501
|
MSI1 Promotes the Expression of the GBM Stem Cell Marker CD44 by Impairing miRNA-Dependent Degradation. Cancers (Basel) 2020; 12:cancers12123654. [PMID: 33291443 PMCID: PMC7762192 DOI: 10.3390/cancers12123654] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 01/03/2023] Open
Abstract
Simple Summary Glioblastoma (GBM) is the most lethal brain tumor with a median survival rate of approximately 14 months. GBM patients commonly suffer from tumor recurrence, indicating that populations of chemo/radio-resistant stem cell-like tumor cells survive treatments. Here we reveal that the neuronal stem cell marker Musashi1 (MSI1) is highly expressed in primary GBM and recurrences. We identify a novel regulatory role of MSI1 in GBM-derived cell lines and patient-derived tumorspheres, the enhancement of stemness marker expression, here demonstrated for CD44. Furthermore, we provide a rationale for MSI1-centered therapeutic targeting strategies to improve treatment options of this chemo/radio-resistant malignancy. Abstract The stem cell marker Musashi1 (MSI1) is highly expressed during neurogenesis and in glioblastoma (GBM). MSI1 promotes self-renewal and impairs differentiation in cancer and non-malignant progenitor cells. However, a comprehensive understanding of its role in promoting GBM-driving networks remains to be deciphered. We demonstrate that MSI1 is highly expressed in GBM recurrences, an oncologist’s major defiance. For the first time, we provide evidence that MSI1 promotes the expression of stem cell markers like CD44, co-expressed with MSI1 within recurrence-promoting cells at the migrating front of primary GBM samples. With GBM cell models of pediatric and adult origin, including isolated primary tumorspheres, we show that MSI1 promotes stem cell-like characteristics. Importantly, it impairs CD44 downregulation in a 3′UTR- and miRNA-dependent manner by controlling mRNA turnover. This regulation is disturbed by the previously reported MSI1 inhibitor luteolin, providing further evidence for a therapeutic target potential of MSI1 in GBM treatment.
Collapse
|
502
|
Martincuks A, Li PC, Zhao Q, Zhang C, Li YJ, Yu H, Rodriguez-Rodriguez L. CD44 in Ovarian Cancer Progression and Therapy Resistance-A Critical Role for STAT3. Front Oncol 2020; 10:589601. [PMID: 33335857 PMCID: PMC7736609 DOI: 10.3389/fonc.2020.589601] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/22/2020] [Indexed: 12/15/2022] Open
Abstract
Despite significant progress in cancer therapy over the last decades, ovarian cancer remains the most lethal gynecologic malignancy worldwide with the five-year overall survival rate less than 30% due to frequent disease recurrence and chemoresistance. CD44 is a non-kinase transmembrane receptor that has been linked to cancer metastatic progression, cancer stem cell maintenance, and chemoresistance development via multiple mechanisms across many cancers, including ovarian, and represents a promising therapeutic target for ovarian cancer treatment. Moreover, CD44-mediated signaling interacts with other well-known pro-tumorigenic pathways and oncogenes during cancer development, such as signal transducer and activator of transcription 3 (STAT3). Given that both CD44 and STAT3 are strongly implicated in the metastatic progression and chemoresistance of ovarian tumors, this review summarizes currently available evidence about functional crosstalk between CD44 and STAT3 in human malignancies with an emphasis on ovarian cancer. In addition to the role of tumor cell-intrinsic CD44 and STAT3 interaction in driving cancer progression and metastasis, we discuss how CD44 and STAT3 support the pro-tumorigenic tumor microenvironment and promote tumor angiogenesis, immunosuppression, and cancer metabolic reprogramming in favor of cancer progression. Finally, we review the current state of therapeutic CD44 targeting and propose superior treatment possibilities for ovarian cancer.
Collapse
Affiliation(s)
- Antons Martincuks
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Pei-Chuan Li
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Qianqian Zhao
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Chunyan Zhang
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Yi-Jia Li
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Hua Yu
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | | |
Collapse
|
503
|
Fukushima S, Farea M, Maeta K, Rani AQM, Fujioka K, Nishio H, Matsuo M. Dual Fluorescence Splicing Reporter Minigene Identifies an Antisense Oligonucleotide to Skip Exon v8 of the CD44 Gene. Int J Mol Sci 2020; 21:9136. [PMID: 33266296 PMCID: PMC7729581 DOI: 10.3390/ijms21239136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022] Open
Abstract
Splicing reporter minigenes are used in cell-based in vitro splicing studies. Exon skippable antisense oligonucleotide (ASO) has been identified using minigene splicing assays, but these assays include a time- and cost-consuming step of reverse transcription PCR amplification. To make in vitro splicing assay easier, a ready-made minigene (FMv2) amenable to quantitative splicing analysis by fluorescence microscopy was constructed. FMv2 was designed to encode two fluorescence proteins namely, mCherry, a transfection marker and split eGFP, a marker of splicing reaction. The split eGFP was intervened by an artificial intron containing a multicloning site sequence. Expectedly, FMv2 transfected HeLa cells produced not only red mCherry but also green eGFP signals. Transfection of FMv2CD44v8, a modified clone of FMv2 carrying an insertion of CD44 exon v8 in the multicloning site, that was applied to screen exon v8 skippable ASO, produced only red signals. Among seven different ASOs tested against exon v8, ASO#14 produced the highest index of green signal positive cells. Hence, ASO#14 was the most efficient exon v8 skippable ASO. Notably, the well containing ASO#14 was clearly identified among the 96 wells containing randomly added ASOs, enabling high throughput screening. A ready-made FMv2 is expected to contribute to identify exon skippable ASOs.
Collapse
Affiliation(s)
- Sachiyo Fukushima
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (S.F.); (K.F.)
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe 651-2180, Japan; (M.F.); (K.M.); (A.Q.M.R.); (H.N.)
| | - Manal Farea
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe 651-2180, Japan; (M.F.); (K.M.); (A.Q.M.R.); (H.N.)
| | - Kazuhiro Maeta
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe 651-2180, Japan; (M.F.); (K.M.); (A.Q.M.R.); (H.N.)
- KNC Department of Nucleic Acid Drug Discovery, Faculty of Rehabilitation, Kobe Gakuin University, Kobe 651-2180, Japan
| | - Abdul Qawee Mahyoob Rani
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe 651-2180, Japan; (M.F.); (K.M.); (A.Q.M.R.); (H.N.)
- KNC Department of Nucleic Acid Drug Discovery, Faculty of Rehabilitation, Kobe Gakuin University, Kobe 651-2180, Japan
| | - Kazumichi Fujioka
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (S.F.); (K.F.)
| | - Hisahide Nishio
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe 651-2180, Japan; (M.F.); (K.M.); (A.Q.M.R.); (H.N.)
- Department of Occupational Therapy, Faculty of Rehabilitation, Kobe Gakuin University, Kobe 651-2180, Japan
| | - Masafumi Matsuo
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe 651-2180, Japan; (M.F.); (K.M.); (A.Q.M.R.); (H.N.)
- KNC Department of Nucleic Acid Drug Discovery, Faculty of Rehabilitation, Kobe Gakuin University, Kobe 651-2180, Japan
| |
Collapse
|
504
|
Bessa C, Matos P, Jordan P, Gonçalves V. Alternative Splicing: Expanding the Landscape of Cancer Biomarkers and Therapeutics. Int J Mol Sci 2020; 21:ijms21239032. [PMID: 33261131 PMCID: PMC7729450 DOI: 10.3390/ijms21239032] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Alternative splicing (AS) is a critical post-transcriptional regulatory mechanism used by more than 95% of transcribed human genes and responsible for structural transcript variation and proteome diversity. In the past decade, genome-wide transcriptome sequencing has revealed that AS is tightly regulated in a tissue- and developmental stage-specific manner, and also frequently dysregulated in multiple human cancer types. It is currently recognized that splicing defects, including genetic alterations in the spliced gene, altered expression of both core components or regulators of the precursor messenger RNA (pre-mRNA) splicing machinery, or both, are major drivers of tumorigenesis. Hence, in this review we provide an overview of our current understanding of splicing alterations in cancer, and emphasize the need to further explore the cancer-specific splicing programs in order to obtain new insights in oncology. Furthermore, we also discuss the recent advances in the identification of dysregulated splicing signatures on a genome-wide scale and their potential use as biomarkers. Finally, we highlight the therapeutic opportunities arising from dysregulated splicing and summarize the current approaches to therapeutically target AS in cancer.
Collapse
Affiliation(s)
- Cláudia Bessa
- Department of Human Genetics, National Health Institute Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (C.B.); (P.M.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Paulo Matos
- Department of Human Genetics, National Health Institute Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (C.B.); (P.M.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Peter Jordan
- Department of Human Genetics, National Health Institute Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (C.B.); (P.M.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Correspondence: (P.J.); (V.G.); Tel.: +351-217-519-380 (P.J.)
| | - Vânia Gonçalves
- Department of Human Genetics, National Health Institute Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (C.B.); (P.M.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- Correspondence: (P.J.); (V.G.); Tel.: +351-217-519-380 (P.J.)
| |
Collapse
|
505
|
Wang K, Zhang B, Song D, Xi J, Hao W, Yuan J, Gao C, Cui Z, Cheng Z. Alisol A Alleviates Arterial Plaque by Activating AMPK/SIRT1 Signaling Pathway in apoE-Deficient Mice. Front Pharmacol 2020; 11:580073. [PMID: 33224034 PMCID: PMC7667245 DOI: 10.3389/fphar.2020.580073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/09/2020] [Indexed: 12/25/2022] Open
Abstract
Alismatis Rhizoma (zexie), an herb used in traditional Chinese medicine, exhibits hypolipemic, anti-inflammation and anti-atherosclerotic activities. Alisol A is one of the main active ingredients in Alismatis Rhizoma extract. In this study, we investigate the role of alisol A in anti-atherosclerosis (AS). Our study demonstrated that alisol A can effectively inhibit the formation of arterial plaques and blocked the progression of AS in ApoE−/− mice fed with high-fat diet and significantly reduced the expression of inflammatory cytokins in aorta, including ICAM-1, IL-6, and MMP-9. In addition, we found that alisol A increased the expression of PPARα and PPARδ proteins in HepG2 cells and in liver tissue from ApoE−/− mice. Alisol A activated the AMPK/SIRT1 signaling pathway and NF-κB inhibitor IκBα in HepG2 cells. Our results suggested that alisol A is a multi-targeted agent that exerts anti-atherosclerotic action by regulating lipid metabolism and inhibiting inflammatory cytokine production. Therefore, alisol could be a promising lead compound to develop drugs for the treatment of AS.
Collapse
Affiliation(s)
- Ke Wang
- China State Institute of Pharmaceutical Industry, National Pharmaceutical Engineering and Research Center, Shanghai, China
| | - Beibei Zhang
- China State Institute of Pharmaceutical Industry, National Pharmaceutical Engineering and Research Center, Shanghai, China
| | - Dingzhong Song
- China State Institute of Pharmaceutical Industry, National Pharmaceutical Engineering and Research Center, Shanghai, China
| | - Jianqiang Xi
- China State Institute of Pharmaceutical Industry, National Pharmaceutical Engineering and Research Center, Shanghai, China
| | - Wusi Hao
- China State Institute of Pharmaceutical Industry, National Pharmaceutical Engineering and Research Center, Shanghai, China
| | - Jie Yuan
- China State Institute of Pharmaceutical Industry, National Pharmaceutical Engineering and Research Center, Shanghai, China
| | - Chenyu Gao
- China State Institute of Pharmaceutical Industry, National Pharmaceutical Engineering and Research Center, Shanghai, China
| | - Zhongbao Cui
- China State Institute of Pharmaceutical Industry, National Pharmaceutical Engineering and Research Center, Shanghai, China
| | - Zhihong Cheng
- China State Institute of Pharmaceutical Industry, National Pharmaceutical Engineering and Research Center, Shanghai, China
| |
Collapse
|
506
|
Haldavnekar R, Vijayakumar SC, Venkatakrishnan K, Tan B. Prediction of Cancer Stem Cell Fate by Surface-Enhanced Raman Scattering Functionalized Nanoprobes. ACS NANO 2020; 14:15468-15491. [PMID: 33175514 DOI: 10.1021/acsnano.0c06104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cancer stem cells (CSCs) are the fundamental building blocks of cancer dissemination, so it is desirable to develop a technique to predict the behavior of CSCs during tumor initiation and relapse. It will provide a powerful tool for pathological prognosis. Currently, there exists no method of such prediction. Here, we introduce nickel-based functionalized nanoprobe facilitated surface enhanced Raman scattering (SERS) for prediction of cancer dissemination by undertaking CSC-based surveillance. SERS profiling of CSCs of various cell lines (breast cancer, cervical cancer, and lung cancer) was compared with their cancer counterparts for the prediction of prognosis, with statistical significance of single-cell sensitivity. The single-cell sensitivity is critical as even a few CSCs are capable of initiating a tumor. Intermediate states of CSC transmutation to cancer cells and its reverse were monitored, and nanoprobe-assisted SERS profiling was undertaken. We experimentally demonstrated that the quasi-intermediate CSC states have dissimilar profiles during the transformation from cancer to CSC and vice versa enabling statistical differentiation without ambiguity. It was also observed that molecular signatures of these opposite pathways are cancer-type specific. This observation provided additional clarity to the current understanding of relatively unfamiliar quasi-intermediate states; making it possible to predict CSC dissemination for variety of cancers with ∼99% accuracy. Nano probe-based prediction of CSC fate is a powerful prediction tool for ultrasensitive prognosis of malignancy in a complex environment. Such CSC-based cancer prognosis has never been proposed before. This prediction technique has potential to provide insights for cancer diagnosis and prognosis as well as for obtaining information instrumental in designing of meaningful CSC-based cancer therapeutics.
Collapse
Affiliation(s)
- Rupa Haldavnekar
- Institute for Biomedical Engineering, Science and Technology (iBEST), Li Ka-Shing Knowledge Institute, 209 Victoria Street, Toronto, ON, Canada M5B 1T8
- Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
- BioNanoInterface Facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
- Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
- Department of Biomedical Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
| | - Sivaprasad Chinnakkannu Vijayakumar
- Institute for Biomedical Engineering, Science and Technology (iBEST), Li Ka-Shing Knowledge Institute, 209 Victoria Street, Toronto, ON, Canada M5B 1T8
- Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
- BioNanoInterface Facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
- Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
| | - Krishnan Venkatakrishnan
- Keenan Research Center for Biomedical Science, St. Michael's Hospital, 30 Bond Street, Toronto, ON, Canada M5B 1W8
- Ultrashort Laser Nanomanufacturing Research Facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
- BioNanoInterface Facility, Department of Mechanical and Industrial Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
- Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
| | - Bo Tan
- Keenan Research Center for Biomedical Science, St. Michael's Hospital, 30 Bond Street, Toronto, ON, Canada M5B 1W8
- Nanocharacterization Laboratory, Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, ON, Canada M5B 2K3
| |
Collapse
|
507
|
Recent Discoveries on the Involvement of Krüppel-Like Factor 4 in the Most Common Cancer Types. Int J Mol Sci 2020; 21:ijms21228843. [PMID: 33266506 PMCID: PMC7700188 DOI: 10.3390/ijms21228843] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 02/06/2023] Open
Abstract
Krüppel-like factor 4 (KLF4) is a transcription factor highly conserved in evolution. It is particularly well known for its role in inducing pluripotent stem cells. In addition, KLF4 plays many roles in cancer. The results of most studies suggest that KLF4 is a tumor suppressor. However, the functioning of KLF4 is regulated at many levels. These include regulation of transcription, alternative splicing, miRNA, post-translational modifications, subcellular localization, protein stability and interactions with other molecules. Simple experiments aimed at assaying transcript levels or protein levels fail to address this complexity and thus may deliver misleading results. Tumor subtypes are also important; for example, in prostate cancer KLF4 is highly expressed in indolent tumors where it impedes tumor progression, while it is absent from aggressive prostate tumors. KLF4 is important in regulating response to many known drugs, and it also plays a role in tumor microenvironment. More and more information is available about upstream regulators, downstream targets and signaling pathways associated with the involvement of KLF4 in cancer. Furthermore, KLF4 performs critical function in the overall regulation of tissue homeostasis, cellular integrity, and progression towards malignancy. Here we summarize and analyze the latest findings concerning this fascinating transcription factor.
Collapse
|
508
|
Oswald JT, Patel H, Khan D, Jeorje NN, Golzar H, Oswald EL, Tang S. Drug Delivery Systems Using Surface Markers for Targeting Cancer Stem Cells. Curr Pharm Des 2020; 26:2057-2071. [PMID: 32250211 DOI: 10.2174/1381612826666200406084900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/26/2020] [Indexed: 12/12/2022]
Abstract
The innate abilities of cancer stem cells (CSCs), such as multi-drug resistance, drug efflux, quiescence and ionizing radiation tolerance, protect them from most traditional chemotherapeutics. As a result, this small subpopulation of persistent cells leads to more aggressive and chemoresistant cancers, causing tumour relapse and metastasis. This subpopulation is differentiated from the bulk tumour population through a wide variety of surface markers expressed on the cell surface. Recent developments in nanomedicine and targeting delivery methods have given rise to new possibilities for specifically targeting these markers and preferentially eliminating CSCs. Herein, we first summarize the range of surface markers identifying CSC populations in a variety of cancers; then, we discuss recent attempts to actively target CSCs and their niches using liposomal, nanoparticle, carbon nanotube and viral formulations.
Collapse
Affiliation(s)
- James T Oswald
- School Of Nanotechnology Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Haritosh Patel
- School Of Nanotechnology Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Daid Khan
- School Of Nanotechnology Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Ninweh N Jeorje
- School Of Nanotechnology Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Hossein Golzar
- Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Erin L Oswald
- School Of Nanotechnology Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Shirley Tang
- Department of Chemistry & Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
509
|
Saleh NA, Rode MP, Sierra JA, Silva AH, Miyake JA, Filippin-Monteiro FB, Creczynski-Pasa TB. Three-dimensional multicellular cell culture for anti-melanoma drug screening: focus on tumor microenvironment. Cytotechnology 2020; 73:35-48. [PMID: 33505112 DOI: 10.1007/s10616-020-00440-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022] Open
Abstract
Abstract The development of new treatments for malignant melanoma, which has the worst prognosis among skin neoplasms, remains a challenge. The tumor microenvironment aids tumor cells to grow and resist to chemotherapeutic treatment. One way to mimic and study the tumor microenvironment is by using three-dimensional (3D) co-culture models (spheroids). In this study, a melanoma heterospheroid model composed of cancer cells, fibroblasts, and macrophages was produced by liquid-overlay technique using the agarose gel. The size, growth, viability, morphology, cancer stem-like cells population and inflammatory profile of tumor heterospheroids and monospheroids were analyzed to evaluate the influence of stromal cells on these parameters. Furthermore, dacarbazine cytotoxicity was evaluated using spheroids and two-dimensional (2D) melanoma model. After finishing the experiments, it was observed the M2 macrophages induced an anti-inflammatory microenvironment in heterospheroids; fibroblasts cells support the formation of the extracellular matrix, and a higher percentage of melanoma CD271 was observed in this model. Additionally, melanoma spheroids responded differently to the dacarbazine than the 2D melanoma culture as a result of their cellular heterogeneity and 3D structure. The 3D model was shown to be a fast and reliable tool for drug screening, which can mimic the in vivo tumor microenvironment regarding interactions and complexity. Graphic abstract
Collapse
Affiliation(s)
- Najla Adel Saleh
- Departamento de Ciências Farmacêuticas, GEIMM-Grupo de Estudos de Interações entre Micro e Macromoléculas, Universidade Federal de Santa Catarina, S/N Centro de Ciências da Saúde Bloco H - 3° andar, sala H302-Bairro Trindade, Florianópolis, Santa Catarina CEP: 88040-900 Brazil
| | - Michele Patrícia Rode
- Departamento de Ciências Farmacêuticas, GEIMM-Grupo de Estudos de Interações entre Micro e Macromoléculas, Universidade Federal de Santa Catarina, S/N Centro de Ciências da Saúde Bloco H - 3° andar, sala H302-Bairro Trindade, Florianópolis, Santa Catarina CEP: 88040-900 Brazil
| | | | - Adny Henrique Silva
- Departamento de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC Brazil
| | - Juliano Andreoli Miyake
- Departamento de Ciências Morfológicas, Universidade Federal de Santa Catarina, Florianópolis, SC Brazil
| | - Fabíola Branco Filippin-Monteiro
- Departamento de Análises Clínicas, GEIMM-Grupo de Estudos de Interações entre Micro e Macromoléculas, Universidade Federal de Santa Catarina, S/N Centro de Ciências da Saúde Bloco H - 3° andar, sala H302-Bairro Trindade, Florianópolis, Santa Catarina CEP: 88040-900 Brazil
| | - Tânia Beatriz Creczynski-Pasa
- Departamento de Ciências Farmacêuticas, GEIMM-Grupo de Estudos de Interações entre Micro e Macromoléculas, Universidade Federal de Santa Catarina, S/N Centro de Ciências da Saúde Bloco H - 3° andar, sala H302-Bairro Trindade, Florianópolis, Santa Catarina CEP: 88040-900 Brazil
| |
Collapse
|
510
|
Ahn YT, Kim MS, Kim YS, An WG. Astaxanthin Reduces Stemness Markers in BT20 and T47D Breast Cancer Stem Cells by Inhibiting Expression of Pontin and Mutant p53. Mar Drugs 2020; 18:md18110577. [PMID: 33233699 PMCID: PMC7699712 DOI: 10.3390/md18110577] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/28/2022] Open
Abstract
Astaxanthin (AST) is a product made from marine organisms that has been used as an anti-cancer supplement. It reduces pontin expression and induces apoptosis in SKBR3, a breast cancer cell line. Using Western blotting and qRT-PCR analyses, this study revealed that in the T47D and BT20 breast cancer cell lines, AST inhibits expression of pontin and mutp53, as well as the Oct4 and Nanog cancer stem cell (CSC) stemness genes. In addition, we explored the mechanism by which AST eradicates breast cancer cells using pontin siRNAs. Pontin knockdown by pontin siRNA reduced proliferation, Oct4 and Nanog expression, colony and spheroid formation, and migration and invasion abilities in breast cancer cells. In addition, reductions in Oct4, Nanog, and mutp53 expression following rottlerin treatment confirmed the role of pontin in these cells. Therefore, pontin may play a central role in the regulation of CSC properties and in cell proliferation following AST treatment. Taken together, these findings demonstrate that AST can repress CSC stemness genes in breast cancer cells, which implies that AST therapy could be used to improve the efficacy of other anti-cancer therapies against breast cancer cells.
Collapse
Affiliation(s)
- Yong Tae Ahn
- Research Institute for Longevity and Well-Being, Pusan National University, Busan 46241, Korea;
| | - Min Sung Kim
- Division of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea;
| | - Youn Sook Kim
- Gene & Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Yangsan 50612, Korea;
| | - Won Gun An
- Division of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea;
- Correspondence: ; Tel.: +82-51-510-8455
| |
Collapse
|
511
|
Liu Q, Gu J, Zhang E, He L, Yuan ZX. Targeted Delivery of Therapeutics to Urological Cancer Stem Cells. Curr Pharm Des 2020; 26:2038-2056. [PMID: 32250210 DOI: 10.2174/1381612826666200403131514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Urological cancer refers to cancer in organs of the urinary system and the male reproductive system. It mainly includes prostate cancer, bladder cancer, renal cancer, etc., seriously threatening patients' survival. Although there are many advances in the treatment of urological cancer, approved targeted therapies often result in tumor recurrence and therapy failure. An increasing amount of evidence indicated that cancer stem cells (CSCs) with tumor-initiating ability were the source of treatment failure in urological cancer. The development of CSCstargeted strategy can provide a possibility for the complete elimination of urological cancer. This review is based on a search of PubMed, Google scholar and NIH database (http://ClinicalTrials.gov/) for English language articles containing the terms: "biomarkers", "cancer stem cells", "targeting/targeted therapy", "prostate cancer", bladder cancer" and "kidney cancer". We summarized the biomarkers and stem cell features of the prostate, bladder and renal CSCs, outlined the targeted strategies for urological CSCs from signaling pathways, cytokines, angiogenesis, surface markers, elimination therapy, differentiation therapy, immunotherapy, microRNA, nanomedicine, etc., and highlighted the prospects and future challenges in this research field.
Collapse
Affiliation(s)
- Qiang Liu
- Yaopharma Co., Ltd. Chongqing, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, China
| | - E Zhang
- Officers college of PAP, Chengdu, Sichuan, China
| | - Lili He
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, China
| | - Zhi-Xiang Yuan
- College of Pharmacy, Southwest Minzu University, Chengdu, Sichuan, China
| |
Collapse
|
512
|
Vahidian F, Safarzadeh E, Mohammadi A, Najjary S, Mansoori B, Majidi J, Babaloo Z, Aghanejad A, Shadbad MA, Mokhtarzadeh A, Baradaran B. siRNA-mediated silencing of CD44 delivered by Jet Pei enhanced Doxorubicin chemo sensitivity and altered miRNA expression in human breast cancer cell line (MDA-MB468). Mol Biol Rep 2020; 47:9541-9551. [PMID: 33206362 DOI: 10.1007/s11033-020-05952-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/28/2020] [Indexed: 12/31/2022]
Abstract
CD44, as a superficial cellular glycoprotein, is an essential factor in cell-cell and cell-matrix interaction. The CD44 expression level has been substantially up-regulated in breast cancer, and this upregulation facilitates tumor proliferation and angiogenesis. This study aims to evaluate the combination therapy of Jet Pei/CD44-specific-siRNA/doxorubicin in breast cancer MDA-MB468 cell line. The MTT assay, wound healing test, colony formation assay, DAPI staining, and flow cytometry were performed to investigate the tumoral cell viability, migration, clonogenesis, and apoptosis progression. The quantitative real-time PCR (qRT-PCR) was performed to demonstrate the CD44 expression level. Finally, the effect of CD44 silencing on the expression of VEGF, CXCR4, MMP9, and MiR-142-3p was measured. The combination of CD44-specific-siRNA with doxorubicin decreased tumoral metastasis, proliferation, invasion, and migration, and increased apoptosis in MDA-MB468 cells. In conclusions, CD44 can serve as a therapeutic target in breast cancer. Moreover, the combination therapy of CD44-specific-siRNA with doxorubicin can be a promising treatment for patients with breast cancer.
Collapse
Affiliation(s)
- Fatemeh Vahidian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student research committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Safarzadeh
- Department of Microbiology and Immunology, Faculty of Medicine, Ardebil University of Medical Sciences, Ardabil, Iran
| | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shiva Najjary
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Majidi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babaloo
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayoub Aghanejad
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
513
|
Rossi F, Noren H, Jove R, Beljanski V, Grinnemo KH. Differences and similarities between cancer and somatic stem cells: therapeutic implications. Stem Cell Res Ther 2020; 11:489. [PMID: 33208173 PMCID: PMC7672862 DOI: 10.1186/s13287-020-02018-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Over the last decades, the cancer survival rate has increased due to personalized therapies, the discovery of targeted therapeutics and novel biological agents, and the application of palliative treatments. Despite these advances, tumor resistance to chemotherapy and radiation and rapid progression to metastatic disease are still seen in many patients. Evidence has shown that cancer stem cells (CSCs), a sub-population of cells that share many common characteristics with somatic stem cells (SSCs), contribute to this therapeutic failure. The most critical properties of CSCs are their self-renewal ability and their capacity for differentiation into heterogeneous populations of cancer cells. Although CSCs only constitute a low percentage of the total tumor mass, these cells can regrow the tumor mass on their own. Initially identified in leukemia, CSCs have subsequently been found in cancers of the breast, the colon, the pancreas, and the brain. Common genetic and phenotypic features found in both SSCs and CSCs, including upregulated signaling pathways such as Notch, Wnt, Hedgehog, and TGF-β. These pathways play fundamental roles in the development as well as in the control of cell survival and cell fate and are relevant to therapeutic targeting of CSCs. The differences in the expression of membrane proteins and exosome-delivered microRNAs between SSCs and CSCs are also important to specifically target the stem cells of the cancer. Further research efforts should be directed toward elucidation of the fundamental differences between SSCs and CSCs to improve existing therapies and generate new clinically relevant cancer treatments.
Collapse
Affiliation(s)
- Fiorella Rossi
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA
| | - Hunter Noren
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA
| | - Richard Jove
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA
| | - Vladimir Beljanski
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA.
| | - Karl-Henrik Grinnemo
- NSU Cell Therapy Institute, Nova Southeastern University, 3301 College Ave, 3200 South University Drive, Fort Lauderdale, FL, 33328, USA. .,Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden. .,Department of Surgical Sciences, Division of Cardiothoracic Surgery and Anaesthesiology, Uppsala University, Akademiska University Hospital, Akademiska sjukhuset, ingång 50, 4 tr, 751 85, Uppsala, Sweden.
| |
Collapse
|
514
|
Strosznajder AK, Wójtowicz S, Jeżyna MJ, Sun GY, Strosznajder JB. Recent Insights on the Role of PPAR-β/δ in Neuroinflammation and Neurodegeneration, and Its Potential Target for Therapy. Neuromolecular Med 2020; 23:86-98. [PMID: 33210212 PMCID: PMC7929960 DOI: 10.1007/s12017-020-08629-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023]
Abstract
Peroxisome proliferator-activated receptor (PPAR) β/δ belongs to the family of hormone and lipid-activated nuclear receptors, which are involved in metabolism of long-chain fatty acids, cholesterol, and sphingolipids. Similar to PPAR-α and PPAR-γ, PPAR-β/δ also acts as a transcription factor activated by dietary lipids and endogenous ligands, such as long-chain saturated and polyunsaturated fatty acids, and selected lipid metabolic products, such as eicosanoids, leukotrienes, lipoxins, and hydroxyeicosatetraenoic acids. Together with other PPARs, PPAR-β/δ displays transcriptional activity through interaction with retinoid X receptor (RXR). In general, PPARs have been shown to regulate cell differentiation, proliferation, and development and significantly modulate glucose, lipid metabolism, mitochondrial function, and biogenesis. PPAR-β/δ appears to play a special role in inflammatory processes and due to its proangiogenic and anti-/pro-carcinogenic properties, this receptor has been considered as a therapeutic target for treating metabolic syndrome, dyslipidemia, carcinogenesis, and diabetes. Until now, most studies were carried out in the peripheral organs, and despite of its presence in brain cells and in different brain regions, its role in neurodegeneration and neuroinflammation remains poorly understood. This review is intended to describe recent insights on the impact of PPAR-β/δ and its novel agonists on neuroinflammation and neurodegenerative disorders, including Alzheimer’s and Parkinson’s, Huntington’s diseases, multiple sclerosis, stroke, and traumatic injury. An important goal is to obtain new insights to better understand the dietary and pharmacological regulations of PPAR-β/δ and to find promising therapeutic strategies that could mitigate these neurological disorders.
Collapse
Affiliation(s)
- Anna K Strosznajder
- Faculty of Medicine, Medical University of Bialystok, 1 Kilinskiego st., 15-089, Białystok, Poland
| | - Sylwia Wójtowicz
- Department of Cellular Signaling, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawińskiego st., 02-106, Warsaw, Poland
| | - Mieszko J Jeżyna
- Faculty of Medicine, Medical University of Bialystok, 1 Kilinskiego st., 15-089, Białystok, Poland
| | - Grace Y Sun
- Biochemistry Department, University of Missouri, Columbia, MO, 65211, USA
| | - Joanna B Strosznajder
- Department of Cellular Signaling, Mossakowski Medical Research Centre Polish Academy of Sciences, 5 Pawińskiego st., 02-106, Warsaw, Poland.
| |
Collapse
|
515
|
Bionaz M, Vargas-Bello-Pérez E, Busato S. Advances in fatty acids nutrition in dairy cows: from gut to cells and effects on performance. J Anim Sci Biotechnol 2020; 11:110. [PMID: 33292523 PMCID: PMC7667790 DOI: 10.1186/s40104-020-00512-8] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
High producing dairy cows generally receive in the diet up to 5-6% of fat. This is a relatively low amount of fat in the diet compared to diets in monogastrics; however, dietary fat is important for dairy cows as demonstrated by the benefits of supplementing cows with various fatty acids (FA). Several FA are highly bioactive, especially by affecting the transcriptome; thus, they have nutrigenomic effects. In the present review, we provide an up-to-date understanding of the utilization of FA by dairy cows including the main processes affecting FA in the rumen, molecular aspects of the absorption of FA by the gut, synthesis, secretion, and utilization of chylomicrons; uptake and metabolism of FA by peripheral tissues, with a main emphasis on the liver, and main transcription factors regulated by FA. Most of the advances in FA utilization by rumen microorganisms and intestinal absorption of FA in dairy cows were made before the end of the last century with little information generated afterwards. However, large advances on the molecular aspects of intestinal absorption and cellular uptake of FA were made on monogastric species in the last 20 years. We provide a model of FA utilization in dairy cows by using information generated in monogastrics and enriching it with data produced in dairy cows. We also reviewed the latest studies on the effects of dietary FA on milk yield, milk fatty acid composition, reproduction, and health in dairy cows. The reviewed data revealed a complex picture with the FA being active in each step of the way, starting from influencing rumen microbiota, regulating intestinal absorption, and affecting cellular uptake and utilization by peripheral tissues, making prediction on in vivo nutrigenomic effects of FA challenging.
Collapse
Affiliation(s)
- Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA.
| | - Einar Vargas-Bello-Pérez
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Grønnegårdsvej 3, DK-1870, Frederiksberg C, Denmark
| | - Sebastiano Busato
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
516
|
Osteopontin: A Key Regulator of Tumor Progression and Immunomodulation. Cancers (Basel) 2020; 12:cancers12113379. [PMID: 33203146 PMCID: PMC7698217 DOI: 10.3390/cancers12113379] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Anti-PD-1/PD-L1 and anti-CTLA-4-based immune checkpoint blockade (ICB) immunotherapy have recently emerged as a breakthrough in human cancer treatment. Durable efficacy has been achieved in many types of human cancers. However, not all human cancers respond to current ICB immunotherapy and only a fraction of the responsive cancers exhibit efficacy. Osteopontin (OPN) expression is highly elevated in human cancers and functions as a tumor promoter. Emerging data suggest that OPN may also regulate immune cell function in the tumor microenvironment. This review aims at OPN function in human cancer progression and new findings of OPN as a new immune checkpoint. We propose that OPN compensates PD-L1 function to promote tumor immune evasion, which may underlie human cancer non-response to current ICB immunotherapy. Abstract OPN is a multifunctional phosphoglycoprotein expressed in a wide range of cells, including osteoclasts, osteoblasts, neurons, epithelial cells, T, B, NK, NK T, myeloid, and innate lymphoid cells. OPN plays an important role in diverse biological processes and is implicated in multiple diseases such as cardiovascular, diabetes, kidney, proinflammatory, fibrosis, nephrolithiasis, wound healing, and cancer. In cancer patients, overexpressed OPN is often detected in the tumor microenvironment and elevated serum OPN level is correlated with poor prognosis. Initially identified in activated T cells and termed as early T cell activation gene, OPN links innate cells to adaptive cells in immune response to infection and cancer. Recent single cell RNA sequencing revealed that OPN is primarily expressed in tumor cells and tumor-infiltrating myeloid cells in human cancer patients. Emerging experimental data reveal a key role of OPN is tumor immune evasion through regulating macrophage polarization, recruitment, and inhibition of T cell activation in the tumor microenvironment. Therefore, in addition to its well-established direct tumor cell promotion function, OPN also acts as an immune checkpoint to negatively regulate T cell activation. The OPN protein level is highly elevated in peripheral blood of human cancer patients. OPN blockade immunotherapy with OPN neutralization monoclonal antibodies (mAbs) thus represents an attractive approach in human cancer immunotherapy.
Collapse
|
517
|
Curcumin may be a potential adjuvant treatment drug for colon cancer by targeting CD44. Int Immunopharmacol 2020; 88:106991. [PMID: 33182071 DOI: 10.1016/j.intimp.2020.106991] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 09/07/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022]
Abstract
Despite the considerable advances in treatment method development, the mortality rate related to colon cancer still ranks the fifth in all tumor-related diseases. Recently, there has been growing evidences supporting the existence of colon cancer stem cells (CSCs) might be one of the main causes for initiation, progression and recurrence of colon cancer. Curcumin has been shown to possess anticancer activities. It has also been suggested that curcumin was effective against colon CSCs by coupling with CD44, a robust marker and functional important molecule for colorectal CSC. In the present study, we confirmed that curcumin can inhibit the proliferation, colony formation, migration and tumor sphere formation of colon cancer cells. Results from real-time PCR and western blotting had suggested that curcumin could down-regulate the expression of CD44. Moreover, results from flow cytometry had further revealed that curcumin could decrease the proportion of CD44+ colon cancer cells. After the expression of CD44 had been knocked down by using siRNA, the inhibition effects of curcumin against CD44+ colon cancer cells were observed to be reduced significantly. Moreover, it had been observed that the cellular uptake of curcumin was significantly higher in CD44+ colon cancer cells. Results from flow cytometry had shown that curcumin could induce apoptosis in CD44+ colon cancer cells. Altogether, our results suggested that curcumin might be an adjuvant drug for the treatment of colorectal cancer by targeting CD44.
Collapse
|
518
|
Revised Exon Structure of l-DOPA Decarboxylase ( DDC) Reveals Novel Splice Variants Associated with Colorectal Cancer Progression. Int J Mol Sci 2020; 21:ijms21228568. [PMID: 33202911 PMCID: PMC7697000 DOI: 10.3390/ijms21228568] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/26/2022] Open
Abstract
Colorectal cancer (CRC) is a highly heterogenous malignancy with an increased mortality rate. Aberrant splicing is a typical characteristic of CRC, and several studies support the prognostic value of particular transcripts in this malignancy. l-DOPA decarboxylase (DDC) and its derivative neurotransmitters play a multifaceted role in physiological and pathological states. Our recent data support the existence of 6 DDC novel exons. In this study, we investigated the existence of additional DDC novel exons and transcripts, and their potential value as biomarkers in CRC. Next-generation sequencing (NGS) in 55 human cell lines coupled with Sanger sequencing uncovered 3 additional DDC novel exons and 20 splice variants, 7 of which likely encode new protein isoforms. Eight of these transcripts were detected in CRC. An in-house qPCR assay was developed and performed in TNM II and III CRC samples for the quantification of transcripts bearing novel exons. Extensive biostatistical analysis uncovered the prognostic value of specific DDC novel exons for patients’ disease-free and overall survival. The revised DDC exon structure, the putative protein isoforms with distinct functions, and the prognostic value of novel exons highlight the pivotal role of DDC in CRC progression, indicating its potential utility as a molecular biomarker in CRC.
Collapse
|
519
|
Peiretti F, Montanari R, Capelli D, Bonardo B, Colson C, Amri EZ, Grimaldi M, Balaguer P, Ito K, Roeder RG, Pochetti G, Brunel JM. A Novel N-Substituted Valine Derivative with Unique Peroxisome Proliferator-Activated Receptor γ Binding Properties and Biological Activities. J Med Chem 2020; 63:13124-13139. [PMID: 33142057 DOI: 10.1021/acs.jmedchem.0c01555] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A proprietary library of novel N-aryl-substituted amino acid derivatives bearing a hydroxamate head group allowed the identification of compound 3a that possesses weak proadipogenic and peroxisome proliferator-activated receptor γ (PPARγ) activating properties. The systematic optimization of 3a, in order to improve its PPARγ agonist activity, led to the synthesis of compound 7j (N-aryl-substituted valine derivative) that possesses dual PPARγ/PPARα agonistic activity. Structural and kinetic analyses reveal that 7j occupies the typical ligand binding domain of the PPARγ agonists with, however, a unique high-affinity binding mode. Furthermore, 7j is highly effective in preventing cyclin-dependent kinase 5-mediated phosphorylation of PPARγ serine 273. Although less proadipogenic than rosiglitazone, 7j significantly increases adipocyte insulin-stimulated glucose uptake and efficiently promotes white-to-brown adipocyte conversion. In addition, 7j prevents oleic acid-induced lipid accumulation in hepatoma cells. The unique biochemical properties and biological activities of compound 7j suggest that it would be a promising candidate for the development of compounds to reduce insulin resistance, obesity, and nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Franck Peiretti
- Aix Marseille University, INSERM, INRAE, C2VN, 13385 Marseille, France
| | - Roberta Montanari
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Salaria km. 29.300, Monterotondo Stazione, 00015 Rome, Italy
| | - Davide Capelli
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Salaria km. 29.300, Monterotondo Stazione, 00015 Rome, Italy
| | | | - Cécilia Colson
- Université Côte d'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | - Ez-Zoubir Amri
- Université Côte d'Azur, CNRS, Inserm, iBV, 06108 Nice, France
| | - Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, University of Montpellier, ICM, 34298 Montpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM, University of Montpellier, ICM, 34298 Montpellier, France
| | - Keiichi Ito
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, United States
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, New York 10065, United States
| | - Giorgio Pochetti
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via Salaria km. 29.300, Monterotondo Stazione, 00015 Rome, Italy
| | | |
Collapse
|
520
|
Kukkar D, Kukkar P, Kumar V, Hong J, Kim KH, Deep A. Recent advances in nanoscale materials for antibody-based cancer theranostics. Biosens Bioelectron 2020; 173:112787. [PMID: 33190049 DOI: 10.1016/j.bios.2020.112787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/08/2020] [Accepted: 10/30/2020] [Indexed: 02/07/2023]
Abstract
The quest for advanced management tools or options of various cancers has been on the rise to efficiently reduce their risks of mortality without the demerits of conventional treatments (e.g., undesirable side effects of the medications on non-target tissues, non-targeted distribution, slow clearance of the administered drugs, and the development of drug resistance over the duration of therapy). In this context, nanomaterials-antibody conjugates can offer numerous advantages in the development of cancer theranostics over conventional delivery systems (e.g., highly specific and enhanced biodistribution of the drug in targeted tissues, prolonged systemic circulation, low toxicity, and minimally invasive molecular imaging). This review comprehensively discusses and evaluates recent advances in the application of nanomaterial-antibody bioconjugates for cancer theranostics for the further advancement in the control of diverse cancerous diseases. Further, discussion is expanded to cover the various challenges and limitations associated with the design and development of nanomaterial-antibody conjugates applicable towards better management of cancer.
Collapse
Affiliation(s)
- Deepak Kukkar
- Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab, 140406, India
| | - Preeti Kukkar
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib, Punjab, 140406, India
| | - Vanish Kumar
- National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Jongki Hong
- College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul, 02447, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763 Republic of Korea.
| | - Akash Deep
- Central Scientific Instruments Organization (CSIR-CSIO), Sector 30 C, Chandigarh, 160030, India.
| |
Collapse
|
521
|
Hai W, Bao X, Sun K, Li B, Peng J, Xu Y. The Labeling, Visualization, and Quantification of Hyaluronan Distribution in Tumor-Bearing Mouse Using PET and MR Imaging. Pharm Res 2020; 37:237. [PMID: 33151373 DOI: 10.1007/s11095-020-02957-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/15/2020] [Indexed: 11/30/2022]
Abstract
PURPOSE Hyaluronan (HA) based biomaterials are widely used as tissue scaffolds, drug formulations, as well as targeting ligands and imaging probes for diagnosis and drug delivery. However, because of the presence of abundant endogenous HA presented in various tissues in vivo, the pharmacokinetic behavior and biodistribution patterns of exogenously administered HAs have not been well characterized. METHODS The HA backbone was modified with Diethylenetriamine (DTPA) to enable the chelation of gadolinium (Gd) and aluminum (Al) ions. Series of PET and MR imaging were taken after the injection of HA-DTPA-Gd and HA-DTPA-Al18F while using18F-FDG and Magnevist(DTPA-Gd) as controls. The Tomographic images were analyzed and quantified to reveal the distribution and locations of HA in tumor-bearing mice. RESULTS The labeled HAs had good stability in plasma. They retained binding affinity towards CD44s on tumor cell surface. The injected HAs distributed widely in various organs, but were found to be cleared quickly except inside tumor tissues where the signals were higher and persisted longer. CONCLUSION Medical imaging tools, including MR and PET, can be highly valuable for examining biomaterial distribution non-invasively. The HA tumor accumulation properties may be explored for the development of active targeting drug carriers and molecular probes.
Collapse
Affiliation(s)
- Wangxi Hai
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Xiao Bao
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Kang Sun
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd., Shanghai, 200240, People's Republic of China
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinliang Peng
- School of Pharmacy, Shanghai Jiao Tong University, No.800, Dongchuan Rd., Shanghai, 200240, People's Republic of China.
| | - Yuhong Xu
- School of Pharmacy and Chemistry, Dali University, Xia Guan, Dali, Yunnan, 6710000, People's Republic of China.
| |
Collapse
|
522
|
Bei Y, Cheng N, Chen T, Shu Y, Yang Y, Yang N, Zhou X, Liu B, Wei J, Liu Q, Zheng W, Zhang W, Su H, Zhu W, Ji J, Shen P. CDK5 Inhibition Abrogates TNBC Stem-Cell Property and Enhances Anti-PD-1 Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001417. [PMID: 33240752 PMCID: PMC7675186 DOI: 10.1002/advs.202001417] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, in which the higher frequency of cancer stem cells (CSCs) correlates with the poor clinical outcome. An aberrant activation of CDK5 is found to associate with TNBC progression closely. CDK5 mediates PPARγ phosphorylation at its Ser 273, which induces CD44 isoform switching from CD44s to CD44v, resulting in an increase of stemness of TNBC cells. Blocking CDK5/pho-PPARγ significantly reduces CD44v+ BCSCs population in tumor tissues, thus abrogating metastatic progression in TNBC mouse model. Strikingly, diminishing stemness transformation reverses immunosuppressive microenvironment and enhances anti-PD-1 therapeutic efficacy on TNBC. Mechanistically, CDK5 switches the E3 ubiquitin ligase activity of PPARγ and directly protects ESRP1 from a ubiquitin-dependent proteolysis. This finding firstly indicates that CDK5 blockade can be a potent strategy to diminish stemness transformation and increase the response to PD-1 blockade in TNBC therapy.
Collapse
Affiliation(s)
- Yuncheng Bei
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
| | - Nan Cheng
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
| | - Ting Chen
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
- Laura and Isaac Perlmutter Cancer CenterNew York University Langone Medical CenterNew YorkNYUSA
| | - Yuxin Shu
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
| | - Ye Yang
- State Key Laboratory Cultivation Base for TCM Quality and EfficacyNanjing University of Chinese MedicineNanjing210023P. R. China
| | - Nanfei Yang
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
| | - Xinyu Zhou
- State Key Laboratory of Protein and Plant Gene ResearchCollege of Life SciencesPeking UniversityBeijing100871P. R. China
| | - Baorui Liu
- The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing210008P. R. China
| | - Jia Wei
- The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing210008P. R. China
| | - Qin Liu
- The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing210008P. R. China
| | - Wei Zheng
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
| | - Wenlong Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
| | - Huifang Su
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
| | - Wei‐Guo Zhu
- Guangdong Key Laboratory of Genome Instability and Human DiseaseShenzhen University Carson Cancer CenterDepartment of Biochemistry and Molecular BiologyShenzhen University School of MedicineShenzhen518060P. R. China
| | - Jianguo Ji
- State Key Laboratory of Protein and Plant Gene ResearchCollege of Life SciencesPeking UniversityBeijing100871P. R. China
| | - Pingping Shen
- State Key Laboratory of Pharmaceutical Biotechnology and The Comprehensive Cancer CenterNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjing UniversityNanjing210046P. R. China
- Guangdong Key Laboratory of Genome Instability and Human DiseaseShenzhen University Carson Cancer CenterDepartment of Biochemistry and Molecular BiologyShenzhen University School of MedicineShenzhen518060P. R. China
| |
Collapse
|
523
|
Comment on "Expression of CD44 and the survival in glioma: a meta-analysis". Biosci Rep 2020; 40:226608. [PMID: 33030522 PMCID: PMC7593535 DOI: 10.1042/bsr20202812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 12/27/2022] Open
Abstract
CD44 has been considered as a cancer stem cell marker in various tumors. With great enthusiasm, we read an article written by Wu et al. entitled "Expression of CD44 and the survival in glioma: a meta-analysis" published in Bioscience Reports. The authors performed meta-analyses to study the prognostic significance of CD44 in gliomas, and drew the conclusion that high expression of CD44 may predict poor survival in glioma, particularly in WHO grade II-III gliomas. However, two major defects exist in the present study, which made the meta-analysis on the prognostic significance of CD44 in all gliomas unreliable. In this commentary, we discussed the limitations and significance of the present study.
Collapse
|
524
|
Shelygin YA, Sushkov OI, Sukhina MA, Saifutdinova KR, Muratov II, Shakhmatov DG, Achkasov SI. [Effectiveness of intraperitoneal chemotherapy for t4 colon cancer]. Khirurgiia (Mosk) 2020:36-43. [PMID: 33047584 DOI: 10.17116/hirurgia202010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To determine the effect of intraperitoneal chemotherapy (IPC) with mitomycin C on expression of intraperitoneal cancer cells markers in patients with T4 colon cancer. MATERIAL AND METHODS For the period from January 2019 to April 2020, 65 patients with T4 colon cancer were included in prospective comparative study. There were 46 patients in the main group and 19 patients in the control group. In the main group, surgical procedure was followed by IPC with mitomycin C. No IPC was performed in the control group. An effectiveness of IPC was evaluated using CD133, CD24, CD26, CD44, CD184 markers expression in peritoneal lavages. RESULTS Significant between-group differences were observed for CD133 (p=0.0168), CD24 (p=0.0455) and CD44 (p=0.0012). There was a tendency to decrease in the level of CD184 expression in both groups in the second lavage (p=0.0605). CONCLUSION IPC in patients with T4 colon cancer can reduce the expression and proliferative potential of free cancer cells.
Collapse
Affiliation(s)
- Yu A Shelygin
- Ryzhikh National Medical Research Centre for Coloproctology, Moscow, Russia.,Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - O I Sushkov
- Ryzhikh National Medical Research Centre for Coloproctology, Moscow, Russia
| | - M A Sukhina
- Ryzhikh National Medical Research Centre for Coloproctology, Moscow, Russia.,Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - K R Saifutdinova
- Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - I I Muratov
- Ryzhikh National Medical Research Centre for Coloproctology, Moscow, Russia
| | - D G Shakhmatov
- Ryzhikh National Medical Research Centre for Coloproctology, Moscow, Russia.,Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - S I Achkasov
- Ryzhikh National Medical Research Centre for Coloproctology, Moscow, Russia.,Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| |
Collapse
|
525
|
Bhattacharya A, Mukherjee S, Khan P, Banerjee S, Dutta A, Banerjee N, Sengupta D, Basak U, Chakraborty S, Dutta A, Chattopadhyay S, Jana K, Sarkar DK, Chatterjee S, Das T. SMAR1 repression by pluripotency factors and consequent chemoresistance in breast cancer stem-like cells is reversed by aspirin. Sci Signal 2020; 13:13/654/eaay6077. [PMID: 33082288 DOI: 10.1126/scisignal.aay6077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The high abundance of drug efflux pumps in cancer stem cells (CSCs) contributes to chemotherapy resistance. The transcriptional regulator SMAR1 suppresses CSC expansion in colorectal cancer, and increased abundance of SMAR1 is associated with better prognosis. Here, we found in breast tumors that the expression of SMAR1 was decreased in CSCs through the cooperative interaction of the pluripotency factors Oct4 and Sox2 with the histone deacetylase HDAC1. Overexpressing SMAR1 sensitized CSCs to chemotherapy through SMAR1-dependent recruitment of HDAC2 to the promoter of the gene encoding the drug efflux pump ABCG2. Treating cultured CSCs or 4T1 tumor-bearing mice with the nonsteroidal anti-inflammatory drug aspirin restored SMAR1 expression and ABCG2 repression and enhanced tumor sensitivity to doxorubicin. Our findings reveal transcriptional mechanisms regulating SMAR1 that also regulate cancer stemness and chemoresistance and suggest that, by restoring SMAR1 expression, aspirin might enhance chemotherapeutic efficacy in patients with stem-like tumors.
Collapse
Affiliation(s)
- Apoorva Bhattacharya
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Shravanti Mukherjee
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Poulami Khan
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Shruti Banerjee
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Apratim Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Nilanjan Banerjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Debomita Sengupta
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Udit Basak
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Sourio Chakraborty
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Abhishek Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Samit Chattopadhyay
- Department of Biological Sciences, BITS-Pilani, K K Birla Goa Campus, NH 17B, Zuarinagar, Goa-403 726, India
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Diptendra K Sarkar
- Department of Surgery, IPGMER and SSKM Hospital, Kolkata- 700 020, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India
| | - Tanya Das
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII M, Kolkata-700 054, India.
| |
Collapse
|
526
|
Yan X, Han D, Chen Z, Han C, Dong W, Han L, Zou L, Zhang J, Liu Y, Chai J. RUNX2 interacts with BRG1 to target CD44 for promoting invasion and migration of colorectal cancer cells. Cancer Cell Int 2020; 20:505. [PMID: 33071648 PMCID: PMC7559818 DOI: 10.1186/s12935-020-01544-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background Cancer stem cells (CSCs) play an important role in tumor invasion and metastasis. CD44 is the most commonly used marker of CSCs, with the potential to act as a determinant against the invasion and migration of CSCs and as the key factor in epithelial-mesenchymal transition (EMT)-like changes that occur in colorectal cancer (CRC). Runt-related transcription factor-2 (RUNX2) is a mesenchymal stem marker for cancer that is involved in stem cell biology and tumorigenesis. However, whether RUNX2 is involved in CSC and in inducing EMT-like changes in CRC remains uncertain, warranting further investigation. Methods We evaluated the role of RUNX2 in the invasion and migration of CRC cells as a promoter of CD44-induced stem cell- and EMT-like modifications. For this purpose, western blotting was employed to analyze the expression of differential proteins in CRC cells. We conducted sphere formation, wound healing, and transwell assays to investigate the biological functions of RUNX2 in CRC cells. Cellular immunofluorescence and coimmunoprecipitation (co-IP) assays were performed to study the relationship between RUNX2 and BRG1. Real-time quantitative PCR (RT-qPCR) and immunohistochemistry (IHC) were performed to analyze the expressions of RUNX2, BRG1, and CD44 in the CRC tissues. Results We found that RUNX2 could markedly induce the CRC cell sphere-forming ability and EMT. Interestingly, the RUNX2-mediated EMT in CRC cell may be associated with the activation of CD44. Furthermore, RUNX2 was found to interact with BRG1 to promote the recruitment of RUNX2 to the CD44 promoter. Conclusions Our cumulative findings suggest that RUNX2 and BRG1 can form a compact complex to regulate the transcription and expression of CD44, which has possible involvement in the invasion and migration of CRC cells.
Collapse
Affiliation(s)
- Xiaodong Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069 China
| | - Dali Han
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong Province China
| | - Zhiqiang Chen
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100069 China
| | - Chao Han
- Department of Gastrointestinal Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000 Shanxi Province China
| | - Wei Dong
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong Province China
| | - Li Han
- Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong Province China
| | - Lei Zou
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong Province China
| | - Jianbo Zhang
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong Province China
| | - Yan Liu
- Shandong Academy of Occupational Health and Occupational Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 Shandong Province China
| | - Jie Chai
- Department of Gastrointestinal Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, No. 440 Ji-Yan Road, Jinan, 250117 Shandong Province China.,Tianjin Medical University, Tianjin, 300070 China
| |
Collapse
|
527
|
AYDEMİR ÇOBAN E, TECİMEL D, KAŞIKCI E, BAYRAK ÖF, ŞAHİN F. E-cadherin might be a stage-dependent modulator in aggressiveness in pancreatic cancer cells. Turk J Biol 2020; 44:230-237. [PMID: 33110361 PMCID: PMC7585161 DOI: 10.3906/biy-1912-60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 08/13/2020] [Indexed: 11/03/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) pathology is known for its uncontrollable progress due to highly invasive characteristics and refractory behavior against existing chemotherapies. The aberrant expression of CDH1 (expresses the protein E-cadherin) is associated with increased overall survival in various cancers, however, E-cadherin expression in PDAC progression has remained elusive. We investigated the impact of exogenously elevated E-cadherin levels on the tumorigenicity of transduced low grade and metastatic PDAC cell lines, Panc-1 and AsPC-1, respectively. Constitutive expression of E-cadherin promoted a more hybrid E/M state in AsPC-1 cells, while it was associated with the acquisition of a more epithelial-like state in Panc1 cells. Our study suggests that E-cadherin may play differential roles in determining the metastatic characteristics of primary and metastatic pancreatic cancer cells.
Collapse
Affiliation(s)
- Esra AYDEMİR ÇOBAN
- Department of Genetics and Bioengineering, Engineering Faculty, Yeditepe University, İstanbulTurkey
| | - Didem TECİMEL
- Department of Genetics and Bioengineering, Engineering Faculty, Yeditepe University, İstanbulTurkey
- Department of Medical Genetics, Faculty of Medicine, Yeditepe University, Yeditepe University Hospital, İstanbulTurkey
| | - Ezgi KAŞIKCI
- Department of Genetics and Bioengineering, Engineering Faculty, Yeditepe University, İstanbulTurkey
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, New York, NYUSA
| | - Ömer Faruk BAYRAK
- Department of Genetics and Bioengineering, Engineering Faculty, Yeditepe University, İstanbulTurkey
- Department of Medical Genetics, Faculty of Medicine, Yeditepe University, Yeditepe University Hospital, İstanbulTurkey
| | - Fikrettin ŞAHİN
- Department of Genetics and Bioengineering, Engineering Faculty, Yeditepe University, İstanbulTurkey
| |
Collapse
|
528
|
Munier CC, Ottmann C, Perry MWD. 14-3-3 modulation of the inflammatory response. Pharmacol Res 2020; 163:105236. [PMID: 33053447 DOI: 10.1016/j.phrs.2020.105236] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 01/11/2023]
Abstract
Regulation of inflammation is a central part of the maintenance of homeostasis by the immune system. One important class of regulatory protein that has been shown to have effects on the inflammatory process are the 14-3-3 proteins. Herein we describe the roles that have been identified for 14-3-3 in regulation of the inflammatory response. These roles encompass regulation of the response that affect inflammation at the genetic, molecular and cellular levels. At a genetic level 14-3-3 is involved in the regulation of multiple transcription factors and affects the transcription of key effectors of the immune response. At a molecular level many of the constituent parts of the inflammatory process, such as pattern recognition receptors, protease activated receptors and cytokines are regulated through phosphorylation and recognition by 14-3-3 whilst disruption of the recognition processes has been observed to result in clinical syndromes. 14-3-3 is also involved in the regulation of cell proliferation and differentiation, this has been shown to affect the immune system, particularly T- and B-cells. Finally, we discuss how abnormal levels of 14-3-3 contribute to undesirable immune responses and chronic inflammatory conditions.
Collapse
Affiliation(s)
- Claire C Munier
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, the Netherlands
| | - Christian Ottmann
- Laboratory of Chemical Biology, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Technische Universiteit Eindhoven, Den Dolech 2, 5612 AZ Eindhoven, the Netherlands
| | - Matthew W D Perry
- Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden.
| |
Collapse
|
529
|
Kazberuk A, Zareba I, Palka J, Surazynski A. A novel plausible mechanism of NSAIDs-induced apoptosis in cancer cells: the implication of proline oxidase and peroxisome proliferator-activated receptor. Pharmacol Rep 2020; 72:1152-1160. [PMID: 32710395 PMCID: PMC7550302 DOI: 10.1007/s43440-020-00140-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/19/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
Although pharmaco-epidemiological studies provided evidence for the anticancer potential of non-steroidal anti-inflammatory drugs (NSAIDs), the mechanism of their anti-cancer activity is not known. Several lines of evidence suggest that proline dehydrogenase/proline oxidase (PRODH/POX) may represent a target for NSAIDs-dependent anti-cancer activity. PRODH/POX catalyzes conversion of proline into Δ1-pyrroline-5-carboxylate releasing ATP or reactive oxygen species for autophagy/apoptosis. Since NSAIDs are ligands of peroxisome proliferator-activated receptor (PPARs) and PPARs are implicated in PRODH/POX-dependent apoptosis we provided a hypothesis on the mechanism of NSAIDs-induced apoptosis in cancer cells.
Collapse
Affiliation(s)
- Adam Kazberuk
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Ilona Zareba
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Jerzy Palka
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| | - Arkadiusz Surazynski
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2D, 15-222 Białystok, Poland
| |
Collapse
|
530
|
Liang E, Lu Y, Shi Y, Zhou Q, Zhi F. MYEOV increases HES1 expression and promotes pancreatic cancer progression by enhancing SOX9 transactivity. Oncogene 2020; 39:6437-6450. [PMID: 32879444 DOI: 10.1038/s41388-020-01443-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/05/2020] [Accepted: 08/21/2020] [Indexed: 01/07/2023]
Abstract
Emerging evidence indicates that myeloma overexpressed (MYEOV) is an oncogene and plays crucial roles in multiple human cancers. However, its roles in the development of pancreatic ductal adenocarcinoma (PDAC) remain elusive. Here, we provide evidence of essential roles of MYEOV in the development and progression of PDAC. In tumor specimens derived from pancreatic cancer patients, MYEOV was overexpressed and associated with poor prognosis. In addition, MYEOV expression in PDAC was upregulated through promoter hypomethylation. MYEOV depletion impaired metastatic ability and proliferation of PDAC cells both in vitro and in vivo, whereas its overexpression had the opposite effect. Mechanistic investigations revealed that MYEOV interacted with SRY-Box Transcription Factor 9 (SOX9), a well-known oncogenic transcription factor in PDAC. This interaction occurred mainly in the nuclei of PDAC cells and increased transcriptional activity of SOX9. Furthermore, MYEOV promoted the expression of Hairy and enhancer of split homolog-1 (HES1), a SOX9 target gene, by enhancing SOX9 DNA-binding ability to the HES1 enhancer without affecting the protein level and subcellular localization of SOX9. HES1 knockdown partly abrogated the oncogenic effect of MYEOV. Our findings suggest that MYEOV could be a potential prognostic biomarker and therapeutic target for PDAC.
Collapse
Affiliation(s)
- Erbo Liang
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Yishi Lu
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Yanqiang Shi
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Qian Zhou
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Fachao Zhi
- Guangdong Provincial Key Laboratory of Gastroenterology, Institute of Gastroenterology of Guangdong Province, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China.
| |
Collapse
|
531
|
Kung WM, Lin CC, Kuo CY, Juin YC, Wu PC, Lin MS. Wild Bitter Melon Exerts Anti-Inflammatory Effects by Upregulating Injury-Attenuated CISD2 Expression following Spinal Cord Injury. Behav Neurol 2020; 2020:1080521. [PMID: 33062068 PMCID: PMC7545449 DOI: 10.1155/2020/1080521] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/19/2020] [Accepted: 09/12/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Spinal cord injuries (SCIs) induce secondary neuroinflammation through astrocyte reactivation, which adversely affects neuronal survival and eventually causes long-term disability. CDGSH iron sulfur domain 2 (CISD2), which has been reported to be involved in mediating the anti-inflammatory responses, can serve as a target in SCI therapy. Wild bitter melon (WBM; Momordica charantia Linn. var. abbreviata Ser.) contains an anti-inflammatory agent called alpha-eleostearic acid (α-ESA), a peroxisome proliferator-activated receptor-β (PPAR-β) ligand. Activated PPAR-β inhibits the nuclear factor κB (NF-κB) signaling pathway via the inhibition of IκB (inhibitor of NF-κB) degradation. The role of astrocyte deactivation and CISD2 in anti-inflammatory mechanisms of WBM in acute SCIs is unknown. MATERIALS AND METHODS A mouse model of SCI was generated via spinal cord hemisection. The SCI mice were administered WBM intraperitoneally (500 mg/kg bodyweight). Lipopolysaccharide- (LPS-) stimulated ALT cells (astrocytes) were used as an in vitro model for studying astrocyte-mediated inflammation post-SCI. The roles of CISD2 and PPAR-β in inflammatory signaling were examined using LPS-stimulated SH-SY5Y cells transfected with si-CISD2 or scramble RNA. RESULTS WBM mitigated the SCI-induced downregulation of CISD2, PPAR-β, and IκB and upregulation of glial fibrillary acidic protein (GFAP; marker of astrocyte reactivation) in the spinal cord of SCI mice. Additionally, WBM (1 μg/mL) mitigated LPS-induced CISD2 downregulation. Furthermore, SH-SY5Y neural cells with CISD2 knockdown exhibited decreased PPAR-β expression and augmented NF-κB signaling. CONCLUSION To the best of our knowledge, this is the first study to report that CISD2 is an upstream modulator of the PPAR-β/NF-κB proinflammatory signaling pathway in neural cells, and that WBM can mitigate the injury-induced downregulation of CISD2 in SCI mice and LPS-stimulated ALT astrocytes.
Collapse
Affiliation(s)
- Woon-Man Kung
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei 11114, Taiwan
| | - Chai-Ching Lin
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan
| | - Chan-Yen Kuo
- Graduate Institute of Systems Biology and Bioinformatics, National Central University, Chungli 32001, Taiwan
| | - Yu-Ching Juin
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan
| | - Po-Ching Wu
- Department of Biomechatronic Engineering, College of Bioresources, National Ilan University, Yilan 26047, Taiwan
| | - Muh-Shi Lin
- Department of Biotechnology and Animal Science, College of Bioresources, National Ilan University, Yilan 26047, Taiwan
- Division of Neurosurgery, Department of Surgery, Kuang Tien General Hospital, Taichung 43303, Taiwan
- Department of Biotechnology, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan
- Department of Health Business Administration, College of Medical and Health Care, Hung Kuang University, Taichung 43302, Taiwan
| |
Collapse
|
532
|
Al-Othman N, Alhendi A, Ihbaisha M, Barahmeh M, Alqaraleh M, Al-Momany BZ. Role of CD44 in breast cancer. Breast Dis 2020; 39:1-13. [PMID: 31839599 DOI: 10.3233/bd-190409] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Breast cancer (BC) is among the most prevalent type of malignancy affecting females worldwide. BC is classified into different types according to the status of the expression of receptors such as estrogen receptor (ER), human epidermal growth factor receptor 2 (HER2), and progesterone receptor (PR). Androgen receptor (AR) appears to be a promising therapeutic target of BC. Binding of 5α-dihydrotestosterone (DHT) to AR controls the expression of microRNA (miRNA) molecules in BC, consequently, affecting protein expression. One of these proteins is the transmembrane glycoprotein cluster of differentiation 44 (CD44). Remarkably, CD44 is a common marker of cancer stem cells in BC. It functions as a co-receptor for a broad diversity of extracellular matrix ligands. Several ligands, primarily hyaluronic acid (HA), can interact with CD44 and mediate its functions. CD44 promotes a variety of functions independently or in cooperation with other cell-surface receptors through activation of varied signaling pathways like Rho GTPases, Ras-MAPK, and PI3K/AKT pathways to regulate cell adhesion, migration, survival, invasion, and epithelial-mesenchymal transition. In this review, we present the relations between AR, miRNA, and CD44 and their roles in BC.
Collapse
Affiliation(s)
- Nihad Al-Othman
- Division of Anatomy, Biochemistry, and Genetics, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Ala' Alhendi
- Division of Anatomy, Biochemistry, and Genetics, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Manal Ihbaisha
- Division of Anatomy, Biochemistry, and Genetics, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Myassar Barahmeh
- Division of Anatomy, Biochemistry, and Genetics, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | | | | |
Collapse
|
533
|
Interplay between Podoplanin, CD44s and CD44v in Squamous Carcinoma Cells. Cells 2020; 9:cells9102200. [PMID: 33003440 PMCID: PMC7601683 DOI: 10.3390/cells9102200] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 01/05/2023] Open
Abstract
Podoplanin and CD44 are transmembrane glycoproteins involved in inflammation and cancer. In this paper, we report that podoplanin is coordinately expressed with the CD44 standard (CD44s) and variant (CD44v) isoforms in vivo—in hyperplastic skin after a pro-inflammatory stimulus with 12-O-tetradecanoylphorbol-13-acetate (TPA)—and in vitro—in cell lines representative of different stages of mouse-skin chemical carcinogenesis, as well as in human squamous carcinoma cell (SCC) lines. Moreover, we identify CD44v10 in the mouse-skin carcinogenesis model as the only CD44 variant isoform expressed in highly aggressive spindle carcinoma cell lines together with CD44s and podoplanin. We also characterized CD44v3-10, CD44v6-10 and CD44v8-10 as the major variant isoforms co-expressed with CD44s and podoplanin in human SCC cell lines. Immunofluorescence confocal microscopy experiments show that these CD44v isoforms colocalize with podoplanin at plasma membrane protrusions and cell–cell contacts of SCC cells, as previously reported for CD44s. Furthermore, CD44v isoforms colocalize with podoplanin in chemically induced mouse-skin SCCs in vivo. Co-immunoprecipitation experiments indicate that podoplanin physically binds to CD44v3-10, CD44v6-10 and CD44v8-10 isoforms, as well as to CD44s. Podoplanin–CD44 interaction is mediated by the transmembrane and cytosolic regions and is negatively modulated by glycosylation of the extracellular domain. These results point to a functional interplay of podoplanin with both CD44v and CD44s isoforms in SCCs and give insight into the regulation of the podoplanin–CD44 association.
Collapse
|
534
|
CD44, IL-33, and ST2 Gene Polymorphisms on Hepatocellular Carcinoma Susceptibility in the Chinese Population. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2918517. [PMID: 33062675 PMCID: PMC7538256 DOI: 10.1155/2020/2918517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/24/2020] [Accepted: 09/17/2020] [Indexed: 01/27/2023]
Abstract
The interleukin- (IL-) 33/ST2 axis plays a pivotal role in tumorigenesis through influencing cancer stemness and other mechanisms. CD44 is one of the critical markers of hepatocellular carcinoma (HCC) among the cancer stem cells (CSCs). There is still a lack of CD44 gene single-nucleotide polymorphisms (SNPs) combined with IL-33/ST2 pathway single-nucleotide polymorphisms in HCC susceptibility analysis literature, although CD44 and IL-33/ST2 have been reported separately in human cancers. This study is aimed at investigating the relationship between CD44, IL-33, and ST2 SNPs and HCC susceptibility and clinicopathological features. We analyzed 565 HCC patients and 561 healthy controls in the Chinese population. The genes for CD44rs187115A>G, IL-33 rs1929992A>G, and ST2 rs3821204G>C were typed using the SNaPshot method. We found that the distribution frequencies of CD44 and ST2 alleles and genotypes in both the HCC case group and the control group were statistically significant (p < 0.05). The results showed that individuals carrying at least one G allele of the CD44 rs187115 gene were at a higher risk than the AA genotype carriers (p = 0.007, odds ratio (OR) = 1.429, 95% confidence interval (CI): 1.102-1.854). Similarly, individuals with at least one C allele of ST2 rs3821204 had a higher risk of HCC than those with GG genes (p ≤ 0.001, OR = 1.647, 95% CI: 1.296-2.093). Combining the haplotype analysis of the 3 loci suggested that CD44 rs187115, IL-33 rs1929992, and ST2 rs3821204 are associated with the risk of HCC and could potentially serve as useful genetic markers for HCC in some populations of China.
Collapse
|
535
|
Verloy R, Privat-Maldonado A, Smits E, Bogaerts A. Cold Atmospheric Plasma Treatment for Pancreatic Cancer-The Importance of Pancreatic Stellate Cells. Cancers (Basel) 2020; 12:cancers12102782. [PMID: 32998311 PMCID: PMC7601057 DOI: 10.3390/cancers12102782] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/17/2020] [Accepted: 09/26/2020] [Indexed: 01/18/2023] Open
Abstract
Simple Summary This review aims to highlight the potential of cold plasma, the fourth state of matter, as anti-cancer treatment for pancreatic cancer, and the importance of pancreatic stellate cells in the response to this treatment. Currently, a significant lack of basic research on cold plasma considering both pancreatic cancer and stellate cells exists. However, co-cultures of these populations can be advantageous, as they resemble the cell-to-cell interactions occurring in a tumor in response to therapy. Even more, these studies should be performed prior to clinical trials of cold plasma to avoid unforeseen responses to treatment. This review article provides a framework for future research of cold plasma therapies for pancreatic cancer, considering the critical role of pancreatic stellate cells in the disease and treatment outcome. Abstract Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with low five-year survival rates of 8% by conventional treatment methods, e.g., chemotherapy, radiotherapy, and surgery. PDAC shows high resistance towards chemo- and radiotherapy and only 15–20% of all patients can have surgery. This disease is predicted to become the third global leading cause of cancer death due to its significant rise in incidence. Therefore, the development of an alternative or combinational method is necessary to improve current approaches. Cold atmospheric plasma (CAP) treatments could offer multiple advantages to this emerging situation. The plasma-derived reactive species can induce oxidative damage and a cascade of intracellular signaling pathways, which could lead to cell death. Previous reports have shown that CAP treatment also influences cells in the tumor microenvironment, such as the pancreatic stellate cells (PSCs). These PSCs, when activated, play a crucial role in the propagation, growth and survival of PDAC tumors. However, the effect of CAP on PSCs is not yet fully understood. This review focuses on the application of CAP for PDAC treatment and the importance of PSCs in the response to treatment.
Collapse
Affiliation(s)
- Ruben Verloy
- Plasma Lab for Applications in Sustainability and Medicine-ANTwerp, University of Antwerp, 2610 Wilrijk, Belgium;
- Center for Oncological Research, University of Antwerp, 2610 Wilrijk, Belgium;
- Correspondence: (R.V.); (A.P.-M.); Tel.: +32-3265-2343 (R.V. & A.P.-M.)
| | - Angela Privat-Maldonado
- Plasma Lab for Applications in Sustainability and Medicine-ANTwerp, University of Antwerp, 2610 Wilrijk, Belgium;
- Center for Oncological Research, University of Antwerp, 2610 Wilrijk, Belgium;
- Correspondence: (R.V.); (A.P.-M.); Tel.: +32-3265-2343 (R.V. & A.P.-M.)
| | - Evelien Smits
- Center for Oncological Research, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Annemie Bogaerts
- Plasma Lab for Applications in Sustainability and Medicine-ANTwerp, University of Antwerp, 2610 Wilrijk, Belgium;
| |
Collapse
|
536
|
Chaiyawat P, Sirikaew N, Budprom P, Klangjorhor J, Phanphaisarn A, Teeyakasem P, Settakorn J, Pruksakorn D. Expression profiling of DNA methyl transferase I (DNMT1) and efficacy of a DNA-hypomethylating agent (decitabine) in combination with chemotherapy in osteosarcoma. J Bone Oncol 2020; 25:100321. [PMID: 33072501 PMCID: PMC7549121 DOI: 10.1016/j.jbo.2020.100321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 11/29/2022] Open
Abstract
Background Abnormality in the DNA methylation process is one of the hallmarks of cancer. Emerging evidence strongly supports the idea that defects in DNA methyl transferases (DNMTs) are involved in tumor development and progression. This alteration has major effects at the transcription level of various cancer-associated genes. Methods Expression profiles of DNMT1 were investigated in fresh frozen tissues, patient-derived cells, and formalin-fixed paraffin-embedded tissues using immunoblotting and immunohistochemistry analysis. We also examined an anti-tumor effect of single DNA-hypomethylating agent (decitabine) and a combination of decitabine and chemotherapy in osteosarcoma cell lines. Results The results showed an overexpression of DNMT1 in most cases compared to normal cells and tissue samples. DNMT1 was also expressed at the same levels in paired primary cells derived from biopsy and post-chemotherapy tissues. Expression patterns of DNMT1 were examined in 77 osteosarcoma patients of whom 82% had positive DNMT1 with an IRS score > 0. Most of the cases expressed low to moderate levels of DNMT1 (IRS range 1-8, median = 2.0). Furthermore, we found that a combination of decitabine and chemotherapy had a synergistic effect in most of the tested osteosarcoma cells at a low dose therapeutic range of decitabine. Conclusions Our study revealed DNMT1 expression patterns that indicated potential roles of DNMT1 in osteosarcoma transformation and progression. This finding also suggests the efficacy of a combination therapy of decitabine with chemotherapy for osteosarcoma treatment.
Collapse
Affiliation(s)
- Parunya Chaiyawat
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Omics Center for Health Sciences (OCHS), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nutnicha Sirikaew
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Piyaporn Budprom
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jeerawan Klangjorhor
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Areerak Phanphaisarn
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pimpisa Teeyakasem
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jongkolnee Settakorn
- Department of Pathology, Faculty of Medicine, Chiang Mai University, 110 Intawaroros, Sriphoom, Muang, Chiang Mai 50200, Thailand
| | - Dumnoensun Pruksakorn
- Musculoskeletal Science and Translational Research (MSTR) Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Omics Center for Health Sciences (OCHS), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Department of Orthopedics, Faculty of Medicine, Chiang Mai University, 110 Intawaroros, Sriphoom, Muang, Chiang Mai 50200, Thailand.,Biomedical Engineering Institute, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
537
|
Zhou S, Zhang D, Guo J, Zhang J, Chen Y. Knockdown of SNHG14 Alleviates MPP +-Induced Injury in the Cell Model of Parkinson's Disease by Targeting the miR-214-3p/KLF4 Axis. Front Neurosci 2020; 14:930. [PMID: 33071725 PMCID: PMC7536369 DOI: 10.3389/fnins.2020.00930] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Background Parkinson’s disease (PD) is the second most common neurodegenerative disease. Long non-coding RNA (lncRNA) small nucleolar RNA host gene 14 (SNHG14) has been demonstrated as an important regulator in PD pathology. However, the functional mechanisms played by SNHG14 in PD remain largely unclear. Methods We used 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 1-methyl-4-phenylpyridinium (MPP+) to establish PD mouse and cell models. The levels of SNHG14, miR-214-3p, and Krüppel-like factor 4 (KLF4) were gauged by quantitative real-time polymerase chain reaction (qRT-PCR) or western blot analysis. Cell viability and apoptosis were determined using the Cell Counting-8 Kit (CCK-8) assay and flow cytometry, respectively. The levels of inflammatory cytokines were evaluated by ELISA. The relationships among SNHG14, miR-214-3p, and KLF4 were confirmed by dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Results Our data indicated that SNHG14 was upregulated and miR-214-3p was downregulated in PD models. SNHG14 knockdown ameliorated MPP+-stimulated damage in SK-N-SH cells, as evidenced by the enhancement in cell viability and the suppression in cell apoptosis and pro-inflammatory cytokine production. Mechanistically, SNHG14 directly targeted miR-214-3p via binding to miR-214-3p, and SNHG14 knockdown protected SK-N-SH cell from MPP+-stimulated cytotoxicity by upregulating miR-214-3p. KLF4 was a direct target of miR-214-3p, and SNHG14 regulated KLF4 expression by acting as a miR-214-3p sponge. Furthermore, miR-214-3p overexpression alleviated MPP+-stimulated damage in SK-N-SH cells by downregulating KLF4. Conclusion Our current study first demonstrated the protective effect of SNHG14 knockdown on MPP+-stimulated cytotoxicity in SK-N-SH cells at least partially by targeting the miR-214-3p/KLF4 axis, illuminating a promising target for PD intervention and treatment.
Collapse
Affiliation(s)
- Shufang Zhou
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Dan Zhang
- Department of Dentistry, Huaihe Hospital of Henan University, Kaifeng, China
| | - Junnan Guo
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Junshi Zhang
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Yong Chen
- Department of Neurology, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
538
|
Xin L, Li SH, Liu C, Zeng F, Cao JQ, Zhou LQ, Zhou Q, Yuan YW. Methionine represses the autophagy of gastric cancer stem cells via promoting the methylation and phosphorylation of RAB37. Cell Cycle 2020; 19:2644-2652. [PMID: 32926650 DOI: 10.1080/15384101.2020.1814044] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This study focused on the role of methionine (MET) in the autophagy of gastric cancer stem cells (GCSCs) and aims to elaborate its regulatory mechanism. In the present study, the GCSCs were isolated from human gastric cancer cell lines using an anti-CD44 antibody, and then cultured in MET+ homocysteine (HCY)- or MET-HCY+ medium. In MET+HCY-treated GCSCs, autophagy was suppressed, the methylation and phosphorylation of RAB37 were elevated, and miR-200b expression was down-regulated. Lentiviral vector (LV-) carrying methionine-γ lyase (an enzyme that could specifically lyse MET; Metase) promoted autophagy, reduced the methylation and phosphorylation of RAB37, and up-regulated miR-200b expression in MET+HCY--treated GCSCs. Then, we found that miR-200b suppressed the expression of protein kinase C α (PKCα), a protein that could inactivate RAB37 through promoting its phosphorylation. LV-Metase down-regulated RAB37 phosphorylation via miR-200b/PKCα, thus promoting the RAB37-mediated autophagy and suppressing cell viability in MET+HCY-treated GCSCs. Finally, the in vivo study proved that LV-Metase treatment inhibited tumor growth through up-regulating RAB37 expression. In conclusion, MET suppressed RAB37 expression via enhancing its methylation and suppressed RAB37 activity via miR-200b/PKCα axis, thus repressing RAB37-mediated autophagy in GCSCs. The supplementation of Metase lysed MET, thus inducing the autophagy of GCSCs and inhibiting tumor growth.
Collapse
Affiliation(s)
- Lin Xin
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Shi-Hao Li
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Chuan Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Fei Zeng
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Jia-Qing Cao
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Li-Qiang Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Qi Zhou
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Yi-Wu Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| |
Collapse
|
539
|
Parker AL, Cox TR. The Role of the ECM in Lung Cancer Dormancy and Outgrowth. Front Oncol 2020; 10:1766. [PMID: 33014869 PMCID: PMC7516130 DOI: 10.3389/fonc.2020.01766] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/06/2020] [Indexed: 12/19/2022] Open
Abstract
The dissemination of tumor cells to local and distant sites presents a significant challenge in the clinical management of many solid tumors. These cells may remain dormant for months or years before overt metastases are re-awakened. The components of the extracellular matrix, their posttranslational modifications and their associated factors provide mechanical, physical and chemical cues to these disseminated tumor cells. These cues regulate the proliferative and survival capacity of these cells and lay the foundation for their engraftment and colonization. Crosstalk between tumor cells, stromal and immune cells within primary and secondary sites is fundamental to extracellular matrix remodeling that feeds back to regulate tumor cell dormancy and outgrowth. This review will examine the role of the extracellular matrix and its associated factors in establishing a fertile soil from which individual tumor cells and micrometastases establish primary and secondary tumors. We will focus on the role of the lung extracellular matrix in providing the architectural support for local metastases in lung cancer, and distant metastases in many solid tumors. This review will define how the matrix and matrix associated components are collectively regulated by lung epithelial cells, fibroblasts and resident immune cells to orchestrate tumor dormancy and outgrowth in the lung. Recent advances in targeting these lung-resident tumor cell subpopulations to prevent metastatic disease will be discussed. The development of novel matrix-targeted strategies have the potential to significantly reduce the burden of metastatic disease in lung and other solid tumors and significantly improve patient outcome in these diseases.
Collapse
Affiliation(s)
- Amelia L Parker
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| | - Thomas R Cox
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St Vincent's Clinical School, UNSW Sydney, Darlinghurst, NSW, Australia
| |
Collapse
|
540
|
Abstract
p63 (also known as TP63) is a transcription factor of the p53 family, along with p73. Multiple isoforms of p63 have been discovered and these have diverse functions encompassing a wide array of cell biology. p63 isoforms are implicated in lineage specification, proliferative potential, differentiation, cell death and survival, DNA damage response and metabolism. Furthermore, p63 is linked to human disease states including cancer. p63 is critical to many aspects of cell signaling, and in this Cell science at a glance article and the accompanying poster, we focus on the signaling cascades regulating TAp63 and ΔNp63 isoforms and those that are regulated by TAp63 and ΔNp63, as well the role of p63 in disease.
Collapse
Affiliation(s)
- Matthew L Fisher
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Seamus Balinth
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.,Stony Brook University, Department of Molecular and Cell Biology, Stony Brook, NY, 11794, USA
| | - Alea A Mills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| |
Collapse
|
541
|
Schulte am Esch J, Windmöller BA, Hanewinkel J, Storm J, Förster C, Wilkens L, Krüger M, Kaltschmidt B, Kaltschmidt C. Isolation and Characterization of Two Novel Colorectal Cancer Cell Lines, Containing a Subpopulation with Potential Stem-Like Properties: Treatment Options by MYC/NMYC Inhibition. Cancers (Basel) 2020; 12:cancers12092582. [PMID: 32927768 PMCID: PMC7564713 DOI: 10.3390/cancers12092582] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/24/2022] Open
Abstract
Simple Summary The aim of this study was to gain a better understanding of cancer stem cells, which are a small subpopulation of tumor cells with high plasticity driving tumor growth and metastasis. Here we isolated two novel colorectal cancer cell lines originating from a rectal neuroendocrine carcinoma and a colorectal adenocarcinoma, depicting stem-like properties. These in vitro models offer the possibility to evaluate pathophysiological mechanisms in order to develop tailored therapeutic strategies for distinct colorectal malignancies. Investigations revealed gene copy number gain of the N-myc proto-oncogene for both. Accordingly, inhibition of the protein–protein interaction of myc and N-myc proto-oncogenes with the myc-associated factor X utilizing small molecule KJ-Pyr-9, exhibited a significant reduction in survival of both cell lines by the induction of apoptosis. Consequently, the blockage of these interactions may serve as a possible treatment strategy for colorectal cancer cell lines with gene copy number gain of the N-myc proto-oncogene. Abstract Cancer stem cells (CSC) are crucial mediators of cancer relapse. Here, we isolated two primary human colorectal cancer cell lines derived from a rectal neuroendocrine carcinoma (BKZ-2) and a colorectal adenocarcinoma (BKZ-3), both containing subpopulations with potential stem-like properties. Protein expression of CSC-markers prominin-1 and CD44 antigen was significantly higher for BKZ-2 and BKZ-3 in comparison to well-established colon carcinoma cell lines. High sphere-formation capacity further confirmed the existence of a subpopulation with potential stem-like phenotype. Epithelial–mesenchymal transition markers as well as immune checkpoint ligands were expressed more pronounced in BKZ-2. Both cell populations demonstrated N-myc proto-oncogene (NMYC) copy number gain. Myc proto-oncogene (MYC)/NMYC activity inhibitor all-trans retinoic acid (ATRA) significantly reduced the number of tumor spheres for both and the volume of BKZ-2 spheres. In contrast, the sphere volume of ATRA-treated BKZ-3 was increased, and only BKZ-2 cell proliferation was reduced in monolayer culture. Treatment with KJ-Pyr-9, a specific inhibitor of MYC/NMYC-myc-associated factor X interaction, decreased survival by the induction of apoptosis of both. In summary, here, we present the novel colorectal cancer cell lines BKZ-2 and BKZ-3 as promising cellular in vitro models for colorectal carcinomas and identify the MYC/NMYC molecular pathway involved in CSC-induced carcinogenesis with relevant therapeutic potential.
Collapse
Affiliation(s)
- Jan Schulte am Esch
- Department of General and Visceral Surgery, Protestant Hospital of Bethel Foundation, 33611 Bielefeld, Germany;
- Forschungsverbund BioMedizin Bielefeld (FBMB), 33611 Bielefeld, Germany; (J.S.); (C.F.); (L.W.); (M.K.); (B.K.); (C.K.)
| | - Beatrice Ariane Windmöller
- Forschungsverbund BioMedizin Bielefeld (FBMB), 33611 Bielefeld, Germany; (J.S.); (C.F.); (L.W.); (M.K.); (B.K.); (C.K.)
- Department of Cell Biology, University of Bielefeld, 33611 Bielefeld, Germany;
- Correspondence: ; Tel.: +49-0521-106-5629
| | - Johannes Hanewinkel
- Department of Cell Biology, University of Bielefeld, 33611 Bielefeld, Germany;
| | - Jonathan Storm
- Forschungsverbund BioMedizin Bielefeld (FBMB), 33611 Bielefeld, Germany; (J.S.); (C.F.); (L.W.); (M.K.); (B.K.); (C.K.)
- Department of Cell Biology, University of Bielefeld, 33611 Bielefeld, Germany;
| | - Christine Förster
- Forschungsverbund BioMedizin Bielefeld (FBMB), 33611 Bielefeld, Germany; (J.S.); (C.F.); (L.W.); (M.K.); (B.K.); (C.K.)
- Institute of Pathology, KRH Hospital Nordstadt, affiliated with the Protestant Hospital of Bethel Foundation, 30167 Hannover, Germany
| | - Ludwig Wilkens
- Forschungsverbund BioMedizin Bielefeld (FBMB), 33611 Bielefeld, Germany; (J.S.); (C.F.); (L.W.); (M.K.); (B.K.); (C.K.)
- Institute of Pathology, KRH Hospital Nordstadt, affiliated with the Protestant Hospital of Bethel Foundation, 30167 Hannover, Germany
| | - Martin Krüger
- Forschungsverbund BioMedizin Bielefeld (FBMB), 33611 Bielefeld, Germany; (J.S.); (C.F.); (L.W.); (M.K.); (B.K.); (C.K.)
- Department of Internal Medicine and Gastroenterology, Protestant Hospital of Bethel Foundation, 33611 Bielefeld, Germany
| | - Barbara Kaltschmidt
- Forschungsverbund BioMedizin Bielefeld (FBMB), 33611 Bielefeld, Germany; (J.S.); (C.F.); (L.W.); (M.K.); (B.K.); (C.K.)
- Department of Cell Biology, University of Bielefeld, 33611 Bielefeld, Germany;
- Molecular Neurobiology, University of Bielefeld, 33615 Bielefeld, Germany
| | - Christian Kaltschmidt
- Forschungsverbund BioMedizin Bielefeld (FBMB), 33611 Bielefeld, Germany; (J.S.); (C.F.); (L.W.); (M.K.); (B.K.); (C.K.)
- Department of Cell Biology, University of Bielefeld, 33611 Bielefeld, Germany;
| |
Collapse
|
542
|
Serafim Junior V, Fernandes GMDM, Oliveira-Cucolo JGD, Pavarino EC, Goloni-Bertollo EM. Role of Tropomyosin-related kinase B receptor and brain-derived neurotrophic factor in cancer. Cytokine 2020; 136:155270. [PMID: 32911446 DOI: 10.1016/j.cyto.2020.155270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 02/07/2023]
Abstract
The tropomyosin-related kinase B (TrkB) receptor is a member of the neurotrophic tyrosine kinase receptors family and, together with the brain-derived neurotrophic factor (BDNF), plays an important role in the development of breast cancer, lung cancer, neuroblastoma, colorectal cancer, leukemia, cervical cancer, gallbladder cancer, gastric cancer, kidney cancer, Ewing's sarcoma, esophageal cancer, and head and neck cancer. Overexpression of these two factors has been associated with increased processes involved in carcinogenesis, such as invasion, migration, epithelial-mesenchymal transition (EMT), angiogenesis, metastasis, cell proliferation, resistance to apoptosis, resistance to cell death due to loss of adhesion (anoikis), activation of cell proliferation pathways, regulation of tumor suppressor genes, and drug resistance, and is related to advanced clinical stage. Inhibition of the TrkB/BDNF axis using drugs in phase 1 studies, approved drugs, and small interfering RNA (siRNA) are promising strategies for the treatment of various malignant tumors in addition to increasing the sensitivity of cells resistant to chemotherapy, improving the effectiveness of drugs without increasing toxicity. Another factor related to poor cancer prognosis is the presence of cancer stem cells, having effects similar to the high expression of the TrkB/BDNF axis, on cancer. This review aimed to show the role of the TrkB/BDNF axis in several types of cancer, its possible use as a prognostic biomarker, the effects of inhibiting this axis, and its role in the cancer stem cells.
Collapse
Affiliation(s)
- Vilson Serafim Junior
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Glaucia Maria de Mendonça Fernandes
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Juliana Garcia de Oliveira-Cucolo
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Erika Cristina Pavarino
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP), São José do Rio Preto, São Paulo, Brazil
| | - Eny Maria Goloni-Bertollo
- Genetics and Molecular Biology Research Unit (UPGEM), São José do Rio Preto Medical School (FAMERP), São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
543
|
Huang H, Tong TT, Yau LF, Wang JR, Lai MH, Zhang CR, Wen XH, Li SN, Li KY, Liu JQ, Ma HX, Tsang BK, Jiang ZH. Chemerin isoform analysis in human biofluids using an LC/MRM-MS-based targeted proteomics approach with stable isotope-labeled standard. Anal Chim Acta 2020; 1139:79-87. [PMID: 33190712 DOI: 10.1016/j.aca.2020.08.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 01/06/2023]
Abstract
Targeted proteomics has advantages over earlier conventional technologies for protein detection. We developed and validated an LC/MRM-MS-based targeted proteomic method combined with immunoaffinity precipitation for the enrichment and detection of low abundance chemerin isoforms in human biofluids. After tryptic digestion, each chemerin isoform was characterized by isoform-specific peptides, and the absolute quantification was achieved by using stable isotope-labeled peptides as internal standards. In serum, follicular fluid and synovial fluid, a total of 6 chemerin isoforms were identified and quantified, among which a novel natural isoform 153Q was discovered for the first time. The relative content of the six chemerin isoforms in human serum was 157S ≫ 156F ≫ 158K > 154F ≥ 155A > 153Q in the ratio of 25:17:5:2.5:2.2:1, respectively. The absolute contents were in the range of 88-3.5 ng/mL. This distribution remained consistent among the 3 biofluids analyzed. Total chemerin were found to be increased in both polycystic ovary syndrome (serum and follicular fluid) and rheumatoid arthritis (serum) patients. However, chemerin isoform analysis revealed that only 156F & 157S were increased in the former, while 155A, 156F & 157S were increased in the latter. This demonstrates the potential of this method in detailed characterization of changes in chemerin isoforms that may be of clinical relevance.
Collapse
Affiliation(s)
- Hao Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China; National Engineering Research Center for Modernization of Traditional Chinese Medicine - Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Tian-Tian Tong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Lee-Fong Yau
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Jing-Rong Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Mao-Hua Lai
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Chun-Ren Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Xiao-Hui Wen
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Shu-Na Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Kun-Yin Li
- Department of Gynecology, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510378, China
| | - Jian-Qiao Liu
- Center for Reproductive Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Hong-Xia Ma
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China
| | - Benjamin K Tsang
- Departments of Obstetrics & Gynecology and Cellular & Molecular Medicine, Interdisciplinary School of Health Sciences, University of Ottawa, Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Zhi-Hong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau SAR, China.
| |
Collapse
|
544
|
Sun W, Ren Y, Lu Z, Zhao X. The potential roles of exosomes in pancreatic cancer initiation and metastasis. Mol Cancer 2020; 19:135. [PMID: 32878635 PMCID: PMC7466807 DOI: 10.1186/s12943-020-01255-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer (PaCa) is an insidious and highly metastatic malignancy, with a 5-year survival rate of less than 5%. So far, the pathogenesis and progression mechanisms of PaCa have been poorly characterized. Exosomes correspond to a class of extracellular nanovesicles, produced by a broad range of human somatic and cancerous cells. These particular nanovesicles are mainly composed by proteins, genetic substances and lipids, which mediate signal transduction and material transport. A large number of studies have indicated that exosomes may play decisive roles in the occurrence and metastatic progression of PaCa. This article summarizes the specific functions of exosomes and their underlying molecular mechanisms in mediating the initiation and metastatic capability of PaCa.
Collapse
Affiliation(s)
- Wei Sun
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Ying Ren
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, 36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
545
|
Lin JX, Yoon C, Li P, Ryeom SW, Cho SJ, Zheng CH, Xie JW, Wang JB, Lu J, Chen QY, Yoon SS, Huang CM. CDK5RAP3 as tumour suppressor negatively regulates self-renewal and invasion and is regulated by ERK1/2 signalling in human gastric cancer. Br J Cancer 2020; 123:1131-1144. [PMID: 32606358 PMCID: PMC7525566 DOI: 10.1038/s41416-020-0963-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/18/2020] [Accepted: 06/11/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Toward identifying new strategies to target gastric cancer stem-like cells (CSCs), we evaluated the function of the tumour suppressor CDK5 regulatory subunit-associated protein 3 (CDK5RAP3) in gastric CSC maintenance. METHODS We examined the expression of CDK5RAP3 and CD44 in gastric cancer patients. The function and mechanisms of CDK5RAP3 were checked in human and mouse gastric cancer cell lines and in mouse xenograft. RESULTS We show that CDK5RAP3 is weakly expressed in gastric CSCs and is negatively correlated with the gastric CSC marker CD44. CDK5RAP3 overexpression decreased expression of CSC markers, spheroid formation, invasion and migration, and reversed chemoresistance in gastric CSCs in vitro and vivo. CDK5RAP3 expression was found to be regulated by extracellular-related kinase (ERK) signalling. ERK inhibitors decreased spheroid formation, migration and invasion, and the expression of epithelial-to-mesenchymal transition (EMT)-related proteins in both GA cells and organoids derived from a genetically engineered mouse model of GA. Finally, CDK5RAP3 expression was associated with reduced lymph-node metastasis and better prognosis, even in the presence of high expression of the EMT transcription factor Snail, among patients with CD44-positive GA. CONCLUSIONS Our results demonstrate that CDK5RAP3 is suppressed by ERK signalling and negatively regulates the self-renewal and EMT of gastric CSCs.
Collapse
Affiliation(s)
- Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Changhwan Yoon
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Sandra W Ryeom
- Department of Cancer Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Soo-Jeong Cho
- Department of Internal Medicine, Liver Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Jian-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Sam S Yoon
- Gastric and Mixed Tumor Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China.
| |
Collapse
|
546
|
Guo J, Mo J, Zhao Q, Han Q, Kanerva M, Iwata H, Li Q. De novo transcriptomic analysis predicts the effects of phenolic compounds in Ba River on the liver of female sharpbelly (Hemiculter lucidus). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114642. [PMID: 32408079 DOI: 10.1016/j.envpol.2020.114642] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
This work aimed at predicting the toxic effects of phenolic compounds in Ba River on the health of female sharpbelly (Hemiculter lucidus) by the de novo transcriptomic analysis of the liver. Sharpbelly, a native fish living in freshwater ecosystem of East Asia, were sampled upstream, near, and downstream of a wastewater discharge to the Ba river. Based on the occurrence of bisphenol A (BPA), nonylphenol (NP), and 4-tert-octylphenol (4-t-OP) in the water and fish sampled from each site, up-, mid-, and down-stream were interpreted as control, high, and low treatment groups, respectively. In the mid-stream group the Fulton's condition factor (CF) and body weight were remarkably increased by approximate 20%; the gonado-somatic index (GSI) and hepatosomatic index (HSI) in mid-stream fish showed a similar increasing trend but lacking of statistical difference. Exposure to wastewater effluent caused 160 and 162 differentially expressed genes (DEGs) in up-mid and down-mid stream groups, respectively. Two sets of DEGs were primarily enriched in the signaling pathways of drug metabolism, endocrine system, cellular process, and lipid metabolism in the mid-stream sharpbelly, which may alter the fish behavior, disrupt the reproductive function, and lead to hypothyroidism, hepatic steatosis, etc. Taken together, our results linked the disrupted signaling pathways with activities of phenolic compounds to predict the potential effects of wastewater effluent on the health of wild fish.
Collapse
Affiliation(s)
- Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jiezhang Mo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qian Zhao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Qizhi Han
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Mirella Kanerva
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime prefecture, 790-8577, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime prefecture, 790-8577, Japan
| | - Qi Li
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
547
|
Pannia E, Yang NV, Ho M, Chatterjee D, Hammoud R, Kubant R, Anderson GH. Folic acid content of diet during pregnancy determines post-birth re-set of metabolism in Wistar rat dams. J Nutr Biochem 2020; 83:108414. [PMID: 32544644 DOI: 10.1016/j.jnutbio.2020.108414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 03/11/2020] [Accepted: 05/02/2020] [Indexed: 12/13/2022]
Abstract
Maternal metabolism begins to return to homeostasis (re-set) following birth and is accelerated by lactation. Delay in metabolic re-set may contribute to postpartum weight retention and later-life metabolic consequences. Folic acid (FA) is essential during pregnancy but inadequate intakes may alter 1-carbon metabolism, consequently affecting energy homeostatic systems. Our objectives were to examine the effects of FA content 1)below and 2)above requirements during pregnancy on the re-set of body weight, markers of hepatic 1-carbon metabolism and central and peripheral energy metabolic pathways in Wistar rat mothers early post-weaning (PW) compared to pregnant controls. Pregnant Wistar rats were fed an AIN-93G diet with FA at 0X, 1X (control, 2 mg FA/kg) or a range above requirements at 2.5X, 5X or 10X recommended levels then the control diet during lactation up to 1 week PW. Dams fed below (0X) or above (5X and 10X) FA requirements had delayed weight-loss from weaning up to 1 week PW, higher plasma insulin and HOMA-IR and changes in glucose and lipid metabolism-regulating genes in muscle, but not liver or adipose tissue compared to controls. Expression of folate-related genes in liver were lower in high FA fed dams. Central food intake neurons were not affected by FA diets. In conclusion, intakes of FA below (0X) or above (5X, 10X) requirements during pregnancy delayed weight-loss, dysregulated 1-carbon pathways in the liver and peripheral energy metabolic pathways in the Wistar rat mother up to 4 weeks after dietary exposure; potentially programming long-term negative metabolic effects and that of her future offspring.
Collapse
Affiliation(s)
- Emanuela Pannia
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Neil V Yang
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Mandy Ho
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Diptendu Chatterjee
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Rola Hammoud
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ruslan Kubant
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - G Harvey Anderson
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
548
|
Chen M, Ye AX, Wei J, Wang R, Poon K. Deoxycholic Acid Upregulates the Reprogramming Factors KFL4 and OCT4 Through the IL-6/STAT3 Pathway in Esophageal Adenocarcinoma Cells. Technol Cancer Res Treat 2020; 19:1533033820945302. [PMID: 32869704 PMCID: PMC7469721 DOI: 10.1177/1533033820945302] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cancer stem cells, a special subgroup of cancer cells, have self-renewal capabilities and multidirectional potential, which may be reprogrammed from the dedifferentiation of cancer cells, contributing to the failure of clinical treatments. Esophageal adenocarcinoma grows in an inflammatory environment stimulated by deoxycholic acid, an important component of gastroesophageal reflux content, contributing to the transformation of esophageal squamous epithelium to the precancerous lesions of esophageal adenocarcinoma, that is, Barrett esophagus. In the present study, deoxycholic acid was used to investigate whether it could induce the expression of reprogramming factors Krüppel-like factor, OCT4, and Nanog; the transformation to cancer stem cells in esophageal adenocarcinoma; and the involvement of the interleukin-6/signal transduction and activation of transcription 3 inflammatory signaling pathway. OE33 cells were treated with deoxycholic acid (250 μM) for 0 hour, 3 hours, 6 hours, and 12 hours before evaluating the messenger RNA expression of Krüppel-like factor, OCT4, Nanog, interleukin-6, and Bcl-xL by reverse transcription-quantitative polymerase chain reaction. Interleukin-6 protein was detected by enzyme linked immunosorbent assay, while signal transduction and activation of transcription 3, phosphorylated signal transduction and activation of transcription 3, Krüppel-like factor, and OCT4 were detected by Western blot. Signal transduction and activation of transcription 3 small interfering RNA and human recombinant interleukin-6 were used to treat OE33 cells and to detect their effects on Krüppel-like factor, OCT4, Nanog, CD44, hypoxia-inducible factor 1-α, and Bcl-xL expression. Results showed that deoxycholic acid promotes the expression of reprogramming factors Krüppel-like factor and OCT4, which are regulated by the interleukin-6/signal transduction and activation of transcription 3 signaling pathway. Deoxycholic acid has a malignancy-inducing effect on the transformation of esophageal adenocarcinoma stem cells, improving the antiapoptotic ability of tumors, and increasing the malignancy of esophageal adenocarcinoma. Deactivating the regulatory signaling pathway of interleukin-6/signal transduction and activation of transcription 3 and neutralizing deoxycholic acid may be novel targets for improving the clinical efficacy of esophageal adenocarcinoma therapy.
Collapse
Affiliation(s)
- Mei Chen
- Department of Gastroenterology, Shenzhen Hospital of Southern Medical University, Shenzhen, People's Republic of China
| | - AXiaojun Ye
- Division of Science and Technology, Program of Food Science and Technology, 125809BNU-HKBU United International College, Tangjiawan, Zhuhai, Guangdong, People's Republic of China
| | - Jingxi Wei
- Division of Science and Technology, Program of Food Science and Technology, 125809BNU-HKBU United International College, Tangjiawan, Zhuhai, Guangdong, People's Republic of China
| | - Ruihua Wang
- Department of Gastroenterology, Shenzhen Hospital of Southern Medical University, Shenzhen, People's Republic of China
| | - Karen Poon
- Division of Science and Technology, Program of Food Science and Technology, 125809BNU-HKBU United International College, Tangjiawan, Zhuhai, Guangdong, People's Republic of China
| |
Collapse
|
549
|
Yang Y, Xiong J, Wang J, Ruan Y, Zhang J, Tian Y, Wang J, Liu L, Cheng Y, Wang X, Xu Y, Wang J, Yu M, Zhao B, Zhang Y, Li H, Jian R. Novel alternative splicing variants of Klf4 display different capacities for self-renewal and pluripotency in mouse embryonic stem cells. Biochem Biophys Res Commun 2020; 532:377-384. [PMID: 32883521 DOI: 10.1016/j.bbrc.2020.08.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 08/15/2020] [Indexed: 12/11/2022]
Abstract
Embryonic stem (ES) cells are unique in their ability to self-renew indefinitely while maintaining pluripotency. Krüppel-like factor (Klf) 4 is an important member of the Klf family that is known to play a key role in pluripotency and somatic cell reprogramming. However, the identification and functional comparison of Klf4 splicing isoforms in mouse ESCs (mESCs) remains to be elucidated. Here, we identified three novel alternative splicing variants of Klf4 in mESCs-mKlf4-108, mKlf4-375 and mKlf4-1482-that are distinct from the previously known mKlf4-1449. mKlf4-1449 and mKlf4-1482 may stimulate the growth of ESCs, while mKlf4-108 can only promote the growth of ESCs in LIFlow/serum conditions. In addition, both mKlf4-1449 and mKlf4-1482 can inhibit the differentiation of mESCs. However, the ability of mKlf4-1482 to promote self-renewal and inhibit differentiation is not as strong as that of mKlf4-1449. In contrast, both mKlf4-108 and mKlf4-375 may have the ability to induce endodermal differentiation. Taken together, we have identified for the first time the existence of alternative splicing variants of mKlf4 and have revealed their different roles, which provide new insights into the contribution of Klf4 to the self-renewal and pluripotency of mouse ESCs.
Collapse
Affiliation(s)
- Yi Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China; Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, 400038, China
| | - Jiaxiang Xiong
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China; Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, 400038, China
| | - Jiangjun Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, 400038, China
| | - Yan Ruan
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, 400038, China
| | - Junlei Zhang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, 400038, China
| | - Yanping Tian
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, 400038, China
| | - Jiali Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, 400038, China
| | - Lianlian Liu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, 400038, China
| | - Yuda Cheng
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, 400038, China
| | - Xueyue Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, 400038, China
| | - Yixiao Xu
- Southwest Hospital/southwest Eye Hospital, The First Hospital Affiliated to Army Medical University, Chongqing, 400038, China
| | - Jiaqi Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, 400038, China
| | - Meng Yu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, 400038, China
| | - Bingyu Zhao
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, 400038, China
| | - Yue Zhang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, 400038, China
| | - Hongli Li
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China; Department of Histology and Embryology, Army Medical University, Chongqing, 400038, China.
| | - Rui Jian
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
550
|
Wei Y, Li H, Qu Q. miR-484 suppresses endocrine therapy-resistant cells by inhibiting KLF4-induced cancer stem cells in estrogen receptor-positive cancers. Breast Cancer 2020; 28:175-186. [PMID: 32865695 DOI: 10.1007/s12282-020-01152-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/07/2020] [Indexed: 12/26/2022]
Abstract
Endocrine therapy (mainly anti-estrogen therapy) is the mainstay of treatment for estrogen receptor (ER) positive breast cancer (BCa). However, approximately one-third of BCa patients who receive endocrine therapy may develop resistance. The detailed mechanism is still unclear. MCF7 and T-47D cells were treated with ERα antagonist tamoxifen for 2 months until they became tamoxifen-resistant. qPCR was used to detect the stem markers like CD44, OCT4 and SOX2. Flow cytometry and sphere formation were performed to test the stemness. Cell growth and invasiveness were measured by MTS assay, xenograft mouse model, and invasion assay. We found that tamoxifen resistant BCa cells acquired certain malignant phenotypes, such as higher expression of KLF4, stemness and enhanced invasiveness. Furthermore, miR-484 was found to act as a tumor suppressor and directly downregulated KLF4. KLF4-induced cancer stem cell (CSCs) contributes to anti-ER therapy resistant and is a potential target in endocrine therapy-resistant cancers.
Collapse
Affiliation(s)
- Yulei Wei
- Department of Gynecology and Obstetrics, Tianjin First Central Hospital, 24 Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Hong Li
- Department of Gynecology and Obstetrics, Tianjin First Central Hospital, 24 Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China
| | - Quanxin Qu
- Department of Gynecology and Obstetrics, Tianjin First Central Hospital, 24 Fukang Road, Nankai District, Tianjin, 300192, People's Republic of China.
| |
Collapse
|