451
|
Kc R, Li X, Voigt RM, Ellman MB, Summa KC, Vitaterna MH, Keshavarizian A, Turek FW, Meng QJ, Stein GS, van Wijnen AJ, Chen D, Forsyth CB, Im HJ. Environmental disruption of circadian rhythm predisposes mice to osteoarthritis-like changes in knee joint. J Cell Physiol 2015; 230:2174-2183. [PMID: 25655021 PMCID: PMC4447623 DOI: 10.1002/jcp.24946] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/23/2015] [Indexed: 01/08/2023]
Abstract
Circadian rhythm dysfunction is linked to many diseases, yet pathophysiological roles in articular cartilage homeostasis and degenerative joint disease including osteoarthritis (OA) remains to be investigated in vivo. Here, we tested whether environmental or genetic disruption of circadian homeostasis predisposes to OA-like pathological changes. Male mice were examined for circadian locomotor activity upon changes in the light:dark (LD) cycle or genetic disruption of circadian rhythms. Wild-type (WT) mice were maintained on a constant 12 h:12 h LD cycle (12:12 LD) or exposed to weekly 12 h phase shifts. Alternatively, male circadian mutant mice (Clock(Δ19) or Csnk1e(tau) mutants) were compared with age-matched WT littermates that were maintained on a constant 12:12 LD cycle. Disruption of circadian rhythms promoted osteoarthritic changes by suppressing proteoglycan accumulation, upregulating matrix-degrading enzymes and downregulating anabolic mediators in the mouse knee joint. Mechanistically, these effects involved activation of the PKCδ-ERK-RUNX2/NFκB and β-catenin signaling pathways, stimulation of MMP-13 and ADAMTS-5, as well as suppression of the anabolic mediators SOX9 and TIMP-3 in articular chondrocytes of phase-shifted mice. Genetic disruption of circadian homeostasis does not predispose to OA-like pathological changes in joints. Our results, for the first time, provide compelling in vivo evidence that environmental disruption of circadian rhythms is a risk factor for the development of OA-like pathological changes in the mouse knee joint.
Collapse
Affiliation(s)
- Ranjan Kc
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, 60612
| | - Xin Li
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, 60612
| | - Robin M Voigt
- Section of Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, 60612
| | - Michael B Ellman
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, 60612
- Department of Orthopaedic Surgery, Internal Medicine, Rush University Medical Center, Chicago, IL, 60612
| | - Keith C Summa
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL, 60208
| | - Martha Hotz Vitaterna
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL, 60208
| | - Ali Keshavarizian
- Section of Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, 60612
- Section of Pharmacology, Rush University Medical Center, Chicago, IL, 60612
- Section of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL, 60612
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Netherlands
| | - Fred W Turek
- Center for Sleep and Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL, 60208
| | - Qing-Jun Meng
- Qing-Jun Meng, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom, M13 9PT
| | - Gary S. Stein
- Department of Biochemistry, Vermont Cancer Center for Basic and Translational Research, University of Vermont Medical School, Burlington, VT, USA
| | - Andre J. van Wijnen
- Departments of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Di Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, 60612
| | - Christopher B Forsyth
- Section of Division of Digestive Diseases and Nutrition, Rush University Medical Center, Chicago, IL, 60612
| | - Hee-Jeong Im
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, 60612
- Department of Orthopaedic Surgery, Internal Medicine, Rush University Medical Center, Chicago, IL, 60612
- Section of Rheumatology, Rush University Medical Center, Chicago, IL, 60612
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60612
| |
Collapse
|
452
|
|
453
|
Koo J, Choe HK, Kim HD, Chun SK, Son GH, Kim K. Effect of Mefloquine, a Gap Junction Blocker, on Circadian Period2 Gene Oscillation in the Mouse Suprachiasmatic Nucleus Ex Vivo. Endocrinol Metab (Seoul) 2015; 30:361-70. [PMID: 25491783 PMCID: PMC4595362 DOI: 10.3803/enm.2015.30.3.361] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 07/31/2014] [Accepted: 10/17/2014] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND In mammals, the master circadian pacemaker is localized in an area of the ventral hypothalamus known as the suprachiasmatic nucleus (SCN). Previous studies have shown that pacemaker neurons in the SCN are highly coupled to one another, and this coupling is crucial for intrinsic self-sustainability of the SCN central clock, which is distinguished from peripheral oscillators. One plausible mechanism underlying the intercellular communication may involve direct electrical connections mediated by gap junctions. METHODS We examined the effect of mefloquine, a neuronal gap junction blocker, on circadian Period 2 (Per2) gene oscillation in SCN slice cultures prepared from Per2::luciferase (PER2::LUC) knock-in mice using a real-time bioluminescence measurement system. RESULTS Administration of mefloquine causes instability in the pulse period and a slight reduction of amplitude in cyclic PER2::LUC expression. Blockade of gap junctions uncouples PER2::LUC-expressing cells, in terms of phase transition, which weakens synchrony among individual cellular rhythms. CONCLUSION These findings suggest that neuronal gap junctions play an important role in synchronizing the central pacemaker neurons and contribute to the distinct self-sustainability of the SCN master clock.
Collapse
Affiliation(s)
- Jinmi Koo
- Department of Biological Sciences and Brain Research Center for 21st Frontier Program in Neuroscience, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Han Kyoung Choe
- Department of Biological Sciences and Brain Research Center for 21st Frontier Program in Neuroscience, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Hee Dae Kim
- Department of Biological Sciences and Brain Research Center for 21st Frontier Program in Neuroscience, Seoul National University College of Natural Sciences, Seoul, Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Sung Kook Chun
- Department of Biological Sciences and Brain Research Center for 21st Frontier Program in Neuroscience, Seoul National University College of Natural Sciences, Seoul, Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Gi Hoon Son
- Department of Biological Sciences and Brain Research Center for 21st Frontier Program in Neuroscience, Seoul National University College of Natural Sciences, Seoul, Korea
- Department of Legal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Kyungjin Kim
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
- Department of Biological Sciences and Brain Research Center for 21st Frontier Program in Neuroscience, Seoul National University College of Natural Sciences, Seoul, Korea.
| |
Collapse
|
454
|
Rakshit K, Qian J, Colwell CS, Matveyenko AV. The islet circadian clock: entrainment mechanisms, function and role in glucose homeostasis. Diabetes Obes Metab 2015; 17 Suppl 1:115-22. [PMID: 26332976 PMCID: PMC4562066 DOI: 10.1111/dom.12523] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/01/2015] [Indexed: 12/20/2022]
Abstract
Circadian regulation of glucose homeostasis and insulin secretion has long been appreciated as an important feature of metabolic control in humans. Circadian disruption is becoming increasingly prevalent in today's society and is likely responsible in part for the considerable rise in type 2 diabetes (T2DM) and metabolic syndrome worldwide. Thus, understanding molecular mechanisms driving the inter-relationship between circadian disruption and T2DM is important in context of disease prevention and therapeutics. In this regard, the goal of this article is to highlight the role of the circadian system, and islet circadian clocks in particular, as potential regulators of β-cell function and survival. To date, studies have shown that islet clocks respond to changes in feeding patterns, and regulate a multitude of critical cellular processes in insulin secreting β-cells (e.g. insulin exocytosis, mitochondrial function and response to oxidative stress). Subsequently, either genetic or environmental disruption of normal islet clock performance compromises β-cell function and leads to loss of glycaemic control. Future work is warranted to further unravel the role of circadian clocks in human islet function in health and contributions to pathogenesis of T2DM.
Collapse
Affiliation(s)
- Kuntol Rakshit
- Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine, Mayo Clinic Rochester, Minnesota
| | - Jingyi Qian
- Laboratory for Circadian and Sleep Medicine, Departments of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, California
| | - Christopher S. Colwell
- Laboratory for Circadian and Sleep Medicine, Departments of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, David Geffen School of Medicine, Los Angeles, California
| | - Aleksey V. Matveyenko
- Department of Physiology and Biomedical Engineering, Mayo Clinic School of Medicine, Mayo Clinic Rochester, Minnesota
| |
Collapse
|
455
|
Poletini MO, Ramos BC, Moraes MN, Castrucci AML. Nonvisual Opsins and the Regulation of Peripheral Clocks by Light and Hormones. Photochem Photobiol 2015; 91:1046-55. [DOI: 10.1111/php.12494] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/23/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Maristela O. Poletini
- Department of Physiology and Biophysics; Institute of Biological Sciences; Federal University of Minas Gerais; Belo Horizonte Brazil
- Department of Physiology; Institute of Biosciences; University of São Paulo; São Paulo Brazil
| | - Bruno C. Ramos
- Department of Physiology; Institute of Biosciences; University of São Paulo; São Paulo Brazil
| | - Maria Nathalia Moraes
- Department of Physiology; Institute of Biosciences; University of São Paulo; São Paulo Brazil
| | - Ana Maria L. Castrucci
- Department of Physiology; Institute of Biosciences; University of São Paulo; São Paulo Brazil
| |
Collapse
|
456
|
Circadian Rhythms and Psychopathology: From Models of Depression to Rhythms in Clock Gene Expression and Back Again. Biol Psychiatry 2015. [PMID: 26195175 DOI: 10.1016/j.biopsych.2015.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
457
|
Dong C, Bai S, Du L. Temperature regulates circadian rhythms of immune responses in red swamp crayfish Procambarus clarkii. FISH & SHELLFISH IMMUNOLOGY 2015; 45:641-647. [PMID: 26004319 DOI: 10.1016/j.fsi.2015.05.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 05/13/2015] [Accepted: 05/14/2015] [Indexed: 06/04/2023]
Abstract
As an ectothermic animal, crayfish immunity and their resistance to pathogen can be significantly affected by environmental factors such as light and temperature. It has been found for a long time that multiple immune parameters of animals and human are circadian-regulated by light-entrained circadian rhythm. Whether temperature also affects the immune rhythm of animals still remains unclear. In the present study, we investigated the effect of temperature cycles on the rhythm of crayfish immunity and their resistance. Survival experiments demonstrated that temperature cycles of 24 °C and 18 °C effectively entrained the circadian rhythm of crayfish resistance to Aeromonas hydrophila in constant dark. After being exposed to temperature cycles, the crayfish injected at different time points exhibited significant difference in resistance to A. hydrophila. Bacterial growth and total hemocyte count (THC) also showed circadian variation in crayfish subjected to temperature cycles, but phenoloxidase (PO) activity didn't show rhythmic change under the same conditions. Quantitative real-time PCR revealed that basal expression of crustin1 and astacidin in crayfish subjected to temperature cycles was circadian-rhythmic, but induced expression by A. hydrophila didn't show the same rhythm. In contrast, crayfish maintained at constant temperature showed completely arrhythmic in bacterial resistance, immune parameters mentioned above and the expression of antimicrobial peptides. The results present here collectively indicated that temperature cycles entrained circadian rhythm of some immune parameters and shaped crayfish resistance to bacteria.
Collapse
Affiliation(s)
- Chaohua Dong
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, China.
| | - Suhua Bai
- College of Life Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Liqiang Du
- College of Life Science, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China
| |
Collapse
|
458
|
Abstract
Multiple lines of evidence suggest that psychopathological symptoms of bipolar disorder arise in part from a malfunction of the circadian system, linking the disease with an abnormal internal timing. Alterations in circadian rhythms and sleep are core elements in the disorders, characterizing both mania and depression and having recently been shown during euthymia. Several human genetic studies have implicated specific genes that make up the genesis of circadian rhythms in the manifestation of mood disorders with polymorphisms in molecular clock genes not only showing an association with the disorder but having also been linked to its phenotypic particularities. Many medications used to treat the disorder, such as antidepressant and mood stabilizers, affect the circadian clock. Finally, circadian rhythms and sleep researches have been the starting point of the developing of chronobiological therapies. These interventions are safe, rapid and effective and they should be considered first-line strategies for bipolar depression.
Collapse
Affiliation(s)
- Sara Dallaspezia
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy,
| | | |
Collapse
|
459
|
Stuber E, Dingemanse N, Kempenaers B, Mueller J. Sources of intraspecific variation in sleep behaviour of wild great tits. Anim Behav 2015. [DOI: 10.1016/j.anbehav.2015.05.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
460
|
Abstract
The hematologic system performs a number of essential functions, including oxygen transport, the execution of the immune response against tumor cells and invading pathogens, and hemostasis (blood clotting). These roles are performed by erythrocytes (red blood cells), leukocytes (white blood cells), and thrombocytes (platelets), respectively. Critically, circadian rhythms are evident in the function of all 3 cell types. In this review, we describe these oscillations, explore their mechanistic bases, and highlight their key implications. Since erythrocytes are anucleate, circadian rhythms in these cells testify to the existence of a nontranscriptional circadian clock. From a clinical perspective, leukocyte rhythms could underlie daily variation in the severity of allergic reactions, the symptoms of chronic inflammatory diseases, and the body’s response to infection, while the rhythmic properties of thrombocytes may explain daily fluctuations in the incidence of heart attack and stroke. Consequently, the efficacy of treatments for these conditions is likely to depend on the timing of their administration. Last, we outline preliminary evidence that circadian disruption in the hematologic system could contribute to the deleterious effects of poor diet, shift work, and alcohol abuse on human health.
Collapse
Affiliation(s)
- David Pritchett
- Institute of Metabolic Science, Department of Clinical Neurosciences, University of Cambridge, UK
| | - Akhilesh B. Reddy
- Institute of Metabolic Science, Department of Clinical Neurosciences, University of Cambridge, UK
| |
Collapse
|
461
|
Furutani A, Ikeda Y, Itokawa M, Nagahama H, Ohtsu T, Furutani N, Kamagata M, Yang ZH, Hirasawa A, Tahara Y, Shibata S. Fish Oil Accelerates Diet-Induced Entrainment of the Mouse Peripheral Clock via GPR120. PLoS One 2015; 10:e0132472. [PMID: 26161796 PMCID: PMC4498928 DOI: 10.1371/journal.pone.0132472] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 06/15/2015] [Indexed: 12/29/2022] Open
Abstract
The circadian peripheral clock is entrained by restricted feeding (RF) at a fixed time of day, and insulin secretion regulates RF-induced entrainment of the peripheral clock in mice. Thus, carbohydrate-rich food may be ideal for facilitating RF-induced entrainment, although the role of dietary oils in insulin secretion and RF-induced entrainment has not been described. The soybean oil component of standard mouse chow was substituted with fish or soybean oil containing docosahexaenoic acid (DHA) and/or eicosapentaenoic acid (EPA). Tuna oil (high DHA/EPA), menhaden oil (standard), and DHA/EPA dissolved in soybean oil increased insulin secretion and facilitated RF-induced phase shifts of the liver clock as represented by the bioluminescence rhythms of PER2::LUCIFERASE knock-in mice. In this model, insulin depletion blocked the effect of tuna oil and fish oil had no effect on mice deficient for GPR120, a polyunsaturated fatty acid receptor. These results suggest food containing fish oil or DHA/EPA is ideal for adjusting the peripheral clock.
Collapse
Affiliation(s)
- Akiko Furutani
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2–2, Shinjuku-ku, Tokyo, Japan
| | - Yuko Ikeda
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2–2, Shinjuku-ku, Tokyo, Japan
| | - Misa Itokawa
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2–2, Shinjuku-ku, Tokyo, Japan
| | - Hiroki Nagahama
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2–2, Shinjuku-ku, Tokyo, Japan
| | - Teiji Ohtsu
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2–2, Shinjuku-ku, Tokyo, Japan
| | - Naoki Furutani
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2–2, Shinjuku-ku, Tokyo, Japan
| | - Mayo Kamagata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2–2, Shinjuku-ku, Tokyo, Japan
| | - Zhi-Hong Yang
- Central Research Laboratory, Nippon Suisan Kaisha Ltd., Nanakuni 1-32-3, Hachioji, Tokyo, Japan
| | - Akira Hirasawa
- Department of Genomic Drug Discovery Sciences, Kyoto University, 46–29, Yoshida, Sakyo-ku, Kyoto, Japan
- Institute for Integrated Medical Sciences, Tokyo Women’s Medical University, Kawada-cho 8–1, Shinjuku-ku, Tokyo, Japan
| | - Yu Tahara
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2–2, Shinjuku-ku, Tokyo, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Wakamatsu-cho 2–2, Shinjuku-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
462
|
Phillips DJ, Savenkova MI, Karatsoreos IN. Environmental disruption of the circadian clock leads to altered sleep and immune responses in mouse. Brain Behav Immun 2015; 47:14-23. [PMID: 25542734 DOI: 10.1016/j.bbi.2014.12.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/26/2014] [Accepted: 12/05/2014] [Indexed: 12/29/2022] Open
Abstract
In mammals, one of the most salient outputs of the circadian (daily) clock is the timing of the sleep-wake cycle. Modern industrialized society has led to a fundamental breakdown in the relationship between our endogenous timekeeping systems and the solar day, disrupting normal circadian rhythms. We have argued that disrupted circadian rhythms could lead to changes in allostatic load, and the capacity of organisms to respond to other environmental challenges. In this set of studies, we apply a model of circadian disruption characterized in our lab in which mice are housed in a 20h long day, with 10h of light and 10h of darkness. We explored the effects of this environmental disruption on sleep patterns, to establish if this model results in marked sleep deprivation. Given the interaction between circadian, sleep, and immune systems, we further probed if our model of circadian disruption also alters the innate immune response to peripheral bacterial endotoxin challenge. Our results demonstrate that this model of circadian disruption does not lead to marked sleep deprivation, but instead affects the timing and quality of sleep. We also show that while circadian disruption does not lead to basal changes in the immune markers we explored, the immune response is affected, both in the brain and the periphery. Together, our findings further strengthen the important role of the circadian timing system in sleep regulation and immune responses, and provide evidence that disrupting the circadian clock increases vulnerability to further environmental stressors, including immunological challenges.
Collapse
Affiliation(s)
- Derrick J Phillips
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Marina I Savenkova
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA
| | - Ilia N Karatsoreos
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
463
|
Profiling molecular and behavioral circadian rhythms in the non-symbiotic sea anemone Nematostella vectensis. Sci Rep 2015; 5:11418. [PMID: 26081482 PMCID: PMC4476465 DOI: 10.1038/srep11418] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 05/18/2015] [Indexed: 12/04/2022] Open
Abstract
Endogenous circadian clocks are poorly understood within early-diverging animal
lineages. We have characterized circadian behavioral patterns and identified
potential components of the circadian clock in the starlet sea anemone,
Nematostella vectensis: a model cnidarian which lacks algal symbionts.
Using automatic video tracking we showed that Nematostella exhibits rhythmic
circadian locomotor activity, which is persistent in constant dark, shifted or
disrupted by external dark/light cues and maintained the same rate at two different
temperatures. This activity was inhibited by a casein kinase 1δ/ε
inhibitor, suggesting a role for CK1 homologue(s) in Nematostella clock.
Using high-throughput sequencing we profiled Nematostella transcriptomes over
48 hours under a light-dark cycle. We identified 180 Nematostella
diurnally-oscillated transcripts and compared them with previously established
databases of adult and larvae of the symbiotic coral Acropora millepora,
revealing both shared homologues and unique rhythmic genes. Taken together, this
study further establishes Nematostella as a non-symbiotic model organism to
study circadian rhythms and increases our understanding about the fundamental
elements of circadian regulation and their evolution within the Metazoa
Collapse
|
464
|
Tahara Y, Shiraishi T, Kikuchi Y, Haraguchi A, Kuriki D, Sasaki H, Motohashi H, Sakai T, Shibata S. Entrainment of the mouse circadian clock by sub-acute physical and psychological stress. Sci Rep 2015; 5:11417. [PMID: 26073568 PMCID: PMC4466793 DOI: 10.1038/srep11417] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/22/2015] [Indexed: 12/12/2022] Open
Abstract
The effects of acute stress on the peripheral circadian system are not well understood in vivo. Here, we show that sub-acute stress caused by restraint or social defeat potently altered clock gene expression in the peripheral tissues of mice. In these peripheral tissues, as well as the hippocampus and cortex, stressful stimuli induced time-of-day-dependent phase-advances or -delays in rhythmic clock gene expression patterns; however, such changes were not observed in the suprachiasmatic nucleus, i.e. the central circadian clock. Moreover, several days of stress exposure at the beginning of the light period abolished circadian oscillations and caused internal desynchronisation of peripheral clocks. Stress-induced changes in circadian rhythmicity showed habituation and disappeared with long-term exposure to repeated stress. These findings suggest that sub-acute physical/psychological stress potently entrains peripheral clocks and causes transient dysregulation of circadian clocks in vivo.
Collapse
MESH Headings
- ARNTL Transcription Factors/genetics
- ARNTL Transcription Factors/metabolism
- Adaptation, Physiological/genetics
- Animals
- Cerebral Cortex/metabolism
- Circadian Clocks/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Female
- Gene Expression Regulation
- Genes, Reporter
- Hippocampus/metabolism
- Immobilization
- Luciferases/genetics
- Luciferases/metabolism
- Male
- Mice
- Mice, Transgenic
- Nuclear Receptor Subfamily 1, Group D, Member 1/genetics
- Nuclear Receptor Subfamily 1, Group D, Member 1/metabolism
- Period Circadian Proteins/genetics
- Period Circadian Proteins/metabolism
- Photoperiod
- Signal Transduction
- Social Alienation/psychology
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
- Suprachiasmatic Nucleus/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- Yu Tahara
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Takuya Shiraishi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yosuke Kikuchi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Atsushi Haraguchi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Daisuke Kuriki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Hiroyuki Sasaki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Hiroaki Motohashi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Tomoko Sakai
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
465
|
Abstract
Circadian rhythm, or daily oscillation, of behaviors and biological processes is a fundamental feature of mammalian physiology that has developed over hundreds of thousands of years under the continuous evolutionary pressure of energy conservation and efficiency. Evolution has fine-tuned the body's clock to anticipate and respond to numerous environmental cues in order to maintain homeostatic balance and promote survival. However, we now live in a society in which these classic circadian entrainment stimuli have been dramatically altered from the conditions under which the clock machinery was originally set. A bombardment of artificial lighting, heating, and cooling systems that maintain constant ambient temperature; sedentary lifestyle; and the availability of inexpensive, high-calorie foods has threatened even the most powerful and ancient circadian programming mechanisms. Such environmental changes have contributed to the recent staggering elevation in lifestyle-influenced pathologies, including cancer, cardiovascular disease, depression, obesity, and diabetes. This review scrutinizes the role of the body's internal clocks in the hard-wiring of circadian networks that have evolved to achieve energetic balance and adaptability, and it discusses potential therapeutic strategies to reset clock metabolic control to modern time for the benefit of human health.
Collapse
Affiliation(s)
- Zachary Gerhart-Hines
- Section for Metabolic Receptology (Z.G.-H.), Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; and Division of Endocrinology, Diabetes, and Metabolism (M.A.L.), Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Mitchell A Lazar
- Section for Metabolic Receptology (Z.G.-H.), Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark; and Division of Endocrinology, Diabetes, and Metabolism (M.A.L.), Department of Medicine, Department of Genetics, and The Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
466
|
Partonen T. Clock genes in human alcohol abuse and comorbid conditions. Alcohol 2015; 49:359-65. [PMID: 25677407 DOI: 10.1016/j.alcohol.2014.08.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 08/26/2014] [Indexed: 12/15/2022]
Abstract
Alcohol-use disorders are often comorbid conditions with mood and anxiety disorders. Clinical studies have demonstrated that there are abnormalities in circadian rhythms and clocks in patients with alcohol-use disorders. Circadian clock gene variants are therefore a fruitful target of interest. Concerning alcohol use, the current findings give support, but are preliminary to, the associations of ARNTL (BMAL1) rs6486120 with alcohol consumption, ARNTL2 rs7958822 and ARNTL2 rs4964057 with alcohol abuse, and PER1 rs3027172 and PER2 rs56013859 with alcohol dependence. Furthermore, it is of interest that CLOCK rs2412646 and CLOCK rs11240 associate with alcohol-use disorders only if comorbid with depressive disorders. The mechanistic basis of these associations and the intracellular actions for the encoded proteins in question remain to be elucidated in order to have the first insight of the potential small-molecule options for treatment of alcohol-use disorders.
Collapse
|
467
|
Abstract
Coordinated daily rhythms are evident in most aspects of our physiology, driven by internal timing systems known as circadian clocks. Our understanding of how biological clocks are built and function has grown exponentially over the past 20 years. With this has come an appreciation that disruption of the clock contributes to the pathophysiology of numerous diseases, from metabolic disease to neurological disorders to cancer. However, it remains to be determined whether it is the disruption of our rhythmic physiology per se (loss of timing itself), or altered functioning of individual clock components that drive pathology. Here, we review the importance of circadian rhythms in terms of how we (and other organisms) relate to the external environment, but also in relation to how internal physiological processes are coordinated and synchronized. These issues are of increasing importance as many aspects of modern life put us in conflict with our internal clockwork.
Collapse
Affiliation(s)
- Alexander C West
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - David A Bechtold
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
468
|
Feillet C, van der Horst GTJ, Levi F, Rand DA, Delaunay F. Coupling between the Circadian Clock and Cell Cycle Oscillators: Implication for Healthy Cells and Malignant Growth. Front Neurol 2015; 6:96. [PMID: 26029155 PMCID: PMC4426821 DOI: 10.3389/fneur.2015.00096] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/20/2015] [Indexed: 12/11/2022] Open
Abstract
Uncontrolled cell proliferation is one of the key features leading to cancer. Seminal works in chronobiology have revealed that disruption of the circadian timing system in mice, either by surgical, genetic, or environmental manipulation, increased tumor development. In humans, shift work is a risk factor for cancer. Based on these observations, the link between the circadian clock and cell cycle has become intuitive. But despite identification of molecular connections between the two processes, the influence of the clock on the dynamics of the cell cycle has never been formally observed. Recently, two studies combining single live cell imaging with computational methods have shed light on robust coupling between clock and cell cycle oscillators. We recapitulate here these novel findings and integrate them with earlier results in both healthy and cancerous cells. Moreover, we propose that the cell cycle may be synchronized or slowed down through coupling with the circadian clock, which results in reduced tumor growth. More than ever, systems biology has become instrumental to understand the dynamic interaction between the circadian clock and cell cycle, which is critical in cellular coordination and for diseases such as cancer.
Collapse
Affiliation(s)
- Celine Feillet
- Circadian Systems Biology, CNRS, INSERM, Institut de Biologie Valrose, Université Nice Sophia Antipolis , Nice , France
| | | | - Francis Levi
- Cancer Chronotherapy Unit, University of Warwick , Coventry , UK
| | - David A Rand
- Systems Biology Centre, University of Warwick , Coventry , UK
| | - Franck Delaunay
- Circadian Systems Biology, CNRS, INSERM, Institut de Biologie Valrose, Université Nice Sophia Antipolis , Nice , France
| |
Collapse
|
469
|
Schmal C, Myung J, Herzel H, Bordyugov G. A theoretical study on seasonality. Front Neurol 2015; 6:94. [PMID: 25999912 PMCID: PMC4423511 DOI: 10.3389/fneur.2015.00094] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/16/2015] [Indexed: 11/20/2022] Open
Abstract
In addition to being endogenous, a circadian system must be able to communicate with the outside world and align its rhythmicity to the environment. As a result of such alignment, external Zeitgebers can entrain the circadian system. Entrainment expresses itself in coinciding periods of the circadian oscillator and the Zeitgeber and a stationary phase difference between them. The range of period mismatches between the circadian system and the Zeitgeber that Zeitgeber can overcome to entrain the oscillator is called an entrainment range. The width of the entrainment range usually increases with increasing Zeitgeber strength, resulting in a wedge-like Arnold tongue. This classical view of entrainment does not account for the effects of photoperiod on entrainment. Zeitgebers with extremely small or large photoperiods are intuitively closer to constant environments than equinoctial Zeitgebers and hence are expected to produce a narrower entrainment range. In this paper, we present theoretical results on entrainment under different photoperiods. We find that in the photoperiod-detuning parameter plane, the entrainment zone is shaped in the form of a skewed onion. The bottom and upper points of the onion are given by the free-running periods in DD and LL, respectively. The widest entrainment range is found near photoperiods of 50%. Within the onion, we calculated the entrainment phase that varies over a range of 12 h. The results of our theoretical study explain the experimentally observed behavior of the entrainment phase in dependence on the photoperiod.
Collapse
Affiliation(s)
- Christoph Schmal
- Institute for Theoretical Biology, Charité Universitätsmedizin, Berlin, Germany
| | | | - Hanspeter Herzel
- Institute for Theoretical Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Grigory Bordyugov
- Institute for Theoretical Biology, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
470
|
Abstract
Most living beings, including humans, must adapt to rhythmically occurring daily changes in their environment that are generated by the Earth's rotation. In the course of evolution, these organisms have acquired an internal circadian timing system that can anticipate environmental oscillations and thereby govern their rhythmic physiology in a proactive manner. In mammals, the circadian timing system coordinates virtually all physiological processes encompassing vigilance states, metabolism, endocrine functions and cardiovascular activity. Research performed during the past two decades has established that almost every cell in the body possesses its own circadian timekeeper. The resulting clock network is organized in a hierarchical manner. A master pacemaker, located in the suprachiasmatic nucleus (SCN) of the hypothalamus, is synchronized every day to the photoperiod. In turn, the SCN determines the phase of the cellular clocks in peripheral organs through a wide variety of signalling pathways dependent on feeding cycles, body temperature rhythms, oscillating bloodborne signals and, in some organs, inputs of the peripheral nervous system. A major purpose of circadian clocks in peripheral tissues is the temporal orchestration of key metabolic processes, including food processing (metabolism and xenobiotic detoxification). Here, we review some recent findings regarding the molecular and cellular composition of the circadian timing system and discuss its implications for the temporal coordination of metabolism in health and disease. We focus primarily on metabolic disorders such as obesity and type 2 diabetes, although circadian misalignments (shiftwork or 'social jet lag') have also been associated with the aetiology of human malignancies.
Collapse
Affiliation(s)
- C Dibner
- Department of Endocrinology, Diabetes, Nutrition and Hypertension, University Hospital of Geneva, Geneva, Switzerland
| | | |
Collapse
|
471
|
Winbush A, Gruner M, Hennig GW, van der Linden AM. Long-term imaging of circadian locomotor rhythms of a freely crawling C. elegans population. J Neurosci Methods 2015; 249:66-74. [PMID: 25911068 DOI: 10.1016/j.jneumeth.2015.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/04/2015] [Accepted: 04/13/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Locomotor activity is used extensively as a behavioral output to study the underpinnings of circadian rhythms. Recent studies have required a populational approach for the study of circadian rhythmicity in Caenorhabditis elegans locomotion. NEW METHOD We describe an imaging system for long-term automated recording and analysis of locomotion data of multiple free-crawling C. elegans animals on the surface of an agar plate. We devised image analysis tools for measuring specific features related to movement and shape to identify circadian patterns. RESULTS We demonstrate the utility of our system by quantifying circadian locomotor rhythms in wild-type and mutant animals induced by temperature cycles. We show that 13 °C:18 °C (12:12h) cycles are sufficient to entrain locomotor activity of wild-type animals, which persist but are rapidly damped during 13 °C free-running conditions. Animals with mutations in tax-2, a cyclic nucleotide-gated (CNG) ion channel, significantly reduce locomotor activity during entrainment and free-running. COMPARISON WITH EXISTING METHOD(S) Current methods for measuring circadian locomotor activity is generally restricted to recording individual swimming animals of C. elegans, which is a distinct form of locomotion from crawling behavior generally observed in the laboratory. Our system works well with up to 20 crawling adult animals, and allows for a detailed analysis of locomotor activity over long periods of time. CONCLUSIONS Our population-based approach provides a powerful tool for quantification of circadian rhythmicity of C. elegans locomotion, and could allow for a screening system of candidate circadian genes in this model organism.
Collapse
Affiliation(s)
- Ari Winbush
- Department of Biology, University of Nevada, Reno, NV 89557, USA.
| | - Matthew Gruner
- Department of Biology, University of Nevada, Reno, NV 89557, USA.
| | - Grant W Hennig
- Department of Physiology and Cell Biology, University of Nevada, School of Medicine, Reno, NV 89557, USA.
| | | |
Collapse
|
472
|
Simcox JA, Mitchell TC, Gao Y, Just SF, Cooksey R, Cox J, Ajioka R, Jones D, Lee SH, King D, Huang J, McClain DA. Dietary iron controls circadian hepatic glucose metabolism through heme synthesis. Diabetes 2015; 64:1108-19. [PMID: 25315005 PMCID: PMC4375081 DOI: 10.2337/db14-0646] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The circadian rhythm of the liver maintains glucose homeostasis, and disruption of this rhythm is associated with type 2 diabetes. Feeding is one factor that sets the circadian clock in peripheral tissues, but relatively little is known about the role of specific dietary components in that regard. We assessed the effects of dietary iron on circadian gluconeogenesis. Dietary iron affects circadian glucose metabolism through heme-mediated regulation of the interaction of nuclear receptor subfamily 1 group d member 1 (Rev-Erbα) with its cosuppressor nuclear receptor corepressor 1 (NCOR). Loss of regulated heme synthesis was achieved by aminolevulinic acid (ALA) treatment of mice or cultured cells to bypass the rate-limiting enzyme in hepatic heme synthesis, ALA synthase 1 (ALAS1). ALA treatment abolishes differences in hepatic glucose production and in the expression of gluconeogenic enzymes seen with variation of dietary iron. The differences among diets are also lost with inhibition of heme synthesis with isonicotinylhydrazine. Dietary iron modulates levels of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a transcriptional activator of ALAS1, to affect hepatic heme. Treatment of mice with the antioxidant N-acetylcysteine diminishes PGC-1α variation observed among the iron diets, suggesting that iron is acting through reactive oxygen species signaling.
Collapse
Affiliation(s)
- Judith A Simcox
- Department of Biochemistry, University of Utah, Salt Lake City, UT
| | | | - Yan Gao
- Department of Biochemistry, University of Utah, Salt Lake City, UT
| | - Steven F Just
- Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Robert Cooksey
- Veterans Administration Research Service, VA Salt Lake City Health Care System, Salt Lake City, UT
| | - James Cox
- Department of Biochemistry, University of Utah, Salt Lake City, UT
| | - Richard Ajioka
- Department of Biochemistry, University of Utah, Salt Lake City, UT
| | - Deborah Jones
- Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Soh-Hyun Lee
- Department of Internal Medicine, University of Utah, Salt Lake City, UT
| | - Daniel King
- Department of Biochemistry, University of Utah, Salt Lake City, UT
| | - Jingyu Huang
- Department of Biochemistry, University of Utah, Salt Lake City, UT
| | - Donald A McClain
- Department of Biochemistry, University of Utah, Salt Lake City, UT Department of Internal Medicine, University of Utah, Salt Lake City, UT Veterans Administration Research Service, VA Salt Lake City Health Care System, Salt Lake City, UT
| |
Collapse
|
473
|
Ki Y, Ri H, Lee H, Yoo E, Choe J, Lim C. Warming Up Your Tick-Tock: Temperature-Dependent Regulation of Circadian Clocks. Neuroscientist 2015; 21:503-18. [PMID: 25782890 DOI: 10.1177/1073858415577083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Circadian clocks are endogenous time-keeping mechanisms to adaptively coordinate animal behaviors and physiology with daily environmental changes. So far many circadian studies in model organisms have identified evolutionarily conserved molecular frames of circadian clock genes in the context of transcription-translation feedback loops. The molecular clockwork drives cell-autonomously cycling gene expression with ~24-hour periodicity, which is fundamental to circadian rhythms. Light and temperature are two of the most potent external time cues to reset the circadian phase of the internal clocks, yet relatively little is known about temperature-relevant clock regulation. In this review, we describe recent findings on temperature-dependent clock mechanisms in homeothermic mammals as compared with poikilothermic Drosophila at molecular, neural, and organismal levels. We propose thermodynamic transitions in RNA secondary structures might have been potent substrates for the molecular evolution of temperature-relevant post-transcriptional mechanisms. Future works should thus validate the potential involvement of specific post-transcriptional steps in temperature-dependent plasticity of circadian clocks.
Collapse
Affiliation(s)
- Yoonhee Ki
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Hwajung Ri
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hoyeon Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Eunseok Yoo
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Joonho Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Chunghun Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| |
Collapse
|
474
|
Williams CT, Barnes BM, Buck CL. Persistence, Entrainment, and Function of Circadian Rhythms in Polar Vertebrates. Physiology (Bethesda) 2015; 30:86-96. [DOI: 10.1152/physiol.00045.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Polar organisms must cope with an environment that periodically lacks the strongest time-giver, or zeitgeber, of circadian organization–robust, cyclical oscillations between light and darkness. We review the factors influencing the persistence of circadian rhythms in polar vertebrates when the light-dark cycle is absent, the likely mechanisms of entrainment that allow some polar vertebrates to remain synchronized with geophysical time, and the adaptive function of maintaining circadian rhythms in such environments.
Collapse
Affiliation(s)
- Cory T. Williams
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, Alaska; and
| | - Brian M. Barnes
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska
| | - C. Loren Buck
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, Alaska; and
| |
Collapse
|
475
|
Disrupted light–dark cycle abolishes circadian expression of peripheral clock genes without inducing behavioral arrhythmicity in mice. Biochem Biophys Res Commun 2015; 458:256-61. [DOI: 10.1016/j.bbrc.2015.01.095] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 01/21/2015] [Indexed: 11/20/2022]
|
476
|
Gnocchi D, Pedrelli M, Hurt-Camejo E, Parini P. Lipids around the Clock: Focus on Circadian Rhythms and Lipid Metabolism. BIOLOGY 2015; 4:104-32. [PMID: 25665169 PMCID: PMC4381220 DOI: 10.3390/biology4010104] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/28/2015] [Indexed: 12/24/2022]
Abstract
Disorders of lipid and lipoprotein metabolism and transport are responsible for the development of a large spectrum of pathologies, ranging from cardiovascular diseases, to metabolic syndrome, even to tumour development. Recently, a deeper knowledge of the molecular mechanisms that control our biological clock and circadian rhythms has been achieved. From these studies it has clearly emerged how the molecular clock tightly regulates every aspect of our lives, including our metabolism. This review analyses the organisation and functioning of the circadian clock and its relevance in the regulation of physiological processes. We also describe metabolism and transport of lipids and lipoproteins as an essential aspect for our health, and we will focus on how the circadian clock and lipid metabolism are greatly interconnected. Finally, we discuss how a deeper knowledge of this relationship might be useful to improve the recent spread of metabolic diseases.
Collapse
Affiliation(s)
- Davide Gnocchi
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, 14186, Sweden.
| | - Matteo Pedrelli
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, 14186, Sweden.
- Strategy and Externalization, CVMD iMED, AstraZeneca, R&D, Mölndal, SE-431 83, Sweden.
| | - Eva Hurt-Camejo
- Strategy and Externalization, CVMD iMED, AstraZeneca, R&D, Mölndal, SE-431 83, Sweden.
| | - Paolo Parini
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, Stockholm, 14186, Sweden.
| |
Collapse
|
477
|
Li SKL, Banerjee J, Jang C, Sehgal A, Stone RA, Civan MM. Temperature oscillations drive cycles in the activity of MMP-2,9 secreted by a human trabecular meshwork cell line. Invest Ophthalmol Vis Sci 2015; 56:1396-405. [PMID: 25655795 DOI: 10.1167/iovs.14-15834] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
PURPOSE Aqueous humor inflow falls 50% during sleeping hours without proportional fall in IOP, partly reflecting reduced outflow facility. The mechanisms underlying outflow facility cycling are unknown. One outflow facility regulator is matrix metalloproteinase (MMP) release from trabecular meshwork (TM) cells. Because anterior segment temperature must oscillate due to core temperature cycling and eyelid closure during sleep, we tested whether physiologically relevant temperature oscillations drive cycles in the activity of secreted MMP. METHODS Temperature of transformed normal human TM cells (hTM5 line) was fixed or alternated 12 hours/12 hours between 33°C and 37°C. Activity of secreted MMP-2 and MMP-9 was measured by zymography, and gene expression by RT-PCR and quantitative PCR. RESULTS Raising temperature to 37°C increased, and lowering to 33°C reduced, activity of secreted MMP. Switching between 37°C and 33°C altered MMP-9 by 40% ± 3% and MMP-2 by 22% ± 2%. Peripheral circadian clocks did not mediate temperature-driven cycling of MMP secretion because MMP-release oscillations did not persist at constant temperature after 3 to 6 days of alternating temperatures, and temperature cycles did not entrain clock-gene expression in these cells. Furthermore, inhibiting heat shock transcription factor 1, which links temperature and peripheral clock-gene oscillations, inhibited MMP-9 but not MMP-2 temperature-driven MMP cycling. Inhibition of heat-sensitive TRPV1 channels altered total MMP secretion but not temperature-induced modulations. Inhibiting cold-sensitive TRPM-8 channels had no effect. CONCLUSIONS Physiologically relevant temperature oscillations drive fluctuations of secreted MMP-2 and MMP-9 activity in hTM5 cells independent of peripheral clock genes and temperature-sensitive TRP channels.
Collapse
Affiliation(s)
- Stanley Ka-Lok Li
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong
| | - Juni Banerjee
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - Christopher Jang
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Amita Sehgal
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - Richard A Stone
- Department of Ophthalmology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| | - Mortimer M Civan
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States
| |
Collapse
|
478
|
Casey T, Patel OV, Plaut K. Transcriptomes reveal alterations in gravity impact circadian clocks and activate mechanotransduction pathways with adaptation through epigenetic change. Physiol Genomics 2015; 47:113-28. [PMID: 25649141 DOI: 10.1152/physiolgenomics.00117.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/03/2015] [Indexed: 12/21/2022] Open
Abstract
Few studies have investigated the impact of alterations in gravity on mammalian transcriptomes. Here, we describe the impact of spaceflight on mammary transcriptome of late pregnant rats and the effect of hypergravity exposure on mammary, liver, and adipose transcriptomes in late pregnancy and at the onset of lactation. RNA was isolated from mammary collected on pregnancy day 20 from rats exposed to spaceflight from days 11 to 20 of gestation. To measure the impact of hypergravity on mammary, liver, and adipose transcriptomes we isolated RNA from tissues collected on P20 and lactation day 1 from rats exposed to hypergravity beginning on pregnancy day 9. Gene expression was measured with Affymetrix GeneChips. Microarray analysis of variance revealed alterations in gravity affected the expression of genes that regulate circadian clocks and activate mechanotransduction pathways. Changes in these systems may explain global gene expression changes in immune response, metabolism, and cell proliferation. Expression of genes that modify chromatin structure and methylation was affected, suggesting adaptation to gravity alterations may proceed through epigenetic change. Altered gravity experiments offer insights into the role of forces omnipresent on Earth that shape genomes in heritable ways. Our study is the first to analyze the impact of alterations in gravity on transcriptomes of pregnant and lactating mammals. Findings provide insight into systems that sense gravity and the way in which they affect phenotype, as well as the possibility of sustaining life beyond Earth's orbit.
Collapse
Affiliation(s)
- Theresa Casey
- Department of Animal Science, Purdue University, West Lafayette, Indiana; and
| | - Osman V Patel
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, Michigan
| | - Karen Plaut
- Department of Animal Science, Purdue University, West Lafayette, Indiana; and
| |
Collapse
|
479
|
Liu C, Chung M. Genetics and epigenetics of circadian rhythms and their potential roles in neuropsychiatric disorders. Neurosci Bull 2015; 31:141-159. [PMID: 25652815 PMCID: PMC4821655 DOI: 10.1007/s12264-014-1495-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 01/19/2015] [Indexed: 01/07/2023] Open
Abstract
Circadian rhythm alterations have been implicated in multiple neuropsychiatric disorders, particularly those of sleep, addiction, anxiety, and mood. Circadian rhythms are known to be maintained by a set of classic clock genes that form complex mutual and self-regulatory loops. While many other genes showing rhythmic expression have been identified by genome-wide studies, their roles in circadian regulation remain largely unknown. In attempts to directly connect circadian rhythms with neuropsychiatric disorders, genetic studies have identified gene mutations associated with several rare sleep disorders or sleep-related traits. Other than that, genetic studies of circadian genes in psychiatric disorders have had limited success. As an important mediator of environmental factors and regulators of circadian rhythms, the epigenetic system may hold the key to the etiology or pathology of psychiatric disorders, their subtypes or endophenotypes. Epigenomic regulation of the circadian system and the related changes have not been thoroughly explored in the context of neuropsychiatric disorders. We argue for systematic investigation of the circadian system, particularly epigenetic regulation, and its involvement in neuropsychiatric disorders to improve our understanding of human behavior and disease etiology.
Collapse
Affiliation(s)
- Chunyu Liu
- State Key Laboratory of Medical Genetics of China, Changsha, 410078, China,
| | | |
Collapse
|
480
|
Peek CB, Ramsey KM, Levine DC, Marcheva B, Perelis M, Bass J. Circadian regulation of cellular physiology. Methods Enzymol 2015; 552:165-84. [PMID: 25707277 DOI: 10.1016/bs.mie.2014.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The circadian clock synchronizes behavioral and physiological processes on a daily basis in anticipation of the light-dark cycle. In mammals, molecular clocks are present in both the central pacemaker neurons and in nearly all peripheral tissues. Clock transcription factors in metabolic tissues coordinate metabolic fuel utilization and storage with alternating periods of feeding and fasting corresponding to the rest-activity cycle. In vitro and in vivo biochemical approaches have led to the discovery of mechanisms underlying the interplay between the molecular clock and the metabolic networks. For example, recent studies have demonstrated that the circadian clock controls rhythmic synthesis of the cofactor nicotinamide adenine dinucleotide (NAD(+)) and activity of NAD(+)-dependent sirtuin deacetylase enzymes to regulate mitochondrial function across the circadian cycle. In this chapter, we review current state-of-the-art methods to analyze circadian cycles in mitochondrial bioenergetics, glycolysis, and nucleotide metabolism in both cell-based and animal models.
Collapse
Affiliation(s)
- C B Peek
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Chicago, Illinois, USA; Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - K M Ramsey
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Chicago, Illinois, USA; Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - D C Levine
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Chicago, Illinois, USA; Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - B Marcheva
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Chicago, Illinois, USA; Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - M Perelis
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Chicago, Illinois, USA; Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - J Bass
- Division of Endocrinology, Metabolism and Molecular Medicine, Feinberg School of Medicine, Chicago, Illinois, USA; Department of Neurobiology, Northwestern University, Evanston, Illinois, USA.
| |
Collapse
|
481
|
Abstract
Circadian clocks have evolved a slowing-down mechanism. Temperature may be the original and universal time-giver to the organism. Brown adipose tissue generates heat and guides the circadian rhythm of core body temperature. The cryptochrome proteins regulate the temperature entrainability, and their dysfunction may let the activation of brown adipose tissue affect the brain more easily. Therefore, the activity of brown adipose tissue may compromise the slowing-down mechanism and thereby contribute to the emergence of mood disorders and the increase in suicide mortality around the time of puberty.
Collapse
Affiliation(s)
- Timo Partonen
- a National Institute for Health and Welfare , Department of Health , Helsinki , Finland
| |
Collapse
|
482
|
Nohara K, Yoo SH, Chen Z(J. Manipulating the circadian and sleep cycles to protect against metabolic disease. Front Endocrinol (Lausanne) 2015; 6:35. [PMID: 25852644 PMCID: PMC4369727 DOI: 10.3389/fendo.2015.00035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/03/2015] [Indexed: 11/30/2022] Open
Abstract
Modernization of human society parallels an epidemic of metabolic disorders including obesity. Apart from excess caloric intake, a 24/7 lifestyle poses another important challenge to our metabolic health. Recent research under both laboratory and epidemiological settings has indicated that abnormal temporal organization of sleep and wakeful activities including food intake is a significant risk factor for metabolic disease. The circadian clock system is our intrinsic biological timer that regulates internal rhythms such as the sleep/wake cycle and also responses to external stimuli including light and food. Initially thought to be mainly involved in the timing of sleep, the clock, and/or clock genes may also play a role in sleep architecture and homeostasis. Importantly, an extensive body of evidence has firmly established a master regulatory role of the clock in energy balance. Together, a close relationship between well-timed circadian/sleep cycles and metabolic health is emerging. Exploiting this functional connection, an important holistic strategy toward curbing the epidemic of metabolic disorders (e.g., obesity) involves corrective measures on the circadian clock and sleep. In addition to behavioral and environmental interventions including meal timing and light control, pharmacological agents targeting sleep and circadian clocks promise convenient and effective applications. Recent studies, for example, have reported small molecules targeting specific clock components and displaying robust beneficial effects on sleep and metabolism. Furthermore, a group of clock-amplitude-enhancing small molecules (CEMs) identified via high-throughput chemical screens are of particular interest for future in vivo studies of their metabolic and sleep efficacies. Elucidating the functional relationship between clock, sleep, and metabolism will also have far-reaching implications for various chronic human diseases and aging.
Collapse
Affiliation(s)
- Kazunari Nohara
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zheng (Jake) Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, TX, USA
- *Correspondence: Zheng (Jake) Chen, Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 6.200, Houston, TX 77030, USA e-mail:
| |
Collapse
|
483
|
Meijer JH, Michel S. Neurophysiological Analysis of the Suprachiasmatic Nucleus. Methods Enzymol 2015; 552:75-102. [DOI: 10.1016/bs.mie.2014.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
484
|
Izumo M, Pejchal M, Schook AC, Lange RP, Walisser JA, Sato TR, Wang X, Bradfield CA, Takahashi JS. Differential effects of light and feeding on circadian organization of peripheral clocks in a forebrain Bmal1 mutant. eLife 2014; 3:e04617. [PMID: 25525750 PMCID: PMC4298698 DOI: 10.7554/elife.04617] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 12/18/2014] [Indexed: 12/14/2022] Open
Abstract
In order to assess the contribution of a central clock in the hypothalamic suprachiasmatic nucleus (SCN) to circadian behavior and the organization of peripheral clocks, we generated forebrain/SCN-specific Bmal1 knockout mice by using floxed Bmal1 and pan-neuronal Cre lines. The forebrain knockout mice showed >90% deletion of BMAL1 in the SCN and exhibited an immediate and complete loss of circadian behavior in constant conditions. Circadian rhythms in peripheral tissues persisted but became desynchronized and damped in constant darkness. The loss of synchrony was rescued by light/dark cycles and partially by restricted feeding (only in the liver and kidney but not in the other tissues) in a distinct manner. These results suggest that the forebrain/SCN is essential for internal temporal order of robust circadian programs in peripheral clocks, and that individual peripheral clocks are affected differently by light and feeding in the absence of a functional oscillator in the forebrain.
Collapse
Affiliation(s)
- Mariko Izumo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
| | - Martina Pejchal
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Andrew C Schook
- Department of Neurobiology, Northwestern University, Evanston, United States
- Howard Hughes Medical Institute, Northwestern University, Evanston, United States
| | - Ryan P Lange
- Department of Neurobiology, Northwestern University, Evanston, United States
| | - Jacqueline A Walisser
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, United States
| | - Takashi R Sato
- Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
- JST, PRESTO, University of Tübingen, Tübingen, Germany
| | - Xiaozhong Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | | | - Joseph S Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, United States
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
| |
Collapse
|
485
|
Ehlert K, Loewe L. Lazy Updating of hubs can enable more realistic models by speeding up stochastic simulations. J Chem Phys 2014; 141:204109. [PMID: 25429935 DOI: 10.1063/1.4901114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To respect the nature of discrete parts in a system, stochastic simulation algorithms (SSAs) must update for each action (i) all part counts and (ii) each action's probability of occurring next and its timing. This makes it expensive to simulate biological networks with well-connected "hubs" such as ATP that affect many actions. Temperature and volume also affect many actions and may be changed significantly in small steps by the network itself during fever and cell growth, respectively. Such trends matter for evolutionary questions, as cell volume determines doubling times and fever may affect survival, both key traits for biological evolution. Yet simulations often ignore such trends and assume constant environments to avoid many costly probability updates. Such computational convenience precludes analyses of important aspects of evolution. Here we present "Lazy Updating," an add-on for SSAs designed to reduce the cost of simulating hubs. When a hub changes, Lazy Updating postpones all probability updates for reactions depending on this hub, until a threshold is crossed. Speedup is substantial if most computing time is spent on such updates. We implemented Lazy Updating for the Sorting Direct Method and it is easily integrated into other SSAs such as Gillespie's Direct Method or the Next Reaction Method. Testing on several toy models and a cellular metabolism model showed >10× faster simulations for its use-cases-with a small loss of accuracy. Thus we see Lazy Updating as a valuable tool for some special but important simulation problems that are difficult to address efficiently otherwise.
Collapse
Affiliation(s)
- Kurt Ehlert
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Laurence Loewe
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
486
|
The energy allocation function of sleep: A unifying theory of sleep, torpor, and continuous wakefulness. Neurosci Biobehav Rev 2014; 47:122-53. [DOI: 10.1016/j.neubiorev.2014.08.001] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 06/27/2014] [Accepted: 08/02/2014] [Indexed: 12/14/2022]
|
487
|
HsfB2b-mediated repression of PRR7 directs abiotic stress responses of the circadian clock. Proc Natl Acad Sci U S A 2014; 111:16172-7. [PMID: 25352668 DOI: 10.1073/pnas.1418483111] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The circadian clock perceives environmental signals to reset to local time, but the underlying molecular mechanisms are not well understood. Here we present data revealing that a member of the heat shock factor (Hsf) family is involved in the input pathway to the plant circadian clock. Using the yeast one-hybrid approach, we isolated several Hsfs, including Heat Shock Factor B2b (HsfB2b), a transcriptional repressor that binds the promoter of Pseudo Response Regulator 7 (PRR7) at a conserved binding site. The constitutive expression of HsfB2b leads to severely reduced levels of the PRR7 transcript and late flowering and elongated hypocotyls. HsfB2b function is important during heat and salt stress because HsfB2b overexpression sustains circadian rhythms, and the hsfB2b mutant has a short circadian period under these conditions. HsfB2b is also involved in the regulation of hypocotyl growth under warm, short days. Our findings highlight the role of the circadian clock as an integrator of ambient abiotic stress signals important for the growth and fitness of plants.
Collapse
|
488
|
Ikeda Y, Sasaki H, Ohtsu T, Shiraishi T, Tahara Y, Shibata S. Feeding and adrenal entrainment stimuli are both necessary for normal circadian oscillation of peripheral clocks in mice housed under different photoperiods. Chronobiol Int 2014; 32:195-210. [PMID: 25286135 DOI: 10.3109/07420528.2014.962655] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mammalian circadian rhythm is entrained by multiple factors, including the light-dark cycle, the organism's feeding pattern and endocrine hormones such as glucocorticoids. Both a central clock (the suprachiasmatic nucleus, or SCN) and peripheral clocks (i.e. in the liver and lungs) in mice are entrained by photoperiod. However, the factors underlying entrainment signals from the SCN to peripheral clocks are not well known. To elucidate the role of entrainment factors such as corticosterone and feeding, we examined whether peripheral clock rhythms were impaired by adrenalectomy (ADX) and/or feeding of 6 meals per day at equal intervals under short-day, medium-day and long-day photoperiods (SP, MP and LP, respectively). We evaluated the waveform and phase of circadian rhythms in the liver, kidney and salivary gland by in vivo imaging of PER2::LUCIFERASE knock-in mice. In intact mice, the waveforms of the peripheral clocks were similar among all photoperiods. The phases of peripheral clocks were well adjusted by the timing of the "lights-off"-operated evening (E) oscillator but not the "lights-on"-operated morning (M) oscillator. ADX had almost no effect on the rhythmicity and phase of peripheral clocks, regardless of photoperiod. To reduce the feeding-induced signal, we placed mice on a restricted feeding regimen with 6 meals per day (6 meals RF). This caused advances of the peripheral clock phase in LP-housed mice (2-5 h) and MP-housed mice (1-2 h) but not SP-housed mice. Thus, feeding pattern may affect the phase of peripheral clocks, depending on photoperiod. More specifically, ADX + 6 meals RF mice showed impairment of circadian rhythms in the kidney and liver but not in the salivary gland, regardless of photoperiod. However, the impairment of peripheral clocks observed in ADX + 6 meals RF mice was reversed by administration of dexamethasone for 3 days. The phase differences in the salivary gland clock among SP-, MP- and LP-housed mice became very small following treatment with ADX + 6 meals RF, suggesting that the effect of photoperiod was reduced by ADX and 6 meals RF. Because the SCN rhythm (as evaluated by PER2 immunohistochemistry) was not disrupted by ADX + 6 meals RF, impairment of peripheral clocks in these mice was not because of impaired SCN clock function. In addition, locomotor activity rhythm and modifications of the feeding pattern may not be completely responsible for determining the phase of peripheral clocks. Thus, this study demonstrates that the phase of peripheral clocks responds to a photoperiodic lights-off signal, and suggests that signals from normal feeding patterns and the adrenal gland are necessary to maintain the oscillation and phase of peripheral clocks under various photoperiods.
Collapse
Affiliation(s)
- Yuko Ikeda
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University , Shinjuku-ku, Tokyo , Japan
| | | | | | | | | | | |
Collapse
|
489
|
Abstract
The mammalian circadian system synchronizes daily timing of activity and rest with the environmental light-dark cycle. Although the underlying molecular oscillatory mechanism is well studied, factors that influence phenotypic plasticity in daily activity patterns (temporal niche switching, chronotype) are presently unknown. Molecular evidence suggests that metabolism may influence the circadian molecular clock, but evidence at the level of the organism is lacking. Here we show that a metabolic challenge by cold and hunger induces diurnality in otherwise nocturnal mice. Lowering ambient temperature changes the phase of circadian light-dark entrainment in mice by increasing daytime and decreasing nighttime activity. This effect is further enhanced by simulated food shortage, which identifies metabolic balance as the underlying common factor influencing circadian organization. Clock gene expression analysis shows that the underlying neuronal mechanism is downstream from or parallel to the main circadian pacemaker (the hypothalamic suprachiasmatic nucleus) and that the behavioral phenotype is accompanied by phase adjustment of peripheral tissues. These findings indicate that nocturnal mammals can display considerable plasticity in circadian organization and may adopt a diurnal phenotype when energetically challenged. Our previously defined circadian thermoenergetics hypothesis proposes that such circadian plasticity, which naturally occurs in nocturnal mammals, reflects adaptive maintenance of energy balance. Quantification of energy expenditure shows that diurnality under natural conditions reduces thermoregulatory costs in small burrowing mammals like mice. Metabolic feedback on circadian organization thus provides functional benefits by reducing energy expenditure. Our findings may help to clarify relationships between sleep-wake patterns and metabolic phenotypes in humans.
Collapse
|
490
|
Wu SW, Fenwick AJ, Peters JH. Channeling satiation: a primer on the role of TRP channels in the control of glutamate release from vagal afferent neurons. Physiol Behav 2014; 136:179-84. [PMID: 25290762 DOI: 10.1016/j.physbeh.2014.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 09/29/2014] [Indexed: 01/07/2023]
Abstract
Obesity results from the chronic imbalance between food intake and energy expenditure. To maintain homeostasis, the brainstem nucleus of the solitary tract (NTS) integrates peripheral information from visceral organs and initiates reflex pathways that control food intake and other autonomic functions. This peripheral-to-central neural communication occurs through activation of vagal afferent neurons which converge to form the solitary tract (ST) and synapse with strong glutamatergic contacts onto NTS neurons. Vagal afferents release glutamate containing vesicles via three distinct pathways (synchronous, asynchronous, and spontaneous) providing multiple levels of control through fast synaptic neurotransmission at ST-NTS synapses. While temperature at the NTS is relatively constant, vagal afferent neurons express an array of thermosensitive ion channels named transient receptor potential (TRP) channels. Here we review the evidence that TRP channels pre-synaptically control quantal glutamate release and examine the potential roles of TRP channels in vagally mediated satiety signaling. We summarize the current literature that TRP channels contribute to asynchronous and spontaneous release of glutamate which can distinctly influence the transfer of information across the ST-NTS synapse. In other words, multiple glutamate vesicle release pathways, guided by afferent TRP channels, provide for robust while adaptive neurotransmission and expand our understanding of vagal afferent signaling.
Collapse
Affiliation(s)
- Shaw-wen Wu
- Dept. of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - Axel J Fenwick
- Dept. of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA
| | - James H Peters
- Dept. of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, USA.
| |
Collapse
|
491
|
Comas M, Kuropatwinski KK, Wrobel M, Toshkov I, Antoch MP. Daily rhythms are retained both in spontaneously developed sarcomas and in xenografts grown in immunocompromised SCID mice. Chronobiol Int 2014; 31:901-10. [PMID: 24933324 PMCID: PMC4358746 DOI: 10.3109/07420528.2014.925469] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The circadian clock generates and regulates many daily physiological, metabolic and behavioral rhythms as well as acute responses to various types of stresses including those induced by anticancer treatment. It has been proposed that modulatory function of the clock may be used for improving the therapeutic efficacy of established anti-cancer treatments. In order to rationally exploit this mechanism, more information is needed to fully characterize the functional status of the molecular clock in tumors of different cellular origin; however, the data describing tumor clocks are still inconsistent. Here we tested the status of clock in two models of tumors derived from connective tissue: sarcomas spontaneously developed in p53-deficient mice and human fibrosarcoma cells grown as xenografts in immunocompromised severe combined immunodeficient (SCID) mice. We show that both types of tumors retain a functional clock, which is synchronized in phase with normal tissues. We also show that spontaneously developed tumors are not only oscillating in the context of an organism where they receive hormonal and metabolic signals but continue oscillating ex vivo in tissue explants demonstrating that tumors have functional clocks capable of timing all their functions. We also provide evidence that similar to liver, tumors can be synchronized by food availability independent of the central pacemaker in the suprachiasmatic nuclei (SCN). These data provide the basis for the design of anticancer therapies that take into account the circadian metabolic and physiological patterns of both the tumor and normal tissues.
Collapse
Affiliation(s)
- Maria Comas
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Karen K. Kuropatwinski
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | | | - Marina P. Antoch
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
492
|
Bouâouda H, Achâaban MR, Ouassat M, Oukassou M, Piro M, Challet E, El Allali K, Pévet P. Daily regulation of body temperature rhythm in the camel (Camelus dromedarius) exposed to experimental desert conditions. Physiol Rep 2014; 2:2/9/e12151. [PMID: 25263204 PMCID: PMC4270234 DOI: 10.14814/phy2.12151] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In the present work, we have studied daily rhythmicity of body temperature (Tb) in Arabian camels challenged with daily heat, combined or not with dehydration. We confirm that Arabian camels use heterothermy to reduce heat gain coupled with evaporative heat loss during the day. Here, we also demonstrate that this mechanism is more complex than previously reported, because it is characterized by a daily alternation (probably of circadian origin) of two periods of poikilothermy and homeothermy. We also show that dehydration induced a decrease in food intake plays a role in this process. Together, these findings highlight that adaptive heterothermy in the Arabian camel varies across the diurnal light–dark cycle and is modulated by timing of daily heat and degrees of water restriction and associated reduction of food intake. The changed phase relationship between the light–dark cycle and the Tb rhythm observed during the dehydration process points to a possible mechanism of internal desynchronization during the process of adaptation to desert environment. During these experimental conditions mimicking the desert environment, it will be possible in the future to determine if induced high‐amplitude ambient temperature (Ta) rhythms are able to compete with the zeitgeber effect of the light–dark cycle. e12151 In the Arabian camel, the “adaptative heterothermy” is characterized by a daily alteration (probably of circadian origin) of two periods. The findings highlight that adaptative heterothermy varies across the diurnal light–dark cycle and is modulated by timing of daily heat and degrees of water restriction and associated reduction of food intake.
Collapse
Affiliation(s)
- Hanan Bouâouda
- Department of Neurobiology of Rhythms, CNRS UPR 3212, Institute for Cellular and Integrative Neurosciences, University of Strasbourg, Strasbourg, France Comparative Anatomy Unit (URAC CNRST 49), Hassan II Agronomy and Veterinary Institute, Rabat, Morocco
| | - Mohamed R Achâaban
- Comparative Anatomy Unit (URAC CNRST 49), Hassan II Agronomy and Veterinary Institute, Rabat, Morocco
| | - Mohammed Ouassat
- Comparative Anatomy Unit (URAC CNRST 49), Hassan II Agronomy and Veterinary Institute, Rabat, Morocco
| | - Mohammed Oukassou
- Comparative Anatomy Unit (URAC CNRST 49), Hassan II Agronomy and Veterinary Institute, Rabat, Morocco
| | - Mohamed Piro
- Medecine and Surgical Unit of domestic animals, Hassan II Agronomy and Veterinary Institute, Rabat, Morocco
| | - Etienne Challet
- Department of Neurobiology of Rhythms, CNRS UPR 3212, Institute for Cellular and Integrative Neurosciences, University of Strasbourg, Strasbourg, France
| | - Khalid El Allali
- Comparative Anatomy Unit (URAC CNRST 49), Hassan II Agronomy and Veterinary Institute, Rabat, Morocco
| | - Paul Pévet
- Department of Neurobiology of Rhythms, CNRS UPR 3212, Institute for Cellular and Integrative Neurosciences, University of Strasbourg, Strasbourg, France
| |
Collapse
|
493
|
Ramos BCR, Moraes MNCM, Poletini MO, Lima LHRG, Castrucci AML. From blue light to clock genes in zebrafish ZEM-2S cells. PLoS One 2014; 9:e106252. [PMID: 25184495 PMCID: PMC4153568 DOI: 10.1371/journal.pone.0106252] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 07/29/2014] [Indexed: 01/22/2023] Open
Abstract
Melanopsin has been implicated in the mammalian photoentrainment by blue light. This photopigment, which maximally absorbs light at wavelengths between 470 and 480 nm depending on the species, is found in the retina of all classes of vertebrates so far studied. In mammals, melanopsin activation triggers a signaling pathway which resets the circadian clock in the suprachiasmatic nucleus (SCN). Unlike mammals, Drosophila melanogaster and Danio rerio do not rely only on their eyes to perceive light, in fact their whole body may be capable of detecting light and entraining their circadian clock. Melanopsin, teleost multiple tissue (tmt) opsin and others such as neuropsin and va-opsin, are found in the peripheral tissues of Danio rerio, however, there are limited data concerning the photopigment/s or the signaling pathway/s directly involved in light detection. Here, we demonstrate that melanopsin is a strong candidate to mediate synchronization of zebrafish cells. The deduced amino acid sequence of melanopsin, although being a vertebrate opsin, is more similar to invertebrate than vertebrate photopigments, and melanopsin photostimulation triggers the phosphoinositide pathway through activation of a G(q/11)-type G protein. We stimulated cultured ZEM-2S cells with blue light at wavelengths consistent with melanopsin maximal absorption, and evaluated the time course expression of per1b, cry1b, per2 and cry1a. Using quantitative PCR, we showed that blue light is capable of slightly modulating per1b and cry1b genes, and drastically increasing per2 and cry1a expression. Pharmacological assays indicated that per2 and cry1a responses to blue light are evoked through the activation of the phosphoinositide pathway, which crosstalks with nitric oxide (NO) and mitogen activated protein MAP kinase (MAPK) to activate the clock genes. Our results suggest that melanopsin may be important in mediating the photoresponse in Danio rerio ZEM-2S cells, and provide new insights about the modulation of clock genes in peripheral clocks.
Collapse
Affiliation(s)
- Bruno C. R. Ramos
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | | | - Maristela O. Poletini
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- Department of Physiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Leonardo H. R. G. Lima
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Ana Maria L. Castrucci
- Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
494
|
Gossan N, Boot-Handford R, Meng QJ. Ageing and osteoarthritis: a circadian rhythm connection. Biogerontology 2014; 16:209-19. [PMID: 25078075 PMCID: PMC4361727 DOI: 10.1007/s10522-014-9522-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 07/17/2014] [Indexed: 01/03/2023]
Abstract
Osteoarthritis (OA) is the most common joint disease, affecting articular cartilage of the joints, with currently no cure. Age is a major risk factor for OA, but despite significant advances made in the OA research field, how ageing contributes to OA is still not well understood. In this review, we will focus on one particular aspect of chondrocyte biology, i.e., circadian rhythms. Disruptions to circadian clocks have been linked to various diseases. Our recent work demonstrates autonomous clocks in chondrocytes which regulate key pathways implicated in OA. The cartilage rhythm dampens with age and clock gene expression changes during the initiation stage of OA development in an experimental mouse OA model. Research into the molecular links between ageing, circadian clocks and OA may identify novel therapeutic routes for the prevention and management of OA, such as chronotherapy, or direct targeting of clock components/circadian rhythm.
Collapse
Affiliation(s)
- Nicole Gossan
- Faculty of Life Sciences, University of Manchester, A.V. Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | |
Collapse
|
495
|
Ohnishi N, Tahara Y, Kuriki D, Haraguchi A, Shibata S. Warm water bath stimulates phase-shifts of the peripheral circadian clocks in PER2::LUCIFERASE mouse. PLoS One 2014; 9:e100272. [PMID: 24933288 PMCID: PMC4059754 DOI: 10.1371/journal.pone.0100272] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/23/2014] [Indexed: 11/20/2022] Open
Abstract
Circadian clocks in the peripheral tissues of mice are known to be entrained by pulse stimuli such as restricted feeding, novel wheel running, and several other agents. However, there are no reports on high temperature pulse-mediated entrainment on the phase-shift of peripheral clocks in vivo. Here we show that temperature treatment of mice for two days at 41°C, instead of 37°C, for 1–2 h during the inactive period, using a temperature controlled water bath stimulated phase-advance of peripheral clocks in the kidney, liver, and submandibular gland of PER2::LUCIFERASE mice. On the other hand, treatment for 2 days at 35°C ambient room temperature for 2 h did not cause a phase-advance. Maintenance of mice at 41°C in a water bath, sustained the core body temperature at 40–41°C. However, the use of 37°C water bath or the 35°C ambient room temperature elevated the core body temperature to 38.5°C, suggesting that at least a core body temperature of 40–41°C is necessary to cause phase-advance under light-dark cycle conditions. The temperature pulse stimulation at 41°C, instead of 37°C water bath for 2 h led to the elevated expression of Per1 and Hsp70 in the peripheral tissue of mice. In summary, the present study demonstrates that transient high temperature pulse using water bath during daytime causes phase-advance in mouse peripheral clocks in vivo. The present results suggest that hot water bath may affect the phase of peripheral clocks.
Collapse
Affiliation(s)
- Nobuaki Ohnishi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Yu Tahara
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Daisuke Kuriki
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Atsushi Haraguchi
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | - Shigenobu Shibata
- Laboratory of Physiology and Pharmacology, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
496
|
Borniger JC, Maurya SK, Periasamy M, Nelson RJ. Acute dim light at night increases body mass, alters metabolism, and shifts core body temperature circadian rhythms. Chronobiol Int 2014; 31:917-25. [DOI: 10.3109/07420528.2014.926911] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
497
|
DeWoskin D, Geng W, Stinchcombe AR, Forger DB. It is not the parts, but how they interact that determines the behaviour of circadian rhythms across scales and organisms. Interface Focus 2014; 4:20130076. [PMID: 24904739 PMCID: PMC3996588 DOI: 10.1098/rsfs.2013.0076] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Biological rhythms, generated by feedback loops containing interacting genes, proteins and/or cells, time physiological processes in many organisms. While many of the components of the systems that generate biological rhythms have been identified, much less is known about the details of their interactions. Using examples from the circadian (daily) clock in three organisms, Neurospora, Drosophila and mouse, we show, with mathematical models of varying complexity, how interactions among (i) promoter sites, (ii) proteins forming complexes, and (iii) cells can have a drastic effect on timekeeping. Inspired by the identification of many transcription factors, for example as involved in the Neurospora circadian clock, that can both activate and repress, we show how these multiple actions can cause complex oscillatory patterns in a transcription–translation feedback loop (TTFL). Inspired by the timekeeping complex formed by the NMO–PER–TIM–SGG complex that regulates the negative TTFL in the Drosophila circadian clock, we show how the mechanism of complex formation can determine the prevalence of oscillations in a TTFL. Finally, we note that most mathematical models of intracellular clocks model a single cell, but compare with experimental data from collections of cells. We find that refitting the most detailed model of the mammalian circadian clock, so that the coupling between cells matches experimental data, yields different dynamics and makes an interesting prediction that also matches experimental data: individual cells are bistable, and network coupling removes this bistability and causes the network to be more robust to external perturbations. Taken together, we propose that the interactions between components in biological timekeeping systems are carefully tuned towards proper function. We also show how timekeeping can be controlled by novel mechanisms at different levels of organization.
Collapse
Affiliation(s)
- Daniel DeWoskin
- Department of Mathematics , University of Michigan , 2074 East Hall, 530 Church Street, Ann Arbor, MI 48109 , USA
| | - Weihua Geng
- Department of Mathematics , Southern Methodist University , 135 Clements Hall, Dallas, TX 75275 , USA
| | - Adam R Stinchcombe
- Department of Mathematics , University of Michigan , 2074 East Hall, 530 Church Street, Ann Arbor, MI 48109 , USA
| | - Daniel B Forger
- Department of Mathematics , University of Michigan , 2074 East Hall, 530 Church Street, Ann Arbor, MI 48109 , USA ; Center for Computational Medicine and Bioinformatics , University of Michigan , 2074 East Hall, 530 Church Street, Ann Arbor, MI 48109 , USA
| |
Collapse
|
498
|
Rath MF, Rovsing L, Møller M. Circadian oscillators in the mouse brain: molecular clock components in the neocortex and cerebellar cortex. Cell Tissue Res 2014; 357:743-55. [PMID: 24842045 DOI: 10.1007/s00441-014-1878-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/25/2014] [Indexed: 01/27/2023]
Abstract
The circadian timekeeper of the mammalian brain resides in the suprachiasmatic nucleus of the hypothalamus (SCN), and is characterized by rhythmic expression of a set of clock genes with specific 24-h daily profiles. An increasing amount of data suggests that additional circadian oscillators residing outside the SCN have the capacity to generate peripheral circadian rhythms. We have recently shown the presence of SCN-controlled oscillators in the neocortex and cerebellum of the rat. The function of these peripheral brain clocks is unknown, and elucidating this could involve mice with conditional cell-specific clock gene deletions. This prompted us to analyze the molecular clockwork of the mouse neocortex and cerebellum in detail. Here, by use of in situ hybridization and quantitative RT-PCR, we show that clock genes are expressed in all six layers of the neocortex and the Purkinje and granular cell layers of the cerebellar cortex of the mouse brain. Among these, Per1, Per2, Cry1, Arntl, and Nr1d1 exhibit circadian rhythms suggesting that local running circadian oscillators reside within neurons of the mouse neocortex and cerebellar cortex. The temporal expression profiles of clock genes are similar in the neocortex and cerebellum, but they are delayed by 5 h as compared to the SCN, suggestively reflecting a master-slave relationship between the SCN and extra-hypothalamic oscillators. Furthermore, ARNTL protein products are detectable in neurons of the mouse neocortex and cerebellum, as revealed by immunohistochemistry. These findings give reason to further pursue the physiological significance of circadian oscillators in the mouse neocortex and cerebellum.
Collapse
Affiliation(s)
- Martin F Rath
- Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Rigshospitalet 6102, Blegdamsvej 9, Copenhagen, DK-2100, Denmark,
| | | | | |
Collapse
|
499
|
Brooks E, Patel D, Canal MM. Programming of mice circadian photic responses by postnatal light environment. PLoS One 2014; 9:e97160. [PMID: 24842115 PMCID: PMC4026311 DOI: 10.1371/journal.pone.0097160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/15/2014] [Indexed: 01/04/2023] Open
Abstract
Early life programming has important consequences for future health and wellbeing. A key new aspect is the impact of perinatal light on the circadian system. Postnatal light environment will program circadian behavior, together with cell morphology and clock gene function within the suprachiasmatic nucleus (SCN) of the hypothalamus, the principal circadian clock in mammals. Nevertheless, it is still not clear whether the observed changes reflect a processing of an altered photic input from the retina, rather than an imprinting of the intrinsic molecular clock mechanisms. Here, we addressed the issue by systematically probing the mouse circadian system at various levels. Firstly, we used electroretinography, pupillometry and histology protocols to show that gross retinal function and morphology in the adult are largely independent of postnatal light experiences that modulate circadian photosensitivity. Secondly, we used circadian activity protocols to show that only the animal's behavioral responses to chronic light exposure, but not to constant darkness or the acute responses to a light stimulus depend on postnatal light experience. Thirdly, we used real-time PER2::LUC rhythm recording to show long-term changes in clock gene expression in the SCN, but also heart, lung and spleen. The data showed that perinatal light mainly targets the long-term adaptive responses of the circadian clock to environmental light, rather than the retina or intrinsic clock mechanisms. Finally, we found long-term effects on circadian peripheral clocks, suggesting far-reaching consequences for the animal's overall physiology.
Collapse
Affiliation(s)
- Elisabeth Brooks
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Dhruval Patel
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Maria Mercè Canal
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- * E-mail:
| |
Collapse
|
500
|
Local photic entrainment of the retinal circadian oscillator in the absence of rods, cones, and melanopsin. Proc Natl Acad Sci U S A 2014; 111:8625-30. [PMID: 24843129 DOI: 10.1073/pnas.1323350111] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Synchronization of the mammalian master circadian pacemaker to the daily light/dark cycle is mediated exclusively through retinal photoreceptors. The mammalian retina itself is also a self-sustained circadian oscillator. Here we report that the retinal molecular circadian clock can be entrained by lighting cycles in vitro, but that rods, cones, and melanopsin (Opn4) are not required for this entrainment. In vivo, retinas of Opn4(-/-);rd1/rd1 mice synchronize to light/dark cycles regardless of the phase of the master circadian pacemakers of the suprachiasmatic nuclei or the behavior of the animal. These data demonstrate that the retina uses a separate mechanism for local entrainment of its circadian clock than for entrainment of organism-level rhythmicity.
Collapse
|