501
|
Pastore A, Tozzi G, Gaeta LM, Bertini E, Serafini V, Di Cesare S, Bonetto V, Casoni F, Carrozzo R, Federici G, Piemonte F. Actin glutathionylation increases in fibroblasts of patients with Friedreich's ataxia: a potential role in the pathogenesis of the disease. J Biol Chem 2003; 278:42588-95. [PMID: 12915401 DOI: 10.1074/jbc.m301872200] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence suggests that iron-mediated oxidative stress might underlie the development of neurodegeneration in Friedreich's ataxia (FRDA), an autosomal recessive ataxia caused by decreased expression of frataxin, a protein implicated in iron metabolism. In this study, we demonstrate that, in fibroblasts of patients with FRDA, the cellular redox equilibrium is shifted toward more protein-bound glutathione. Furthermore, we found that actin is glutathionylated, probably as a result of the accumulation of reactive oxygen species, generated by iron overload in the disease. Indeed, high-pressure liquid chromatography analysis of control fibroblasts in vivo treated with FeSO4 showed a significant increase in the protein-bound/free GSH ratio, and Western blot analysis indicated a relevant rise in glutathionylation. Actin glutathionylation contributes to impaired microfilament organization in FRDA fibroblasts. Rhodamine phalloidin staining revealed a disarray of actin filaments and a reduced signal of F-actin fluorescence. The same hematoxylin/eosin-stained cells showed abnormalities in size and shape. When we treated FRDA fibroblasts with reduced glutathione, we obtained a complete rescue of cytoskeletal abnormalities and cell viability. Thus, we conclude that oxidative stress may induce actin glutathionylation and impairment of cytoskeletal functions in FRDA fibroblasts.
Collapse
Affiliation(s)
- Anna Pastore
- Laboratory of Biochemistry, Children's Hospital and Research Institute Bambino Gesù, Piazza S. Onofrio 4, 00165 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
502
|
Abstract
The main purpose of this study was to determine whether the aging process in the mouse is associated with a pro-oxidizing shift in the redox state of glutathione and whether restriction of caloric intake, which results in the extension of life span, retards such a shift. Amounts of reduced and oxidized forms of glutathione (GSH and GSSG, respectively) and protein-glutathione mixed disulfides (protein-SSG) were measured in homogenates and mitochondria of liver, kidney, heart, brain, eye, and testis of 4, 10, 22, and 26 month old ad libitum-fed (AL) mice and 22 month old mice fed a diet containing 40% fewer calories than the AL group from the age of 4 months. The concentrations of GSH, GSSG, and protein-SSG vary greatly (approximately 10-, 30-, and 9-fold, respectively) from one tissue to another. During aging, the ratios of GSH:GSSG in mitochondria and tissue homogenates decreased, primarily due to elevations in GSSG content, while the protein-SSG content increased significantly. Glutathione redox potential in mitochondria became less negative, i.e., more pro-oxidizing, as the animal aged. Caloric restriction (CR) lowered the GSSG and protein-SSG content. Results suggest that the aging process in the mouse is associated with a gradual pro-oxidizing shift in the glutathione redox state and that CR attenuates this shift.
Collapse
Affiliation(s)
- Igor Rebrin
- Department of Molecular Pharmacology and Toxicology, University of Southern California, Los Angeles, CA 90033, USA
| | | | | |
Collapse
|
503
|
Shenton D, Grant CM. Protein S-thiolation targets glycolysis and protein synthesis in response to oxidative stress in the yeast Saccharomyces cerevisiae. Biochem J 2003; 374:513-9. [PMID: 12755685 PMCID: PMC1223596 DOI: 10.1042/bj20030414] [Citation(s) in RCA: 241] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2003] [Revised: 05/08/2003] [Accepted: 05/19/2003] [Indexed: 11/17/2022]
Abstract
The irreversible oxidation of cysteine residues can be prevented by protein S-thiolation, a process by which protein SH groups form mixed disulphides with low-molecular-mass thiols such as glutathione. We report here the target proteins which are modified in yeast cells in response to H(2)O(2). In particular, a range of glycolytic and related enzymes (Tdh3, Eno2, Adh1, Tpi1, Ald6 and Fba1), as well as translation factors (Tef2, Tef5, Nip1 and Rps5) are identified. The oxidative stress conditions used to induce S-thiolation are shown to inhibit GAPDH (glyceraldehyde-3-phosphate dehydrogenase), enolase and alcohol dehydrogenase activities, whereas they have no effect on aldolase, triose phosphate isomerase or aldehyde dehydrogenase activities. The inhibition of GAPDH, enolase and alcohol dehydrogenase is readily reversible once the oxidant is removed. In addition, we show that peroxide stress has little or no effect on glucose-6-phosphate dehydrogenase or 6-phosphogluconate dehydrogenase, the enzymes that catalyse NADPH production via the pentose phosphate pathway. Thus the inhibition of glycolytic flux is proposed to result in glucose equivalents entering the pentose phosphate pathway for the generation of NADPH. Radiolabelling is used to confirm that peroxide stress results in a rapid and reversible inhibition of protein synthesis. Furthermore, we show that glycolytic enzyme activities and protein synthesis are irreversibly inhibited in a mutant that lacks glutathione, and hence cannot modify proteins by S-thiolation. In summary, protein S-thiolation appears to serve an adaptive function during exposure to an oxidative stress by reprogramming metabolism and protecting protein synthesis against irreversible oxidation.
Collapse
Affiliation(s)
- Daniel Shenton
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), P.O. Box 88, Manchester M60 1QD, UK
| | | |
Collapse
|
504
|
Meza JE, Scott GK, Benz CC, Baldwin MA. Essential cysteine-alkylation strategies to monitor structurally altered estrogen receptor as found in oxidant-stressed breast cancers. Anal Biochem 2003; 320:21-31. [PMID: 12895466 DOI: 10.1016/s0003-2697(03)00296-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Oxidant-induced structural modifications within the cysteine-rich DNA-binding domain (DBD) of the overexpressed estrogen receptor (ER) likely contribute to its loss of DNA-binding function and altered transcriptional activity during human breast cancer development. Using recombinant ER protein as a model, procedures to detect such endogenously produced structural changes in the two Cys(4)-type zinc fingers within the DBD of ER extracted from breast cancer cells are being developed. Unfortunately, ex vivo oxidation of these ER-DBD cysteine residues can occur during routine ER purification and preparation procedures. Also, cysteine residues readily undergo thiol-disulfide exchange reactions that can result in artificial oxidation and incorrect disulfide bond assignments. These problems can be circumvented by an initial irreversible alkylation of all free thiols followed by reduction of any disulfides and treatment with a second alkylating agent, prior to proteolysis and high-performance liquid chromatography mass spectrometry analysis of peptides in the doubly alkylated ER digest, to differentiate between the originally free and the disulfide-bonded cysteine residues. Although the use of chemically identical but isotopically different alkylating agents was more effective than the use of chemically different alkylating agents, subsequent problems were encountered with incomplete alkylation of particular Cys residues in the native ER protein. To overcome this limitation, the initial alkylation was accompanied by denaturation and the second alkylation was carried out during the proteolytic digestion. These improved analytical strategies should facilitate the monitoring of structurally altered endogenous ER produced within oxidant-stressed human breast cancer cells.
Collapse
Affiliation(s)
- Jose E Meza
- Buck Institute for Age Research (Program of Cancer and Developmental Therapeutics), Novato, CA 94945, USA
| | | | | | | |
Collapse
|
505
|
Mikkelsen RB, Wardman P. Biological chemistry of reactive oxygen and nitrogen and radiation-induced signal transduction mechanisms. Oncogene 2003; 22:5734-54. [PMID: 12947383 DOI: 10.1038/sj.onc.1206663] [Citation(s) in RCA: 409] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the past few years, nuclear DNA damage-sensing mechanisms activated by ionizing radiation have been identified, including ATM/ATR and the DNA-dependent protein kinase. Less is known about sensing mechanisms for cytoplasmic ionization events and how these events influence nuclear processes. Several studies have demonstrated the importance of cytoplasmic signaling pathways in cytoprotection and mutagenesis. For cytoplasmic signaling, radiation-stimulated reactive oxygen species (ROS) and reactive nitrogen species (RNS) are essential activators of these pathways. This review summarizes recent studies on the chemistry of radiation-induced ROS/RNS generation and emphasizes interactions between ROS and RNS and the relative roles of cellular ROS/RNS generators as amplifiers of the initial ionization events. Cellular mechanisms for regulating ROS/RNS levels are discussed. The mechanisms by which cells sense ROS/RNS are examined in terms of how ROS/RNS modify protein structure and function, for example, interactions with metal-thiol clusters, protein tyrosine nitration, protein cysteine oxidation, S-thiolation and S-nitrosylation. We propose that radiation-induced ROS are the initiators and that nitric oxide (NO*) or derivatives are the effectors activating these signal transduction pathways. In responding to cellular ionization events, the cell converts an oxidative signal to a nitrosative one because ROS are too reactive and unspecific in their reactions for regulatory purposes and the cell is equipped to precisely modulate NO* levels.
Collapse
Affiliation(s)
- Ross B Mikkelsen
- Department of Radiation Oncology, Virginia Commonwealth University, 401 College Street, Richmond, VA 23298, USA.
| | | |
Collapse
|
506
|
Abstract
Nitric oxide (NO) is known for its diverse activities throughout biology. Among signaling qualities, NO affects cellular decisions of life and death either by turning on apoptotic pathways or by shutting them off. Although copious reports support both notions, the dichotomy of NO actions remains unsolved. Proapoptotic pathways of NO are compatible with established signaling circuits appreciated for mitochondria-dependent roads of death, with some emphasis on the involvement of the tumor suppressor p53 as a target during cell death execution. Antiapoptotic actions of NO are numerous, ranging from an immediate interference with proapoptotic signaling cascades to long-lasting effects based on expression of cell protective proteins with some interest on the ability of NO-redox species to block caspases by S-nitrosylation/S-nitrosation. Summarizing emerging concepts to understand p53 accumulation on the one hand while proposing inhibition of procaspase processing on the other may help to define the pro- versus antiapoptotic roles of NO.
Collapse
Affiliation(s)
- Bernhard Brüne
- University of Kaiserslautern, Faculty of Biology, Department of Cell Biology, 67663 Kaiserslautern, Germany.
| |
Collapse
|
507
|
Eaton P, Jones ME, McGregor E, Dunn MJ, Leeds N, Byers HL, Leung KY, Ward MA, Pratt JR, Shattock MJ. Reversible cysteine-targeted oxidation of proteins during renal oxidative stress. J Am Soc Nephrol 2003; 14:S290-6. [PMID: 12874448 DOI: 10.1097/01.asn.0000078024.50060.c6] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Biotin-cysteine was used to study protein S-thiolation in isolated rat kidneys subjected to ischemia and reperfusion. After 40 min of ischemia, total protein S-thiolation increased significantly (P < 0.05), by 311%, and remained significantly elevated (P < 0.05), 221% above control, after 5 min of postischemic reperfusion. Treatment of protein samples with 2-mercaptoethanol abolished the S-thiolation signals detected, consistent with the dependence of the signal on the presence of a disulfide bond. With the use of gel filtration chromatography followed by affinity purification with streptavidin-agarose, S-thiolated proteins were purified from CHAPS-soluble kidney homogenate. The proteins were then separated by SDS-PAGE and stained with Coomassie blue. With a combination of matrix-assisted laser desorption ionization time of flight mass spectrometry and LC/MS/MS analysis of protein bands digested with trypsin, a number of S-thiolation substrates were identified. These included the LDL receptor-related protein 2, ATP synthase alpha chain, heat shock protein 90 beta, hydroxyacid oxidase 3, serum albumin precursor, triose phosphate isomerase, and lamin. These represent proteins that may be functionally regulated by S-thiolation and thus could undergo a change in activity or function after renal ischemia and reperfusion.
Collapse
Affiliation(s)
- Philip Eaton
- The Centre for Cardiovascular Biology and Medicine, The Rayne Institute, St Thomas' Hospital, King's College London, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
508
|
Dafre AL, Arteni NS, Siqueira IR, Netto CA. Perturbations in the thiol homeostasis following neonatal cerebral hypoxia-ischemia in rats. Neurosci Lett 2003; 345:65-8. [PMID: 12809990 DOI: 10.1016/s0304-3940(03)00510-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Changes in the thiol/disulphide status in the neonatal rat brain were evaluated after an episode of neonatal hypoxia-ischemia (HI) in 7-day-old rats. The glutathione level decreased in the post-HI period. The lowest values (43-68%) were obtained 24 h post-HI. A statistically significant difference first appeared in hippocampus, immediately after the HI event, and only 12 h later in striatum and cortex. On the 7th day post-HI the glutathione content was completely recovered in the hippocampus and the striatum, and partially in the cortex. The glutathione loss could not be explained through its conversion to glutathione disulphide or to protein mixed disulphide (S-thiolation), whose values remained constant. Furthermore, we found a consistent decrease (20-30%) in protein thiols, which were not recovered after 7 days post-HI. Perturbations in protein thiols, along with the glutathione loss, may represent a valuable marker of immature rat brain damage.
Collapse
Affiliation(s)
- Alcir Luiz Dafre
- Departamento de Ciências Fisiológicas, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, SC, Brazil.
| | | | | | | |
Collapse
|
509
|
Pastore A, Federici G, Bertini E, Piemonte F. Analysis of glutathione: implication in redox and detoxification. Clin Chim Acta 2003; 333:19-39. [PMID: 12809732 DOI: 10.1016/s0009-8981(03)00200-6] [Citation(s) in RCA: 762] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Glutathione is a ubiquitous thiol-containing tripeptide, which plays a central role in cell biology. It is implicated in the cellular defence against xenobiotics and naturally occurring deleterious compounds, such as free radicals and hydroperoxides. Glutathione status is a highly sensitive indicator of cell functionality and viability. Its levels in human tissues normally range from 0.1 to 10 mM, being most concentrated in liver (up to 10 mM) and in the spleen, kidney, lens, erythrocytes and leukocytes. In humans, GSH depletion is linked to a number of disease states including cancer, neurodegenerative and cardiovascular diseases. The present review proposes an analysis of the current knowledge about the methodologies for measuring glutathione in human biological samples and their feasibility as routine methods in clinical chemistry. Furthermore, it elucidates the fundamental role of glutathione in pathophysiological conditions and its implication in redox and detoxification process. TESTS AVAILABLE Several methods have been optimised in order to identify and quantify glutathione forms in human biological samples. They include spectrophotometric, fluorometric and bioluminometric assays, often applied to HPLC analysis. Recently, a liquid chromatography-mass spectrometry technique for glutathione determination has been developed that, however, suffers from the lack of total automation and the high cost of the equipment. CONCLUSION Glutathione is a critical factor in protecting organisms against toxicity and disease. This review may turn useful for analysing the glutathione homeostasis, whose impairment represents an indicator of tissue oxidative status in human subjects.
Collapse
Affiliation(s)
- Anna Pastore
- Laboratory of Biochemistry, Children's Hospital and Research Institute Bambino Gesù, Piazza S. Onofrio, 4-00165 Rome, Italy.
| | | | | | | |
Collapse
|
510
|
Chen HJC, Wu SB, Chang CM. Biological and dietary antioxidants protect against DNA nitration induced by reaction of hypochlorous acid with nitrite. Arch Biochem Biophys 2003; 415:109-16. [PMID: 12801519 DOI: 10.1016/s0003-9861(03)00220-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nitryl chloride, formed by reaction of hypochlorous acid with nitrite, might contribute to nitrative damage of biomolecules in addition to peroxynitrite. Damage of DNA by these reactive nitrogen oxide species is implicated in carcinogenesis associated with chronic infections and inflammation. Nitrated DNA adducts, such as 8-nitroguanine and 8-nitroxanthine, are not stable in DNA since they undergo spontaneous depurination, leading to apurinic site formation. In this report, we investigate the protective effect of biological and dietary antioxidants in inhibiting DNA nitration induced by nitryl chloride. The effect of inhibition was evaluated by decrease of 8-nitroxanthine and 8-nitroguanine formation. Among the 21 compounds examined, dihydrolipoic acid is the most effective in preventing DNA nitration, followed by N-acetyl-L-cysteine and folic acid. For sulfur-containing compounds, the more highly reduced compounds are stronger inhibitors of DNA nitration. The major product of N-acetyl-L-cysteine reaction with nitryl chloride is characterized as the (R)-2-acetylamino-3-sulfopropionic acid, a physiologically irreversible product, suggesting that nitryl chloride is a strong oxidizing agent.
Collapse
Affiliation(s)
- Hauh-Jyun Candy Chen
- Department of Chemistry and Biochemistry, National Chung Cheng University, 160 San-Hsing, Ming-Hsiung, Chia-Yi 62142, Taiwan.
| | | | | |
Collapse
|
511
|
Affiliation(s)
- Don J Durzan
- Department of Environmental Horticulture, University of California, Davis, CA 95616-8587, USA.
| | | |
Collapse
|
512
|
Díaz M, Achkor H, Titarenko E, Martínez MC. The gene encoding glutathione-dependent formaldehyde dehydrogenase/GSNO reductase is responsive to wounding, jasmonic acid and salicylic acid. FEBS Lett 2003; 543:136-9. [PMID: 12753920 DOI: 10.1016/s0014-5793(03)00426-5] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It has recently been discovered that glutathione-dependent formaldehyde dehydrogenase (FALDH) exhibits a strong S-nitrosoglutathione reductase activity. Plants use NO and S-nitrosothiols as signaling molecules to activate defense mechanisms. Therefore, it is interesting to investigate the regulation of FALDH by mechanical wounding and plant hormones involved in signal transduction. Our results show that the gene encoding FALDH in Arabidopsis (ADH2) is down-regulated by wounding and activated by salicylic acid (SA). In tobacco, FALDH levels and enzymatic activity decreased after jasmonate treatment, and increased in response to SA. This is the first time that regulation of FALDH in response to signals associated with plant defense has been demonstrated.
Collapse
Affiliation(s)
- Maykelis Díaz
- Departamento de Bioqui;mica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Barcelona, 08193, Barcelona, Bellaterra, Spain
| | | | | | | |
Collapse
|
513
|
Wang J, Tekle E, Oubrahim H, Mieyal JJ, Stadtman ER, Chock PB. Stable and controllable RNA interference: Investigating the physiological function of glutathionylated actin. Proc Natl Acad Sci U S A 2003; 100:5103-6. [PMID: 12697895 PMCID: PMC154305 DOI: 10.1073/pnas.0931345100] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
RNA interference is an effective method to silence specific gene expression. Its application to mammalian cells, however, has been hampered by various shortcomings. Recently, it was reported that introduction of 22-bp double-stranded RNAs (dsRNAs) would specifically suppress expression of endogenous and heterogeneous genes in various mammalian cell lines. However, using this method, we failed to knock out proteins of interest effectively. Here we report the development of a stable and controllable method for generating dsRNA intracellularly. Tetracycline-responsive transactivator-containing cells were transfected with a vector capable of tetracycline-induced bidirectionally overexpressing sense and antisense RNA to form dsRNA in vivo. With this method, glutaredoxin, monitored by Western blot, was knocked out by overexpressing 290-base sense and antisense RNA in NIH 3T3 cells controlled by tetracycline or doxycycline. By using these glutaredoxin knocked-out cells, we have demonstrated that actin deglutathionylation plays a key role in growth factor-mediated actin polymerization, translocalization, and reorganization near the cell periphery.
Collapse
Affiliation(s)
- Jun Wang
- Laboratory of Biochemistry, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-8012, USA
| | | | | | | | | | | |
Collapse
|
514
|
Starke DW, Chock PB, Mieyal JJ. Glutathione-thiyl radical scavenging and transferase properties of human glutaredoxin (thioltransferase). Potential role in redox signal transduction. J Biol Chem 2003; 278:14607-13. [PMID: 12556467 DOI: 10.1074/jbc.m210434200] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glutaredoxin (GRx, thioltransferase) is implicated in cellular redox regulation, and it is known for specific and efficient catalysis of reduction of protein-S-S-glutathione-mixed disulfides (protein-SSG) because of its remarkably low thiol pK(a) ( approximately 3.5) and its ability to stabilize a catalytic S-glutathionyl intermediate (GRx-SSG). These unique properties suggested that GRx might also react with glutathione-thiyl radicals (GS(.)) and stabilize a disulfide anion radical intermediate (GRx-SSG), thereby facilitating the conversion of GS(.) to GSSG or transfer of GS(.) to form protein-SSG. We found that GRx catalyzes GSSG formation in the presence of GS-thiyl radical generating systems (Fe(2+)/ADP/H(2)O(2) + GSH or horseradish peroxidase/H(2)O(2) + GSH). Catalysis is dependent on O(2) and results in concomitant superoxide formation, and it is distinguished from glutathione peroxidase-like activity. With the horseradish peroxidase system and [(35)S]GSH, GRx enhanced the rate of GS-radiolabel incorporation into GAPDH. GRx also enhanced the rate of S-glutathionylation of glyceraldehyde-3-phosphate dehydrogenase with GSSG or S-nitrosoglutathione, but these glutathionyl donors were much less efficient. Both actin and protein-tyrosine phosphatase-1B were superior substrates for GRx-facilitated S-glutathionylation with GS-radical. These studies characterize GRx as a versatile catalyst, facilitating GS-radical scavenging and S-glutathionylation of redox signal mediators, consistent with a critical role in cellular regulation.
Collapse
Affiliation(s)
- David W Starke
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA
| | | | | |
Collapse
|
515
|
Nulton-Persson AC, Starke DW, Mieyal JJ, Szweda LI. Reversible inactivation of alpha-ketoglutarate dehydrogenase in response to alterations in the mitochondrial glutathione status. Biochemistry 2003; 42:4235-42. [PMID: 12680778 DOI: 10.1021/bi027370f] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In a previous study, we found that treatment of rat heart mitochondria with H(2)O(2) resulted in a decline and subsequent recovery in the rate of state 3 NADH-linked respiration. These effects were shown to be mediated by reversible alterations in NAD(P)H utilization and in the activities of specific Krebs cycle enzymes alpha-ketoglutarate dehydrogenase (KGDH) and succinate dehydrogenase. The purpose of the current study was to examine potential mechanism(s) by which H(2)O(2) reversibly alters KGDH activity. We report here that inactivation is not simply due to direct interaction of H(2)O(2) with KGDH. In addition, incubation of mitochondria with deferroxamine, an iron chelator, or 1,3-dimethyl-2-thiourea, an oxygen radical scavenger, prior to addition of H(2)O(2) did not alter the rate or extent of inactivation. Thus, inactivation does not appear to involve a more potent oxygen radical formed upon metal-catalyzed oxidation. Inactive KGDH from H(2)O(2)-treated mitochondria was reactivated with dithiothreitol, implicating oxidation of a protein sulfhydryl(s). However, the thioredoxin system had no effect, indicating that enzyme inactivation is not due to the formation of intra- or intermolecular disulfide(s) or a sulfenic acid. Upon incubation of mitochondria with H(2)O(2), reduced GSH levels fell rapidly prior to enzyme inactivation but recovered at the same time as enzyme activity. Importantly, treatment of inactive KGDH with glutaredoxin facilitated the GSH-dependent recovery of KGDH activity. Glutaredoxin is characterized as a specific and efficient catalyst of protein deglutathionylation. Thus, the results of the current study indicate that KGDH activity appears to be modulated through enzymatic glutathionylation and deglutathionylation. These studies demonstrate a novel mechanism by which KGDH activity and mitochondrial function can be modulated by redox status.
Collapse
Affiliation(s)
- Amy C Nulton-Persson
- Department of Physiology and Biophysics and Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | |
Collapse
|
516
|
Sahoo R, Sengupta R, Ghosh S. Nitrosative stress on yeast: inhibition of glyoxalase-I and glyceraldehyde-3-phosphate dehydrogenase in the presence of GSNO. Biochem Biophys Res Commun 2003; 302:665-70. [PMID: 12646220 DOI: 10.1016/s0006-291x(03)00251-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Under nitrosative stressed condition intracellular GSNO accumulation is common to all cell types. Conserved NADH-dependent GSNO reductase was reported previously as an important cellular protective measure against this. In spite of the constitutive nature of the enzyme, we observed in vivo inactivation of two important enzymes-glyoxalase-I and glyceraldehyde-3-phosphate dehydrogenase under 5 mM GSNO stress in two budding yeasts, though with difference in their sensitivity. Former was more susceptible to inactivation in in vitro condition, too. In this study, we explored the competitive nature of yeast glyoxalase-I inhibition by GSNO. GSNO actually competes with GSH substrate-binding site of the enzyme.
Collapse
Affiliation(s)
- Rupam Sahoo
- Department of Biochemistry, University College of Science, Calcutta University, 35, Ballygunge Circular Road, Kolkata 700 019, India
| | | | | |
Collapse
|
517
|
Rizzardini M, Lupi M, Bernasconi S, Mangolini A, Cantoni L. Mitochondrial dysfunction and death in motor neurons exposed to the glutathione-depleting agent ethacrynic acid. J Neurol Sci 2003; 207:51-8. [PMID: 12614931 DOI: 10.1016/s0022-510x(02)00357-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This study investigated the mechanisms of toxicity of glutathione (GSH) depletion in one cell type, the motor neuron. Ethacrynic acid (EA) (100 microM) was added to immortalized mouse motor neurons (NSC-34) to deplete both cytosolic and mitochondrial glutathione rapidly. This caused a drop in GSH to 25% of the initial level in 1 h and complete loss in 4 h. This effect was accompanied by enhanced generation of reactive oxygen species (ROS) with a peak after 2 h of exposure, and by signs of mitochondrial dysfunction such as a decrease in 3-(4,5-dimethyl-2-thiazoyl)-2,5-diphenyltetrazolium bromide (MTT) (30% less after 4 h). The increase in ROS and the MTT reduction were both EA concentration-dependent. Expression of heme oxygenase-1 (HO-1), a marker of oxidative stress, also increased. The mitochondrial damage was monitored by measuring the mitochondrial membrane potential (MMP) from the uptake of rhodamine 123 into mitochondria. MMP dropped (20%) after only 1 h exposure to EA, and slowly continued to decline until 3 h, with a steep drop at 5 h (50% decrease), i.e. after the complete GSH loss. Quantification of DNA fragmentation by the TUNEL technique showed that the proportion of cells with fragmented nuclei rose from 10% after 5 h EA exposure to about 65% at 18 h. These results indicate that EA-induced GSH depletion rapidly impairs the mitochondrial function of motor neurons, and this precedes cell death. This experimental model of oxidative toxicity could be useful to study mechanisms of diseases like spinal cord injury (SCI) and amyotrophic lateral sclerosis (ALS), where motor neurons are the vulnerable population and oxidative stress has a pathogenic role.
Collapse
Affiliation(s)
- M Rizzardini
- Istituto di Ricerche Farmacologiche Mario Negri, Via Eritrea 62, 20157 Milan, Italy
| | | | | | | | | |
Collapse
|
518
|
Kleinman WA, Komninou D, Leutzinger Y, Colosimo S, Cox J, Lang CA, Richie JP. Protein glutathiolation in human blood. Biochem Pharmacol 2003; 65:741-6. [PMID: 12628487 DOI: 10.1016/s0006-2952(02)01560-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glutathione (GSH) exists in both free and protein-bound (glutathiolated) forms (GSSP). Protein glutathiolation may represent an important post-translational regulatory mechanism for proteins. However, there are little data regarding the regulation of glutathiolation in blood. Our objectives were to examine GSSP levels of human blood by determining the distribution and variability of blood GSSP, as well as its relationship to free GSH and hemoglobin in healthy adults. To this end, we used a newly modified method allowing for rapid analysis of both GSH and GSSP in blood. GSSP was found in red cells with levels ranging from 4 to 27% of total (free+bound) GSH (mean+/-SD: 12.1+/-4.5%) with a concentration of 0.13+/-0.05 microEq GSH/mL (mean+/-SD). No correlations were observed between GSSP and either GSH (r=-0.085) or hemoglobin (r=0.086). Together these results suggest that the extent of protein glutathiolation in blood is substantial ( approximately 0.1 mmol/L). While the interindividual variation in GSSP is large (34%), its levels are apparently not regulated by GSH content.
Collapse
Affiliation(s)
- Wayne A Kleinman
- Division of Epidemiology and Cancer Suceptibility, American Health Foundation, 1 Dana Road, Valhalla, NY 10595, USA
| | | | | | | | | | | | | |
Collapse
|
519
|
Ramana KV, Chandra D, Srivastava S, Bhatnagar A, Srivastava SK. Nitric oxide regulates the polyol pathway of glucose metabolism in vascular smooth muscle cells. FASEB J 2003; 17:417-25. [PMID: 12631581 DOI: 10.1096/fj.02-0722com] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Increased reduction of glucose via the polyol pathway enzyme aldose reductase (AR) has been linked to the development of secondary diabetic complications. Because AR is a redox-sensitive protein, which in vitro is readily modified by NO donors, we tested the hypothesis that NO may be a physiological regulator of AR. We found that administration of the NO synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME) increased sorbitol accumulation in the aorta of nondiabetic and diabetic rats, whereas treatment with L-arginine (a precursor of NO) or nitroglycerine patches prevented sorbitol accumulation. When incubated ex vivo with high glucose, sorbitol accumulation was increased by L-NAME and prevented by L-arginine in strips of aorta from rats or wild-type, but not eNOS-deficient, mice. Exposure to NO donors also inhibited AR and prevented sorbitol accumulation in rat aortic vascular smooth muscle cells (VSMC) in culture. The NO donors also increased the incorporation of radioactivity in the AR protein immunoprecipitated from VSMC in which the glutathione pool was prelabeled with [35S]-cysteine. Based on these observations, we suggest that NO regulates the vascular synthesis of polyols by S-thiolating AR; therefore, increasing NO synthesis or bioavailability may be useful in preventing diabetes-induced changes in the polyol pathway.
Collapse
Affiliation(s)
- Kota V Ramana
- Department of Human Biological Chemistry and Genetics, University of Texas Medical Branch, Galveston, TX 77555-0647, USA
| | | | | | | | | |
Collapse
|
520
|
Abstract
A number of cellular systems cooperate in redox regulation, providing metabolic responses according to changes in the oxidation (or reduction) of the redox active components of a cell. Key systems of central metabolism, such as the 2-oxo acid dehydrogenase complexes, are important participants in redox regulation, because their function is controlled by the NADH/NAD+ ratio and the complex-bound dihydrolipoate/lipoate ratio. Redox state of the complex-bound lipoate is an indicator of the availability of the reaction substrates (2-oxo acid, CoA and NAD+) and thiol-disulfide status of the medium. Accumulation of the dihydrolipoate intermediate causes inactivation of the first enzyme of the complexes. With the mammalian pyruvate dehydrogenase, the phosphorylation system is involved in the lipoate-dependent regulation, whereas mammalian 2-oxoglutarate dehydrogenase exhibits a higher sensitivity to direct regulation by the complex-bound dihydrolipoate/lipoate and external SH/S-S, including mitochondrial thioredoxin. Thioredoxin efficiently protects the complexes from self-inactivation during catalysis at low NAD+. As a result, 2-oxoglutarate dehydrogenase complex may provide succinyl-CoA for phosphorylation of GDP and ADP under conditions of restricted NAD+ availability. This may be essential upon accumulation of NADH and exhaustion of the pyridine nucleotide pool. Concomitantly, thioredoxin stimulates the complex-bound dihydrolipoate-dependent production of reactive oxygen species. It is suggested that this side-effect of the 2-oxo acid oxidation at low NAD+in vivo would be overcome by cooperation of mitochondrial thioredoxin and the thioredoxin-dependent peroxidase, SP-22.
Collapse
Affiliation(s)
- Victoria I Bunik
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Russia.
| |
Collapse
|
521
|
Klotz LO, Kröncke KD, Sies H. Singlet oxygen-induced signaling effects in mammalian cells. Photochem Photobiol Sci 2003; 2:88-94. [PMID: 12664966 DOI: 10.1039/b210750c] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Singlet oxygen, an electronically excited form of molecular oxygen, may be generated photochemically or in dark reactions in vivo. Singlet oxygen is not only toxic to cells and impairs signaling events but is also capable of eliciting a cellular stress response. The signaling processes initiated in this response include the activation of mitogen-activated protein kinases. Two possible activation mechanisms of signaling pathways by singlet oxygen are the generation of positive regulators as well as the inactivation of negative regulators.
Collapse
Affiliation(s)
- Lars-Oliver Klotz
- Institut für Physiologische Chemie I, Heinrich-Heine-Universität Düsseldorf, D-40225 Düsseldorf, Germany.
| | | | | |
Collapse
|
522
|
Rouhier N, Vlamis-Gardikas A, Lillig CH, Berndt C, Schwenn JD, Holmgren A, Jacquot JP. Characterization of the redox properties of poplar glutaredoxin. Antioxid Redox Signal 2003; 5:15-22. [PMID: 12626113 DOI: 10.1089/152308603321223504] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The presence of glutaredoxins in plants is now well recognized, but their functions and natural substrates remain largely unknown. Recently, a poplar glutaredoxin has been biochemically characterized and several mutants have been engineered in order to explore its reactivity. This work focuses on some physiological functions of the enzyme. According to our findings, the poplar glutaredoxin can serve as an electron donor to the bacterial 3'-phosphoadenylylsulfate reductase as it supports both the catalysis by the enzyme in vitro and complements a methionine auxotroph strain of Escherichia coli. In addition, poplar glutaredoxin is able to reduce the Escherichia coli ribonucleotide reductase 1a (in vitro reduction of cytidine diphosphate). Although this glutaredoxin is described as an electron donor to a phloem-located peroxiredoxin, whose function is to detoxify hydroperoxides, we found that it does not directly reduce hydrogen peroxide or other alkyl hydroperoxides as described for yeast and rice glutaredoxins. However, the poplar glutaredoxin may be involved in the response to oxidative stress as its overexpression in Escherichia coli resulted in a higher resistance toward hydrogen peroxide, menadione, and tert-butyl hydroperoxide.
Collapse
Affiliation(s)
- Nicolas Rouhier
- Unité Mixte de Recherche 1136 IaM, INRA-UHP Nancy I. Université Henri Poincaré, 54506 Vandoeuvre Cedex, France
| | | | | | | | | | | | | |
Collapse
|
523
|
Affiliation(s)
- Peter Klatt
- Department of Immunology and Oncology, Centro Nacional de Biotecnología, Campus of Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
524
|
Söderdahl T, Enoksson M, Lundberg M, Holmgren A, Ottersen OP, Orrenius S, Bolcsfoldi G, Cotgreave IA. Visualization of the compartmentalization of glutathione and protein-glutathione mixed disulfides in cultured cells. FASEB J 2003; 17:124-6. [PMID: 12475911 DOI: 10.1096/fj.02-0259fje] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Fluorescence microscopy of A549 cells stained with a glutathione (L-gamma-glutamyl-L-cysteinylglycine, GSH)-specific polyclonal antibody displayed uniform staining of the peri-nuclear cytosol, with the nuclear region apparently lacking GSH staining. This discontinuous staining was confirmed in other cell types and also corroborated in A549 cells stained with the thiol-reactive dye mercury orange. The selectivity of antibody binding was confirmed by buthionine sulfoximine (BSO)-dependent inhibition of GSH synthesis. However, confocal visualization of antibody-stained A549 cells in the z-plane revealed the majority of the peri-nuclear staining intensity in the upper half of the cell to be associated with mitochondria, as confirmed by double staining for cytochrome oxidase. Integration of the confocal signals from the nuclear and cytosolic regions halfway down the z-plane showed that the GSH concentrations of these compartments are close to equilibrium. Confirmation of the relatively high levels of mitochondrial glutathione was provided in cells treated with BSO and visualized in z-section, revealing the mitochondrial GSH content of these cells to be well preserved in apposition to near-complete depletion of cytosolic/nuclear GSH. Localized gradients within the cytosolic compartment were also visible, particularly in the z-plane. The antibody also provided initial visualization of the compartmentalization of protein-GSH mixed disulfides formed in A549 cells exposed to diamide. Discontinuous staining was again evident, with heavy staining in membrane blebs and in the nuclear region. Using FACS analysis of anti-GSH antibody-stained Jurkat T lymphocytes, we also demonstrated population variations in the cellular compliment of GSH and protein-GSH mixed disulfides, formed in response to diamide. In addition, we showed cell-cycle variation in GSH content of the cells, with the highest levels of GSH associated with the G2/M mitotic phase of the cell cycle, using double staining with propidium iodide. Similar FACS analyses performed in isolated mitochondria presented a considerable variation in GSH content within mitochondria of uniform granularity from the same preparation.
Collapse
Affiliation(s)
- Therese Söderdahl
- Division of Biochemical Toxicology, Karolinska Institutet, Stockholm Sweden
| | | | | | | | | | | | | | | |
Collapse
|
525
|
Dominici S, Paolicchi A, Lorenzini E, Maellaro E, Comporti M, Pieri L, Minotti G, Pompella A. Gamma-glutamyltransferase-dependent prooxidant reactions: a factor in multiple processes. Biofactors 2003; 17:187-98. [PMID: 12897440 DOI: 10.1002/biof.5520170118] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Silvia Dominici
- Department of Experimental Pathology, University of Pisa Medical School, Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
526
|
Affiliation(s)
- Regina Brigelius-Flohé
- German Institute of Human Nutrition, Arthur-Scheunert-Allee 114-116, D-14558 Bergholz-Rehbrücke, Germany
| | | |
Collapse
|
527
|
Filomeni G, Rotilio G, Ciriolo MR. Glutathione disulfide induces apoptosis in U937 cells by a redox-mediated p38 MAP kinase pathway. FASEB J 2003; 17:64-6. [PMID: 12424221 DOI: 10.1096/fj.02-0105fje] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Changes in the intracellular reduced/oxidized glutathione ratio (GSH/GSSG) are crucial reduction-oxidation (redox) events that trigger downstream proliferation or death responses. We investigated the molecular mechanisms underlying redox-mediated cell signaling upon an oxidative insult by treating U937 cells with exogenous nonpermeable GSSG. This treatment results in a significant decrease of exofacial cell membrane thiol groups and intracellular decrement of GSH content, owing to its engagement in the formation of mixed disulfides. Changes in thioredoxin redox state were also observed, and they may be related to the activation of upstream ASK1 and selective induction of downstream p38 mitogen-activated protein kinase (MAPK) pathway, detectable by phosphorylation of MKK3/6 and p38 MAPK. Moreover, an increase in reactive oxygen species production was detected, and cells were committed to apoptosis along the mitochondrial pathway, evidenced by Bcl-2 down-regulation, cytochome c release from mitochondria, caspase-9 cleavage, and caspase-3 activation. GSH ethyl ester, a precursor of GSH, by counteracting intracellular mixed disulfide formation, canceled both p38 MAPK activation and GSSG-mediated apoptosis via inhibition of thioredoxin oxidation and stabilization of thioredoxin/ASK1 complex, whereas, blockage of p38 MAPK by specific inhibitor SB 203580 allowed apoptosis at a very reduced extent. Results suggest that kinase cascade may serve as a primary transducer of cytoplasmic oxidative signals to the nucleus before apoptosis-inducing signals are activated.
Collapse
|
528
|
Cotgreave IA. Analytical developments in the assay of intra- and extracellular GSH homeostasis: specific protein S-glutathionylation, cellular GSH and mixed disulphide compartmentalisation and interstitial GSH redox balance. Biofactors 2003; 17:269-77. [PMID: 12897448 DOI: 10.1002/biof.5520170126] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ian A Cotgreave
- Division of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institute, Box 210, S-17177 Stockholm, Sweden.
| |
Collapse
|
529
|
Dalle-Donne I, Giustarini D, Rossi R, Colombo R, Milzani A. Reversible S-glutathionylation of Cys 374 regulates actin filament formation by inducing structural changes in the actin molecule. Free Radic Biol Med 2003; 34:23-32. [PMID: 12498976 DOI: 10.1016/s0891-5849(02)01182-6] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
S-glutathionylation, the reversible formation of mixed disulphides of cysteinyl residues in target proteins with glutathione, occurs under conditions of oxidative stress; this could be a posttranslational mechanism through which protein function is regulated by the cellular redox status. A novel physiological relevance of actin polymerization regulated by glutathionylation of Cys(374) has been recently suggested. In the present study we showed that glutathionylated actin (GS-actin) has a decreased capacity to polymerize compared to native actin, filament elongation being the polymerization step actually inhibited. Actin polymerizability recovers completely after dethiolation, indicating that S-glutathionylation does not induce any protein denaturation and is therefore a reversible oxidative modification. The increased exposure of hydrophobic regions of protein surface observed upon S-glutathionylation indicates changes in actin conformation. Structural alterations are confirmed by the increased rate of ATP exchange as well as by the decreased susceptibility to proteolysis of the subtilisin cleavage site between Met(47) and Gly(48), in the DNase-I-binding loop of the actin subdomain 2. Structural changes in the surface loop 39-51 induced by S-glutathionylation could influence actin polymerization in view of the involvement of the N-terminal portion of this loop in intermonomer interactions, as predicted by the atomic models of F-actin.
Collapse
Affiliation(s)
- I Dalle-Donne
- Department of Biology, University of Milan, Milan, Italy.
| | | | | | | | | |
Collapse
|
530
|
Borges CR, Geddes T, Watson JT, Kuhn DM. Dopamine biosynthesis is regulated by S-glutathionylation. Potential mechanism of tyrosine hydroxylast inhibition during oxidative stress. J Biol Chem 2002; 277:48295-302. [PMID: 12376535 DOI: 10.1074/jbc.m209042200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyrosine hydroxylase (TH), the initial and rate-limiting enzyme in the biosynthesis of the neurotransmitter dopamine, is inhibited by the sulfhydryl oxidant diamide in a concentration-dependent manner. The inhibitory effect of diamide on TH catalytic activity is enhanced significantly by GSH. Treatment of TH with diamide in the presence of [(35)S]GSH results in the incorporation of (35)S into the enzyme. The effect of diamide-GSH on TH activity is prevented by dithiothreitol (DTT), as is the binding of [(35)S]GSH, indicating the formation of a disulfide linkage between GSH and TH protein cysteinyls. Loss of TH catalytic activity caused by diamide-GSH is partially recovered by DTT and glutaredoxin, whereas the disulfide linkage of GSH with TH is completely reversed by both. Treatment of intact PC12 cells with diamide results in a concentration-dependent inhibition of TH activity. Incubation of cells with [(35)S]cysteine, to label cellular GSH prior to diamide treatment, followed by immunoprecipitation of TH shows that the loss of TH catalytic activity is associated with a DTT-reversible incorporation of [(35)S]GSH into the enzyme. A combination of matrix-assisted laser desorption/ionization/mass spectrometry and liquid chromatography/tandem mass spectrometry was used to identify the sites of S-glutathionylation in TH. Six cysteines (177, 249, 263, 329, 330, and 380) of the seven cysteine residues in TH were confirmed as substrates for modification. Only Cys-311 was not S-glutathionylated. These results establish that TH activity is influenced in a reversible manner by S-glutathionylation and suggest that cellular GSH may regulate dopamine biosynthesis under conditions of oxidative stress or drug-induced toxicity.
Collapse
Affiliation(s)
- Chad R Borges
- Department of Biochemistry, Michigan State University, East Lansing 48824, USA
| | | | | | | |
Collapse
|
531
|
Lind C, Gerdes R, Hamnell Y, Schuppe-Koistinen I, von Löwenhielm HB, Holmgren A, Cotgreave IA. Identification of S-glutathionylated cellular proteins during oxidative stress and constitutive metabolism by affinity purification and proteomic analysis. Arch Biochem Biophys 2002; 406:229-40. [PMID: 12361711 DOI: 10.1016/s0003-9861(02)00468-x] [Citation(s) in RCA: 253] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Redox modification of proteins is proposed to play a central role in regulating cellular function. However, high-throughput techniques for the analysis of the redox status of individual proteins in complex mixtures are lacking. The aim was thus to develop a suitable technique to rapidly identify proteins undergoing oxidation of critical thiols by S-glutathionylation. The method is based on the specific reduction of mixed disulfides by glutaredoxin, their reaction with N-ethylmaleimide-biotin, affinity purification of tagged proteins, and identification by proteomic analysis. The method unequivocally identified 43 mostly novel cellular protein substrates for S-glutathionylation. These include protein chaperones, cytoskeletal proteins, cell cycle regulators, and enzymes of intermediate metabolism. Comparisons of the patterns of S-glutathionylated proteins extracted from cells undergoing diamide-induced oxidative stress and during constitutive metabolism reveal both common protein substrates and substrates failing to undergo enhanced S-glutathionylation during oxidative stress. The ability to chemically tag, select, and identify S-glutathionylated proteins, particularly during constitutive metabolism, will greatly enhance efforts to establish posttranslational redox modification of cellular proteins as an important biochemical control mechanism in coordinating cellular function.
Collapse
Affiliation(s)
- Christina Lind
- Division of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
532
|
Dandrea T, Bajak E, Wärngård L, Cotgreave IA. Protein S-glutathionylation correlates to selective stress gene expression and cytoprotection. Arch Biochem Biophys 2002; 406:241-52. [PMID: 12361712 DOI: 10.1016/s0003-9861(02)00462-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
During situations of oxidative stress phenotypic adaptation to altered redox state is achieved by changes in expression of selected genes. The mechanisms regulating this may involve reversible S-glutathionylation of cellular proteins. In this study we compared and contrasted changes in gene expression patterns in human type II lung epithelial A549 cells and human endothelial ECV304 cells in correlation to glutathione oxidation and the formation of glutathione-protein mixed disulphides, after exposure to subtoxic levels of hydrogen peroxide, formed in the medium by addition of glucose oxidase, or the thiol oxidant diamide. Both the number of specific mRNAs and their levels of induction were grossly correlated to the degree of S-glutathionylation of cellular protein. Thus, diamide induced the expression of a variety of protein and DNA chaperones and transcriptional regulators, particularly in ECV304 cells. On the other hand, the peroxide failed to induce many of these species, in association with only minimal disturbances to glutathione homeostasis. The induction of the chaperone responses at the level of mRNA was clearly shown to translate into a more resistant morphological phenotype in response to both heat shock and oxidative stress induced by the DNA-damaging pro-oxidant potassium bromate.
Collapse
Affiliation(s)
- Tiziana Dandrea
- Division of Biochemical Toxicology, National Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
533
|
Zinchuk V, Dorokhina L, Maltsev A. Prooxidant–antioxidant balance in rats under hypothermia combined with modified hemoglobin–oxygen affinity. J Therm Biol 2002. [DOI: 10.1016/s0306-4565(01)00099-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
534
|
Davis DA, Newcomb FM, Moskovitz J, Fales HM, Levine RL, Yarchoan R. Reversible oxidation of HIV-2 protease. Methods Enzymol 2002; 348:249-59. [PMID: 11885278 DOI: 10.1016/s0076-6879(02)48643-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- David A Davis
- HIV and AIDS Malignancy Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
535
|
Affiliation(s)
- Peter Klatt
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CSIC), Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
536
|
Abstract
Aqueous solution of S-nitrosoglutathione (GSNO) underwent spontaneous chemical transformation that generated several glutathione derivatives including glutathione sulfonic acid (GSO3H), glutathione disulfide S-oxide (GS(O)SG), glutathione disulfide S-dioxide, and glutathione disulfide. Surprisingly, GS(O)SG (also called glutathione thiosulfinate), which was not identified as a metabolite of GSNO previously, was one of the major products derived from GSNO. This compound was very reactive toward any thiol and the reaction product was a mixed disulfide. The rate of reaction of GS(O)SG with 5-mercapto-2-nitro-benzoate was nearly 20-fold faster than that of GSNO. The mechanism for the formation of GS(O)SG was believed to involve the sulfenic acid (GSOH) and thiosulfinamide (GS(O)NH2) intermediates; the former underwent self-condensation and the latter reacted with GSH to form GS(O)SG. Many reactive oxygen and nitrogen species were also capable of oxidizing GSH or GSSG to form GS(O)SG, which likely played a central role in integrating both the oxidative and nitrosative cellular responses through thionylation of thiols. Treatments of rat brain tissue slices with oxidants resulted in an enhanced thionylation of proteins with a concomitant increase in cellular level of GS(O)SG, suggesting that this compound might play a second messenger role for stimuli that produced a variety of oxidative species.
Collapse
Affiliation(s)
- Kuo-Ping Huang
- Section on Metabolic Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, USA.
| | | |
Collapse
|
537
|
Ehrhart J, Gluck M, Mieyal J, Zeevalk GD. Functional glutaredoxin (thioltransferase) activity in rat brain and liver mitochondria. Parkinsonism Relat Disord 2002; 8:395-400. [PMID: 12217626 DOI: 10.1016/s1353-8020(02)00020-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Glutaredoxin (Grx) is a specific and efficient catalyst of glutathione-dependent deglutathionylation of protein-SS-glutathione mixed disulfides. Grx has been identified in brain cytosol, but the presence of activity in subcellular organelles has not been reported. Increases in protein glutathionylation are likely to occur in mitochondria during oxidative stress and it is, therefore, important to know if this organelle contains the enzyme activity needed to reverse such protein thiolation. Grx-like activity in the P1 supernatant from rat brain and liver was doubled in the presence of Triton-X 100 suggesting a releasable pool of Grx. Brain and liver homogenates were subfractionated into cytosolic, mitochondrial and microsomal fraction, their purity determined by biochemical assay and EM and assayed for Grx-like activity. The data presented demonstrate that mitochondria contain functional Grx-like activity.
Collapse
Affiliation(s)
- Julie Ehrhart
- Department of Neurology, UMDNJ-Robert Wood Johnson Medical School, Building UBHC, Room D-437-E-675 Hoes Lane, Piscataway, NJ 08854, USA.
| | | | | | | |
Collapse
|
538
|
Abstract
The reduction/oxidation (redox) state of the cell is a consequence of the balance between the levels of oxidising and reducing equivalents. A reducing intracellular environment is often associated with cell survival; however, redox unbalance is necessary since it represents a regulatory sensor for several nuclear transcription factors. Activator protein 1 (AP-1), nuclear factor-kappaB (NF-kappaB) and protein tyrosine phosphatases 1-B (PTP-1B) are some of the well-known molecular factors for which a redox modulation of their activity has been demonstrated. The glutathione buffer system modulates cell response to redox changes induced by either external or intracellular stimuli. This paper summarises recent knowledge on the role played by several redox modulators in inducing signalling events that finally regulate cell cycle progression.
Collapse
Affiliation(s)
- Giuseppe Filomeni
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00173 Rome, Italy.
| | | | | |
Collapse
|
539
|
Paolicchi A, Dominici S, Pieri L, Maellaro E, Pompella A. Glutathione catabolism as a signaling mechanism. Biochem Pharmacol 2002; 64:1027-35. [PMID: 12213602 DOI: 10.1016/s0006-2952(02)01173-5] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Glutathione (GSH) is the main intracellular thiol antioxidant, and as such participates in a number of cellular antitoxic and defensive functions. Nevertheless, non-antioxidant functions of GSH have also been described, e.g. in modulation of cell proliferation and immune response. Recent studies from our and other laboratories have provided evidence for a third functional aspect of GSH, i.e. the prooxidant roles played by molecular species originating during its catabolism by the membrane ectoenzyme gamma-glutamyl transpeptidase (GGT). The reduction of metal ions effected by GSH catabolites is capable to induce redox cycling processes leading to the production of reactive oxygen species (superoxide, hydrogen peroxide), as well as of other free radicals. Through the action of these reactive compounds, GSH catabolism can ultimately lead to oxidative modifications on a variety of molecular targets, involving oxidation and/or S-thiolation of protein thiol groups in the first place. Modulating effects of this kind have been observed on several important, redox-sensitive components of the signal transduction chains, such as cell surface receptors, protein phosphatase activities and transcription factors. Against this background, the prooxidant reactions induced by GSH catabolism appear to represent a novel, as yet unrecognized mechanism for modulation of cellular signal transduction.
Collapse
Affiliation(s)
- Aldo Paolicchi
- Department of Experimental Pathology, University of Pisa Medical School, Via Roma 55, 56126 Pisa, Italy
| | | | | | | | | |
Collapse
|
540
|
Dixon DP, Davis BG, Edwards R. Functional divergence in the glutathione transferase superfamily in plants. Identification of two classes with putative functions in redox homeostasis in Arabidopsis thaliana. J Biol Chem 2002; 277:30859-69. [PMID: 12077129 DOI: 10.1074/jbc.m202919200] [Citation(s) in RCA: 326] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Searches with the human Omega glutathione transferase (GST) identified two outlying groups of the GST superfamily in Arabidopsis thaliana which differed from all other plant GSTs by containing a cysteine in place of a serine at the active site. One group consisted of four genes, three of which encoded active glutathione-dependent dehydroascorbate reductases (DHARs). Two DHARs were predicted to be cytosolic, whereas the other contained a chloroplast targeting peptide. The DHARs were also active as thiol transferases but had no glutathione conjugating activity. Unlike most other GSTs, DHARs were monomeric. The other class of GST comprised two genes termed the Lambda GSTs (GSTLs). The recombinant GSTLs were also monomeric and had glutathione-dependent thiol transferase activity. One GSTL was cytosolic, whereas the other was chloroplast-targeted. When incubated with oxidized glutathione, the putative active site cysteine of the GSTLs and cytosolic DHARs formed mixed disulfides with glutathione, whereas the plastidic DHAR formed an intramolecular disulfide. DHAR S-glutathionylation was consistent with a proposed catalytic mechanism for dehydroascorbate reduction. Roles for the cytosolic DHARs and GSTLs as antioxidant enzymes were also inferred from the induction of the respective genes following exposure to chemicals and oxidative stress.
Collapse
Affiliation(s)
- David P Dixon
- School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, United Kingdom
| | | | | |
Collapse
|
541
|
Sullivan DM, Levine RL, Finkel T. Detection and affinity purification of oxidant-sensitive proteins using biotinylated glutathione ethyl ester. Methods Enzymol 2002; 353:101-13. [PMID: 12078486 DOI: 10.1016/s0076-6879(02)53040-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Daniel M Sullivan
- Laboratory of Molecular Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
542
|
Abstract
Some subcomponents of cell protein degradation exhibit an unexplained reductive energy requirement; and diverse cysteine proteases are among multiple effector mechanisms requiring reduction. Present studies investigated whether cathepsin B activity is graded in response to (a) reduced glutathione (GSH) and dihydrolipoic acid (DHLA) concentrations, (b) their redox ratios, and (c) their differential potencies and efficacies. Purified bovine cathepsin B activity was assayed with carbobenzyloxy-Arg-Arg-aminomethylcoumarin by standard methods following inactivation by spontaneous air oxidation. Endogenous GSH concentration (2-3 mM) maintained 30-40% of the maximal cathepsin B reaction rate observed under dithiothreitol (5 mM). Following activation with GSH, the cathepsin B reaction rate was inhibited in proportion to nonphysiologic GSH:GSSG redox ratio above 1% oxidized (e.g., 85% inhibited at 3 mM:2 mM). Thus, cathepsin B can be redox buffered by the GSH:GSSG ratio. DHLA was identified as a potent cathepsin activator with threshold near 1 microM and 80% maximal activation near 10 microM. Conversely, oxidized lipoamide disulfide inhibited cathepsin B over 5-250 microM. DHLA at 5-50 microM superimposed severalfold additional activation upon the stable submaximal cathepsin B reaction rate maintained by endogenous GSH concentration (2-3 mM). Cell protein degradation was bioassayed by release of [3H] leucine from the biosynthetically labeled rat heart under nonrecirculating perfusion. The pro-oxidant, diamide (100 microM), reversibly inhibited 80% of basal proteolysis. Supraphysiologic extracellular DHLA (80 microM) doubled the basal rate of averaged cell protein degradation in 15 min. Thus, the cell redox system buffers an intermediate rate of protein degradation, which can be decreased by supraphysiologic exposure to diamide pro-oxidant or increased by DHLA reductant.
Collapse
Affiliation(s)
- Thomas D Lockwood
- Department of Pharmacology and Toxicology, Wright State University, School of Medicine, Dayton, OH 45435, USA.
| |
Collapse
|
543
|
Griffiths SW, King J, Cooney CL. The reactivity and oxidation pathway of cysteine 232 in recombinant human alpha 1-antitrypsin. J Biol Chem 2002; 277:25486-92. [PMID: 11991955 DOI: 10.1074/jbc.m203089200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidative damage to the sulfur-containing amino acids, methionine and cysteine, is a major concern in biotechnology and medicine. alpha1-Antitrypsin, which is a metastable and conformationally flexible protein that belongs to the serpin family of protease inhibitors, contains nine methionines and a single cysteine in its primary sequence. Although it is known that methionine oxidation in the protein active site results in a loss of biological activity, there is little specific knowledge regarding the reactivity of its unpaired thiol, Cys-232. In this study, the thiol-modifying reagent NBD-Cl (7-chloro-4-nitrobenz-2-oxa-1,3-diazole) was used to label peroxide-modified alpha1-antitrypsin and demonstrate that the Cys-232 in vitro oxidation pathway begins with a stable sulfenic acid intermediate and is followed by the formation of sulfinic and cysteic acid in successive steps. pH-dependent reactivity with hydrogen peroxide showed that Cys-232 has a pK(a) of 6.86 +/- 0.05, a value that is more than 1.5 pH units lower than that of a typical protein thiol. pH-induced conformational changes in the region surrounding Cys-232 were also examined and indicate that mildly acidic conditions induce a conformation that enhances Cys-232 reactivity. In summary, this work provides new insights into alpha1-antitrypsin reactivity in oxidizing environments and shows that a unique structural environment renders its unpaired thiol, Cys-232, its most reactive amino acid.
Collapse
Affiliation(s)
- Steven W Griffiths
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge 02139, USA.
| | | | | |
Collapse
|
544
|
Shenton D, Perrone G, Quinn KA, Dawes IW, Grant CM. Regulation of protein S-thiolation by glutaredoxin 5 in the yeast Saccharomyces cerevisiae. J Biol Chem 2002; 277:16853-9. [PMID: 11882660 DOI: 10.1074/jbc.m200559200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The irreversible oxidation of cysteine residues can be prevented by protein S-thiolation, a process by which protein -SH groups form mixed disulfides with low molecular weight thiols such as glutathione. We report here that this protein modification is not a simple response to the cellular redox state, since different oxidants lead to different patterns of protein S-thiolation. SDS-polyacrylamide gel electrophoresis shows that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is the major target for modification following treatment with hydroperoxides (hydrogen peroxide or tert-butylhydroperoxide), whereas this enzyme is unaffected following cellular exposure to the thiol oxidant diamide. Further evidence that protein S-thiolation is tightly regulated in response to oxidative stress is provided by the finding that the Tdh3 GAPDH isoenzyme, and not the Tdh2 isoenzyme, is S-thiolated following exposure to H(2)O(2) in vivo, whereas both GAPDH isoenzymes are S-thiolated when H(2)O(2) is added to cell-free extracts. This indicates that cellular factors are likely to be responsible for the difference in GAPDH S-thiolation observed in vivo rather than intrinsic structural differences between the GAPDH isoenzymes. To begin to search for factors that can regulate the S-thiolation process, we investigated the role of the glutaredoxin family of oxidoreductases. We provide the first evidence that protein dethiolation in vivo is regulated by a monothiol-glutaredoxin rather than the classical glutaredoxins, which contain two active site cysteine residues. In particular, glutaredoxin 5 is required for efficient dethiolation of the Tdh3 GAPDH isoenzyme.
Collapse
Affiliation(s)
- Daniel Shenton
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology, Manchester M60 1QD, United Kingdom
| | | | | | | | | |
Collapse
|
545
|
Augusto O, Bonini MG, Amanso AM, Linares E, Santos CCX, De Menezes SL. Nitrogen dioxide and carbonate radical anion: two emerging radicals in biology. Free Radic Biol Med 2002; 32:841-59. [PMID: 11978486 DOI: 10.1016/s0891-5849(02)00786-4] [Citation(s) in RCA: 372] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Nitrogen dioxide and carbonate radical anion have received sporadic attention thus far from biological investigators. However, accumulating data on the biochemical reactions of nitric oxide and its derived oxidants suggest that these radicals may play a role in various pathophysiological processes. These potential roles are also indicated by recent studies on the high efficiency of urate and nitroxides in protecting cells and whole animals against the injury associated with conditions of excessive nitric oxide production. The high protective effects of these antioxidants are incompletely defined at the mechanistic level but some of them can be explained by their efficiency in scavenging peroxynitrite-derived radicals, particularly nitrogen dioxide and carbonate radical anion. In this review, we provide a framework for this hypothesis and discuss the potential sources and properties of these radicals that are likely to become increasingly recognized as important mediators of biological processes.
Collapse
Affiliation(s)
- Ohara Augusto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
546
|
Chen J, Daggett H, De Waard M, Heinemann SH, Hoshi T. Nitric oxide augments voltage-gated P/Q-type Ca(2+) channels constituting a putative positive feedback loop. Free Radic Biol Med 2002; 32:638-49. [PMID: 11909698 DOI: 10.1016/s0891-5849(02)00748-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
P/Q-type Ca(2+) channels, which are postulated to play major roles in synaptic transmission, are regulated in a variety of ways. Ca(2+) currents through P/Q-type Ca(2+) channels (Ca(v)2.1/beta(1a)/alpha(2)delta) heterologously expressed in mammalian cells were recorded using the whole-cell patch clamp method. The oxidant H(2)O(2) increased the current amplitude and the effect was reversed by the reducing agent dithiothreitol (DTT). The stimulatory effect of H(2)O(2) on the Ca(2+) current was mimicked by the NO donors, SNAP, and diethylamine NONOate, and reversed by the reducing agent DTT. The presence of a soluble guanylate cyclase inhibitor did not abolish the ability of SNAP to increase the Ca(2+) current. Adenovirus-mediated overexpression of nitric oxide synthase in combination with application of the Ca(2+) ionophore A23187 also increased the Ca(2+) current amplitude and the effect was again reversed by DTT. The NOS inhibitor L-NAME abolished the stimulatory effect of A23187, and A23187 did not change the Ca(2+) currents in the cells treated with control adenovirus particles. The time course of the decline of the Ca(2+) current, but not of the Ba(2+) current, in response to repeated depolarization was markedly slowed by adenovirus-mediated overexpression of nitric oxide synthase. The results demonstrate that nitric oxide enhances the channel activity by promoting oxidation and suggest that Ca(2+), nitric oxide synthase, and nitric oxide could constitute a positive feedback loop for regulation of voltage-gated P/Q-type Ca(2+) channels.
Collapse
Affiliation(s)
- Jianguo Chen
- Department of Physiology and Biophysics, The University of Iowa, Iowa City, IA, USA
| | | | | | | | | |
Collapse
|
547
|
Abstract
Signaling by redox state regulates the transcriptional and post-transcriptional events that control gene expression. To elucidate redox signaling in vivo, the effects of the reductive intracellular redox environment on regulatory redox events must be taken into account. This article focuses on proteins that contain regulatory disulfides, considering whether regulatory proteins can be oxidized and how the redox state of regulatory proteins can be uniquely controlled to allow redox signaling via specific pathways. It is possible that the favored kinetics of the redox reactions of regulatory proteins are important for attaining specificity in redox signaling.
Collapse
Affiliation(s)
- Avihai Danon
- Dept Plant Sciences, Weizmann Institute of Science, 76100, Rehovot, Israel.
| |
Collapse
|
548
|
Eaton P, Byers HL, Leeds N, Ward MA, Shattock MJ. Detection, quantitation, purification, and identification of cardiac proteins S-thiolated during ischemia and reperfusion. J Biol Chem 2002; 277:9806-11. [PMID: 11777920 DOI: 10.1074/jbc.m111454200] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have developed methods that allow detection, quantitation, purification, and identification of cardiac proteins S-thiolated during ischemia and reperfusion. Cysteine was biotinylated and loaded into isolated rat hearts. During oxidative stress, biotin-cysteine forms a disulfide bond with reactive protein cysteines, and these can be detected by probing Western blots with streptavidin-horseradish peroxidase. S-Thiolated proteins were purified using streptavidin-agarose. Thus, we demonstrated that reperfusion and diamide treatment increased S-thiolation of a number of cardiac proteins by 3- and 10-fold, respectively. Dithiothreitol treatment of homogenates fully abolished the signals detected. Fractionation studies indicated that the modified proteins are located within the cytosol, membrane, and myofilament/cytoskeletal compartments of the cardiac cells. This shows that biotin-cysteine gains rapid and efficient intracellular access and acts as a probe for reactive protein cysteines in all cellular locations. Using Western blotting of affinity-purified proteins we identified actin, glyceraldehyde-3-phosphate dehydrogenase, HSP27, protein-tyrosine phosphatase 1B, protein kinase Calpha, and the small G-protein ras as substrates for S-thiolation during reperfusion of the ischemic rat heart. MALDI-TOF mass fingerprint analysis of tryptic peptides independently confirmed actin and glyceraldehyde-3-phosphate dehydrogenase S-thiolation during reperfusion. This approach has also shown that triosephosphate isomerase, aconitate hydratase, M-protein, nucleoside diphosphate kinase B, and myoglobin are S-thiolated during post-ischemic reperfusion.
Collapse
Affiliation(s)
- Philip Eaton
- Centre for Cardiovascular Biology and Medicine, The Rayne Institute, St Thomas' Hospital, King's College London, United Kingdom.
| | | | | | | | | |
Collapse
|
549
|
Inayama T, Oka J, Kashiba M, Saito M, Higuchi M, Umegaki K, Yamamoto Y, Matsuda M. Moderate physical exercise induces the oxidation of human blood protein thiols. Life Sci 2002; 70:2039-46. [PMID: 12148696 DOI: 10.1016/s0024-3205(02)01490-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Exercise is known to induce the oxidation of blood low-molecular-weight (LMW) thiols such as reduced glutathione (GSH). We previously reported that full-marathon running induced a decrease in human plasma levels of protein-bound sulfhydryl groups (p-SHs). Moderate exercise, a 30-min running at the intensity of the individual ventilatory threshold, performed by untrained healthy females caused a significant decrease in erythrocyte levels of p-SHs (mostly hemoglobin cysteine residues) and LMW thiols, but their levels returned to each baseline by 2 h. No significant change in plasma LMW thiols was observed. However, plasma levels of p-SHs significantly decreased after running and remained unchanged after 24 h. These results suggest that moderate exercise causes the oxidation of blood thiols, especially protein-bound thiols.
Collapse
Affiliation(s)
- Takayo Inayama
- National Institute of Health and Nutrition, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
550
|
Garrido EO, Grant CM. Role of thioredoxins in the response of Saccharomyces cerevisiae to oxidative stress induced by hydroperoxides. Mol Microbiol 2002; 43:993-1003. [PMID: 11929546 DOI: 10.1046/j.1365-2958.2002.02795.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Glutaredoxins and thioredoxins are highly conserved, small, heat-stable oxidoreductases. The yeast Saccharomyces cerevisiae contains two gene pairs encoding cytoplasmic glutaredoxins (GRX1, GRX2) and thioredoxins (TRX1, TRX2), and we have used multiple mutants to determine their roles in mediating resistance to oxidative stress caused by hydroperoxides. Our data indicate that TRX2 plays the predominant role, as mutants lacking TRX2 are hypersensitive, and mutants containing TRX2 are resistant to these oxidants. However, the requirement for TRX2 is only apparent during stationary phase growth, and we present three lines of evidence that the thioredoxin isoenzymes actually have redundant activities as antioxidants. First, the trx1 and trx2 mutants show wild-type resistance to hydroperoxide during exponential phase growth; secondly, overexpression of either TRX1 or TRX2 leads to increased resistance to hydroperoxides; and, thirdly, both Trx1 and Trx2 are equally able to act as cofactors for the thioredoxin peroxidase, Tsa1. The antioxidant activity of thioredoxins is required for both the survival of yeast cells as well as protection against oxidative stress during stationary phase growth, and correlates with an increase in the expression of both TRX1 and TRX2. We show that the requirement for thioredoxins during this growth phase is dependent on their activity as cofactors for the antioxidant enzyme Tsa1, and for regulation of the redox state and protein-bound levels of the low-molecular-weight antioxidant glutathione.
Collapse
Affiliation(s)
- Ester Ocón Garrido
- Department of Biomolecular Sciences, University of Manchester Institute of Science and Technology (UMIST), PO Box 88, Manchester M60 1QD, UK
| | | |
Collapse
|