4951
|
Human RNAi pathway: crosstalk with organelles and cells. Funct Integr Genomics 2013; 14:31-46. [PMID: 24197738 DOI: 10.1007/s10142-013-0344-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 10/03/2013] [Accepted: 10/07/2013] [Indexed: 12/12/2022]
Abstract
Understanding gene regulation mechanisms has been a serious challenge in biology. As a novel mechanism, small non-coding RNAs are an alternative means of gene regulation in a specific and efficient manner. There are growing reports on regulatory roles of these RNAs including transcriptional gene silencing/activation and post-transcriptional gene silencing events. Also, there are several known small non-coding RNAs which all work through RNA interference pathway. Interestingly, these small RNAs are secreted from cells toward targeted cells presenting new communication approach in cell-cell or cell-organ signal transduction. In fact, understanding cellular and molecular basis of these pathways will strongly improve developing targeted therapies and potent and specific regulatory tools. This study will review some of the most recent findings in this subject and will introduce a super-pathway RNA interference-based small RNA silencing network.
Collapse
|
4952
|
Leung WH, Vong QP, Lin W, Janke L, Chen T, Leung W. Modulation of NKG2D ligand expression and metastasis in tumors by spironolactone via RXRγ activation. ACTA ACUST UNITED AC 2013; 210:2675-92. [PMID: 24190430 PMCID: PMC3832934 DOI: 10.1084/jem.20122292] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The diuretic drug spironolactone up-regulates NKG2D ligand expression in colon cancer cells via activation of the ATM–Chk2–mediated checkpoint pathway to enhance the antitumor function of NK cells. Tumor metastasis and lack of NKG2D ligand (NKG2DL) expression are associated with poor prognosis in patients with colon cancer. Here, we found that spironolactone (SPIR), an FDA-approved diuretic drug with a long-term safety profile, can up-regulate NKG2DL expression in multiple colon cancer cell lines by activating the ATM–Chk2-mediated checkpoint pathway, which in turn enhances tumor elimination by natural killer cells. SPIR can also up-regulate the expression of metastasis-suppressor genes TIMP2 and TIMP3, thereby reducing tumor cell invasiveness. Although SPIR is an aldosterone antagonist, its antitumor effects are independent of the mineralocorticoid receptor pathway. By screening the human nuclear hormone receptor siRNA library, we identified retinoid X receptor γ (RXRγ) instead as being indispensable for the antitumor functions of SPIR. Collectively, our results strongly support the use of SPIR or other RXRγ agonists with minimal side effects for colon cancer prevention and therapy.
Collapse
Affiliation(s)
- Wai-Hang Leung
- Department of Bone Marrow Transplantation and Cellular Therapy; 2 Department of Chemical Biology & Therapeutics; and 3 Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | | | | | | | | | | |
Collapse
|
4953
|
Son A, Oshio T, Kawamura YI, Hagiwara T, Yamazaki M, Inagaki-Ohara K, Okada T, Wu P, Iseki M, Takaki S, Burkly LC, Dohi T. TWEAK/Fn14 pathway promotes a T helper 2-type chronic colitis with fibrosis in mice. Mucosal Immunol 2013; 6:1131-42. [PMID: 23462911 DOI: 10.1038/mi.2013.10] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 01/30/2013] [Indexed: 02/04/2023]
Abstract
Tumor necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK), a TNF superfamily member, induces damage of the epithelial cells (ECs) and production of inflammatory mediaters through its receptor Fn14 in a model of acute colitis. In our current study of chronic colitis induced by repeated rectal injection of a hapten, we found that inflammation, fibrosis, and T helper 2 (Th2)-type immunity were significantly reduced in Fn14 gene knockout (KO) mice when compared with wild-type (WT) control mice. Expression of thymic stromal lymphopoietin (TSLP) was lower in Fn14 KO colon ECs than in WT ECs. TWEAK potentiates the induction of TSLP by interleukin-13 (IL-13) in colon explants from WT but not in Fn14 KO tissue. TSLP receptor KO mice exhibit milder chronic colitis, similar to that in Fn14 KO mice. TWEAK and IL-13 synergistically promote fibroblast proliferation. Thus we propose an IL-13-TWEAK/Fn14-TSLP axis as a key mechanism underlying chronic colitis with fibrosis.
Collapse
Affiliation(s)
- A Son
- Department of Gastroenterology, Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4954
|
Elinav E, Nowarski R, Thaiss CA, Hu B, Jin C, Flavell RA. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms. Nat Rev Cancer 2013; 13:759-71. [PMID: 24154716 DOI: 10.1038/nrc3611] [Citation(s) in RCA: 1469] [Impact Index Per Article: 122.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammation is a fundamental innate immune response to perturbed tissue homeostasis. Chronic inflammatory processes affect all stages of tumour development as well as therapy. In this Review, we outline the principal cellular and molecular pathways that coordinate the tumour-promoting and tumour-antagonizing effects of inflammation and we discuss the crosstalk between cancer development and inflammatory processes. In addition, we discuss the recently suggested role of commensal microorganisms in inflammation-induced cancer and we propose that understanding this microbial influence will be crucial for targeted therapy in modern cancer treatment.
Collapse
Affiliation(s)
- Eran Elinav
- 1] Department of Immunology, Weizmann Institute of Science, 100 Herzl Street, Rehovot 76100, Israel. [2]
| | | | | | | | | | | |
Collapse
|
4955
|
Yang HJ, Huang TJ, Yang CF, Peng LX, Liu RY, Yang GD, Chu QQ, Huang JL, Liu N, Huang HB, Zhu ZY, Qian CN, Huang BJ. Comprehensive profiling of Epstein-Barr virus-encoded miRNA species associated with specific latency types in tumor cells. Virol J 2013; 10:314. [PMID: 24161012 PMCID: PMC4231337 DOI: 10.1186/1743-422x-10-314] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/21/2013] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Epstein-Barr virus (EBV) is an etiological cause of many human lymphocytic and epithelial malignancies. EBV expresses different genes that are associated with three latency types. To date, as many as 44 EBV-encoded miRNA species have been found, but their comprehensive profiles in the three types of latent infection that are associated with various types of tumors are not well documented. METHODS In the present study, we utilized poly (A)-tailed quantitative real-time RT-PCR in combination with microarray analysis to measure the relative abundances of viral miRNA species in a subset of representative lymphoid and epithelial tumor cells with various EBV latency types. RESULTS Our findings showed that the miR-BHRF1 and miR-BART families were expressed differentially in a tissue- and latency type-dependent manner. Specifically, in nasopharyngeal carcinoma (NPC) tissues and the EBV-positive cell line C666-1, the miR-BART family accounted for more than 10% of all detected miRNAs, suggesting that these miRNAs have important roles in maintaining latent EBV infections and in driving NPC tumorigenesis. In addition, EBV miRNA-based clustering analysis clearly distinguished between the three distinct EBV latency types, and our results suggested that a switch from type I to type III latency might occur in the Daudi BL cell line. CONCLUSIONS Our data provide a comprehensive profiling of the EBV miRNA transcriptome that is associated with specific tumor cells in the three types of latent EBV infection states. EBV miRNA species represent a cluster of non-encoding latency biomarkers that are differentially expressed in tumor cells and may help to distinguish between the different latency types.
Collapse
Affiliation(s)
- Hong-Jie Yang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Tie-Jun Huang
- Department of Nuclear Medicine, the second People’s Hospital of Shenzhen, Shenzhen 518038, China
| | - Chang-Fu Yang
- Department of Cancer Chemotherapy, the People’s Hospital of Gaozhou, Guangzhou, Guangdong province 525200, China
- Department of Biochemistry & Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou Guangdong province, P.R. China
| | - Li-Xia Peng
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ran-Yi Liu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Guang-Da Yang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Qiao-Qiao Chu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou People’s Republic of China
| | - Jia-Ling Huang
- Department of Medicine, Division of Infectious Diseases, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6073, USA
| | - Na Liu
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Hong-Bing Huang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zhen-Yu Zhu
- Department of Biochemistry & Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou Guangdong province, P.R. China
| | - Chao-Nan Qian
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Bi-Jun Huang
- State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
4956
|
Iannello A, Raulet DH. Immune surveillance of unhealthy cells by natural killer cells. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2013; 78:249-257. [PMID: 24135717 PMCID: PMC4244075 DOI: 10.1101/sqb.2013.78.020255] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Pathogenic and oncogenic insults result in the induction of intrinsic defense mechanisms such as cell-death pathways and senescence, and extrinsic pathways that mobilize immune responses to destroy unhealthy cells. Both protective mechanisms presumably evolved to limit the damage these insults could inflict on the host. After viral infection or malignant transformation, unhealthy cells can be directly sensed by natural killer (NK) and some T cells via the activating receptor NKG2D. All NK cells and subsets of T cells express NKG2D. The NKG2D/ligand system represents a major recognition mechanism for detection and elimination of unhealthy cells. Here we discuss different pathways, including stress pathways, that are responsible for cell-surface display of ligands for NKG2D, which are self-proteins that are minimally expressed by normal cells. We also discuss new results indicating that efficient elimination of tumor cells that display NKG2D ligands depends on the recruitment of NK cells and other immune cells to the tumor, which can be regulated by distinct mechanisms, including the p53-dependent production of chemokines by senescent tumors. The cooperative effect of pathways that induce the display of NKG2D ligands and distinct pathways that mobilize immune cells provides a higher degree of specificity to the NK cell response.
Collapse
Affiliation(s)
- Alexandre Iannello
- Department of Molecular and Cell Biology, and Cancer Research Laboratory, University of California at Berkeley, Berkeley, California 94720
| | - David H Raulet
- Department of Molecular and Cell Biology, and Cancer Research Laboratory, University of California at Berkeley, Berkeley, California 94720
| |
Collapse
|
4957
|
Rossi A, Ross EJ, Jack A, Sánchez Alvarado A. Molecular cloning and characterization of SL3: a stem cell-specific SL RNA from the planarian Schmidtea mediterranea. Gene 2013; 533:156-67. [PMID: 24120894 DOI: 10.1016/j.gene.2013.09.101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 08/26/2013] [Accepted: 09/26/2013] [Indexed: 01/03/2023]
Abstract
Spliced leader (SL) trans-splicing is a biological phenomenon, common among many metazoan taxa, consisting in the transfer of a short leader sequence from a small SL RNA to the 5' end of a subset of pre-mRNAs. While knowledge of the biochemical mechanisms driving this process has accumulated over the years, the functional consequences of such post-transcriptional event at the organismal level remain unclear. In addition, the fact that functional analyses have been undertaken mainly in trypanosomes and nematodes leaves a somehow fragmented picture of the possible biological significance and evolution of SL trans-splicing in eukaryotes. Here, we analyzed the spatial expression of SL RNAs in the planarian flatworm Schmidtea mediterranea, with the goal of identifying novel developmental paradigms for the study of trans-splicing in metazoans. Besides the previously identified SL1 and SL2, S. mediterranea expresses a third SL RNA described here as SL3. While, SL1 and SL2 are collectively expressed in a broad range of planarian cell types, SL3 is highly enriched in a subset of the planarian stem cells engaged in regenerative responses. Our findings provide new opportunities to study how trans-splicing may regulate the phenotype of a cell.
Collapse
Affiliation(s)
- Alessandro Rossi
- Stowers Institute for Medical Research, 1000 E 50th St., Kansas City, MO 64110, USA.
| | | | | | | |
Collapse
|
4958
|
Sérémé D, Lacombe S, Konaté M, Bangratz M, Pinel-Galzi A, Fargette D, Traoré AS, Konaté G, Brugidou C. Sites under positive selection modulate the RNA silencing suppressor activity of rice yellow mottle virus movement protein P1. J Gen Virol 2013; 95:213-218. [PMID: 24092757 DOI: 10.1099/vir.0.057026-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
RNA silencing is a eukaryotic mechanism for RNA-based gene regulation that plays an essential role in diverse biological processes, such as defence against viral infections. The P1 of rice yellow mottle virus (RYMV) is a movement protein and displays RNA silencing suppression activity with variable efficiency, depending on the origin of the isolates. In this study, the positive selection pressure acting on the P1 protein gene was assessed. A site-by-site analysis of the dN/dS ratio was performed and 18 positively selected sites were identified. Four of these were mutated, and the ability to suppress RNA silencing was evaluated for the resulting mutants in a transient expression assay. All mutations affected quantitatively RNA silencing suppression, one caused a significant decrease in the activity and three significantly increased it. This work demonstrates, for what is to the best of our knowledge the first time, that the RYMV gene encoding the P1 RNA silencing suppressor is under adaptive evolution.
Collapse
Affiliation(s)
- Drissa Sérémé
- Institut de l'Environnement et de Recherches Agricoles (INERA), Laboratoire de Virologie et de Biotechnologies Végétales, 01 BP 476 Ouagadougou 01, Burkina Faso
| | - Séverine Lacombe
- Institut de Recherche pour le Développement (IRD), UMR 186/RPB, 911 Av. Agropolis BP 64501 F-34394 Montpellier Cedex 5, France
| | - Moumouni Konaté
- Institut de l'Environnement et de Recherches Agricoles (INERA), Laboratoire de Virologie et de Biotechnologies Végétales, 01 BP 476 Ouagadougou 01, Burkina Faso
| | - Martine Bangratz
- Institut de Recherche pour le Développement (IRD), UMR 186/RPB, 911 Av. Agropolis BP 64501 F-34394 Montpellier Cedex 5, France
| | - Agnès Pinel-Galzi
- Institut de Recherche pour le Développement (IRD), UMR 186/RPB, 911 Av. Agropolis BP 64501 F-34394 Montpellier Cedex 5, France
| | - Denis Fargette
- Institut de Recherche pour le Développement (IRD), UMR 186/RPB, 911 Av. Agropolis BP 64501 F-34394 Montpellier Cedex 5, France
| | - Alfred S Traoré
- Université de Ouagadougou, UFR SVT, 03 BP 7021 Ouagadougou 03, Burkina Faso
| | - Gnissa Konaté
- Institut de l'Environnement et de Recherches Agricoles (INERA), Laboratoire de Virologie et de Biotechnologies Végétales, 01 BP 476 Ouagadougou 01, Burkina Faso
| | - Christophe Brugidou
- Institut de Recherche pour le Développement (IRD), UMR 186/RPB, 911 Av. Agropolis BP 64501 F-34394 Montpellier Cedex 5, France
| |
Collapse
|
4959
|
Dooley J, Linterman MA, Liston A. MicroRNA regulation of T-cell development. Immunol Rev 2013; 253:53-64. [PMID: 23550638 DOI: 10.1111/imr.12049] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MicroRNAs are short, 19-24 nucleotide long, RNA molecules capable of regulating the longevity and, to a lesser extent, translation of messenger RNA (mRNA) species. The function of the microRNA network, and indeed, even that of individual microRNA species, can have profoundly different roles in even a single cell type as the microRNA/mRNA composition evolves. As the role of microRNA within T cells has come under increasing scrutiny, several distinct checkpoints have been demonstrated to have a particular reliance on microRNA regulation. MicroRNAs are arguably most important in T cells during the earliest and last stages in T-cell biology. The first stages of early thymic differentiation have a crucial reliance on the microRNA network, while later stages and peripheral homeostasis are largely, although not completely, microRNA-independent. The most profound effects on T cells are in the activation of effector and regulatory functions of conventional and regulatory T cells, where microRNA deficiency results in a near-complete loss of function. In this review, we focus on integrating the research on individual microRNA into a more global understanding of the function of the microRNA regulatory network in T cells.
Collapse
Affiliation(s)
- James Dooley
- Autoimmune Genetics Laboratory, VIB, Leuven, Belgium
| | | | | |
Collapse
|
4960
|
Vassena L, Giuliani E, Matusali G, Cohen ÉA, Doria M. The human immunodeficiency virus type 1 Vpr protein upregulates PVR via activation of the ATR-mediated DNA damage response pathway. J Gen Virol 2013; 94:2664-2669. [PMID: 24045107 DOI: 10.1099/vir.0.055541-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Viral infection may induce the cell-surface expression of PVR (CD155) that, upon recognition by its cognate activating DNAM-1 receptor present on cytotoxic lymphocytes, may promote antiviral immune responses. Here we show that expression of the human immunodeficiency virus type 1 (HIV-1) Vpr protein in Jurkat T cells increases cell-surface and total PVR levels. Analysis of mutated Vpr variants indicated that Vpr uses the same protein surfaces, and hence probably the same mechanisms, to upregulate PVR and arrest the cell cycle in the G2 phase. Moreover, we found that PVR upregulation by Vpr relied on the ability of the protein to activate the ATR kinase that triggers the DNA damage response pathway and G2 arrest. Finally, we showed that Vpr contributes to PVR up-modulation in HIV-infected CD4(+) T lymphocytes and inhibits the PVR downregulating activity of the viral Nef protein.
Collapse
Affiliation(s)
- Lia Vassena
- Laboratory of Immunoinfectivology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Erica Giuliani
- Laboratory of Immunoinfectivology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Giulia Matusali
- Laboratory of Immunoinfectivology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| | - Éric A Cohen
- Laboratory of Human Retrovirology, Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | - Margherita Doria
- Laboratory of Immunoinfectivology, Bambino Gesù Children's Hospital, IRCCS, 00165, Rome, Italy
| |
Collapse
|
4961
|
Swaminathan G, Martin-Garcia J, Navas-Martin S. RNA viruses and microRNAs: challenging discoveries for the 21st century. Physiol Genomics 2013; 45:1035-48. [PMID: 24046280 DOI: 10.1152/physiolgenomics.00112.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RNA viruses represent the predominant cause of many clinically relevant viral diseases in humans. Among several evolutionary advantages acquired by RNA viruses, the ability to usurp host cellular machinery and evade antiviral immune responses is imperative. During the past decade, RNA interference mechanisms, especially microRNA (miRNA)-mediated regulation of cellular protein expression, have revolutionized our understanding of host-viral interactions. Although it is well established that several DNA viruses express miRNAs that play crucial roles in their pathogenesis, expression of miRNAs by RNA viruses remains controversial. However, modulation of the miRNA machinery by RNA viruses may confer multiple benefits for enhanced viral replication and survival in host cells. In this review, we discuss the current literature on RNA viruses that may encode miRNAs and the varied advantages of engineering RNA viruses to express miRNAs as potential vectors for gene therapy. In addition, we review how different families of RNA viruses can alter miRNA machinery for productive replication, evasion of antiviral immune responses, and prolonged survival. We underscore the need to further explore the complex interactions of RNA viruses with host miRNAs to augment our understanding of host-virus interplay.
Collapse
Affiliation(s)
- Gokul Swaminathan
- Microbiology and Immunology Graduate Program, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
4962
|
Yoshikawa T, Otsuka M, Kishikawa T, Takata A, Ohno M, Shibata C, Kang YJ, Yoshida H, Koike K. Unique haploinsufficient role of the microRNA-processing molecule Dicer1 in a murine colitis-associated tumorigenesis model. PLoS One 2013; 8:e71969. [PMID: 24023722 PMCID: PMC3759383 DOI: 10.1371/journal.pone.0071969] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/05/2013] [Indexed: 02/02/2023] Open
Abstract
A widespread downregulated expression of microRNAs (miRNAs) is commonly observed in human cancers. Similarly, deregulated expression of miRNA-processing pathway components, which results in the reduction of global miRNA expression, may also be associated with tumorigenesis. Here, we show that specific ablation of Dicer1 in intestinal epithelial cells accelerates intestinal inflammation-associated tumorigenesis. This effect was apparent only when a single copy of Dicer1 was deleted, but not with complete Dicer1 ablation. DICER expression and subsequent mature miRNA levels were inversely correlated with the number of intact Dicer1 alleles. Because the expression levels of DICER were retained in tumors and its surrounding tissues even after induction of colitis-associated tumors, the effects of Dicer1 deletion were cell-autonomous. Although the expression levels of representative oncogenes and tumor suppressor genes were in most cases inversely correlated with the expression levels of DICER, some genes were not affected by Dicer1 deletion. Thus, deregulating the delicate balance between the expression levels of tumor-promoting and -suppressive genes may be crucial for tumorigenesis in this unique haploinsufficient case.
Collapse
Affiliation(s)
- Takeshi Yoshikawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama, Japan
| | - Takahiro Kishikawa
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akemi Takata
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Motoko Ohno
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chikako Shibata
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Young Jun Kang
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Haruhiko Yoshida
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuhiko Koike
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4963
|
Lagatie O, Tritsmans L, Stuyver LJ. The miRNA world of polyomaviruses. Virol J 2013; 10:268. [PMID: 23984639 PMCID: PMC3765807 DOI: 10.1186/1743-422x-10-268] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/27/2013] [Indexed: 12/20/2022] Open
Abstract
Polyomaviruses are a family of non-enveloped DNA viruses infecting several species, including humans, primates, birds, rodents, bats, horse, cattle, raccoon and sea lion. They typically cause asymptomatic infection and establish latency but can be reactivated under certain conditions causing severe diseases. MicroRNAs (miRNAs) are small non-coding RNAs that play important roles in several cellular processes by binding to and inhibiting the translation of specific mRNA transcripts. In this review, we summarize the current knowledge of microRNAs involved in polyomavirus infection. We review in detail the different viral miRNAs that have been discovered and the role they play in controlling both host and viral protein expression. We also give an overview of the current understanding on how host miRNAs may function in controlling polyomavirus replication, immune evasion and pathogenesis.
Collapse
Affiliation(s)
- Ole Lagatie
- Janssen Diagnostics, Turnhoutseweg 30, Beerse 2340, Belgium.
| | | | | |
Collapse
|
4964
|
Ziegler SF, Roan F, Bell BD, Stoklasek TA, Kitajima M, Han H. The biology of thymic stromal lymphopoietin (TSLP). ADVANCES IN PHARMACOLOGY 2013; 66:129-55. [PMID: 23433457 DOI: 10.1016/b978-0-12-404717-4.00004-4] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Originally shown to promote the growth and activation of B cells, thymic stromal lymphopoietin (TSLP) is now known to have wide-ranging impacts on both hematopoietic and nonhematopoietic cell lineages, including dendritic cells, basophils, eosinophils, mast cells, CD4⁺, CD8⁺ and natural killer T cells, B cells and epithelial cells. While TSLP's role in the promotion of TH2 responses has been extensively studied in the context of lung- and skin-specific allergic disorders, it is becoming increasingly clear that TSLP may impact multiple disease states within multiple organ systems, including the blockade of TH1/TH17 responses and the promotion of cancer and autoimmunity. This chapter will highlight recent advances in the understanding of TSLP signal transduction, as well as the role of TSLP in allergy, autoimmunity and cancer. Importantly, these insights into TSLP's multifaceted roles could potentially allow for novel therapeutic manipulations of these disorders.
Collapse
Affiliation(s)
- Steven F Ziegler
- Immunology Program, Benaroya Research Institute, Seattle, WA, USA.
| | | | | | | | | | | |
Collapse
|
4965
|
Abstract
Inflammation is increasingly recognized as an essential component of tumor development, but the origin of tumor-associated inflammation remains largely unknown. In this issue of Cancer Cell, Pribluda and colleagues find that chronic stress initiates senescence-inflammatory response, which can promote tumorigenesis in the absence of exogenous inflammatory triggers.
Collapse
|
4966
|
Wu J, Zhang XJ, Shi KQ, Chen YP, Ren YF, Song YJ, Li G, Xue YF, Fang YX, Deng ZJ, Xu X, Gao J, Tang KF. Hepatitis B surface antigen inhibits MICA and MICB expression via induction of cellular miRNAs in hepatocellular carcinoma cells. Carcinogenesis 2013; 35:155-63. [PMID: 23917076 DOI: 10.1093/carcin/bgt268] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B surface antigen (HBsAg) seropositivity is an important risk factor for hepatocellular carcinoma (HCC), and HBsAg-transgenic mice have been reported to spontaneously develop HCC. The major histocompatibility complex class I-related molecules A and B (MICA and MICB) are NKG2D ligands that play important roles in tumor immune surveillance. In the present study, we found that HBsAg overexpression in HepG2 cells led to upregulation of 133 and downregulation of 9 microRNAs (miRNAs). Interestingly, several HBsAg-induced miRNAs repressed the expression of MICA and MICB via targeting their 3'-untranslated regions. In addition, the expression of MICA and MICB was significantly reduced upon HBsAg overexpression, which was partially restored by inhibiting the activities of HBsAg-induced miRNAs. Moreover, HBsAg-overexpressing HCC cells exhibited reduced sensitivity to natural killer cell-mediated cytolysis. Taken together, our data suggest that HBsAg supresses the expression of MICA and MICB via induction of cellular miRNAs, thereby preventing NKG2D-mediated elimination of HCC cells.
Collapse
Affiliation(s)
- Jianmin Wu
- Institute of Genomic Medicine, Wenzhou Medical College, 268 Xueyuan Road, Wenzhou, Zhejiang Province 325000, P.R. China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4967
|
Battersby AJ, Gibbons DL. The gut mucosal immune system in the neonatal period. Pediatr Allergy Immunol 2013; 24:414-21. [PMID: 23682966 DOI: 10.1111/pai.12079] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/26/2013] [Indexed: 12/19/2022]
Abstract
Invasive sepsis in the newborn period is a major cause of childhood morbidity and mortality worldwide. The infant immune system undoubtedly differs intrinsically from the mature adult immune system. Current understanding is that the newborn infant immune system displays a range of competencies and is developing rather than deficient. The infant gut mucosal immune system is complex and displays a plethora of phenotypic and functional irregularities that may be clinically important. Various factors affect and modulate the infant gut mucosal immune system: components of the intestinal barrier, the infant gut microbiome, nutrition and the maternal-infant hybrid immune system. Elucidation of the phenotypic distribution of immune cells, their functional significance and the mucosa-specific pathways used by these cells is essential to the future of research in the field of infant immunology.
Collapse
Affiliation(s)
- Anna J Battersby
- Academic Department of Paediatrics, Imperial College London, London, UK.
| | | |
Collapse
|
4968
|
Wang Q, Ji X, Gao Y, Qi X, Wang X, Wang Y, Qin L, Gao H, Wang X. Overexpression of microRNA gga-miR-1650 decreases the replication of avian leukosis virus subgroup J in infected cells. J Gen Virol 2013; 94:2287-2296. [PMID: 23907393 DOI: 10.1099/vir.0.054007-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of small regulatory non-coding RNAs that modulate gene expression at the post-transcriptional level, playing a crucial role in cell differentiation and development. Recently, some reports have demonstrated that a number of cellular miRNAs play a role during viral infection. In this study, a luciferase-reporter system carrying the 5' untranslated region (5' UTR) and 3' UTR of avian leukosis virus subgroup J (ALV-J) was used to determine whether cellular miRNAs are involved in ALV-J infection. The miRNA gga-miR-1650 was screened for its potential interaction with the 5' UTR of ALV-J and the ability to suppress luciferase-reporter activity. A mutational analysis of predicted gga-miR-1650-binding sites showed that the 5' and 3' ends of gga-miR-1650 contributed to the interaction between gga-miR-1650 and its target located at the 5' UTR. Overexpression of miRNA gga-miR-1650 was shown to downregulate the expression of the Gag protein and influence the replication of ALV-J through binding to the 5' UTR. Overall, this report provides the basis for the development of new strategies for anti-ALV-J intervention.
Collapse
Affiliation(s)
- Qi Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Xiaolin Ji
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Xiaojun Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Yongqiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Liting Qin
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Honglei Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150001, PR China
| |
Collapse
|
4969
|
Fogel LA, Yokoyama WM, French AR. Natural killer cells in human autoimmune disorders. Arthritis Res Ther 2013; 15:216. [PMID: 23856014 PMCID: PMC3979027 DOI: 10.1186/ar4232] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play a critical role in early host defense against viruses. Through their cytolytic capacity and generation of cytokines and chemokines, NK cells modulate the activity of other components of the innate and adaptive immune systems and have been implicated in the initiation or maintenance of autoimmune responses. This review focuses on recent research elucidating a potential immunoregulatory role for NK cells in T-cell and B-cell-mediated autoimmune disorders in humans, with a particular focus on multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematous. A better understanding of the contributions of NK cells to the development of autoimmunity may lead to novel therapeutic targets in these diseases.
Collapse
|
4970
|
Staedel C, Darfeuille F. MicroRNAs and bacterial infection. Cell Microbiol 2013; 15:1496-507. [PMID: 23795564 DOI: 10.1111/cmi.12159] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 12/13/2022]
Abstract
MicroRNAs, small non-coding RNAs expressed by eukaryotic cells, play pivotal roles in shaping cell differentiation and organism development. Deregulated microRNA expression is associated with several types of diseases including cancers, immune disorders and infection. Acting at the post-transcriptional level, miRNAs have expanded our understanding of the control of gene expression in regulatory networks involved in the adaptation to environmental situations such as biotic stress. It is increasingly clear that miRNAs are an important part of the host response to microbes. This review presents the current state of knowledge about the role of miRNAs in the response to both bacterial pathogens and commensal bacteria in human cells or animal experimental models. Some microRNAs, including miR-146, miR-155, miR-125, let-7 and miR-21, are commonly affected during bacterial infection and contribute to immune responses protecting the organism against overwhelmed inflammation. Cell-specific relationships between miRNAs and their targets are also engaged in the alterations induced by virulent bacteria in the proliferation/differentiation/apoptosis pathways of their host cells. In a separate role, miRNA modulation also represents a mechanism through which commensal bacteria impact the regulation of the barrier function and intestinal homeostasis.
Collapse
Affiliation(s)
- Cathy Staedel
- Univ. Bordeaux, ARNA Laboratory, F-33000, Bordeaux, France.
| | | |
Collapse
|
4971
|
Laganà A, Russo F, Veneziano D, Bella SD, Giugno R, Pulvirenti A, Croce CM, Ferro A. Extracellular circulating viral microRNAs: current knowledge and perspectives. Front Genet 2013; 4:120. [PMID: 23805153 PMCID: PMC3690336 DOI: 10.3389/fgene.2013.00120] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/04/2013] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs responsible of post-transcriptional regulation of gene expression through interaction with messenger RNAs (mRNAs). They are involved in important biological processes and are often dysregulated in a variety of diseases, including cancer and infections. Viruses also encode their own sets of miRNAs, which they use to control the expression of either the host’s genes and/or their own. In the past few years evidence of the presence of cellular miRNAs in extracellular human body fluids such as serum, plasma, saliva, and urine has accumulated. They have been found either cofractionate with the Argonaute2 protein or in membrane-bound vesicles such as exosomes. Although little is known about the role of circulating miRNAs, it has been demonstrated that miRNAs secreted by virus-infected cells are transferred to and act in uninfected recipient cells. In this work we summarize the current knowledge on viral circulating miRNAs and provide a few examples of computational prediction of their function.
Collapse
Affiliation(s)
- Alessandro Laganà
- Department of Molecular Virology, Immunology and Medical Genetics, Comprehensive Cancer Center, The Ohio State University Columbus, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
4972
|
Mishra R, Polic B, Welsh RM, Szomolanyi-Tsuda E. Inflammatory cytokine-mediated evasion of virus-induced tumors from NK cell control. THE JOURNAL OF IMMUNOLOGY 2013; 191:961-70. [PMID: 23772039 DOI: 10.4049/jimmunol.1203328] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infections with DNA tumor viruses, including members of the polyomavirus family, often result in tumor formation in immune-deficient hosts. The complex control involved in antiviral and antitumor immune responses during these infections can be studied in murine polyomavirus (PyV)-infected mice as a model. We found that NK cells efficiently kill cells derived from PyV-induced salivary gland tumors in vitro in an NKG2D (effector cell)-RAE-1 (target cell)-dependent manner; but in T cell-deficient mice, NK cells only delay but do not prevent the development of PyV-induced tumors. In this article, we show that the PyV-induced tumors have infiltrating functional NK cells. The freshly removed tumors, however, lack surface RAE-1 expression, and the tumor tissues produce soluble factors that downregulate RAE-1. These factors include the proinflammatory cytokines IL-1α, IL-1β, IL-33, and TNF. Each of these cytokines downregulates RAE-1 expression and susceptibility to NK cell-mediated cytotoxicity. CD11b(+)F4/80(+) macrophages infiltrating the PyV-induced tumors produce high amounts of IL-1β and TNF. Thus, our data suggest a new mechanism whereby inflammatory cytokines generated in the tumor environment lead to evasion of NK cell-mediated control of virus-induced tumors.
Collapse
Affiliation(s)
- Rabinarayan Mishra
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | |
Collapse
|
4973
|
γ-Herpesvirus-encoded miRNAs and their roles in viral biology and pathogenesis. Curr Opin Virol 2013; 3:266-75. [PMID: 23743127 DOI: 10.1016/j.coviro.2013.05.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/13/2013] [Accepted: 05/14/2013] [Indexed: 12/11/2022]
Abstract
To date, more than 200 viral miRNAs have been identified mostly from herpesviruses and this rapidly evolving field has recently been summarized in a number of excellent reviews (see [1,2]). Unique to γ-herpesviruses, like Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus, is their ability to cause cancer. Here, we discuss γ-herpesvirus-encoded miRNAs and focus on recent findings which support the hypothesis that viral miRNAs directly contribute to pathogenesis and tumorigenesis. The observations that KSHV mimics a human tumorigenic miRNA (hsa-miR-155), which is induced in EBV-infected cells and required for the survival of EBV-immortalized cells, lead to a number of studies demonstrating that perturbing this pathway induces B cell proliferation in vivo and immortalization of human B cells in vitro. Secondly, the application of state of the art ribonomics methods to globally identify viral miRNA targets in virus-infected tumor cells provides a rich resource to the KSHV and EBV fields and largely expanded our understanding on how viral miRNAs contribute to viral biology.
Collapse
|
4974
|
Lu TX, Rothenberg ME. Diagnostic, functional, and therapeutic roles of microRNA in allergic diseases. J Allergy Clin Immunol 2013; 132:3-13; quiz 14. [PMID: 23735656 DOI: 10.1016/j.jaci.2013.04.039] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 04/07/2013] [Accepted: 04/23/2013] [Indexed: 12/19/2022]
Abstract
Allergic inflammation is accompanied by the coordinated expression of a myriad of genes and proteins that initiate, sustain, and propagate immune responses and tissue remodeling. MicroRNAs (miRNAs) are a class of short single-stranded RNA molecules that posttranscriptionally silence gene expression and have been shown to fine-tune gene transcriptional networks because single miRNAs can target hundreds of genes. Considerable attention has been focused on the key role of miRNAs in regulating homeostatic immune architecture and acquired immunity. Recent studies have identified miRNA profiles in multiple allergic inflammatory diseases, including asthma, eosinophilic esophagitis, allergic rhinitis, and atopic dermatitis. Specific miRNAs have been found to have critical roles in regulating key pathogenic mechanisms in allergic inflammation, including polarization of adaptive immune responses and activation of T cells (eg, miR-21 and miR-146), regulation of eosinophil development (eg, miR-21 and miR-223), and modulation of IL-13-driven epithelial responses (eg, miR-375). This review discusses recent advances in our understanding of the expression and function of miRNAs in patients with allergic inflammation, their role as disease biomarkers, and perspectives for future investigation and clinical utility.
Collapse
Affiliation(s)
- Thomas X Lu
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | |
Collapse
|
4975
|
Lam RA, Chwee JY, Le Bert N, Sauer M, Pogge von Strandmann E, Gasser S. Regulation of self-ligands for activating natural killer cell receptors. Ann Med 2013; 45:384-94. [PMID: 23701136 DOI: 10.3109/07853890.2013.792495] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Natural killer (NK) cells are able to lyse infected and tumor cells while sparing healthy cells. Recognition of diseased cells by NK cells is governed by several activating and inhibitory receptors. We review numerous pathways that have been implicated in the regulation of self-ligands for activating receptors, including NKG2D, DNAM-1, LFA-1, NKp30, NKp44, NKp46, NKp65, and NKp80 found on NK cells and some T cells. Understanding how the regulation of self-encoded ligand expression is regulated may provide novel avenues for future therapeutic approaches to infections and cancer.
Collapse
Affiliation(s)
- Runyi A Lam
- Immunology Programme, Centre for Life Sciences, Department of Microbiology, National University of Singapore 117456, Singapore
| | | | | | | | | | | |
Collapse
|
4976
|
Abstract
Mucins--large, highly glycosylated proteins--are important for the luminal protection of the gastrointestinal tract. Enterocytes have their apical surface covered by transmembrane mucins and goblet cells produce the secreted gel-forming mucins that form mucus. The small intestine has a single unattached mucus layer, which in cystic fibrosis becomes attached, accounting for the intestinal manifestations of this disease. The stomach and colon have two layers of mucus; the inner layer is attached and the outer layer is less dense and unattached. In the colon, the outer mucus layer is the habitat for commensal bacteria. The inner mucus layer is impervious to bacteria and is renewed every hour by surface goblet cells. The crypt goblet cells have the ability to restitute the mucus layer by secretion, for example after an ischaemic challenge. Proteases of certain parasites and some bacteria can cleave mucins and dissolve the mucus as part of their pathogenicity. The inner mucus layer can, however, also become penetrable to bacteria by several other mechanisms, including aberrations in the immune system. When bacteria reach the epithelial surface, the immune system is activated and inflammation is triggered. This mechanism might occur in some types of ulcerative colitis.
Collapse
|
4977
|
Characterization of 3′untranslated region (3′UTR) of the MICB gene. Hum Immunol 2013; 74:746-50. [DOI: 10.1016/j.humimm.2013.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/28/2012] [Accepted: 01/24/2013] [Indexed: 01/27/2023]
|
4978
|
Peinado C, Kang X, Hardamon C, Arora S, Mah S, Zhang H, Ngolab J, Bui JD. The nuclear factor-κB pathway down-regulates expression of the NKG2D ligand H60a in vitro: implications for use of nuclear factor-κB inhibitors in cancer therapy. Immunology 2013; 139:265-74. [PMID: 23350962 PMCID: PMC3647192 DOI: 10.1111/imm.12080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 01/15/2013] [Accepted: 01/22/2013] [Indexed: 12/31/2022] Open
Abstract
NKG2D ligands are cell surface proteins that activate NKG2D, a receptor used by natural killer (NK) cells to detect virus-infected and transformed cells. When tumour cells express high levels of NKG2D ligands, they are rejected by the immune system. Hence, reagents that increase NKG2D ligand expression on tumour cells can be important for tumour immunotherapy. To identify genes that regulate the NKG2D ligand H60a, we performed a microarray analysis of 3'-methylcholanthrene-induced sarcoma cell lines expressing high versus low H60a levels. A20, an inhibitor of nuclear factor-κB (NF-κB) activation, was differentially expressed in H60a-hi sarcoma cells. Correspondingly, treatment of tumour cells with inhibitors of NF-κB activation, such as sulfasalazine (slz), BAY-11-7085, or a non-phosphorylatable IκB, led to increased levels of H60a protein, whereas transduction of cells with an active form of IκB kinase-β (IKKβ) led to decreased levels of H60a. The regulation probably occurred at the transcriptional level, because NF-κB pathway inhibition led to increased H60a transcripts and promoter activity. Moreover, treatment of tumour cells with slz enhanced their killing by NK cells in vitro, suggesting that NF-κB inhibition can lead to tumour cell rejection. Indeed, when we blocked the NF-κB pathway specifically in tumour cells, there was decreased tumour growth in wild-type but not immune-deficient mice. Our results suggest that reagents that can block NF-κB activity specifically in the tumour and not the host immune cells would be efficacious for tumour therapy.
Collapse
Affiliation(s)
- Carlos Peinado
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
4979
|
Rebane A, Akdis CA. MicroRNAs: Essential players in the regulation of inflammation. J Allergy Clin Immunol 2013; 132:15-26. [PMID: 23726263 DOI: 10.1016/j.jaci.2013.04.011] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/02/2013] [Accepted: 04/04/2013] [Indexed: 12/16/2022]
Abstract
Regulation of inflammatory responses is ensured by coordinated control of gene expression in participating immune system and tissue cells. One group of gene expression regulators, the functions of which have recently been started to be uncovered in relation to any type of inflammatory condition, is a class of short single-stranded RNA molecules termed microRNAs (miRNAs). miRNAs function together with partner proteins and mainly cause gene silencing through degradation of target mRNAs or inhibition of translation. A particular miRNA can have hundreds of target genes, and thereby miRNAs together influence the expression of a large proportion of proteins. The role of miRNAs in the immune system has been extensively studied since the discovery of miRNAs in mammalian cells approximately 10 years ago. The purpose of the current review is to provide an overview on the functions of miRNAs in the regulation of inflammation, with a specific focus on the mechanisms of allergic inflammation. Because recent studies clearly demonstrate the presence of extracellular miRNAs in body fluids and propose the involvement of miRNAs in cell-cell communication, we will also highlight findings about functions of extracellular miRNAs. The possible use of miRNAs as biomarkers, as well as miRNA-related novel treatment modalities, might open a new future for the diagnosis and treatment of many inflammatory conditions, including allergic diseases.
Collapse
Affiliation(s)
- Ana Rebane
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Davos, Switzerland.
| | | |
Collapse
|
4980
|
Gupta SK, Kosti I, Plaut G, Pivko A, Tkacz ID, Cohen-Chalamish S, Biswas DK, Wachtel C, Waldman Ben-Asher H, Carmi S, Glaser F, Mandel-Gutfreund Y, Michaeli S. The hnRNP F/H homologue of Trypanosoma brucei is differentially expressed in the two life cycle stages of the parasite and regulates splicing and mRNA stability. Nucleic Acids Res 2013; 41:6577-94. [PMID: 23666624 PMCID: PMC3711420 DOI: 10.1093/nar/gkt369] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Trypanosomes are protozoan parasites that cycle between a mammalian host (bloodstream form) and an insect host, the Tsetse fly (procyclic stage). In trypanosomes, all mRNAs are trans-spliced as part of their maturation. Genome-wide analysis of trans-splicing indicates the existence of alternative trans-splicing, but little is known regarding RNA-binding proteins that participate in such regulation. In this study, we performed functional analysis of the Trypanosoma brucei heterogeneous nuclear ribonucleoproteins (hnRNP) F/H homologue, a protein known to regulate alternative splicing in metazoa. The hnRNP F/H is highly expressed in the bloodstream form of the parasite, but is also functional in the procyclic form. Transcriptome analyses of RNAi-silenced cells were used to deduce the RNA motif recognized by this protein. A purine rich motif, AAGAA, was enriched in both the regulatory regions flanking the 3′ splice site and poly (A) sites of the regulated genes. The motif was further validated using mini-genes carrying wild-type and mutated sequences in the 3′ and 5′ UTRs, demonstrating the role of hnRNP F/H in mRNA stability and splicing. Biochemical studies confirmed the binding of the protein to this proposed site. The differential expression of the protein and its inverse effects on mRNA level in the two lifecycle stages demonstrate the role of hnRNP F/H in developmental regulation.
Collapse
Affiliation(s)
- Sachin Kumar Gupta
- Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4981
|
Spear P, Wu MR, Sentman ML, Sentman CL. NKG2D ligands as therapeutic targets. CANCER IMMUNITY 2013; 13:8. [PMID: 23833565 PMCID: PMC3700746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed.
Collapse
Affiliation(s)
- Paul Spear
- Department of Microbiology and Immunology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, USA
| | | | | | | |
Collapse
|
4982
|
Zhu S, Pan W, Qian Y. MicroRNA in immunity and autoimmunity. J Mol Med (Berl) 2013; 91:1039-50. [PMID: 23636510 DOI: 10.1007/s00109-013-1043-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 01/17/2023]
Abstract
MicroRNAs (miRNAs) are about 20-22 nucleotide conserved non-coding RNA molecules that post-transcriptionally regulate gene expression by targeting the 3'-untranslated region of specific messenger RNAs (mRNAs) for degradation or translational repression. During the last two decades, miRNAs have emerged as critical regulators of a range of biological processes including immune cell lineage commitment, differentiation, maturation, and immune signaling pathways. The endoribonucleases such as Dicer, which is required for miRNA biogenesis, has also been shown to play an important role in inflammatory response and autoimmunity. Thus, dysregulated miRNA expression patterns have been documented in a broad range of human diseases including inflammatory and autoimmune diseases. In this review, we will discuss recent advances in miRNAs mediated regulation of inflammatory responses and autoimmune pathogenesis. Specifically, we will discuss how miRNAs regulate autoimmunity through affecting the development, differentiation, and function of various cell types such as innate immune cells, adaptive immune cells and local resident cells. The identification of distinct miRNA expression patterns, and a comprehensive understanding of the roles of those dysregulated miRNAs in inflammatory autoimmune pathogenesis offers inspirations of not only potential molecular diagnostic markers but also novel therapeutic strategies for treating inflammatory autoimmune diseases.
Collapse
Affiliation(s)
- Shu Zhu
- The Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences/Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | | | | |
Collapse
|
4983
|
Abstract
RNA interference (RNAi) is an ancient process by which non-coding RNAs regulate gene expression in a sequence-specific manner. The core components of RNAi are small regulatory RNAs, approximately 21-30 nucleotides in length, including small interfering RNAs (siRNAs) and microRNAs (miRNAs). The past two decades have seen considerable progress in our understanding of the molecular mechanisms underlying the biogenesis of siRNAs and miRNAs. Recent advances have also revealed the crucial regulatory roles played by small RNAs in such diverse processes as development, homeostasis, innate immunity, and oncogenesis. Accumulating evidence indicates that RNAi initially evolved as a host defense mechanism against viruses and transposons. The ability of the host small RNA biogenesis machinery to recognize viral double-stranded RNA replication intermediates and transposon transcripts is critical to this process, as is small RNA-guided targeting of RNAs via complementary base pairing. Collectively, these properties confer unparalleled specificity and precision to RNAi-mediated gene silencing as an effective antiviral mechanism.
Collapse
Affiliation(s)
- Rui Zhou
- Program for RNA Biology, Sanford-Burnham Medical Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
4984
|
Molecular mechanisms of natural killer cell activation in response to cellular stress. Cell Death Differ 2013; 21:5-14. [PMID: 23579243 DOI: 10.1038/cdd.2013.26] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 02/27/2013] [Indexed: 01/06/2023] Open
Abstract
Protection against cellular stress from various sources, such as nutritional, physical, pathogenic, or oncogenic, results in the induction of both intrinsic and extrinsic cellular protection mechanisms that collectively limit the damage these insults inflict on the host. The major extrinsic protection mechanism against cellular stress is the immune system. Indeed, it has been well described that cells that are stressed due to association with viral infection or early malignant transformation can be directly sensed by the immune system, particularly natural killer (NK) cells. Although the ability of NK cells to directly recognize and respond to stressed cells is well appreciated, the mechanisms and the breadth of cell-intrinsic responses that are intimately linked with their activation are only beginning to be uncovered. This review will provide a brief introduction to NK cells and the relevant receptors and ligands involved in direct responses to cellular stress. This will be followed by an in-depth discussion surrounding the various intrinsic responses to stress that can naturally engage NK cells, and how therapeutic agents may induce specific activation of NK cells and other innate immune cells by activating cellular responses to stress.
Collapse
|
4985
|
Abstract
miRNAs have been shown to play essential regulatory roles in the innate immune system. They function at multiple levels to shape the innate immune response and maintain homeostasis by direct suppression of the expression of their target proteins, preferentially crucial signaling components and transcription factors. Studies in humans and in disease models have revealed that dysregulation of several miRNAs such as miR-146a and miR-155 in rheumatic diseases leads to aberrant production of and/or signaling by inflammatory cytokines and, thus, critically contributes to disease pathogenesis. In addition, the recent description of the role of certain extracellular miRNAs as innate immune agonist to induce inflammatory response would have direct relevance to rheumatic diseases.
Collapse
|
4986
|
Elboim M, Grodzovski I, Djian E, Wolf DG, Mandelboim O. HSV-2 specifically down regulates HLA-C expression to render HSV-2-infected DCs susceptible to NK cell killing. PLoS Pathog 2013; 9:e1003226. [PMID: 23555244 PMCID: PMC3610627 DOI: 10.1371/journal.ppat.1003226] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 01/18/2013] [Indexed: 12/03/2022] Open
Abstract
Both NK cells and CTLs kill virus-infected and tumor cells. However, the ways by which these killer cells recognize the infected or the tumorigenic cells are different, in fact almost opposite. CTLs are activated through the interaction of the TCR with MHC class I proteins. In contrast, NK cells are inhibited by MHC class I molecules. The inhibitory NK receptors recognize mainly MHC class I proteins and in this regard practically all of the HLA-C proteins are recognized by inhibitory NK cell receptors, while only certain HLA-A and HLA-B proteins interact with these receptors. Sophisticated viruses developed mechanisms to avoid the attack of both NK cells and CTLs through, for example, down regulation of HLA-A and HLA-B molecules to avoid CTL recognition, leaving HLA-C proteins on the cell surface to inhibit NK cell response. Here we provide the first example of a virus that through specific down regulation of HLA-C, harness the NK cells for its own benefit. We initially demonstrated that none of the tested HSV-2 derived microRNAs affect NK cell activity. Then we show that surprisingly upon HSV-2 infection, HLA-C proteins are specifically down regulated, rendering the infected cells susceptible to NK cell attack. We identified a motif in the tail of HLA-C that is responsible for the HSV-2-meduiated HLA-C down regulation and we show that the HLA-C down regulation is mediated by the viral protein ICP47. Finally we show that HLA-C proteins are down regulated from the surface of HSV-2 infected dendritic cells (DCs) and that this leads to the killing of DC by NK cells. Thus, we propose that HSV-2 had developed this unique and surprising NK cell-mediated killing strategy of infected DC to prevent the activation of the adaptive immunity. Approximately 20% of all humans are latently and asymptomatically infected with HSV-2. This suggests that the virus developed mechanisms to avoid immune cell detection; many of which are still unknown. Infected cells are killed mainly by two lymphocyte populations; NK cells and CTLs that belong to the innate and the adaptive immunity, respectively. While the killing machinery of these two cell types is similar, almost identical, the ways by which they discriminate between infected and uninfected cells is different. CTLs are activated, primarily by DCs, to become effector cells. They then recognize virus-derived peptides in the groove of MHC class I molecules and eliminate the virally infected cells. In contrast, NK cells recognize infected cells through several NK cell activating receptors, while the recognition of MHC class I proteins by NK cells leads to inhibition of NK cell killing. Viruses, such as HIV, developed mechanisms to interfere with the function of both NK cells and CTLs via targeting of specific MHC class I proteins. Here we show that HSV-2 developed a MHC class I-dependent mechanism in which the virus, through specific targeting of HLA-C by the viral protein ICP47, harness the NK cells for its own benefit, probably to avoid the activation of adaptive immune response.
Collapse
Affiliation(s)
- Moran Elboim
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel-Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Inna Grodzovski
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel-Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Esther Djian
- Virology Unit, Hadassah Hospital, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Dana G. Wolf
- Virology Unit, Hadassah Hospital, The Hebrew University Hadassah Medical School, Jerusalem, Israel
| | - Ofer Mandelboim
- The Lautenberg Center for General and Tumor Immunology, The BioMedical Research Institute Israel-Canada of the Faculty of Medicine, The Hebrew University Hadassah Medical School, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
4987
|
Gupta SK, Kolet L, Doniger T, Biswas VK, Unger R, Tzfati Y, Michaeli S. The Trypanosoma brucei
telomerase RNA (TER) homologue binds core proteins of the C/D snoRNA family. FEBS Lett 2013; 587:1399-404. [DOI: 10.1016/j.febslet.2013.03.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Revised: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 12/16/2022]
|
4988
|
Wu W, Guo Z, Zhang X, Guo L, Liu L, Liao Y, Wang J, Wang L, Li Q. A microRNA encoded by HSV-1 inhibits a cellular transcriptional repressor of viral immediate early and early genes. SCIENCE CHINA-LIFE SCIENCES 2013; 56:373-83. [PMID: 23512275 DOI: 10.1007/s11427-013-4458-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 01/25/2013] [Indexed: 12/20/2022]
Abstract
Viral microRNAs are one component of the RNA interference phenomenon generated during viral infection. They were first identified in the Herpesviridae family, where they were found to regulate viral mRNA translation. In addition, prior work has suggested that Kaposi's sarcoma-associated herpesvirus (KSHV) is capable of regulating cellular gene transcription by miRNA. We demonstrate that a miRNA, hsv1-mir-H27, encoded within the genome of herpes simplex virus 1 (HSV-1), targets the mRNA of the cellular transcriptional repressor Kelch-like 24 (KLHL24) that inhibits transcriptional efficiency of viral immediate-early and early genes. The viral miRNA is able to block the expression of KLHL24 in cells infected by HSV-1. Our discovery reveals an effective viral strategy for evading host cell defenses and supporting the efficient replication and proliferation of HSV-1.
Collapse
Affiliation(s)
- Wenjuan Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming 650118, China
| | | | | | | | | | | | | | | | | |
Collapse
|
4989
|
A trans-spliced telomerase RNA dictates telomere synthesis in Trypanosoma brucei. Cell Res 2013; 23:537-51. [PMID: 23478302 DOI: 10.1038/cr.2013.35] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Telomerase is a ribonucleoprotein enzyme typically required for sustained cell proliferation. Although both telomerase activity and the telomerase catalytic protein component, TbTERT, have been identified in the eukaryotic pathogen Trypanosoma brucei, the RNA molecule that dictates telomere synthesis remains unknown. Here, we identify the RNA component of Trypanosoma brucei telomerase, TbTR, and provide phylogenetic and in vivo evidence for TbTR's native folding and activity. We show that TbTR is processed through trans-splicing, and is a capped transcript that interacts and copurifies with TbTERT in vivo. Deletion of TbTR caused progressive shortening of telomeres at a rate of 3-5 bp/population doubling (PD), which can be rescued by ectopic expression of a wild-type allele of TbTR in an apparent dose-dependent manner. Remarkably, introduction of mutations in the TbTR template domain resulted in corresponding mutant telomere sequences, demonstrating that telomere synthesis in T. brucei is dependent on TbTR. We also propose a secondary structure model for TbTR based on phylogenetic analysis and chemical probing experiments, thus defining TbTR domains that may have important functional implications in telomere synthesis. Identification and characterization of TbTR not only provide important insights into T. brucei telomere functions, which have been shown to play important roles in T. brucei pathogenesis, but also offer T. brucei as an attractive model system for studying telomerase biology in pathogenic protozoa and for comparative analysis of telomerase function with higher eukaryotes.
Collapse
|
4990
|
Trypanosome cdc2-related kinase 9 controls spliced leader RNA cap4 methylation and phosphorylation of RNA polymerase II subunit RPB1. Mol Cell Biol 2013; 33:1965-75. [PMID: 23478263 DOI: 10.1128/mcb.00156-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Conserved from yeast to mammals, phosphorylation of the heptad repeat sequence Tyr(1)-Ser(2)-Pro(3)-Thr(4)-Ser(5)-Pro(6)-Ser(7) in the carboxy-terminal domain (CTD) of the largest RNA polymerase II (RNA Pol II) subunit, RPB1, mediates the enzyme's promoter escape and binding of RNA-processing factors, such as the m(7)G capping enzymes. The first critical step, Ser(5) phosphorylation, is carried out by cyclin-dependent kinase 7 (CDK7), a subunit of the basal transcription factor TFIIH. Many early-diverged protists, such as the lethal human parasite Trypanosoma brucei, however, lack the heptad repeats and, apparently, a CDK7 ortholog. Accordingly, characterization of trypanosome TFIIH did not identify a kinase component. The T. brucei CTD, however, is phosphorylated and essential for transcription. Here we show that silencing the expression of T. brucei cdc2-related kinase 9 (CRK9) leads to a loss of RPB1 phosphorylation. Surprisingly, this event did not impair RNA Pol II transcription or cotranscriptional m(7)G capping. Instead, we observed that CRK9 silencing led to a block of spliced leader (SL) trans splicing, an essential step in trypanosome mRNA maturation, that was caused by hypomethylation of the SL RNA's unique cap4.
Collapse
|
4991
|
Bleck B, Grunig G, Chiu A, Liu M, Gordon T, Kazeros A, Reibman J. MicroRNA-375 regulation of thymic stromal lymphopoietin by diesel exhaust particles and ambient particulate matter in human bronchial epithelial cells. THE JOURNAL OF IMMUNOLOGY 2013; 190:3757-63. [PMID: 23455502 DOI: 10.4049/jimmunol.1201165] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Air pollution contributes to acute exacerbations of asthma and the development of asthma in children and adults. Airway epithelial cells interface innate and adaptive immune responses, and have been proposed to regulate much of the response to pollutants. Thymic stromal lymphopoietin (TSLP) is a pivotal cytokine linking innate and Th2 adaptive immune disorders, and is upregulated by environmental pollutants, including ambient particulate matter (PM) and diesel exhaust particles (DEP). We show that DEP and ambient fine PM upregulate TSLP mRNA and human microRNA (hsa-miR)-375 in primary human bronchial epithelial cells (pHBEC). Moreover, transfection of pHBEC with anti-hsa-miR-375 reduced TSLP mRNA in DEP but not TNF-α-treated cells. In silico pathway evaluation suggested the aryl hydrocarbon receptor (AhR) as one possible target of miR-375. DEP and ambient fine PM (3 μg/cm(2)) downregulated AhR mRNA. Transfection of mimic-hsa-miR-375 resulted in a small downregulation of AhR mRNA compared with resting AhR mRNA. AhR mRNA was increased in pHBEC treated with DEP after transfection with anti-hsa-miR-375. Our data show that two pollutants, DEP and ambient PM, upregulate TSLP in human bronchial epithelial cells by a mechanism that includes hsa-miR-375 with complex regulatory effects on AhR mRNA. The absence of this pathway in TNF-α-treated cells suggests multiple regulatory pathways for TSLP expression in these cells.
Collapse
Affiliation(s)
- Bertram Bleck
- Department of Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | | | | | |
Collapse
|
4992
|
Ranjha R, Paul J. Micro-RNAs in inflammatory diseases and as a link between inflammation and cancer. Inflamm Res 2013; 62:343-55. [PMID: 23417288 DOI: 10.1007/s00011-013-0600-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 01/14/2013] [Accepted: 01/21/2013] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE The objective of this review is to examine the role of miRNA in various inflammatory diseases and in inflammatory diseases progressing to cancer. INTRODUCTION MicroRNAs are small, conserved, non-coding RNA molecules which are present in most of the eukaryotes. miRNA have been reported to play a major role in the physiological control of gene expression and in the pathogenesis of various diseases. They regulate the gene expression mainly at the post-transcriptional level. miRNA expression profile is reported to be altered in various inflammatory diseases and subsequently affects the expression of genes, which is important in disease pathogenesis. METHODS A Pubmed database search was performed for studies related to miRNA studies in inflammatory disease, cancer and in inflammatory diseases progressing to cancer. CONCLUSION The evidence shows very important role of miRNA in inflammatory diseases. Few miRNAs involved in common inflammatory process and suggest miRNA as a link between inflammation and cancer. Future research should be directed to use miRNA therapeutically to target common inflammatory pathway and to develop miRNA as biomarker to detect development of cancer at early stages.
Collapse
Affiliation(s)
- R Ranjha
- School of Life Sciences, Jawharlal Nehru University, New Delhi, India
| | | |
Collapse
|
4993
|
Cullen BR. MicroRNAs as mediators of viral evasion of the immune system. Nat Immunol 2013; 14:205-10. [PMID: 23416678 DOI: 10.1038/ni.2537] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/29/2012] [Indexed: 02/08/2023]
Abstract
Cellular microRNAs serve key roles in the post-transcriptional regulation of almost every cellular gene-regulatory pathway, and it therefore is not surprising that viruses have found ways to subvert this process. Several viruses encode microRNAs that directly downregulate the expression of factors of the innate immune system, including proteins involved in promoting apoptosis and recruiting effector cells of the immune system. Viruses have also evolved the ability to downregulate or upregulate the expression of specific cellular miRNAs to enhance their replication. This Review provides an overview of the present knowledge of the complex interactions of viruses with the microRNA machinery of cells.
Collapse
Affiliation(s)
- Bryan R Cullen
- Department of Molecular Genetics & Microbiology and Center for Virology, Duke University Medical Center, Durham, North Carolina, USA.
| |
Collapse
|
4994
|
Wang Y, Huang R, Song C, Hu H, Zhang M. Some viral microRNAs were up-regulated in megakaryocytes incubated with immune thrombocytopenia plasma. Eur J Haematol 2013; 90:220-7. [PMID: 23282244 DOI: 10.1111/ejh.12063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2012] [Indexed: 12/24/2022]
Affiliation(s)
- Ya Wang
- Department of Hematology; Zhujiang Hospital; Southern Medical University; Guangzhou; China
| | - Rui Huang
- Department of Hematology; Zhujiang Hospital; Southern Medical University; Guangzhou; China
| | - Chaoyang Song
- Department of Hematology; Zhujiang Hospital; Southern Medical University; Guangzhou; China
| | - Haiyan Hu
- Department of Oncology; The Sixth People's Hospital; Shanghai JiaoTong University; Shanghai; China
| | | |
Collapse
|
4995
|
Kulshreshtha A, Ahmad T, Agrawal A, Ghosh B. Proinflammatory role of epithelial cell-derived exosomes in allergic airway inflammation. J Allergy Clin Immunol 2013; 131:1194-203, 1203.e1-14. [PMID: 23414598 DOI: 10.1016/j.jaci.2012.12.1565] [Citation(s) in RCA: 207] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 12/18/2012] [Accepted: 12/21/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND Exosomes are nanovesicles involved in intercellular communication. Their roles in various diseases are often contextual, depending on the cell type producing them. Although few studies hint toward the proinflammatory role of bronchoalveolar lavage fluid-derived exosomes in asthmatic progression, the cell types in lungs associated with exosome-mediated crosstalk and their resultant effects remain unexplored. OBJECTIVE It is well established that exosome-mediated cellular communication can influence disease phenotypes. This study explores exosome-mediated cellular crosstalk between structural and immune cells in asthma pathogenesis. METHODS Exosomes were isolated and detected from bronchoalveolar lavage fluid of control and asthmatic mice and were quantified by using a bead-based assay. Involvement of epithelial cells and macrophages were established by using immunohistochemical techniques in lung tissue sections. The role of IL-13 in exosome production was ascertained by using various in vitro and in vivo techniques. Exosome secretion was blocked in in vitro and in vivo settings by using a chemical inhibitor, and the effects on various asthmatic features were studied. RESULTS Using combinatorial in vitro and in vivo approaches, we found that exosome secretion and production of exosome-associated proteins are higher in lungs of asthmatic mice compared with that seen in sham mice. Asthma is marked by enhanced secretion of exosomes by epithelial cells, but not macrophages, under the influence of IL-13. These epithelial cell exosomes induce proliferation and chemotaxis of undifferentiated macrophages. On the other hand, GW4869, which inhibited exosome production, resulted in a reduced population of proliferating monocytes and alleviation of various asthmatic features. CONCLUSION Under the influence of IL-13, epithelial cell-derived exosomes can induce enhanced proliferation and chemotaxis of undifferentiated macrophages in the lungs during asthmatic inflammatory conditions.
Collapse
Affiliation(s)
- Ankur Kulshreshtha
- Molecular Immunogenetics Laboratory and the Centre of Excellence for Translational Research in Asthma and Lung Disease, CSIR-Institute of Genomics and Integrative Biology, Delhi, India
| | | | | | | |
Collapse
|
4996
|
Activating natural cytotoxicity receptors of natural killer cells in cancer and infection. Trends Immunol 2013; 34:182-91. [PMID: 23414611 DOI: 10.1016/j.it.2013.01.003] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 01/15/2013] [Accepted: 01/18/2013] [Indexed: 01/08/2023]
Abstract
Natural killer (NK) cells are central players in the vertebrate immune system that rapidly eliminate malignantly transformed or infected cells. The natural cytotoxicity receptors (NCRs) NKp30, NKp44, and NKp46 are important mediators of NK cell cytotoxicity, which trigger an immune response on recognition of cognate cellular and viral ligands. Tumour and viral immune escape strategies targeting these receptor-ligand systems impair NK cell cytotoxicity and promote disease. Therefore, a molecular understanding of the function of the NCRs in immunosurveillance is instrumental to discovering novel access points to combat infections and cancer.
Collapse
|
4997
|
Huang Y, Qi Y, Ma Y, He R, Ji Y, Sun Z, Ruan Q. The expression of interleukin-32 is activated by human cytomegalovirus infection and down regulated by hcmv-miR-UL112-1. Virol J 2013; 10:51. [PMID: 23402302 PMCID: PMC3598236 DOI: 10.1186/1743-422x-10-51] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 01/28/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Interleukin-32 (IL-32) is an important factor in innate and adaptive immune responses, which activates the p38MAPK, NF-kappa B and AP-1 signaling pathways. Recent reports have highlighted that IL-32 is regulated during viral infection in humans. METHODS Enzyme-linked immunosorbent assays (ELISA) were carried out to detect IL-32 levels in serum samples. Detailed kinetics of the transcription of IL-32 mRNA and expression of IL-32 protein during human cytomegalovirus (HCMV) infection were determined by semi-quantitative RT-PCR and western blot, respectively. The expression levels of hcmv-miR-UL112-1 were detected using TaqMan® miRNA assays during a time course of 96 hours. The effects of hcmv-miR-UL112-1 on IL-32 expression were demonstrated by luciferase assay and western blot, respectively. RESULTS Serum levels of IL-32 in HCMV-IgM positive patients (indicating an active HCMV infection) were significantly higher than those in HCMV-IgM negative controls. HCMV infection activated cellular IL-32 transcription mainly in the immediately early (IE) phase and elevated IL-32 protein levels between 6 and 72 hours post infection (hpi) in the human embryonic lung fibroblast cell line, MRC-5. The expression of hcmv-miR-UL112-1 was detected at 24 hpi and increased gradually as the HCMV-infection process was prolonged. In addition, it was demonstrated that hcmv-miR-UL112-1 targets a sequence in the IL-32 3'-UTR. The protein level of IL-32 in HEK293 cells could be functionally down-regulated by transfected hcmv-miR-UL112-1. CONCLUSIONS IL-32 expression was induced by active HCMV infection and could be functionally down-regulated by ectopically expressed hcmv-miR-UL112-1. Our data may indicate a new strategy of immune evasion by HCMV through post-transcriptional regulation.
Collapse
Affiliation(s)
- Yujing Huang
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, 110004, Shenyang, Liaoning, People’s Republic of China
| | - Ying Qi
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, 110004, Shenyang, Liaoning, People’s Republic of China
| | - Yanping Ma
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, 110004, Shenyang, Liaoning, People’s Republic of China
| | - Rong He
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, 110004, Shenyang, Liaoning, People’s Republic of China
| | - Yaohua Ji
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, 110004, Shenyang, Liaoning, People’s Republic of China
| | - Zhengrong Sun
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, 110004, Shenyang, Liaoning, People’s Republic of China
| | - Qiang Ruan
- Virus Laboratory, the Affiliated Shengjing Hospital, China Medical University, 110004, Shenyang, Liaoning, People’s Republic of China
| |
Collapse
|
4998
|
Wang YP, Qi Y, Huang YJ, Qi ML, Ma YP, He R, Ji YH, Sun ZR, Ruan Q. Identification of immediate early gene X-1 as a cellular target gene of hcmv-mir-UL148D. Int J Mol Med 2013; 31:959-66. [PMID: 23403649 DOI: 10.3892/ijmm.2013.1271] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 01/23/2013] [Indexed: 11/05/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a herpesvirus that causes congenital diseases and opportunistic infections in immunocompromised individuals. Its functional proteins and microRNAs (miRNAs) facilitate efficient viral propagation by altering host cell behavior. The identification of functional target genes of miRNAs is an important step in the study of HCMV pathogenesis. HCMV encodes at least 14 miRNAs, including hcmv-mir-UL148D, which resides in the HCMV UL/b' region. hcmv-mir-UL148D is the only miRNA encoded by the HCMV UL/b' region; however, its targets and functional effects have not yet been eludidated. In this study, hybrid-PCR screening was used to identify target genes and dual luciferase reporter assay was used to evaluate the binding effect of hcmv-miR-UL148D to the 3' untranslated region (3'UTR) of IEX-1. In addition, western blot analysis was used to detect the expression kinetics of IEX-1 protein and apoptosis assay was used to identify the effects of hcmv-miR-UL148D on cell apoptosis. The hybrid-PCR results showed that only one binding site in the 3'UTR of the cellular gene, human immediate early gene X-1 (IEX-1), was completely complementary to an 11 nucleotide (nt) sequence in the 5' terminus of hcmv-mir-UL148D, including the entire seed region. The binding site was demonstrated to be functional by dual luciferase reporter assay with a 47% repression of the relative luciferase activity. In an in vitro system of human embryonic kidney 293 (HEK293) cells, the ectopically expressed hcmv-mir-UL148D exhibited a downregulatory effect on IEX-1 expression, and decreased the cell apoptosis induced by transfected IEX-1. Our data demonstrate that hcmv-mir-UL148D targets the cellular gene, IEX-1, downregulating its expression and thus results in anti-apoptotic effects.
Collapse
Affiliation(s)
- Yue-Ping Wang
- Virus Laboratory, The Affiliated Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
4999
|
Liang H, Zen K, Zhang J, Zhang CY, Chen X. New roles for microRNAs in cross-species communication. RNA Biol 2013; 10:367-70. [PMID: 23364352 DOI: 10.4161/rna.23663] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Communication between cells ensures coordinated behavior. In prokaryotes, this signaling is typically referred to as quorum sensing, whereas in eukaryotic cells, communication occurs through hormones. In recent years, reports have shown that small noncoding RNAs, called microRNAs (miRNAs), can be transmitted from one species to another, inducing signal interference in distant species, even in a cross-kingdom manner. This new mode of cross-species communication might mediate symbiotic and pathogenic relationships between various organisms (e.g., microorganisms and their hosts). Here, we discuss several recent studies concerning miRNA-mediated cross-species gene regulation.
Collapse
Affiliation(s)
- Hongwei Liang
- Jiangsu Engineering Research Center for microRNA Biology and Biotechnology; State Key Laboratory of Pharmaceutical Biotechnology; School of Life Sciences; Nanjing University; Nanjing, P.R. China
| | | | | | | | | |
Collapse
|
5000
|
Abstract
Mammalian immune responses are intended to eradicate microbial pathogens and thus protect individuals from the harmful effects of such infections. However, unresolved inflammation can be devastating to the host and cause tissue damage and organ malfunction. Immune responses can even mistakenly target self-antigens and mediate autoimmune inflammation. Consequently, a variety of cellular and molecular mechanisms have evolved to control the inflammatory responses, and many of these safeguards or triggers are perturbed in the setting of autoimmunity. In this review, we discuss the emerging roles of cellular non-coding RNAs, and in particular microRNAs (miRNAs), in the regulation of autoimmune inflammation. How miRNAs function to impact the onset, magnitude, and resolution of inflammatory responses and recent observations regarding links between miRNAs and specific autoimmune disorders will be addressed. Finally, the diagnostic and therapeutic relevance of miRNAs involved in autoimmunity will be considered. It is clear that, taken together, mammalian miRNAs are integral to the pathogenesis of mammalian autoimmune diseases and may be effective targets of next-generation therapeutics aimed at eradicating tissue inflammation.
Collapse
|