451
|
Aparicio-Fabre R, Guillén G, Loredo M, Arellano J, Valdés-López O, Ramírez M, Íñiguez LP, Panzeri D, Castiglioni B, Cremonesi P, Strozzi F, Stella A, Girard L, Sparvoli F, Hernández G. Common bean (Phaseolus vulgaris L.) PvTIFY orchestrates global changes in transcript profile response to jasmonate and phosphorus deficiency. BMC PLANT BIOLOGY 2013; 13:26. [PMID: 23402340 PMCID: PMC3621168 DOI: 10.1186/1471-2229-13-26] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 01/29/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND TIFY is a large plant-specific transcription factor gene family. A subgroup of TIFY genes named JAZ (Jasmonate-ZIM domain) has been identified as repressors of jasmonate (JA)-regulated transcription in Arabidopsis and other plants. JA signaling is involved in many aspects of plant growth/development and in defense responses to biotic and abiotic stresses. Here, we identified the TIFY genes (designated PvTIFY) from the legume common bean (Phaseolus vulgaris) and functionally characterized PvTIFY10C as a transcriptional regulator. RESULTS Nineteen genes from the PvTIFY gene family were identified through whole-genome sequence analysis. Most of these were induced upon methyl-JA elicitation. We selected PvTIFY10C as a representative JA-responsive PvTIFY gene for further functional analysis. Transcriptome analysis via microarray hybridization using the newly designed Bean Custom Array 90 K was performed on transgenic roots of composite plants with modulated (RNAi-silencing or over-expression) PvTIFY10C gene expression. Data were interpreted using Gene Ontology and MapMan adapted to common bean. Microarray differential gene expression data were validated by real-time qRT-PCR expression analysis. Comparative global gene expression analysis revealed opposite regulatory changes in processes such as RNA and protein regulation, stress responses and metabolism in PvTIFY10C silenced vs. over-expressing roots. These data point to transcript reprogramming (mainly repression) orchestrated by PvTIFY10C. In addition, we found that several PvTIFY genes, as well as genes from the JA biosynthetic pathway, responded to P-deficiency. Relevant P-responsive genes that participate in carbon metabolic pathways, cell wall synthesis, lipid metabolism, transport, DNA, RNA and protein regulation, and signaling were oppositely-regulated in control vs. PvTIFY10C-silenced roots of composite plants under P-stress. These data indicate that PvTIFY10C regulates, directly or indirectly, the expression of some P-responsive genes; this process could be mediated by JA-signaling. CONCLUSION Our work contributes to the functional characterization of PvTIFY transcriptional regulators in common bean, an agronomically important legume. Members from the large PvTIFY gene family are important global transcriptional regulators that could participate as repressors in the JA signaling pathway. In addition, we propose that the JA-signaling pathway involving PvTIFY genes might play a role in regulating the plant response/adaptation to P-starvation.
Collapse
Affiliation(s)
- Rosaura Aparicio-Fabre
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Mor. 62209, Cuernacaca, México
| | - Gabriel Guillén
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 1001, Mor. 62209, Cuernacaca, México
| | - Montserrat Loredo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Mor. 62209, Cuernacaca, México
| | - Jesús Arellano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Mor. 62209, Cuernacaca, México
| | - Oswaldo Valdés-López
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Mor. 62209, Cuernacaca, México
| | - Mario Ramírez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Mor. 62209, Cuernacaca, México
| | - Luis P Íñiguez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Mor. 62209, Cuernacaca, México
| | - Dario Panzeri
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Bassini 15, 20133, Milano, Italy
| | - Bianca Castiglioni
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Bassini 15, 20133, Milano, Italy
| | - Paola Cremonesi
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Bassini 15, 20133, Milano, Italy
| | - Francesco Strozzi
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Bassini 15, 20133, Milano, Italy
| | - Alessandra Stella
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Bassini 15, 20133, Milano, Italy
| | - Lourdes Girard
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Mor. 62209, Cuernacaca, México
| | - Francesca Sparvoli
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Bassini 15, 20133, Milano, Italy
| | - Georgina Hernández
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 1001, Mor. 62209, Cuernacaca, México
| |
Collapse
|
452
|
Perkins LE, Cribb BW, Brewer PB, Hanan J, Grant M, de Torres M, Zalucki MP. Generalist insects behave in a jasmonate-dependent manner on their host plants, leaving induced areas quickly and staying longer on distant parts. Proc Biol Sci 2013; 280:20122646. [PMID: 23390101 DOI: 10.1098/rspb.2012.2646] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Plants are sessile, so have evolved sensitive ways to detect attacking herbivores and sophisticated strategies to effectively defend themselves. Insect herbivory induces synthesis of the phytohormone jasmonic acid which activates downstream metabolic pathways for various chemical defences such as toxins and digestion inhibitors. Insects are also sophisticated animals, and many have coevolved physiological adaptations that negate this induced plant defence. Insect behaviour has rarely been studied in the context of induced plant defence, although behavioural adaptation to induced plant chemistry may allow insects to bypass the host's defence system. By visualizing jasmonate-responsive gene expression within whole plants, we uncovered spatial and temporal limits to the systemic spread of plant chemical defence following herbivory. By carefully tracking insect movement, we found induced changes in plant chemistry were detected by generalist Helicoverpa armigera insects which then modified their behaviour in response, moving away from induced parts and staying longer on uninduced parts of the same plant. This study reveals that there are plant-wide signals rapidly generated following herbivory that allow insects to detect the heterogeneity of plant chemical defences. Some insects use these signals to move around the plant, avoiding localized sites of induction and staying ahead of induced toxic metabolites.
Collapse
Affiliation(s)
- Lynda E Perkins
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
| | | | | | | | | | | | | |
Collapse
|
453
|
Seo JS, Koo YJ, Jung C, Yeu SY, Song JT, Kim JK, Choi Y, Lee JS, Do Choi Y. Identification of a novel jasmonate-responsive element in the AtJMT promoter and its binding protein for AtJMT repression. PLoS One 2013; 8:e55482. [PMID: 23393583 PMCID: PMC3564755 DOI: 10.1371/journal.pone.0055482] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/24/2012] [Indexed: 12/21/2022] Open
Abstract
Jasmonates (JAs) are important regulators of plant biotic and abiotic stress responses and development. AtJMT in Arabidopsis thaliana and BcNTR1 in Brassica campestris encode jasmonic acid carboxyl methyltransferases, which catalyze methyl jasmonate (MeJA) biosynthesis and are involved in JA signaling. Their expression is induced by MeJA application. To understand its regulatory mechanism, here we define a novel JA-responsive cis-element (JARE), G(C)TCCTGA, in the AtJMT and BcNTR1 promoters, by promoter deletion analysis and Yeast 1-Hybrid (Y1H) assays; the JARE is distinct from other JA-responsive cis-elements previously reported. We also used Y1H screening to identify a trans-acting factor, AtBBD1, which binds to the JARE and interacts with AtJAZ1 and AtJAZ4. Knockout and overexpression analyses showed that AtBBD1 and its close homologue AtBBD2 are functionally redundant and act as negative regulators of AtJMT expression. However, AtBBD1 positively regulated the JA-responsive expression of JR2. Chromatin immunoprecipitation from knockout and overexpression plants revealed that repression of AtJMT is associated with reduced histone acetylation in the promoter region containing the JARE. These results show that AtBBD1 interacts with JAZ proteins, binds to the JARE and represses AtJMT expression.
Collapse
Affiliation(s)
- Jun Sung Seo
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Yeon Jong Koo
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Choonkyun Jung
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Song Yion Yeu
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
| | - Jong Tae Song
- School of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Ju-Kon Kim
- School of Biotechnology and Environmental Engineering, Myongji University, Yongin, Korea
| | - Yeonhee Choi
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Jong Seob Lee
- School of Biological Sciences, Seoul National University, Seoul, Korea
| | - Yang Do Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea
- * E-mail:
| |
Collapse
|
454
|
Van der Does D, Leon-Reyes A, Koornneef A, Van Verk MC, Rodenburg N, Pauwels L, Goossens A, Körbes AP, Memelink J, Ritsema T, Van Wees SC, Pieterse CM. Salicylic acid suppresses jasmonic acid signaling downstream of SCFCOI1-JAZ by targeting GCC promoter motifs via transcription factor ORA59. THE PLANT CELL 2013; 25:744-61. [PMID: 23435661 PMCID: PMC3608790 DOI: 10.1105/tpc.112.108548] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/21/2013] [Accepted: 01/30/2013] [Indexed: 05/17/2023]
Abstract
Antagonism between the defense hormones salicylic acid (SA) and jasmonic acid (JA) plays a central role in the modulation of the plant immune signaling network, but the molecular mechanisms underlying this phenomenon are largely unknown. Here, we demonstrate that suppression of the JA pathway by SA functions downstream of the E3 ubiquitin-ligase Skip-Cullin-F-box complex SCF(COI1), which targets JASMONATE ZIM-domain transcriptional repressor proteins (JAZs) for proteasome-mediated degradation. In addition, neither the stability nor the JA-induced degradation of JAZs was affected by SA. In silico promoter analysis of the SA/JA crosstalk transcriptome revealed that the 1-kb promoter regions of JA-responsive genes that are suppressed by SA are significantly enriched in the JA-responsive GCC-box motifs. Using GCC:GUS lines carrying four copies of the GCC-box fused to the β-glucuronidase reporter gene, we showed that the GCC-box motif is sufficient for SA-mediated suppression of JA-responsive gene expression. Using plants overexpressing the GCC-box binding APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF) transcription factors ERF1 or ORA59, we found that SA strongly reduces the accumulation of ORA59 but not that of ERF1. Collectively, these data indicate that the SA pathway inhibits JA signaling downstream of the SCF(COI1)-JAZ complex by targeting GCC-box motifs in JA-responsive promoters via a negative effect on the transcriptional activator ORA59.
Collapse
Affiliation(s)
- Dieuwertje Van der Does
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Antonio Leon-Reyes
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands
- Laboratorio de Biotecnología Agrícola y de Alimentos, Universidad San Francisco de Quito, Ecuador
| | - Annemart Koornneef
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Marcel C. Van Verk
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Nicole Rodenburg
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Laurens Pauwels
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium
- Department Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Alain Goossens
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, B-9052 Ghent, Belgium
- Department Plant Biotechnology and Genetics, Ghent University, B-9052 Ghent, Belgium
| | - Ana P. Körbes
- Institute of Biology Leiden, Sylvius Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Johan Memelink
- Institute of Biology Leiden, Sylvius Laboratory, Leiden University, 2300 RA Leiden, The Netherlands
| | - Tita Ritsema
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Saskia C.M. Van Wees
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Corné M.J. Pieterse
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands
- Address correspondence to
| |
Collapse
|
455
|
Transcriptome analysis of cytokinin response in tomato leaves. PLoS One 2013; 8:e55090. [PMID: 23372818 PMCID: PMC3555872 DOI: 10.1371/journal.pone.0055090] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 12/24/2012] [Indexed: 01/05/2023] Open
Abstract
Tomato is one of the most economically and agriculturally important Solanaceous species and vegetable crops, serving as a model for examination of fruit biology and compound leaf development. Cytokinin is a plant hormone linked to the control of leaf development and is known to regulate a wide range of genes including many transcription factors. Currently there is little known of the leaf transcriptome in tomato and how it might be regulated by cytokinin. We employ high throughput mRNA sequencing technology and bioinformatic methodologies to robustly analyze cytokinin regulated tomato leaf transcriptomes. Leaf samples of two ages, 13d and 35d were treated with cytokinin or the solvent vehicle control dimethyl sulfoxide (DMSO) for 2 h or 24 h, after which RNA was extracted for sequencing. To confirm the accuracy of RNA sequencing results, we performed qPCR analysis of select transcripts identified as cytokinin regulated by the RNA sequencing approach. The resulting data provide the first hormone transcriptome analysis of leaves in tomato. Specifically we identified several previously untested tomato orthologs of cytokinin-related genes as well as numerous novel cytokinin-regulated transcripts in tomato leaves. Principal component analysis of the data indicates that length of cytokinin treatment and plant age are the major factors responsible for changes in transcripts observed in this study. Two hour cytokinin treatment showed a more robust transcript response indicated by both greater fold change of induced transcripts and the induction of twice as many cytokinin-related genes involved in signaling, metabolism, and transport in young vs. older leaves. This difference in transcriptome response in younger vs. older leaves was also found to a lesser extent with an extended (24 h) cytokinin treatment. Overall data presented here provides a solid foundation for future study of cytokinin and cytokinin regulated genes involved in compound leaf development or other developmental processes in tomato.
Collapse
|
456
|
León J. Role of plant peroxisomes in the production of jasmonic acid-based signals. Subcell Biochem 2013; 69:299-313. [PMID: 23821155 DOI: 10.1007/978-94-007-6889-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Jasmonates are a family of oxylipins derived from linolenic acid that control plant responses to biotic and abiotic stress factors and also regulate plant growth and development. Jasmonic acid (JA) is synthesized through the octadecanoid pathway that involves the translocation of lipid intermediates from the chloroplast membranes to the cytoplasm and later on into peroxisomes. The peroxisomal steps of the pathway involve the reduction of cis-(+)-12-oxophytodienoic acid (12-OPDA) and dinor-OPDA, which are the final products of the choroplastic phase of the biosynthetic pathway acting on 18:3 and 16:3 fatty acids, respectively. Further shortening of the carbon side-chain by successive rounds of β-oxidation reactions are required to complete JA biosynthesis. After peroxisomal reactions are completed, (+)-7-iso-JA is synthesized and then transported to the cytoplasm where is conjugated to the amino acid isoleucine to form the bioactive form of the hormone (+)-7-iso-JA-Ile (JA-Ile). Further regulatory activity of JA-Ile triggering gene activation in the jasmonate-dependent signaling cascades is exerted through a process mediated by the perception via the E3 ubiquitin ligase COI1 and further ligand-activated interaction with the family of JAZ repressor proteins. Upon interaction, JAZ are ubiquitinated and degraded by the proteasome, thus releasing transcription factors such as MYC2 from repression and allowing the activation of JA-responsive genes.
Collapse
Affiliation(s)
- José León
- Instituto de Biología Molecular y Celular de Plantas, CSIC - Universidad Politécnica de Valencia, Valencia, Spain,
| |
Collapse
|
457
|
Blanco-Ulate B, Vincenti E, Powell ALT, Cantu D. Tomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea. FRONTIERS IN PLANT SCIENCE 2013; 4:142. [PMID: 23717322 PMCID: PMC3653111 DOI: 10.3389/fpls.2013.00142] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 04/25/2013] [Indexed: 05/19/2023]
Abstract
Fruit-pathogen interactions are a valuable biological system to study the role of plant development in the transition from resistance to susceptibility. In general, unripe fruit are resistant to pathogen infection but become increasingly more susceptible as they ripen. During ripening, fruit undergo significant physiological and biochemical changes that are coordinated by complex regulatory and hormonal signaling networks. The interplay between multiple plant stress hormones in the interaction between plant vegetative tissues and microbial pathogens has been documented extensively, but the relevance of these hormones during infections of fruit is unclear. In this work, we analyzed a transcriptome study of tomato fruit infected with Botrytis cinerea in order to profile the expression of genes for the biosynthesis, modification and signal transduction of ethylene (ET), salicylic acid (SA), jasmonic acid (JA), and abscisic acid (ABA), hormones that may be not only involved in ripening, but also in fruit interactions with pathogens. The changes in relative expression of key genes during infection and assays of susceptibility of fruit with impaired synthesis or perception of these hormones were used to formulate hypotheses regarding the involvement of these regulators in the outcome of the tomato fruit-B. cinerea interaction.
Collapse
Affiliation(s)
- Barbara Blanco-Ulate
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
- Department of Viticulture and Enology, University of California, DavisDavis, CA, USA
| | - Estefania Vincenti
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Ann L. T. Powell
- Department of Plant Sciences, University of California, DavisDavis, CA, USA
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, DavisDavis, CA, USA
- *Correspondence: Dario Cantu, Department of Viticulture and Enology, University of California, Davis, One Shields Ave., Davis, CA 95616, USA. e-mail:
| |
Collapse
|
458
|
Glauser G, Wolfender JL. A non-targeted approach for extended liquid chromatography-mass spectrometry profiling of free and esterified jasmonates after wounding. Methods Mol Biol 2013; 1011:123-134. [PMID: 23615992 DOI: 10.1007/978-1-62703-414-2_10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Upon wounding or herbivory, plants quickly react by activating various defense mechanisms. A major part of these defenses is thought to be regulated by the jasmonate pathway through the induction of jasmonic acid and its biologically active jasmonoyl-isoleucine conjugate. Yet, these well-known phytohormones are only two among the numerous compounds that compose the jasmonate family. Here, we describe a method based on ultrahigh-pressure liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry that can potentially profile the full range of known free and esterified jasmonates in a non-targeted manner. The developed approach is illustrated by the analysis of Arabidopsis thaliana leaves after mechanical wounding.
Collapse
Affiliation(s)
- Gaëtan Glauser
- Chemical Analytical Service of the Swiss Plant Science Web, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | | |
Collapse
|
459
|
Studham ME, MacIntosh GC. Multiple phytohormone signals control the transcriptional response to soybean aphid infestation in susceptible and resistant soybean plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:116-29. [PMID: 22992001 DOI: 10.1094/mpmi-05-12-0124-fi] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The soybean aphid (Aphis glycines) is a major phloem-feeding pest of soybean (Glycine max). A. glycines feeding can cause the diversion of photosynthates and transmission of plant viruses, resulting in significant yield losses. In this study, we used oligonucleotide microarrays to characterize the long-term transcriptional response to soybean aphid colonization of two related soybean cultivars, one with the Rag1 aphid-resistance gene and one aphid-susceptible cultivar (without Rag1). Transcriptome profiles were determined after 1 and 7 days of aphid infestation. Our results revealed a susceptible response involving hundreds of transcripts, whereas only one transcript changed in the resistant response to aphids. This nonexistent resistance response might be explained by the fact that many defense-related transcripts are constitutively expressed in resistant plants, whereas these same genes are activated in susceptible plants only during aphid infestation. Analysis of phytohormone-related transcripts in the susceptible response showed different hormone profiles for the two time points, and suggest that aphids are able to suppress hormone signals in susceptible plants. A significant activation of abscissic acid, normally associated with abiotic stress responses, at day 7, might be a decoy strategy implemented by the aphid to suppress effective salicylic acid- and jasmonate-related defenses.
Collapse
|
460
|
Chauvin A, Caldelari D, Wolfender JL, Farmer EE. Four 13-lipoxygenases contribute to rapid jasmonate synthesis in wounded Arabidopsis thaliana leaves: a role for lipoxygenase 6 in responses to long-distance wound signals. THE NEW PHYTOLOGIST 2013; 197:566-575. [PMID: 23171345 DOI: 10.1111/nph.12029] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 10/02/2012] [Indexed: 05/22/2023]
Abstract
Damage-inducible defenses in plants are controlled in part by jasmonates, fatty acid-derived regulators that start to accumulate within 30 s of wounding a leaf. Using liquid chromatography-tandem mass spectrometry, we sought to identify the 13-lipoxygenases (13-LOXs) that initiate wound-induced jasmonate synthesis within a 190-s timeframe in Arabidopsis thaliana in 19 single, double, triple and quadruple mutant combinations derived from the four 13-LOX genes in this plant. All four 13-LOXs were found to contribute to jasmonate synthesis in wounded leaves: among them LOX6 showed a unique behavior. The relative contribution of LOX6 to jasmonate synthesis increased with distance from a leaf tip wound, and LOX6 was the only 13-LOX necessary for the initiation of early jasmonate synthesis in leaves distal to the wounded leaf. Herbivory assays that compared Spodoptera littoralis feeding on the lox2-1 lox3B lox4A lox6A quadruple mutant and the lox2-1 lox3B lox4A triple mutant revealed a role for LOX6 in defense of the shoot apical meristem. Consistent with this, we found that LOX6 promoter activity was strong in the apical region of rosettes. The LOX6 promoter was active in and near developing xylem cells and in expression domains we term subtrichomal mounds.
Collapse
Affiliation(s)
- Adeline Chauvin
- Department of Plant Molecular Biology, University of Lausanne, Biophore, 1015, Lausanne, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 30 quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland
| | - Daniela Caldelari
- Swiss Institute of Bioinformatics, University of Lausanne, Génopode, 1015, Lausanne, Switzerland
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, University of Lausanne, 30 quai Ernest-Ansermet, CH-1211, Geneva 4, Switzerland
| | - Edward E Farmer
- Department of Plant Molecular Biology, University of Lausanne, Biophore, 1015, Lausanne, Switzerland
| |
Collapse
|
461
|
Herde M, Koo AJK, Howe GA. Elicitation of jasmonate-mediated defense responses by mechanical wounding and insect herbivory. Methods Mol Biol 2013; 1011:51-61. [PMID: 23615987 DOI: 10.1007/978-1-62703-414-2_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Many plant immune responses to biotic stress are mediated by the wound hormone jasmonate (JA). Functional and mechanistic studies of the JA signaling pathway often involve plant manipulations that elicit JA production and subsequent changes in gene expression in local and systemic tissues. Here, we describe a simple mechanical wounding procedure to effectively trigger JA responses in the Arabidopsis thaliana rosette. For comparison, we also present a plant-insect bioassay to elicit defense responses with the chewing insect Trichoplusia ni. This latter procedure can be used to determine the effect of JA-regulated defenses on growth and development of insect herbivores.
Collapse
Affiliation(s)
- Marco Herde
- Department of Energy-Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | | | | |
Collapse
|
462
|
Xin XF, He SY. Pseudomonas syringae pv. tomato DC3000: a model pathogen for probing disease susceptibility and hormone signaling in plants. ANNUAL REVIEW OF PHYTOPATHOLOGY 2013; 51:473-98. [PMID: 23725467 DOI: 10.1146/annurev-phyto-082712-102321] [Citation(s) in RCA: 398] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Since the early 1980s, various strains of the gram-negative bacterial pathogen Pseudomonas syringae have been used as models for understanding plant-bacterial interactions. In 1991, a P. syringae pathovar tomato (Pst) strain, DC3000, was reported to infect not only its natural host tomato but also Arabidopsis in the laboratory, a finding that spurred intensive efforts in the subsequent two decades to characterize the molecular mechanisms by which this strain causes disease in plants. Genomic analysis shows that Pst DC3000 carries a large repertoire of potential virulence factors, including proteinaceous effectors that are secreted through the type III secretion system and a polyketide phytotoxin called coronatine, which structurally mimics the plant hormone jasmonate (JA). Study of Pst DC3000 pathogenesis has not only provided several conceptual advances in understanding how a bacterial pathogen employs type III effectors to suppress plant immune responses and promote disease susceptibility but has also facilitated the discovery of the immune function of stomata and key components of JA signaling in plants. The concepts derived from the study of Pst DC3000 pathogenesis may prove useful in understanding pathogenesis mechanisms of other plant pathogens.
Collapse
Affiliation(s)
- Xiu-Fang Xin
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA.
| | | |
Collapse
|
463
|
Chen J, Sonobe K, Ogawa N, Masuda S, Nagatani A, Kobayashi Y, Ohta H. Inhibition of arabidopsis hypocotyl elongation by jasmonates is enhanced under red light in phytochrome B dependent manner. JOURNAL OF PLANT RESEARCH 2013; 126:161-8. [PMID: 22825635 PMCID: PMC3530149 DOI: 10.1007/s10265-012-0509-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/30/2012] [Indexed: 05/18/2023]
Abstract
Jasmonates are phytohormones derived from oxygenated fatty acids that regulate a broad range of plant defense and developmental processes. In Arabidopsis, hypocotyl elongation under various light conditions was suppressed by exogenously supplied methyl jasmonate (MeJA). Moreover, this suppression by MeJA was particularly effective under red light condition. Mutant analyses suggested that SCF(COI1)-mediated proteolysis was involved in this function. However, MeJA action still remained in the coi1 mutant, and (+)-7-iso-JA-L-Ile, a well-known active form of jasmonate, had a weaker effect than MeJA under the red light condition, suggesting that unknown signaling pathway are present in MeJA-mediated inhibition of hypocotyl elongation. EMS mutant screening identified two MeJA-insensitive hypocotyl elongation mutants, jasmonate resistance long hypocotyl 1 (jal1) and jal36, which had mutations in the phytochrome B (PHYB) gene. These analyses suggested that inhibition of hypocotyl elongation by jasmonates is enhanced under red light in phyB dependent manner.
Collapse
Affiliation(s)
- Jing Chen
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501 Japan
| | - Kohei Sonobe
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501 Japan
| | - Narihito Ogawa
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-52 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501 Japan
| | - Shinji Masuda
- Center for Biological Resources and Informatics, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501 Japan
| | - Akira Nagatani
- Department of Botany, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502 Japan
| | - Yuichi Kobayashi
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-52 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501 Japan
| | - Hiroyuki Ohta
- Center for Biological Resources and Informatics, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259-B-65 Nagatsuta-cho, Midori-ku, Yokohama, 226-8501 Japan
| |
Collapse
|
464
|
Delano-Frier JP, Pearce G, Huffaker A, Stratmann JW. Systemic Wound Signaling in Plants. LONG-DISTANCE SYSTEMIC SIGNALING AND COMMUNICATION IN PLANTS 2013. [DOI: 10.1007/978-3-642-36470-9_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
465
|
Signalling network construction for modelling plant defence response. PLoS One 2012; 7:e51822. [PMID: 23272172 PMCID: PMC3525666 DOI: 10.1371/journal.pone.0051822] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 11/06/2012] [Indexed: 12/28/2022] Open
Abstract
Plant defence signalling response against various pathogens, including viruses, is a complex phenomenon. In resistant interaction a plant cell perceives the pathogen signal, transduces it within the cell and performs a reprogramming of the cell metabolism leading to the pathogen replication arrest. This work focuses on signalling pathways crucial for the plant defence response, i.e., the salicylic acid, jasmonic acid and ethylene signal transduction pathways, in the Arabidopsis thaliana model plant. The initial signalling network topology was constructed manually by defining the representation formalism, encoding the information from public databases and literature, and composing a pathway diagram. The manually constructed network structure consists of 175 components and 387 reactions. In order to complement the network topology with possibly missing relations, a new approach to automated information extraction from biological literature was developed. This approach, named Bio3graph, allows for automated extraction of biological relations from the literature, resulting in a set of (component1, reaction, component2) triplets and composing a graph structure which can be visualised, compared to the manually constructed topology and examined by the experts. Using a plant defence response vocabulary of components and reaction types, Bio3graph was applied to a set of 9,586 relevant full text articles, resulting in 137 newly detected reactions between the components. Finally, the manually constructed topology and the new reactions were merged to form a network structure consisting of 175 components and 524 reactions. The resulting pathway diagram of plant defence signalling represents a valuable source for further computational modelling and interpretation of omics data. The developed Bio3graph approach, implemented as an executable language processing and graph visualisation workflow, is publically available at http://ropot.ijs.si/bio3graph/and can be utilised for modelling other biological systems, given that an adequate vocabulary is provided.
Collapse
|
466
|
Woldemariam MG, Onkokesung N, Baldwin IT, Galis I. Jasmonoyl-L-isoleucine hydrolase 1 (JIH1) regulates jasmonoyl-L-isoleucine levels and attenuates plant defenses against herbivores. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:758-67. [PMID: 22860609 DOI: 10.1111/j.1365-313x.2012.05117.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
For most plant hormones, biological activity is suppressed by reversible conjugation to sugars, amino acids and other small molecules. In contrast, the conjugation of jasmonic acid (JA) to isoleucine (Ile) is known to enhance the activity of JA. Whereas hydroxylation and carboxylation of JA-Ile permanently inactivates JA-Ilemediated signaling in plants, the alternative deactivation pathway of JA-Ile by its direct hydrolysis to JA remains unstudied. We show that Nicotiana attenuata jasmonoyl-L-isoleucine hydrolase 1 (JIH1), a close homologue of previously characterized indoleacetic acid alanine resistant 3 (IAR3) gene in Arabidopsis, hydrolyzes both JA-Ile and IAA-Ala in vitro. When the herbivory-inducible NaJIH1 gene was silenced by RNA interference, JA-Ile levels increased dramatically after simulated herbivory in irJIH1, compared with wild-type (WT) plants. When specialist (Manduca sexta) or generalist (Spodoptera littoralis) herbivores fed on irJIH1 plants they gained significantly less mass compared with those feeding on wild-type (WT) plants. The poor larval performance was strongly correlated with the higher accumulation of several JA-Ile-dependent direct defense metabolites in irJIH1 plants. In the field, irJIH1 plants attracted substantially more Geocoris predators to the experimentally attached M. sexta eggs on their leaves, compared with empty vector plants, which correlated with higher herbivory-elicited emissions of volatiles known to function as indirect defenses. We conclude that NaJIH1 encodes a new homeostatic step in JA metabolism that, together with JA and JA-Ilehydroxylation and carboxylation of JA-Ile, rapidly attenuates the JA-Ile burst, allowing plants to tailor the expression of direct and indirect defenses against herbivore attack in nature.
Collapse
Affiliation(s)
- Melkamu G Woldemariam
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans Knöll Str. 8, Jena D-07745, Germany
| | | | | | | |
Collapse
|
467
|
Balcke GU, Handrick V, Bergau N, Fichtner M, Henning A, Stellmach H, Tissier A, Hause B, Frolov A. An UPLC-MS/MS method for highly sensitive high-throughput analysis of phytohormones in plant tissues. PLANT METHODS 2012; 8:47. [PMID: 23173950 PMCID: PMC3573895 DOI: 10.1186/1746-4811-8-47] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 11/12/2012] [Indexed: 05/02/2023]
Abstract
BACKGROUND Phytohormones are the key metabolites participating in the regulation of multiple functions of plant organism. Among them, jasmonates, as well as abscisic and salicylic acids are responsible for triggering and modulating plant reactions targeted against pathogens and herbivores, as well as resistance to abiotic stress (drought, UV-irradiation and mechanical wounding). These factors induce dramatic changes in phytohormone biosynthesis and transport leading to rapid local and systemic stress responses. Understanding of underlying mechanisms is of principle interest for scientists working in various areas of plant biology. However, highly sensitive, precise and high-throughput methods for quantification of these phytohormones in small samples of plant tissues are still missing. RESULTS Here we present an LC-MS/MS method for fast and highly sensitive determination of jasmonates, abscisic and salicylic acids. A single-step sample preparation procedure based on mixed-mode solid phase extraction was efficiently combined with essential improvements in mobile phase composition yielding higher efficiency of chromatographic separation and MS-sensitivity. This strategy resulted in dramatic increase in overall sensitivity, allowing successful determination of phytohormones in small (less than 50 mg of fresh weight) tissue samples. The method was completely validated in terms of analyte recovery, sensitivity, linearity and precision. Additionally, it was cross-validated with a well-established GC-MS-based procedure and its applicability to a variety of plant species and organs was verified. CONCLUSION The method can be applied for the analyses of target phytohormones in small tissue samples obtained from any plant species and/or plant part relying on any commercially available (even less sensitive) tandem mass spectrometry instrumentation.
Collapse
Affiliation(s)
- Gerd Ulrich Balcke
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), 06120, Germany
| | - Vinzenz Handrick
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), 06120, Germany
- Present address: Max Planck Institute for Chemical Ecology, Department of Biochemistry, Hans-Knoell-Str. 8, Jena, 07745, Germany
| | - Nick Bergau
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), 06120, Germany
| | - Mandy Fichtner
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), 06120, Germany
| | - Anja Henning
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), 06120, Germany
| | - Hagen Stellmach
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), 06120, Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), 06120, Germany
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), 06120, Germany
| | - Andrej Frolov
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle (Saale), 06120, Germany
- Faculty of Chemistry and Mineralogy, Institute of Bioanalytical Chemistry, Centre for Biotechnology and Biomedicine, Leipzig University, Deutscher Platz 5, Leipzig, 04103, Germany
| |
Collapse
|
468
|
Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC. Hormonal Modulation of Plant Immunity. Annu Rev Cell Dev Biol 2012; 28:489-521. [DOI: 10.1146/annurev-cellbio-092910-154055] [Citation(s) in RCA: 1753] [Impact Index Per Article: 134.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Corné M.J. Pieterse
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands; , , ,
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands
| | - Dieuwertje Van der Does
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands; , , ,
| | - Christos Zamioudis
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands; , , ,
| | - Antonio Leon-Reyes
- Laboratorio de Biotecnología Agrícola y de Alimentos, Universidad San Francisco de Quito, Quito, Ecuador;
| | - Saskia C.M. Van Wees
- Plant-Microbe Interactions, Institute of Environmental Biology, Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands; , , ,
| |
Collapse
|
469
|
Van de Poel B, Bulens I, Markoula A, Hertog ML, Dreesen R, Wirtz M, Vandoninck S, Oppermann Y, Keulemans J, Hell R, Waelkens E, De Proft MP, Sauter M, Nicolai BM, Geeraerd AH. Targeted systems biology profiling of tomato fruit reveals coordination of the Yang cycle and a distinct regulation of ethylene biosynthesis during postclimacteric ripening. PLANT PHYSIOLOGY 2012; 160:1498-514. [PMID: 22977280 PMCID: PMC3490579 DOI: 10.1104/pp.112.206086] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 09/12/2012] [Indexed: 05/18/2023]
Abstract
The concept of system 1 and system 2 ethylene biosynthesis during climacteric fruit ripening was initially described four decades ago. Although much is known about fruit development and climacteric ripening, little information is available about how ethylene biosynthesis is regulated during the postclimacteric phase. A targeted systems biology approach revealed a novel regulatory mechanism of ethylene biosynthesis of tomato (Solanum lycopersicum) when fruit have reached their maximal ethylene production level and which is characterized by a decline in ethylene biosynthesis. Ethylene production is shut down at the level of 1-aminocyclopropane-1-carboxylic acid oxidase. At the same time, 1-aminocyclopropane-1-carboxylic acid synthase activity increases. Analysis of the Yang cycle showed that the Yang cycle genes are regulated in a coordinated way and are highly expressed during postclimacteric ripening. Postclimacteric red tomatoes on the plant showed only a moderate regulation of 1-aminocyclopropane-1-carboxylic acid synthase and Yang cycle genes compared with the regulation in detached fruit. Treatment of red fruit with 1-methylcyclopropane and ethephon revealed that the shut-down mechanism in ethylene biosynthesis is developmentally programmed and only moderately ethylene sensitive. We propose that the termination of autocatalytic ethylene biosynthesis of system 2 in ripe fruit delays senescence and preserves the fruit until seed dispersal.
Collapse
|
470
|
Kombrink E. Chemical and genetic exploration of jasmonate biosynthesis and signaling paths. PLANTA 2012; 236:1351-66. [PMID: 23011567 DOI: 10.1007/s00425-012-1705-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 06/27/2012] [Indexed: 05/03/2023]
Abstract
Jasmonates are lipid-derived compounds that act as signals in plant stress responses and developmental processes. Enzymes participating in biosynthesis of jasmonic acid (JA) and components of JA signaling have been extensively characterized by biochemical and molecular-genetic tools. Mutants have helped to define the pathway for synthesis of jasmonoyl-L-isoleucine (JA-Ile), the bioactive form of JA, and to identify the F-box protein COI1 as central regulatory unit. Details on the molecular mechanism of JA signaling were recently unraveled by the discovery of JAZ proteins that together with the adaptor protein NINJA and the general co-repressor TOPLESS form a transcriptional repressor complex. The current model of JA perception and signaling implies the SCF(COI1) complex operating as E3 ubiquitin ligase that upon binding of JA-Ile targets JAZ proteins for degradation by the 26S proteasome pathway, thereby allowing MYC2 and other transcription factors to activate gene expression. Chemical strategies, as integral part of jasmonate research, have helped the establishment of structure-activity relationships and the discovery of (+)-7-iso-JA-L-Ile as the major bioactive form of the hormone. The transient nature of its accumulation highlights the need to understand catabolism and inactivation of JA-Ile and recent studies indicate that oxidation of JA-Ile by cytochrome P450 monooxygenase is the major mechanism for turning JA signaling off. Plants contain numerous JA metabolites, which may have pronounced and differential bioactivity. A major challenge in the field of plant lipid signaling is to identify the cognate receptors and modes of action of these bioactive jasmonates/oxylipins.
Collapse
Affiliation(s)
- Erich Kombrink
- Chemical Biology Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Köln, Germany.
| |
Collapse
|
471
|
Tamogami S, Noge K, Abe M, Agrawal GK, Rakwal R. Methyl jasmonate is transported to distal leaves via vascular process metabolizing itself into JA-Ile and triggering VOCs emission as defensive metabolites. PLANT SIGNALING & BEHAVIOR 2012; 7:1378-81. [PMID: 22918499 PMCID: PMC3548852 DOI: 10.4161/psb.21762] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plants have developed multifaceted defensive systems against adverse environmental factors. One such recognized system is the production of metabolites in plants. Jasmonic acid (JA) and its metabolite methyl jasmonate (MeJA) are known to play key roles in metabolites production. The role of MeJA as a mobile signal has been established in Arabidopsis and Solanaceae plants. However, it remains largely unclear how MeJA-based signaling is organized via its elicited metabolites. Here, we investigated the signaling ability of MeJA by means of vascular transport using Achyranthes bidentata as an experimental plant. Results showed that MeJA was transported and essentially metabolized into its active form JA-Ile in the distal undamaged leaves accompanied by emission of volatile organic compounds. Results presented and discussed therein provide convincing evidence that MeJA acts as a transportable inter-cellular mobile compound in plants self-defense scheme.
Collapse
Affiliation(s)
- Shigeru Tamogami
- Laboratory of Biologically Active Compounds; Department of Biological Production; Akita Prefectural University; Akita, Japan
- Correspondence to: Shigeru Tamogami, and Randeep Rakwal,
| | - Koji Noge
- Laboratory of Biologically Active Compounds; Department of Biological Production; Akita Prefectural University; Akita, Japan
| | - Makoto Abe
- Laboratory of Biologically Active Compounds; Department of Biological Production; Akita Prefectural University; Akita, Japan
| | - Ganesh Kumar Agrawal
- Research Laboratory for Biotechnology and Biochemistry (RLABB); Kathmandu, Nepal
| | - Randeep Rakwal
- Research Laboratory for Biotechnology and Biochemistry (RLABB); Kathmandu, Nepal
- Graduate School of Life and Environmental Sciences; University of Tsukuba; Tsukuba, Ibaraki, Japan
- Department of Anatomy I; School of Medicine; Showa University; Tokyo, Japan
- Correspondence to: Shigeru Tamogami, and Randeep Rakwal,
| |
Collapse
|
472
|
Stenzel I, Otto M, Delker C, Kirmse N, Schmidt D, Miersch O, Hause B, Wasternack C. ALLENE OXIDE CYCLASE (AOC) gene family members of Arabidopsis thaliana: tissue- and organ-specific promoter activities and in vivo heteromerization. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:6125-38. [PMID: 23028017 PMCID: PMC3481204 DOI: 10.1093/jxb/ers261] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Jasmonates are important signals in plant stress responses and plant development. An essential step in the biosynthesis of jasmonic acid (JA) is catalysed by ALLENE OXIDE CYCLASE (AOC) which establishes the naturally occurring enantiomeric structure of jasmonates. In Arabidopsis thaliana, four genes encode four functional AOC polypeptides (AOC1, AOC2, AOC3, and AOC4) raising the question of functional redundancy or diversification. Analysis of transcript accumulation revealed an organ-specific expression pattern, whereas detailed inspection of transgenic lines expressing the GUS reporter gene under the control of individual AOC promoters showed partially redundant promoter activities during development: (i) In fully developed leaves, promoter activities of AOC1, AOC2, and AOC3 appeared throughout all leaf tissue, but AOC4 promoter activity was vascular bundle-specific; (ii) only AOC3 and AOC4 showed promoter activities in roots; and (iii) partially specific promoter activities were found for AOC1 and AOC4 in flower development. In situ hybridization of flower stalks confirmed the GUS activity data. Characterization of single and double AOC loss-of-function mutants further corroborates the hypothesis of functional redundancies among individual AOCs due to a lack of phenotypes indicative of JA deficiency (e.g. male sterility). To elucidate whether redundant AOC expression might contribute to regulation on AOC activity level, protein interaction studies using bimolecular fluorescence complementation (BiFC) were performed and showed that all AOCs can interact among each other. The data suggest a putative regulatory mechanism of temporal and spatial fine-tuning in JA formation by differential expression and via possible heteromerization of the four AOCs.
Collapse
Affiliation(s)
- Irene Stenzel
- Department of Natural Product Biotechnology (present name: Department of Molecular Signal Processing), Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Markus Otto
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Carolin Delker
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Nils Kirmse
- Department of Natural Product Biotechnology (present name: Department of Molecular Signal Processing), Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Diana Schmidt
- Department of Natural Product Biotechnology (present name: Department of Molecular Signal Processing), Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Otto Miersch
- Department of Natural Product Biotechnology (present name: Department of Molecular Signal Processing), Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| | - Claus Wasternack
- Department of Natural Product Biotechnology (present name: Department of Molecular Signal Processing), Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
| |
Collapse
|
473
|
Zhang X, Wu Q, Ren J, Qian W, He S, Huang K, Yu X, Gao Y, Huang P, An C. Two novel RING-type ubiquitin ligases, RGLG3 and RGLG4, are essential for jasmonate-mediated responses in Arabidopsis. PLANT PHYSIOLOGY 2012; 160:808-22. [PMID: 22898498 PMCID: PMC3461557 DOI: 10.1104/pp.112.203422] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 08/14/2012] [Indexed: 05/20/2023]
Abstract
Jasmonates (JAs) regulate various stress responses and development processes in plants, and the JA pathway is tightly controlled. In this study, we report the functional characterization of two novel RING-type ubiquitin ligases, RING DOMAIN LIGASE3 (RGLG3) and RGLG4, in modulating JA signaling. Both RGLG3 and RGLG4 possessed ubiquitin ligase activities and were widely distributed in Arabidopsis (Arabidopsis thaliana) tissues. Altered expression of RGLG3 and RGLG4 affected methyl JA-inhibited root growth and JA-inductive gene expression, which could be suppressed by the coronatine insensitive1 (coi1) mutant. rglg3 rglg4 also attenuated the inhibitory effect of JA-isoleucine-mimicking coronatine on root elongation, and consistently, rglg3 rglg4 was resistant to the coronatine-secreting pathogen Pseudomonas syringae pv tomato DC3000, suggesting that RGLG3 and RGLG4 acted in response to the coronatine and promoted JA-mediated pathogen susceptibility. In addition, rglg3 rglg4 repressed wound-stunted plant growth, wound-stimulated expression of JA-responsive genes, and wound-induced JA biosynthesis, indicating their roles in JA-dependent wound response. Furthermore, both RGLG3 and RGLG4 responded to methyl JA, P. syringae pv tomato DC3000, and wounding in a COI1-dependent manner. Taken together, these results indicate that the ubiquitin ligases RGLG3 and RGLG4 are essential upstream modulators of JA signaling in response to various stimuli.
Collapse
|
474
|
Studham ME, MacIntosh GC. Phytohormone signaling pathway analysis method for comparing hormone responses in plant-pest interactions. BMC Res Notes 2012; 5:392. [PMID: 22846705 PMCID: PMC3460778 DOI: 10.1186/1756-0500-5-392] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/19/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phytohormones mediate plant defense responses to pests and pathogens. In particular, the hormones jasmonic acid, ethylene, salicylic acid, and abscisic acid have been shown to dictate and fine-tune defense responses, and identification of the phytohormone components of a particular defense response is commonly used to characterize it. Identification of phytohormone regulation is particularly important in transcriptome analyses. Currently there is no computational tool to determine the relative activity of these hormones that can be applied to transcriptome analyses in soybean. FINDINGS We developed a pathway analysis method that provides a broad measure of the activation or suppression of individual phytohormone pathways based on changes in transcript expression of pathway-related genes. The magnitude and significance of these changes are used to determine a pathway score for a phytohormone for a given comparison in a microarray experiment. Scores for individual hormones can then be compared to determine the dominant phytohormone in a given defense response. To validate this method, it was applied to publicly available data from previous microarray experiments that studied the response of soybean plants to Asian soybean rust and soybean cyst nematode. The results of the analyses for these experiments agreed with our current understanding of the role of phytohormones in these defense responses. CONCLUSIONS This method is useful in providing a broad measure of the relative induction and suppression of soybean phytohormones during a defense response. This method could be used as part of microarray studies that include individual transcript analysis, gene set analysis, and other methods for a comprehensive defense response characterization.
Collapse
Affiliation(s)
- Matthew E Studham
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, 50011, USA
| | - Gustavo C MacIntosh
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
475
|
Gunnaiah R, Kushalappa AC, Duggavathi R, Fox S, Somers DJ. Integrated metabolo-proteomic approach to decipher the mechanisms by which wheat QTL (Fhb1) contributes to resistance against Fusarium graminearum. PLoS One 2012; 7:e40695. [PMID: 22866179 PMCID: PMC3398977 DOI: 10.1371/journal.pone.0040695] [Citation(s) in RCA: 173] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 06/11/2012] [Indexed: 02/07/2023] Open
Abstract
Background Resistance in plants to pathogen attack can be qualitative or quantitative. For the latter, hundreds of quantitative trait loci (QTLs) have been identified, but the mechanisms of resistance are largely unknown. Integrated non-target metabolomics and proteomics, using high resolution hybrid mass spectrometry, were applied to identify the mechanisms of resistance governed by the fusarium head blight resistance locus, Fhb1, in the near isogenic lines derived from wheat genotype Nyubai. Findings The metabolomic and proteomic profiles were compared between the near isogenic lines (NIL) with resistant and susceptible alleles of Fhb1 upon F. graminearum or mock-inoculation. The resistance-related metabolites and proteins identified were mapped to metabolic pathways. Metabolites of the shunt phenylpropanoid pathway such as hydroxycinnamic acid amides, phenolic glucosides and flavonoids were induced only in the resistant NIL, or induced at higher abundances in resistant than in susceptible NIL, following pathogen inoculation. The identities of these metabolites were confirmed, with fragmentation patterns, using the high resolution LC-LTQ-Orbitrap. Concurrently, the enzymes of phenylpropanoid biosynthesis such as cinnamyl alcohol dehydrogenase, caffeoyl-CoA O-methyltransferase, caffeic acid O-methyltransferase, flavonoid O-methyltransferase, agmatine coumaroyltransferase and peroxidase were also up-regulated. Increased cell wall thickening due to deposition of hydroxycinnamic acid amides and flavonoids was confirmed by histo-chemical localization of the metabolites using confocal microscopy. Conclusion The present study demonstrates that the resistance in Fhb1 derived from the wheat genotype Nyubai is mainly associated with cell wall thickening due to deposition of hydroxycinnamic acid amides, phenolic glucosides and flavonoids, but not with the conversion of deoxynivalenol to less toxic deoxynivalenol 3-O-glucoside.
Collapse
Affiliation(s)
- Raghavendra Gunnaiah
- Plant Science Department, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Ajjamada C. Kushalappa
- Plant Science Department, McGill University, Ste. Anne de Bellevue, Quebec, Canada
- * E-mail:
| | - Raj Duggavathi
- Animal Science Department, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | - Stephen Fox
- Agriculture and Agri-Food Canada, Winnipeg, Manitoba, Canada
| | - Daryl J. Somers
- Vineland Research and Innovation Center, Vineland, Ontario, Canada
| |
Collapse
|
476
|
Shigeyama T, Tominaga A, Arima S, Sakai T, Inada S, Jikumaru Y, Kamiya Y, Uchiumi T, Abe M, Hashiguchi M, Akashi R, Hirsch AM, Suzuki A. Additional cause for reduced JA-Ile in the root of a Lotus japonicus phyB mutant. PLANT SIGNALING & BEHAVIOR 2012; 7:746-748. [PMID: 22751318 PMCID: PMC3583954 DOI: 10.4161/psb.20407] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Light is critical for supplying carbon for use in the energetically expensive process of nitrogen-fixing symbiosis between legumes and rhizobia. We recently showed that root nodule formation in phyB mutants [which have a constitutive shade avoidance syndrome (SAS) phenotype] was suppressed in white light, and that nodulation in wild-type is controlled by sensing the R/FR ratio through jasmonic acid (JA) signaling. We concluded that the cause of reduced root nodule formation in phyB mutants was the inhibition of JA-Ile production in root. Here we show that the shoot JA-Ile level of phyB mutants is higher than that of the wild-type strain MG20, suggesting that translocation of JA-Ile from shoot to root is impeded in the mutant. These results indicate that root nodule formation in phyB mutants is suppressed both by decreased JA-Ile production, caused by reduced JAR1 activity in root, and by reduced JA-Ile translocation from shoot to root.
Collapse
Affiliation(s)
- Tamaki Shigeyama
- Department of Environmental Sciences; Faculty of Agriculture; Saga University; Honjyo-machi, Saga, Japan
| | - Akiyoshi Tominaga
- Department of Environmental Sciences; Faculty of Agriculture; Saga University; Honjyo-machi, Saga, Japan
- United Graduate School of Agricultural Sciences; Kagoshima University; Korimoto, Kagoshima, Japan
| | - Susumu Arima
- Department of Environmental Sciences; Faculty of Agriculture; Saga University; Honjyo-machi, Saga, Japan
- United Graduate School of Agricultural Sciences; Kagoshima University; Korimoto, Kagoshima, Japan
| | - Tatsuya Sakai
- RIKEN Plant Science Center; Yokohama; Kanagawa, Japan
- Graduate School of Science and Technology; Niigata University; Nishiku, Niigata, Japan
| | - Sayaka Inada
- RIKEN Plant Science Center; Yokohama; Kanagawa, Japan
| | | | - Yuji Kamiya
- RIKEN Plant Science Center; Yokohama; Kanagawa, Japan
| | - Toshiki Uchiumi
- Department of Chemistry and Bioscience; Faculty of Science; Kagoshima University; Korimoto, Kagoshima, Japan
| | - Mikiko Abe
- Department of Chemistry and Bioscience; Faculty of Science; Kagoshima University; Korimoto, Kagoshima, Japan
| | - Masatsugu Hashiguchi
- Frontier Science Research Center; University of Miyazaki; Miyazaki; Miyazaki, Japan
| | - Ryo Akashi
- Frontier Science Research Center; University of Miyazaki; Miyazaki; Miyazaki, Japan
| | - Ann M. Hirsch
- Department of Molecular; Cell and Developmental Biology and Molecular Biology Institute; University of California-Los Angeles; Los Angeles, CA USA
| | - Akihiro Suzuki
- Department of Environmental Sciences; Faculty of Agriculture; Saga University; Honjyo-machi, Saga, Japan
- United Graduate School of Agricultural Sciences; Kagoshima University; Korimoto, Kagoshima, Japan
| |
Collapse
|
477
|
Chen R, Jiang H, Li L, Zhai Q, Qi L, Zhou W, Liu X, Li H, Zheng W, Sun J, Li C. The Arabidopsis mediator subunit MED25 differentially regulates jasmonate and abscisic acid signaling through interacting with the MYC2 and ABI5 transcription factors. THE PLANT CELL 2012; 24:2898-916. [PMID: 22822206 PMCID: PMC3426122 DOI: 10.1105/tpc.112.098277] [Citation(s) in RCA: 288] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/21/2012] [Accepted: 07/02/2012] [Indexed: 05/18/2023]
Abstract
Transcriptional regulation plays a central role in plant hormone signaling. At the core of transcriptional regulation is the Mediator, an evolutionarily conserved, multisubunit complex that serves as a bridge between gene-specific transcription factors and the RNA polymerase machinery to regulate transcription. Here, we report the action mechanisms of the MEDIATOR25 (MED25) subunit of the Arabidopsis thaliana Mediator in regulating jasmonate- and abscisic acid (ABA)-triggered gene transcription. We show that during jasmonate signaling, MED25 physically associates with the basic helix-loop-helix transcription factor MYC2 in promoter regions of MYC2 target genes and exerts a positive effect on MYC2-regulated gene transcription. We also show that MED25 physically associates with the basic Leu zipper transcription factor ABA-INSENSITIVE5 (ABI5) in promoter regions of ABI5 target genes and shows a negative effect on ABI5-regulated gene transcription. Our results reveal that underlying the distinct effects of MED25 on jasmonate and ABA signaling, the interaction mechanisms of MED25 with MYC2 and ABI5 are different. These results highlight that the MED25 subunit of the Arabidopsis Mediator regulates a wide range of signaling pathways through selectively interacting with specific transcription factors.
Collapse
|
478
|
Gutierrez L, Mongelard G, Floková K, Păcurar DI, Novák O, Staswick P, Kowalczyk M, Păcurar M, Demailly H, Geiss G, Bellini C. Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. THE PLANT CELL 2012; 24:2515-27. [PMID: 22730403 PMCID: PMC3406919 DOI: 10.1105/tpc.112.099119] [Citation(s) in RCA: 302] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 05/29/2012] [Accepted: 06/12/2012] [Indexed: 05/18/2023]
Abstract
Vegetative shoot-based propagation of plants, including mass propagation of elite genotypes, is dependent on the development of shoot-borne roots, which are also called adventitious roots. Multiple endogenous and environmental factors control the complex process of adventitious rooting. In the past few years, we have shown that the auxin response factors ARF6 and ARF8, targets of the microRNA miR167, are positive regulators of adventitious rooting, whereas ARF17, a target of miR160, is a negative regulator. We showed that these genes have overlapping expression profiles during adventitious rooting and that they regulate each other's expression at the transcriptional and posttranscriptional levels by modulating the homeostasis of miR160 and miR167. We demonstrate here that this complex network of transcription factors regulates the expression of three auxin-inducible Gretchen Hagen3 (GH3) genes, GH3.3, GH3.5, and GH3.6, encoding acyl-acid-amido synthetases. We show that these three GH3 genes are required for fine-tuning adventitious root initiation in the Arabidopsis thaliana hypocotyl, and we demonstrate that they act by modulating jasmonic acid homeostasis. We propose a model in which adventitious rooting is an adaptive developmental response involving crosstalk between the auxin and jasmonate regulatory pathways.
Collapse
Affiliation(s)
- Laurent Gutierrez
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umea, Sweden
- Centre de Ressources Régionales en Biologie Moléculaire, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Gaëlle Mongelard
- Centre de Ressources Régionales en Biologie Moléculaire, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Kristýna Floková
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 78371 Olomouc, Czech Republic
| | - Daniel I. Păcurar
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umea, Sweden
| | - Ondřej Novák
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umea, Sweden
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 78371 Olomouc, Czech Republic
| | - Paul Staswick
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68583-0915
| | - Mariusz Kowalczyk
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umea, Sweden
| | - Monica Păcurar
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umea, Sweden
- University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj Napoca, Romania
| | - Hervé Demailly
- Centre de Ressources Régionales en Biologie Moléculaire, Université de Picardie Jules Verne, 80039 Amiens, France
| | - Gaia Geiss
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umea, Sweden
| | - Catherine Bellini
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, 90187 Umea, Sweden
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318 Institut National de la Recherche Agronomique–AgroParisTech, Institut National de la Recherche Agronomique Centre de Versailles–Grignon, F-78026 Versailles cedex, France
- Address correspondence to
| |
Collapse
|
479
|
Svyatyna K, Riemann M. Light-dependent regulation of the jasmonate pathway. PROTOPLASMA 2012; 249 Suppl 2:S137-45. [PMID: 22569926 DOI: 10.1007/s00709-012-0409-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 03/29/2012] [Indexed: 05/03/2023]
Abstract
Jasmonates (JAs) are plant hormones which are crucial for the response of plants to several biotic and abiotic stresses. Beside this important function, they are involved in several developmental processes throughout plant life. In this short review, we would like to summarize the recent findings about the function of JAs in photomorphogenesis with a main focus on the model plant rice. Early plant development is determined to a large extent by light. Depending on whether seedlings are raised in darkness or in light, they show a completely different appearance which led to the terms skoto- and photomorphogenesis, respectively. The different appearance depending on the light conditions has been used to screen for mutants in photoperception and signalling. By this approach, mutants for several photoreceptors and in the downstream signalling pathways could be isolated. In rice, we and others isolated mutants with a very intriguing phenotype. The mutated genes have been cloned by map-based cloning, and all of them encode for JA biosynthesis genes. The most bioactive form of JAs identified so far is the amino acid conjugate jasmonoyl-isoleucin (JA-Ile). In order to conjugate JA to Ile, an enzyme of the GH3 family, JASMONATE RESISTANT 1, is required. We characterized mutants of OsJAR1 on a physiological and biochemical level and found evidence for redundantly active enzymes in rice.
Collapse
Affiliation(s)
- Katharina Svyatyna
- Botanical Institute, Molecular Cell Biology, Karlsruhe Institute of Technology, Kaiserstr 2, 76128 Karlsruhe, Germany
| | | |
Collapse
|
480
|
Jankiewicz U, Kołtonowicz M. The involvement of Pseudomonas bacteria in induced systemic resistance in plants (Review). APPL BIOCHEM MICRO+ 2012. [DOI: 10.1134/s0003683812030052] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
481
|
Gravot A, Deleu C, Wagner G, Lariagon C, Lugan R, Todd C, Wendehenne D, Delourme R, Bouchereau A, Manzanares-Dauleux MJ. Arginase induction represses gall development during clubroot infection in Arabidopsis. PLANT & CELL PHYSIOLOGY 2012; 53:901-11. [PMID: 22433460 DOI: 10.1093/pcp/pcs037] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Arginase induction can play a defensive role through the reduction of arginine availability for phytophageous insects. Arginase activity is also induced during gall growth caused by Plasmodiophora brassicae infection in roots of Arabidopsis thaliana; however, its possible role in this context has been unclear. We report here that the mutation of the arginase-encoding gene ARGAH2 abrogates clubroot-induced arginase activity and results in enhanced gall size in infected roots, suggesting that arginase plays a defensive role. Induction of arginase activity in infected roots was impaired in the jar1 mutant, highlighting a link between the arginase response to clubroot and jasmonate signaling. Clubroot-induced accumulation of the principal amino acids in galls was not affected by the argah2 mutation. Because ARGAH2 was previously reported to control auxin response, we investigated the role of ARGAH2 in callus induction. ARGAH2 was found to be highly induced in auxin/cytokinin-triggered aseptic plant calli, and callus development was enhanced in argah2 in the absence of the pathogen. We hypothesized that arginase contributes to a negative control over clubroot symptoms, by reducing hormone-triggered cellular proliferation.
Collapse
Affiliation(s)
- Antoine Gravot
- Université Rennes 1, UMR1349 IGEPP, F-35000 Rennes, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
482
|
De-La-Peña C, Rangel-Cano A, Alvarez-Venegas R. Regulation of disease-responsive genes mediated by epigenetic factors: interaction of Arabidopsis-Pseudomonas. MOLECULAR PLANT PATHOLOGY 2012; 13:388-98. [PMID: 22023111 PMCID: PMC6638851 DOI: 10.1111/j.1364-3703.2011.00757.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Genes in eukaryotic organisms function within the context of chromatin, and the mechanisms that modulate the structure of chromatin are defined as epigenetic. In Arabidopsis, pathogen infection induces the expression of at least one histone deacetylase, suggesting that histone acetylation/deacetylation has an important role in the pathogenic response in plants. How/whether histone methylation affects gene response to pathogen infection is unknown. To gain a better understanding of the epigenetic mechanisms regulating the interaction between Pseudomonas syringae and Arabidopsis thaliana, we analysed three different Arabidopsis ash1-related (absent, small or homeotic discs 1) mutants. We found that the loss of function of ASHH2 and ASHR1 resulted in faster hypersensitive responses (HRs) to both mutant (hrpA) and pathogenic (DC3000) strains of P. syringae, whereas control (Col-0) and ashr3 mutants appeared to be more resistant to the infection after 2 days. Furthermore, we showed that, in the ashr3 background, the PR1 gene (PATHOGENESIS-RELATED GENE 1) displayed the highest expression levels on infection with DC3000, correlating with increased resistance against this pathogen. Our results show that, in both the ashr1 and ashh2 backgrounds, the histone H3 lysine 4 dimethylation (H3K4me2) levels decreased at the promoter region of PR1 on infection with the DC3000 strain, suggesting that an epigenetically regulated PR1 expression is involved in the plant defence. Our results suggest that histone methylation in response to pathogen infection may be a critical component in the signalling and defence processes occurring between plants and microbes.
Collapse
Affiliation(s)
- Clelia De-La-Peña
- Department of Genetic Engineering, Centro de Investigación y de Estudios Avanzados, Unidad Irapuato, Irapuato, Gto., CP 36821, Mexico
| | | | | |
Collapse
|
483
|
Köster J, Thurow C, Kruse K, Meier A, Iven T, Feussner I, Gatz C. Xenobiotic- and jasmonic acid-inducible signal transduction pathways have become interdependent at the Arabidopsis CYP81D11 promoter. PLANT PHYSIOLOGY 2012; 159:391-402. [PMID: 22452854 PMCID: PMC3375972 DOI: 10.1104/pp.112.194274] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plants modify harmful substances through an inducible detoxification system. In Arabidopsis (Arabidopsis thaliana), chemical induction of the cytochrome P450 gene CYP81D11 and other genes linked to the detoxification program depends on class II TGA transcription factors. CYP81D11 expression is also induced by the phytohormone jasmonic acid (JA) through the established pathway requiring the JA receptor CORONATINE INSENSITIVE1 (COI1) and the JA-regulated transcription factor MYC2. Here, we report that the xenobiotic- and the JA-dependent signal cascades have become interdependent at the CYP81D11 promoter. On the one hand, MYC2 can only activate the expression of CYP81D11 when both the MYC2- and the TGA-binding sites are present in the promoter. On the other hand, the xenobiotic-regulated class II TGA transcription factors can only mediate maximal promoter activity if TGA and MYC2 binding motifs, MYC2, and the JA-isoleucine biosynthesis enzymes DDE2/AOS and JAR1 are functional. Since JA levels and degradation of JAZ1, a repressor of the JA response, are not affected by reactive chemicals, we hypothesize that basal JA signaling amplifies the response to chemical stress. Remarkably, stress-induced expression levels were 3-fold lower in coi1 than in the JA biosynthesis mutant dde2-2, [corrected] revealing that COI1 can contribute to the activation of the promoter in the absence of JA. Moreover, we show that deletion of the MYC2 binding motifs abolishes the JA responsiveness of the promoter but not the responsiveness to COI1. These findings suggest that yet unknown cis-element(s) can mediate COI1-dependent transcriptional activation in the absence of JA.
Collapse
|
484
|
Demkura PV, Ballaré CL. UVR8 mediates UV-B-induced Arabidopsis defense responses against Botrytis cinerea by controlling sinapate accumulation. MOLECULAR PLANT 2012; 5:642-52. [PMID: 22447155 DOI: 10.1093/mp/sss025] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Light is emerging as a central regulator of plant immune responses against herbivores and pathogens. Solar UV-B radiation plays an important role as a positive modulator of plant defense. However, since UV-B photons can interact with a wide spectrum of molecular targets in plant tissues, the mechanisms that mediate their effects on plant defense have remained elusive. Here, we show that ecologically meaningful doses of UV-B radiation increase Arabidopsis resistance to the necrotrophic fungus Botrytis cinerea and that this effect is mediated by the photoreceptor UVR8. The UV-B effect on plant resistance was conserved in mutants impaired in jasmonate (JA) signaling (jar1-1 and P35S:JAZ10.4) or metabolism of tryptophan-derived defense compounds (pen2-1, pad3-1, pen2 pad3), suggesting that neither regulation of the JA pathway nor changes in levels of indolic glucosinolates (iGS) or camalexin are involved in this response. UV-B radiation, acting through UVR8, increased the levels of flavonoids and sinapates in leaf tissue. The UV-B effect on pathogen resistance was still detectable in tt4-1, a mutant deficient in chalcone synthase and therefore impaired in the synthesis of flavonoids, but was absent in fah1-7, a mutant deficient in ferulic acid 5-hydroxylase, which is essential for sinapate biosynthesis. Collectively, these results indicate that UVR8 plays an important role in mediating the effects of UV-B radiation on pathogen resistance by controlling the expression of the sinapate biosynthetic pathway.
Collapse
Affiliation(s)
- Patricia V Demkura
- IFEVA, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad de Buenos Aires, Ave. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | | |
Collapse
|
485
|
Engelberth J, Contreras CF, Viswanathan S. Transcriptional analysis of distant signaling induced by insect elicitors and mechanical wounding in Zea mays. PLoS One 2012; 7:e34855. [PMID: 22511969 PMCID: PMC3325234 DOI: 10.1371/journal.pone.0034855] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 03/08/2012] [Indexed: 12/26/2022] Open
Abstract
When plants are under insect herbivore attack defensive measures are activated not only locally, but also in distant and systemic tissues. While insect elicitors (IE) abundant in the oral secretions of the attacking herbivore are essential in the regulation of induced defenses, little is known about their effects on systemic defense signaling in maize (Zea mays). The goal of this study was therefore to identify genetic markers that can be used to further characterize local and systemic signaling events induced by IE or mechanical wounding (MW). We selected genes for this study based on their putative involvement in signaling (allene oxide synthase), regulation of gene expression (transcription factor MYC7), and in direct defenses (ribosome inactivating protein) and analyzed their expression in different sections of the treated leaf as well as in systemic parts of the same plant. We found the most significant transcript accumulation of the selected genes after treatment with insect elicitors in those parts with increased JA levels. Additionally, treatment with IE did also induce the accumulation of MYC7 transcripts in basal parts of the treated leaf and systemically. MW, in contrast, did induce RIP and AOS only locally, but not MYC7. This local suppression of MYC7 was further studied by adding glutathione (GSH) as an electron donor to MW plants to quench putative α, β-unsaturated carbonyls, which build up to significant levels around the damage site. Indeed, GSH-treated MW plants accumulated MYC7 at the damage site and also produced more volatiles, suggesting a putative redox-regulatory element being involved in the suppression of MYC7. The results presented herein provide evidence for the specific induction of distant signaling events triggered by IE, most likely through electric signaling. Additionally, a putative role for MW-induced α, β-unsaturated carbonyls in the transcriptional regulation of defense genes was discovered.
Collapse
Affiliation(s)
- Jurgen Engelberth
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas, United States of America.
| | | | | |
Collapse
|
486
|
Arabidopsis touch-induced morphogenesis is jasmonate mediated and protects against pests. Curr Biol 2012; 22:701-6. [PMID: 22483939 DOI: 10.1016/j.cub.2012.02.061] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 01/20/2012] [Accepted: 02/21/2012] [Indexed: 11/20/2022]
Abstract
Plants cannot change location to escape stressful environments. Therefore, plants evolved to respond and acclimate to diverse stimuli, including the seemingly innocuous touch stimulus [1-4]. Although some species, such as Venus flytrap, have fast touch responses, most plants display more gradual touch-induced morphological alterations, called thigmomorphogenesis [2, 3, 5, 6]. Thigmomorphogenesis may be adaptive; trees subjected to winds develop less elongated and thicker trunks and thus are less likely damaged by powerful wind gusts [7]. Despite the widespread relevance of thigmomorphogenesis, the regulation that underlies plant mechanostimulus-induced morphological responses remains largely unknown. Furthermore, whether thigmomorphogenesis confers additional advantage is not fully understood. Although aspects of thigmomorphogenesis resemble ethylene effects [8], and touch can induce ethylene synthesis [9, 10], Arabidopsis ethylene response mutants show touch-induced thigmomorphogenesis [11]; thus, ethylene response is nonessential for thigmomorphogenesis. Here we show that jasmonate (JA) phytohormone both is required for and promotes the salient characteristics of thigmomorphogenesis in Arabidopsis, including a touch-induced delay in flowering and rosette diameter reduction. Furthermore, we find that repetitive mechanostimulation enhances Arabidopsis pest resistance in a JA-dependent manner. These results highlight an important role for JA in mediating mechanostimulus-induced plant developmental responses and resultant cross-protection against biotic stress.
Collapse
|
487
|
Cerrudo I, Keller MM, Cargnel MD, Demkura PV, de Wit M, Patitucci MS, Pierik R, Pieterse CM, Ballaré CL. Low red/far-red ratios reduce Arabidopsis resistance to Botrytis cinerea and jasmonate responses via a COI1-JAZ10-dependent, salicylic acid-independent mechanism. PLANT PHYSIOLOGY 2012; 158:2042-52. [PMID: 22371506 PMCID: PMC3320205 DOI: 10.1104/pp.112.193359] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 02/24/2012] [Indexed: 05/17/2023]
Abstract
Light is an important modulator of plant immune responses. Here, we show that inactivation of the photoreceptor phytochrome B (phyB) by a low red/far-red ratio (R:FR), which is a signal of competition in plant canopies, down-regulates the expression of defense markers induced by the necrotrophic fungus Botrytis cinerea, including the genes that encode the transcription factor ETHYLENE RESPONSE FACTOR1 (ERF1) and the plant defensin PLANT DEFENSIN1.2 (PDF1.2). This effect of low R:FR correlated with a reduced sensitivity to jasmonate (JA), thus resembling the antagonistic effects of salicylic acid (SA) on JA responses. Low R:FR failed to depress PDF1.2 mRNA levels in a transgenic line in which PDF1.2 transcription was up-regulated by constitutive expression of ERF1 in a coronatine insensitive1 (coi1) mutant background (35S::ERF1/coi1). These results suggest that the low R:FR effect, in contrast to the SA effect, requires a functional SCFCOI1-JASMONATE ZIM-DOMAIN (JAZ) JA receptor module. Furthermore, the effect of low R:FR depressing the JA response was conserved in mutants impaired in SA signaling (sid2-1 and npr1-1). Plant exposure to low R:FR ratios and the phyB mutation markedly increased plant susceptibility to B. cinerea; the effect of low R:FR was (1) independent of the activation of the shade-avoidance syndrome, (2) conserved in the sid2-1 and npr1-1 mutants, and (3) absent in two RNA interference lines disrupted for the expression of the JAZ10 gene. Collectively, our results suggest that low R:FR ratios depress Arabidopsis (Arabidopsis thaliana) immune responses against necrotrophic microorganisms via a SA-independent mechanism that requires the JAZ10 transcriptional repressor and that this effect may increase plant susceptibility to fungal infection in dense canopies.
Collapse
|
488
|
Goetz S, Hellwege A, Stenzel I, Kutter C, Hauptmann V, Forner S, McCaig B, Hause G, Miersch O, Wasternack C, Hause B. Role of cis-12-oxo-phytodienoic acid in tomato embryo development. PLANT PHYSIOLOGY 2012; 158:1715-27. [PMID: 22337921 PMCID: PMC3320180 DOI: 10.1104/pp.111.192658] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/10/2012] [Indexed: 05/19/2023]
Abstract
Oxylipins including jasmonates are signaling compounds in plant growth, development, and responses to biotic and abiotic stresses. In Arabidopsis (Arabidopsis thaliana) most mutants affected in jasmonic acid (JA) biosynthesis and signaling are male sterile, whereas the JA-insensitive tomato (Solanum lycopersicum) mutant jai1 is female sterile. The diminished seed formation in jai1 together with the ovule-specific accumulation of the JA biosynthesis enzyme allene oxide cyclase (AOC), which correlates with elevated levels of JAs, suggest a role of oxylipins in tomato flower/seed development. Here, we show that 35S::SlAOC-RNAi lines with strongly reduced AOC in ovules exhibited reduced seed set similarly to the jai1 plants. Investigation of embryo development of wild-type tomato plants showed preferential occurrence of AOC promoter activity and AOC protein accumulation in the developing seed coat and the embryo, whereas 12-oxo-phytodienoic acid (OPDA) was the dominant oxylipin occurring nearly exclusively in the seed coat tissues. The OPDA- and JA-deficient mutant spr2 was delayed in embryo development and showed an increased programmed cell death in the developing seed coat and endosperm. In contrast, the mutant acx1a, which accumulates preferentially OPDA and residual amount of JA, developed embryos similar to the wild type, suggesting a role of OPDA in embryo development. Activity of the residual amount of JA in the acx1a mutant is highly improbable since the known reproductive phenotype of the JA-insensitive mutant jai1 could be rescued by wound-induced formation of OPDA. These data suggest a role of OPDA or an OPDA-related compound for proper embryo development possibly by regulating carbohydrate supply and detoxification.
Collapse
|
489
|
Yan Y, Christensen S, Isakeit T, Engelberth J, Meeley R, Hayward A, Emery RN, Kolomiets MV. Disruption of OPR7 and OPR8 reveals the versatile functions of jasmonic acid in maize development and defense. THE PLANT CELL 2012; 24:1420-36. [PMID: 22523204 PMCID: PMC3398555 DOI: 10.1105/tpc.111.094151] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 03/22/2012] [Accepted: 04/04/2012] [Indexed: 05/20/2023]
Abstract
Here, multiple functions of jasmonic acid (JA) in maize (Zea mays) are revealed by comprehensive analyses of JA-deficient mutants of the two oxo-phytodienoate reductase genes, OPR7 and OPR8. Single mutants produce wild-type levels of JA in most tissues, but the double mutant opr7 opr8 has dramatically reduced JA in all organs tested. opr7 opr8 displayed strong developmental defects, including formation of a feminized tassel, initiation of female reproductive buds at each node, and extreme elongation of ear shanks; these defects were rescued by exogenous JA. These data provide evidence that JA is required for male sex determination and suppression of female reproductive organ biogenesis. Moreover, opr7 opr8 exhibited delayed leaf senescence accompanied by reduced ethylene and abscisic acid levels and lack of anthocyanin pigmentation of brace roots. Remarkably, opr7 opr8 is nonviable in nonsterile soil and under field conditions due to extreme susceptibility to a root-rotting oomycete (Pythium spp), demonstrating that these genes are necessary for maize survival in nature. Supporting the importance of JA in insect defense, opr7 opr8 is susceptible to beet armyworm. Overall, this study provides strong genetic evidence for the global roles of JA in maize development and immunity to pathogens and insects.
Collapse
Affiliation(s)
- Yuanxin Yan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - Shawn Christensen
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - Tom Isakeit
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - Jürgen Engelberth
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| | | | - Allison Hayward
- Biology Department, Trent University, Peterborough, Ontario K9J 7B8, Canada
| | - R.J. Neil Emery
- Biology Department, Trent University, Peterborough, Ontario K9J 7B8, Canada
| | - Michael V. Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
- Address correspondence to
| |
Collapse
|
490
|
Dave A, Graham IA. Oxylipin Signaling: A Distinct Role for the Jasmonic Acid Precursor cis-(+)-12-Oxo-Phytodienoic Acid (cis-OPDA). FRONTIERS IN PLANT SCIENCE 2012; 3:42. [PMID: 22645585 PMCID: PMC3355751 DOI: 10.3389/fpls.2012.00042] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 02/19/2012] [Indexed: 05/18/2023]
Abstract
Oxylipins are lipid-derived compounds, many of which act as signals in the plant response to biotic and abiotic stress. They include the phytohormone jasmonic acid (JA) and related jasmonate metabolites cis-(+)-12-oxo-phytodienoic acid (cis-OPDA), methyl jasmonate, and jasmonoyl-L-isoleucine (JA-Ile). Besides the defense response, jasmonates are involved in plant growth and development and regulate a range of processes including glandular trichome development, reproduction, root growth, and senescence. cis-OPDA is known to possess a signaling role distinct from JA-Ile. The non-enzymatically derived phytoprostanes are structurally similar to cis-OPDA and induce a common set of genes that are not responsive to JA in Arabidopsis thaliana. A novel role for cis-OPDA in seed germination regulation has recently been uncovered based on evidence from double mutants and feeding experiments showing that cis-OPDA interacts with abscisic acid (ABA), inhibits seed germination, and increases ABA INSENSITIVE5 (ABI5) protein abundance. Large amounts of cis-OPDA are esterified to galactolipids in A. thaliana and the resulting compounds, known as Arabidopsides, are thought to act as a rapidly available source of cis-OPDA.
Collapse
Affiliation(s)
- Anuja Dave
- Department of Biology, Centre for Novel Agricultural Products, University of YorkYork, UK
| | - Ian A. Graham
- Department of Biology, Centre for Novel Agricultural Products, University of YorkYork, UK
| |
Collapse
|
491
|
Ishiga Y, Ishiga T, Wangdi T, Mysore KS, Uppalapati SR. NTRC and chloroplast-generated reactive oxygen species regulate Pseudomonas syringae pv. tomato disease development in tomato and Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:294-306. [PMID: 22112219 DOI: 10.1094/mpmi-05-11-0130] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Coronatine (COR)-producing pathovars of Pseudomonas syringae, including pvs. tomato, maculicola, and glycinea, cause important diseases on tomato, crucifers, and soybean, respectively, and produce symptoms with necrotic lesions surrounded by chlorosis. The chlorosis is mainly attributed to COR. However, the significance of COR-induced chlorosis in localized lesion development and the molecular basis of disease-associated cell death is largely unknown. To identify host (chloroplast) genes that play a role in COR-mediated chlorosis, we used a forward genetics approach using Nicotiana benthamiana and virus-induced gene silencing and identified a gene which encodes 2-Cys peroxiredoxin (Prxs) that, when silenced, produced a spreading hypersensitive or necrosis-like phenotype instead of chlorosis after COR application in a COI1-dependent manner. Loss-of-function analysis of Prx and NADPH-dependent thioredoxin reductase C (NTRC), the central players of a chloroplast redox detoxification system, resulted in spreading accelerated P. syringae pv. tomato DC3000 disease-associated cell death with enhanced reactive oxygen species (ROS) accumulation in a COR-dependent manner in tomato and Arabidopsis. Consistent with these results, virulent strain DC3000 suppressed the expression of Prx and NTRC in Arabidopsis and tomato during pathogenesis. However, interestingly, authentic COR suppressed the expression of Prx and NTRC in tomato but not in Arabidopsis, suggesting that COR in conjunction with other effectors may modulate ROS and cell death in different host species. Taken together, these results indicated that NTRC or Prx function as a negative regulator of pathogen-induced cell death in the healthy tissues that surround the lesions, and COR-induced chloroplast-localized ROS play a role in enhancing the disease-associated cell death.
Collapse
Affiliation(s)
- Yasuhiro Ishiga
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA
| | | | | | | | | |
Collapse
|
492
|
Bozorov TA, Pandey SP, Dinh ST, Kim SG, Heinrich M, Gase K, Baldwin IT. DICER-like proteins and their role in plant-herbivore interactions in Nicotiana attenuata. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2012; 54:189-206. [PMID: 22313877 DOI: 10.1111/j.1744-7909.2012.01104.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
DICER-like (DCL) proteins produce small RNAs that silence genes involved in development and defenses against viruses and pathogens. Which DCLs participate in plant-herbivore interactions remains unstudied. We identified and stably silenced four distinct DCL genes by RNAi in Nicotiana attenuata (Torrey ex. Watson), a model for the study of plant-herbivore interactions. Silencing DCL1 expression was lethal. Manduca sexta larvae performed significantly better on ir-dcl3 and ir-dcl4 plants, but not on ir-dcl2 plants compared to wild type plants. Phytohormones, defense metabolites and microarray analyses revealed that when DCL3 and DCL4 were silenced separately, herbivore resistance traits were regulated in distinctly different ways. Crossing of the lines revealed complex interactions in the patterns of regulation. Single ir-dcl4 and double ir-dcl2 ir-dcl3 plants were impaired in JA accumulation, while JA-Ile was increased in ir-dcl3 plants. Ir-dcl3 and ir-dcl4 plants were impaired in nicotine accumulation; silencing DCL2 in combination with either DCL3 or DCL4 restored nicotine levels to those of WT. Trypsin proteinase inhibitor activity and transcripts were only silenced in ir-dcl3 plants. We conclude that DCL2/3/4 interact in a complex manner to regulate anti-herbivore defenses and that these interactions significantly complicate the already challenging task of understanding smRNA function in the regulation of biotic interactions.
Collapse
|
493
|
Ismail A, Riemann M, Nick P. The jasmonate pathway mediates salt tolerance in grapevines. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2127-39. [PMID: 22223808 PMCID: PMC3295401 DOI: 10.1093/jxb/err426] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/18/2011] [Accepted: 12/01/2011] [Indexed: 05/17/2023]
Abstract
Salt stress is a major constraint for many crop plants, such as the moderately salt-sensitive economically important fruit crop grapevine. Plants have evolved different strategies for protection against salinity and drought. Jasmonate signalling is a central element of both biotic and abiotic stress responses. To discriminate stress quality, there must be cross-talk with parallel signal chains. Using two grapevine cell lines differing in salt tolerance, the response of jasmonate ZIM/tify-domain (JAZ/TIFY) proteins (negative regulators of jasmonate signalling), a marker for salt adaptation Na(+)/H(+) EXCHANGER (NHX1), and markers for biotic defence STILBENE SYNTHASE (StSy) and RESVERATROL SYNTHASE (RS) were analysed. It is shown that salt stress signalling shares several events with biotic defence including activity of a gadolinium-sensitive calcium influx channel (monitored by apoplastic alkalinization) and transient induction of JAZ/TIFY transcripts. Exogenous jasmonate can rescue growth in the salt-sensitive cell line. Suppression of jasmonate signalling by phenidone or aspirin blocks the induction of JAZ/TIFY transcripts. The rapid induction of RS and StSy characteristic for biotic defence in grapevine is strongly delayed in response to salt stress. In the salt-tolerant line, NHX1 is induced and the formation of reactive oxygen species, monitored as stress markers in the sensitive cell line, is suppressed. The data are discussed in terms of a model where salt stress signalling acts as a default pathway whose readout is modulated by a parallel signal chain triggered by biotic factors downstream of jasmonate signalling.
Collapse
Affiliation(s)
- Ahmed Ismail
- Karlsruhe Institute of Technology, Karlsruhe, Germany.
| | | | | |
Collapse
|
494
|
Makandar R, Nalam VJ, Lee H, Trick HN, Dong Y, Shah J. Salicylic acid regulates basal resistance to Fusarium head blight in wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:431-9. [PMID: 22112217 DOI: 10.1094/mpmi-09-11-0232] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Fusarium head blight (FHB) is a destructive disease of cereal crops such as wheat and barley. Previously, expression in wheat of the Arabidopsis NPR1 gene (AtNPR1), which encodes a key regulator of salicylic acid (SA) signaling, was shown to reduce severity of FHB caused by Fusarium graminearum. It was hypothesized that SA signaling contributes to wheat defense against F. graminearum. Here, we show that increased accumulation of SA in fungus-infected spikes correlated with elevated expression of the SA-inducible pathogenesis-related 1 (PR1) gene and FHB resistance. In addition, FHB severity and mycotoxin accumulation were curtailed in wheat plants treated with SA and in AtNPR1 wheat, which is hyper-responsive to SA. In support of a critical role for SA in basal resistance to FHB, disease severity was higher in wheat expressing the NahG-encoded salicylate hydroxylase, which metabolizes SA. The FHB-promoting effect of NahG was overcome by application of benzo (1,2,3), thiadiazole-7 carbothioic acid S-methyl ester, a synthetic functional analog of SA, thus confirming an important role for SA signaling in basal resistance to FHB. We further demonstrate that jasmonate signaling has a dichotomous role in wheat interaction with F. graminearum, constraining activation of SA signaling during early stages of infection and promoting resistance during the later stages of infection.
Collapse
Affiliation(s)
- Ragiba Makandar
- Department of Biological Sciences, University of North Texas, Denton 76230, USA
| | | | | | | | | | | |
Collapse
|
495
|
Reeves PH, Ellis CM, Ploense SE, Wu MF, Yadav V, Tholl D, Chételat A, Haupt I, Kennerley BJ, Hodgens C, Farmer EE, Nagpal P, Reed JW. A regulatory network for coordinated flower maturation. PLoS Genet 2012; 8:e1002506. [PMID: 22346763 PMCID: PMC3276552 DOI: 10.1371/journal.pgen.1002506] [Citation(s) in RCA: 180] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 12/11/2011] [Indexed: 11/19/2022] Open
Abstract
For self-pollinating plants to reproduce, male and female organ development must be coordinated as flowers mature. The Arabidopsis transcription factors AUXIN RESPONSE FACTOR 6 (ARF6) and ARF8 regulate this complex process by promoting petal expansion, stamen filament elongation, anther dehiscence, and gynoecium maturation, thereby ensuring that pollen released from the anthers is deposited on the stigma of a receptive gynoecium. ARF6 and ARF8 induce jasmonate production, which in turn triggers expression of MYB21 and MYB24, encoding R2R3 MYB transcription factors that promote petal and stamen growth. To understand the dynamics of this flower maturation regulatory network, we have characterized morphological, chemical, and global gene expression phenotypes of arf, myb, and jasmonate pathway mutant flowers. We found that MYB21 and MYB24 promoted not only petal and stamen development but also gynoecium growth. As well as regulating reproductive competence, both the ARF and MYB factors promoted nectary development or function and volatile sesquiterpene production, which may attract insect pollinators and/or repel pathogens. Mutants lacking jasmonate synthesis or response had decreased MYB21 expression and stamen and petal growth at the stage when flowers normally open, but had increased MYB21 expression in petals of older flowers, resulting in renewed and persistent petal expansion at later stages. Both auxin response and jasmonate synthesis promoted positive feedbacks that may ensure rapid petal and stamen growth as flowers open. MYB21 also fed back negatively on expression of jasmonate biosynthesis pathway genes to decrease flower jasmonate level, which correlated with termination of growth after flowers have opened. These dynamic feedbacks may promote timely, coordinated, and transient growth of flower organs.
Collapse
Affiliation(s)
- Paul H. Reeves
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Christine M. Ellis
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Sara E. Ploense
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Miin-Feng Wu
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Vandana Yadav
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Dorothea Tholl
- Department of Biological Sciences, Virginia Tech University, Blacksburg, Virginia, United States of America
| | - Aurore Chételat
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
| | - Ina Haupt
- Max-Planck Institute for Chemical Ecology, Jena, Germany
| | - Brian J. Kennerley
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Charles Hodgens
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Edward E. Farmer
- Department of Plant Molecular Biology, Biophore, University of Lausanne, Lausanne, Switzerland
- College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Punita Nagpal
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jason W. Reed
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
496
|
Linkies A, Leubner-Metzger G. Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. PLANT CELL REPORTS 2012; 31:253-70. [PMID: 22044964 DOI: 10.1007/s00299-011-1180-1] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 10/13/2011] [Accepted: 10/13/2011] [Indexed: 05/04/2023]
Abstract
Appropriate responses of seeds and fruits to environmental factors are key traits that control the establishment of a species in a particular ecosystem. Adaptation of germination to abiotic stresses and changing environmental conditions is decisive for fitness and survival of a species. Two opposing forces provide the basic physiological mechanism for the control of seed germination: the increasing growth potential of the embryo and the restraint weakening of the various covering layers (seed envelopes), including the endosperm which is present to a various extent in the mature seeds of most angiosperms. Gibberellins (GA), abscisic acid (ABA) and ethylene signaling and metabolism mediate environmental cues and in turn influence developmental processes like seed germination. Cross-species work has demonstrated that GA, ABA and ethylene interact during the regulation of endosperm weakening, which is at least partly based on evolutionarily conserved mechanisms. We summarize the recent progress made in unraveling how ethylene promotes germination and acts as an antagonist of ABA. Far less is known about jasmonates in seeds for which we summarize the current knowledge about their role in seeds. While it seems very clear that jasmonates inhibit germination, the results obtained so far are partly contradictory and depend on future research to reach final conclusions on the mode of jasmonate action during seed germination. Understanding the mechanisms underlying the control of seed germination and its hormonal regulation is not only of academic interest, but is also the ultimate basis for further improving crop establishment and yield, and is therefore of common importance.
Collapse
Affiliation(s)
- Ada Linkies
- Botany/Plant Physiology, Institute for Biology II, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104, Freiburg, Germany.
| | | |
Collapse
|
497
|
Schmid-Siegert E, Loscos J, Farmer EE. Inducible malondialdehyde pools in zones of cell proliferation and developing tissues in Arabidopsis. J Biol Chem 2012; 287:8954-62. [PMID: 22298768 DOI: 10.1074/jbc.m111.322842] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Malondialdehyde (MDA) is a natural and widespread genotoxin. Given its potentially deleterious effects, it is of interest to establish the identities of the cell types containing this aldehyde. We used in situ chemical trapping with 2-thiobarbituric acid and mass spectrometry with a deuterated standard to characterize MDA pools in the vegetative phase in Arabidopsis thaliana. In leaves, MDA occurred predominantly in the intracellular compartment of mesophyll cells and was enriched in chloroplasts where it was derived primarily from triunsaturated fatty acids (TFAs). High levels of MDA (most of which was unbound) were found within dividing cells in the root tip cell proliferation zone. The bulk of this MDA did not originate from TFAs. We confirmed the localization of MDA in transversal root sections. In addition to MDA in proliferating cells near the root tip we found evidence for the presence of MDA in pericyle cells. Remodeling of non-TFA-derived MDA pools occurred when seedlings were infected with the fungus Botrytis cinerea. Treatment of uninfected seedlings with mediators of plant stress responses (jasmonic acid or salicylic acid) increased seedling MDA levels over 20-fold. In summary, major pools of MDA are associated with cell division foci containing stem cells. The aldehyde is pathogen-inducible in these regions and its levels are increased by cellular mediators that impact defense and growth.
Collapse
Affiliation(s)
- Emanuel Schmid-Siegert
- Department of Plant Molecular Biology, University of Lausanne, Biophore, Lausanne, Switzerland
| | | | | |
Collapse
|
498
|
Insights into the role of jasmonic acid-mediated defenses against necrotrophic and biotrophic fungal pathogens. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-011-1171-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
499
|
Demianski AJ, Chung KM, Kunkel BN. Analysis of Arabidopsis JAZ gene expression during Pseudomonas syringae pathogenesis. MOLECULAR PLANT PATHOLOGY 2012; 13:46-57. [PMID: 21726394 PMCID: PMC6638877 DOI: 10.1111/j.1364-3703.2011.00727.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The jasmonates (JAs) comprise a family of plant hormones that regulate several developmental processes and mediate responses to various abiotic and biotic stresses, including pathogens. JA signalling is manipulated by several strains of the bacterial pathogen Pseudomonas syringae, including P. syringae strain DC3000, using the virulence factor coronatine (COR) as a mimic of jasmonyl-L-isoleucine (JA-Ile). To better understand the JA-Ile-mediated processes contributing to P. syringae disease susceptibility, it is important to investigate the regulation of JA signalling during infection. In Arabidopsis thaliana, JASMONATE ZIM-DOMAIN (JAZ) proteins are negative regulators of JA signalling. The transcription factor JASMONATE INSENSITIVE1 (JIN1/ATMYC2) has been implicated in the regulation of JAZ gene expression. To investigate the regulation of JAZ genes during P. syringae pathogenesis, we examined JAZ gene expression during infection of Arabidopsis by DC3000. We found that eight of the 12 JAZ genes are induced during infection in a COR-dependent manner. Unexpectedly, the induction of the majority of JAZ genes during infection was not dependent on JIN1, indicating that JIN1 is not the only transcription factor regulating JAZ genes. A T-DNA insertion mutant and an RNA interference line disrupted for the expression of JAZ10, one of the few JAZ genes regulated by JIN1 during infection, exhibited enhanced JA sensitivity and increased susceptibility to DC3000, with the primary effect being increased disease symptom severity. Thus, JAZ10 is a negative regulator of both JA signalling and disease symptom development.
Collapse
Affiliation(s)
- Agnes J Demianski
- Department of Biology, Washington University, St Louis, MO 63130, USA
| | | | | |
Collapse
|
500
|
|