1
|
Rezagholizadeh N, Datta G, Hasler WA, Nguon EC, Smokey EV, Chen X. TLR7 Mediates HIV-1 Tat-Induced Cellular Senescence in Human Astrocytes. Aging Cell 2025:e70086. [PMID: 40304459 DOI: 10.1111/acel.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/11/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Cellular senescence contributes to accelerated aging, neuroinflammation, and the development of HIV-associated neurocognitive disorders (HAND) in the era of combined antiretroviral therapy (cART). One HIV viral factor that could lead to cellular senescence is the persistence of HIV-1 Tat in the brain. As a secreted viral protein, Tat is known to enter endolysosomes of cells through receptor-mediated endocytosis, and we have shown that Tat induces endolysosome damage and dysfunction. Significantly, endolysosome dysfunction has been strongly linked to cellular senescence. However, it is not known whether endolysosome dysfunction represents a driver or consequence of cellular senescence. Because Tat-induced endolysosome damage represents an early step in exogenous Tat-induced cellular senescence, we tested the hypothesis that Tat induces cellular senescence via an endolysosome-dependent mechanism in human astrocytes. We demonstrated that Tat interacts with an endolysosome-resident Toll-like receptor 7 (TLR7) via its arginine-rich basic domain, and such an interaction results in endolysosome damage and the development of a senescence-like phenotype including cell cycle arrest, enhanced SA-β-gal activity, and increased release of senescence-associated secretory phenotype (SASP) factors (IL-6, IL-8, and CCL2). Thus, our finding provided mechanistic insights whereby Tat induces endolysosome damage and cellular senescence in human astrocytes. We provide compelling evidence that endolysosome damage drives the development of cellular senescence. Our findings also highlight the novel role of TLR7 in the development of cellular senescence and suggest that TLR7 represents a novel therapeutic target against senescence and the development of HAND.
Collapse
Affiliation(s)
- Neda Rezagholizadeh
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Wendie A Hasler
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Erica C Nguon
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Elise V Smokey
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, USA
| |
Collapse
|
2
|
Bahojb Mahdavi SZ, Jebelli A, Aghbash PS, Baradaran B, Amini M, Oroojalian F, Pouladi N, Baghi HB, de la Guardia M, Mokhtarzadeh AA. A comprehensive overview on the crosstalk between microRNAs and viral pathogenesis and infection. Med Res Rev 2025; 45:349-425. [PMID: 39185567 PMCID: PMC11796338 DOI: 10.1002/med.22073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 04/11/2023] [Accepted: 08/04/2024] [Indexed: 08/27/2024]
Abstract
Infections caused by viruses as the smallest infectious agents, pose a major threat to global public health. Viral infections utilize different host mechanisms to facilitate their own propagation and pathogenesis. MicroRNAs (miRNAs), as small noncoding RNA molecules, play important regulatory roles in different diseases, including viral infections. They can promote or inhibit viral infection and have a pro-viral or antiviral role. Also, viral infections can modulate the expression of host miRNAs. Furthermore, viruses from different families evade the host immune response by producing their own miRNAs called viral miRNAs (v-miRNAs). Understanding the replication cycle of viruses and their relation with host miRNAs and v-miRNAs can help to find new treatments against viral infections. In this review, we aim to outline the structure, genome, and replication cycle of various viruses including hepatitis B, hepatitis C, influenza A virus, coronavirus, human immunodeficiency virus, human papillomavirus, herpes simplex virus, Epstein-Barr virus, Dengue virus, Zika virus, and Ebola virus. We also discuss the role of different host miRNAs and v-miRNAs and their role in the pathogenesis of these viral infections.
Collapse
Affiliation(s)
- Seyedeh Zahra Bahojb Mahdavi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Asiyeh Jebelli
- Department of Biological Science, Faculty of Basic ScienceHigher Education Institute of Rab‐RashidTabrizIran
- Tuberculosis and Lung Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Behzad Baradaran
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Mohammad Amini
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of MedicineNorth Khorasan University of Medical SciencesBojnurdIran
| | - Nasser Pouladi
- Department of Biology, Faculty of Basic SciencesAzarbaijan Shahid Madani UniversityTabrizIran
| | | | | | | |
Collapse
|
3
|
Calado M, Ferreira R, Pires D, Santos-Costa Q, Anes E, Brites D, Azevedo-Pereira JM. Unravelling the triad of neuroinvasion, neurodissemination, and neuroinflammation of human immunodeficiency virus type 1 in the central nervous system. Rev Med Virol 2024; 34:e2534. [PMID: 38588024 DOI: 10.1002/rmv.2534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/05/2024] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
Since the identification of human immunodeficiency virus type 1 (HIV-1) in 1983, many improvements have been made to control viral replication in the peripheral blood and to treat opportunistic infections. This has increased life expectancy but also the incidence of age-related central nervous system (CNS) disorders and HIV-associated neurodegeneration/neurocognitive impairment and depression collectively referred to as HIV-associated neurocognitive disorders (HAND). HAND encompasses a spectrum of different clinical presentations ranging from milder forms such as asymptomatic neurocognitive impairment or mild neurocognitive disorder to a severe HIV-associated dementia (HAD). Although control of viral replication and suppression of plasma viral load with combination antiretroviral therapy has reduced the incidence of HAD, it has not reversed milder forms of HAND. The objective of this review, is to describe the mechanisms by which HIV-1 invades and disseminates in the CNS, a crucial event leading to HAND. The review will present the evidence that underlies the relationship between HIV infection and HAND. Additionally, recent findings explaining the role of neuroinflammation in the pathogenesis of HAND will be discussed, along with prospects for treatment and control.
Collapse
Affiliation(s)
- Marta Calado
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Rita Ferreira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - David Pires
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Center for Interdisciplinary Research in Health, Católica Medical School, Universidade Católica Portuguesa, Estrada Octávio Pato, Rio de Mouro, Portugal
| | - Quirina Santos-Costa
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
4
|
Di Carlo D, Falasca F, Mazzuti L, Guerrizio G, Migliara G, Santori M, Lazzaro A, Mezzaroma I, D'Ettorre G, Fimiani C, Iaiani G, Antonelli G, Turriziani O. MicroRNA Expression Levels in Peripheral Blood Mononuclear Cells from Human Immunodeficiency Virus Type 1 Positive Individuals and Relationship with Different Levels of Viral Suppression. AIDS Res Hum Retroviruses 2024; 40:321-329. [PMID: 37523231 DOI: 10.1089/aid.2022.0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
The persistence of low human immunodeficiency virus type 1 (HIV-1) replication in individuals undergoing antiretroviral therapy (ART) still threatens their health. Previous findings have shown that microRNAs (miRNAs) could interfere with several steps of the viral life cycle. Herein, we set out to investigate the expression of miR-150, miR-223, miR-382, miR-324-5p, miR-33a-5p, miR-34a, and miR-132 in the whole peripheral blood mononuclear cell (PBMC) population from people living with HIV-1 showing different levels of viral suppression. Levels of PBMC-associated miRNAs were analyzed in 30 individuals with undetectable viremia (target not detected) and 30 individuals with detectable low-level viremia (1-200 copies/mL). In addition, 30 samples from treatment-naive (NAIVE) individuals were investigated. Results were compared to a control group of 28 HIV-negative donors. All miRNAs analyzed were strongly downregulated in the NAIVE population, either compared to the treated group or to controls. Stratification of ART-treated donors according to the therapeutic regimen showed the downregulation of miR-33a-5p in subjects treated with non-nucleoside reverse transcriptase inhibitors compared with those treated with protease inhibitors. Collectively, the present study shows that uncontrolled viral replication leads to profound miRNA deregulation while treated individuals, irrespective of the degree of viral suppression, and even the types of antiviral drugs seem to be specifically associated with miRNA expression profiles. These evidences suggest that virological suppression could be favored by miRNA modulation.
Collapse
Affiliation(s)
- Daniele Di Carlo
- Department of Molecular Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
- Pasteur Laboratories, Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Francesca Falasca
- Department of Molecular Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
- Transfusion Medicine Unit, "F. Veneziale" Hospital, Isernia, Italy
| | - Laura Mazzuti
- Department of Molecular Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
- Department of Clinical and Molecular Medicine, Sapienza University, Sant'Andrea Hospital, Rome, Italy
| | - Giuliana Guerrizio
- Department of Molecular Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Giuseppe Migliara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Marta Santori
- Department Internal Medicine, Endocrine-Metabolic Sciences and Infectious Diseases, Policlinico Umberto I, Rome, Italy
| | - Alessandro Lazzaro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Ivano Mezzaroma
- Department of Translational and Precision Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Gabriella D'Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Caterina Fimiani
- Department Internal Medicine, Endocrine-Metabolic Sciences and Infectious Diseases, Policlinico Umberto I, Rome, Italy
| | - Giancarlo Iaiani
- Department Internal Medicine, Endocrine-Metabolic Sciences and Infectious Diseases, Policlinico Umberto I, Rome, Italy
| | - Guido Antonelli
- Department of Molecular Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Ombretta Turriziani
- Department of Molecular Medicine, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| |
Collapse
|
5
|
Shrestha J, Santerre M, Allen CN, Arjona SP, Hooper R, Mukerjee R, Kaul M, Shcherbik N, Soboloff J, Sawaya BE. HIV-1 gp120 protein promotes HAND through the calcineurin pathway activation. Mitochondrion 2023; 70:31-40. [PMID: 36925028 PMCID: PMC10484070 DOI: 10.1016/j.mito.2023.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/21/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
For over two decades, highly active antiretroviral therapy (HAART) was able to help prolong the life expectancy of people living with HIV-1 (PLWH) and eliminate the virus to an undetectable level. However, an increased prevalence of HIV- associated neurocognitive disorders (HAND) was observed. These symptoms range from neuronal dysfunction to cell death. Among the markers of neuronal deregulation, we cite the alteration of synaptic plasticity and neuronal communications. Clinically, these dysfunctions led to neurocognitive disorders such as learning alteration and loss of spatial memory, which promote premature brain aging even in HAART-treated patients. In support of these observations, we showed that the gp120 protein deregulates miR-499-5p and its downstream target, the calcineurin (CaN) protein. The gp120 protein also promotes the accumulation of calcium (Ca2+) and reactive oxygen species (ROS) inside the neurons leading to the activation of CaN and the inhibition of miR-499-5p. gp120 protein also caused mitochondrial fragmentation and changes in shape and size. The use of mimic miR-499 restored mitochondrial functions, appearance, and size. These results demonstrated the additional effect of the gp120 protein on neurons through the miR-499-5p/calcineurin pathway.
Collapse
Affiliation(s)
- Jenny Shrestha
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA.
| | - Maryline Santerre
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Charles N Allen
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Sterling P Arjona
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Robert Hooper
- FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Ruma Mukerjee
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Marcus Kaul
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA; Department of Psychiatry, UCSD, San Diego, CA, USA; Division of Biomedical Sciences, School of Medicine, UCR, Riverside, CA, USA
| | - Natalia Shcherbik
- Department for Cell Biology and Neuroscience, School of Osteopathic Medicine, Rowan University, 2 Medical Center Drive, Stratford, NJ 08084, USA
| | - Jonathan Soboloff
- FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA; Department of Cancer and Cellular Biology, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA
| | - Bassel E Sawaya
- Molecular Studies of Neurodegenerative Diseases Lab; FELS Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA; Department of Cancer and Cellular Biology, Lewis Katz School of Medicine - Temple University Philadelphia, PA 19140, USA.
| |
Collapse
|
6
|
Datta G, Miller NM, Chen X. 17⍺-Estradiol Protects against HIV-1 Tat-Induced Endolysosome Dysfunction and Dendritic Impairments in Neurons. Cells 2023; 12:813. [PMID: 36899948 PMCID: PMC10000619 DOI: 10.3390/cells12050813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
HIV-1 Tat continues to play an important role in the development of HIV-associated neurocognitive disorders (HAND), which persist in 15-55% of people living with HIV even with virological control. In the brain, Tat is present on neurons, where Tat exerts direct neuronal damaging effects by, at least in part, disrupting endolysosome functions, a pathological feature present in HAND. In this study, we determined the protective effects of 17α-estradiol (17αE2), the predominant form of estrogen in the brain, against Tat-induced endolysosome dysfunction and dendritic impairment in primary cultured hippocampal neurons. We demonstrated that pre-treatment with 17αE2 protected against Tat-induced endolysosome dysfunction and reduction in dendritic spine density. Estrogen receptor alpha (ERα) knockdown impairs the ability of 17αE2 to protect against Tat-induced endolysosome dysfunction and reduction in dendritic spine density. Furthermore, over-expressing an ERα mutant that fails to localize on endolysosomes impairs 17αE2's protective effects against Tat-induced endolysosome dysfunction and reduction in dendritic spine density. Our findings demonstrate that 17αE2 protects against Tat-induced neuronal injury via a novel ERα-mediated and endolysosome-dependent pathway, and such a finding might lead to the development of novel adjunct therapeutics against HAND.
Collapse
Affiliation(s)
| | | | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA
| |
Collapse
|
7
|
Ghanam RH, Eastep GN, Saad JS. Structural Insights into the Mechanism of HIV-1 Tat Secretion from the Plasma Membrane. J Mol Biol 2023; 435:167880. [PMID: 36370804 PMCID: PMC9822876 DOI: 10.1016/j.jmb.2022.167880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) trans-activator of transcription (Tat) is a small, intrinsically disordered basic protein that plays diverse roles in the HIV-1 replication cycle, including promotion of efficient viral RNA transcription. Tat is released by infected cells and subsequently absorbed by healthy cells, thereby contributing to HIV-1 pathogenesis including HIV-associated neurocognitive disorder. It has been shown that, in HIV-1-infected primary CD4 T-cells, Tat accumulates at the plasma membrane (PM) for secretion, a mechanism mediated by phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). However, the structural basis for Tat interaction with the PM and thereby secretion is lacking. Herein, we employed NMR and biophysical methods to characterize Tat86 (86 amino acids) interactions with PI(4,5)P2 and lipid nanodiscs (NDs). Our data revealed that Arg49, Lys50 and Lys51 (RKK motif) constitute the PI(4,5)P2 binding site, that Tat86 interaction with lipid NDs is dependent on PI(4,5)P2 and phosphatidylserine (PS), and that the arginine-rich motif (RRQRRR) preferentially interacts with PS. Furthermore, we show that Trp11, previously implicated in Tat secretion, penetrates deeply in the membrane; substitution of Trp11 severely reduced Tat86 interaction with membranes. Deletion of the entire highly basic region and Trp11 completely abolished Tat86 binding to lipid NDs. Our data support a mechanism by which HIV-1 Tat secretion from the PM is mediated by a tripartite signal consisting of binding of the RKK motif to PI(4,5)P2, arginine-rich motif to PS, and penetration of Trp11 in the membrane. Altogether, these findings provide new insights into the molecular requirements for Tat binding to membranes during secretion.
Collapse
Affiliation(s)
- Ruba H Ghanam
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Gunnar N Eastep
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Jamil S Saad
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
8
|
Zhou X, Zhou S, Tao J, Gao Y, Meng G, Cao D, Gao L. HIV-1 Tat drives the Fabp4/NF-κB feedback loop in microglia to mediate inflammatory response and neuronal apoptosis. J Neurovirol 2022; 28:483-496. [PMID: 36070137 DOI: 10.1007/s13365-022-01094-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 01/13/2023]
Abstract
Fatty acid-binding proteins (FABPs) are relevant to multiple neurodegenerative diseases. However, the roles and mechanisms of FABPs in HIV-associated neurocognitive disorder (HAND) remain yet unclear. In this study, cultured BV-2 microglial cells and HT-22 neuronal cells were used for in vitro experiments and HAND mouse models were constructed through intracerebroventricular injection of lentiviral vectors for in vivo experiments. FABP expression was determined using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blot. The interrelationship between Fabp4 and NF-κB signaling was investigated using chromatin immunoprecipitation, qRT-PCR, and Western blot. The role of Fabp4 in regulating inflammatory response was determined using qRT-PCR, enzyme-linked immunosorbent assay, Western blot, and immunofluorescence staining. Cell viability and apoptosis were analyzed using cell counting kit-8 assay and flow cytometry assay, respectively. Our results suggested an upregulation of Fabp4 expression in the presence of Tat. Tat-induced Fabp4 expression was directly regulated by NF-κB p65, followed by, Fabp4 facilitating Tat-activated NF-κB signaling pathway. We also observed that Fabp4 knockdown in microglial cells significantly suppressed inflammatory response and neuronal apoptosis both in vitro and in vivo. In conclusion, the presence of Tat in microglial cells results in Fabp4 and NF-κB to form a positive feedback loop leading to exacerbate inflammatory response and neuronal apoptosis.
Collapse
Affiliation(s)
- Xiaodan Zhou
- Department of Hematology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, People's Republic of China
| | - Shuhui Zhou
- Department of Oncology, Nantong Hospital of Traditional Chinese Medicine, Affiliated Traditional Chinese Medicine Hospital of Nantong University, Nantong, 226001, People's Republic of China
| | - Jian Tao
- Department of Hematology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, People's Republic of China
| | - Yanan Gao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong University, Nantong, 226001, People's Republic of China
| | - Gaoqiang Meng
- Department of Neurosurgery, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, 226001, People's Republic of China
| | - Duo Cao
- College of Life Science, Yan'an University, Yan'an, 716000, People's Republic of China.
| | - Lin Gao
- Medical Research Center, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Haier Lane North Road No. 6, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
9
|
Periyasamy P, Thangaraj A, Kannan M, Oladapo A, Buch S. The Epigenetic Role of miR-124 in HIV-1 Tat- and Cocaine-Mediated Microglial Activation. Int J Mol Sci 2022; 23:ijms232315017. [PMID: 36499350 PMCID: PMC9738975 DOI: 10.3390/ijms232315017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
HIV-1 and drug abuse have been indissolubly allied as entwined epidemics. It is well-known that drug abuse can hasten the progression of HIV-1 and its consequences, especially in the brain, causing neuroinflammation. This study reports the combined effects of HIV-1 Transactivator of Transcription (Tat) protein and cocaine on miR-124 promoter DNA methylation and its role in microglial activation and neuroinflammation. The exposure of mouse primary microglial cells to HIV-1 Tat (25 ng/mL) and/or cocaine (10 μM) resulted in the significantly decreased expression of primary (pri)-miR-124-1, pri-miR-124-2, and mature miR-124 with a concomitant upregulation in DNMT1 expression as well as global DNA methylation. Our bisulfite-converted genomic DNA sequencing also revealed significant promoter DNA methylation in the pri-miR-124-1 and pri-miR-124-2 in HIV-1 Tat- and cocaine-exposed mouse primary microglial cells. We also found the increased expression of proinflammatory cytokines such as IL1β, IL6 and TNF in the mouse primary microglia exposed to HIV-1 Tat and cocaine correlated with microglial activation. Overall, our findings demonstrate that the exposure of mouse primary microglia to both HIV-1 Tat and cocaine could result in intensified microglial activation via the promoter DNA hypermethylation of miR-124, leading to the exacerbated release of proinflammatory cytokines, ultimately culminating in neuroinflammation.
Collapse
|
10
|
Zehravi M, Kabir J, Akter R, Malik S, Ashraf GM, Tagde P, Ramproshad S, Mondal B, Rahman MH, Mohan AG, Cavalu S. A Prospective Viewpoint on Neurological Diseases and Their Biomarkers. Molecules 2022; 27:molecules27113516. [PMID: 35684455 PMCID: PMC9182418 DOI: 10.3390/molecules27113516] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are disorders that affect both the central and peripheral nervous systems. To name a few causes, NDDs can be caused by ischemia, oxidative and endoplasmic reticulum (ER) cell stress, inflammation, abnormal protein deposition in neural tissue, autoimmune-mediated neuron loss, and viral or prion infections. These conditions include Alzheimer's disease (AD), Lewy body dementia (LBD), and Parkinson's disease (PD). The formation of β-sheet-rich aggregates of intra- or extracellular proteins in the CNS hallmarks all neurodegenerative proteinopathies. In systemic lupus erythematosus (SLE), numerous organs, including the central nervous system (CNS), are affected. However, the inflammatory process is linked to several neurodegenerative pathways that are linked to depression because of NDDs. Pro-inflammatory signals activated by aging may increase vulnerability to neuropsychiatric disorders. Viruses may increase macrophages and CCR5+ T cells within the CNS during dementia formation and progression. Unlike medical symptoms, which are just signs of a patient's health as expressed and perceived, biomarkers are reproducible and quantitative. Therefore, this current review will highlight and summarize the neurological disorders and their biomarkers.
Collapse
Affiliation(s)
- Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Alkharj 11942, Saudi Arabia
- Correspondence: (M.Z.); (M.H.R.); (S.C.)
| | - Janisa Kabir
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China;
| | - Rokeya Akter
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju 26426, Korea;
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India;
| | - Ghulam Md. Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Priti Tagde
- Amity Institute of Pharmacy, Amity University, Noida 201301, India;
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (S.R.); (B.M.)
| | - Banani Mondal
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (S.R.); (B.M.)
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju 26426, Korea;
- Correspondence: (M.Z.); (M.H.R.); (S.C.)
| | - Aurel George Mohan
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania;
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania;
- Correspondence: (M.Z.); (M.H.R.); (S.C.)
| |
Collapse
|
11
|
Liu C, Ding Q, Kong X. Integrated Analysis of the miRNA-mRNA Regulatory Network Involved in HIV-Associated Neurocognitive Disorder. Pathogens 2022; 11:pathogens11040407. [PMID: 35456082 PMCID: PMC9031331 DOI: 10.3390/pathogens11040407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/18/2022] [Accepted: 03/26/2022] [Indexed: 02/01/2023] Open
Abstract
HIV-associated neurocognitive disorder (HAND) is an array of neurocognitive changes associated with HIV infection, and the roles of microRNAs in HAND have not yet been completely revealed. Based on published data and publicly available databases, we constructed an integrated miRNA-mRNA network involved in HAND. Bioinformatics analyses, including gene ontology, network analysis, and KEGG pathway analysis, were applied for further study of the network and the genes of the network. The axon guidance KEGG pathway, three genes NTNG1, EFNB2, CXCL12, and 17 miRNAs which regulate these genes are spotlighted in our study. This study provides new perspectives to the knowledge of miRNAs’ roles in the progression of HAND, and our findings provide potential therapeutic targets and clues of HAND.
Collapse
|
12
|
Khan N, Halcrow PW, Afghah Z, Baral A, Geiger J, Chen X. HIV-1 Tat endocytosis and retention in endolysosomes affects HIV-1 Tat-induced LTR transactivation in astrocytes. FASEB J 2022; 36:e22184. [PMID: 35113458 PMCID: PMC9627655 DOI: 10.1096/fj.202101722r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 11/11/2022]
Abstract
The presence of latent HIV-1 reservoirs in the periphery and brain represents a major obstacle to curing HIV-1 infection. As an essential protein for HIV-1 viral replication, HIV-1 Tat, mostly intracellular, has been implicated in latent HIV-1 infection. From HIV-1 infected cells, HIV-1 Tat is actively secreted and bystander cells uptake the released Tat whereupon it is endocytosed and internalized into endolysosomes. However, to activate the HIV-1 LTR promoter and increase HIV-1 replication, HIV-1 Tat must first escape from the endolysosomes and then enter the nucleus. Here, we tested the hypothesis that HIV-1 Tat can accumulate in endolysosomes and contribute to the activation of latent HIV-1 in astrocytes. Using U87MG astrocytoma cells expressing HIV-1 LTR-driven luciferase and primary human astrocytes we found that exogenous HIV-1 Tat enters endolysosomes, resides in endolysosomes for extended periods of time, and induces endolysosome de-acidification as well as enlargement. The weak base chloroquine promoted the release of HIV-1 Tat from endolysosomes and induced HIV-1 LTR transactivation. Similar results were observed by activating endolysosome Toll-like receptor 3 (TLR3) and TLR7/8. Conversely, pharmacological block of TLRs and knocking down expression levels of TLR3 and TLR7, but not TLR8, prevented endolysosome leakage and attenuated HIV-1 Tat-mediated HIV-1 LTR transactivation. Our findings suggest that HIV-1 Tat accumulation in endolysosomes may play an important role in controlling HIV-1 transactivation.
Collapse
Affiliation(s)
- Nabab Khan
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| | - Peter W. Halcrow
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| | - Zahra Afghah
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| | - Aparajita Baral
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| | - Jonathan D. Geiger
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| | - Xuesong Chen
- Department of Biomedical Sciences University of North Dakota School of Medicine and Health Sciences Grand Forks North Dakota USA
| |
Collapse
|
13
|
Sil S, Periyasamy P, Thangaraj A, Niu F, Chemparathy DT, Buch S. Advances in the Experimental Models of HIV-Associated Neurological Disorders. Curr HIV/AIDS Rep 2021; 18:459-474. [PMID: 34427869 DOI: 10.1007/s11904-021-00570-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Involvement of the central nervous system (CNS) in HIV-1 infection is commonly associated with neurological disorders and cognitive impairment, commonly referred to as HIV-associated neurocognitive disorders (HAND). Severe and progressive neurocognitive impairment is rarely observed in the post-cART era; however, asymptomatic and mild neurocognitive disorders still exist, despite viral suppression. Additionally, comorbid conditions can also contribute to the pathogenesis of HAND. RECENT FINDINGS In this review, we summarize the characterization of HAND, factors contributing, and the functional impairments in both preclinical and clinical models. Specifically, we also discuss recent advances in the animal models of HAND and in in vitro cultures and the potential role of drugs of abuse in this model system of HAND. Potential peripheral biomarkers associated with HAND are also discussed. Overall, this review identifies some of the recent advances in the field of HAND in cell culture studies, animal models, clinical findings, and the limitations of each model system, which can play a key role in developing novel therapeutics in the field.
Collapse
Affiliation(s)
- Susmita Sil
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Fang Niu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Divya T Chemparathy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| |
Collapse
|
14
|
Ali A, Mishra R, Kaur H, Chandra Banerjea A. HIV-1 Tat: An update on transcriptional and non-transcriptional functions. Biochimie 2021; 190:24-35. [PMID: 34242726 DOI: 10.1016/j.biochi.2021.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 01/05/2023]
Abstract
Over the past decades, much have been learned about HIV-1 virus and its molecular strategies for pathogenesis. However, HIV-1 still remains an enigmatic virus, particularly because of its unique proteins. Establishment of latency and reactivation is still a puzzling question and various temporal and spatial dynamics between HIV-1 proteins itself have given us new way of thinking about its pathogenesis. HIV-1 replication depends on Tat which is a small unstructured protein and subjected to various post-translational modifications for its myriad of functions. HIV-1 Tat protein modulates the functions of various strategic cellular pathways like proteasomal machinery and inflammatory pathways to aid in HIV-1 pathogenesis. Many of the recent findings have shown that Tat is associated with exosomes, cleared from HIV-1 infected cells through its degradation by diverse routes ranging from lysosomal to proteasomal pathways. HIV-1 Tat was also found to be associated with other HIV-1 proteins including Vpr, Nef, Nucleocapsid (NC) and Rev. Interaction of Tat with Vpr and Nef increases its transactivation function, whereas, interaction of Tat with NC or Rev leads to Tat protein degradation and hence suppression of Tat functions. Research in the recent years has established that Tat is not only important for HIV-1 promoter transactivation and virus replication but also modulating multiple cellular and molecular functions leading to HIV-1 pathogenicity. In this review we discussed various transcriptional and non-transcriptional HIV-1 Tat functions which modulate host cell metabolism during HIV-1 pathogenesis.
Collapse
Affiliation(s)
- Amjad Ali
- Virology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| | - Ritu Mishra
- Virology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Harsimrut Kaur
- Department of Chemistry and Biochemistry, School of Basic Sciences and Research, Sharda University, Knowledge Park III, Greater Noida, Uttar Pradesh, 201310, India.
| | - Akhil Chandra Banerjea
- Virology Lab, National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
15
|
Bastami M, Masotti A, Saadatian Z, Daraei A, Farjam M, Ghanbariasad A, Vahed SZ, Eyvazi S, Mansoori Y, Nariman-Saleh-Fam Z. Critical roles of microRNA-196 in normal physiology and non-malignant diseases: Diagnostic and therapeutic implications. Exp Mol Pathol 2021; 122:104664. [PMID: 34166682 DOI: 10.1016/j.yexmp.2021.104664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/26/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) have emerged as a critical component of regulatory networks that modulate and fine-tune gene expression in a post-transcriptional manner. The microRNA-196 family is encoded by three loci in the human genome, namely hsa-mir-196a-1, hsa-mir-196a-2, and hsa-mir-196b. Increasing evidence supports the roles of different components of this miRNA family in regulating key cellular processes during differentiation and development, ranging from inflammation and differentiation of stem cells to limb development and remodeling and structure of adipose tissue. This review first discusses about the genomic context and regulation of this miRNA family and then take a bird's eye view on the updated list of its target genes and their biological processes to obtain insights about various functions played by members of the microRNA-196 family. We then describe evidence supporting the involvement of the human microRNA-196 family in regulating critical cellular processes both in physiological and non-malignant inflammatory conditions, highlighting recent seminal findings that carry implications for developing novel therapeutic or diagnostic strategies.
Collapse
Affiliation(s)
- Milad Bastami
- Non-communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Andrea Masotti
- Research Laboratories, Bambino Gesù Children's Hospital-IRCCS, Rome 00146, Italy
| | - Zahra Saadatian
- Department of Genetics, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Abdolreza Daraei
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mojtaba Farjam
- Non-communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Ali Ghanbariasad
- Department of Medical Biotechnology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Shirin Eyvazi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Yaser Mansoori
- Non-communicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran; Medical Genetics Department, Fasa University of Medical Sciences, Fasa, Iran.
| | - Ziba Nariman-Saleh-Fam
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
16
|
Altered expression of fractalkine in HIV-1-infected astrocytes and consequences for the virus-related neurotoxicity. J Neurovirol 2021; 27:279-301. [PMID: 33646495 DOI: 10.1007/s13365-021-00955-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 03/27/2020] [Accepted: 01/21/2021] [Indexed: 10/22/2022]
Abstract
HIV-1 infection in the central nervous system (CNS) causes the release of neurotoxic products from infected cells which trigger extensive neuronal loss. Clinically, this results in HIV-1-associated neurocognitive disorders (HAND). However, the effects on neuroprotective factors in the brain remain poorly understood and understudied in this situation. HAND is a multifactorial process involving several players, and the complex cellular mechanisms have not been fully elucidated yet. In this study, we reported that HIV-1 infection of astrocytes limits their potential to express the protective chemokine fractalkine in response to an inflammatory environment. We next confirmed that this effect was not due to a default in its shedding from the cell surface. We then investigated the biological mechanism responsible for this reduced fractalkine expression and found that HIV-1 infection specifically blocks the interaction of transcription factor NF-κB on its promoter with no effect on other cytokines. Moreover, we demonstrated that fractalkine production in astrocytes is regulated in response to immune factors secreted by infected/activated microglia and macrophages. In contrast, we observed that conditioned media from these infected cells also trigger neuronal apoptosis. At last, we demonstrated a strong neuroprotective action of fractalkine on human neurons by reducing neuronal damages. Taken together, our results indicate new relevant interactions between HIV-1 and fractalkine signaling in the CNS. This study provides new information to broaden the understanding of HAND and possibly foresee new therapeutic strategies. Considering its neuro-protective functions, reducing its production from astrocytes could have important outcomes in chronic neuroinflammation and in HIV-1 neuropathogenesis.
Collapse
|
17
|
Menon M, Budhwar R, Shukla RN, Bankar K, Vasudevan M, Ranga U. The Signature Amino Acid Residue Serine 31 of HIV-1C Tat Potentiates an Activated Phenotype in Endothelial Cells. Front Immunol 2020; 11:529614. [PMID: 33101270 PMCID: PMC7546421 DOI: 10.3389/fimmu.2020.529614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/18/2020] [Indexed: 11/13/2022] Open
Abstract
The natural cysteine to serine variation at position 31 of Tat in HIV-1C disrupts the dicysteine motif attenuating the chemokine function of Tat. We ask if there exists a trade-off in terms of a gain of function for HIV-1C Tat due to this natural variation. We constructed two Tat-expression vectors encoding Tat proteins discordant for the serine 31 residue (CS-Tat vs. CC-Tat), expressed the proteins in Jurkat cells under doxycycline control, and performed the whole transcriptome analysis to compare the early events of Tat-induced host gene expression. Our analysis delineated a significant enrichment of pathways and gene ontologies associated with the angiogenic signaling events in CS-Tat stable cells. Subsequently, we validated and compared angiogenic signaling events induced by CS- vs. CC-Tat using human umbilical vein endothelial cells (HUVEC) and the human cerebral microvascular endothelial cell line (hCMEC/D3). CS-Tat significantly enhanced the production of CCL2 from HUVEC and induced an activated phenotype in endothelial cells conferring on them enhanced migration, invasion, and in vitro morphogenesis potential. The ability of CS-Tat to induce the activated phenotype in endothelial cells could be of significance, especially in the context of HIV-associated cardiovascular and neuronal disorders. The findings from the present study are likely to help appreciate the functional significance of the SAR (signature amino acid residues) influencing the unique biological properties.
Collapse
Affiliation(s)
- Malini Menon
- Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore, India
| | | | | | | | | | - Udaykumar Ranga
- Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
18
|
Abstract
In the era of combination antiretroviral therapy, the diagnosis and management of HIV-associated neurocognitive disorders (HANDs) has arisen. Traditionally, severe HAND was seen in those with untreated HIV infection and had a guarded prognosis. Antiretroviral therapy has provided longevity and viral control to many living with the disease, revealing an increase in prevalence of less severe forms of HAND. Despite peripheral blood and cerebrospinal fluid viral suppression, cognitive impairment occurs and progresses for reasons that are unclear at present. This article provides a review of current theories behind the development of HAND, clinical and pathologic findings, recent developments, and future research opportunities.
Collapse
|
19
|
Periyasamy P, Thangaraj A, Bendi VS, Buch S. HIV-1 Tat-mediated microglial inflammation involves a novel miRNA-34a-NLRC5-NFκB signaling axis. Brain Behav Immun 2019; 80:227-237. [PMID: 30872089 PMCID: PMC6660398 DOI: 10.1016/j.bbi.2019.03.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/27/2019] [Accepted: 03/09/2019] [Indexed: 12/13/2022] Open
Abstract
While the advent of combination antiretroviral therapy (cART) has dramatically increased the lifespan of people living with HIV-1 paradoxically, the prevalence of NeuroHIV in people treated with cART is on the rise. It has been well documented that despite the effectiveness of cART in suppressing viremia, CNS continues to harbor viral reservoirs with persistent low-level virus replication. This, in turn, leads to the presence and accumulation of early viral protein - HIV-1 Tat, that is a well-established cytotoxic agent. In the current study, we demonstrated that exposure of mouse microglia to HIV-1 Tat resulted both in a dose- and time-dependent upregulation of miRNA-34a, with concomitant downregulation of NLRC5 (a negative regulator of NFκB signaling) expression. Using bioinformatics analyses and Argonaute immunoprecipitation assay NLRC5 was identified as a novel target of miRNA-34a. Transfection of mouse primary microglia with miRNA-34a mimic significantly downregulated NLRC5 expression, resulting in increased expression of NFκB p65. In contrast, transfection of cells with miRNA-34a inhibitor upregulated NLRC5 levels. Using pharmacological approaches, our findings showed that HIV-1 Tat-mediated microglial activation involved miRNA-34a-mediated downregulation of NLRC5 with concomitant activation of NFκB signaling. Reciprocally, inhibition of miRNA-34a blocked HIV-1 Tat-mediated microglial activation. In summary, our findings identify yet another novel mechanism of HIV-1 Tat-mediated activation of microglia involving the miRNA-34a-NLRC5-NFκB axis. These in vitro findings were also validated in the medial prefrontal cortices of HIV-1 transgenic rats as well as in SIV-infected rhesus macaques. Overall, these findings reveal the involvement of miRNA-34a-NLRC5-NFκB signaling axis in HIV-1 Tat-mediated microglial inflammation.
Collapse
Affiliation(s)
| | | | | | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
20
|
Dong H, Ye X, Zhong L, Xu J, Qiu J, Wang J, Shao Y, Xing H. Role of FOXO3 Activated by HIV-1 Tat in HIV-Associated Neurocognitive Disorder Neuronal Apoptosis. Front Neurosci 2019; 13:44. [PMID: 30778283 PMCID: PMC6369160 DOI: 10.3389/fnins.2019.00044] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/17/2019] [Indexed: 11/23/2022] Open
Abstract
There are numerous types of pathological changes in human immunodeficiency virus (HIV)-associated neurocognitive disorder (HAND), including apoptosis of neurons. HIV-1 transactivator of transcription (Tat) protein, which is encoded by HIV-1, may promote apoptosis in HAND. Forkhead box O3 (FOXO3) is a multispecific transcription factor that has roles in many biological processes, including cellular apoptosis. The aim of this study was to determine whether FOXO3 is activated by HIV-1 Tat and to investigate its role in neuronal apoptosis in HAND. We employed tissue staining and related molecular biological experimental methods to confirm our hypothesis. The in vivo experimental results demonstrated that the expression of nuclear FOXO3 increased in the apoptotic neurons of the cerebral cortexes of rhesus macaques infected with simian human immunodeficiency virus (SHIV). The in vitro investigation showed that HIV-1 Tat activated FOXO3, causing it to move from the cytoplasm to the nucleus via the c-Jun N-terminal kinase (JNK) signaling pathway in SH-SY5Y cells. Moreover, FOXO3 down-regulated expression of the anti-apoptosis gene B-cell lymphoma 2 (Bcl-2) and up-regulated the expression of the pro-apoptosis gene Bcl-2-like 11 (Bim) after entering the nucleus, eventually causing cellular apoptosis. Finally, reduction of nuclear FOXO3 reversed cellular apoptosis. Our results suggest that HIV-1 Tat induces FOXO3 to translocate from the cytoplasm to the nucleus via the JNK signaling pathway, leading to neuronal apoptosis. Agents targeting FOXO3 may provide approaches for restoring neuronal function in HAND.
Collapse
Affiliation(s)
- Huaqian Dong
- Cancer Research Center, Department of Basic Medical Sciences, Fujian Provincial Key Laboratory of Neurodegenerative, Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, China
| | - Xiang Ye
- Cancer Research Center, Department of Basic Medical Sciences, Fujian Provincial Key Laboratory of Neurodegenerative, Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, China
| | - Li Zhong
- Cancer Research Center, Department of Basic Medical Sciences, Fujian Provincial Key Laboratory of Neurodegenerative, Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, China
| | - Jinhong Xu
- Cancer Research Center, Department of Basic Medical Sciences, Fujian Provincial Key Laboratory of Neurodegenerative, Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, China
| | - Jinhua Qiu
- Cancer Research Center, Department of Basic Medical Sciences, Fujian Provincial Key Laboratory of Neurodegenerative, Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, China
| | - Jun Wang
- Cancer Research Center, Department of Basic Medical Sciences, Fujian Provincial Key Laboratory of Neurodegenerative, Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, China
| | - Yiming Shao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huiqin Xing
- Cancer Research Center, Department of Basic Medical Sciences, Fujian Provincial Key Laboratory of Neurodegenerative, Disease and Aging Research, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
21
|
Ramesh J, Ronsard L, Gao A, Venugopal B. Autophagy Intertwines with Different Diseases-Recent Strategies for Therapeutic Approaches. Diseases 2019; 7:diseases7010015. [PMID: 30717078 PMCID: PMC6473623 DOI: 10.3390/diseases7010015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a regular and substantial “clear-out process” that occurs within the cell and that gets rid of debris that accumulates in membrane-enclosed vacuoles by using enzyme-rich lysosomes, which are filled with acids that degrade the contents of the vacuoles. This machinery is well-connected with many prevalent diseases, including cancer, HIV, and Parkinson’s disease. Considering that autophagy is well-known for its significant connections with a number of well-known fatal diseases, a thorough knowledge of the current findings in the field is essential in developing therapies to control the progression rate of diseases. Thus, this review summarizes the critical events comprising autophagy in the cellular system and the significance of its key molecules in manifesting this pathway in various diseases for down- or upregulation. We collectively reviewed the role of autophagy in various diseases, mainly neurodegenerative diseases, cancer, inflammatory diseases, and renal disorders. Here, some collective reports on autophagy showed that this process might serve as a dual performer: either protector or contributor to certain diseases. The aim of this review is to help researchers to understand the role of autophagy-regulating genes encoding functional open reading frames (ORFs) and its connection with diseases, which will eventually drive better understanding of both the progression and suppression of different diseases at various stages. This review also focuses on certain novel therapeutic strategies which have been published in the recent years based on targeting autophagy key proteins and its interconnecting signaling cascades.
Collapse
Affiliation(s)
- Janani Ramesh
- Department of Medical Biochemistry, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113, India.
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Larance Ronsard
- The Ragon Institute of Massachusetts General Hospital, The Massachusetts Institute of Technology and Harvard University, 400 Technology Square, Cambridge, MA 02140, USA.
| | - Anthony Gao
- Renal Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Bhuvarahamurthy Venugopal
- Department of Medical Biochemistry, Dr. A.L.M. Post Graduate Institute of Basic Medical Sciences, University of Madras, Chennai 600113, India.
| |
Collapse
|
22
|
Santerre M, Bagashev A, Gorecki L, Lysek KZ, Wang Y, Shrestha J, Del Carpio-Cano F, Mukerjee R, Sawaya BE. HIV-1 Tat protein promotes neuronal dysregulation by inhibiting E2F transcription factor 3 (E2F3). J Biol Chem 2018; 294:3618-3633. [PMID: 30591585 DOI: 10.1074/jbc.ra118.003744] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 12/17/2018] [Indexed: 12/29/2022] Open
Abstract
Individuals who are infected with HIV-1 accumulate damage to cells and tissues (e.g. neurons) that are not directly infected by the virus. These include changes known as HIV-associated neurodegenerative disorder (HAND), leading to the loss of neuronal functions, including synaptic long-term potentiation (LTP). Several mechanisms have been proposed for HAND, including direct effects of viral proteins such as the Tat protein. Searching for the mechanisms involved, we found here that HIV-1 Tat inhibits E2F transcription factor 3 (E2F3), CAMP-responsive element-binding protein (CREB), and brain-derived neurotropic factor (BDNF) by up-regulating the microRNA miR-34a. These changes rendered murine neurons dysfunctional by promoting neurite retraction, and we also demonstrate that E2F3 is a specific target of miR-34a. Interestingly, bioinformatics analysis revealed the presence of an E2F3-binding site within the CREB promoter, which we validated with ChIP and transient transfection assays. Of note, luciferase reporter assays revealed that E2F3 up-regulates CREB expression and that Tat interferes with this up-regulation. Further, we show that miR-34a inhibition or E2F3 overexpression neutralizes Tat's effects and restores normal distribution of the synaptic protein synaptophysin, confirming that Tat alters these factors, leading to neurite retraction inhibition. Our results suggest that E2F3 is a key player in neuronal functions and may represent a good target for preventing the development of HAND.
Collapse
Affiliation(s)
- Maryline Santerre
- From the Molecular Studies of Neurodegenerative Diseases Laboratory, FELS Institute for Cancer Research and Molecular Biology
| | - Asen Bagashev
- From the Molecular Studies of Neurodegenerative Diseases Laboratory, FELS Institute for Cancer Research and Molecular Biology.,the Department of Anatomy and Cell Biology, and
| | - Laura Gorecki
- From the Molecular Studies of Neurodegenerative Diseases Laboratory, FELS Institute for Cancer Research and Molecular Biology
| | - Kyle Z Lysek
- From the Molecular Studies of Neurodegenerative Diseases Laboratory, FELS Institute for Cancer Research and Molecular Biology
| | - Ying Wang
- From the Molecular Studies of Neurodegenerative Diseases Laboratory, FELS Institute for Cancer Research and Molecular Biology
| | - Jenny Shrestha
- From the Molecular Studies of Neurodegenerative Diseases Laboratory, FELS Institute for Cancer Research and Molecular Biology
| | - Fabiola Del Carpio-Cano
- From the Molecular Studies of Neurodegenerative Diseases Laboratory, FELS Institute for Cancer Research and Molecular Biology
| | - Ruma Mukerjee
- From the Molecular Studies of Neurodegenerative Diseases Laboratory, FELS Institute for Cancer Research and Molecular Biology
| | - Bassel E Sawaya
- From the Molecular Studies of Neurodegenerative Diseases Laboratory, FELS Institute for Cancer Research and Molecular Biology, .,the Department of Anatomy and Cell Biology, and.,the Department of Neurology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140
| |
Collapse
|
23
|
Chua CEL, Tang BL. miR-34a in Neurophysiology and Neuropathology. J Mol Neurosci 2018; 67:235-246. [DOI: 10.1007/s12031-018-1231-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 11/22/2018] [Indexed: 12/28/2022]
|
24
|
Modulatory Effects of Nicotine on neuroHIV/neuroAIDS. J Neuroimmune Pharmacol 2018; 13:467-478. [PMID: 30215204 DOI: 10.1007/s11481-018-9806-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/23/2018] [Indexed: 12/28/2022]
Abstract
Nicotine, one of the key active ingredients in tobacco smoke, exerts its effects via binding to nicotinic acetylcholine receptors (nAChRs). Although both negative and positive pharmacological effects of nicotine have been shown in numerous animals and human studies, its interaction with human immunodeficiency virus-1 (HIV-1) have not been fully elucidated. Even though combined anti-retroviral therapy (cART) limits the progression of HIV-1 to acquired immune deficiency syndrome (AIDS), HIV-associated neurocognitive disorders (HAND) remain prevalent. There is thus a compelling need to enhance our understanding of HAND-related neurologic dysfunction. Some biochemical pathways and physiological dysfunctions have been found to be shared by HAND and Alzheimer's (AD) or Parkinson's (PD) diseases, and nicotine may exert the same neuroprotection in HAND that has been observed in both AD and PD. In the past dozen years, various potential therapeutic effects of nicotine such as neuroprotection have been revealed in both in vivo and in vitro studies, including using HIV-1 transgenic (HIV-1Tg) rat model, which mimics HIV-infected patients receiving cART. In the current review, we describe recent progress in the prevalence of HIV/AIDS with and without cigarette smoking, some animal models for studying neural dysfunction associated with HIV-1 infection, elucidating the modulatory effects of cigarette smoking/nicotine on HIV/AIDS, the anti-inflammatory effects of nicotine, and the neuroprotective effects observed in HIV-1Tg rat model. Taken together, these findings suggest the following: although tobacco smoking does cause deleterious effects in both health and disease conditions such as HIV infection, nicotine, the significant component of tobacco smoke, has been shown to possess some neuroprotective effects in HIV patients, possible via its anti-inflammatory activities. It is therefore necessary to study nicotine's dual effects on neuroHIV/neuroAIDS in hope of better defining the potential medical uses of nicotine or its analogues, and to make them available in a purer and less dangerous form.
Collapse
|
25
|
HIV-1 Protein Tat 1-72 Impairs Neuronal Dendrites via Activation of PP1 and Regulation of the CREB/BDNF Pathway. Virol Sin 2018; 33:261-269. [PMID: 29737506 DOI: 10.1007/s12250-018-0031-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/02/2018] [Indexed: 12/18/2022] Open
Abstract
Despite the success of combined antiretroviral therapy in recent years, the prevalence of human immunodeficiency virus (HIV)-associated neurocognitive disorders in people living with HIV-1 is increasing, significantly reducing the health-related quality of their lives. Although neurons cannot be infected by HIV-1, shed viral proteins such as transactivator of transcription (Tat) can cause dendritic damage. However, the detailed molecular mechanism of Tat-induced neuronal impairment remains unknown. In this study, we first showed that recombinant Tat (1-72 aa) induced neurotoxicity in primary cultured mouse neurons. Second, exposure to Tat1-72 was shown to reduce the length and number of dendrites in cultured neurons. Third, Tat1-72 (0-6 h) modulates protein phosphatase 1 (PP1) expression and enhances its activity by decreasing the phosphorylation level of PP1 at Thr320. Finally, Tat1-72 (24 h) downregulates CREB activity and CREB-mediated gene (BDNF, c-fos, Egr-1) expression. Together, these findings suggest that Tat1-72 might impair cognitive function by regulating the activity of PP1 and the CREB/BDNF pathway.
Collapse
|
26
|
Barat C, Proust A, Deshiere A, Leboeuf M, Drouin J, Tremblay MJ. Astrocytes sustain long-term productive HIV-1 infection without establishment of reactivable viral latency. Glia 2018; 66:1363-1381. [PMID: 29464785 DOI: 10.1002/glia.23310] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 01/19/2018] [Accepted: 01/29/2018] [Indexed: 12/22/2022]
Abstract
The "shock and kill" HIV-1 cure strategy proposes eradication of stable cellular reservoirs by clinical treatment with latency-reversing agents (LRAs). Although resting CD4+ T cells latently infected with HIV-1 constitute the main reservoir that is targeted by these approaches, their consequences on other reservoirs such as the central nervous system are still unknown and should be taken into consideration. We performed experiments aimed at defining the possible role of astrocytes in HIV-1 persistence in the brain and the effect of LRA treatments on this viral sanctuary. We first demonstrate that the diminished HIV-1 production in a proliferating astrocyte culture is due to a reduced proliferative capacity of virus-infected cells compared with uninfected astrocytes. In contrast, infection of non-proliferating astrocytes led to a robust HIV-1 infection that was sustained for over 60 days. To identify astrocytes latently infected with HIV-1, we designed a new dual-color reporter virus called NL4.3 eGFP-IRES-Crimson that is fully infectious and encodes for all viral proteins. Although we detected a small fraction of astrocytes carrying silent HIV-1 proviruses, we did not observe any reactivation using various LRAs and even strong inducers such as tumor necrosis factor, thus suggesting that these proviruses were either not transcriptionally competent or in a state of deep latency. Our findings imply that astrocytes might not constitute a latent reservoir per se but that relentless virus production by this brain cell population could contribute to the neurological disorders seen in HIV-1-infected persons subjected to combination antiretroviral therapy.
Collapse
Affiliation(s)
- Corinne Barat
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada
| | - Alizé Proust
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada
| | - Alexandre Deshiere
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada
| | - Mathieu Leboeuf
- Département d'Obstétrique, Gynécologie et Reproduction, Faculté de Médecine, Université Laval, Québec, Canada
| | - Jean Drouin
- Département de Médecine Familiale et d'urgence, Faculté de Médecine, Université Laval, Québec, Canada
| | - Michel J Tremblay
- Axe des Maladies Infectieuses et Immunitaires, Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Québec, Canada.,Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Canada
| |
Collapse
|
27
|
Maderna E, Colombo L, Cagnotto A, Di Fede G, Indaco A, Tagliavini F, Salmona M, Giaccone G. In Situ Tissue Labeling of Cerebral Amyloid Using HIV-Related Tat Peptide. Mol Neurobiol 2018; 55:6834-6840. [PMID: 29349578 DOI: 10.1007/s12035-018-0870-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 01/07/2018] [Indexed: 11/25/2022]
Abstract
Delivering peptide-based drugs to the brain is a major challenge because of the existence of the blood-brain barrier (BBB). To overcome this problem, cell-penetrating peptides derived from proteins that are able to cross biological membranes have been used as cell-permeable and brain-penetrant compounds. An example is the transactivator of transcription protein transduction domain (Tat) of the human immunodeficiency virus. The basic domain of Tat is formed of arginine and lysine amino acid residues. Tat has been used as brain-penetrant carrier also in therapies for Alzheimer disease (AD), the most common form of dementia characterized by extracellular cerebral deposits of amyloid made up of Aβ peptide. The aim of our study was to assess whether Tat bind to amyloid deposits of AD and other amyloidoses. An in situ labeling using biotinylated Tat 48-57 peptide was employed in the brain tissue with amyloid deposits made up of Aβ (patients with AD and transgenic AD mice), of prion protein (patients with Gerstmann-Straussler-Scheinker disease), and other amyloidosis, processed by different fixations and pretreatments of histological sections. Our results showed that Tat peptide binds amyloid deposits made up of Aβ, PrP, and immunoglobulin lambda chains in the brain and other tissues processed by alcoholic fixatives but not in formalin-fixed tissue. The fact that biotinylated Tat peptide stains amyloid of different biochemical composition and the specific charge characteristics of the molecules suggests that Tat may bind to heparan sulfate glicosaminoglicans, that are present in amyloid deposits. Inhibition of the binding by Tat pre-incubation with protamine reinforces this hypothesis. Binding of Tat to amyloid deposits should be kept in mind in interpreting the results of studies employing this molecule as brain-penetrating compound for the treatment of cerebral amyloidoses. Our results also suggest that Tat may be helpful for the analysis of the mechanisms of amyloidogenesis, and in particular, the interactions between specific amyloid peptides and glicosaminoglicans.
Collapse
Affiliation(s)
- E Maderna
- Neuropathology - Neurology V Unit, IRCCS Foundation "Carlo Besta" Neurological Institute, Via Celoria 11, 20133, Milan, Italy.
| | - L Colombo
- Department of Molecular Biochemistry and Pharmacology, IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156, Milan, Italy
| | - A Cagnotto
- Department of Molecular Biochemistry and Pharmacology, IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156, Milan, Italy
| | - G Di Fede
- Neuropathology - Neurology V Unit, IRCCS Foundation "Carlo Besta" Neurological Institute, Via Celoria 11, 20133, Milan, Italy
| | - A Indaco
- Neuropathology - Neurology V Unit, IRCCS Foundation "Carlo Besta" Neurological Institute, Via Celoria 11, 20133, Milan, Italy
| | - F Tagliavini
- Neuropathology - Neurology V Unit, IRCCS Foundation "Carlo Besta" Neurological Institute, Via Celoria 11, 20133, Milan, Italy
| | - M Salmona
- Department of Molecular Biochemistry and Pharmacology, IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Via La Masa 19, 20156, Milan, Italy
| | - G Giaccone
- Neuropathology - Neurology V Unit, IRCCS Foundation "Carlo Besta" Neurological Institute, Via Celoria 11, 20133, Milan, Italy
| |
Collapse
|
28
|
Gougeon ML. Alarmins and central nervous system inflammation in HIV-associated neurological disorders. J Intern Med 2017; 281:433-447. [PMID: 27862491 DOI: 10.1111/joim.12570] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In the era of highly active antiretroviral therapy (HAART), HIV-1-associated neurocognitive disorders (HAND) persist in infected individuals with adequate immunological and virological status. Risk factors for cognitive impairment include hepatitis C virus co-infection, host genetic factors predisposing to HAND, the early establishment of the virus in the CNS and its persistence under HAART; thus, the CNS is an important reservoir for HIV. Microglial cells are permissive to HIV-1, and NLRP3 inflammasome-associated genes were found expressed in brains of HIV-1-infected persons, contributing to brain disease. Inflammasomes can be triggered by alarmins or danger-associated molecular patterns (DAMPs), which directly stimulate the production of proinflammatory mediators by glial cells, contribute to blood-brain barrier injury through induction of release of various proteases and allow the passage of infected macrophages, and trigger IL-1β release from primed cells. Amongst alarmins involved in HIV-1-induced neuropathogenesis, IL-33 and high-mobility group box 1 (HMGB1) are of particular interest. Neurocognitive alterations were recently associated with dysregulation of the IL-33/ST2 axis in the CNS, leading to the induction of neuronal apoptosis, decrease in synaptic function and neuroinflammation. Specific biomarkers, including HMGB1 and anti-HMGB1 antibodies, have been identified in cerebrospinal fluid from patients with HAND, correlated with immune activation and identifying a very early stage of neurocognitive impairment that precedes changes in metabolites detected by magnetic resonance spectroscopy. Moreover, HMGB1 plays a crucial role in HIV-1 persistence in dendritic cells and in the constitution of viral reservoirs. In this review, the mechanisms whereby alarmins contribute to HIV-1-induced CNS inflammation and neuropathogenesis will be discussed.
Collapse
Affiliation(s)
- M-L Gougeon
- Institut Pasteur, Antiviral Immunity, Biotherapy and Vaccine Unit, Infection and Epidemiology Department, Paris, France
| |
Collapse
|
29
|
Ganief T, Gqamana P, Garnett S, Hoare J, Stein DJ, Joska J, Soares N, Blackburn JM. Quantitative proteomic analysis of HIV-1 Tat-induced dysregulation in SH-SY5Y neuroblastoma cells. Proteomics 2017; 17. [PMID: 28101920 DOI: 10.1002/pmic.201600236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 12/23/2016] [Accepted: 01/12/2017] [Indexed: 11/11/2022]
Abstract
Despite affecting up to 70% of HIV-positive patients and being the leading cause of dementia in patients under 40 years, the molecular mechanisms involved in the onset of HIV-associated neurocognitive disorders (HAND) are not well understood. To address this, we performed SILAC-based quantitative proteomic analysis on HIV-Tat treated SH-SY5Y neuroblastoma cells. Isolated protein was fractionated by SDS-PAGE and analyzed by nLC-MS/MS on an Orbitrap Velos. Using MaxQuant, we identified and quantified 3077 unique protein groups, of which 407 were differentially regulated. After applying an additional standard deviation-based cutoff, 29 of these were identified as highly significantly and stably dysregulated. GO term analysis shows dysregulation in both protein translation machinery as well as cytoskeletal regulation that have both been implicated in other dementias. In addition, several key cytoskeletal regulatory proteins such as ARHGEF17, the Rho GTPase, SHROOM3, and CMRP1 are downregulated. Together, these data demonstrate that HIV-Tat can dysregulate neuronal cytoskeletal regulatory proteins that could lead to the major HAND clinical manifestation-synapse loss.
Collapse
Affiliation(s)
- Tariq Ganief
- Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Putuma Gqamana
- Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Shaun Garnett
- Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Jackie Hoare
- Department of Psychiatry, University of Cape Town, South Africa
| | - Dan J Stein
- Department of Psychiatry, University of Cape Town, South Africa.,MRC Unit on Anxiety and Stress Disorders, University of Cape Town, South Africa
| | - John Joska
- Department of Psychiatry, University of Cape Town, South Africa
| | - Nelson Soares
- Department of Integrative Biomedical Sciences, University of Cape Town, South Africa
| | - Jonathan M Blackburn
- Department of Integrative Biomedical Sciences, University of Cape Town, South Africa.,Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| |
Collapse
|
30
|
Chen NC, Partridge AT, Sell C, Torres C, Martín-García J. Fate of microglia during HIV-1 infection: From activation to senescence? Glia 2016; 65:431-446. [PMID: 27888531 DOI: 10.1002/glia.23081] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 09/12/2016] [Accepted: 09/20/2016] [Indexed: 12/14/2022]
Abstract
Microglia support productive human immunodeficiency virus type 1 (HIV-1) infection and disturbed microglial function could contribute to the development of HIV-associated neurocognitive disorders (HAND). Better understanding of how HIV-1 infection and viral protein exposure modulate microglial function during the course of infection could lead to the identification of novel therapeutic targets for both the eradication of HIV-1 reservoir and treatment of neurocognitive deficits. This review first describes microglial origins and function in the normal central nervous system (CNS), and the changes that occur during aging. We then critically discuss how HIV-1 infection and exposure to viral proteins such as Tat and gp120 affect various aspects of microglial homeostasis including activation, cellular metabolism and cell cycle regulation, through pathways implicated in cellular stress responses including p38 mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB). We thus propose that the functions of human microglia evolve during both healthy and pathological aging. Aging-associated dysfunction of microglia comprises phenotypes resembling cellular senescence, which could contribute to cognitive impairments observed in various neurodegenerative diseases. In addition, microglia seems to develop characteristics that could be related to cellular senescence post-HIV-1 infection and after exposure to HIV-1 viral proteins. However, despite its potential role as a component of HAND and likely other neurocognitive disorders, microglia senescence has not been well characterized and should be the focus of future studies, which could have high translational relevance. GLIA 2017;65:431-446.
Collapse
Affiliation(s)
- Natalie C Chen
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania.,MD/PhD Program, Drexel University College of Medicine, Philadelphia, Pennsylvania.,Molecular and Cell Biology and Genetics Graduate Program, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Andrea T Partridge
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania.,Microbiology and Immunology Graduate Program, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Christian Sell
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Claudio Torres
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Julio Martín-García
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania.,Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
31
|
Mamik MK, Hui E, Branton WG, McKenzie BA, Chisholm J, Cohen EA, Power C. HIV-1 Viral Protein R Activates NLRP3 Inflammasome in Microglia: implications for HIV-1 Associated Neuroinflammation. J Neuroimmune Pharmacol 2016; 12:233-248. [PMID: 27726055 DOI: 10.1007/s11481-016-9708-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 09/09/2016] [Indexed: 02/07/2023]
Abstract
Human Immunodeficiency virus (HIV) enters the brain soon after seroconversion and induces chronic neuroinflammation by infecting and activating brain macrophages. Inflammasomes are cytosolic protein complexes that mediate caspase-1 activation and ensuing cleavage and release of IL-1β and -18 by macrophages. Our group recently showed that HIV-1 infection of human microglia induced inflammasome activation in NLRP3-dependent manner. The HIV-1 viral protein R (Vpr) is an accessory protein that is released from HIV-infected cells, although its effects on neuroinflammation are undefined. Infection of human microglia with Vpr-deficient HIV-1 resulted in reduced caspase-1 activation and IL-1β production, compared to cells infected with a Vpr-encoding HIV-1 virus. Vpr was detected at low nanomolar concentrations in cerebrospinal fluid from HIV-infected patients and in supernatants from HIV-infected primary human microglia. Exposure of human macrophages to Vpr caused caspase-1 cleavage and IL-1β release with reduced cell viability, which was dependent on NLRP3 expression. Increased NLRP3, caspase-1, and IL-1β expression was evident in HIV-1 Vpr transgenic mice compared to wild-type littermates, following systemic immune stimulation. Treatment with the caspase-1 inhibitor, VX-765, suppressed NLRP3 expression with reduced IL-1β expression and associated neuroinflammation. Neurobehavioral deficits showed improvement in Vpr transgenic animals treated with VX-765. Thus, Vpr-induced NLRP3 inflammasome activation, which contributed to neuroinflammation and was abrogated by caspase-1 inhibition. This study provides a new therapeutic perspective for HIV-associated neuropsychiatric disease.
Collapse
Affiliation(s)
- Manmeet K Mamik
- Department of Medicine, University of Alberta, T6G 2S2, Edmonton, AB, Canada
| | - Elizabeth Hui
- Department of Medicine, University of Alberta, T6G 2S2, Edmonton, AB, Canada
| | - William G Branton
- Department of Medicine, University of Alberta, T6G 2S2, Edmonton, AB, Canada
| | - Brienne A McKenzie
- Department of Medicine, University of Alberta, T6G 2S2, Edmonton, AB, Canada
| | - Jesse Chisholm
- Department of Medicine, University of Alberta, T6G 2S2, Edmonton, AB, Canada
| | - Eric A Cohen
- Institut de recherches cliniques de Montréal (IRCM) and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Christopher Power
- Department of Medicine, University of Alberta, T6G 2S2, Edmonton, AB, Canada.
| |
Collapse
|
32
|
Marban C, Forouzanfar F, Ait-Ammar A, Fahmi F, El Mekdad H, Daouad F, Rohr O, Schwartz C. Targeting the Brain Reservoirs: Toward an HIV Cure. Front Immunol 2016; 7:397. [PMID: 27746784 PMCID: PMC5044677 DOI: 10.3389/fimmu.2016.00397] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 09/20/2016] [Indexed: 12/23/2022] Open
Abstract
One of the top research priorities of the international AIDS society by the action “Towards an HIV Cure” is the purge or the decrease of the pool of all latently infected cells. This strategy is based on reactivation of latently reservoirs (the shock) followed by an intensifying combination antiretroviral therapy (cART) to kill them (the kill). The central nervous system (CNS) has potential latently infected cells, i.e., perivascular macrophages, microglial cells, and astrocytes that will need to be eliminated. However, the CNS has several characteristics that may preclude the achievement of a cure. In this review, we discuss several limitations to the eradication of brain reservoirs and how we could circumvent these limitations by making it efforts in four directions: (i) designing efficient latency-reversal agents for CNS-cell types, (ii) improving cART by targeting HIV transcription, (iii) improving delivery of HIV drugs in the CNS and in the CNS-cell types, and (iv) developing therapeutic immunization. As a prerequisite to these efforts, we also believe that a better comprehension of molecular mechanisms involved in establishment and persistence of HIV latency in brain reservoirs are essential to design new molecules for strategies aiming to achieve a cure for instance the “shock and kill” strategy.
Collapse
Affiliation(s)
- Céline Marban
- INSERM UMR 1121 Faculté de Chirurgie Dentaire, Université de Strasbourg , Strasbourg , France
| | | | - Amina Ait-Ammar
- EA7292, DHPI, Université de Strasbourg , Strasbourg , France
| | - Faiza Fahmi
- EA7292, DHPI, Université de Strasbourg , Strasbourg , France
| | - Hala El Mekdad
- EA7292, DHPI, Université de Strasbourg, Strasbourg, France; IUT Louis Pasteur de Schiltigheim, Université de Strasbourg, Schiltigheim, France
| | - Fadoua Daouad
- EA7292, DHPI, Université de Strasbourg , Strasbourg , France
| | - Olivier Rohr
- EA7292, DHPI, Université de Strasbourg, Strasbourg, France; IUT Louis Pasteur de Schiltigheim, Université de Strasbourg, Schiltigheim, France; Institut Universitaire de France, Paris, France
| | - Christian Schwartz
- EA7292, DHPI, Université de Strasbourg, Strasbourg, France; IUT Louis Pasteur de Schiltigheim, Université de Strasbourg, Schiltigheim, France
| |
Collapse
|
33
|
Witwer KW, Halushka MK. Toward the promise of microRNAs - Enhancing reproducibility and rigor in microRNA research. RNA Biol 2016; 13:1103-1116. [PMID: 27645402 DOI: 10.1080/15476286.2016.1236172] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The fields of applied and translational microRNA research have exploded in recent years as microRNAs have been implicated across a spectrum of diseases. MicroRNA biomarkers, microRNA therapeutics, microRNA regulation of cellular physiology and even xenomiRs have stimulated great interest, which have brought many researchers into the field. Despite many successes in determining general mechanisms of microRNA generation and function, the application of microRNAs in translational areas has not had as much success. It has been a challenge to localize microRNAs to a given cell type within tissues and assay them reliably. At supraphysiologic levels, microRNAs may regulate hosts of genes that are not the physiologic biochemical targets. Thus the applied and translational microRNA literature is filled with pitfalls and claims that are neither scientifically rigorous nor reproducible. This review is focused on increasing awareness of the challenges of working with microRNAs in translational research and recommends better practices in this area of discovery.
Collapse
Affiliation(s)
- Kenneth W Witwer
- a Department of Molecular and Comparative Pathobiology , The Johns Hopkins University School of Medicine , Baltimore , MD , USA.,b Department of Neurology , The Johns Hopkins University School of Medicine , Baltimore , MD , USA
| | - Marc K Halushka
- c Department of Pathology , The Johns Hopkins University School of Medicine , Baltimore , MD , USA
| |
Collapse
|
34
|
Rahimian P, He JJ. HIV-1 Tat-shortened neurite outgrowth through regulation of microRNA-132 and its target gene expression. J Neuroinflammation 2016; 13:247. [PMID: 27634380 PMCID: PMC5025601 DOI: 10.1186/s12974-016-0716-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/08/2016] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Synaptodendritic damage is a pathological hallmark of HIV-associated neurocognitive disorders, and HIV-1 Tat protein is known to cause such injury in the central nervous system. In this study, we aimed to determine the molecular mechanisms of Tat-induced neurite shortening, specifically the roles of miR-132, an important regulator of neurite morphogenesis in this process. METHODS The relationship between Tat expression and miR-132 expression was first determined using reverse transcription quantitative PCR (qRT-PCR) in Tat-transfected astrocytes and neurons, astrocytes from Tat-transgenic mice, and HIV-infected astrocytes. qRT-PCR and Western blotting were performed to determine Tat effects on expression of miR-132 target genes methyl CpG-binding protein 2, Rho GTPase activator p250GAP, and brain-derived neurotrophic factor. Exosomes were isolated from Tat-expressing astrocytes, and exosomal microRNA (miRNA) uptake into neurons was studied using miRNA labeling and flow cytometry. The lactate dehydrogenase release was used to determine the cytotoxicity, while immunostaining was used to determine neurite lengths and synapse formation. Tat basic domain deletion mutant and miR-132 mimic and inhibitor were used to determine the specificity of the relationship between Tat and miR-132 and its effects on astrocytes and neurons and the underlying mechanisms of Tat-induced miR-132 expression. RESULTS Tat significantly induced miR-132 expression, ensuing down-regulation of miR-132 target genes in astrocytes and neurons. miR-132 induction was associated with phosphorylation of cAMP response element-binding protein and required the basic domain of Tat. miRNA-132 induction had no effects on astrocyte activation or survival but was involved in the direct neurotoxicity of Tat. miR-132 was present in astrocyte-derived exosomes and was taken up by neurons, causing neurite shortening. CONCLUSIONS Tat-induced miR-132 expression contributes to both direct and astrocyte-mediated Tat neurotoxicity and supports the important roles of miR-132 in controlling neurite outgrowth.
Collapse
Affiliation(s)
- Pejman Rahimian
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107 USA
| | - Johnny J. He
- Department of Cell Biology and Immunology, Graduate School of Biomedical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107 USA
| |
Collapse
|
35
|
HIV-1 Tat exacerbates lipopolysaccharide-induced cytokine release via TLR4 signaling in the enteric nervous system. Sci Rep 2016; 6:31203. [PMID: 27491828 PMCID: PMC4974559 DOI: 10.1038/srep31203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 07/14/2016] [Indexed: 12/13/2022] Open
Abstract
The loss of gut epithelium integrity leads to translocation of microbes and microbial products resulting in immune activation and drives systemic inflammation in acquired immunodeficiency syndrome (AIDS) patients. Although viral loads in HIV patients are significantly reduced in the post-cART era, inflammation and immune activation persist and can lead to morbidity. Here, we determined the interactive effects of the viral protein HIV-1 Tat and lipopolysaccharide (LPS) on enteric neurons and glia. Bacterial translocation was significantly enhanced in Tat-expressing (Tat+) mice. Exposure to HIV-1 Tat in combination with LPS enhanced the expression and release of the pro-inflammatory cytokines IL-6, IL-1β and TNF-α in the ilea of Tat+ mice and by enteric glia. This coincided with enhanced NF-κB activation in enteric glia that was abrogated in glia from TLR4 knockout mice and by knockdown (siRNA) of MyD88 siRNA in wild type glia. The synergistic effects of Tat and LPS resulted in a reduced rate of colonic propulsion in Tat+ mice treated with LPS. These results show that HIV-1 Tat interacts with the TLR4 receptor to enhance the pro-inflammatory effects of LPS leading to gastrointestinal dysmotility and enhanced immune activation.
Collapse
|
36
|
Chen WW, Zhang X, Huang WJ. Role of neuroinflammation in neurodegenerative diseases (Review). Mol Med Rep 2016; 13:3391-6. [PMID: 26935478 PMCID: PMC4805095 DOI: 10.3892/mmr.2016.4948] [Citation(s) in RCA: 655] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 02/29/2016] [Indexed: 12/28/2022] Open
Abstract
Neurodegeneration is a phenomenon that occurs in the central nervous system through the hallmarks associating the loss of neuronal structure and function. Neurodegeneration is observed after viral insult and mostly in various so-called 'neurodegenerative diseases', generally observed in the elderly, such as Alzheimer's disease, multiple sclerosis, Parkinson's disease and amyotrophic lateral sclerosis that negatively affect mental and physical functioning. Causative agents of neurodegeneration have yet to be identified. However, recent data have identified the inflammatory process as being closely linked with multiple neurodegenerative pathways, which are associated with depression, a consequence of neurodegenerative disease. Accordingly, pro-inflammatory cytokines are important in the pathophysiology of depression and dementia. These data suggest that the role of neuroinflammation in neurodegeneration must be fully elucidated, since pro-inflammatory agents, which are the causative effects of neuroinflammation, occur widely, particularly in the elderly in whom inflammatory mechanisms are linked to the pathogenesis of functional and mental impairments. In this review, we investigated the role played by the inflammatory process in neurodegenerative diseases.
Collapse
Affiliation(s)
- Wei-Wei Chen
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Xia Zhang
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Wen-Juan Huang
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
37
|
Maubert ME, Pirrone V, Rivera NT, Wigdahl B, Nonnemacher MR. Interaction between Tat and Drugs of Abuse during HIV-1 Infection and Central Nervous System Disease. Front Microbiol 2016; 6:1512. [PMID: 26793168 PMCID: PMC4707230 DOI: 10.3389/fmicb.2015.01512] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/15/2015] [Indexed: 02/02/2023] Open
Abstract
In many individuals, drug abuse is intimately linked with HIV-1 infection. In addition to being associated with one-third of all HIV-1 infections in the United States, drug abuse also plays a role in disease progression and severity in HIV-1-infected patients, including adverse effects on the central nervous system (CNS). Specific systems within the brain are known to be damaged in HIV-1-infected individuals and this damage is similar to that observed in drug abuse. Even in the era of anti-retroviral therapy (ART), CNS pathogenesis occurs with HIV-1 infection, with a broad range of cognitive impairment observed, collectively referred to as HIV-1-associated neurocognitive disorders (HAND). A number of HIV-1 proteins (Tat, gp120, Nef, Vpr) have been implicated in the etiology of pathogenesis and disease as a result of the biologic activity of the extracellular form of each of the proteins in a number of tissues, including the CNS, even in ART-suppressed patients. In this review, we have made Tat the center of attention for a number of reasons. First, it has been shown to be synthesized and secreted by HIV-1-infected cells in the CNS, despite the most effective suppression therapies available to date. Second, Tat has been shown to alter the functions of several host factors, disrupting the molecular and biochemical balance of numerous pathways contributing to cellular toxicity, dysfunction, and death. In addition, the advantages and disadvantages of ART suppression with regard to controlling the genesis and progression of neurocognitive impairment are currently under debate in the field and are yet to be fully determined. In this review, we discuss the individual and concerted contributions of HIV-1 Tat, drug abuse, and ART with respect to damage in the CNS, and how these factors contribute to the development of HAND in HIV-1-infected patients.
Collapse
Affiliation(s)
- Monique E Maubert
- Department of Microbiology and Immunology, Drexel University College of MedicinePhiladelphia, PA, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of MedicinePhiladelphia, PA, USA
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Drexel University College of MedicinePhiladelphia, PA, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of MedicinePhiladelphia, PA, USA
| | - Nina T Rivera
- Department of Microbiology and Immunology, Drexel University College of MedicinePhiladelphia, PA, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of MedicinePhiladelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of MedicinePhiladelphia, PA, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of MedicinePhiladelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of MedicinePhiladelphia, PA, USA; Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of MedicinePhiladelphia, PA, USA
| |
Collapse
|
38
|
Mukhadi S, Hull R, Mbita Z, Dlamini Z. The Role of MicroRNAs in Kidney Disease. Noncoding RNA 2015; 1:192-221. [PMID: 29861424 PMCID: PMC5932548 DOI: 10.3390/ncrna1030192] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 09/28/2015] [Accepted: 11/08/2015] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs that regulate pathophysiological processes that suppress gene expression by binding to messenger RNAs. These biomolecules can be used to study gene regulation and protein expression, which will allow better understanding of many biological processes such as cell cycle progression and apoptosis that control the fate of cells. Several pathways have also been implicated to be involved in kidney diseases such as Transforming Growth Factor-β, Mitogen-Activated Protein Kinase signaling, and Wnt signaling pathways. The discovery of miRNAs has provided new insights into kidney pathologies and may provide new innovative and effective therapeutic strategies. Research has demonstrated the role of miRNAs in a variety of kidney diseases including renal cell carcinoma, diabetic nephropathy, nephritic syndrome, renal fibrosis, lupus nephritis and acute pyelonephritis. MiRNAs are implicated as playing a role in these diseases due to their role in apoptosis, cell proliferation, differentiation and development. As miRNAs have been detected in a stable condition in different biological fluids, they have the potential to be tools to study the pathogenesis of human diseases with a great potential to be used in disease prognosis and diagnosis. The purpose of this review is to examine the role of miRNA in kidney disease.
Collapse
Affiliation(s)
- Sydwell Mukhadi
- Forensic Science Laboratory, 730 Pretorius street, Arcadia 0083, South Africa.
| | - Rodney Hull
- College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X6, Florida 1709, Johannesburg 1709, South Africa.
| | - Zukile Mbita
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Private Bag x1106, Sovenga 0727, South Africa.
| | - Zodwa Dlamini
- Research, Innovation & Engagements Portfolio, Mangosuthu University of Technology, Durban 4031, South Africa.
| |
Collapse
|
39
|
Kumar A, Darcis G, Van Lint C, Herbein G. Epigenetic control of HIV-1 post integration latency: implications for therapy. Clin Epigenetics 2015; 7:103. [PMID: 26405463 PMCID: PMC4581042 DOI: 10.1186/s13148-015-0137-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/17/2015] [Indexed: 12/31/2022] Open
Abstract
With the development of effective combined anti-retroviral therapy (cART), there is significant reduction in deaths associated with human immunodeficiency virus type 1 (HIV-1) infection. However, the complete cure of HIV-1 infection is difficult to achieve without the elimination of latent reservoirs which exist in the infected individuals even under cART regimen. These latent reservoirs established during early infection have long life span, include resting CD4+ T cells, macrophages, central nervous system (CNS) resident macrophage/microglia, and gut-associated lymphoid tissue/macrophages, and can actively produce virus upon interruption of the cART. Several epigenetic and non-epigenetic mechanisms have been implicated in the regulation of viral latency. Epigenetic mechanisms such as histone post translational modifications (e.g., acetylation and methylation) and DNA methylation of the proviral DNA and microRNAs are involved in the establishment of HIV-1 latency. The better understanding of epigenetic mechanisms modulating HIV-1 latency could give clues for the complete eradication of these latent reservoirs. Several latency-reversing agents (LRA) have been found effective in reactivating HIV-1 reservoirs in vitro, ex vivo, and in vivo. Some of these agents target epigenetic modifications to elicit viral expression in order to kill latently infected cells through viral cytopathic effect or host immune response. These therapeutic approaches aimed at achieving a sterilizing cure (elimination of HIV-1 from the human body). In the present review, we will discuss our current understanding of HIV-1 epigenomics and how this information can be moved from the laboratory bench to the patient’s bedside.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Virology, Pathogens & Inflammation Laboratory, University of Franche-Comté and COMUE Bourgogne Franche-Comté University, UPRES EA4266, SFR FED 4234, CHRU Besançon, Hôpital Saint-Jacques, 2 place Saint-Jacques, F-25030 Besançon cedex, France
| | - Gilles Darcis
- Service of Molecular Virology, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles (ULB), 12 Rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Carine Van Lint
- Service of Molecular Virology, Institute of Molecular Biology and Medicine, Université Libre de Bruxelles (ULB), 12 Rue des Profs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Georges Herbein
- Department of Virology, Pathogens & Inflammation Laboratory, University of Franche-Comté and COMUE Bourgogne Franche-Comté University, UPRES EA4266, SFR FED 4234, CHRU Besançon, Hôpital Saint-Jacques, 2 place Saint-Jacques, F-25030 Besançon cedex, France
| |
Collapse
|
40
|
Fiume G, Scialdone A, Albano F, Rossi A, Tuccillo FM, Rea D, Palmieri C, Caiazzo E, Cicala C, Bellevicine C, Falcone C, Vecchio E, Pisano A, Ceglia S, Mimmi S, Iaccino E, de Laurentiis A, Pontoriero M, Agosti V, Troncone G, Mignogna C, Palma G, Arra C, Mallardo M, Buonaguro FM, Scala G, Quinto I. Impairment of T cell development and acute inflammatory response in HIV-1 Tat transgenic mice. Sci Rep 2015; 5:13864. [PMID: 26343909 PMCID: PMC4561375 DOI: 10.1038/srep13864] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 08/07/2015] [Indexed: 01/22/2023] Open
Abstract
Immune activation and chronic inflammation are hallmark features of HIV infection causing T-cell depletion and cellular immune dysfunction in AIDS. Here, we addressed the issue whether HIV-1 Tat could affect T cell development and acute inflammatory response by generating a transgenic mouse expressing Tat in lymphoid tissue. Tat-Tg mice showed thymus atrophy and the maturation block from DN4 to DP thymic subpopulations, resulting in CD4+ and CD8+ T cells depletion in peripheral blood. In Tat-positive thymus, we observed the increased p65/NF-κB activity and deregulated expression of cytokines/chemokines and microRNA-181a-1, which are involved in T-lymphopoiesis. Upon LPS intraperitoneal injection, Tat-Tg mice developed an abnormal acute inflammatory response, which was characterized by enhanced lethality and production of inflammatory cytokines. Based on these findings, Tat-Tg mouse could represent an animal model for testing adjunctive therapies of HIV-1-associated inflammation and immune deregulation.
Collapse
Affiliation(s)
- Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Annarita Scialdone
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Francesco Albano
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Annalisa Rossi
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Franca Maria Tuccillo
- Molecular Biology and Viral Oncogenesis Unit, Department of Experimental Oncology, Istituto Nazionale Tumori "Fondazione Giovanni Pascale", IRCCS, 80131, Naples, Italy
| | - Domenica Rea
- Molecular Biology and Viral Oncogenesis Unit, Department of Experimental Oncology, Istituto Nazionale Tumori "Fondazione Giovanni Pascale", IRCCS, 80131, Naples, Italy
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Elisabetta Caiazzo
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131, Naples, Italy
| | - Carla Cicala
- Department of Pharmacy, University of Naples "Federico II", Via Domenico Montesano 49, 80131, Naples, Italy
| | - Claudio Bellevicine
- Department of Public Health, University of Naples "Federico II", Via Sergio Pansini 5, 80131, Naples, Italy
| | - Cristina Falcone
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Antonio Pisano
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Simona Ceglia
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Selena Mimmi
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Enrico Iaccino
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Annamaria de Laurentiis
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Marilena Pontoriero
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Valter Agosti
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Giancarlo Troncone
- Department of Public Health, University of Naples "Federico II", Via Sergio Pansini 5, 80131, Naples, Italy
| | - Chiara Mignogna
- Science of Health Department, University of Catanzaro "Magna Graecia", Italy
| | - Giuseppe Palma
- Molecular Biology and Viral Oncogenesis Unit, Department of Experimental Oncology, Istituto Nazionale Tumori "Fondazione Giovanni Pascale", IRCCS, 80131, Naples, Italy
| | - Claudio Arra
- Molecular Biology and Viral Oncogenesis Unit, Department of Experimental Oncology, Istituto Nazionale Tumori "Fondazione Giovanni Pascale", IRCCS, 80131, Naples, Italy
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Via Sergio Pansini 5, 80131, Naples, Italy
| | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncogenesis Unit, Department of Experimental Oncology, Istituto Nazionale Tumori "Fondazione Giovanni Pascale", IRCCS, 80131, Naples, Italy
| | - Giuseppe Scala
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Ileana Quinto
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| |
Collapse
|
41
|
Xia C, Cai Y, Lin Y, Guan R, Xiao G, Yang J. MiR-133b-5p regulates the expression of the heat shock protein 70 during rat neuronal cell apoptosis induced by the gp120 V3 loop peptide. J Med Virol 2015; 88:437-47. [PMID: 26280272 DOI: 10.1002/jmv.24355] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2015] [Indexed: 12/28/2022]
Abstract
Neuronal cell dysfunction and apoptosis, the main causes of HIV-associated dementia, and its underlying mechanism are important unsolved health problems. Many research reports suggest that miRNAs regulate HIV-1-induced apoptosis. We used the HIV-1 gp120 V3 Loop peptide to induce primary rat cortical neurons apoptosis. Next, we used a microRNA microarray to identify the significant changes of miRNA in the rat cortical neurons treated with the gp120 V3 loop peptide. We used western blot and real-time PCR to measure the regulation of heat shock protein 70 by rno-miR-133b-5p. In response to the gp120 V3 loop peptide treatment, rat cortical neurons exhibited 11 up-regulated and 21 down-regulated miRNAs. We further examined miR-133b-5p, a microRNA that was up-regulated more than 118-fold. In addition, both HSP70 mRNA and protein expression were dose-dependent in rats cortical neurons treated with gp120 V3 loop peptide for 48 hr. MiR-133b-5p could regulate heat shock protein 70 (HSP70) at both transcription and translation levels. Rno-miR-133b-5p might be less significant for the gp120 V3 loop peptide induced neuron apoptosis. Thus, we discovered a potential new target for the regulation of HIV-1 gp120- induced apoptosis.
Collapse
Affiliation(s)
- Chenglai Xia
- Department of Pharmacy, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P.R. China
| | - Yantao Cai
- Department of Dermatology and Rheumatology, Foshan Maternity & Child Heath Care Hospital, Foshan, 528000, China
| | - Yuyi Lin
- Department of Reproductive Medicine Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P.R. China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou Medical University at Guangzhou, 63 Duobao Road, Guangzhou, GD, 510150, China
| | - Ronghua Guan
- Department of Reproductive Medicine Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P.R. China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou Medical University at Guangzhou, 63 Duobao Road, Guangzhou, GD, 510150, China
| | - Guohong Xiao
- Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou Medical University at Guangzhou, 63 Duobao Road, Guangzhou, GD, 510150, China
| | - Jie Yang
- Department of Reproductive Medicine Center, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, P.R. China.,Guangdong Provincial Key Laboratory of Reproductive Medicine, Guangzhou Medical University at Guangzhou, 63 Duobao Road, Guangzhou, GD, 510150, China
| |
Collapse
|
42
|
Wang L, Li G, Yao ZQ, Moorman JP, Ning S. MicroRNA regulation of viral immunity, latency, and carcinogenesis of selected tumor viruses and HIV. Rev Med Virol 2015; 25:320-41. [PMID: 26258805 DOI: 10.1002/rmv.1850] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 06/09/2015] [Accepted: 06/28/2015] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) function as key regulators in immune responses and cancer development. In the contexts of infection with oncogenic viruses, miRNAs are engaged in viral persistence, latency establishment and maintenance, and oncogenesis. In this review, we summarize the potential roles and mechanisms of viral and cellular miRNAs in the host-pathogen interactions during infection with selected tumor viruses and HIV, which include (i) repressing viral replication and facilitating latency establishment by targeting viral transcripts, (ii) evading innate and adaptive immune responses via toll-like receptors, RIG-I-like receptors, T-cell receptor, and B-cell receptor pathways by targeting signaling molecules such as TRAF6, IRAK1, IKKε, and MyD88, as well as downstream targets including regulatory cytokines such as tumor necrosis factor α, interferon γ, interleukin 10, and transforming growth factor β, (iii) antagonizing intrinsic and extrinsic apoptosis pathways by targeting pro-apoptotic or anti-apoptotic gene transcripts such as the Bcl-2 family and caspase-3, (iv) modulating cell proliferation and survival through regulation of the Wnt, PI3K/Akt, Erk/MAPK, and Jak/STAT signaling pathways, as well as the signaling pathways triggered by viral oncoproteins such as Epstein-Barr Virus LMP1, by targeting Wnt-inhibiting factor 1, SHIP, pTEN, and SOCSs, and (v) regulating cell cycle progression by targeting cell cycle inhibitors such as p21/WAF1 and p27/KIP1. Further elucidation of the interaction between miRNAs and these key biological events will facilitate our understanding of the pathogenesis of viral latency and oncogenesis and may lead to the identification of miRNAs as novel targets for developing new therapeutic or preventive interventions.
Collapse
Affiliation(s)
- Ling Wang
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Guangyu Li
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Zhi Q Yao
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Hepatitis (HCV/HIV) Program, James H Quillen VA Medical Center, Johnson City, TN, USA
| | - Jonathan P Moorman
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Hepatitis (HCV/HIV) Program, James H Quillen VA Medical Center, Johnson City, TN, USA
| | - Shunbin Ning
- Center of Excellence for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.,Division of Infectious Diseases, Department of Internal Medicine, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| |
Collapse
|
43
|
The miRNA miR-34a enhances HIV-1 replication by targeting PNUTS/PPP1R10, which negatively regulates HIV-1 transcriptional complex formation. Biochem J 2015; 470:293-302. [PMID: 26188041 DOI: 10.1042/bj20150700] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 07/16/2015] [Indexed: 12/20/2022]
Abstract
HIV-1 relies heavily on the host cellular machinery for its replication. During infection, HIV-1 is known to modulate the host-cell miRNA profile. One of the miRNAs, miR-34a, is up-regulated by HIV-1 in T-cells as suggested by miRNA microarray studies. However, the functional consequences and the mechanism behind this phenomenon were not explored. The present study shows that HIV-1 enhances miR-34a in a time-dependent manner in T-cells. Our overexpression and knockdown-based experimental results suggest that miR-34a promotes HIV-1 replication in T-cells. Hence, there is a positive feedback loop between miR-34a and HIV-1 replication. We show that the mechanism of action of miR-34a in HIV-1 replication involves a cellular protein, the phosphatase 1 nuclear-targeting subunit (PNUTS). PNUTS expression levels decrease with the progression of HIV-1 infection in T-cells. Also, the overexpression of PNUTS potently inhibits HIV-1 replication in a dose-dependent manner. We report for the first time that PNUTS negatively regulates HIV-1 transcription by inhibiting the assembly of core components of the transcription elongation factor P-TEFb, i.e. cyclin T1 and CDK9. Thus, HIV-1 increases miR-34a expression in cells to overcome the inhibitory effect of PNUTS on HIV-1 transcription. So, the present study provides new mechanistic details with regard to our understanding of a complex interplay between miR-34a and the HIV-1 transcription machinery involving PNUTS.
Collapse
|
44
|
Alural B, Ozerdem A, Allmer J, Genc K, Genc S. Lithium protects against paraquat neurotoxicity by NRF2 activation and miR-34a inhibition in SH-SY5Y cells. Front Cell Neurosci 2015; 9:209. [PMID: 26074776 PMCID: PMC4446540 DOI: 10.3389/fncel.2015.00209] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 05/15/2015] [Indexed: 12/22/2022] Open
Abstract
Lithium is a mood stabilizing agent commonly used for the treatment of bipolar disorder. Here, we investigated the potential neuroprotective effect of lithium against paraquat toxicity and its underlying mechanisms in vitro. SH-SY5Y human neuroblastoma cells were treated with paraquat (PQ) 0.5 mM concentration after lithium pretreatment to test lithium's capability in preventing cell toxicity. Cell death was evaluated by LDH, WST-8, and tryphan blue assays. Apoptosis was analyzed using DNA fragmentation, Annexin V immunostaining, Sub G1 cell cycle analysis, and caspase-3 activity assays. BCL2, BAX, and NRF2 protein expression were evaluated by Western-blotting and the BDNF protein level was determined with ELISA. mRNA levels of BCL2, BAX, BDNF, and NRF2 target genes (HO-1, GCS, NQO1), as well as miR-34a expression were analyzed by qPCR assay. Functional experiments were done via transfection with NRF2 siRNA and miR-34a mimic. Lithium treatment prevented paraquat induced cell death and apoptosis. Lithium treated cells showed increased anti-apoptotic protein BCL2 and decreased pro-apoptotic protein BAX expression. Lithium exerted a neurotrophic effect by increasing BDNF protein expression. It also diminished reactive oxygen species production and activated the redox sensitive transcription factor NRF2 and increased its target genes expression. Knockdown of NRF2 abolished neuroprotective, anti-apoptotic, and anti-oxidant effects of lithium. Furthermore, lithium significantly decreased both basal and PQ-induced expression of miR-34a. Transfection of miR-34a specific mimic reversed neuroprotective, anti-apoptotic, and anti-oxidant effects of lithium against PQ-toxicity. Our results revealed two novel mechanisms of lithium neuroprotection, namely NRF2 activation and miR-34a suppression.
Collapse
Affiliation(s)
- Begum Alural
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Izmir, Turkey ; Department of Neuroscience, Health Science Institute, Dokuz Eylul University Izmir, Turkey
| | - Aysegul Ozerdem
- Department of Neuroscience, Health Science Institute, Dokuz Eylul University Izmir, Turkey ; Department of Psychiatry, School of Medicine, Dokuz Eylul University Izmir, Turkey
| | - Jens Allmer
- Department of Molecular Biology and Genetics, Izmir Institute of Technology Urla, Turkey
| | - Kursad Genc
- Department of Neuroscience, Health Science Institute, Dokuz Eylul University Izmir, Turkey
| | - Sermin Genc
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Izmir, Turkey ; Department of Neuroscience, Health Science Institute, Dokuz Eylul University Izmir, Turkey
| |
Collapse
|
45
|
Hong S, Banks WA. Role of the immune system in HIV-associated neuroinflammation and neurocognitive implications. Brain Behav Immun 2015; 45:1-12. [PMID: 25449672 PMCID: PMC4342286 DOI: 10.1016/j.bbi.2014.10.008] [Citation(s) in RCA: 263] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 10/13/2014] [Accepted: 10/15/2014] [Indexed: 12/16/2022] Open
Abstract
Individuals living with HIV who are optimally treated with combination antiretroviral therapy (cART) can now lead an extended life. In spite of this remarkable survival benefit from viral suppression achieved by cART in peripheral blood, the rate of mild to moderate cognitive impairment remains high. A cognitive decline that includes impairments in attention, learning and executive function is accompanied by increased rates of mood disorders that together adversely impact the daily life of those with chronic HIV infection. The evidence is clear that cells in the brain are infected with HIV that has crossed the blood-brain barrier both as cell-free virus and within infected monocytes and T cells. Viral proteins that circulate in blood can induce brain endothelial cells to release cytokines, invoking another source of neuroinflammation. The difficulty of efficient delivery of cART to the central nervous system (CNS) contributes to elevated viral load in the CNS, resulting in a persistent HIV-associated neurocognitive disorders (HAND). The pathogenesis of HAND is multifaceted, and mounting evidence indicates that immune cells play a major role. HIV-infected monocytes and T cells not only infect brain resident cells upon migration into the CNS but also produce proinflammatory cytokines such as TNF and IL-1ß, which in turn, further activate microglia and astrocytes. These activated brain resident cells, along with perivascular macrophages, are the main contributors to neuroinflammation in HIV infection and release neurotoxic factors such as excitatory amino acids and inflammatory mediators, resulting in neuronal dysfunction and death. Cytokines, which are elevated in the blood of patients with HIV infection, may also contribute to brain inflammation by entering the brain from the blood. Host factors such as aging and co-morbid conditions such as cytomegalovirus co-infection and vascular pathology are important factors that affect the HIV-host immune interactions in HAND pathogenesis. By these diverse mechanisms, HIV-1 induces a neuroinflammatory response that is likely to be a major contributor to the cognitive and behavior changes seen in HIV infection.
Collapse
Affiliation(s)
- Suzi Hong
- Department of Psychiatry, University of California San Diego, United States.
| | - William A. Banks
- Geriatric Research Clinical and Education Center, Veterans Affairs Puget Sound Health Care System and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine
| |
Collapse
|
46
|
Mohan M, Kumar V, Lackner AA, Alvarez X. Dysregulated miR-34a-SIRT1-acetyl p65 axis is a potential mediator of immune activation in the colon during chronic simian immunodeficiency virus infection of rhesus macaques. THE JOURNAL OF IMMUNOLOGY 2014; 194:291-306. [PMID: 25452565 DOI: 10.4049/jimmunol.1401447] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Persistent gastrointestinal inflammation, a hallmark of progressive HIV/SIV infection, causes disruption of the gastrointestinal epithelial barrier, microbial translocation, and generalized immune activation/inflammation driving AIDS progression. Apart from protein regulators, recent studies strongly suggest critical roles for microRNAs (miRNAs) in regulating and managing certain aspects of the inflammatory process. To examine their immunoregulatory role, we profiled miRNA expression in the colon from 12 chronic SIV-infected and 4 control macaques. After applying multiple comparisons correction, 10 (3 upregulated and 7 downregulated) miRNAs showed differential expression. Most notably, miR-34a showed significant upregulation in both epithelial and lamina propria leukocyte (LPL) compartments. Intense γH2A.X expression in colonic epithelium and LPLs confirmed the contribution of DNA damage response in driving miR-34a upregulation. SIRT1 mRNA and protein decreased significantly in both colonic epithelium and LPLs. Luciferase reporter assays validated rhesus macaque SIRT1 as a direct miR-34a target. Decreased SIRT1 expression was associated with constitutively enhanced expression of the transcriptionally active form of the p65 (acetylated on lysine 310) subunit of NF-κB exclusively in the LPL compartment. The intensity and number of acetylated p65(+) cells was markedly elevated in LPLs of chronically SIV-infected macaques compared with uninfected controls and localized to increased numbers of IgA(+) and IgG(+) plasma cells. These findings provide new insights into the potential role of the miR-34a-SIRT1-p65 axis in causing hyperactivation of the intestinal B cell system. Our results point to a possible mechanism where the normal immunosuppressive function of SIRT1 is inhibited by elevated miR-34a expression resulting in constitutive activation of acetylated p65 (lysine 310).
Collapse
Affiliation(s)
- Mahesh Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| | - Vinay Kumar
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| | - Andrew A Lackner
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| | - Xavier Alvarez
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433
| |
Collapse
|
47
|
Jadhav VS, Krause KH, Singh SK. HIV-1 Tat C modulates NOX2 and NOX4 expressions through miR-17 in a human microglial cell line. J Neurochem 2014; 131:803-15. [PMID: 25146963 DOI: 10.1111/jnc.12933] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 08/12/2014] [Accepted: 08/14/2014] [Indexed: 12/22/2022]
Abstract
HIV-1 invades CNS in the early course of infection, which can lead to the cascade of neuroinflammation. NADPH oxidases (NOXs) are the major producers of reactive oxygen species (ROS), which play important roles during pathogenic insults. The molecular mechanism of ROS generation via microRNA-mediated pathway in human microglial cells in response to HIV-1 Tat protein has been demonstrated in this study. Over-expression and knockdown of microRNAs, luciferase reporter assay, and site-directed mutagenesis are main molecular techniques used in this study. A significant reduction in miR-17 levels and increased NOX2, NOX4 expression levels along with ROS production were observed in human microglial cells upon HIV-1 Tat C exposure. The validation of NOX2 and NOX4 as direct targets of miR-17 was done by luciferase reporter assay. The over-expression and knockdown of miR-17 in human microglial cells showed the direct role of miR-17 in regulation of NOX2, NOX4 expression and intracellular ROS generation. We demonstrated the regulatory role of cellular miR-17 in ROS generation through over-expression and knockdown of miR-17 in human microglial cells exposed to HIV-1 Tat C protein. Activated microglial cells mediated neuroinflammatory events are observed in HIV-associated neurological disorders. The reduction in miR-17 levels was observed in microglial cells exposed to HIV-1 Tat C protein. miR-17 regulated the expression of NOX2 and NOX4, which in turn regulated the reactive oxygen species (ROS) production in microglial cells. Increased ROS production led to the activation of microglial cells and increased cytokine production. This study thus demonstrated a novel miR-17-mediated regulatory pathway of ROS production in microglial cells. HMC3 = human microglia clone 3 cell lines.
Collapse
Affiliation(s)
- Vaishnavi Sunil Jadhav
- Laboratory of Neurovirology and Inflammation Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India
| | | | | |
Collapse
|
48
|
Cytoplasmic HIV-RNA in monocytes determines microglial activation and neuronal cell death in HIV-associated neurodegeneration. Exp Neurol 2014; 261:685-97. [PMID: 25150097 DOI: 10.1016/j.expneurol.2014.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/29/2014] [Accepted: 08/12/2014] [Indexed: 01/08/2023]
Abstract
Despite highly active antiretroviral therapy, HIV-associated neurocognitive disorders (HAND) are still highly prevalent. Direct neurotoxicity of microglia activated by HIV-infected monocytes independent from viral replication may account for this observation. To investigate underlying molecular and viral determinants, human monocytoid cells (U937) transduced with HIV-particles were co-cultured with primary human microglia or astrocytes. Using genetically-engineered HIV-particles key steps of infection were examined. Levels of pro-inflammatory/neurotoxic cytokines were investigated in co-culture supernatants by flow cytometry. Neurotoxicity mediated by the supernatants was analysed using primary cortical rat neurons. To corroborate our findings, cytokine profiles in cerebrospinal fluid (CSF) of neuropsychologically asymptomatic HIV positive (HIV(+)) patients (n=45) were correlated with neurofilament H (NfH) as surrogate of neuronal/axonal degeneration. In contrast to direct exposure of HIV to microglia, only the presence of HIV-transduced monocytoid cells strongly activated human microglia as evidenced by enhanced secretion of CXCL10, CCL5, CCL2, and IL-6 (1.3-7.1-fold; p<0.01) leading to two-fold increased neurotoxicity (p<0.001). In direct comparison, astrocyte activation by HIV-transduced monocytoid cells was limited. Using different mutant HIV-particles we show that the presence of cytoplasmic HIV-RNA in monocytoid cells is the viral determinant for this unique microglial activation pattern and subsequent neuronal cell death; reverse transcription and expression of viral genes were not essential. In CSF of presymptomatic HIV(+) patients, CXCL10, CCL5 and IL-6 were correlated with NfH as surrogate marker of neurodegeneration as well as CSF-pleocytosis. In conclusion, cytosolic viral RNA in monocytes is mandatory for subsequent microglial activation and neurotoxicity; activated astrocytes may augment neuroinflammation. In addition, neuroinflammation and neurodegeneration occur even in preclinical HIV(+) patients and are associated with cytokines regulated in vitro. Our data may aid in the development of biomarkers and glia-directed therapeutic approaches of HAND.
Collapse
|
49
|
Bagashev A, Mukerjee R, Santerre M, Del Carpio-Cano FE, Shrestha J, Wang Y, He JJ, Sawaya BE. Involvement of miR-196a in HIV-associated neurocognitive disorders. Apoptosis 2014; 19:1202-14. [PMID: 24872081 DOI: 10.1007/s10495-014-1003-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Involvement of the human immunodeficiency virus type 1 (HIV-1) trans-activator of transcription (Tat) protein in neuronal deregulation and in the development of HIV-1 associated neurocognitive disorders (HAND) has been amply explored; however the mechanisms involved remain unclear. In search for the mechanisms, we demonstrated that Tat deregulates neuronal functions through a pathway that involved p73 and p53 pathway. We showed that Tat uses microRNA-196a (miR-196a) to deregulate the p73 pathway. Further, we found that the Abelson murine leukemia (c-Abl) phosphorylates p73 on tyrosine residue 99 (Tyr-99) in Tat-treated cells. Interestingly, Tat lost its ability to promote accumulation and phosphorylation of p73 in the presence of miR-196a mimic. Interestingly, accumulation of p73 did not lead to neuronal cell death by apoptosis as obtained by cell viability assay. Western blot analysis using antibodies directed against serine residues 807 and 811 of retinoblastoma (Rb) protein was also used to validate our data regarding lack of cell death. Hyperphosphorylation of RB (S807/811) is an indication of cell neuronal viability. These results highlight the key role played by p73 and microRNA in Tat-treated neurons leading to their deregulation and it deciphers mechanistically one of the pathways used by Tat to cause neuronal dysfunction that contributes to the development of HAND.
Collapse
Affiliation(s)
- Asen Bagashev
- Molecular Studies of Neurodegenerative Diseases Lab, FELS Institute for Cancer Research & Molecular Biology, Temple University School of Medicine, PHA # 302, 3307 North Broad Street, Philadelphia, PA, 19140, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Paris JJ, Singh HD, Ganno ML, Jackson P, McLaughlin JP. Anxiety-like behavior of mice produced by conditional central expression of the HIV-1 regulatory protein, Tat. Psychopharmacology (Berl) 2014; 231:2349-60. [PMID: 24352568 PMCID: PMC4020990 DOI: 10.1007/s00213-013-3385-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 11/30/2013] [Indexed: 10/25/2022]
Abstract
RATIONALE Human immunodeficiency virus (HIV) infection is associated with substantial increases in generalized anxiety. The HIV regulatory protein, transactivator of transcription (Tat), has been implicated in the neuropathogenesis related to HIV-1 infection. However, direct examination of the effect of Tat on behavioral measures of anxiety has not been demonstrated. OBJECTIVE To identify whether expression of the Tat1-86 protein exerts dose-dependent and persistent anxiety-like effects in a whole animal model, the GT-tg bigenic mouse. METHODS GT-tg mice and C57BL/6J controls were administered doxycycline in a dose- (0, 50, 100, or 125 mg/kg, i.p., for 7 days) or duration- (100 mg/kg, i.p., for 0, 1, 3, 5, or 14 days) dependent manner to induce Tat1-86 in brain. Mice were assessed for anxiety-like behavior in an open field, social interaction, or marble burying task 0, 7, and/or 14 days later. Central expression of Tat1-86 protein was verified with Western blot analyses. RESULTS Doxycycline produced no effects on C57BL/6J controls that lacked the Tat1-86 transgene. Among GT-tg mice, doxycycline (100 mg/kg for 3, 5, or 7 days) significantly increased anxiety-like behavior in all tasks, commensurate with enhanced Western blot labeling of Tat1-86 protein in brain, displaying optimal effects with the 7-day regimen. Greater exposure to doxycycline (either 125 mg/kg for 7 days or 100 mg/kg for 14 days) impaired locomotor behavior; whereas lower dosing (below 100 mg/kg) produced only transient increases in anxiety-like behavior. CONCLUSIONS Expression of HIV-1-Tat1-86 in GT-tg mouse brain produces exposure-dependent, persistent increases in anxiety-like behavior.
Collapse
Affiliation(s)
- Jason J. Paris
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, FL 34987, USA
| | - Harminder D. Singh
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, FL 34987, USA
| | - Michelle L. Ganno
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, FL 34987, USA
| | - Pauline Jackson
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, FL 34987, USA
| | - Jay P. McLaughlin
- Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, FL 34987, USA,Contact for Correspondence: Jay P. McLaughlin, Ph.D., Torrey Pines Institute for Molecular Studies, 11350 SW Village Parkway, Port Saint Lucie, FL 34987, USA, Phone: +1 772-345-4715, Fax: +1 772-345-3649,
| |
Collapse
|