451
|
Dierlamm J, Wlodarska I, Michaux L, Stefanova M, Hinz K, Van Den Berghe H, Hagemeijer A, Hossfeld DK. Genetic abnormalities in marginal zone B-cell lymphoma. Hematol Oncol 2000; 18:1-13. [PMID: 10797525 DOI: 10.1002/(sici)1099-1069(200003)18:1<1::aid-hon647>3.0.co;2-g] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Marginal zone B-cell lymphoma (MZBCL) including extranodal mucosa-associated lymphoid tissue (MALT)-type lymphoma, nodal, and splenic MZBCL represents a distinct subtype of B-non-Hodgkin's lymphoma. Recently, important progress in the elucidation of the genetic mechanisms underlying the pathogenesis and disease progression of these lymphomas has been made. The API2 gene, an inhibitor of apoptosis, and the novel MLT gene have been found to be altered by the t(11;18)(q21;21), which represents the most frequent structural chromosomal abnormality in extranodal low-grade MALT lymphoma. Another gene involved in the regulation of apoptosis, the BCL10 gene, has been cloned from a MALT lymphoma cytogenetically characterized by the t(1;14)(p22;q32). Along the same lines, inactivating mutations of the proapoptotic FAS gene have been detected in a relatively high proportion of extranodal MZBCLs. Considering these data and the fact that at least some MALT lymphomas show low levels of apoptosis and seem to escape from FAS-mediated apoptosis one may speculate that abrogation of apoptosis constitutes a central pathogenetic mechanism in the development of these lymphomas. The pathogenetic role of trisomy 3, the most frequent numerical chromosomal change of MZBCL, is not known. The minimal overrepresented region has been delineated to 3q21-23 and 3q25-29 using comparative genomic hybridization. The BCL6 proto-oncogene, located on 3q27, which is rearranged in some MZBCL and a high proportion of large cell B-cell lymphomas with extranodal localization, represents one of the candidate genes residing in these critical regions.
Collapse
MESH Headings
- Chromosome Aberrations
- Chromosomes, Human, Pair 1
- Chromosomes, Human, Pair 11
- Chromosomes, Human, Pair 14
- Chromosomes, Human, Pair 18
- Humans
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/physiopathology
- Lymphoma, B-Cell, Marginal Zone/genetics
- Lymphoma, B-Cell, Marginal Zone/physiopathology
- Mutation
- Proto-Oncogene Mas
- Translocation, Genetic
Collapse
Affiliation(s)
- J Dierlamm
- Department of Oncology and Hematology, University Hospital Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
452
|
Hozak RR, Manji GA, Friesen PD. The BIR motifs mediate dominant interference and oligomerization of inhibitor of apoptosis Op-IAP. Mol Cell Biol 2000; 20:1877-85. [PMID: 10669762 PMCID: PMC85372 DOI: 10.1128/mcb.20.5.1877-1885.2000] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The defining structural motif of the inhibitor of apoptosis (iap) protein family is the BIR (baculovirus iap repeat), a highly conserved zinc coordination domain of approximately 70 residues. Although the BIR is required for inhibitor-of-apoptosis (IAP) function, including caspase inhibition, its molecular role in antiapoptotic activity in vivo is unknown. To define the function of the BIRs, we investigated the activity of these structural motifs within Op-IAP, an efficient, virus-derived IAP. We report here that Op-IAP(1-216), a loss-of-function truncation which contains two BIRs but lacks the C-terminal RING motif, potently interfered with Op-IAP's capacity to block apoptosis induced by diverse stimuli. In contrast, Op-IAP(1-216) had no effect on apoptotic suppression by caspase inhibitor P35. Consistent with a mechanism of dominant inhibition that involves direct interaction between Op-IAP(1-216) and full-length Op-IAP, both proteins formed an immunoprecipitable complex in vivo. Op-IAP also self-associated. In contrast, the RING motif-containing truncation Op-IAP(183-268) failed to interact with or interfere with Op-IAP function. Substitution of conserved residues within BIR 2 caused loss of dominant inhibition by Op-IAP(1-216) and coincided with loss of interaction with Op-IAP. Thus, residues encompassing the BIRs mediate dominant inhibition and oligomerization of Op-IAP. Consistent with dominant interference by interaction with an endogenous cellular IAP, Op-IAP(1-216) also lowered the survival threshold of cultured insect cells. Taken together, these data suggest a new model wherein the antiapoptotic function of IAP requires homo-oligomerization, which in turn mediates specific interactions with cellular apoptotic effectors.
Collapse
Affiliation(s)
- R R Hozak
- Department of Biochemistry and Institute for Molecular Virology, Graduate School and College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
453
|
Jiang C, Lamblin AF, Steller H, Thummel CS. A steroid-triggered transcriptional hierarchy controls salivary gland cell death during Drosophila metamorphosis. Mol Cell 2000; 5:445-55. [PMID: 10882130 DOI: 10.1016/s1097-2765(00)80439-6] [Citation(s) in RCA: 207] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The steroid hormone ecdysone signals the stage-specific programmed cell death of the larval salivary glands during Drosophila metamorphosis. This response is preceded by an ecdysone-triggered switch in gene expression in which the diap2 death inhibitor is repressed and the reaper (rpr) and head involution defective (hid) death activators are induced. Here we show that rpr is induced directly by the ecdysone-receptor complex through an essential response element in the rpr promoter. The Broad-Complex (BR-C) is required for both rpr and hid transcription, while E74A is required for maximal levels of hid induction. diap2 induction is dependent on betaFTZ-F1, while E75A and E75B are each sufficient to repress diap2. This study identifies transcriptional regulators of programmed cell death in Drosophila and provides a direct link between a steroid signal and a programmed cell death response.
Collapse
Affiliation(s)
- C Jiang
- Howard Hughes Medical Institute, Department of Human Genetics, University of Utah, Salt Lake City 84112, USA
| | | | | | | |
Collapse
|
454
|
Abstract
We have isolated the recently identified Drosophila caspase DRONC through its interaction with the effector caspase drICE. Ectopic expression of DRONC induces cell death in Schizosaccharomyces pombe, mammalian fibroblasts and the developing Drosophila eye. The caspase inhibitor p35 fails to rescue DRONC-induced cell death in vivo and is not cleaved by DRONC in vitro, making DRONC the first identified p35-resistant caspase. The DRONC pro-domain interacts with Drosphila inhibitor of apoptosis protein 1 (DIAP1), and co-expression of DIAP1 in the developing Drosophila eye completely reverts the eye ablation phenotype induced by pro-DRONC expression. In contrast, DIAP1 fails to rescue eye ablation induced by DRONC lacking the pro-domain, indicating that interaction of DIAP1 with the pro-domain of DRONC is required for suppression of DRONC-mediated cell death. Heterozygosity at the diap1 locus enhances the pro-DRONC eye phenotype, consistent with a role for endogenous DIAP1 in suppression of DRONC activation. Both heterozygosity at the dronc locus and expression of dominant-negative DRONC mutants suppress the eye phenotype caused by reaper (RPR) and head involution defective (HID), consistent with the idea that DRONC functions in the RPR and HID pathway.
Collapse
Affiliation(s)
- P Meier
- Biochemistry of the Cell Nucleus Laboratory, Imperial Cancer Research Fund, 44 Lincoln's Inn Fields, London WC2A 3PX
| | | | | | | |
Collapse
|
455
|
Goyal L, McCall K, Agapite J, Hartwieg E, Steller H. Induction of apoptosis by Drosophila reaper, hid and grim through inhibition of IAP function. EMBO J 2000; 19:589-97. [PMID: 10675328 PMCID: PMC305597 DOI: 10.1093/emboj/19.4.589] [Citation(s) in RCA: 367] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/1999] [Revised: 12/13/1999] [Accepted: 12/13/1999] [Indexed: 11/13/2022] Open
Abstract
Induction of apoptosis in Drosophila requires the activity of three closely linked genes, reaper, hid and grim. Here we show that the proteins encoded by reaper, hid and grim activate cell death by inhibiting the anti-apoptotic activity of the Drosophila IAP1 (diap1) protein. In a genetic modifier screen, both loss-of-function and gain-of-function alleles in the endogenous diap1 gene were obtained, and the mutant proteins were functionally and biochemically characterized. Gain-of-function mutations in diap1 strongly suppressed reaper-, hid- and grim-induced apoptosis. Sequence analysis of these alleles revealed that they were caused by single amino acid changes in the baculovirus IAP repeat domains of diap1, a domain implicated in binding REAPER, HID and GRIM. Significantly, the corresponding mutant DIAP1 proteins displayed greatly reduced binding of REAPER, HID and GRIM, indicating that REAPER, HID and GRIM kill by forming a complex with DIAP1. These data provide strong in vivo evidence for a previously published model of cell death regulation in Drosophila.
Collapse
Affiliation(s)
- L Goyal
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Departments of Biology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
456
|
Lisi S, Mazzon I, White K. Diverse domains of THREAD/DIAP1 are required to inhibit apoptosis induced by REAPER and HID in Drosophila. Genetics 2000; 154:669-78. [PMID: 10655220 PMCID: PMC1460939 DOI: 10.1093/genetics/154.2.669] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Significant amounts of apoptosis take place during Drosophila development. The proapoptotic genes reaper (rpr), grim, and head involution defective (hid) are required for virtually all embryonic apoptosis. The proteins encoded by these genes share a short region of homology at their amino termini. The Drosophila IAP homolog THREAD/DIAP1 (TH/DIAP1), encoded by the thread (th) gene, negatively regulates apoptosis during development. It has been proposed that RPR, GRIM, and HID induce apoptosis by binding and inactivating TH/DIAP1. The region of homology between the three proapoptotic proteins has been proposed to bind to the conserved BIR2 domain of TH/DIAP1. Here, we present an analysis of loss-of-function and gain-of-function alleles of th, which indicates that additional domains of TH/DIAP1 are necessary for its ability to inhibit death induced by RPR, GRIM, and HID. In addition, that analysis of loss-of-function mutations demonstrates that th is necessary to block apoptosis very early in embryonic development. This may reflect a requirement to block maternally provided RPR and HID, or it may indicate another function of the TH/DIAP1 protein.
Collapse
Affiliation(s)
- S Lisi
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | | | | |
Collapse
|
457
|
Pari G, Berrada F, Verge G, Karpati G, Nalbantoglu J. Immunolocalization of NAIP in the human brain and spinal cord. Neuroreport 2000; 11:9-14. [PMID: 10683821 DOI: 10.1097/00001756-200001170-00003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The neuronal apoptosis inhibitory protein (NAIP) is known to have anti-apoptotic functions, and its gene is often mutated in severe cases of spinal muscular atrophy (SMA), a disease characterized by motor neuron degeneration. In this study, we examined the distribution of the endogenous NAIP protein in normal human spinal cord and brain tissue by using a polyclonal antibody against NAIP. Immunohistochemical staining demonstrated that NAIP is strongly expressed in anterior horn and motor cortex neurons of normal brains, and it is not altered in the remaining motor neurons of patients with amyotrophic lateral sclerosis (ALS). NAIP is also located in human fetal neurons and in adult choroid plexus cells. These results suggest that the anti apoptotic molecule NAIP may be important in motor neurons, but it specifically does not appear to be altered in ALS.
Collapse
Affiliation(s)
- G Pari
- Montreal Neurological Institute, Quebec, Canada
| | | | | | | | | |
Collapse
|
458
|
Abstract
Key components of the programmed cell death pathway are conserved between Caenorhabditis elegans, Drosophila melanogaster and humans. The search for additional homologs has been facilitated by the availability of the entire genomic sequence for each of these organisms.
Collapse
Affiliation(s)
- Jan N Tittel
- Howard Hughes Medical Institute, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Hermann Steller
- Howard Hughes Medical Institute, Department of Biology and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA. E-mail:
| |
Collapse
|
459
|
Abstract
The rapid increase in the incidence of the B cell non-Hodgkin's lymphomas (NHL) and improved understanding of the mechanisms involved in their development renders timely a review of the theoretical and practical aspects of molecular abnormalities in B cell NHL.In Section I, Dr. Macintyre addresses the practical aspects of the use of molecular techniques for the diagnosis and therapeutic management of patients with B cell NHL. While detection of clonal Ig rearrangements is widely used to distinguish reactive from malignant lymphoproliferative disorders, molecular informativity is variable. The relative roles of cytogenetic, molecular and immunological techniques in the detection of genetic abnormalities and their protein products varies with the clinical situation. Consequently, the role of molecular analysis relative to morphological classification is evolving. Integrated diagnostic services are best equipped to cope with these changes. Recent evidence that large scale gene expression profiling allows improved prognostic stratification of diffuse large cell lymphoma suggests that the choice of diagnostic techniques will continue to change significantly and rapidly.In Section II, Dr. Willerford reviews current understanding of the mechanisms involved in immunoglobulin (Ig) gene rearrangement during B lymphoid development and the way in which these processes may contribute to Ig-locus chromosome translocations in lymphoma. Recent insights into the regulation of Ig gene diversification indicate that genetic plasticity in B lymphocytes is much greater than previously suspected. Physiological genomic instability, which may include isotype switching, recombination revision and somatic mutation, occurs in germinal centers in the context of immune responses and may explain longstanding clinical observations that link immunity and lymphoid neoplasia. Data from murine models and human disorders predisposing to NHL have been used to illustrate these issues.In Section III, Dr. Morris reviews the characteristics and consequences of deregulation of novel “proto-oncogenes” involved in B cell NHL, including PAX5 (chromosome 9p 13), BCL8 (15q11-q13), BCL9, MUC1, FcγRIIB and other 1q21-q22 genes and BCL10 (1p22). The AP12-MLT/MALT1 [t(11;18)(q21;q21)] fusion transcript is also described.
Collapse
|
460
|
Abstract
AbstractThe rapid increase in the incidence of the B cell non-Hodgkin's lymphomas (NHL) and improved understanding of the mechanisms involved in their development renders timely a review of the theoretical and practical aspects of molecular abnormalities in B cell NHL.In Section I, Dr. Macintyre addresses the practical aspects of the use of molecular techniques for the diagnosis and therapeutic management of patients with B cell NHL. While detection of clonal Ig rearrangements is widely used to distinguish reactive from malignant lymphoproliferative disorders, molecular informativity is variable. The relative roles of cytogenetic, molecular and immunological techniques in the detection of genetic abnormalities and their protein products varies with the clinical situation. Consequently, the role of molecular analysis relative to morphological classification is evolving. Integrated diagnostic services are best equipped to cope with these changes. Recent evidence that large scale gene expression profiling allows improved prognostic stratification of diffuse large cell lymphoma suggests that the choice of diagnostic techniques will continue to change significantly and rapidly.In Section II, Dr. Willerford reviews current understanding of the mechanisms involved in immunoglobulin (Ig) gene rearrangement during B lymphoid development and the way in which these processes may contribute to Ig-locus chromosome translocations in lymphoma. Recent insights into the regulation of Ig gene diversification indicate that genetic plasticity in B lymphocytes is much greater than previously suspected. Physiological genomic instability, which may include isotype switching, recombination revision and somatic mutation, occurs in germinal centers in the context of immune responses and may explain longstanding clinical observations that link immunity and lymphoid neoplasia. Data from murine models and human disorders predisposing to NHL have been used to illustrate these issues.In Section III, Dr. Morris reviews the characteristics and consequences of deregulation of novel “proto-oncogenes” involved in B cell NHL, including PAX5 (chromosome 9p 13), BCL8 (15q11-q13), BCL9, MUC1, FcγRIIB and other 1q21-q22 genes and BCL10 (1p22). The AP12-MLT/MALT1 [t(11;18)(q21;q21)] fusion transcript is also described.
Collapse
|
461
|
White KP, Rifkin SA, Hurban P, Hogness DS. Microarray analysis of Drosophila development during metamorphosis. Science 1999; 286:2179-84. [PMID: 10591654 DOI: 10.1126/science.286.5447.2179] [Citation(s) in RCA: 367] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Metamorphosis is an integrated set of developmental processes controlled by a transcriptional hierarchy that coordinates the action of hundreds of genes. In order to identify and analyze the expression of these genes, high-density DNA microarrays containing several thousand Drosophila melanogaster gene sequences were constructed. Many differentially expressed genes can be assigned to developmental pathways known to be active during metamorphosis, whereas others can be assigned to pathways not previously associated with metamorphosis. Additionally, many genes of unknown function were identified that may be involved in the control and execution of metamorphosis. The utility of this genome-based approach is demonstrated for studying a set of complex biological processes in a multicellular organism.
Collapse
Affiliation(s)
- K P White
- Department of Developmental Biology, Beckman Center B300, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | | | | | | |
Collapse
|
462
|
Wall NR, Mohammad RM, Nabha SM, Pettit GR, Al-Katib AM. Modulation of cIAP-1 by novel antitubulin agents when combined with bryostatin 1 results in increased apoptosis in the human early pre-B acute lymphoblastic leukemia cell line Reh. Biochem Biophys Res Commun 1999; 266:76-80. [PMID: 10581168 DOI: 10.1006/bbrc.1999.1768] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have shown that bryostatin 1 induces a decrease in the expression of the antiapoptotic protooncogene Bcl-2 in the human acute lymphoblastic leukemia (ALL) cell line Reh. This down-regulation has been shown to reduce drug resistance of the Reh cells to anti-tubulin polymerization agents. In the present study we investigated the effect of bryostatin 1 alone and in combination with novel anti-tubulin agents (dolastatin 10 and auristatin PE) and the chemotherapeutic vincristine on the inhibitor of apoptosis protein cIAP-1. Cells were cultured with bryostatin 1 (1 nM), dolastatin 10 (0.1 ng/ml), auristatin PE (0.1 ng/ml), or vincristine (0.5 ng/ml) alone or the combination of these anti-tubulins with bryostatin 1. Western blots were conducted to assess the effects of the above agents on cIAP-1 protein level. Flow-cytometric analysis [7-amino-actinomycin D (7AAD)] was conducted to assess apoptosis as well as staining for morphology using tetrachrome stain. Our results show that cIAP-1 is induced in a time-dependent fashion after bryostatin 1 exposure up to 72 h. However, upon treatment of cells with a combination of bryostatin 1 and dolastatin 10 or auristatin PE, the induction of cIAP-1 was abolished, leading to a significant increase in apoptosis. The initial 24- and 48-h reduction in cIAP-1 protein level recorded in the bryostatin 1 and vincristine combination recovered to control levels by 72 h. We believe that this phenomenon is responsible for the reduced apoptosis recorded in this combination. Results of this study should prove useful in guiding the clinical application of these novel agents in the treatment of ALL.
Collapse
Affiliation(s)
- N R Wall
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
463
|
|
464
|
Apoptosis regulating proteins as targets of therapy for haematological malignancies. Expert Opin Investig Drugs 1999; 8:2027-2057. [PMID: 11139839 DOI: 10.1517/13543784.8.12.2027] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Most chemotherapeutic agents used in the treatment of haematological malignancies cause cell death by inducing apoptosis through undefined means. The discovery of the proteins involved in apoptosis and the description of apoptotic pathways suggest new potential targets for therapeutic intervention. Both 'intrinsic' and 'extrinsic' pathways can be activated separately, but activation of caspases appears central to most apoptotic pathways. Novel approaches attempt to induce apoptosis by directly targeting a portion of an apoptotic pathway. Agents that trigger signalling of Fas or tumour necrosis factor- (TNF-) related apoptosis inducing ligand (TRAIL) receptor seek to induce the extrinsic pathway at the cell surface. The BCL-2 family of proteins seems central to the regulation of those apoptotic pathways that involve mitochondrial sequestration or the release of cytochrome c, with subsequent activation of Apaf-1, caspase-9 and caspase-3. The activity of this family may depend upon both the phosphorylation state of different members and the relative level of pro- and anti-apoptotic members. New agents such as the staurosporine analogue UCN-01 and bryostatin are thought to affect apoptosis induction by altering BCL-2 phosphorylation. Others, such as BCL-2 antisense and ATRA attempt to modulate the protein levels to promote apoptosis. Direct activation of caspase-3 is a probable target, but as yet no agent with this direct function is in trial. Clinical trials of several agents have been completed or are underway. It is likely that agents that target particular points in apoptosis pathways will have antileukaemia/lymphoma activity, however, the optimal utilisation may involve combination with other more conventional agents that also activate apoptosis.
Collapse
|
465
|
|
466
|
Bonini NM, Fortini ME. Surviving Drosophila eye development: integrating cell death with differentiation during formation of a neural structure. Bioessays 1999; 21:991-1003. [PMID: 10580984 DOI: 10.1002/(sici)1521-1878(199912)22:1<991::aid-bies3>3.0.co;2-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Normal differentiation requires an appropriately orchestrated sequence of developmental events. Regulation of cell survival and cell death is integrated with these events to achieve proper cell number, cell type, and tissue structure. Here we review regulation of cell survival in the context of a precisely patterned neural structure: the Drosophila compound eye. Numerous mutations lead to altered differentiation and are frequently accompanied by altered patterns of cell death. We discuss various critical times of normal eye development, highlighting how inappropriate regulation of cell death contributes to different mutant phenotypes associated with genes that specify the entire eye primordia, others that pattern the retina, and those that eliminate extraneous cells to refine the precise pigment cell lattice. Finally, we address how the Drosophila eye may allow identification of additional mechanisms that contribute to the normal integration of cell survival with appropriate events of cellular differentiation.
Collapse
Affiliation(s)
- N M Bonini
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | | |
Collapse
|
467
|
|
468
|
Abstract
Successful viral replication requires not only the efficient production and spread of progeny, but also evasion of host defense mechanisms that limit replication by killing infected cells. In addition to inducing immune and inflammatory responses, infection by most viruses triggers apoptosis or programmed cell death of the infected cell. This cell response often results as a compulsory or unavoidable by-product of the action of critical viral replicative functions. In addition, some viruses seem to use apoptosis as a mechanism of cell killing and virus spread. In both cases, successful replication relies on the ability of certain viral products to block or delay apoptosis until sufficient progeny have been produced. Such proteins target a variety of strategic points in the apoptotic pathway. In this review we summarize the great amount of recent information on viruses and apoptosis and offer insights into how this knowledge may be used for future research and novel therapies.
Collapse
Affiliation(s)
- A Roulston
- GeminX Biotechnologies Inc., Montreal, Quebec, Canada.
| | | | | |
Collapse
|
469
|
Chen Z, Naito M, Hori S, Mashima T, Yamori T, Tsuruo T. A human IAP-family gene, apollon, expressed in human brain cancer cells. Biochem Biophys Res Commun 1999; 264:847-54. [PMID: 10544019 DOI: 10.1006/bbrc.1999.1585] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
IAP is a family of protein that has baculovirus IAP repeat (BIR) domains and inhibits apoptosis. We found a human IAP family gene, which we named Apollon, encoding a huge protein (530 kDa) that contains a single BIR domain and a ubiquitin-conjugating enzyme domain, that is a human homolog of BRUCE. Apollon protein was expressed in four of six brain cancers (gliomas), and one of five ovarian cancers in 38 human cancer cell lines that we examined. Among the brain cancer cell lines, SNB-78 expressed a high level of Apollon, and this cell line shows resistance against various anticancer drugs. Treating SNB-78 cells with antisense oligonucleotide against Apollon reduced the expression of Apollon protein, and significantly sensitized the cells to apoptosis induced by cisplatin and camptothecin. These results suggest that Apollon protects SNB-78 cells from undergoing apoptosis and, at least in part, plays a role in tumorigenesis and drug resistance of this cell line.
Collapse
Affiliation(s)
- Z Chen
- Institute of Molecular Biosciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | | | | | | | | | | |
Collapse
|
470
|
Abstract
Apoptosis research demonstrates that, even though the multitude of regulatory circuits controlling programmed cell death might diverge, core elements of the 'apoptotic engine' are widely conserved. Therefore, studies in less complex model systems, such as the nematode and the fly, should continue to have a profound impact on our understanding of the process. This review explores genes and molecules that control apoptosis in Drosophila. The death inducers Reaper, Grim and Hid relay signals, possibly through IAPs (inhibitor of apoptosis proteins) and Dark (an Apaf-1/Ced-4 homologue), to trigger caspase function. This animal model promises continued insights into the determinants of cell death in 'naturally occurring' and pathological contexts.
Collapse
Affiliation(s)
- J M Abrams
- Dept of Cell Biology, The University of Texas, Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235-9039, USA.
| |
Collapse
|
471
|
Charroux B, Angelats C, Fasano L, Kerridge S, Vola C. The levels of the bancal product, a Drosophila homologue of vertebrate hnRNP K protein, affect cell proliferation and apoptosis in imaginal disc cells. Mol Cell Biol 1999; 19:7846-56. [PMID: 10523673 PMCID: PMC84859 DOI: 10.1128/mcb.19.11.7846] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We have characterized the Drosophila bancal gene, which encodes a Drosophila homologue of the vertebrate hnRNP K protein. The bancal gene is essential for the correct size of adult appendages. Reduction of appendage size in bancal mutant flies appears to be due mainly to a reduction in the number of cell divisions in the imaginal discs. Transgenes expressing Drosophila or human hnRNP K are able to rescue weak bancal phenotype, showing the functional similarity of these proteins in vivo. High levels of either human or Drosophila hnRNP K protein in imaginal discs induces programmed cell death. Expression of the antiapoptotic P35 protein suppresses this phenotype in the eye, suggesting that apoptosis is the major cellular defect caused by overexpression of K protein. Finally, the human K protein acts as a negative regulator of bancal gene expression. We propose that negative autoregulation limits the level of Bancal protein produced in vivo.
Collapse
Affiliation(s)
- B Charroux
- Laboratoire de Génétique et Physiologie du Développement, UMR 6545 CNRS-Université, IBDM CNRS-INSERM-Université de la Méditerrannée, F-13288 Marseille Cedex 09, France
| | | | | | | | | |
Collapse
|
472
|
Zhou L, Song Z, Tittel J, Steller H. HAC-1, a Drosophila homolog of APAF-1 and CED-4 functions in developmental and radiation-induced apoptosis. Mol Cell 1999; 4:745-55. [PMID: 10619022 DOI: 10.1016/s1097-2765(00)80385-8] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have identified a Drosophila homolog of Apaf-1 and ced-4, termed hac-1. Like mammalian APAF-1, HAC-1 can activate caspases in a dATP-dependent manner in vitro. During embryonic development, hac-1 is prominently expressed in regions where cells undergo natural death. Significantly, hac-1 transcription is also rapidly induced upon ionizing irradiation, similar to the proapoptotic gene reaper. Loss of hac-1 function causes reduced cell death, and reducing the dosage of hac-1 suppresses ectopic cell killing upon expression of the dcp-1 procaspase in the retina but has little effect on reaper, hid, and grim-mediated killing. Our data indicate that caspase activation and apoptosis in Drosophila are independently controlled by at least two distinct regulatory pathways that converge at the level of caspase activation.
Collapse
Affiliation(s)
- L Zhou
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | |
Collapse
|
473
|
Abstract
The reaper and head involution defective genes can induce apoptotic death in several Drosophila cell types, including portions of the embryo and eye. By a combination of FLP recombinase and the yeast Gal4/UAS transcription activation system, we expressed both cell death genes in discrete clones in the adult ovarian follicle cell layer. The expression of either reaper or head involution defective induced follicle cell apoptosis during all oogenic stages. Unexpectedly, the disruption of the follicle layer led to the induced degeneration of the nurse cells in an apoptotic manner, demonstrating a germline-somatic interaction required for germ cell viability. The germline apoptosis initiates at a specific time in oogenesis, coinciding with the beginning of vitellogenesis. This observation is intriguing given previous suggestions of a process to eliminate defective egg chambers at these same oogenic stages. The induce germline degeneration initiates with the transient formation of a network of filamentous actin around the nurse cell nucleus, in close association with a product of the adducin-related hu-li tai shao gene. This was immediately followed by nuclear condensation and DNA fragmentation, both characteristics diagnostic of apoptosis. Occurring concomitantly with the nuclear phenotypes were the disorganization of ring canals, and the degradation of Armadillo protein (a beta-catenin homolog) and filamentous actin. Germ cells degenerating as a normal consequence of oogenesis displayed a similar set of phenotypes, suggesting that a common apoptotic mechanism may underlie these different germline death phenomena.
Collapse
Affiliation(s)
- S Chao
- Department of Biological Sciences, University of Iowa, Iowa City, IA 52242-1234, USA
| | | |
Collapse
|
474
|
Sun C, Cai M, Gunasekera AH, Meadows RP, Wang H, Chen J, Zhang H, Wu W, Xu N, Ng SC, Fesik SW. NMR structure and mutagenesis of the inhibitor-of-apoptosis protein XIAP. Nature 1999; 401:818-22. [PMID: 10548111 DOI: 10.1038/44617] [Citation(s) in RCA: 247] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The inhibitor-of-apoptosis (IAP) family of proteins, originally identified in baculoviruses, regulate programmed cell death in a variety of organisms. IAPs inhibit specific enzymes (caspases) in the death cascade and contain one to three modules of a common 70-amino-acid motif called the BIR domain. Here we describe the nuclear magnetic resonance structure of a region encompassing the second BIR domain (BIR2) of a human IAP family member, XIAP (also called hILP or MIHA). The structure of the BIR domain consists of a three-stranded antiparallel beta-sheet and four alpha-helices and resembles a classical zinc finger. Unexpectedly, conserved amino acids within the linker region between the BIR1 and BIR2 domains were found to be critical for inhibiting caspase-3. The absence or presence of these residues may explain the differences in caspase inhibition observed for different truncated and full-length IAPs. Our data further indicate that these residues may bind to the active site and that the BIR domain may interact with an adjacent site on the enzyme.
Collapse
Affiliation(s)
- C Sun
- Pharmaceutical Discovery Division, Abbott Laboratories, Abbott Park, Illinois 60064, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
475
|
Matsumoto K, Nakayama T, Sakai H, Tanemura K, Osuga H, Sato E, Ikeda JE. Neuronal apoptosis inhibitory protein (NAIP) may enhance the survival of granulosa cells thus indirectly affecting oocyte survival. Mol Reprod Dev 1999; 54:103-11. [PMID: 10471469 DOI: 10.1002/(sici)1098-2795(199910)54:2<103::aid-mrd1>3.0.co;2-v] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In mammals, the postnatal loss of more than 99% of female germ cells is due mainly to the process of ovarian follicular atresia. Atresia is known to be mediated by apoptotic granulosa cell-death. Here we show the involvement of neuronal apoptosis inhibitory protein (NAIP) in ovarian folliculogenesis in which it prevents granulosa cell-death. NAIP has been isolated in association with a neurodegenerative disorder, spinal muscular atrophy (SMA), in which it has been shown to suppress mammalian cell-death induced by a variety of stimuli (Liston et al., 1996, Nature 379:349-353). In an in situ hybridization analysis with mouse ovaries, active expression of NAIP mRNA was localized in the granulosa cells of developing follicles from the primary stage to the Graafian stages, whereas the NAIP gene was not expressed or was weakly expressed in follicles that might be undergoing atresia. Gonadotropin, which is known to inhibit apoptosis in ovarian follicles, caused a 2.4-fold increase in NAIP gene expression in the ovary. To study the role of ovarian NAIP, antisense NAIP oligonucleotides were locally delivered into the ovarian bursa. Suppression of ovarian NAIP expression with antisense oligonucleotides evoked a decrease in the number of morphologically normal ovulated oocytes, implying an indirect involvement of NAIP in germ cell development by enhancing the survival of granulosa cells. These findings suggest that gonadotropin-inducible NAIP may indirectly affect oocyte survival as a result of the inhibition of apoptotic granulosa cell-death during folliculogenesis.
Collapse
Affiliation(s)
- K Matsumoto
- NeuroGenes, International Cooperative Research Project (ICORP), Tokai University, Isehara, Japan
| | | | | | | | | | | | | |
Collapse
|
476
|
Adachi-Yamada T, Gotoh T, Sugimura I, Tateno M, Nishida Y, Onuki T, Date H. De novo synthesis of sphingolipids is required for cell survival by down-regulating c-Jun N-terminal kinase in Drosophila imaginal discs. Mol Cell Biol 1999; 19:7276-86. [PMID: 10490662 PMCID: PMC84720 DOI: 10.1128/mcb.19.10.7276] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) is a conserved eukaryotic signaling factor that mediates various signals, cumulating in the activation of transcription factors. Extracellular signal-regulated kinase (ERK), a MAPK, is activated through phosphorylation by the kinase MAPK/ERK kinase (MEK). To elucidate the extent of the involvement of ERK in various aspects of animal development, we searched for a Drosophila mutant which responds to elevated MEK activity and herein identified a lace mutant. Mutants with mild lace alleles grow to become adults with multiple aberrant morphologies in the appendages, compound eye, and bristles. These aberrations were suppressed by elevated MEK activity. Structural and transgenic analyses of the lace cDNA have revealed that the lace gene product is a membrane protein similar to the yeast protein LCB2, a subunit of serine palmitoyltransferase (SPT), which catalyzes the first step of sphingolipid biosynthesis. In fact, SPT activity in the fly expressing epitope-tagged Lace was absorbed by epitope-specific antibody. The number of dead cells in various imaginal discs of a lace hypomorph was considerably increased, thereby ectopically activating c-Jun N-terminal kinase (JNK), another MAPK. These results account for the adult phenotypes of the lace mutant and suppression of the phenotypes by elevated MEK activity: we hypothesize that mutation of lace causes decreased de novo synthesis of sphingolipid metabolites, some of which are signaling molecules, and one or more of these changes activates JNK to elicit apoptosis. The ERK pathway may be antagonistic to the JNK pathway in the control of cell survival.
Collapse
Affiliation(s)
- T Adachi-Yamada
- Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
| | | | | | | | | | | | | |
Collapse
|
477
|
Ye Y, Fortini ME. Apoptotic activities of wild-type and Alzheimer's disease-related mutant presenilins in Drosophila melanogaster. J Cell Biol 1999; 146:1351-64. [PMID: 10491396 PMCID: PMC2156122 DOI: 10.1083/jcb.146.6.1351] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/1999] [Accepted: 08/06/1999] [Indexed: 11/22/2022] Open
Abstract
Mutant human presenilins cause early-onset familial Alzheimer's disease and render cells susceptible to apoptosis in cultured cell models. We show that loss of presenilin function in Drosophila melanogaster increases levels of apoptosis in developing tissues. Moreover, overexpression of presenilin causes apoptotic and neurogenic phenotypes resembling those of Presenilin loss-of-function mutants, suggesting that presenilin exerts a dominant negative effect when expressed at high levels. In Drosophila S2 cells, Psn overexpression leads to reduced Notch receptor synthesis affecting levels of the intact approximately 300-kD precursor and its approximately 120-kD processed COOH-terminal derivatives. Presenilin-induced apoptosis is cell autonomous and can be blocked by constitutive Notch activation, suggesting that the increased cell death is due to a developmental mechanism that eliminates improperly specified cell types. We describe a genetic model in which the apoptotic activities of wild-type and mutant presenilins can be assessed, and we find that Alzheimer's disease-linked mutant presenilins are less effective at inducing apoptosis than wild-type presenilin.
Collapse
Affiliation(s)
- Yihong Ye
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Mark E. Fortini
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
478
|
Spradling AC, Stern D, Beaton A, Rhem EJ, Laverty T, Mozden N, Misra S, Rubin GM. The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics 1999; 153:135-77. [PMID: 10471706 PMCID: PMC1460730 DOI: 10.1093/genetics/153.1.135] [Citation(s) in RCA: 614] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A fundamental goal of genetics and functional genomics is to identify and mutate every gene in model organisms such as Drosophila melanogaster. The Berkeley Drosophila Genome Project (BDGP) gene disruption project generates single P-element insertion strains that each mutate unique genomic open reading frames. Such strains strongly facilitate further genetic and molecular studies of the disrupted loci, but it has remained unclear if P elements can be used to mutate all Drosophila genes. We now report that the primary collection has grown to contain 1045 strains that disrupt more than 25% of the estimated 3600 Drosophila genes that are essential for adult viability. Of these P insertions, 67% have been verified by genetic tests to cause the associated recessive mutant phenotypes, and the validity of most of the remaining lines is predicted on statistical grounds. Sequences flanking >920 insertions have been determined to exactly position them in the genome and to identify 376 potentially affected transcripts from collections of EST sequences. Strains in the BDGP collection are available from the Bloomington Stock Center and have already assisted the research community in characterizing >250 Drosophila genes. The likely identity of 131 additional genes in the collection is reported here. Our results show that Drosophila genes have a wide range of sensitivity to inactivation by P elements, and provide a rationale for greatly expanding the BDGP primary collection based entirely on insertion site sequencing. We predict that this approach can bring >85% of all Drosophila open reading frames under experimental control.
Collapse
Affiliation(s)
- A C Spradling
- Department of Embryology, Howard Hughes Medical Institute Research Laboratories, Carnegie Institution of Washington, Baltimore, Maryland 21210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
479
|
Abstract
In view of a large and growing literature, this overview emphasizes recent advances in neuronal caspases and their role in cell death. To provide historical perspective, morphology and methods are surveyed with emphasis on early studies on interleukin converting enzyme (ICE) as a prototype for identifying zymogen subunits. The unexpected homology of ICE (caspase-1) to Caenorhabditis elegans death gene CED-3 provided early clues linking caspases to programmed cell death, and led later to discovery of bcl-2 proteins (CED-9 homologs) and 'apoptosis associated factors' (Apafs). Availability of substrates, inhibitors, and cDNAs led to identification of up to 16 caspases as a new superfamily of unique cysteine proteinases targeting Asp groups. Those acting as putative death effectors dismantle neurons by catabolism of proteins essential for survival. Caspases degrade amyloid precursor protein (APP), presenilins (PS1, PS2), tau, and huntingtin, raising questions on their role in neurodegeneration. Brain contains 'inhibitors of apoptosis proteins' (IAPs) survivin and NAIP associated also with some neuronal disorders. Apoptotic stress in neurons initiates a chain of events leading to activation of distal caspases by pathways that remain to be fully mapped. Neuronal caspases play multiple roles for initiation and execution of cell death, for morphogenesis, and in non-mitotic neurons for homeostasis. Recent studies focus on cytochrome c as pivotal in mediating conversion of procaspase-9 as a major initiator for apoptosis. Identifying signaling pathways and related events paves the way to design useful therapeutic remedies to prevent neuronal loss in disease or aging.
Collapse
Affiliation(s)
- N Marks
- Nathan S. Kline Institute for Psychiatric Research, and New York University, Division of Neurochemistry, Orangeburg 10962, USA.
| | | |
Collapse
|
480
|
Uren AG, Beilharz T, O'Connell MJ, Bugg SJ, van Driel R, Vaux DL, Lithgow T. Role for yeast inhibitor of apoptosis (IAP)-like proteins in cell division. Proc Natl Acad Sci U S A 1999; 96:10170-5. [PMID: 10468581 PMCID: PMC17861 DOI: 10.1073/pnas.96.18.10170] [Citation(s) in RCA: 162] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Inhibitors of apoptosis (IAPs) are a family of proteins that bear baculoviral IAP repeats (BIRs) and regulate apoptosis in vertebrates and Drosophila melanogaster. The yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe both encode a single IAP, designated BIR1 and bir1, respectively, each of which bears two BIRs. In rich medium, BIR1 mutant S. cerevisiae underwent normal vegetative growth and mitosis. Under starvation conditions, however, BIR1 mutant diploids formed spores inefficiently, instead undergoing pseudohyphal differentiation. Most spores that did form failed to survive beyond two divisions after germination. bir1 mutant S. pombe spores also died in the early divisions after spore germination and became blocked at the metaphase/anaphase transition because of an inability to elongate their mitotic spindle. Rather than inhibiting caspase-mediated cell death, yeast IAP proteins have roles in cell division and appear to act in a similar way to the IAPs from Caenorhabditis elegans and the mammalian IAP Survivin.
Collapse
Affiliation(s)
- A G Uren
- The Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, Victoria 3050, Australia
| | | | | | | | | | | | | |
Collapse
|
481
|
Wang SL, Hawkins CJ, Yoo SJ, Müller HA, Hay BA. The Drosophila caspase inhibitor DIAP1 is essential for cell survival and is negatively regulated by HID. Cell 1999; 98:453-63. [PMID: 10481910 DOI: 10.1016/s0092-8674(00)81974-1] [Citation(s) in RCA: 412] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Drosophila Reaper (RPR), Head Involution Defective (HID), and GRIM induce caspase-dependent cell death and physically interact with the cell death inhibitor DIAP1. Here we show that HID blocks DIAP1's ability to inhibit caspase activity and provide evidence suggesting that RPR and GRIM can act similarly. Based on these results, we propose that RPR, HID, and GRIM promote apoptosis by disrupting productive IAP-caspase interactions and that DIAP1 is required to block apoptosis-inducing caspase activity. Supporting this hypothesis, we show that elimination of DIAP1 function results in global early embryonic cell death and a large increase in DIAP1-inhibitable caspase activity and that DIAP1 is still required for cell survival when expression of rpr, hid, and grim is eliminated.
Collapse
Affiliation(s)
- S L Wang
- Division of Biology MC 156-29, California Institute of Technology, Pasadena 91125, USA
| | | | | | | | | |
Collapse
|
482
|
Abstract
The BIR (baculovirus IAP repeat) motif is a conserved sequence of approximately 70 amino acids that was identified originally in the 'inhibitor of apoptosis' (IAP) family of proteins. BIR-containing proteins (BIRPs) are found in viruses, yeast and metazoans. Recent genetic analysis of a nematode BIRP demonstrated an essential role in cytokinesis instead of apoptosis. It is likely that BIRs originated in eukaryotes to serve a role in cytokinesis and/or mitotic spindle function during cell division and that, with gene duplication, the more recent adaptation of some BIRPs to the regulation of apoptosis was possible. IAPs interact with a variety of proteins, including members of the caspase protease family. This article discusses current research on the structure and function of the BIR motifs and how it could provide insight into the function of BIRPs in cell division.
Collapse
Affiliation(s)
- L K Miller
- Depts of Genetics and Entomology, The University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
483
|
The Apoptosis Inhibitor Gene API2 and a Novel 18q Gene,MLT, Are Recurrently Rearranged in the t(11;18)(q21;q21) Associated With Mucosa-Associated Lymphoid Tissue Lymphomas. Blood 1999. [DOI: 10.1182/blood.v93.11.3601.411a47_3601_3609] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marginal zone cell lymphomas of the mucosa-associated lymphoid tissue (MALT) are the most common subtype of lymphoma arising at extranodal sites. The t(11;18)(q21;q21) appears to be the key genetic lesion and is found in approximately 50% of cytogenetically abnormal low-grade MALT lymphomas. We show that the API2 gene, encoding an inhibitor of apoptosis also known as c-IAP2, HIAP1, andMIHC, and a novel gene on 18q21 characterized by several Ig-like C2-type domains, named MLT, are recurrently rearranged in the t(11;18). In both MALT lymphomas analyzed, the breakpoint inAPI2 occurred in the intron separating the exons coding respectively for the baculovirus IAP repeat domains and the caspase recruitment domain. The breakpoints within MLT differed but the open reading frame was conserved in both cases. In one case, the translocation was accompanied by a cryptic deletion involving the 3′ part of API2. As a result, the reciprocal transcript was not present, strongly suggesting that the API2-MLT fusion is involved in the oncogenesis of MALT lymphoma.
Collapse
|
484
|
The Apoptosis Inhibitor Gene API2 and a Novel 18q Gene,MLT, Are Recurrently Rearranged in the t(11;18)(q21;q21) Associated With Mucosa-Associated Lymphoid Tissue Lymphomas. Blood 1999. [DOI: 10.1182/blood.v93.11.3601] [Citation(s) in RCA: 532] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Marginal zone cell lymphomas of the mucosa-associated lymphoid tissue (MALT) are the most common subtype of lymphoma arising at extranodal sites. The t(11;18)(q21;q21) appears to be the key genetic lesion and is found in approximately 50% of cytogenetically abnormal low-grade MALT lymphomas. We show that the API2 gene, encoding an inhibitor of apoptosis also known as c-IAP2, HIAP1, andMIHC, and a novel gene on 18q21 characterized by several Ig-like C2-type domains, named MLT, are recurrently rearranged in the t(11;18). In both MALT lymphomas analyzed, the breakpoint inAPI2 occurred in the intron separating the exons coding respectively for the baculovirus IAP repeat domains and the caspase recruitment domain. The breakpoints within MLT differed but the open reading frame was conserved in both cases. In one case, the translocation was accompanied by a cryptic deletion involving the 3′ part of API2. As a result, the reciprocal transcript was not present, strongly suggesting that the API2-MLT fusion is involved in the oncogenesis of MALT lymphoma.
Collapse
|
485
|
Shresta S, Graubert TA, Thomas DA, Raptis SZ, Ley TJ. Granzyme A initiates an alternative pathway for granule-mediated apoptosis. Immunity 1999; 10:595-605. [PMID: 10367905 DOI: 10.1016/s1074-7613(00)80059-x] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Granzyme (gzm) B-deficient cytotoxic lymphocytes (CTL) have a severe defect in the rapid induction of target cell apoptosis that is almost completely corrected by prolonged incubation of the CTL effectors and their targets. We show in this report that perforin-dependent, gzmB-independent cytotoxicity is caused by gzmA (or tightly linked genes). CTL deficient for gzmA and gzmB retain normal perforin function, but these CTL have a cytotoxic defect in vivo that is as severe as perforin-deficient CTL. Collectively, these results suggest that perforin provides target cell access and/or trafficking signals for the gzms, and that the gzms themselves deliver the lethal hits. The gzmA pathway appears to function independently from gzmB and may therefore provide a critical "back-up" system when gzmB is inhibited in the target cell.
Collapse
Affiliation(s)
- S Shresta
- Department of Internal Medicine and Genetics, Washington University Medical School, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
486
|
Haining WN, Carboy-Newcomb C, Wei CL, Steller H. The proapoptotic function of Drosophila Hid is conserved in mammalian cells. Proc Natl Acad Sci U S A 1999; 96:4936-41. [PMID: 10220397 PMCID: PMC21795 DOI: 10.1073/pnas.96.9.4936] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Three genes-reaper, grim, and hid-are crucial to the regulation of programmed cell death in Drosophila melanogaster. Mutations involving all three genes virtually abolish apoptosis during development, and homozygous hid mutants die as embryos with extensive defects in apoptosis. Although Hid is central to apoptosis in Drosophila, it has no mammalian homologue identified to date. We present evidence that expression of Drosophila Hid in mammalian cells induces apoptosis. This activity is subject to regulation by inhibitors of mammalian cell death. We show that the N terminus of Hid, which is a region of homology with Reaper and Grim, is essential for Hid's function in mammalian cells. We demonstrate that Hid is localized to the mitochondria via a hydrophobic region at its C terminus and functionally interacts with BclXL. This study shows that the function of Hid as a death inducer in Drosophila is conserved in mammalian cells and argues for the existence of a mammalian homologue of this critical regulator of apoptosis.
Collapse
Affiliation(s)
- W N Haining
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Department of Biology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
487
|
Abstract
In many sexually mature insects egg production and oviposition are tightly coupled to copulation. Sex-Peptide is a 36-amino-acid peptide synthesized in the accessory glands of Drosophila melanogaster males and transferred to the female during copulation. Sex-Peptide stimulates vitellogenic oocyte progression through a putative control point at about stage 9 of oogenesis. Here we show that application of the juvenile hormone analogue methoprene mimics the Sex-Peptide-mediated stimulation of vitellogenic oocyte progression in sexually mature virgin females. Apoptosis is induced by 20-hydroxyecdysone in nurse cells of stage 9 egg chambers at physiological concentrations (10(-7) M). 20-Hydroxyecdysone thus acts as an antagonist of early vitellogenic oocyte development. Simultaneous application of juvenile hormone analogue, however, protects early vitellogenic oocytes from 20-hydroxyecdysone-induced resorption. These results suggest that the balance of these hormones in the hemolymph regulates whether oocytes will progress through the control point at stage 9 or undergo apoptosis. These data are further supported by a molecular analysis of the regulation of yolk protein synthesis and uptake into the ovary by the two hormones. We conclude that juvenile hormone is a downstream component in the Sex-Peptide response cascade and acts by stimulating vitellogenic oocyte progression and inhibiting apoptosis. Since juvenile hormone analogue does not elicit increased oviposition and reduced receptivity, Sex-Peptide must have an additional, separate effect on these two postmating responses.
Collapse
Affiliation(s)
- M Soller
- Zoologisches Institut, Universität Zürich-Irchel, Winterthurerstrasse 190, Zürich, CH-8057, Switzerland
| | | | | |
Collapse
|
488
|
Abstract
The identification of proteins involved in the early phases of cell death has relied primarily on the modular organization of shared sequences and structural motifs of previously identified proteins in the apoptotic machinery. This property has facilitated the isolation of proteins that interact with each other through structural domains using yeast two-hybrid cloning. Likewise, the conservation in primary sequence of the various shared domains has promoted the use of polymerase chain reaction and database search strategies to isolate additional family members. Here, we discuss the use of database search strategies in the isolation of novel death proteins, as well as how similar strategies may be extended to discover additional, novel cell death proteins.
Collapse
Affiliation(s)
- R Gururajan
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, Tennessee 38105, USA.
| | | |
Collapse
|
489
|
Fraser AG, James C, Evan GI, Hengartner MO. Caenorhabditis elegans inhibitor of apoptosis protein (IAP) homologue BIR-1 plays a conserved role in cytokinesis. Curr Biol 1999; 9:292-301. [PMID: 10209096 DOI: 10.1016/s0960-9822(99)80137-7] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Inhibitor of apoptosis proteins (IAPs) suppress apoptotic cell death in several model systems and are highly conserved between insects and mammals. All IAPs contain at least one copy of the approximately 70 amino-acid baculovirus IAP repeat (BIR), and this domain is essential for the anti-apoptotic activity of the IAPs. Both the marked structural diversity of IAPs and the identification of BIR-containing proteins (BIRPs) in yeast, however, have led to the suggestion that BIRPs might play roles in other, as yet unidentified, cellular processes besides apoptosis. Survivin, a human BIRP, is upregulated 40-fold at G2-M phase and binds to mitotic spindles, although its role at the spindle is still unclear. RESULTS We have identified and characterised two Caenorhabditis elegans BIRPs,BIR-1 and BIR-2; these proteins are the only BIRPs in C. elegans. The bir-1 gene is highly expressed during embryogenesis with detectable expression throughout other stages of development; bir-2 expression is detectable only in adults and embryos. Overexpression of bir-1 was unable to inhibit developmentally occurring cell death in C. elegans and inhibition of bir-1 expression did not increase cell death. Instead, embryos lacking bir-1 were unable to complete cytokinesis and they became multinucleate. This cytokinesis defect could be partially suppressed by transgenic expression of survivin, the mammalian BIRP most structurally related to BIR-1, suggesting a conserved role for BIRPs in the regulation of cytokinesis. CONCLUSIONS BIR-1, a C. elegans BIRP, is probably not involved in the general regulation of apoptosis but is required for embryonic cytokinesis. We suggest that BIRPs may regulate cytoskeletal changes in diverse biological processes including cytokinesis and apoptosis.
Collapse
Affiliation(s)
- A G Fraser
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NewYork 11724, USA
| | | | | | | |
Collapse
|
490
|
Hawkins CJ, Wang SL, Hay BA. A cloning method to identify caspases and their regulators in yeast: identification of Drosophila IAP1 as an inhibitor of the Drosophila caspase DCP-1. Proc Natl Acad Sci U S A 1999; 96:2885-90. [PMID: 10077606 PMCID: PMC15864 DOI: 10.1073/pnas.96.6.2885] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Site-specific proteases play critical roles in regulating many cellular processes. To identify novel site-specific proteases, their regulators, and substrates, we have designed a general reporter system in Saccharomyces cerevisiae in which a transcription factor is linked to the intracellular domain of a transmembrane protein by protease cleavage sites. Here, we explore the efficacy of this approach by using caspases, a family of aspartate-specific cysteine proteases, as a model. Introduction of an active caspase into cells that express a caspase-cleavable reporter results in the release of the transcription factor from the membrane and subsequent activation of a nuclear reporter. We show that known caspases activate the reporter, that an activator of caspase activity stimulates reporter activation in the presence of an otherwise inactive caspase, and that caspase inhibitors suppress caspase-dependent reporter activity. We also find that, although low or moderate levels of active caspase expression do not compromise yeast cell growth, higher level expression leads to lethality. We have exploited this observation to isolate clones from a Drosophila embryo cDNA library that block DCP-1 caspase-dependent yeast cell death. Among these clones, we identified the known cell death inhibitor DIAP1. We showed, by using bacterially synthesized proteins, that glutathione S-transferase-DIAP1 directly inhibits DCP-1 caspase activity but that it had minimal effect on the activity of a predomainless version of a second Drosophila caspase, drICE.
Collapse
Affiliation(s)
- C J Hawkins
- Division of Biology, MC 156-29, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
491
|
Draizen TA, Ewer J, Robinow S. Genetic and hormonal regulation of the death of peptidergic neurons in the Drosophila central nervous system. JOURNAL OF NEUROBIOLOGY 1999; 38:455-65. [PMID: 10084681 DOI: 10.1002/(sici)1097-4695(199903)38:4<455::aid-neu2>3.0.co;2-f] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
To understand the role apoptosis plays in nervous system development and to gain insight into the mechanisms by which steroid hormones regulate neuronal apoptosis, we investigated the death of a set of peptidergic neurons in the CNS of the fruitfly Drosophila melanogaster. Typically, apoptosis in Drosophila is induced by the expression of the genes reaper, grim, or head involution defective (hid). We provide genetic evidence that the death of these neurons requires reaper and grim gene function. Consistent with this genetic analysis, we demonstrate that these doomed neurons accumulate reaper and grim transcripts prior to the onset of apoptosis. These neurons also accumulate low levels of hid, although the genetic analysis suggests that hid may not play a major role in the induction of apoptosis in these neurons. We show that the death of these neurons is dependent upon the fall in the titer of the steroid hormone 20-hydroxyecdysone that occurs at the end of metamorphosis, and demonstrate that the accumulation of both reaper and grim transcripts is inhibited by this steroid hormone. These observations support the notion that 20E controls apoptosis by regulating the expression of genes that induce apoptosis.
Collapse
Affiliation(s)
- T A Draizen
- Department of Zoology, University of Hawaii, Honolulu 96822, USA
| | | | | |
Collapse
|
492
|
Kobayashi K, Hatano M, Otaki M, Ogasawara T, Tokuhisa T. Expression of a murine homologue of the inhibitor of apoptosis protein is related to cell proliferation. Proc Natl Acad Sci U S A 1999; 96:1457-62. [PMID: 9990045 PMCID: PMC15484 DOI: 10.1073/pnas.96.4.1457] [Citation(s) in RCA: 200] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The inhibitor of apoptosis (IAP) proteins form a highly conserved gene family that prevents cell death in response to a variety of stimuli. Herein we describe a newly defined murine IAP, designated Tiap, that proved to be a murine homologue of human survivin based on sequence comparison. TIAP has one baculovirus IAP repeat and lacks a C-terminal RING finger motif. TIAP interacted with the processed form of caspase 3 and inhibited caspase-induced cell death. Histological examinations revealed that TIAP is expressed in growing tissues such as thymus, testis, and intestine of adult mice and many tissues of embryos. In in vitro studies, TIAP was induced in splenic T cells activated with anti-CD3 antibody or Con A, and the expression of TIAP was up-regulated in synchronized NIH 3T3 cells at S to G2/M phase of the cell cycle. We propose that during cell proliferation, cellular protective activity may be augmented with inducible IAPs such as TIAP.
Collapse
Affiliation(s)
- K Kobayashi
- Department of Developmental Genetics, Chiba University Graduate School of Medicine, Inohana 1-8-1, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | |
Collapse
|
493
|
Affiliation(s)
- L J Eiben
- Metabolism Branch, National Institutes of Health, Bethesda, Maryland 20892-1578, USA
| | | |
Collapse
|
494
|
Affiliation(s)
- M E Peter
- Tumor Immunology Program, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
495
|
Abstract
Members of the TNF family of receptors play important roles in normal physiology and in defence. The recent rapid progress in the understanding of the mechanisms of apoptosis has been accompanied by assumptions that TNF family receptors such as CD95(Fas/APO-1) only have a role in regulating cell survival. While regulation of cell death is one important function of TNF family receptors, they are capable of activating signal transduction pathways that have many other effects. The present review will focus on signalling of some TNF family receptors in the immune system, not only for apoptosis, but also for survival or activation.
Collapse
Affiliation(s)
- C Magnusson
- Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | | |
Collapse
|
496
|
Du Q, Lehavi D, Faktor O, Qi Y, Chejanovsky N. Isolation of an apoptosis suppressor gene of the Spodoptera littoralis nucleopolyhedrovirus. J Virol 1999; 73:1278-85. [PMID: 9882332 PMCID: PMC103951 DOI: 10.1128/jvi.73.2.1278-1285.1999] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spodoptera frugiperda SF9 cells infected with mutants of the Autographa californica nucleopolyhedrovirus (AcMNPV) which lack a functional p35 gene undergo apoptosis, aborting the viral infection. The Spodoptera littoralis nucleopolyhedrovirus (SlNPV) was able to suppress apoptosis triggered by vDeltaP35K/pol+, an AcMNPV p35 null mutant. To identify the putative apoptotic suppressor gene of SlNPV, overlapping cosmid clones representing the entire SlNPV genome were individually cotransfected along with genomic DNA of vDeltaP35K/pol+. Using this complementation assay, we isolated a SlNPV DNA fragment that was able to rescue the vDeltaP35K/pol+ infection in SF9 cells. By further subcloning and rescue, we identified a novel SlNPV gene, Slp49. The Slp49 sequence predicted a 49-kDa polypeptide with about 48.8% identity to the AcMNPV apoptotic suppressor P35. SLP49 displays a potential recognition site, TVTDG, for cleavage by death caspases. Recombinant AcMNPVs deficient in p35 bearing the Slp49 gene did not induce apoptosis and showed successful productive infections in SF9 cells, indicating that Slp49 is a functional homologue of p35. A 1.5-kbp Slp49-specific transcript was identified in SF9 cells infected with SlNPV or with vAc496, a vDeltaP35K/pol+-recombinant bearing Slp49. The discovery of Slp49 contributes to the identification of important functional motifs conserved in p35-like apoptotic suppressors and to the future isolation of p35-like genes from other baculoviruses.
Collapse
Affiliation(s)
- Q Du
- Entomology Department, Institute of Plant Protection, Agricultural Research Organization, The Volcani Center, Bet Dagan 50250, Israel
| | | | | | | | | |
Collapse
|
497
|
Affiliation(s)
- D L Vaux
- The Walter and Eliza Hall Institute of Medical Research, Royal Melbourne Hospital Victoria, Australia.
| | | |
Collapse
|
498
|
Kanuka H, Hisahara S, Sawamoto K, Shoji S, Okano H, Miura M. Proapoptotic activity of Caenorhabditis elegans CED-4 protein in Drosophila: implicated mechanisms for caspase activation. Proc Natl Acad Sci U S A 1999; 96:145-50. [PMID: 9874786 PMCID: PMC15107 DOI: 10.1073/pnas.96.1.145] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CED-4 protein plays an important role in the induction of programmed cell death in Caenorhabditis elegans through the activation of caspases. However, the precise mechanisms by which it activates caspases remain unknown. To investigate the conservation of CED-4 function in evolution, transgenic Drosophila lines that express CED-4 in the compound eye were generated. Ectopic expression of CED-4 in the eyes induced massive apoptotic cell death through caspase activation. An ATP-binding site (P-loop) mutation in CED-4 (K165R) causes a loss of function in its ability to activate Drosophila caspase, and an ATPase inhibitor blocks the CED-4-dependent caspase activity in Drosophila S2 cells. Immunoprecipitation analysis showed that both CED-4 and CED-4 (K165R) bind directly to Drosophila caspase drICE, and the overexpression of CED-4 (K165R) inhibits CED-4-, ecdysone-, or cycloheximide-dependent caspase activation in S2 cells. Furthermore, CED-4 (K165R) partially prevented cell death induced by CED-4 in Drosophila compound eyes. Thus, CED-4 function is evolutionarily conserved in Drosophila, and the molecular mechanisms by which CED-4 activates caspases might require ATP binding and direct interaction with the caspases.
Collapse
Affiliation(s)
- H Kanuka
- Department of Neuroanatomy, Biomedical Research Center, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
499
|
Ishimaru S, Williams R, Clark E, Hanafusa H, Gaul U. Activation of the Drosophila C3G leads to cell fate changes and overproliferation during development, mediated by the RAS-MAPK pathway and RAP1. EMBO J 1999; 18:145-55. [PMID: 9878058 PMCID: PMC1171110 DOI: 10.1093/emboj/18.1.145] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cellular signal transduction pathways by which C3G, a RAS family guanine nucleotide exchange factor, mediates v-crk transformation are not well understood. Here we report the identification of Drosophila C3G, which, like its human cognate, specifically binds to CRK but not DRK/GRB2 adaptor molecules. During Drosophila development, constitutive membrane binding of C3G, which also occurs during v-crk transformation, results in cell fate changes and overproliferation, mimicking overactivity of the RAS-MAPK pathway. The effects of C3G overactivity can be suppressed by reducing the gene dose of components of the RAS-MAPK pathway and of RAP1. These findings provide the first in vivo evidence that membrane localization of C3G can trigger activation of RAP1 and RAS resulting in the activation of MAPK, one of the hallmarks of v-crk transformation previously thought to be mediated through activation of SOS.
Collapse
Affiliation(s)
- S Ishimaru
- Laboratory of Molecular Oncology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
500
|
Yamaguchi K, Nagai S, Ninomiya-Tsuji J, Nishita M, Tamai K, Irie K, Ueno N, Nishida E, Shibuya H, Matsumoto K. XIAP, a cellular member of the inhibitor of apoptosis protein family, links the receptors to TAB1-TAK1 in the BMP signaling pathway. EMBO J 1999; 18:179-87. [PMID: 9878061 PMCID: PMC1171113 DOI: 10.1093/emboj/18.1.179] [Citation(s) in RCA: 291] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Signals elicited by transforming growth factor-beta (TGF-beta) superfamily ligands are generated following the formation of heteromeric receptor complexes consisting of type I and type II receptors. TAK1, a member of the MAP kinase kinase kinase family, and its activator, TAB1, participate in the bone morphogenetic protein (BMP) signaling pathway involved in mesoderm induction and patterning in early Xenopus embryos. However, the events leading from receptor activation to TAK1 activation remain to be identified. A yeast interaction screen was used to search for proteins that function in the pathway linking the receptors and TAB1-TAK1. The human X-chromosome-linked inhibitor of apoptosis protein (XIAP) was isolated as a TAB1-binding protein. XIAP associated not only with TAB1 but also with the BMP receptors in mammalian cells. Injection of XIAP mRNA into dorsal blastomeres enhanced the ventralization of Xenopus embryos in a TAB1-TAK1-dependent manner. Furthermore, a truncated form of XIAP lacking the TAB1-binding domain partially blocked the expression of ventral mesodermal marker genes induced by a constitutively active BMP type I receptor. These results suggest that XIAP participates in the BMP signaling pathway as a positive regulator linking the BMP receptors and TAB1-TAK1.
Collapse
Affiliation(s)
- K Yamaguchi
- Department of Molecular Biology, Graduate School of Science, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|