (p < 0.0001), decreased brain neurotransmitters, and increased oxidative stress and inflammation. CPA also upregulated the Nrf2-BDNF signaling pathway. Thus, CPA mitigates depressive-like behavior and anxiety by inhibiting oxidative stress and inflammation and upregulating the Nrf2-BDNF signaling pathway in the brain tissues.
Collapse
Affiliation(s)
- Hasan S. Alamri
- Department of Internal Medicine, College of Medicine, King Khalid University, P.O. Box 641, Abha 61421, Saudi Arabia;
| | - Rana Mufti
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Deema Kamal Sabir
- Department of Medical-Surgical Nursing, College of Nursing, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Abdulwahab A. Abuderman
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 11942, Al-Kharj 16278, Saudi Arabia; (A.A.A.); (M.H.E.-B.)
| | - Amal F. Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box. 84428, Riyadh 11671, Saudi Arabia
| | - Asmaa M. ShamsEldeen
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo 11566, Egypt or (A.M.S.)
- Department of Physiology, Faculty of Medicine, October 6 University, Cairo 11566, Egypt
| | - Mohamed A. Haidara
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo 11566, Egypt or (A.M.S.)
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| | - Mahmoud H. El-Bidawy
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 11942, Al-Kharj 16278, Saudi Arabia; (A.A.A.); (M.H.E.-B.)
- Department of Physiology, Kasr Al-Aini Faculty of Medicine, Cairo University, Cairo 11566, Egypt or (A.M.S.)
| |
Collapse
|
22
|
Liang Q, Guo R, Tsao JR, He Y, Wang C, Jiang J, Zhang D, Chen T, Yue T, Hu K. Salidroside alleviates oxidative stress in dry eye disease by activating autophagy through AMPK-Sirt1 pathway. Int Immunopharmacol 2023; 121:110397. [PMID: 37302369 DOI: 10.1016/j.intimp.2023.110397] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/14/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023]
Abstract
Dry eye disease (DED) is a multifactorial disease, and oxidative stress plays a crucial role in its pathogenesis. Recently, multiple studies have shown that upregulation of autophagy can protect the cornea from oxidative stress damage. The present study investigated the therapeutic effects of salidroside, the main component of Rhodiola crenulata, in both in vivo and in vitro dry eye models. The results showed that topical eye drop treatment with salidroside restored corneal epithelium damage, increased tear secretion, and reduced cornea inflammation in the DED mice. Salidroside activated autophagy through AMP-activated protein kinase (AMPK)-sirtuin-1 (Sirt1) signaling pathway, which promoted the nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2) and increased the expression of downstream antioxidant factors heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1). This process restored antioxidant enzyme activity, reduced reactive oxygen species (ROS) accumulation, and alleviated oxidative stress. The application of autophagy inhibitor chloroquine and AMPK inhibitor Compound C reversed the therapeutic efficacy of salidroside, validating the above findings. In conclusion, our data suggest that salidroside is a promising candidate for DED treatment.
Collapse
Affiliation(s)
- Qi Liang
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, China
| | - Rongjie Guo
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, China
| | - Jia-Ruei Tsao
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, China
| | - Yun He
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, China
| | - Chenchen Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 618 Fengqi East Rd, Hangzhou, Zhejiang, China
| | - Jiaxuan Jiang
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, China
| | - Di Zhang
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, China
| | - Taige Chen
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, China; Department of Rheumatology and Immunology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, China
| | - Tingting Yue
- Department of Neurosurgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, China.
| | - Kai Hu
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, China.
| |
Collapse
|
23
|
Yeo EJ, Shin MJ, Youn GS, Park JH, Yeo HJ, Kwon HJ, Lee LR, Kim NY, Kwon SY, Kim SM, Lee J, Lee KW, Lee CH, Cho YJ, Kwon OS, Kim DW, Jung HY, Eum WS, Choi SY. Tat-RAN attenuates brain ischemic injury in hippocampal HT-22 cells and ischemia animal model. Neurochem Int 2023; 167:105538. [PMID: 37207854 DOI: 10.1016/j.neuint.2023.105538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/30/2023] [Accepted: 05/07/2023] [Indexed: 05/21/2023]
Abstract
Oxidative stress plays a key role in the pathogenesis of neuronal injury, including ischemia. Ras-related nuclear protein (RAN), a member of the Ras superfamily, involves in a variety of biological roles, such as cell division, proliferation, and signal transduction. Although RAN reveals antioxidant effect, its precise neuroprotective mechanisms are still unclear. Therefore, we investigated the effects of RAN on HT-22 cell which were exposed to H2O2-induced oxidative stress and ischemia animal model by using the cell permeable Tat-RAN fusion protein. We showed that Tat-RAN transduced into HT-22 cells, and markedly inhibited cell death, DNA fragmentation, and reactive oxygen species (ROS) generation under oxidative stress. This fusion protein also controlled cellular signaling pathways, including mitogen-activated protein kinases (MAPKs), NF-κB, and apoptosis (Caspase-3, p53, Bax and Bcl-2). In the cerebral forebrain ischemia animal model, Tat-RAN significantly inhibited both neuronal cell death, and astrocyte and microglia activation. These results indicate that RAN significantly protects against hippocampal neuronal cell death, suggesting Tat-RAN will help to develop the therapies for neuronal brain diseases including ischemic injury.
Collapse
Affiliation(s)
- Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Gi Soo Youn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Jung Hwan Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Hyun Jung Kwon
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Lee Re Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Na Yeon Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Su Yeon Kwon
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Su Min Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Jaehak Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Keun Wook Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Chan Hee Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Yong-Jun Cho
- Department of Neurosurgery, Hallym University Medical Center, Chuncheon, 24253, South Korea
| | - Oh-Shin Kwon
- School of Life Sciences, College of Natural Sciences Kyungpook National University, Taegu, 41566, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Hyo Young Jung
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea.
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea.
| |
Collapse
|
24
|
Alam M, Rashid S, Fatima K, Adnan M, Shafie A, Akhtar MS, Ganie AH, Eldin SM, Islam A, Khan I, Hassan MI. Biochemical features and therapeutic potential of α-Mangostin: Mechanism of action, medicinal values, and health benefits. Biomed Pharmacother 2023; 163:114710. [PMID: 37141737 DOI: 10.1016/j.biopha.2023.114710] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
α-Mangostin (α-MG) is a natural xanthone obtained from the pericarps of mangosteen. It exhibits excellent potential, including anti-cancer, neuroprotective, antimicrobial, antioxidant, and anti-inflammatory properties, and induces apoptosis. α-MG controls cell proliferation by modulating signaling molecules, thus implicated in cancer therapy. It possesses incredible pharmacological features and modulates crucial cellular and molecular factors. Due to its lesser water solubility and pitiable target selectivity, α-MG has limited clinical application. As a known antioxidant, α-MG has gained significant attention from the scientific community, increasing interest in extensive technical and biomedical applications. Nanoparticle-based drug delivery systems were designed to improve the pharmacological features and efficiency of α-MG. This review is focused on recent developments on the therapeutic potential of α-MG in managing cancer and neurological diseases, with a special focus on its mechanism of action. In addition, we highlighted biochemical and pharmacological features, metabolism, functions, anti-inflammatory, antioxidant effects and pre-clinical applications of α-MG.
Collapse
Affiliation(s)
- Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, PO Box 173, Al-kharj 11942, Saudi Arabia
| | - Kisa Fatima
- Department of Biotechnology, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, PO Box 2440, Hail 2440, Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mohammad Salman Akhtar
- Department of Basic Medical Sciences, Faculty of Applied Medical Sciences, Albaha University, Albaha, Saudi Arabia
| | - A H Ganie
- Basic Sciences Department, College of Science and Theoretical Studies, Saudi Electronic University, Abha Male 61421, Saudi Arabia
| | - Sayed M Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo 11835, Egypt
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ilyas Khan
- Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
25
|
Ma Q. Pharmacological Inhibition of the NLRP3 Inflammasome: Structure, Molecular Activation, and Inhibitor-NLRP3 Interaction. Pharmacol Rev 2023; 75:487-520. [PMID: 36669831 PMCID: PMC10121800 DOI: 10.1124/pharmrev.122.000629] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/22/2023] Open
Abstract
The nucleotide-binding, oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a multiprotein complex that combines sensing, regulation, and effector functions to regulate inflammation in health and disease. NLRP3 is activated by a diverse range of inflammation-instigating signals known as pathogen associated molecular patterns and danger associated molecular patterns. Upon activation, NLRP3 oligomerizes and recruits partner proteins to form a supramolecular platform to process the maturation and release of interleukin (IL)-1β, IL-18, and gasdermin D, major mediators of inflammation and inflammatory cell death termed pyroptosis. The NLRP3 inflammasome has been implicated in the pathogenesis of a wide range of disease conditions, including chronic inflammatory disease that are associated with lifestyle and dietary changes, aging, and environmental exposures, and have become the leading cause of death worldwide. Pharmacological targeting of NLRP3 and signaling demonstrated promising efficacy in ameliorating a list of disease conditions in animal models. These findings underscore the potential and importance of NLRP3 as a druggable target for treating a range of diseases. In this review, recent progress in understanding the structure and mechanism of action of the NLRP3 inflammasome is discussed with focus on pharmacological inhibition of NLRP3 by small molecule inhibitors. New structural and mechanistic insights into NLRP3 activation and inhibitor-NLRP3 interactions would aid in the rational design and pharmacological evaluation of NLRP3 inhibitors for treatment of human disease. SIGNIFICANCE STATEMENT: The NLRP3 inflammasome plays central role in innate immune sensing and control of inflammation. Pharmacological inhibition of NLRP3 demonstrated promising efficacy in a range of diseases in animal models. Recent elucidation of the structure and inhibitor binding of NLRP3 generated new insights into its mode of action and inhibitor-NLRP3 interaction at molecular levels, providing new framework for developing small chemical inhibitors of NLRP3 with improved efficacy and specificity against chronic disease that has become major health concerns worldwide.
Collapse
Affiliation(s)
- Qiang Ma
- Receptor Biology Laboratory, Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, West Virginia
| |
Collapse
|
26
|
Akintoye OO, Ajibare AJ, Oriyomi IA, Olofinbiyi BA, Oyiza YG, Christanah AD, Babalola TK, Esther FO, Seun O, Owoyele VB. Synergistic action of carvedilol and clomiphene in mitigating the behavioral phenotypes of letrozole-model of PCOS rats by modulating the NRF2/NFKB pathway. Life Sci 2023; 324:121737. [PMID: 37127183 DOI: 10.1016/j.lfs.2023.121737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/20/2023] [Accepted: 04/23/2023] [Indexed: 05/03/2023]
Abstract
INTRODUCTION Psychiatric and cognitive impairment has been observed in premenopausal women with a hormonal disorder called polycystic ovary syndrome (PCOS). This study aimed to explore the possibility of combining pharmacological agents: Carvedilol and Clomiphene citrate, with antiestrogenic, antioxidant and anti-inflammatory properties in letrozole-induced PCOS rats. METHODS PCOS was induced in rats by the administration of letrozole (1 mg/kg) daily for 21 days. They were subsequently divided into four groups, each receiving either the vehicle or Clomiphene citrate (1 mg/kg) or Carvedilol or a combination of Clomiphene citrate and Carvedilol, respectively from days 22-36. Neurobehavioral studies were conducted on day 35 (Elevated plus maze and Y maze) and day 36 (Novel object recognition). The serum levels of the antioxidants Superoxide dismutase, Catalase, Interleukin 1B (IL-1B), and the gene expression of nuclear factor-erythroid factor 2-related factor 2 (Nrf2), Nuclear Factor k-Beta (NFKB), and acetylcholine esterase in the frontal brain homogenate was determined. RESULT Both Carvedilol and the combination therapy reversed the anxiety-like behavior, while Clomiphene citrate and the combination therapy ameliorated the spatial and non-spatial memory impairment observed in PCOS rats. Carvedilol, Clomiphene citrate, and the combination therapy increased the serum concentration of SOD and Catalase and decreased the serum concentration of IL-1B. The combination therapy up-regulated the NRF-2, NFKB, and acetylcholine esterase gene expression. CONCLUSION Study showed that the combination of carvedilol and clomiphene citrate has anxiolytic potential and improved cognitive functions in PCOS rats. This might have been achieved by carvedilol and clomiphene citrate's ability to modulate the cholinergic system and the Nrf2 pathway while downregulating the NFκB signaling pathway.
Collapse
Affiliation(s)
| | | | - Isaac Adeola Oriyomi
- Physiology Department, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
| | - Babatunde Ajayi Olofinbiyi
- Department of Obstetrics and Gynaecology, College of Medicine, Ekiti State University, Ado-Ekiti, Ekiti State, Nigeria
| | - Yusuf Grace Oyiza
- Physiology Department, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
| | | | | | | | - Oludipe Seun
- Physiology Department, College of Medicine, Ekiti State University, Ado Ekiti, Nigeria
| | - Victor Bamidele Owoyele
- Physiology Department, Faculty of Basic Medical Sciences, College of Health Science, University of Ilorin, Nigeria
| |
Collapse
|
27
|
Fyfe-Desmarais G, Desmarais F, Rassart É, Mounier C. Apolipoprotein D in Oxidative Stress and Inflammation. Antioxidants (Basel) 2023; 12:antiox12051027. [PMID: 37237893 DOI: 10.3390/antiox12051027] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Apolipoprotein D (ApoD) is lipocalin able to bind hydrophobic ligands. The APOD gene is upregulated in a number of pathologies, including Alzheimer's disease, Parkinson's disease, cancer, and hypothyroidism. Upregulation of ApoD is linked to decreased oxidative stress and inflammation in several models, including humans, mice, Drosophila melanogaster and plants. Studies suggest that the mechanism through which ApoD modulates oxidative stress and regulate inflammation is via its capacity to bind arachidonic acid (ARA). This polyunsaturated omega-6 fatty acid can be metabolised to generate large variety of pro-inflammatory mediators. ApoD serves as a sequester, blocking and/or altering arachidonic metabolism. In recent studies of diet-induced obesity, ApoD has been shown to modulate lipid mediators derived from ARA, but also from eicosapentaenoic acid and docosahexaenoic acid in an anti-inflammatory way. High levels of ApoD have also been linked to better metabolic health and inflammatory state in the round ligament of morbidly obese women. Since ApoD expression is upregulated in numerous diseases, it might serve as a therapeutic agent against pathologies aggravated by OS and inflammation such as many obesity comorbidities. This review will present the most recent findings underlying the central role of ApoD in the modulation of both OS and inflammation.
Collapse
Affiliation(s)
- Guillaume Fyfe-Desmarais
- Laboratory of Metabolism of Lipids, Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Department of Biological Sciences, University of Quebec in Montreal (UQAM), 141 Av. du Président-Kennedy, Montreal, QC H2X 1Y4, Canada
| | - Fréderik Desmarais
- Department of Medecine, Faculty of Medecine, Institut Universitaire de Cardiologie et de Pneumologie de Québec, 1050 Av. de la Médecine, Québec City, QC G1V 0A6, Canada
| | - Éric Rassart
- Laboratory of Metabolism of Lipids, Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Department of Biological Sciences, University of Quebec in Montreal (UQAM), 141 Av. du Président-Kennedy, Montreal, QC H2X 1Y4, Canada
| | - Catherine Mounier
- Laboratory of Metabolism of Lipids, Centre d'Excellence en Recherche sur les Maladies Orphelines-Fondation Courtois (CERMO-FC), Department of Biological Sciences, University of Quebec in Montreal (UQAM), 141 Av. du Président-Kennedy, Montreal, QC H2X 1Y4, Canada
| |
Collapse
|
28
|
Qiu X, Li L, Wei J, An X, Ampadu JA, Zheng W, Yu C, Peng C, Li X, Cai X. The protective role of Nrf2 on cognitive impairment in chronic intermittent hypoxia and sleep fragmentation mice. Int Immunopharmacol 2023; 116:109813. [DOI: 10.1016/j.intimp.2023.109813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/13/2023] [Accepted: 01/28/2023] [Indexed: 02/16/2023]
|
29
|
Zhang H, Xue Y, Xie W, Wang Y, Ma N, Chang G, Shen X. Subacute ruminal acidosis downregulates FOXA2, changes oxidative status, and induces autophagy in the livers of dairy cows fed a high-concentrate diet. J Dairy Sci 2023; 106:2007-2018. [PMID: 36631320 DOI: 10.3168/jds.2022-22222] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 10/02/2022] [Indexed: 01/11/2023]
Abstract
The purpose of this experiment was to investigate high-concentrate feeding-induced changed status of oxidative and autophagy in the livers of dairy cows. Hepatocyte nuclear factor 3β (FOXA2) was reported in cases of liver fibrosis, glucolipid metabolism, and hepatocyte differentiation, but not in cases liver damage in cows fed a high-concentrate diet. Therefore, we also aimed to explore the potential role of FOXA2 in SARA-induced liver damage. We divided 12 mid-lactating Holstein cows into 2 groups and fed them a high-concentrate (HC group, forage:concentrate = 4:6) and a low-concentrate (forage:concentrate = 6:4) diet. After a 2-wk adaptation period and a 3-wk experimental period, peripheral blood was collected for determination of antioxidant enzyme activity, and liver tissue was collected to examine genes and proteins. On d 20 and 21 of the experiment, rumen fluid was collected, and the pH was measured. A significant difference in rumen fluid pH was found between the 2 groups (low-concentrate: 6.10 ± 0.07 vs. HC: 5.59 ± 0.09). The rumen fluid pH in the HC group was less than 5.6 at 2 time points, indicating that SARA was successfully induced. Lipopolysaccharide (0.24 ± 0.10 vs. 0.42 ± 0.12) and malondialdehyde (1.46 ± 0.25 vs. 2.94 ± 0.65) increased, whereas superoxide dismutase (14.06 ± 0.63 vs. 11.71 ± 0.64), reduced glutathione (14.48 ± 2.25 vs. 6.82 ± 0.67), and the total antioxidant capacity (0.43 ± 0.03 vs. 0.30 ± 0.03) decreased in the peripheral blood of the HC group. Moreover, in liver tissue from the HC group, catalase (0.71 ± 0.03 vs. 0.49 ± 0.03) and superoxide dismutase (27.46 ± 1.90 vs. 20.32 ± 1.54) were decreased, whereas malondialdehyde (0.21 ± 0.03 vs. 0.28 ± 0.03) was elevated. Meanwhile, we observed lower gene expression of CAT (1.00 ± 0.15 vs. 0.64 ± 0.17), NAD(P)H quinone dehydrogenase 1 (NQO1; 1.00 ± 0.09 vs. 0.47 ± 0.14), glutathione peroxidase 1 (GPX1; 1.03 ± 0.27 vs. 0.55 ± 0.09), SOD1 (1.01 ± 0.17 vs. 0.76 ± 0.17), and SOD3 (1.02 ± 0.21 vs. 0.55 ± 0.16) in the liver tissue of the HC group. Furthermore, western blot analysis showed that high-concentrate feeding led to decreased sirtuin-1 (SIRT1) (1.00 ± 0.10 vs. 0.62 ± 0.15) and FOXA2 (1.02 ± 0.19 vs. 0.68 ± 0.18), elevated autophagy-related protein microtubule associated protein 1 light chain 3 II (MAP1LC3-II; 1.00 ± 0.32 vs. 1.98 ± 0.83) and autophagy related 5 (ATG5; 1.00 ± 0.30 vs. 1.80 ± 0.27), and suppressed antioxidant signaling pathway-related protein nuclear factor erythroid 2-like 2 (NFE2L2; 1.00 ± 0.18 vs. 0.61 ± 0.30) and heme oxygenase 1 (HMOX1; 1.00 ± 0.48 vs. 0.38 ± 0.25) in liver tissue. Overall, these data indicated that SARA elevated systematic oxidative status and enhanced autophagy in the liver, and suppressed SIRT1 and FOXA2 may mediate enhanced oxidative damage and autophagy in the livers of dairy cows fed a high-concentrate diet.
Collapse
Affiliation(s)
- Hongzhu Zhang
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Yang Xue
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Wan Xie
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Yan Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Nana Ma
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Guangjun Chang
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China
| | - Xiangzhen Shen
- Ministry of Education Joint International Research Laboratory of Animal Health and Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P. R. China.
| |
Collapse
|
30
|
Belal A, Mahmoud R, Taha M, Halfaya FM, Hassaballa A, Elbanna ES, Khaled E, Farghali A, Abo El-Ela FI, Mahgoub SM, Ghoneim MM, Zaky MY. Therapeutic Potential of Zeolites/Vitamin B12 Nanocomposite on Complete Freund's Adjuvant-Induced Arthritis as a Bone Disorder: In Vivo Study and Bio-Molecular Investigations. Pharmaceuticals (Basel) 2023; 16:285. [PMID: 37259429 PMCID: PMC9964923 DOI: 10.3390/ph16020285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 04/17/2024] Open
Abstract
Rheumatoid arthritis (RA) is a long-term autoimmune disease. As nanotechnology has advanced, a growing number of nanodrugs have been used in the treatment of RA due to their unique physical and chemical properties. The purpose of this study was to assess the therapeutic potential of a novel zeolite/vitamin B12 nanocomposite (Nano ZT/Vit B12) formulation in complete Freund's adjuvant (CFA)-induced arthritis. The newly synthesized Nano ZT/Vit B12 was fully characterized using various techniques such as XRD, FT-IR, BET analysis, HERTEM, SEM, practical size, zeta potential, XRF, and EDX. The anti-arthritic, anti-inflammatory, and antioxidant activities as well as the immunomodulation effect of Nano ZT/Vit B12 on the CFA rat model of arthritis were examined. Histopathologic ankle joint injuries caused by CFA intrapedal injection included synovium hyperplasia, inflammatory cell infiltration, and extensive cartilage deterioration. The arthritic rats' Nano ZT/Vit B12 supplementation significantly improved these effects. Furthermore, in arthritic rats, Nano ZT/Vit B12 significantly reduced serum levels of RF and CRP, as well as the levels of IL-1β, TNF-α, IL-17, and ADAMTS-5, while increasing IL-4 and TIMP-3 levels. Nano-ZT/Vit B12 significantly declined the LPO level and increased antioxidant activities, such as GSH content and GST activity, in the arthritic rats. In arthritic rats, Nano ZT/Vit B12 also reduced TGF-β mRNA gene expression and MMP-13 protein levels. Collectively, Nano ZT/Vit B12 seems to have anti-arthritic, anti-inflammatory, and antioxidant properties, making it a promising option for RA in the future.
Collapse
Affiliation(s)
- Amany Belal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | - Rehab Mahmoud
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mohamed Taha
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Fatma Mohamed Halfaya
- Department of Surgery, Anesthesiology and Radiology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ahmed Hassaballa
- Nutrition and Food Science, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI 48202, USA
- ZeroHarm L.C., Farmington Hills, Farmington, MI 48333, USA
| | - Esraa Salah Elbanna
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Esraa Khaled
- Biotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ahmed Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Fatma I. Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Samar M. Mahgoub
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt
| | - Mohamed Y. Zaky
- Molecular Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
- Department of Oncology and Department of Biomedical and Clinical Sciences, Faculty of Medicine, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
31
|
Sadiq IZ. Free Radicals and Oxidative Stress: Signaling Mechanisms, Redox Basis for Human Diseases, and Cell Cycle Regulation. Curr Mol Med 2023; 23:13-35. [PMID: 34951363 DOI: 10.2174/1566524022666211222161637] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/16/2022]
Abstract
Free radicals contain one or more unpaired electrons in their valence shell, thus making them unstable, short-lived, and highly reactive species. Excessive generation of these free radicals ultimately leads to oxidative stress causing oxidation and damage to significant macromolecules in the living system and essentially disrupting signal transduction pathways and antioxidants equilibrium. At lower concentrations, ROS serves as "second messengers," influencing many physiological processes in the cell. However, higher concentrations beyond cell capacity cause oxidative stress, contributing to human pathologies such as diabetes, cancer, Parkinson's disease, cardiovascular diseases, cataract, asthma, hypertension, atherosclerosis, arthritis, and Alzheimer's disease. Signaling pathways such as NF-κB, MAPKs, PI3K/Akt/ mTOR, and Keap1-Nrf2- ARE modulate the detrimental effects of oxidative stress by increasing the expression of cellular antioxidant defenses, phase II detoxification enzymes, and decreased production of ROS. Free radicals such as H2O2 are indeed needed for the advancement of the cell cycle as these molecules influence DNA, proteins, and enzymes in the cell cycle pathway. In the course of cell cycle progression, the cellular redox environment becomes more oxidized, moving from the G1 phase, becoming higher in G2/M and moderate in the S phase. Signals in the form of an increase in cellular pro-oxidant levels are required, and these signals are often terminated by a rise in the amount of antioxidants and MnSOD with a decrease in the level of cyclin D1 proteins. Therefore, understanding the mechanism of cell cycle redox regulation will help in the therapy of many diseases.
Collapse
Affiliation(s)
- Idris Zubairu Sadiq
- Department of Biochemistry, Faculty of life Sciences, Ahmadu Bello University, Zaria-Nigeria
- Department of Biochemistry, Faculty of Sciences, Maryam Abacha American University of Niger, ADS Avenue, Roi Muhammad VI Du Maroc Maradi, Republique Du Niger
| |
Collapse
|
32
|
Geniposidic Acid from Eucommia ulmoides Oliver Staminate Flower Tea Mitigates Cellular Oxidative Stress via Activating AKT/NRF2 Signaling. Molecules 2022; 27:molecules27238568. [PMID: 36500666 PMCID: PMC9739628 DOI: 10.3390/molecules27238568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/18/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Eucommia ulmoides Oliver staminate flower (ESF) tea enjoys a good reputation in folk medicine and displays multiple bioactivities, such as antioxidant and antifatigue properties. However, the underlying biological mechanisms remain largely unknown. In this study, we aimed to investigate whether ESF tea can mitigate cellular oxidative stress. Crude ethyl alcohol extract and its three subfractions prepared by sequential extraction with chloroform, n-butyl alcohol and residual water were prepared from ESF tea. The results of antioxidant activity tests in vitro manifested n-butyl alcohol fraction (n-BUF) showed the strongest antioxidant capacity (DPPH: IC50 = 24.45 ± 0.74 μg/mL, ABTS: IC50 = 17.25 ± 0.04 μg/mL). Moreover, all subfractions of ESF tea, especially the n-BUF, exhibited an obvious capacity to scavenge the reactive oxygen species (ROS) and stimulate the NRF2 antioxidative response in human keratinocytes HaCaT treated by H2O2. Using ultra-high-performance liquid chromatography, we identified geniposidic acid (GPA) as the most abundant component in ESF tea extract. Furthermore, it was found that GPA relieved oxidative stress in H2O2-induced HaCaT cells by activating the Akt/Nrf2/OGG1 pathway. Our findings indicated that ESF tea may be a source of natural antioxidants to protect against skin cell oxidative damage and deserves further development and utilization.
Collapse
|
33
|
DEMİRDÖĞEN F, AKDAĞ T, GÜNDÜZ ZB, ODABAŞ FÖ. INVESTIGATION OF SERUM ADROPIN LEVELS AND ITS RELATIONSHIP WITH HYPOTHALAMIC ATROPHY IN PATIENTS WITH MULTIPLE SCLEROSIS. Mult Scler Relat Disord 2022; 67:103999. [DOI: 10.1016/j.msard.2022.103999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 10/31/2022]
|
34
|
DEMİRDÖĞEN F, AKDAĞ T, GÜNDÜZ ZB, ODABAŞ FÖ. INVESTIGATION OF SERUM ADROPIN LEVELS AND ITS RELATIONSHIP WITH HYPOTHALAMIC ATROPHY IN PATIENTS WITH MULTIPLE SCLEROSIS. Mult Scler Relat Disord 2022; 66:103948. [DOI: 10.1016/j.msard.2022.103948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 11/16/2022]
|
35
|
Habeeb E, Aldosari S, Saghir SA, Cheema M, Momenah T, Husain K, Omidi Y, Rizvi SA, Akram M, Ansari RA. Role of environmental toxicants in the development of hypertensive and cardiovascular diseases. Toxicol Rep 2022; 9:521-533. [PMID: 35371924 PMCID: PMC8971584 DOI: 10.1016/j.toxrep.2022.03.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
The incidence of hypertension with diabetes mellitus (DM) as a co-morbid condition is on the rise worldwide. In 2000, an estimated 972 million adults had hypertension, which is predicted to grow to 1.56 billion by 2025. Hypertension often leads to diabetes mellitus that strongly puts the patients at an increased risk of cardiovascular, kidney, and/or atherosclerotic diseases. Hypertension has been identified as a major risk factor for the development of diabetes; patients with hypertension are at two-to-three-fold higher risk of developing diabetes than patients with normal blood pressure (BP). Causes for the increase in hypertension and diabetes are not well understood, environmental factors (e.g., exposure to environmental toxicants like heavy metals, organic solvents, pesticides, alcohol, and urban lifestyle) have been postulated as one of the reasons contributing to hypertension and cardiovascular diseases (CVD). The mechanism of action(s) of these toxicants in developing hypertension and CVDs is not well defined. Research studies have linked hypertension with the chronic consumption of alcohol and exposure to metals like lead, mercury, and arsenic have also been linked to hypertension and CVD. Workers chronically exposed to styrene have a higher incidence of CVD. Recent studies have demonstrated that exposure to particulate matter (PM) in diesel exhaust and urban air contributes to increased CVD and mortality. In this review, we have imparted the role of environmental toxicants such as heavy metals, organic pollutants, PM, alcohol, and some drugs in hypertension and CVD along with possible mechanisms and limitations in extrapolating animal data to humans.
Collapse
Affiliation(s)
- Ehsan Habeeb
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| | - Saad Aldosari
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| | - Shakil A. Saghir
- The Scotts Company LLC, Marysville, OH 43041, USA
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Mariam Cheema
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| | - Tahani Momenah
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| | - Kazim Husain
- Department of Gastrointestinal Oncology (FOB-2), Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| | - Syed A.A. Rizvi
- Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, VA 23668, USA
| | - Muhammad Akram
- Department of Eastern Medicine and Surgery, Government College University Faisalabad, Faisalabad, Pakistan
| | - Rais A. Ansari
- Department of Pharmaceutical Sciences, College of Pharmacy, Health Professions Division, Nova Southeastern University, 3200S University Drive, Fort Lauderdale, FL 33200, USA
| |
Collapse
|
36
|
Bevinakoppamath S, Ramachandra SC, Yadav AK, Basavaraj V, Vishwanath P, Prashant A. Understanding the Emerging Link Between Circadian Rhythm, Nrf2 Pathway, and Breast Cancer to Overcome Drug Resistance. Front Pharmacol 2022; 12:719631. [PMID: 35126099 PMCID: PMC8807567 DOI: 10.3389/fphar.2021.719631] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
The levels of different molecules in the cell are rhythmically cycled by the molecular clock present at the cellular level. The circadian rhythm is closely linked to the metabolic processes in the cells by an underlying mechanism whose intricacies need to be thoroughly investigated. Nevertheless, Nrf2 has been identified as an essential bridge between the circadian clock and cellular metabolism and is activated by the by-product of cellular metabolism like hydrogen peroxide. Once activated it binds to the specific DNA segments and increases the transcription of several genes that play a crucial role in the normal functioning of the cell. The central clock located in the suprachiasmatic nucleus of the anterior hypothalamus synchronizes the timekeeping in the peripheral tissues by integrating the light-dark input from the environment. Several studies have demonstrated the role of circadian rhythm as an effective tumor suppressor. Tumor development is triggered by the stimulation or disruption of signaling pathways at the cellular level as a result of the interaction between cells and environmental stimuli. Oxidative stress is one such external stimulus that disturbs the prooxidant/antioxidant equilibrium due to the loss of control over signaling pathways which destroy the bio-molecules. Altered Nrf2 expression and impaired redox balance are associated with various cancers suggesting that Nrf2 targeting may be used as a novel therapeutic approach for treating cancers. On the other hand, Nrf2 has also been shown to enhance the resistance of cancer cells to chemotherapeutic agents. We believe that maximum efficacy with minimum side effects for any particular therapy can be achieved if the treatment strategy regulates the circadian rhythm. In this review, we discuss the various molecular mechanisms interlinking the circadian rhythm with the Nrf2 pathway and contributing to breast cancer pathogenesis, we also talk about how these two pathways work in close association with the cell cycle which is another oscillatory system, and whether this interplay can be exploited to overcome drug resistance during chemotherapy.
Collapse
Affiliation(s)
- Supriya Bevinakoppamath
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Shobha Chikkavaddaragudi Ramachandra
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Anshu Kumar Yadav
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Vijaya Basavaraj
- Department of Pathology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Prashant Vishwanath
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Akila Prashant
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
- Special Interest Group-Human Genomics and Rare Disorders, JSS Academy of Higher Education and Research, Mysore, India
- *Correspondence: Akila Prashant,
| |
Collapse
|
37
|
Yi YW, You KS, Park JS, Lee SG, Seong YS. Ribosomal Protein S6: A Potential Therapeutic Target against Cancer? Int J Mol Sci 2021; 23:ijms23010048. [PMID: 35008473 PMCID: PMC8744729 DOI: 10.3390/ijms23010048] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Ribosomal protein S6 (RPS6) is a component of the 40S small ribosomal subunit and participates in the control of mRNA translation. Additionally, phospho (p)-RPS6 has been recognized as a surrogate marker for the activated PI3K/AKT/mTORC1 pathway, which occurs in many cancer types. However, downstream mechanisms regulated by RPS6 or p-RPS remains elusive, and the therapeutic implication of RPS6 is underappreciated despite an approximately half a century history of research on this protein. In addition, substantial evidence from RPS6 knockdown experiments suggests the potential role of RPS6 in maintaining cancer cell proliferation. This motivates us to investigate the current knowledge of RPS6 functions in cancer. In this review article, we reviewed the current information about the transcriptional regulation, upstream regulators, and extra-ribosomal roles of RPS6, with a focus on its involvement in cancer. We also discussed the therapeutic potential of RPS6 in cancer.
Collapse
Affiliation(s)
- Yong Weon Yi
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
| | - Seok-Geun Lee
- Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (S.-G.L.); (Y.-S.S.); Tel.: +82-2-961-2355 (S.-G.L.); +82-41-550-3875 (Y.-S.S.); Fax: +82-2-961-9623 (S.-G.L.)
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
- Correspondence: (S.-G.L.); (Y.-S.S.); Tel.: +82-2-961-2355 (S.-G.L.); +82-41-550-3875 (Y.-S.S.); Fax: +82-2-961-9623 (S.-G.L.)
| |
Collapse
|
38
|
Bioactive Compounds in Oxidative Stress-Mediated Diseases: Targeting the NRF2/ARE Signaling Pathway and Epigenetic Regulation. Antioxidants (Basel) 2021; 10:antiox10121859. [PMID: 34942962 PMCID: PMC8698417 DOI: 10.3390/antiox10121859] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress is a pathological condition occurring due to an imbalance between the oxidants and antioxidant defense systems in the body. Nuclear factor E2-related factor 2 (NRF2), encoded by the gene NFE2L2, is the master regulator of phase II antioxidant enzymes that protect against oxidative stress and inflammation. NRF2/ARE signaling has been considered as a promising target against oxidative stress-mediated diseases like diabetes, fibrosis, neurotoxicity, and cancer. The consumption of dietary phytochemicals acts as an effective modulator of NRF2/ARE in various acute and chronic diseases. In the present review, we discussed the role of NRF2 in diabetes, Alzheimer's disease (AD), Parkinson's disease (PD), cancer, and atherosclerosis. Additionally, we discussed the phytochemicals like curcumin, quercetin, resveratrol, epigallocatechin gallate, apigenin, sulforaphane, and ursolic acid that have effectively modified NRF2 signaling and prevented various diseases in both in vitro and in vivo models. Based on the literature, it is clear that dietary phytochemicals can prevent diseases by (1) blocking oxidative stress-inhibiting inflammatory mediators through inhibiting Keap1 or activating Nrf2 expression and its downstream targets in the nucleus, including HO-1, SOD, and CAT; (2) regulating NRF2 signaling by various kinases like GSK3beta, PI3/AKT, and MAPK; and (3) modifying epigenetic modulation, such as methylation, at the NRF2 promoter region; however, further investigation into other upstream signaling molecules like NRF2 and the effect of phytochemicals on them still need to be investigated in the near future.
Collapse
|
39
|
Zhang W, Qin Y, Wang W, Liu F, Meng F, Chen F, Zhu N, Aihaiti A, Zhang M. Construction of Au@PB NPs doped graphene paper as flexible electrode for real-time monitoring of living cells and biosensing platform. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138970] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Chen X, Mu P, Zhu L, Mao X, Chen S, Zhong H, Deng Y. T-2 Toxin Induces Oxidative Stress at Low Doses via Atf3ΔZip2a/2b-Mediated Ubiquitination and Degradation of Nrf2. Int J Mol Sci 2021; 22:ijms22157936. [PMID: 34360702 PMCID: PMC8348355 DOI: 10.3390/ijms22157936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/10/2021] [Accepted: 07/19/2021] [Indexed: 01/14/2023] Open
Abstract
T-2 toxin is mainly produced by Fusarium species, which is an extremely toxic mycotoxin to humans and animals. It is well known that T-2 toxin induces oxidative stress, but the molecular mechanism is still unknown. In this study, we found that T-2 toxin significantly promoted reactive oxygen species (ROS) accumulation in MCF-7 cells at low doses which maintains cell viability at least 80%. Further analysis showed that T-2 toxin downregulated the expression of the master regulator of antioxidant defense gene, nuclear factor erythroid 2-related factor (Nrf2), and its targeted antioxidant genes. Overexpression of Nrf2 or its target gene heme oxygenase 1 (HO1) significantly blocked the ROS accumulation in MCF-7 cells under T-2 toxin treatment. Moreover, we found that T-2 toxin downregulated the antioxidant genes via inducing the expression of ATF3ΔZip2a/2b. Importantly, overexpression of ATF3ΔZip2a/2b promoted the ubiquitination and degradation of Nrf2. Altogether, our results demonstrated that T-2 toxin-induced ROS accumulation via ATF3ΔZip2a/2b mediated ubiquitination and degradation of Nrf2, which provided a new insight into the mechanism of T-2 toxin-induced oxidative stress.
Collapse
Affiliation(s)
- Xiaoxuan Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (X.C.); (P.M.); (L.Z.); (X.M.); (S.C.); (H.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Peiqiang Mu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (X.C.); (P.M.); (L.Z.); (X.M.); (S.C.); (H.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Lang Zhu
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (X.C.); (P.M.); (L.Z.); (X.M.); (S.C.); (H.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoxiao Mao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (X.C.); (P.M.); (L.Z.); (X.M.); (S.C.); (H.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shuang Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (X.C.); (P.M.); (L.Z.); (X.M.); (S.C.); (H.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Huali Zhong
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (X.C.); (P.M.); (L.Z.); (X.M.); (S.C.); (H.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yiqun Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Tianhe District, Guangzhou 510642, China; (X.C.); (P.M.); (L.Z.); (X.M.); (S.C.); (H.Z.)
- Key Laboratory of Zoonosis of Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-20-38294890; Fax: +86-20-38604987
| |
Collapse
|
41
|
Khan A, Park TJ, Ikram M, Ahmad S, Ahmad R, Jo MG, Kim MO. Antioxidative and Anti-inflammatory Effects of Kojic Acid in Aβ-Induced Mouse Model of Alzheimer's Disease. Mol Neurobiol 2021; 58:5127-5140. [PMID: 34255249 DOI: 10.1007/s12035-021-02460-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/10/2021] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease (AD) is a common cause of dementia that is clinically characterized by the loss of memory and cognitive functions. Currently, there is no specific cure for the management of AD, although natural compounds are showing promising therapeutic potentials because of their safety and easy availability. Herein, we evaluated the neuroprotective properties of kojic acid (KA) in an AD mouse model. Intracerebroventricular injection (i.c.v) of Aβ1-42 (5 μL/5 min/mouse) into wild-type adult mice induced AD-like pathological changes in the mouse hippocampus by increasing oxidative stress and neuroinflammation, affecting memory and cognitive functions. Interestingly, oral treatment of kojic acid (50 mg/kg/mouse for 3 weeks) reversed the AD pathology by reducing the expression of amyloid-beta (Aβ) and beta-site amyloid precursor protein cleaving enzyme1 (BACE-1). Moreover, kojic acid reduced oxidative stress by enhancing the expression of nuclear factor erythroid-related factor 2 (Nrf2) and heme oxygenase 1 (HO1). Also, kojic acid reduced the lipid peroxidation and reactive oxygen species in the Aβ + kojic acid co-treated mice brains. Moreover, kojic acid decreased neuroinflammation by inhibiting Toll-like receptor 4, phosphorylated nuclear factor-κB, tumor necrosis factor-alpha, interleukin 1-beta (TLR-4, p-NFκB, TNFα, and IL-1β, respectively), and glial cells. Furthermore, kojic acid enhanced synaptic markers (SNAP-23, SYN, and PSD-95) and memory functions in AD model mice. Additionally, kojic acid treatment also decreased Aβ expression, oxidative stress, and neuroinflammation in vitro in HT-22 mouse hippocampal cells. To the best of our knowledge, this is the first study to show the neuroprotective effects of kojic acid against an AD mouse model. Our findings could serve as a favorable and alternative strategy for the discovery of novel drugs to treat AD-related neurodegenerative conditions.
Collapse
Affiliation(s)
- Amjad Khan
- Division of Applied Life Science (BK 21 Four), College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Tae Ju Park
- Haemato-Oncology/Systems Medicine Group, Paul O'Gorman Leukaemia Research Centre, Institute of Cancer Sciences, MVLS, University of Glasgow, Glasgow, UK
| | - Muhammad Ikram
- Division of Applied Life Science (BK 21 Four), College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Sareer Ahmad
- Division of Applied Life Science (BK 21 Four), College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Riaz Ahmad
- Division of Applied Life Science (BK 21 Four), College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Min Gi Jo
- Division of Applied Life Science (BK 21 Four), College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Myeong Ok Kim
- Division of Applied Life Science (BK 21 Four), College of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| |
Collapse
|
42
|
Donia T, Khamis A. Management of oxidative stress and inflammation in cardiovascular diseases: mechanisms and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:34121-34153. [PMID: 33963999 DOI: 10.1007/s11356-021-14109-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Cardiovascular diseases (CVDs) have diverse physiopathological mechanisms with interconnected oxidative stress and inflammation as one of the common etiologies which result in the onset and development of atherosclerotic plaques. In this review, we illustrate this strong crosstalk between oxidative stress, inflammation, and CVD. Also, mitochondrial functions underlying this crosstalk, and various approaches for the prevention of redox/inflammatory biological impacts will be illustrated. In part, we focus on the laboratory biomarkers and physiological tests for the evaluation of oxidative stress status and inflammatory processes. The impact of a healthy lifestyle on CVD onset and development is displayed as well. Furthermore, the differences in oxidative stress and inflammation are related to genetic susceptibility to cardiovascular diseases and the variability in the assessment of CVDs risk between individuals; Omics technologies for measuring oxidative stress and inflammation will be explored. Finally, we display the oxidative stress-related microRNA and the functions of the redox basis of epigenetic modifications.
Collapse
Affiliation(s)
- Thoria Donia
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Abeer Khamis
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt.
| |
Collapse
|
43
|
YÜKSEL B, DEVECİ ÖZKAN A. The Role of Citrus Nobiletin on Oxidative Stress Levels and Superoxide Dismutase Activities in Metastatic Castration-Resistant Prostate Cancer. COMMAGENE JOURNAL OF BIOLOGY 2021. [DOI: 10.31594/commagene.895415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Ping Z, Fan H, Wen C, Ji Z, Liang S. GAPDH siRNA Regulates SH-SY5Y Cell Apoptosis Induced by Exogenous α-Synuclein Protein. Neuroscience 2021; 469:91-102. [PMID: 34216695 DOI: 10.1016/j.neuroscience.2021.06.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/22/2021] [Accepted: 06/30/2021] [Indexed: 11/15/2022]
Abstract
The transport mechanism of intestinal α-synuclein to the central nervous system has become a new hot topic in Parkinson's disease (PD) research. It is worth noting that the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been reported to be involved in the pathogenesis of PD. After silencing GAPDH expression by GAPDH siRNA, the normal human intestinal epithelial crypt-like (HIEC) and human SH-SY5Y neuroblastoma cell lines were co-cultured with Escherichia coli cells which were transfected with an α-synuclein overexpression plasmid. The levels of autophagy-related proteins (BECN1, ATG5, LC3A/B and p62) were determined by Western blot analysis. Changes in pro-apoptosis protein levels and flow cytometry analysis were used to assess cell apoptosis and relative intracellular ATP concentration was measured. Oxidative stress was assessed by measuring the levels of reactive oxygen species (ROS) using 2',7'-dichlorofluorescein diacetate (DCFH-DA), thiobarbituric acid-reactive substances (TBARS), and antioxidant capacity was assessed by measuring the glutathione (GSH) levels and superoxide dismutase (SOD) activity. The silencing of the expression of GAPDH pre-knockdown was found to reduce the intracellular levels of ROS and lipid peroxidation, enhance autophagy activity, thereby reducing the cell injury, apoptosis and necrosis induced by exogenous α-synuclein protein in SH-SY5Y cells. This study identifies a new therapeutic target of exogenous α-synuclein protein induced SH-SY5Y cell injury and improves our understanding of the pathophysiological role of GAPDH in vitro.
Collapse
Affiliation(s)
- Zhang Ping
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China; Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China
| | - Hu Fan
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China; Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China
| | - Chai Wen
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China; Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China
| | - Zhang Ji
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China; Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China
| | - Shao Liang
- Department of Neurology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China; Department of Cardiology, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang 330006, Jiangxi, China; The people's Hospital of Yu Du County, Jiangxi, China.
| |
Collapse
|
45
|
Mozzini C, Setti A, Cicco S, Pagani M. The Most Severe Paradigm of Early Cardiovascular Disease: Hutchinson-Gilford Progeria. Focus on the Role of Oxidative Stress. Curr Probl Cardiol 2021; 47:100900. [PMID: 34167843 DOI: 10.1016/j.cpcardiol.2021.100900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 05/20/2021] [Indexed: 12/14/2022]
Abstract
Oxidative stress (OS) is one of the most frequently recognized causes of ageing. Telomere erosion, defects in the DNA damage response and alterations in the nuclear architecture are also associated with premature ageing. The most severe premature ageing syndrome, Hutchinson-Gilford progeria syndrome (HGPS) is associated with alterations in nuclear shape resulting in the deregulation of lamin A/C. In this review we describe emerging data reporting the role of OS and antioxidant defence in progeroid syndromes focusing on HGPS. We explore precise antioxidant defence mechanisms and related drugs that may create a potential path out of the woods in this disease. Pathways regulated by Nuclear factor E2 related factor (Nrf2), by Nuclear Factor kappa B (NF-kB), and related to the Unfolded Protein Response (UPR) and Endoplasmic Reticulum (ER) stress are under investigation in HGPS patients for which the goal is a significant lifespan extension in particular by postponing atherosclerosis-related complications.
Collapse
Affiliation(s)
- Chiara Mozzini
- Department of Medicine, Section of Internal Medicine, Carlo Poma Hospital, Mantova Italy.
| | - Angela Setti
- Department of Medicine, Section of Internal Medicine, University of Verona, Verona, Italy.
| | - Sebastiano Cicco
- Unit of Internal Medicine "Guido Baccelli", Department of Biomedical Sciences and Human Oncology University of Bari, Aldo Moro Medical School, Bari, Italy.
| | - Mauro Pagani
- Department of Medicine, Section of Internal Medicine, Carlo Poma Hospital, Mantova Italy.
| |
Collapse
|
46
|
Gonchar OO, Maznychenko AV, Klyuchko OM, Mankovska IM, Butowska K, Borowik A, Piosik J, Sokolowska I. C 60 Fullerene Reduces 3-Nitropropionic Acid-Induced Oxidative Stress Disorders and Mitochondrial Dysfunction in Rats by Modulation of p53, Bcl-2 and Nrf2 Targeted Proteins. Int J Mol Sci 2021; 22:ijms22115444. [PMID: 34064070 PMCID: PMC8196695 DOI: 10.3390/ijms22115444] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 01/23/2023] Open
Abstract
C60 fullerene as a potent free radical scavenger and antioxidant could be a beneficial means for neurodegenerative disease prevention or cure. The aim of the study was to define the effects of C60 administration on mitochondrial dysfunction and oxidative stress disorders in a 3-nitropropionic acid (3-NPA)-induced rat model of Huntington’s disease. Animals received 3-NPA (30 mg/kg i.p.) once a day for 3 consecutive days. C60 was applied at a dose of 0.5 mg/kg of body weight, i.p. daily over 5 days before (C60 pre-treatment) and after 3-NPA exposure (C60 post-treatment). Oxidative stress biomarkers, the activity of respiratory chain enzymes, the level of antioxidant defense, and pro- and antiapoptotic markers were analyzed in the brain and skeletal muscle mitochondria. The nuclear and cytosol Nrf2 protein expression, protein level of MnSOD, γ-glutamate-cysteine ligase (γ-GCLC), and glutathione-S-transferase (GSTP) as Nrf2 targets were evaluated. Our results indicated that C60 can prevent 3-NPA-induced mitochondrial dysfunction through the restoring of mitochondrial complexes’ enzyme activity, ROS scavenging, modulating of pro/antioxidant balance and GSH/GSSG ratio, as well as inhibition of mitochondria-dependent apoptosis through the limitation of p53 mitochondrial translocation and increase in Bcl-2 protein expression. C60 improved mitochondrial protection by strengthening the endogenous glutathione system via glutathione biosynthesis by up-regulating Nrf2 nuclear accumulation as well as GCLC and GSTP protein level.
Collapse
Affiliation(s)
- Olga O. Gonchar
- Department of Hypoxic States and Department of Movements Physiology, Bogomoletz Institute of Physiology, Bogomoletz Str. 4, 01024 Kyiv, Ukraine; (O.O.G.); (I.M.M.)
| | - Andriy V. Maznychenko
- Department of Hypoxic States and Department of Movements Physiology, Bogomoletz Institute of Physiology, Bogomoletz Str. 4, 01024 Kyiv, Ukraine; (O.O.G.); (I.M.M.)
- Department of Physical Education, Gdansk University of Physical Education and Sport, Kazimierza Gorskiego Str. 1, 80-336 Gdansk, Poland;
- Correspondence:
| | - Olena M. Klyuchko
- Department of Electronics, National Aviation University, L. Huzar Ave. 1, 03058 Kyiv, Ukraine;
| | - Iryna M. Mankovska
- Department of Hypoxic States and Department of Movements Physiology, Bogomoletz Institute of Physiology, Bogomoletz Str. 4, 01024 Kyiv, Ukraine; (O.O.G.); (I.M.M.)
| | - Kamila Butowska
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology UG-MUG, Abrahama 58, 80-307 Gdansk, Poland; (K.B.); (A.B.); (J.P.)
| | - Agnieszka Borowik
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology UG-MUG, Abrahama 58, 80-307 Gdansk, Poland; (K.B.); (A.B.); (J.P.)
| | - Jacek Piosik
- Laboratory of Biophysics, Intercollegiate Faculty of Biotechnology UG-MUG, Abrahama 58, 80-307 Gdansk, Poland; (K.B.); (A.B.); (J.P.)
| | - Inna Sokolowska
- Department of Physical Education, Gdansk University of Physical Education and Sport, Kazimierza Gorskiego Str. 1, 80-336 Gdansk, Poland;
| |
Collapse
|
47
|
Tian H, Xiong Y, Zhang Y, Leng Y, Tao J, Li L, Qiu Z, Xia Z. Activation of NRF2/FPN1 pathway attenuates myocardial ischemia-reperfusion injury in diabetic rats by regulating iron homeostasis and ferroptosis. Cell Stress Chaperones 2021; 27:149-164. [PMID: 35124772 PMCID: PMC8943074 DOI: 10.1007/s12192-022-01257-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/16/2022] [Accepted: 01/26/2022] [Indexed: 12/30/2022] Open
Abstract
In patients with ischemic heart disease, myocardial ischemia-reperfusion injury (IRI) can aggravate their condition even worse, and diabetes increases their risk of myocardial IRI. Pathological pathways of common diseases and surgical operations like diabetes, obesity, coronary artery angioplasty, and heart transplantation entail disorders of iron metabolism. Ferroportin1 (FPN1) is the only mammalian protein associated with iron release and thus plays a vital role in iron homeostasis, while nuclear factor E2-related factor 2 (NRF2) controls the transcription of FPN1. Since the NRF2/FPN1 pathway may play a favorable role in the therapy of diabetic myocardial IRI, this work investigated the possible mechanism. In this study, we investigated the effects of ferroptosis in STZ-induced diabetic rats following myocardial IRI in vivo, and its alteration in glucose and hypoxia/reoxygenation-induced cardiomyocytes injury in vitro. Rats and H9c2 cardiomyocytes were randomly divided into 6 groups and treated with sulforaphane and erastin besides the establishment of diabetic myocardial IRI and hyperglycemic hypoxia-reoxygenation models. Cardiac functional and structural damage were detected by Evans blue/TTC double staining, echocardiography, HE staining, and serological indices. CCK-8 assay and ROS production were used to measure cardiomyocyte viability and oxidative stress level. Additionally, the changes in cell supernatant levels of Fe2+, SOD, MDA, and mRNA and protein expression of ferroptosis marker proteins confirmed the beneficial effects of the NRF2/FPN1 pathway on diabetic myocardial IRI related to iron metabolism and ferroptosis. Overall, these findings suggest that iron homeostasis-related ferroptosis plays an important role in aggravating myocardial IRI in diabetic rats, and NRF2/FPN1 pathway-mediated iron homeostasis and ferroptosis might be a promising therapeutic target against myocardial IRI in diabetes.
Collapse
Affiliation(s)
- Hao Tian
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, 430060, China
| | - Yonghong Xiong
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, 430060, China
| | - Yi Zhang
- Department of Anesthesiology and Perioperative Medicine, Shandong Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, 430060, China
| | - Jie Tao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, 430060, China
| | - Lu Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, 430060, China
| | - Zhen Qiu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, 430060, China.
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Hubei Province, Wuhan, 430060, China.
| |
Collapse
|
48
|
Ahmed EA, Ahmed OM, Fahim HI, Mahdi EA, Ali TM, Elesawy BH, Ashour MB. Combinatory Effects of Bone Marrow-Derived Mesenchymal Stem Cells and Indomethacin on Adjuvant-Induced Arthritis in Wistar Rats: Roles of IL-1 β, IL-4, Nrf-2, and Oxidative Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8899143. [PMID: 33488761 PMCID: PMC7803402 DOI: 10.1155/2021/8899143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/25/2020] [Accepted: 12/19/2020] [Indexed: 02/06/2023]
Abstract
Rheumatoid arthritis (RA) is a disorder triggered by autoimmune reactions and related with chronic inflammation and severe disability. Bone Marrow-derived Mesenchymal Stem Cells (BM-MSCs) have shown a hopeful immunomodulatory effect towards repairing cartilage and restoring joint function. Additionally, indomethacin (IMC), a nonsteroidal compound, has been considered as a potent therapeutic agent that exhibits significant antipyretic properties and analgesic effects. The target of the current research is to assess the antiarthritic efficacy of BM-MSCs (106 cells/rat at 1, 6, 12 and 18 days) and IMC (2 mg/kg body weight/day for 3 weeks) either alone or concurrently administered against complete Freund's adjuvant-induced arthritic rats. Changes in paw volume, body weight, gross lesions, and antioxidant defense system, as well as oxidative stress, were assessed. The Th1 cytokine (IL-1β) serum level and Th2 cytokine (IL-4) and Nrf-2 ankle joint expression were detected. In comparison to normal rats, it was found that the CFA-induced arthritic rats exhibited significant leukocytosis and increase in paw volume, LPO level, RF, and IL-1β serum levels. In parallel, arthritic rats that received BM-MSCs and/or IMC efficiently exhibited decrease in paw edema, leukocytosis, and enhancement in the antioxidant enzymatic levels of SOD, GPx, GST, and GSH in serum besides upregulation of Nrf-2 and anti-inflammatory IL-4 expression levels in the ankle articular joint. Likewise, these analyses were more evidenced by the histopathological sections and histological score. The data also revealed that the combined administration of BM-MSC and IMC was more potent in suppressing inflammation and enhancing the anti-inflammatory pathway than each agent alone. Thus, it can be concluded that the combined therapy with BM-MSC and IMC may be used as a promising therapeutic choice after assessing their efficacy and safety in human beings with RA, and the antiarthritic effects may be mediated via modulatory effects on Th1/Th2 cytokines, ozidative stress, and Nrf-2.
Collapse
Affiliation(s)
- Eman A. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Osama M. Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Hanaa I. Fahim
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Emad A. Mahdi
- Pathology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Tarek M. Ali
- Department of Physiology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Physiology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Basem H. Elesawy
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Department of Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed B. Ashour
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| |
Collapse
|
49
|
Hellyer JA, Padda SK, Diehn M, Wakelee HA. Clinical Implications of KEAP1-NFE2L2 Mutations in NSCLC. J Thorac Oncol 2020; 16:395-403. [PMID: 33307193 DOI: 10.1016/j.jtho.2020.11.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/16/2022]
Abstract
The KEAP1-NFE2L2 pathway is an important modulator of cell homeostasis. Mutations in this pathway are common in NSCLC and have been associated with enhanced tumor growth and aggressiveness. In addition, tumors with mutations in the KEAP1-NFE2L2 pathway have been reported in preclinical and clinical studies to convey refractoriness to cancer-directed therapy such as radiation, chemotherapy, and targeted therapy. The role of immunotherapy in this patient population is less clear, and there are conflicting studies on the efficacy of immune checkpoint inhibitors in KEAP1-NFE2L2-mutant NSCLC. Here, we review the current clinical evidence on several classes of anticancer therapeutics in KEAP1-NFE2L2-mutant tumors. Furthermore, we provide an overview of the landscape of the current clinical trials in this patient population, highlighting the work being done with mTORC1, mTORC2, and glutaminase inhibition.
Collapse
Affiliation(s)
- Jessica A Hellyer
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Sukhmani K Padda
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Maximilian Diehn
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California; Department of Radiation Oncology, Stanford University School of Medicine, Stanford, California
| | - Heather A Wakelee
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
50
|
Rahban M, Habibi-Rezaei M, Mazaheri M, Saso L, Moosavi-Movahedi AA. Anti-Viral Potential and Modulation of Nrf2 by Curcumin: Pharmacological Implications. Antioxidants (Basel) 2020; 9:E1228. [PMID: 33291560 PMCID: PMC7761780 DOI: 10.3390/antiox9121228] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/29/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is an essential transcription factor that maintains the cell's redox balance state and reduces inflammation in different adverse stresses. Under the oxidative stress, Nrf2 is separated from Kelch-like ECH-associated protein 1 (Keap1), which is a key sensor of oxidative stress, translocated to the nucleus, interacts with the antioxidant response element (ARE) in the target gene, and then activates the transcriptional pathway to ameliorate the cellular redox condition. Curcumin is a yellow polyphenolic curcuminoid from Curcuma longa (turmeric) that has revealed a broad spectrum of bioactivities, including antioxidant, anti-inflammatory, anti-tumor, and anti-viral activities. Curcumin significantly increases the nuclear expression levels and promotes the biological effects of Nrf2 via the interaction with Cys151 in Keap1, which makes it a marvelous therapeutic candidate against a broad range of oxidative stress-related diseases, including type 2 diabetes (T2D), neurodegenerative diseases (NDs), cardiovascular diseases (CVDs), cancers, viral infections, and more recently SARS-CoV-2. Currently, the multifactorial property of the diseases and lack of adequate medical treatment, especially in viral diseases, result in developing new strategies to finding potential drugs. Curcumin potentially opens up new views as possible Nrf2 activator. However, its low bioavailability that is due to low solubility and low stability in the physiological conditions is a significant challenge in the field of its efficient and effective utilization in medicinal purposes. In this review, we summarized recent studies on the potential effect of curcumin to activate Nrf2 as the design of potential drugs for a viral infection like SARS-Cov2 and acute and chronic inflammation diseases in order to improve the cells' protection.
Collapse
Affiliation(s)
- Mahdie Rahban
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
| | - Mehran Habibi-Rezaei
- School of Biology, College of Science, University of Tehran, Tehran 1417614335, Iran
- Center of Excellence in NanoBiomedicine, University of Tehran, Tehran 1417614335, Iran
| | - Mansoureh Mazaheri
- Research Center of Food Technology and Agricultural Products, Department of Food Toxicology, Standard Research Institute, Karaj 3158777871, Iran;
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy;
| | - Ali A. Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614335, Iran;
- UNESCO Chair on Interdisciplinary Research in Diabetes, University of Tehran, Tehran 1417614335, Iran
| |
Collapse
|