1
|
Rakhshani A, Maghsoudian S, Ejarestaghi NM, Yousefi M, Yoosefi S, Asadzadeh N, Fatahi Y, Darbasizadeh B, Nouri Z, Bahadorikhalili S, Shaabani A, Farhadnejad H, Motasadizadeh H. Polyethylene oxide-chitosan-doxorubicin/polycaprolactone-chitosan-curcumin pH-sensitive core/shell nanofibrous mats for the treatment of breast cancer: Fabrication, characterization and in vitro and in vivo evaluation. Int J Biol Macromol 2025; 305:141191. [PMID: 39971028 DOI: 10.1016/j.ijbiomac.2025.141191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/06/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
The main objective of this study was to fabricate a pH-sensitive drug carrier based on coaxial electrospun nanofibrous mats for concurrent local delivery of hydrophilic and hydrophobic anti-cancer drugs to improve the anti-tumor efficacy on breast cancer. Therefore, co-axial electrospinning technique was applied to prepare polyethylene oxide-chitosan/polycaprolactone-chitosan (PEO-CS/PCL-CS) pH-sensitive core-shell nanofibers. Doxorubicin hydrochloride (DOX, hydrophilic anti-cancer) and curcumin (CUR, hydrophobic anticancer) were loaded into core and shell sections of the fabricated pH-sensitive coaxial nanofibers, respectively. Their structure and morphology were analyzed via SEM, TEM, TGA, and FTIR techniques. The results of in vitro release analysis indicated that the release of DOX and CUR from the fabricated nanofibers was strongly depended on pH. The combined effects of the two drugs on MCF-7 cell inhibition, as measured by the MTT assay, revealed that the 1:5 ratio of DOX to CUR resulted in a CI of 0.00492, showing the strongest synergistic effect. The results of in-vivo studies indicated that the PEO-CS-DOX/PCL-CS-CUR pH-sensitive core-shell nanofibers possessed remarkable anti-tumor efficacy. As a result, PEO-CS-DOX/PCL-CS-CUR pH-sensitive core-shell nanofibrous mats with pH-responsive and sustainable and controllable manner could improve the local anti-tumor efficacy on breast cancer via inhibiting the side effects of free DOX and CUR drugs.
Collapse
Affiliation(s)
- Amir Rakhshani
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran university of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Samane Maghsoudian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran university of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Negin Mousavi Ejarestaghi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahzad Yousefi
- Department of Healthcare Emergency Management, Faculty of Medicine, Boston University, Boston, MA, USA; Graduate, Veterinary Medicine School, Āzad University, Tehran, Iran
| | - Sepideh Yoosefi
- Department of Drug and Food Control, Faculty of pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Asadzadeh
- Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Yousef Fatahi
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran university of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Behzad Darbasizadeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeinab Nouri
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Alireza Shaabani
- Department of Polymer and Materials Chemistry, Faculty of Chemistry and Petroleum Sciences, Shahid Beheshti University, Iran
| | - Hassan Farhadnejad
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | |
Collapse
|
2
|
Szachniewicz MM, Meijgaarden KEV, Kavrik E, Jiskoot W, Bouwstra JA, Haks MC, Geluk A, Ottenhoff THM. Cationic pH-sensitive liposomes as tuberculosis subunit vaccine delivery systems: Effect of liposome composition on cellular innate immune responses. Int Immunopharmacol 2025; 145:113782. [PMID: 39647287 DOI: 10.1016/j.intimp.2024.113782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
Tuberculosis (TB) is a major global health problem, and the development of effective and safe vaccines is urgently needed. CD8+ T-cells play an important role alongside CD4+ T-cells in the protective immune response against TB. pH-sensitive liposomes are hypothesized to boost CD8+ T-cell responses by promoting class I presentation through a mechanism involving pH-dependent endosomal escape and the cytosolic transfer of antigens. The aim of the study was to explore the potential of pH-sensitive liposomes as a novel delivery system for a multi-stage protein subunit vaccine against TB in primary human cells. The liposomes were formulated with the fusion antigen Ag85b-ESAT6-Rv2034 (AER), which was previously shown to be effective in reducing bacterial load in the lungs HLA-DR3 transgenic mice and guinea pigs. The liposomes were assessed in vitro for cellular uptake, cell viability, upregulation of cell surface activation markers, induction of cytokine production using human monocyte-derived dendritic cells (MDDCs), and activation of human antigen-specific T-cells. Liposome DOPC:DOPE:DOBAQ:EPC (3:5:2:4 M ratio) was effectively taken up, induced several cell surface activation markers, and production of CCl3, CCL4, and TNFα in MDDCs. It also induced upregulation of CD154 and IFNγ in T-cell clones in an antigen-specific manner. Thus, cationic pH-sensitive liposome-based TB vaccines have been demonstrated to be capable of inducing robust protective Mtb-specific immune responses, positioning them as promising candidates for effectiveTBvaccination.
Collapse
Affiliation(s)
- M M Szachniewicz
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), The Netherlands.
| | - K E van Meijgaarden
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), The Netherlands
| | - E Kavrik
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, The Netherlands
| | - W Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, The Netherlands
| | - J A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, The Netherlands
| | - M C Haks
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), The Netherlands
| | - A Geluk
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), The Netherlands
| | - T H M Ottenhoff
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), The Netherlands
| |
Collapse
|
3
|
Szachniewicz MM, Neustrup MA, van den Eeden SJF, van Meijgaarden KE, Franken KLMC, van Veen S, Koning RI, Limpens RWAL, Geluk A, Bouwstra JA, Ottenhoff THM. Evaluation of PLGA, lipid-PLGA hybrid nanoparticles, and cationic pH-sensitive liposomes as tuberculosis vaccine delivery systems in a Mycobacterium tuberculosis challenge mouse model - A comparison. Int J Pharm 2024; 666:124842. [PMID: 39424087 DOI: 10.1016/j.ijpharm.2024.124842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Tuberculosis (TB) continues to pose a global threat for millennia, currently affecting over 2 billion people and causing 10.6 million new cases and 1.3 million deaths annually. The only existing vaccine, Mycobacterium Bovis Bacillus Calmette-Guérin (BCG), provides highly variable and inadequate protection in adults and adolescents. This study explores newly developed subunit tuberculosis vaccines that use a multistage protein fusion antigen Ag85b-ESAT6-Rv2034 (AER). The protection efficacy, as well as in vivo induced immune responses, were compared for five vaccines: BCG; AER-CpG/MPLA mix; poly(D,L-lactic-co-glycolic acid) (PLGA); lipid-PLGA hybrid nanoparticles (NPs); and cationic pH-sensitive liposomes (the latter three delivering AER together with CpG and MPLA). All vaccines, except the AER-adjuvant mix, induced protection in Mycobacterium tuberculosis (Mtb)-challenged C57/Bl6 mice as indicated by a significant reduction in bacterial burden in lungs and spleens of the animals. Four AER-based vaccines significantly increased the number of circulating multifunctional CD4+ and CD8+ T-cells producing IL-2, IFNγ, and TNFα, exhibiting a central memory phenotype. Furthermore, AER-based vaccines induced an increase in CD69+ B-cell counts as well as high antigen-specific antibody titers. Unexpectedly, none of the observed immune responses were associated with the bacterial burden outcome, such that the mechanism responsible for the observed vaccine-induced protection of these vaccines remains unclear. These findings suggest the existence of non-classical protective mechanisms for Mtb infection, which could, once identified, provide interesting targets for novel vaccines.
Collapse
Affiliation(s)
- Mikołaj M Szachniewicz
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands.
| | - Malene A Neustrup
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, the Netherlands
| | - Susan J F van den Eeden
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| | - Krista E van Meijgaarden
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| | - Kees L M C Franken
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| | - Suzanne van Veen
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| | - Roman I Koning
- Electron Microscopy Facility, Leiden University Medical Center (LUMC), the Netherlands
| | - Ronald W A L Limpens
- Electron Microscopy Facility, Leiden University Medical Center (LUMC), the Netherlands
| | - Annemieke Geluk
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| | - Joke A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, the Netherlands
| | - Tom H M Ottenhoff
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| |
Collapse
|
4
|
Valioglu F, Valipour F, Atazadeh S, Hasansadeh M, Khosrowshahi ND, Nezamdoust FV, Mohammad-Jafarieh P, Rahbarghazi R, Mahdipour M. Recent advances in shape memory scaffolds and regenerative outcomes. Biomed Eng Lett 2024; 14:1279-1301. [PMID: 39465110 PMCID: PMC11502725 DOI: 10.1007/s13534-024-00417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 06/17/2024] [Accepted: 08/01/2024] [Indexed: 10/29/2024] Open
Abstract
The advent of tissue engineering (TE) technologies has revolutionized human medicine over the last few decades. Despite splendid advances in the fabricating and development of different substrates for regenerative purposes, non-responsive static composites have been used to heal injured tissues. After being transplanted into the target sites, grafts will lose their original features, leading to a reduction in regenerative potential. Along with these statements, the use of shape memory polymers (SMPs), smart substrates with unique physicochemical properties, has been extended in different disciplines of regenerative medicine in recent years. These substrates are intelligent and they can easily change physicogeometry features such as stiffness, strain size, shape, etc. in response to external stimuli. It has been proposed that SMPs can easily acquire their original properties after deformation, even in the presence or absence of certain stimuli. It has been indicated that the application of distinct synthesis protocols is required to fabricate dynamically switchable surfaces with prominent cell-to-substrate interaction, resulting in better regulation of cell function, dynamic growth, and reparative mechanisms. Here, we aimed to scrutinize the prominent regenerative properties of SMPs in the TE and regenerative medicine fields. Whether and how SMPs can orchestrate certain cell behavior, with reconfigurable features and adaptability were discussed in detail.
Collapse
Affiliation(s)
- Ferzane Valioglu
- Technology Development Zones Management CO, Sakarya University, Sakarya, Turkey
| | - Fereshteh Valipour
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shadi Atazadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
| | - Maryam Hasansadeh
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
| | | | - Fereshteh Vaziri Nezamdoust
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Mohammad-Jafarieh
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Imam Reza St., Golgasht St., Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mahdipour
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Szachniewicz MM, van den Eeden SJF, van Meijgaarden KE, Franken KLMC, van Veen S, Geluk A, Bouwstra JA, Ottenhoff THM. Cationic pH-sensitive liposome-based subunit tuberculosis vaccine induces protection in mice challenged with Mycobacterium tuberculosis. Eur J Pharm Biopharm 2024; 203:114437. [PMID: 39122053 DOI: 10.1016/j.ejpb.2024.114437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/18/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Tuberculosis (TB) has been and still is a global emergency for centuries. Prevention of disease through vaccination would have a major impact on disease prevalence, but the only available current vaccine, BCG, has insufficient impact. In this article, a novel subunit vaccine against TB was developed, using the Ag85B-ESAT6-Rv2034 fusion antigen, two adjuvants - CpG and MPLA, and a cationic pH-sensitive liposome as a delivery system, representing a new TB vaccine delivery strategy not previously reported for TB. In vitro in human dendritic cells (DCs), the adjuvanted formulation induced a significant increase in the production of (innate) cytokines and chemokines compared to the liposome without additional adjuvants. In vivo, the new vaccine administrated subcutaneously significantly reduced Mycobacterium tuberculosis (Mtb) bacterial load in the lungs and spleens of mice, significantly outperforming results from mice vaccinated with the antigen mixed with adjuvants without liposomes. In-depth analysis underpinned the vaccine's effectiveness in terms of its capacity to induce polyfunctional CD4+ and CD8+ T-cell responses, both considered essential for controlling Mtb infection. Also noteworthy was the differential abundance of various CD69+ B-cell subpopulations, which included IL17-A-producing B-cells. The vaccine stimulated robust antigen-specific antibody titers, further extending its potential as a novel protective agent against TB.
Collapse
Affiliation(s)
- M M Szachniewicz
- Leiden University Center for Infectious Diseases, Leiden University Medical Center (LUMC), the Netherlands.
| | - S J F van den Eeden
- Leiden University Center for Infectious Diseases, Leiden University Medical Center (LUMC), the Netherlands
| | - K E van Meijgaarden
- Leiden University Center for Infectious Diseases, Leiden University Medical Center (LUMC), the Netherlands
| | - K L M C Franken
- Leiden University Center for Infectious Diseases, Leiden University Medical Center (LUMC), the Netherlands
| | - S van Veen
- Leiden University Center for Infectious Diseases, Leiden University Medical Center (LUMC), the Netherlands
| | - A Geluk
- Leiden University Center for Infectious Diseases, Leiden University Medical Center (LUMC), the Netherlands
| | - J A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, the Netherlands
| | - T H M Ottenhoff
- Leiden University Center for Infectious Diseases, Leiden University Medical Center (LUMC), the Netherlands
| |
Collapse
|
6
|
Bose N, Danagody B, Rajappan K, Ramanujam GM, Anilkumar AK. Sustainable Routed Mxene-Based Aminolyzed PU/PCL Film for Increased Oxidative Stress and a pH-Sensitive Drug Delivery System for Anticancer Therapy. ACS APPLIED BIO MATERIALS 2024; 7:379-393. [PMID: 38141040 DOI: 10.1021/acsabm.3c00957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
A remarkable challenge in the anticancer drug delivery system is developing an implantable system that can improve the chemotherapeutic effect. Polyurethane is an excellent implantable substrate, with flaws in hydrophobicity. We modified polyurethane via the chemical aminolysis technique to enhance the wettability and protein interaction. The created pores can release the rutin complex incorporated in the polyurethane matrix. In this work, the hybrid polymer matrix consists of Mxene synthesized via a sustainable and simple method by introducing a toxic-free MAX phase and etchants. The incorporation of Mxene and PCL can enhance physicochemical and biological compatibility. Sustainable Mxene increases oxidative stress, cell death, and antibacterial activity, which also resulted in the Mxene@APU/PCL film. Meanwhile, the drug release with respect to pH sensitivity was demonstrated in which Mxene and Mxene@APU/PCL films showed the highest release at pH 5.2; this indicates that the prepared Mxene and aminolyzed polyurethane can function according to the biological system and release the drug from the polymer matrix on slow degradation and swellability. The Mxene and Mxene@APU/PCL films showed 93.2% drug release with oxidative stress on THP-1 cells, which causes rupturing and apoptosis of cancerous cells. The Mxene@APU/PCL film can show great potential in future implantable anticancer drug delivery systems.
Collapse
Affiliation(s)
- Neeraja Bose
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Balaganesh Danagody
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Kalaivizhi Rajappan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ganesh Munuswamy Ramanujam
- Molecular biology and Immunobiology Division, Interdisciplinary Institute of Indian System of Medicine (IIISM), SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Aswathy Karanath Anilkumar
- Molecular biology and Immunobiology Division, Interdisciplinary Institute of Indian System of Medicine (IIISM), Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| |
Collapse
|
7
|
He Y, Vasilev K, Zilm P. pH-Responsive Biomaterials for the Treatment of Dental Caries-A Focussed and Critical Review. Pharmaceutics 2023; 15:1837. [PMID: 37514024 PMCID: PMC10385394 DOI: 10.3390/pharmaceutics15071837] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Dental caries is a common and costly multifactorial biofilm disease caused by cariogenic bacteria that ferment carbohydrates to lactic acid, demineralizing the inorganic component of teeth. Therefore, low pH (pH 4.5) is a characteristic signal of the localised carious environment, compared to a healthy oral pH range (6.8 to 7.4). The development of pH-responsive delivery systems that release antibacterial agents in response to low pH has gained attention as a targeted therapy for dental caries. Release is triggered by high levels of acidogenic species and their reduction may select for the establishment of health-associated biofilm communities. Moreover, drug efficacy can be amplified by the modification of the delivery system to target adhesion to the plaque biofilm to extend the retention time of antimicrobial agents in the oral cavity. In this review, recent developments of different pH-responsive nanocarriers and their biofilm targeting mechanisms are discussed. This review critically discusses the current state of the art and innovations in the development and use of smart delivery materials for dental caries treatment. The authors' views for the future of the field are also presented.
Collapse
Affiliation(s)
- Yanping He
- Adelaide Dental School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Peter Zilm
- Adelaide Dental School, University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
8
|
Kaykanat SI, Uguz AK. The role of acoustofluidics and microbubble dynamics for therapeutic applications and drug delivery. BIOMICROFLUIDICS 2023; 17:021502. [PMID: 37153864 PMCID: PMC10162024 DOI: 10.1063/5.0130769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/18/2023] [Indexed: 05/10/2023]
Abstract
Targeted drug delivery is proposed to reduce the toxic effects of conventional therapeutic methods. For that purpose, nanoparticles are loaded with drugs called nanocarriers and directed toward a specific site. However, biological barriers challenge the nanocarriers to convey the drug to the target site effectively. Different targeting strategies and nanoparticle designs are used to overcome these barriers. Ultrasound is a new, safe, and non-invasive drug targeting method, especially when combined with microbubbles. Microbubbles oscillate under the effect of the ultrasound, which increases the permeability of endothelium, hence, the drug uptake to the target site. Consequently, this new technique reduces the dose of the drug and avoids its side effects. This review aims to describe the biological barriers and the targeting types with the critical features of acoustically driven microbubbles focusing on biomedical applications. The theoretical part covers the historical developments in microbubble models for different conditions: microbubbles in an incompressible and compressible medium and bubbles encapsulated by a shell. The current state and the possible future directions are discussed.
Collapse
Affiliation(s)
- S. I. Kaykanat
- Department of Chemical Engineering, Boğaziçi University, 34342 Bebek, Istanbul, Türkiye
| | | |
Collapse
|
9
|
Kaur S, Singh D. A Sojourn on Liposomal Delivery System: Recent Advances and Future Prospects. Assay Drug Dev Technol 2023; 21:48-64. [PMID: 36856471 DOI: 10.1089/adt.2022.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Liposomes are unique novel drug delivery carriers that favor the effective transportation of pharmaceuticals. These vesicles acquire one or more phospholipid bilayer membranes, and an inner aqueous core can carry both aqueous and lipid drugs. While hydrophilic molecules can be confined in the aqueous core, hydrophobic molecules are injected into the bilayer membrane. Liposomes have many benefits as a drug delivery method, including biocompatibility, the capacity to carry large drug payloads, and a variety of physicochemical and biological parameters that can be altered to influence their biological characteristics. In addition, being a size of 10-100 nm range can have numerous additional benefits, including enhanced pharmacokinetics, clever escape from the reticuloendothelial system, greater in vivo stability, longer and site-specific administration, and increased internalization in tumor tissue (enhanced permeability and retention impact). The current review focuses on the structural composition of liposomes, formulation technologies, and suitable case studies for optimizing biopharmaceutical performance. Moreover, clinical trials and marketed formulations of liposomes have been also stated in the prior art.
Collapse
Affiliation(s)
- Simranjeet Kaur
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Dilpreet Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| |
Collapse
|
10
|
Deep eutectic solvents-assisted stimuli-responsive smart hydrogels – a review. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Han Z, Yu X, Sang Y, Xu Y, Zhao A, Lu X. Aromaticity-Enhanced pH-Responsive Electrochemiluminescence of Cyclopentadienols. Anal Chem 2022; 94:6036-6043. [PMID: 35384644 DOI: 10.1021/acs.analchem.2c00717] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Due to significantly tackling the problems of aggregation-caused quenching and water insolubility, aggregation-induced emission electrochemiluminescence (AIE-ECL) has emerged as a research highlight in aqueous detection and sensing. Herein, we reported a series of cyclopentadienols featuring excellent AIE-ECL properties on the basis of an enhanced aromaticity strategy. In detail, substituents profoundly determined ECL emission by affecting the characteristic absorption peak intensity ratio in UV-vis spectra and lowest unoccupied molecular orbital (LUMO)-highest occupied molecular orbital (HOMO) energies. It was found that 1,2,3,4,5-pentafluorophenyl cyclopentadienol (PFCD) containing an electron-withdrawing fluorine substituent, the maximum R/B band ratio, and a smaller LUMO-HOMO band gap demonstrated the best ECL performance. Meanwhile, such an AIE-ECL system displayed a wide response range toward pH (4-12) with a good linear relationship. Our research not only enriched polycyclic aromatic hydrocarbon-based AIE-ECL systems but also established an efficient pH sensor in the aqueous phase.
Collapse
Affiliation(s)
- Zhengang Han
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Xinyao Yu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yuyang Sang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yanhong Xu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Aijuan Zhao
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| |
Collapse
|
12
|
Kaushik N, Borkar SB, Nandanwar SK, Panda PK, Choi EH, Kaushik NK. Nanocarrier cancer therapeutics with functional stimuli-responsive mechanisms. J Nanobiotechnology 2022; 20:152. [PMID: 35331246 PMCID: PMC8944113 DOI: 10.1186/s12951-022-01364-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/09/2022] [Indexed: 12/12/2022] Open
Abstract
Presently, nanocarriers (NCs) have gained huge attention for their structural ability, good biocompatibility, and biodegradability. The development of effective NCs with stimuli-responsive properties has acquired a huge interest among scientists. When developing drug delivery NCs, the fundamental goal is to tackle the delivery-related problems associated with standard chemotherapy and to carry medicines to the intended sites of action while avoiding undesirable side effects. These nanocarriers were able of delivering drugs to tumors through regulating their pH, temperature, enzyme responsiveness. With the use of nanocarriers, chemotherapeutic drugs could be supplied to tumors more accurately that can equally encapsulate and deliver them. Material carriers for chemotherapeutic medicines are discussed in this review keeping in viewpoint of the structural properties and targeting methods that make these carriers more therapeutically effective, in addition to metabolic pathways triggered by drug-loaded NCs. Largely, the development of NCs countering to endogenous and exogenous stimuli in tumor regions and understanding of mechanisms would encourage the progress for tumor therapy and precision diagnosis in future.
Collapse
Affiliation(s)
- Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong, 18323, Republic of Korea.
| | - Shweta B Borkar
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Sondavid K Nandanwar
- Department of Basic Science Research Institute, Pukyong National University, Busan, 48513, Korea
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Department of Physics and Astronomy, Uppsala University, Box 516, S-75120, Uppsala, Sweden
| | - Eun Ha Choi
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics, Plasma Bioscience Research Center, Kwangwoon University, Seoul, 01897, Republic of Korea.
| |
Collapse
|
13
|
Peng X, Han Q, Zhou X, Chen Y, Huang X, Guo X, Peng R, Wang H, Peng X, Cheng L. Effect of pH-sensitive nanoparticles on inhibiting oral biofilms. Drug Deliv 2022; 29:561-573. [PMID: 35156501 PMCID: PMC8856036 DOI: 10.1080/10717544.2022.2037788] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Dental caries is a biofilm-related preventable infectious disease caused by interactions between the oral bacteria and the host’s dietary sugars. As the microenvironments in cariogenic biofilms are often acidic, pH-sensitive drug delivery systems have become innovative materials for dental caries prevention in recent years. In the present study, poly(DMAEMA-co-HEMA) was used as a pH-sensitive carrier to synthesize a chlorhexidine (CHX)-loaded nanomaterial (p(DH)@CHX). In vitro, p(DH)@CHX exhibited good pH sensitivity and a sustained and high CHX release rate in the acidic environment. It also exhibited lower cytotoxicity against human oral keratinocytes (HOKs) compared to free CHX. Besides, compared with free CHX, p(DH)@CHX showed the same antibacterial effects on S. mutans biofilms. In addition, it had no effect on eradicating healthy saliva-derived biofilm, while free CHX exhibited an inhibitory effect. Furthermore, the 16s rDNA sequencing results showed that p(DH)@CHX had the potential to alter oral microbiota composition and possibly reduce caries risk. In conclusion, the present study presents an alternative option to design an intelligent material to prevent and treat dental caries.
Collapse
Affiliation(s)
- Xinyu Peng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Qi Han
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Oral Pathology, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Yanyan Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoyu Huang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xiao Guo
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Ruiting Peng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Haohao Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, China.,Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Design, Preparation, and Evaluation of Enteric Coating Formulation of HPMC and Eudragit L100 on Carboxylated Agarose Hydrogel by Using Drug Tartrazine. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1042253. [PMID: 35127935 PMCID: PMC8816555 DOI: 10.1155/2022/1042253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/28/2021] [Accepted: 01/15/2022] [Indexed: 11/17/2022]
Abstract
Enteric-coated application on drug is used to prevent the drug from inactivation which are degraded by gastric enzyme. The present study is aimed at achieving controlled drug delivery in acidic medium of gastrointestinal tract (GIT) by enteric coating of hydroxy propyl methylcellulose (HPMC) and Eudragit L100 on carboxylated agarose hydrogel, creating a pH-dependent delivery system. Fourier-transformed infrared spectroscopy (FTIR) was for the detection of carboxylic group on agarose hydrogel, and scanning electron microscope (SEM) was used for the determination surface of prepared formulation. To check the pH sensitivity of enteric-coated formulation, different pH solution was used. It was found that the formulation was not dissolved in 1.2 but dissolve in pH 6.8 similarly; hydrogels lacking coating showed that tartrazine was more dissolved in pH 1.2, and less dissolved at pH 6.8. The release of tartrazine from the hydrogels was measured by using spectrophotometer and using a scanning electron microscope to examine the morphology and surface appearance of hydrogel capsules. This study revealed cracks on coated samples, while noncoated samples showed clear appearance with no cracks. Our findings revealed that this method could be useful for the development of an enteric coating drug delivery system.
Collapse
|
15
|
Sinelnikov S, Orel L, Kobrina L, Boiko V, Riabov S, Shtompel V, Povnitsa O, Zagorodnya S. Polymer matrices on the basis of polyacrylamide and β‐cyclodextrin‐containing pseudorotaxane for prolonged drug release: Synthesis and properties. J Appl Polym Sci 2021. [DOI: 10.1002/app.50554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Sergii Sinelnikov
- Department of Polymers Modification Institute of Macromolecular Chemistry the NAS of Ukraine Kyiv Ukraine
| | - Luydmila Orel
- Department of Polymers Modification Institute of Macromolecular Chemistry the NAS of Ukraine Kyiv Ukraine
| | - Larisa Kobrina
- Department of Polymers Modification Institute of Macromolecular Chemistry the NAS of Ukraine Kyiv Ukraine
| | - Valentyna Boiko
- Department of Polymers Modification Institute of Macromolecular Chemistry the NAS of Ukraine Kyiv Ukraine
| | - Sergii Riabov
- Department of Polymers Modification Institute of Macromolecular Chemistry the NAS of Ukraine Kyiv Ukraine
| | - Volodymir Shtompel
- Department of Polymers Modification Institute of Macromolecular Chemistry the NAS of Ukraine Kyiv Ukraine
| | - Olga Povnitsa
- Department of Reproduction of Viruses Zabolotny Institute of Microbiology and Virology the NAS of Ukraine Kyiv Ukraine
| | - Svetlana Zagorodnya
- Department of Reproduction of Viruses Zabolotny Institute of Microbiology and Virology the NAS of Ukraine Kyiv Ukraine
| |
Collapse
|
16
|
Ozkan CK, Esim O, Savaser A, Ozkan Y. An Overview of Excipients Classification and Their Use in Pharmaceuticals. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200605163125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The content and the application of pharmaceutical dosage forms must meet several basic
requirements to ensure and maintain efficiency, safety and quality. A large number of active substances
have a limited ability to direct administration. Excipients are generally used to overcome the limitation
of direct administration of these active substances. However, the function, behavior and composition of
the excipients need to be well known in the design, development and production of pharmaceutical
dosage forms. In this review, excipients used to assist in any pharmaceutical dosage form production
processes of drugs, to preserve, promote or increase stability, bioavailability and patient compliance, to
assist in product identification/separation, or to enhance overall safety and effectiveness of the drug
delivery system during storage or use are explained. Moreover, the use of these excipients in drug delivery
systems is identified. Excipient toxicity, which is an issue discussed in the light of current studies,
also discussed in this review.
Collapse
Affiliation(s)
- Cansel Kose Ozkan
- Department of Pharmaceutical Technology, Gulhane Faculty of Pharmacy, University of Health Sciences, Gulhane Campus, Etlik, 06018 Ankara,Turkey
| | - Ozgur Esim
- Department of Pharmaceutical Technology, Gulhane Faculty of Pharmacy, University of Health Sciences, Gulhane Campus, Etlik, 06018 Ankara,Turkey
| | - Ayhan Savaser
- Department of Pharmaceutical Technology, Gulhane Faculty of Pharmacy, University of Health Sciences, Gulhane Campus, Etlik, 06018 Ankara,Turkey
| | - Yalcin Ozkan
- Department of Pharmaceutical Technology, Gulhane Faculty of Pharmacy, University of Health Sciences, Gulhane Campus, Etlik, 06018 Ankara,Turkey
| |
Collapse
|
17
|
Mathematical modelling of drug delivery from pH-responsive nanocontainers. Comput Biol Med 2021; 131:104238. [PMID: 33618104 DOI: 10.1016/j.compbiomed.2021.104238] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 11/23/2022]
Abstract
Targeted drug delivery systems represent a promising strategy to treat localised disease with minimum impact on the surrounding tissue. In particular, polymeric nanocontainers have attracted major interest because of their structural and morphological advantages and the variety of polymers that can be used, allowing the synthesis of materials capable of responding to the biochemical alterations of the environment. While experimental methodologies can provide much insight, the generation of experimental data across a wide parameter space is usually prohibitively time consuming and/or expensive. To better understand the influence of varying design parameters on the release profile and drug kinetics involved, appropriately-designed mathematical models are of great benefit. Here, we developed a continuum-scale mathematical model to describe drug transport within, and release from, a hollow nanocontainer consisting of a core and a pH-responsive polymeric shell. Our two-layer mathematical model accounts for drug dissolution and diffusion and includes a mechanism to account for trapping of drug molecules within the shell. We conduct a sensitivity analysis to assess the effect of varying the model parameters on the overall behaviour of the system. To demonstrate the usefulness of our model, we focus on the particular case of cancer treatment and calibrate the model against release profile data for two anti-cancer therapeutical agents. We show that the model is capable of capturing the experimentally observed pH-dependent release.
Collapse
|
18
|
Ali R, Toufik L, Dashevskiy A. Use of cellulose acetate butyrate as a carrier for preparation of alcohol-resistant matrix tablet. Pharm Dev Technol 2020; 25:729-734. [DOI: 10.1080/10837450.2020.1738462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Rebaz Ali
- College of Pharmacy, Freie Universität Berlin, Berlin, Germany
- College of Pharmacy, University of Sulaimani, Sulaimani, Kurdistan Region of Iraq
| | - Langa Toufik
- College of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | | |
Collapse
|
19
|
Bhosale RR, Gangadharappa HV, Osmani RAM, Gowda DV. Design and development of polymethylmethacrylate-grafted gellan gum (PMMA-g-GG)-based pH-sensitive novel drug delivery system for antidiabetic therapy. Drug Deliv Transl Res 2020; 10:1002-1018. [DOI: 10.1007/s13346-020-00776-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Monschke M, Kayser K, Wagner KG. Processing of Polyvinyl Acetate Phthalate in Hot-Melt Extrusion-Preparation of Amorphous Solid Dispersions. Pharmaceutics 2020; 12:pharmaceutics12040337. [PMID: 32283725 PMCID: PMC7238276 DOI: 10.3390/pharmaceutics12040337] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 11/23/2022] Open
Abstract
The preparation of amorphous solid dispersions (ASDs) is a suitable approach to overcome solubility-limited absorption of poorly soluble drugs. In particular, pH-dependent soluble polymers have proven to be an excellently suitable carrier material for ASDs. Polyvinyl acetate phthalate (PVAP) is a polymer with a pH-dependent solubility, which is as yet not thoroughly characterized regarding its suitability for a hot-melt extrusion process. The objective of this study was to assess the processability of PVAP within a hot-melt extrusion process with the aim of preparing an ASD. Therefore, the influence of different process parameters (temperature, feed-rate) on the degree of degradation, solid-state and dissolution time of the neat polymer was studied. Subsequently, drug-containing ASDs with indomethacin (IND) and dipyridamole (DPD) were prepared, respectively, and analyzed regarding drug content, solid-state, non-sink dissolution performance and storage stability. PVAP was extrudable in combination with 10% (w/w) PEG 3000 as plasticizer. The dissolution time of PVAP was only slightly influenced by different process parameters. For IND no degradation occurred in combination with PVAP and single phased ASDs could be generated. The dissolution performance of the IND-PVAP ASD at pH 5.5 was superior and at pH 6.8 equivalent compared to commonly used polymers hydroxypropylmethylcellulose acetate succinate (HPMCAS) and Eudragit L100-55.
Collapse
|
21
|
Sester C, Ofridam F, Lebaz N, Gagnière E, Mangin D, Elaissari A. pH‐Sensitive methacrylic acid–methyl methacrylate copolymer Eudragit L100 and dimethylaminoethyl methacrylate, butyl methacrylate, and methyl methacrylate tri‐copolymer Eudragit E100. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4780] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Coraline Sester
- Univ LyonUniversité Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 43 boulevard du 11 novembre 1918 F–69100 Villeurbanne France
| | - Fabrice Ofridam
- Univ LyonUniversité Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 43 boulevard du 11 novembre 1918 F–69100 Villeurbanne France
| | - Noureddine Lebaz
- Univ LyonUniversité Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 43 boulevard du 11 novembre 1918 F–69100 Villeurbanne France
| | - Emilie Gagnière
- Univ LyonUniversité Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 43 boulevard du 11 novembre 1918 F–69100 Villeurbanne France
| | - Denis Mangin
- Univ LyonUniversité Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 43 boulevard du 11 novembre 1918 F–69100 Villeurbanne France
| | - Abdelhamid Elaissari
- Univ LyonUniversité Claude Bernard Lyon 1, CNRS, LAGEPP UMR 5007 43 boulevard du 11 novembre 1918 F–69100 Villeurbanne France
| |
Collapse
|
22
|
Niazi Saei J, Mokhtari A, Karimian H. Stopped-flow chemiluminescence determination of the anticancer drug capecitabine: Application in pharmaceutical analysis and drug-delivery systems. LUMINESCENCE 2020; 35:797-804. [PMID: 32017383 DOI: 10.1002/bio.3786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/10/2020] [Accepted: 01/19/2020] [Indexed: 01/25/2023]
Abstract
Capecitabine is a chemotherapeutic agent used for the treatment of patients with metastatic cancers. This study aimed at determining the drug capecitabine in a simple chemiluminescence (CL) system of acidic potassium permanganate using the stopped-flow injection technique. Statistical methods were used to detect optimum conditions. The method showed two linear calibration ranges from 6.7 × 10-6 to 6.7 × 10-5 mol L-1 and from 6.7 × 10-5 to 2.7 × 10-3 mol L-1 with a detection limit of 1.5 × 10-6 mol L-1 . Chitosan-modified magnetic nanoparticles were studied in the drug-delivery experiments. According to the pH sensitivity of chitosan and low pH values in tumour cells, the chitosan-coated magnetic nanoparticles could provide a good targeting drug-delivery system to tumour sites. To evaluate the applicability of the method, the capecitabine-loaded magnetic chitosan nanoparticles were synthesized with two different cross-linkers; loading and releasing rates of the drug were investigated using the proposed CL method and an ultraviolet-visible light spectrophotometric method (absorption at 305 nm). The results showed a good correlation between the two methods, and it was found that the synthesized chitosan-modified magnetic nanoparticles could be used for pH-dependent release of capecitabine in cancer cells. Moreover, determination of capecitabine in tablets and synthetic samples was performed.
Collapse
Affiliation(s)
- Jalal Niazi Saei
- Department of Chemistry, Faculty of Sciences, Golestan University, Gorgan, Iran
| | - Ali Mokhtari
- Department of Chemistry, Faculty of Sciences, Golestan University, Gorgan, Iran
| | - Hossein Karimian
- Department of Chemical Engineering, Faculty of Engineering, Golestan University, Aliabad Katoul, Iran
| |
Collapse
|
23
|
Liu C, Ewert KK, Yao W, Wang N, Li Y, Safinya CR, Qiao W. A Multifunctional Lipid Incorporating Active Targeting and Dual-Control Release Capabilities for Precision Drug Delivery. ACS APPLIED MATERIALS & INTERFACES 2020; 12:70-85. [PMID: 31774266 DOI: 10.1021/acsami.9b14470] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Active targeting and precise control of drug release based on nanoparticle therapies are urgently required to precisely treat cancer. We have custom-synthesized a functional lipid (termed Fa-ONB) by introducing a folic acid-targeting group into an o-nitro-benzyl ester lipid. As designed, the liposomes formed by Fa-ONB combine active targeting and dual trigger release capabilities, which help to improve drug efficacy and reduce the toxicity of traditional liposomes. We first verified that both pH-induced hydrolysis and light treatment were able to cleave the Fa-ONB lipid. We then prepared a series of liposomes (termed FOBD liposomes) by compounding the Fa-ONB lipid with DOPC at different ratios. After encapsulation of doxorubicin (DOX), we found that the particle size of DOX-loaded FOBD liposomes (DOX/FOBD) first increased (290 to 700 nm) and then decreased again (to 400 nm) under continuous UV irradiation (120 min). The photocatalytic release efficiency under different pH conditions was investigated by dialysis experiments, and it was found that the release efficiency in an acidic environment was significantly increased relative to neutral pH. This pH-triggered release response helps distinguish pathological tissues such as lysosomal compartments and tumors. The light-induced formation of a DOX precipitate increases in efficiency with increasing UV exposure time as well as with increasing environmental acidity or alkalinity. In addition, confocal imaging and flow cytometry showed that the ability of FOBD lipids to actively target HeLa cells increased with increasing Fa-ONB lipid content. Real-time in vivo fluorescence small animal experiments proved targeting to tumors and pH- and photo-induced release properties. Furthermore, therapeutic experiments using a mouse model found a significant tumor inhibitory effect for DOX/FOBD55 liposomes with UV irradiation, clearly demonstrating the benefit of light treatment: the tumor size of the control (PBS) group was 7.59 times that of the light treatment group. Therefore, this research demonstrates the benefits of combining triggerable release functions and effective active tumor targeting in one small lipid molecule for precise cancer treatment.
Collapse
Affiliation(s)
- Chenyu Liu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering , Dalian University of Technology , Dalian 116024 , P. R. China
| | | | - Weihe Yao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering , Dalian University of Technology , Dalian 116024 , P. R. China
| | - Ning Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering , Dalian University of Technology , Dalian 116024 , P. R. China
| | | | | | - Weihong Qiao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering , Dalian University of Technology , Dalian 116024 , P. R. China
| |
Collapse
|
24
|
Wang K, Cai Z, Fan R, Yang Q, Zhu T, Jiang Z, Ma Y. A tumor-microenvironment-responsive nanomaterial for cancer chemo-photothermal therapy. RSC Adv 2020; 10:22091-22101. [PMID: 35516594 PMCID: PMC9054608 DOI: 10.1039/d0ra04171h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/01/2020] [Indexed: 11/21/2022] Open
Abstract
Taxol (TAX) is a typical anticancer drug that is widely used in clinical treatment of cancer, while gold nanorods (AuNRs) are a kind of well-known material applied for photothermal therapy (PTT). The therapeutic outcome of TAX in chemotherapy is however limited by drug resistance, while AuNRs often show poor accuracy in PTT. To optimize the functions of TAX and AuNRs, we developed a hydrogen peroxide (H2O2)-triggered nanomaterial (LV–TAX/Au@Ag) for combined chemo-photothermal therapy. In normal tissues, TAX is protected in the lipid bilayer and isolated from the surrounding normal cells, while AuNRs are coated with silver shells and show low photothermal capacity. However, after reaching the tumor tissues, the silver shells can be etched by endogenous H2O2 in the tumor microenvironment, and the photothermal properties of AuNRs are then recovered. Meanwhile, the generated oxygen destabilizes the LV, which makes the 100 nm sized nanosystems disassemble into the smaller sized TAX and AuNRs, leading to the deep penetration and direct interaction with tumor tissues. The related in vitro experiments proved the validity of this “turn off/on” effect. Extensive necrosis and apoptosis were observed in the tumor tissues and the proliferation of solid tumor was greatly suppressed due to this combined chemo-photothermal therapy. In addition, no significant damage was found in normal tissues after the treatment of LV–TAX/Au@Ag. Therefore, the strategy to achieve environmental response by modifying the photothermal agents enhanced the efficiency and safety of nanomedicine, which may help improve cancer treatment. Endogenous hydrogen peroxide was utilized to control the release of agents for better tumor therapeutic effect and safety.![]()
Collapse
Affiliation(s)
- Kaiyu Wang
- Department of Physics
- National Laboratory of Solid State Microstructures
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing
| | - Zhiyuan Cai
- Department of Physics
- National Laboratory of Solid State Microstructures
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing
| | - Rong Fan
- Key Laboratory of Micro-nano Electric Sensing Technology and Bionic Devices
- College of Electronic and Information Engineering
- Yili Normal University
- Yining
- China
| | - Qian Yang
- Key Laboratory of Micro-nano Electric Sensing Technology and Bionic Devices
- College of Electronic and Information Engineering
- Yili Normal University
- Yining
- China
| | - Tao Zhu
- Department of Physics
- National Laboratory of Solid State Microstructures
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing
| | - Zhongying Jiang
- Key Laboratory of Micro-nano Electric Sensing Technology and Bionic Devices
- College of Electronic and Information Engineering
- Yili Normal University
- Yining
- China
| | - Yuqiang Ma
- Department of Physics
- National Laboratory of Solid State Microstructures
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing
| |
Collapse
|
25
|
Maji R, Omolo CA, Agrawal N, Maduray K, Hassan D, Mokhtar C, Mackhraj I, Govender T. pH-Responsive Lipid–Dendrimer Hybrid Nanoparticles: An Approach To Target and Eliminate Intracellular Pathogens. Mol Pharm 2019; 16:4594-4609. [DOI: 10.1021/acs.molpharmaceut.9b00713] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ruma Maji
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Calvin A. Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- School of Pharmacy and Health Sciences, United States International University of Africa, Nairobi, Kenya
| | - Nikhil Agrawal
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Kaminee Maduray
- Department of Physiology, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Daniel Hassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Chunderika Mokhtar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Irene Mackhraj
- Department of Physiology, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
26
|
Zayas MS, Dolinski ND, Self JL, Abdilla A, Hawker CJ, Bates CM, Read de Alaniz J. Tuning Merocyanine Photoacid Structure to Enhance Solubility and Temporal Control: Application in Ring Opening Polymerization. CHEMPHOTOCHEM 2019. [DOI: 10.1002/cptc.201800255] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Manuel S. Zayas
- Department of Chemistry and Biochemistry, UCSB University of California Santa Barbara CA 93106 USA
| | - Neil D. Dolinski
- Materials Department Materials Research Laboratory, UCSB University of California Santa Barbara CA 93106 USA
| | - Jeffrey L. Self
- Department of Chemistry and Biochemistry, UCSB University of California Santa Barbara CA 93106 USA
| | - Allison Abdilla
- Department of Chemistry and Biochemistry, UCSB University of California Santa Barbara CA 93106 USA
| | - Craig J. Hawker
- Department of Chemistry and Biochemistry, UCSB University of California Santa Barbara CA 93106 USA
- Materials Department Materials Research Laboratory, UCSB University of California Santa Barbara CA 93106 USA
| | - Christopher M. Bates
- Materials Department Materials Research Laboratory, UCSB University of California Santa Barbara CA 93106 USA
- Department of Chemical Engineering, UCSB University of California Santa Barbara CA 93106 USA
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, UCSB University of California Santa Barbara CA 93106 USA
| |
Collapse
|
27
|
Rastakhiz S, Yazdani M, Shariat S, Arab A, Momtazi-Borojeni AA, Barati N, Mansourian M, Amin M, Abbasi A, Saberi Z, Jalali SA, Badiee A, Jaafari MR. Preparation of nanoliposomes linked to HER2/neu-derived (P5) peptide containing MPL adjuvant as vaccine against breast cancer. J Cell Biochem 2019; 120:1294-1303. [PMID: 30378147 DOI: 10.1002/jcb.27090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/26/2018] [Indexed: 01/24/2023]
Abstract
The study was aimed at evaluating antitumor and immunomodulatory effects of liposomal vaccine composed of P5 human epidermal growth factor receptor 2 (HER2)/neu-derived peptide coupled to the surface of high-temperature nanoliposomes containing distearoylphosphocholine:distearoylphosphoglycerol:Chol:dioleoylphosphatidylethanolamine (DOPE) comprising monophosphoryl lipid A (MPL) adjuvant in HER2/neu overexpressing the breast cancer model. BALB/c mice bearing TUBO carcinoma were subcutaneously immunized with formulations containing 10 µg P5 peptide and 25 µg MPL three times with 2-week intervals. To determine immuno responses in immunized mice, the amount of released interferon-γ and IL-4 were measured by the enzyme-linked immunospot method and the flow cytometric analysis on the isolated splenocytes. The results demonstrated that tumor-bearing mice immunized with Lip/DOPE/MPL/P5 formulation had the most released interferon-γ and the highest cytotoxic T lymphocyte responses that led to the lowest tumor size and the longest survival time than those of other formulations. The results achieved by Lip/DOPE/MPL/P5 formulation could make it a suitable candidate to induce effective antigen-specific tumor immunity against breast cancer.
Collapse
Affiliation(s)
- Saeedeh Rastakhiz
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| | - Mona Yazdani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sheida Shariat
- School of pharmacy, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Atefeh Arab
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Momtazi-Borojeni
- Nanotechnology Research Center, Department of Medical Biotechnology, Student Research Committee, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nastaran Barati
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mercedeh Mansourian
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| | - Mohamdreza Amin
- Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus Medical Center, Rotterdam, The Netherlands.,Cellular and Molecular Research Center, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Azam Abbasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Saberi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Amir Jalali
- Department of Immunology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| |
Collapse
|
28
|
Ettlinger R, Sönksen M, Graf M, Moreno N, Denysenko D, Volkmer D, Kerl K, Bunzen H. Metal-organic framework nanoparticles for arsenic trioxide drug delivery. J Mater Chem B 2018; 6:6481-6489. [PMID: 32254655 DOI: 10.1039/c8tb01899e] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Arsenic trioxide is a double-edged sword: On the one hand it is known as a poison, on the other hand it is used as an anticancer drug. Though effective in the treatment of leukaemia, arsenic trioxide has not been able to be introduced into the treatment of solid tumour entities yet due to its dose-limiting toxicity. However, different in vitro and in vivo studies revealed arsenic trioxide to be a potent agent against different solid tumour entities, including atypical teratoid rhabdoid tumours (ATRT), a paediatric brain tumour entity with a very poor prognosis. To improve the pharmacokinetics and therapeutic efficacy of arsenic trioxide and to reduce its toxic side effects, we propose to use a metal-organic framework (MOF) as a drug carrier material. Herein we report on using a MOF called MFU-4l (Metal-Organic Framework Ulm University), consisting of Zn(ii) ions and bis(1H-1,2,3-triazolo[4,5-b],[4',5'-i])dibenzo[1,4]dioxin ligands, to deliver arsenic trioxide in a form of dihydrogen arsenite anions. The H2AsO3 - anions were introduced to the MOF in a nanoparticle formulation via a postsynthetic side ligand exchange. The prepared material was characterised by IR, TGA, XRPD, SEM-EDX, TEM, DLS, ICP-OES and adsorption analysis. The drug release studies at different pH values were carried out as well as cytotoxicity tests with different ATRT cell lines and non-tumorous-control cell lines. The MOF-based material was shown to be a promising candidate for arsenic trioxide drug delivery.
Collapse
Affiliation(s)
- Romy Ettlinger
- Chair of Solid State and Materials Chemistry, Institute of Physics, University of Augsburg, Universitätsstraße 1, D-86159 Augsburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Managuli RS, Raut SY, Reddy MS, Mutalik S. Targeting the intestinal lymphatic system: a versatile path for enhanced oral bioavailability of drugs. Expert Opin Drug Deliv 2018; 15:787-804. [PMID: 30025212 DOI: 10.1080/17425247.2018.1503249] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The major challenge of first pass metabolism in oral drug delivery can be surmounted by directing delivery toward intestinal lymphatic system (ILS). ILS circumvents the liver and transports drug directly into systemic circulation via thoracic duct. Lipid and polymeric nanoparticles are transported into ILS through lacteal and Peyer's patches. Moreover, surface modification of nanoparticles with ligand which is specific for Peyer's patches enhances the uptake of drugs into ILS. Bioavailability enhancement by lymphatic uptake is an advantageous approach adopted by scientists today. Therefore, it is important to understand clear insight of ILS in targeted drug delivery and challenges involved in it. AREAS COVERED Current review includes an overview of ILS, factors governing lymphatic transport of nanoparticles and absorption mechanism of lipid and polymeric nanoparticles into ILS. Various ligands used to target Peyer's patch and their conjugation strategies to nanoparticles are explained in detail. In vitro and in vivo models used to assess intestinal lymphatic transport of molecules are discussed further. EXPERT OPINION Although ILS offers a versatile pathway for nanotechnology based targeted drug delivery, extensive investigations on validation of the lymphatic transport models and on the strategies for gastric protection of targeted nanocarriers have to be perceived in for excellent performance of ILS in oral drug delivery.
Collapse
Affiliation(s)
- Renuka Suresh Managuli
- a Department of Pharmaceutics , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal Karnataka State , India
| | - Sushil Yadaorao Raut
- a Department of Pharmaceutics , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal Karnataka State , India
| | - Meka Sreenivasa Reddy
- a Department of Pharmaceutics , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal Karnataka State , India
| | - Srinivas Mutalik
- a Department of Pharmaceutics , Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education , Manipal Karnataka State , India
| |
Collapse
|
30
|
Mariani F, Gualandi I, Tessarolo M, Fraboni B, Scavetta E. PEDOT: Dye-Based, Flexible Organic Electrochemical Transistor for Highly Sensitive pH Monitoring. ACS APPLIED MATERIALS & INTERFACES 2018; 10:22474-22484. [PMID: 29883081 DOI: 10.1021/acsami.8b04970] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Organic electrochemical transistors (OECTs) are bioelectronic devices able to bridge electronic and biological domains with especially high amplification and configurational versatility and thus stand out as promising platforms for healthcare applications and portable sensing technologies. Here, we have optimized the synthesis of two pH-sensitive composites of PEDOT (poly(3,4-ethylenedioxythiophene)) doped with pH dyes (BTB and MO, i.e., Bromothymol Blue and Methyl Orange, respectively), showing their ability to successfully convert the pH into an electrical signal. The PEDOT:BTB composite, which exhibited the best performance, was used as the gate electrode to develop an OECT sensor for pH monitoring that can reliably operate in a two-fold transduction mode with super-Nernstian sensitivity. When the OECT transconductance is employed as analytical signal, a sensitivity of 93 ± 8 mV pH unit-1 is achieved by successive sampling in aqueous electrolytes. When the detection is carried out by dynamically changing the pH of the same medium, the offset gate voltage of the OECT shifts by (1.1 ± 0.3) × 102 mV pH unit-1. As a further step, the optimized configuration was realized on a PET substrate, and the performance of the resulting flexible OECT was assessed in artificial sweat within a medically relevant pH range.
Collapse
Affiliation(s)
- Federica Mariani
- Dipartimento di Chimica Industriale "Toso Montanari" , Università di Bologna , Viale Risorgimento 4 , 40136 Bologna , Italy
| | - Isacco Gualandi
- Dipartimento di Chimica Industriale "Toso Montanari" , Università di Bologna , Viale Risorgimento 4 , 40136 Bologna , Italy
| | - Marta Tessarolo
- Dipartimento di Fisica e Astronomia , Università di Bologna , Viale Berti Pichat 6/2 , 40127 Bologna , Italy
| | - Beatrice Fraboni
- Dipartimento di Fisica e Astronomia , Università di Bologna , Viale Berti Pichat 6/2 , 40127 Bologna , Italy
| | - Erika Scavetta
- Dipartimento di Chimica Industriale "Toso Montanari" , Università di Bologna , Viale Risorgimento 4 , 40136 Bologna , Italy
| |
Collapse
|
31
|
Novel lipids with three C18-fatty acid chains and an amino acid head group for pH-responsive and sustained antibiotic delivery. Chem Phys Lipids 2018; 212:12-25. [DOI: 10.1016/j.chemphyslip.2017.12.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/12/2017] [Accepted: 12/31/2017] [Indexed: 12/13/2022]
|
32
|
Manatunga DC, de Silva RM, de Silva KN, de Silva N, Bhandari S, Yap YK, Costha NP. pH responsive controlled release of anti-cancer hydrophobic drugs from sodium alginate and hydroxyapatite bi-coated iron oxide nanoparticles. Eur J Pharm Biopharm 2017; 117:29-38. [DOI: 10.1016/j.ejpb.2017.03.014] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/04/2017] [Accepted: 03/17/2017] [Indexed: 11/27/2022]
|
33
|
Pohlit H, Leibig D, Frey H. Poly(Ethylene Glycol) Dimethacrylates with Cleavable Ketal Sites: Precursors for Cleavable PEG-Hydrogels. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201600532] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 02/08/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Hannah Pohlit
- Institute of Organic Chemistry; Johannes Gutenberg University Mainz; Duesbergweg 10-14 55128 Mainz Germany
- Department of Dermatology; University Medical Center Mainz; Langenbeckstr. 1 55131 Mainz Germany
- Graduate School Materials Science in Mainz; Staudinger Weg 9 55128 Mainz Germany
| | - Daniel Leibig
- Institute of Organic Chemistry; Johannes Gutenberg University Mainz; Duesbergweg 10-14 55128 Mainz Germany
- Graduate School Materials Science in Mainz; Staudinger Weg 9 55128 Mainz Germany
| | - Holger Frey
- Institute of Organic Chemistry; Johannes Gutenberg University Mainz; Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
34
|
Roy K, Bomzan P, Roy MC, Roy MN. Inclusion of tyrosine derivatives with α-cyclodextrin in aqueous medium of various pH conditions by surface tension, conductance, UV–Vis and NMR studies. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.12.104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
35
|
Escala DM, Muñuzuri AP, De Wit A, Carballido-Landeira J. Temporal viscosity modulations driven by a pH sensitive polymer coupled to a pH-changing chemical reaction. Phys Chem Chem Phys 2017; 19:11914-11919. [DOI: 10.1039/c7cp00426e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conformational changes of a PAA molecule linked to a pH-changing reaction can produce a temporal viscosity modulation.
Collapse
Affiliation(s)
- D. M. Escala
- Group of Nonlinear Physics
- Universidade de Santiago de Compostela
- Santiago de Compostela E-15782
- Spain
| | - A. P. Muñuzuri
- Group of Nonlinear Physics
- Universidade de Santiago de Compostela
- Santiago de Compostela E-15782
- Spain
| | - A. De Wit
- Université libre de Bruxelles (ULB)
- Nonlinear Physical Chemistry Unit
- Service de Chimie Physique et Biologie Théorique
- Belgium
| | - J. Carballido-Landeira
- Université libre de Bruxelles (ULB)
- Nonlinear Physical Chemistry Unit
- Service de Chimie Physique et Biologie Théorique
- Belgium
| |
Collapse
|
36
|
Shrestha R, Palat A, Punnoose AM, Joshi S, Ponraju D, Paul SFD. Electrospun cellulose acetate phthalate nanofibrous scaffolds fabricated using novel solvent combinations biocompatible for primary chondrocytes and neurons. Tissue Cell 2016; 48:634-643. [PMID: 27546071 DOI: 10.1016/j.tice.2016.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 05/31/2016] [Accepted: 07/28/2016] [Indexed: 11/25/2022]
Abstract
Electrospun nanofibres have been shown to exhibit extracellular matrix (ECM)-like characteristics required for tissue engineering in terms of porosity, flexibility, fibre organization and strength. This study focuses on developing novel cellulose acetate phthalate (CAP) scaffolds by electrospinning for establishing 3-D chondrocyte and neuronal cultures. Five solvent combinations were employed in fabricating the fibres, namely, acetone/ethanol (9:1), dimethylformamide/tetrahydrofuran/acetone (3:3:4), tetrahydrofuran/acetone (1:1), tetrahydrofuran/ethanol (1:1) and chloroform/methanol (1:1). The electrospun fibres were characterized by scanning electron microscopy (SEM) analysis and confirmed to be within the nanometre range. Based on the morphology of the fibers from SEM results, two solvent combinations such as acetone/ethanol and dimethylformamide/tetrahydrofuran/acetone were selected for stabilization as CAP exhibits a pH dependent solubility. Fourier-Transform Infrared (FTIR) analysis revealed the hydrolysis of CAP which was overcome by EDC [1-ethyl-3-(3-dimethylaminopropyl) carbodiimide] and EDC/NHS (N-hydroxysuccinimide) cross-linking resulting in its stability (pH of 7.2) for three months. MTT [3-(4, 5-dimethylthiazol-2-yl)-1, 5-diphenyltetrazolium bromide] assay performed using L6 myoblast confirmed the biocompatibility of the scaffolds. 3-D primary chondrocyte and neuronal cultures were established on the scaffolds and maintained for a period of 10 days. H&E staining and SEM analysis showed the attachment of the chondrocytes and neurons on CAP scaffolds prepared using dimethylformamide/tetrahydrofuran/acetone and acetone/ethanol respectively.
Collapse
Affiliation(s)
- Rupendra Shrestha
- Department of Human Genetics, Sri Ramachandra University, Chennai, India; Cell and Tissue Engineering Laboratory, Centre for Regenerative Medicine and Stem Cell Research, Sri Ramachandra University, Chennai, India.
| | - Asha Palat
- Department of Human Genetics, Sri Ramachandra University, Chennai, India; Cell and Tissue Engineering Laboratory, Centre for Regenerative Medicine and Stem Cell Research, Sri Ramachandra University, Chennai, India.
| | - Alan M Punnoose
- Cell and Tissue Engineering Laboratory, Centre for Regenerative Medicine and Stem Cell Research, Sri Ramachandra University, Chennai, India
| | - Shailesh Joshi
- Radiological Safety Division, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, India
| | - D Ponraju
- Physical and Chemical Analysis Section, Safety Engineering Division, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, India
| | - Solomon F D Paul
- Department of Human Genetics, Sri Ramachandra University, Chennai, India.
| |
Collapse
|
37
|
Edson JA, Kwon YJ. Design, challenge, and promise of stimuli-responsive nanoantibiotics. NANO CONVERGENCE 2016; 3:26. [PMID: 28191436 PMCID: PMC5271158 DOI: 10.1186/s40580-016-0085-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 09/22/2016] [Indexed: 05/18/2023]
Abstract
Over the past few years, there have been calls for novel antimicrobials to combat the rise of drug-resistant bacteria. While some promising new discoveries have met this call, it is not nearly enough. The major problem is that although these new promising antimicrobials serve as a short-term solution, they lack the potential to provide a long-term solution. The conventional method of creating new antibiotics relies heavily on the discovery of an antimicrobial compound from another microbe. This paradigm of development is flawed due to the fact that microbes can easily transfer a resistant mechanism if faced with an environmental pressure. Furthermore, there has been some evidence to indicate that the environment of the microbe can provide a hint as to their virulence. Because of this, the use of materials with antimicrobial properties has been garnering interest. Nanoantibiotics, (nAbts), provide a new way to circumvent the current paradigm of antimicrobial discovery and presents a novel mechanism of attack not found in microbes yet; which may lead to a longer-term solution against drug-resistance formation. This allows for environment-specific activation and efficacy of the nAbts but may also open up and create new design methods for various applications. These nAbts provide promise, but there is still ample work to be done in their development. This review looks at possible ways of improving and optimizing nAbts by making them stimuli-responsive, then consider the challenges ahead, and industrial applications.Graphical abstractA graphic detailing how the current paradigm of antibiotic discovery can be circumvented by the use of nanoantibiotics.
Collapse
Affiliation(s)
- Julius A. Edson
- Department of Chemical Engineering and Material Science, University of California, Irvine, Irvine, CA USA
| | - Young Jik Kwon
- Department of Chemical Engineering and Material Science, University of California, Irvine, Irvine, CA USA
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA USA
- 132 Sprague Hall, Irvine, CA USA
| |
Collapse
|
38
|
Arya A, Majumdar DK, Pathak DP, Sharma AK, Ray AR. Design and evaluation of acrylate polymeric carriers for fabrication of pH-sensitive microparticles. Drug Dev Ind Pharm 2016; 43:305-318. [DOI: 10.1080/03639045.2016.1239629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Amit Arya
- Delhi Institute of Pharmaceutical Sciences and Research, (formerly College of Pharmacy), University of Delhi, Pushp Vihar, Sector III, New Delhi, India
| | - Dipak K. Majumdar
- Delhi Institute of Pharmaceutical Sciences and Research, (formerly College of Pharmacy), University of Delhi, Pushp Vihar, Sector III, New Delhi, India
- School of Pharmaceutical Sciences, Apeejay Stya University, Sohna, Haryana, India
| | - Dharam Pal Pathak
- Delhi Institute of Pharmaceutical Sciences and Research, (formerly College of Pharmacy), University of Delhi, Pushp Vihar, Sector III, New Delhi, India
| | - Anil K. Sharma
- Delhi Institute of Pharmaceutical Sciences and Research, (formerly College of Pharmacy), University of Delhi, Pushp Vihar, Sector III, New Delhi, India
| | - Alok R. Ray
- Centre for Biomedical Engineering, Indian Institute of Technology, Hauz Khas, New Delhi, India
| |
Collapse
|
39
|
Monteiro LO, Lopes SC, Barros ALB, Magalhães-Paniago R, Malachias Â, Oliveira MC, Leite EA. Phase behavior of dioleyphosphatidylethanolamine molecules in the presence of components of pH-sensitive liposomes and paclitaxel. Colloids Surf B Biointerfaces 2016; 144:276-283. [DOI: 10.1016/j.colsurfb.2016.04.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/22/2016] [Accepted: 04/07/2016] [Indexed: 11/29/2022]
|
40
|
Seo JW, Shin US. Preparation of Positively and Negatively Charged Carbon Nanotube-Collagen Hydrogels with pH Sensitive Characteristic. JOURNAL OF THE KOREAN CHEMICAL SOCIETY-DAEHAN HWAHAK HOE JEE 2016; 60:187-193. [DOI: 10.5012/jkcs.2016.60.3.187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
41
|
Samanta D, Hosseini-Nassab N, Zare RN. Electroresponsive nanoparticles for drug delivery on demand. NANOSCALE 2016; 8:9310-9317. [PMID: 27088543 DOI: 10.1039/c6nr01884j] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The potential of electroresponsive conducting polymer nanoparticles to be used as general drug delivery systems that allow electrically pulsed, linearly scalable, and on demand release of incorporated drugs is demonstrated. As examples, facile release from polypyrrole nanoparticles is shown for fluorescein, a highly water-soluble model compound, piroxicam, a lipophilic small molecule drug, and insulin, a large hydrophilic peptide hormone. The drug loading is about 13 wt% and release is accomplished in a few seconds by applying a weak constant current or voltage. To identify the parameters that should be finely tuned to tailor the carrier system for the release of the therapeutic molecule of interest, a systematic study of the factors that affect drug delivery is performed, using fluorescein as a model compound. The parameters studied include current, time, voltage, pH, temperature, particle concentration, and ionic strength. Results indicate that there are several degrees of freedom that can be optimized for efficient drug delivery. The ability to modulate linearly drug release from conducting polymers with the applied stimulus can be utilized to design programmable and minimally invasive drug delivery devices.
Collapse
Affiliation(s)
- Devleena Samanta
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | | | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
42
|
Lopes M, Shrestha N, Correia A, Shahbazi MA, Sarmento B, Hirvonen J, Veiga F, Seiça R, Ribeiro A, Santos HA. Dual chitosan/albumin-coated alginate/dextran sulfate nanoparticles for enhanced oral delivery of insulin. J Control Release 2016; 232:29-41. [PMID: 27074369 DOI: 10.1016/j.jconrel.2016.04.012] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/03/2016] [Accepted: 04/06/2016] [Indexed: 10/22/2022]
Abstract
The potential of nanoparticles (NPs) to overcome the barriers for oral delivery of protein drugs have led to the development of platforms capable of improving their bioavailability. However, despite the progresses in drug delivery technologies, the success of oral delivery of insulin remains elusive and the disclosure of insulin mechanisms of absorption remains to be clarified. To overcome multiple barriers faced by oral insulin and to enhance the insulin permeability across the intestinal epithelium, here insulin-loaded alginate/dextran sulfate (ADS)-NPs were formulated and dual-coated with chitosan (CS) and albumin (ALB). The nanosystem was characterized by its pH-sensitivity and mucoadhesivity, which enabled to prevent 70% of in vitro insulin release in simulated gastric conditions and allowed a sustained insulin release following the passage to simulated intestinal conditions. The pH and time-dependent morphology of the NPs was correlated to the release and permeation profile of insulin. Dual CS/ALB coating of the ADS-NPs demonstrated augmented intestinal interactions with the intestinal cells in comparison to the uncoated-NPs, resulting in a higher permeability of insulin across Caco-2/HT29-MTX/Raji B cell monolayers. The permeability of the insulin-loaded ALB-NPs was reduced after the temperature was decreased and after co-incubation with chlorpromazine, suggesting an active insulin transport by clathrin-mediated endocytosis. Moreover, the permeability inhibition with the pre-treatment with sodium chlorate suggested that the interaction between glycocalix and the NPs was critical for insulin permeation. Overall, the developed nanosystem has clinical potential for the oral delivery of insulin and therapy of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Marlene Lopes
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; CNrC-Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
| | - Neha Shrestha
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Alexandra Correia
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Mohammad-Ali Shahbazi
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Bruno Sarmento
- CESPU, Instituto de Investigacão e Formacão Avançada em Ciências e Tecnologias da Saúde, 4585-116 Gandra, Portugal; INEB-Instituto de Engenharia Biomédica, University of Porto, 4150-180 Porto, Portugal; I3S-Instituto de Investigacão e Inovacão em Saúde, University of Porto, 4150-180 Porto, Portugal
| | - Jouni Hirvonen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland
| | - Francisco Veiga
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; CNrC-Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
| | - Raquel Seiça
- IBILI-Instituto de Imagem Biomédica e Ciências da Vida, 3000-548 Coimbra, Portugal
| | - António Ribeiro
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal; I3S-Instituto de Investigacão e Inovacão em Saúde, University of Porto, 4150-180 Porto, Portugal; IBMC-Instituto de Biologia Molecular e Celular, 4150-180 Porto, Portugal.
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014 Helsinki, Finland.
| |
Collapse
|
43
|
Garriga R, Jurewicz I, Romero E, Jarne C, Cebolla VL, Dalton AB, Muñoz E. Two-Dimensional, pH-Responsive Oligoglycine-Based Nanocarriers. ACS APPLIED MATERIALS & INTERFACES 2016; 8:1913-1921. [PMID: 26730704 DOI: 10.1021/acsami.5b10077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The nanocarrier capabilities of atomically smooth two-dimensional sheets of a biantennary oligoglycine peptide C8H16(-CH2-NH-Gly5)2 (also called tectomers) are demonstrated. We show that the pH-controlled, rapid, and reversible assembly and disassembly of oligoglycine can be effectively used for controlled loading and release of the anticancer drug and fluorescent probe coralyne. The calculated partition coefficient in water is of the same order of magnitude or higher when compared to other nanocarriers such as liposomes and micelles, signifying the tectomer's impressive loading capabilities. Moreover, the loading of guest molecules in tectomers facilitates the protection from rapid photochemically induced degradation. Such efficient, pH-sensitive, stable, and biocompatible nanocarriers are extremely attractive for biosensing, therapeutic, and theranostic applications. Additionally, our results suggest that these planar self-assembled materials can also act as phase-transfer vehicles for hydrophobic cargoes further broadening their biomedical and technological applications.
Collapse
Affiliation(s)
- Rosa Garriga
- Departamento de Química Física, Universidad de Zaragoza , 50009 Zaragoza, Spain
| | - Izabela Jurewicz
- Department of Physics, Faculty of Engineering & Physical Sciences, University of Surrey , Guildford GU2 7XH, United Kingdom
| | - Elena Romero
- Instituto de Carboquímica ICB-CSIC , Miguel Luesma Castán 4, 50018 Zaragoza, Spain
| | - Carmen Jarne
- Instituto de Carboquímica ICB-CSIC , Miguel Luesma Castán 4, 50018 Zaragoza, Spain
| | - Vicente L Cebolla
- Instituto de Carboquímica ICB-CSIC , Miguel Luesma Castán 4, 50018 Zaragoza, Spain
| | - Alan B Dalton
- Department of Physics, Faculty of Engineering & Physical Sciences, University of Surrey , Guildford GU2 7XH, United Kingdom
| | - Edgar Muñoz
- Instituto de Carboquímica ICB-CSIC , Miguel Luesma Castán 4, 50018 Zaragoza, Spain
| |
Collapse
|
44
|
Jacques SA, Leriche G, Mosser M, Nothisen M, Muller CD, Remy JS, Wagner A. From solution to in-cell study of the chemical reactivity of acid sensitive functional groups: a rational approach towards improved cleavable linkers for biospecific endosomal release. Org Biomol Chem 2016; 14:4794-803. [DOI: 10.1039/c6ob00846a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
pH-Sensitive linkers designed to undergo selective hydrolysis at acidic pH compared to physiological pH can be used for the selective release of therapeutics at their site of action.
Collapse
Affiliation(s)
- Sylvain A. Jacques
- LFCS Laboratory
- CAMB UMR 7199 CNRS University of Strasbourg
- LabEx Medalis
- icFRC
- Faculty of Pharmacy
| | - Geoffray Leriche
- LFCS Laboratory
- CAMB UMR 7199 CNRS University of Strasbourg
- LabEx Medalis
- icFRC
- Faculty of Pharmacy
| | - Michel Mosser
- LFCS Laboratory
- CAMB UMR 7199 CNRS University of Strasbourg
- LabEx Medalis
- icFRC
- Faculty of Pharmacy
| | - Marc Nothisen
- V-SAT Laboratory
- CAMB UMR 7199 CNRS University of Strasbourg
- LabEx Medalis
- icFRC
- Faculty of Pharmacy
| | - Christian D. Muller
- Laboraroire d'Innovation Thérapeutique
- UMR 7200
- CNRS University of Strasbourg
- Faculty of Pharmacy
- 67400 Illkirch
| | - Jean-Serge Remy
- V-SAT Laboratory
- CAMB UMR 7199 CNRS University of Strasbourg
- LabEx Medalis
- icFRC
- Faculty of Pharmacy
| | - Alain Wagner
- LFCS Laboratory
- CAMB UMR 7199 CNRS University of Strasbourg
- LabEx Medalis
- icFRC
- Faculty of Pharmacy
| |
Collapse
|
45
|
Mahmud A, Abu Bakr M. Poly(maleic acid-co-propane-1,2-diol-co-adipic acid) for pH-triggered drug delivery. REACT FUNCT POLYM 2015. [DOI: 10.1016/j.reactfunctpolym.2015.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
46
|
Nekrasova T, Andreeva L, Nazarova O, Bezrukova M, Zolotova YI, Imanbaev R, Skorbunova O, Pautov V, Panarin E. Structural and dynamic characteristics of thermo- and pH-sensitive copolymers of 2-(diethylamino)ethyl methacrylate and 2-deoxy-2-methacrylamido- -glucose. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.09.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Nogueira E, Gomes AC, Preto A, Cavaco-Paulo A. Design of liposomal formulations for cell targeting. Colloids Surf B Biointerfaces 2015; 136:514-26. [PMID: 26454541 DOI: 10.1016/j.colsurfb.2015.09.034] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 01/04/2023]
Abstract
Liposomes have gained extensive attention as carriers for a wide range of drugs due to being both nontoxic and biodegradable as they are composed of substances naturally occurring in biological membranes. Active targeting for cells has explored specific modification of the liposome surface by functionalizing it with specific targeting ligands in order to increase accumulation and intracellular uptake into target cells. None of the Food and Drug Administration-licensed liposomes or lipid nanoparticles are coated with ligands or target moieties to delivery for homing drugs to target tissues, cells or subcellular organelles. Targeted therapies (with or without controlled drug release) are an emerging and relevant research area. Despite of the numerous liposomes reviews published in the last decades, this area is in constant development. Updates urgently needed to integrate new advances in targeted liposomes research. This review highlights the evolution of liposomes from passive to active targeting and challenges in the development of targeted liposomes for specific therapies.
Collapse
Affiliation(s)
- Eugénia Nogueira
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; CEB-Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Andreia C Gomes
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Ana Preto
- CBMA-Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB-Centre of Biological Engineering, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
48
|
Hizal F, Zhuk I, Sukhishvili S, Busscher HJ, van der Mei HC, Choi CH. Impact of 3D Hierarchical Nanostructures on the Antibacterial Efficacy of a Bacteria-Triggered Self-Defensive Antibiotic Coating. ACS APPLIED MATERIALS & INTERFACES 2015; 7:20304-20313. [PMID: 26305913 DOI: 10.1021/acsami.5b05947] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Titanium is often applied in implant surgery, but frequently implicated in infections associated with bacterial adhesion and growth on the implant surface. Here, we show that hierarchical nanostructuring of titanium and the subsequent coating of resulting topographical features with a self-defensive, antibacterial layer-by-layer (LbL) film enables a synergistic action of hierarchical nanotopography and localized, bacteria-triggered antibiotic release to dramatically enhance the antibacterial efficiency of surfaces. Although sole nanostructuring of titanium substrates did not significantly affect adhesion and growth of Staphylococcus aureus, the coating of 3D-nanopillared substrates with an ultrathin tannic acid/gentamicin (TA/G) LbL film resulted in a 10-fold reduction of the number of surface-attached bacteria. This effect is attributed to the enlarged surface area of the nanostructured coating available for localized bacteria-triggered release of antibiotics, as well as to the lower bacterial adhesion forces resulting in subsided activation of bacterial antibiotic-defense mechanisms when bacteria land on nanopillar tips. The result shows that a combination of 3D nanostructuring with a bacteria-triggered antibiotic-releasing coating presents a unique way to dramatically enhance antibacterial efficacy of biomaterial implants.
Collapse
Affiliation(s)
- Ferdi Hizal
- Department of Biomedical Engineering (FB40), University of Groningen and University Medical Center Groningen , Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | - Henk J Busscher
- Department of Biomedical Engineering (FB40), University of Groningen and University Medical Center Groningen , Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henny C van der Mei
- Department of Biomedical Engineering (FB40), University of Groningen and University Medical Center Groningen , Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | |
Collapse
|
49
|
Pohlit H, Bellinghausen I, Schömer M, Heydenreich B, Saloga J, Frey H. Biodegradable pH-Sensitive Poly(ethylene glycol) Nanocarriers for Allergen Encapsulation and Controlled Release. Biomacromolecules 2015; 16:3103-11. [PMID: 26324124 DOI: 10.1021/acs.biomac.5b00458] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In the last decades, the number of allergic patients has increased dramatically. Allergen-specific immunotherapy (SIT) is the only available cause-oriented therapy so far. SIT reduces the allergic symptoms, but also exhibits some disadvantages; that is, it is a long-lasting procedure and severe side effects like anaphylactic shock can occur. In this work, we introduce a method to encapsulate allergens into nanoparticles to avoid severe side effects during SIT. Degradable nanocarriers combine the advantage of providing a physical barrier between the encapsulated cargo and the biological environment as well as responding to certain local stimuli (like pH) to release their cargo. This work introduces a facile strategy for the synthesis of acid-labile poly(ethylene glycol) (PEG)-macromonomers that degrade at pH 5 (physiological pH inside the endolysosome) and can be used for nanocarrier synthesis. The difunctional, water-soluble PEG dimethacrylate (PEG-acetal-DMA) macromonomers with cleavable acetal units were analyzed with 1H NMR, SEC, and MALDI-ToF-MS. Both the allergen and the macromonomers were entrapped inside liposomes as templates, which were produced by dual centrifugation (DAC). Radical polymerization of the methacrylate units inside the liposomes generated allergen-loaded PEG nanocarriers. In vitro studies demonstrated that dendritic cells (DCs) internalize the protein-loaded, nontoxic PEG-nanocarriers. Furthermore, we demonstrate by cellular antigen stimulation tests that the nanocarriers effectively shield the allergen cargo from detection by immunoglobulins on the surface of basophilic leucocytes. Uptake of nanocarriers into DCs does not lead to cell maturation; however, the internalized allergen was capable to induce T cell immune responses.
Collapse
Affiliation(s)
- Hannah Pohlit
- Department of Dermatology, University Medical Center Mainz , Langenbeckstr. 1, 55131 Mainz, Germany.,Institute of Organic Chemistry, University of Mainz , Duesbergweg 10-14, 55128 Mainz, Germany.,Graduate School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany
| | - Iris Bellinghausen
- Department of Dermatology, University Medical Center Mainz , Langenbeckstr. 1, 55131 Mainz, Germany
| | - Martina Schömer
- Institute of Organic Chemistry, University of Mainz , Duesbergweg 10-14, 55128 Mainz, Germany
| | - Bärbel Heydenreich
- Department of Dermatology, University Medical Center Mainz , Langenbeckstr. 1, 55131 Mainz, Germany
| | - Joachim Saloga
- Department of Dermatology, University Medical Center Mainz , Langenbeckstr. 1, 55131 Mainz, Germany
| | - Holger Frey
- Institute of Organic Chemistry, University of Mainz , Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
50
|
Nam JP, Lee KJ, Choi JW, Yun CO, Nah JW. Targeting delivery of tocopherol and doxorubicin grafted-chitosan polymeric micelles for cancer therapy: In vitro and in vivo evaluation. Colloids Surf B Biointerfaces 2015; 133:254-62. [DOI: 10.1016/j.colsurfb.2015.06.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/14/2015] [Accepted: 06/08/2015] [Indexed: 01/15/2023]
|