551
|
The Thrombocytopenia of Wiskott Aldrich Syndrome Is Not Related to a Defect in Proplatelet Formation. Blood 1999. [DOI: 10.1182/blood.v94.2.509] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The Wiskott-Aldrich syndrome (WAS) is an X-linked hereditary disease characterized by thrombocytopenia with small platelet size, eczema, and increased susceptibility to infections. The gene responsible for WAS was recently cloned. Although the precise function of WAS protein (WASP) is unknown, it appears to play a critical role in the regulation of cytoskeletal organization. The platelet defect, resulting in thombocytopenia and small platelet size, is a consistent finding in patients with mutations in the WASP gene. However, its exact mechanism is unknown. Regarding WASP function in cytoskeletal organization, we investigated whether these platelet abnormalities could be due to a defect in proplatelet formation or in megakaryocyte (MK) migration. CD34+ cells were isolated from blood and/or marrow of 14 WAS patients and five patients with hereditary X-linked thrombocytopenia (XLT) and cultured in serum-free liquid medium containing recombinant human Mpl-L (PEG-rHuMGDF) and stem-cell factor (SCF) to study in vitro megakaryocytopoiesis. In all cases, under an inverted microscope, normal MK differentiation and proplatelet formation were observed. At the ultrastructural level, there was also no abnormality in MK maturation, and normal filamentous MK were present. Moreover, the in vitro produced platelets had a normal size, while peripheral blood platelets of the same patients exhibited an abnormally small size. However, despite this normal platelet production, we observed that F-actin distribution was abnormal in MKs from WAS patients. Indeed, F-actin was regularly and linearly distributed under the cytoplasmic membrane in normal MKs, but it was found concentrated in the center of the WAS MKs. After adhesion, normal MKs extended very long filopodia in which WASP could be detected. In contrast, MKs from WAS patients showed shorter and less numerous filopodia. However, despite this abnormal filopodia formation, MKs from WAS patients normally migrated in response to stroma-derived factor-1 (SDF-1), and actin normally polymerized after SDF-1 or thrombin stimulation. These results suggest that the platelet defect in WAS patients is not due to abnormal platelet production, but instead to cytoskeletal changes occuring in platelets during circulation.
Collapse
|
552
|
Shcherbina A, Bretscher A, Rosen FS, Kenney DM, Remold-O'Donnell E. The cytoskeletal linker protein moesin: decreased levels in Wiskott-Aldrich syndrome platelets and identification of a cleavage pathway in normal platelets. Br J Haematol 1999; 106:216-23. [PMID: 10444190 DOI: 10.1046/j.1365-2141.1999.01508.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The Wiskott-Aldrich syndrome (WAS) is a severe disease of platelets (small size, thrombocytopenia) and lymphocytes (immunodeficiency) arising from mutations of the X-chromosome gene WASP. Because of the prominent role of cytoskeletal abnormalities, particularly the paucity of surface microvilli, in the cellular pathology of this disease, blood cells from WAS patients were examined for moesin, a cytoskeletal linker protein that stabilizes cell surface microvilli, filopodia and lamellipodia. Comparison of patient and normal lymphocytes by immunofluorescence microscopy and immunoblotting showed normal levels and distribution of moesin in lymphocytes of WAS patients. In contrast, platelets from WAS patients stained only dimly for moesin relative to normal platelets. Quantitation by immunoblot revealed significantly decreased moesin levels in WAS patient platelets relative to normal platelets (63.5 +/- 4.9% of normal levels, n = 8, P < 0.0001). A novel reaction of normal platelets was discovered that may play a role in the depletion of moesin in patient platelets, namely the cleavage of moesin as a late event in platelet activation in response to certain platelet agonists.
Collapse
Affiliation(s)
- A Shcherbina
- The Center for Blood Research and the Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
553
|
Affiliation(s)
- C L Saxe
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
554
|
Suetsugu S, Miki H, Takenawa T. Identification of two human WAVE/SCAR homologues as general actin regulatory molecules which associate with the Arp2/3 complex. Biochem Biophys Res Commun 1999; 260:296-302. [PMID: 10381382 DOI: 10.1006/bbrc.1999.0894] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
WAVE/SCAR protein was identified as a protein which has similarity to WASP and N-WASP, especially in its C terminal. Recently, WAVE/SCAR protein has been shown to cooperate with the Arp2/3 complex, a nucleation core for actin polymerization in vitro. However, in spite of its general function, WAVE/SCAR expression is mainly restricted to the brain, suggesting the existence of related molecule(s). We here identified two human WAVE/SCAR homologues, which cover other organs. We named the original WAVE1 and newly identified ones WAVE2 and WAVE3. WAVE2 had a very wide distribution with strong expression in peripheral blood leukocytes and mapped on chromosome Xp11.21, next to the WASP locus. WAVE3 and WAVE1 had similar distributions. WAVE3 was strongly expressed in brain and mapped on chromosome 13q12. WAVE1 was mapped on chromosome 6q21-22. Ectopically expressed WAVE2 and WAVE3 induced actin filament clusters in a similar manner with WAVE1. These actin cluster formations were suppressed by deletion of their C-terminal VPH (verproline homology)/WH2 (WASP homology 2) domain. Further, WAVE2 and WAVE3 associate with the Arp2/3 complex as does WAVE1. Our identification of WAVE homologues suggests that WAVE family proteins have general function for regulating the actin cytoskeleton in many tissues.
Collapse
Affiliation(s)
- S Suetsugu
- Department of Biochemistry, Institute of Medical Science, Tokyo, Japan
| | | | | |
Collapse
|
555
|
Altman A, Deckert M. The function of small GTPases in signaling by immune recognition and other leukocyte receptors. Adv Immunol 1999; 72:1-101. [PMID: 10361572 DOI: 10.1016/s0065-2776(08)60017-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- A Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA
| | | |
Collapse
|
556
|
Vaduva G, Martinez-Quiles N, Anton IM, Martin NC, Geha RS, Hopper AK, Ramesh N. The human WASP-interacting protein, WIP, activates the cell polarity pathway in yeast. J Biol Chem 1999; 274:17103-8. [PMID: 10358064 DOI: 10.1074/jbc.274.24.17103] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
WIP, the Wiskott-Aldrich syndrome protein-interacting protein, is a human protein involved in actin polymerization and redistribution in lymphoid cells. The mechanism by which WIP reorganizes actin cytoskeleton is unknown. WIP is similar to yeast verprolin, an actin- and myosin-interacting protein required for polarized morphogenesis. To determine whether WIP and verprolin are functional homologues, we analyzed the function of WIP in yeast. WIP suppresses the growth defects of VRP1 missense and null mutations as well as the defects in cytoskeletal organization and endocytosis observed in vrp1-1 cells. The ability of WIP to replace verprolin is dependent on its WH2 actin binding domain and a putative profilin binding domain. Immunofluorescence localization of WIP in yeast cells reveals a pattern consistent with its function at the cortical sites of growth. Thus, like verprolin, WIP functions in yeast to link the polarity development pathway and the actin cytoskeleton to generate cytoskeletal asymmetry. A role for WIP in cell polarity provides a framework for unifying, under a common paradigm, distinct molecular defects associated with immunodeficiencies like Wiskott-Aldrich syndrome.
Collapse
Affiliation(s)
- G Vaduva
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | | | | | |
Collapse
|
557
|
Snapper SB, Rosen FS. The Wiskott-Aldrich syndrome protein (WASP): roles in signaling and cytoskeletal organization. Annu Rev Immunol 1999; 17:905-29. [PMID: 10358777 DOI: 10.1146/annurev.immunol.17.1.905] [Citation(s) in RCA: 176] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Wiskott-Aldrich Syndrome (WAS) is a rare X-linked primary immunodeficiency that is characterized by recurrent infections, hematopoietic malignancies, eczema, and thrombocytopenia. A variety of hematopoietic cells are affected by the genetic defect, including lymphocytes, neutrophils, monocytes, and platelets. Early studies noted both signaling and cytoskeletal abnormalities in lymphocytes from WAS patients. Following the identification of WASP, the gene mutated in patients with this syndrome, and the more generally expressed WASP homologue N-WASP, studies have demonstrated that WASP-family molecules associate with numerous signaling molecules known to alter the actin cytoskeleton. WASP/N-WASP may depolymerize actin directly and/or serve as an adaptor or scaffold for these signaling molecules in a complex cascade that regulates the cytoskeleton.
Collapse
Affiliation(s)
- S B Snapper
- Center for Blood Research, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
558
|
Candotti F, Facchetti F, Blanzuoli L, Stewart DM, Nelson DL, Blaese RM. Retrovirus-mediated WASP gene transfer corrects defective actin polymerization in B cell lines from Wiskott-Aldrich syndrome patients carrying 'null' mutations. Gene Ther 1999; 6:1170-4. [PMID: 10455421 DOI: 10.1038/sj.gt.3300926] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Boys affected with Wiskott-Aldrich syndrome (WAS) present with variable association of thrombocytopenia, eczema and immune deficiency. If untreated, WAS patients may succumb to intracerebral hemorrhages, severe infections or malignancies. Allogeneic bone marrow transplantation (BMT) can cure all aspects of the disease, but HLA-identical donors are not available to all patients and mismatched BMTs are unfortunately associated with high mortality and morbidity. The good success of HLA-matched BMT, however, makes WAS a potential candidate for hematopoietic stem cell gene therapy. WAS patients carry mutations of the Wiskott-Aldrich syndrome protein gene encoding WASP, a 502-amino acid proline-rich protein with demonstrated involvement in the organization of the actin cytoskeleton. To verify the feasibility of genetic correction for this disease, the WASP cDNA was expressed in EBV-immortalized B cell lines obtained from WAS patients using a retroviral vector. Transduced WAS cells showed levels of WASP expression similar to those found in cells from normal donors, without detectable effects on viability or growth characteristics. In addition, retrovirus-mediated expression of WASP led to improvement of cytoplasmic F-actin expression and formation of F-actin-positive microvilli, a process shown to be defective in untransduced WAS cell lines. These preliminary results indicate a potential use for retrovirus-mediated gene transfer as therapy for WAS.
Collapse
Affiliation(s)
- F Candotti
- Clinical Gene Therapy Branch, National Human Genome Research Institute, NIH, Bethesda, MD 20892-1851, USA
| | | | | | | | | | | |
Collapse
|
559
|
Thompson LJ, Lalloz MR, Layton DM. Unique and recurrent WAS gene mutations in Wiskott-Aldrich syndrome and X-linked thrombocytopenia. Blood Cells Mol Dis 1999; 25:218-26. [PMID: 10575547 DOI: 10.1006/bcmd.1999.0247] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia (XLT) are allelic phenotypes caused by defects of the WAS gene. Fourteen distinct mutations including seven novel gene defects in 16 WAS and four XLT patients were identified by single strand conformation polymorphism analysis and DNA sequencing of the WAS gene. Eleven (79%) of these mutations are located within exons 1 to 4 with clustering in exon 2. Carrier detection in 33 at-risk females and prenatal diagnosis at 12 weeks gestation in one family with a novel WAS mutation was performed by direct mutation analysis. A remarkably high frequency (72%) of point mutations involved CpG dinucleotides. C-->T or G-->A transitions at CpG sites were identified in all isolated WAS cases (n = 7). Allele frequencies for the dinucleotide repeat at locus DXS6940 were determined in Northern European, African and Asian populations. Mutation screening alone or in combination with analysis of polymorphic loci DXS6940 and DXS255 delineated the germline origin of a unique insertion mutation and four recurrent CpG mutations, three of which arose spontaneously during maternal gametogenesis.
Collapse
Affiliation(s)
- L J Thompson
- Department of Haematological Medicine, Guy's School of Medicine, London, United Kingdom
| | | | | |
Collapse
|
560
|
Parimoo S, Weissman SM. cDNA selection: an approach for isolation of chromosome-specific cDNAs. Methods Enzymol 1999; 303:127-43. [PMID: 10349643 DOI: 10.1016/s0076-6879(99)03011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- S Parimoo
- Skin Biology Research Center, Johnson & Johnson, Skillman, New Jersey 08558, USA
| | | |
Collapse
|
561
|
Yarar D, To W, Abo A, Welch MD. The Wiskott-Aldrich syndrome protein directs actin-based motility by stimulating actin nucleation with the Arp2/3 complex. Curr Biol 1999; 9:555-8. [PMID: 10339430 DOI: 10.1016/s0960-9822(99)80243-7] [Citation(s) in RCA: 217] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Actin polymerization at the cell cortex is thought to provide the driving force for aspects of cell-shape change and locomotion. To coordinate cellular movements, the initiation of actin polymerization is tightly regulated, both spatially and temporally. The Wiskott-Aldrich syndrome protein (WASP), encoded by the gene that is mutated in the immunodeficiency disorder Wiskott-Aldrich syndrome [1], has been implicated in the control of actin polymerization in cells [2] [3] [4] [5]. The Arp2/3 complex, an actin-nucleating factor that consists of seven polypeptide subunits [6] [7] [8], was recently shown to physically interact with WASP [9]. We sought to determine whether WASP is a cellular activator of the Arp2/3 complex and found that WASP stimulates the actin nucleation activity of the Arp2/3 complex in vitro. Moreover, WASP-coated microspheres polymerized actin, formed actin tails and exhibited actin-based motility in cell extracts, similar to those behaviors displayed by the pathogenic bacterium Listeria monocytogenes. In extracts depleted of the Arp2/3 complex, WASP-coated microspheres and L. monocytogenes were non-motile and exhibited only residual actin polymerization. These results demonstrate that WASP is sufficient to direct actin-based motility in cell extracts and that this function is mediated by the Arp2/3 complex. WASP interacts with diverse signaling proteins and may therefore function to couple signal transduction pathways to Arp2/3-complex activation and actin polymerization.
Collapse
Affiliation(s)
- D Yarar
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA
| | | | | | | |
Collapse
|
562
|
Suzuki T, Sasakawa C. N-WASP is an important protein for the actin-based motility of Shigella flexneri in the infected epithelial cells. JAPANESE JOURNAL OF MEDICAL SCIENCE & BIOLOGY 1999; 51 Suppl:S63-8. [PMID: 10211437 DOI: 10.7883/yoken1952.51.supplement1_s63] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- T Suzuki
- Institute of Medical Science, University of Tokyo, Japan
| | | |
Collapse
|
563
|
Stewart DM, Tian L, Nelson DL. Mutations That Cause the Wiskott-Aldrich Syndrome Impair the Interaction of Wiskott-Aldrich Syndrome Protein (WASP) with WASP Interacting Protein. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.8.5019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Wiskott-Aldrich syndrome (WAS) is an X-linked recessive disorder characterized by thrombocytopenia, eczema, immune deficiency, and a proclivity toward lymphoid malignancy. Lymphocytes of affected individuals show defects of activation, motility, and cytoskeletal structure. The disease gene encodes a 502-amino acid protein named the WAS protein (WASP). Studies have identified a number of important interactions that place WASP in a role of integrating signaling pathways with cytoskeletal function. We performed a two-hybrid screen to identify proteins interacting with WASP and cloned a proline-rich protein as a specific WASP interactor. Our clone of this protein, termed WASP interacting protein (WIP) by others, shows a difference in seven amino acid residues, compared with the previously published sequence revealing an additional profilin binding motif. Deletion mutant analysis reveals that WASP residues 101–151 are necessary for WASP-WIP interaction. Point mutant analyses in the two-hybrid system and in vitro show impairment of WASP-WIP interaction with three WASP missense mutants known to cause WAS. We conclude that impaired WASP-WIP interaction may contribute to WAS.
Collapse
Affiliation(s)
- Donn M. Stewart
- Immunophysiology Section, Metabolism Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Lan Tian
- Immunophysiology Section, Metabolism Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - David L. Nelson
- Immunophysiology Section, Metabolism Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
564
|
Machesky LM, Mullins RD, Higgs HN, Kaiser DA, Blanchoin L, May RC, Hall ME, Pollard TD. Scar, a WASp-related protein, activates nucleation of actin filaments by the Arp2/3 complex. Proc Natl Acad Sci U S A 1999; 96:3739-44. [PMID: 10097107 PMCID: PMC22364 DOI: 10.1073/pnas.96.7.3739] [Citation(s) in RCA: 604] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/1999] [Indexed: 11/18/2022] Open
Abstract
The Arp2/3 complex, a stable assembly of two actin-related proteins (Arp2 and Arp3) with five other subunits, caps the pointed end of actin filaments and nucleates actin polymerization with low efficiency. WASp and Scar are two similar proteins that bind the p21 subunit of the Arp2/3 complex, but their effect on the nucleation activity of the complex was not known. We report that full-length, recombinant human Scar protein, as well as N-terminally truncated Scar proteins, enhance nucleation by the Arp2/3 complex. By themselves, these proteins either have no effect or inhibit actin polymerization. The actin monomer-binding W domain and the p21-binding A domain from the C terminus of Scar are both required to activate Arp2/3 complex. A proline-rich domain in the middle of Scar enhances the activity of the W and A domains. Preincubating Scar and Arp2/3 complex with actin filaments overcomes the initial lag in polymerization, suggesting that efficient nucleation by the Arp2/3 complex requires assembly on the side of a preexisting filament-a dendritic nucleation mechanism. The Arp2/3 complex with full-length Scar, Scar containing P, W, and A domains, or Scar containing W and A domains overcomes inhibition of nucleation by the actin monomer-binding protein profilin, giving active nucleation over a low background of spontaneous nucleation. These results show that Scar and, likely, related proteins, such as the Cdc42 targets WASp and N-WASp, are endogenous activators of actin polymerization by the Arp2/3 complex.
Collapse
Affiliation(s)
- L M Machesky
- Department of Biochemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, England
| | | | | | | | | | | | | | | |
Collapse
|
565
|
Abstract
Bruton’s tyrosine kinase (Btk) has been shown to play a role in normal B-lymphocyte development. Defective expression of Btk leads to human and murine immunodeficiencies. However, the exact role of Btk in the cytoplasmic signal transduction in B cells is still unclear. This study represents a search for the substrate for Btk in vivo. We identified one of the major phosphoproteins associated with Btk in the preB cell line NALM6 as the Wiskott-Aldrich syndrome protein (WASP), the gene product responsible for Wiskott-Aldrich syndrome, which is another hereditary immunodeficiency with distinct abnormalities in hematopoietic cells. We demonstrated that WASP was transiently tyrosine-phosphorylated after B-cell antigen receptor cross-linking on B cells, suggesting that WASP is located downstream of cytoplasmic tyrosine kinases. An in vivo reconstitution system demonstrated that WASP is physically associated with Btk and can serve as the substrate for Btk. A protein binding assay suggested that the tyrosine-phosphorylation of WASP alters the association between WASP and a cellular protein. Furthermore, identification of the phosphorylation site of WASP in reconstituted cells allowed us to evaluate the catalytic specificity of Btk, the exact nature of which is still unknown.
Collapse
|
566
|
Hagemann TL, Kwan SP. The identification and characterization of two promoters and the complete genomic sequence for the Wiskott-Aldrich syndrome gene. Biochem Biophys Res Commun 1999; 256:104-9. [PMID: 10066431 DOI: 10.1006/bbrc.1999.0292] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Wiskott-Aldrich syndrome (WAS) is an X-linked disorder characterized by immunodeficiency, eczema and thrombocytopenia. The gene responsible for WAS was identified through positional cloning, and the function of the encoded protein (WASP) is still the subject of much speculation. WASP is currently thought to be involved in the regulation of actin polymerization in hematopoietic cells. To study the elements that regulate the WASP gene, we have identified the sites for transcription initiation. We found that two promoters were responsible for controlling WASP expression. Multiple transcription initiation sites were found immediately adjacent to the translation start site, however an alternate exon with a second promoter region was identified 6 kb upstream. Examination of the 5' sequence adjacent to the initiation sites in both promoters failed to reveal a TATA or CCAAT box, but numerous putative transcription factor binding sites including Sp1, Ets, c-Myb and PU.1 were apparent. Reporter constructs generated from each promoter showed functional activity in the Jurkat T-cell and HEL erythro-megakaryocytic cell lines. Although the alternate exon sequence was extremely GC rich and contained several potential binding elements, the primary promoter was stronger than the upstream promoter in the cell lines assayed. The transcription factor binding site profiles within each promoter suggested that they may play different roles in regulating WASP expression depending on the stage of differentiation and development, and the cell lineage. In this study we have also reported the complete nucleotide sequence of the coding and intervening sequences for the WASP gene. A comprehensive knowledge of the genomic structure and the further characterization of WASP gene expression will facilitate the continued investigation of mutations in WAS patients, and the eventual prospect of gene therapy.
Collapse
Affiliation(s)
- T L Hagemann
- Department of Immunology/Microbiology, Rush Medical School, Chicago, Illinois, 60612, USA
| | | |
Collapse
|
567
|
Abstract
Wiskott-Aldrich Syndrome protein (WASP) is the product of the gene mutated in children with Wiskott-Aldrich Syndrome (WAS). It is a predominantly cytoplasmic protein, expressed only in haematopoietic cells. It binds in vivo to the adaptor proteins Nck and Grb2, to the cytoplasmic protein-tyrosine kinase Fyn and to the small Rho-like GTPase Cdc42, which is required for formation of filopodia in fibroblasts and macrophages. WASP also interacts, directly or indirectly, with the actin cytoskeleton. Together with studies of a closely related, ubiquitously expressed protein named N-WASP, these findings suggest that WASP is a component of signalling pathways that control reorganisation of the actin cytoskeleton in haematopoietic cells in response to external stimuli. In support of this idea, haematopoietic cells from WAS patients show defects in cytoskeletal organisation that compromise their ability to polarise and to migrate in response to physiological stimuli. These defects could account for many of the clinical features of WAS. WAS is now a candidate for gene therapy based on the delivery of a wild-type WASP gene to autologous haematopoietic stem cells. In addition, recent studies of cell defects in WAS patients suggest that it may prove possible, in time, to rescue WAS cells using more conventional drug therapies.
Collapse
Affiliation(s)
- E O'Sullivan
- Paul O'Gorman Leukaemia Research Fund Centre for Childhood Leukaemia, Molecular Haematology Unit, Institute of Child Health, London, UK
| | | | | |
Collapse
|
568
|
Abstract
Cdc42p is an essential GTPase that belongs to the Rho/Rac subfamily of Ras-like GTPases. These proteins act as molecular switches by responding to exogenous and/or endogenous signals and relaying those signals to activate downstream components of a biological pathway. The 11 current members of the Cdc42p family display between 75 and 100% amino acid identity and are functional as well as structural homologs. Cdc42p transduces signals to the actin cytoskeleton to initiate and maintain polarized gorwth and to mitogen-activated protein morphogenesis. In the budding yeast Saccharomyces cerevisiae, Cdc42p plays an important role in multiple actin-dependent morphogenetic events such as bud emergence, mating-projection formation, and pseudohyphal growth. In mammalian cells, Cdc42p regulates a variety of actin-dependent events and induces the JNK/SAPK protein kinase cascade, which leads to the activation of transcription factors within the nucleus. Cdc42p mediates these processes through interactions with a myriad of downstream effectors, whose number and regulation we are just starting to understand. In addition, Cdc42p has been implicated in a number of human diseases through interactions with its regulators and downstream effectors. While much is known about Cdc42p structure and functional interactions, little is known about the mechanism(s) by which it transduces signals within the cell. Future research should focus on this question as well as on the detailed analysis of the interactions of Cdc42p with its regulators and downstream effectors.
Collapse
Affiliation(s)
- D I Johnson
- Department of Microbiology & Molecular Genetics and the Markey Center for Molecular Genetics, University of Vermont, Burlington, Vermont 05405,
| |
Collapse
|
569
|
Ariga T, Yamada M, Wada T, Saitoh S, Sakiyama Y. Detection of lymphocytes and granulocytes expressing the mutant WASP message in carriers of Wiskott-Aldrich syndrome. Br J Haematol 1999; 104:893-900. [PMID: 10192456 DOI: 10.1046/j.1365-2141.1999.01248.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wiskott-Aldrich syndrome (WAS) is an X-linked recessive disease caused by mutations in the recently identified WAS protein gene (WASP). In some X-linked genetic disorders skewed X-inactivation has been observed in all cell populations or some specific cell lineages of female carriers. Recently, female carriers of WAS were also revealed to present skewed X-inactivation patterns at the haemopoietic stem cell level. However, it is not clear if all haematological cells expressing the mutant WASP allele are eliminated in WAS carriers. By reverse transcription PCR methods, we studied 14 WAS carriers from 10 different families to assess whether blood cells expressing the mutant WASP message were present in their peripheral blood. The mutations of each WAS patient were known and carrier diagnosis of their female family members was performed using specific mutation analysis. We detected circulating lymphocytes and granulocytes expressing the mutant WASP message in most of the WAS carriers, nevertheless they showed skewed X-chromosomal inactivation patterns. Interestingly, the presence of blood cells expressing the mutant WASP message seemed to correlate to the WASP genotype and the age of the carriers.
Collapse
Affiliation(s)
- T Ariga
- Department of Paediatrics, Hokkaido University School of Medicine, and Teine Keijinkai Hospital, Sappora, Japan.
| | | | | | | | | |
Collapse
|
570
|
Vermi W, Blanzuoli L, Kraus MD, Grigolato P, Donato F, Loffredo G, Marino CE, Alberti D, Notarangelo LD, Facchetti F. The spleen in the Wiskott-Aldrich syndrome: histopathologic abnormalities of the white pulp correlate with the clinical phenotype of the disease. Am J Surg Pathol 1999; 23:182-91. [PMID: 9989845 DOI: 10.1097/00000478-199902000-00007] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The Wiskott-Aldrich syndrome (WAS) is a X-linked hematologic disorder characterized by thrombocytopenia, eczema, and immunodeficiency of variable severity. Reported here are the results of a morphologic, morphometric, and immunophenotypic analysis of splenic lymphoid tissue in 12 WAS patients with documented molecular defect and with different disease severity. Spleens from 29 age-matched patients with different diseases were used as controls. Paraffin-embedded tissue (from all cases) and fresh-frozen samples (from 5 WAS patients and 4 control subjects) were used to study the different white pulp compartments by classic morphologic, immunophenotyping, and image analysis techniques. Data were statistically analyzed by both parametric and nonparametric tests. Spleens from WAS patients showed a significant depletion of the total white pulp (p = 0.0008), T cell (p < 0.05), and B cell (p = 0.0002) areas and marginal zone (MZ) thickness (p < 0.0001). Among WAS patients, a negative correlation was found between the score of severity of the disease and all variables considered (Spearman's rank correlation coefficient, r = -0.79, r = -0.73, r = -0.68, and r = -0.56, respectively). In conclusion, this study shows that in WAS a general depletion of the splenic white pulp occurs, supporting the evidence that WAS is characterized by a combined immune defect. The significant reduction of the MZ may explain the inability of WAS patients to mount a response to T-independent antigens.
Collapse
Affiliation(s)
- W Vermi
- Department of Pathology, Spedali Civili-University of Brescia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
571
|
Qualmann B, Roos J, DiGregorio PJ, Kelly RB. Syndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott-Aldrich syndrome protein. Mol Biol Cell 1999; 10:501-13. [PMID: 9950691 PMCID: PMC25183 DOI: 10.1091/mbc.10.2.501] [Citation(s) in RCA: 241] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/1998] [Accepted: 11/16/1998] [Indexed: 11/11/2022] Open
Abstract
The GTPase dynamin has been clearly implicated in clathrin-mediated endocytosis of synaptic vesicle membranes at the presynaptic nerve terminal. Here we describe a novel 52-kDa protein in rat brain that binds the proline-rich C terminus of dynamin. Syndapin I (synaptic, dynamin-associated protein I) is highly enriched in brain where it exists in a high molecular weight complex. Syndapin I can be involved in multiple protein-protein interactions via a src homology 3 (SH3) domain at the C terminus and two predicted coiled-coil stretches. Coprecipitation studies and blot overlay analyses revealed that syndapin I binds the brain-specific proteins dynamin I, synaptojanin, and synapsin I via an SH3 domain-specific interaction. Coimmunoprecipitation of dynamin I with antibodies recognizing syndapin I and colocalization of syndapin I with dynamin I at vesicular structures in primary neurons indicate that syndapin I associates with dynamin I in vivo and may play a role in synaptic vesicle endocytosis. Furthermore, syndapin I associates with the neural Wiskott-Aldrich syndrome protein, an actin-depolymerizing protein that regulates cytoskeletal rearrangement. These characteristics of syndapin I suggest a molecular link between cytoskeletal dynamics and synaptic vesicle recycling in the nerve terminal.
Collapse
Affiliation(s)
- B Qualmann
- Department of Biochemistry and Biophysics and the Hormone Research Institute, University of California, San Francisco, California 94143-0534, USA
| | | | | | | |
Collapse
|
572
|
Abstract
Wiskott-Aldrich syndrome (WAS) is an inherited immune deficiency that is marked by eczema, bleeding and recurrent infections. The lymphocytes and platelets of WAS patients display cytoskeletal abnormalities, and their T lymphocytes show a diminished proliferative response to stimulation through the T-cell receptor-CD3 complex (TCR-CD3). The product of the WAS gene, WAS protein (WASP), binds to the small GTPase Cdc42. Small GTPases of the Rho family are crucial for the regulation of the actin-based cytoskeleton. WASP and its relative NWASP might play an important role in regulating the actin cytoskeleton. Since both WASP and NWASP have the potential to bind to multiple proteins, they might serve as a hub to coordinate the redistribution of many cellular signals to the actin cytoskeleton. In this review, the authors discuss the possible role of WASP/NWASP and of the newly described protein WIP, which interacts with WASP and NWASP, in coupling signals from the T-cell receptor to the actin-based cytoskeleton.
Collapse
Affiliation(s)
- N Ramesh
- Dept of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
573
|
Abstract
To initiate a specific immune response, lymphoid cells integrate a variety of signals generated through the orchestrated interaction of multiple cell surface molecules with their counter-receptors. As a result of the specific recognition of the antigen through antigen-specific receptors, and of the monitoring of their particular environment through the so-called coreceptor molecules, lymphoid cells go through elaborate processes of maturation and activation, contributing to the plasticity and sensitivity of immune response. CD43 is the major sialic acid rich protein on the surface of lymphocytes. However, the specific roles of this protein in different lymphoid cells under normal physiological conditions remain largely unknown. In this review we will mainly focus on the recent advances concerning the functions of this molecule as a coreceptor of different lymphoid cells as well as on the participation of this molecule in different pathologies.
Collapse
Affiliation(s)
- Y Rosenstein
- Instituto De Biotecnologia/UNAM, Cuernavaca, Mor., Mexico.
| | | | | |
Collapse
|
574
|
Abstract
Wiskott-Aldrich syndrome initially was described in 1937 and then again in 1954 as an X-linked disorder associated with thrombocytopenia, eczema, and recurrent infections. It remained mysterious how different cell lineages could be affected in this syndrome and, more importantly, how the phenotypic features could be so protean. We now know that the features associated with Wiskott-Aldrich syndrome include dysfunction of nearly all effector arms of the immune system, as well as thrombocytopenia with platelet dysfunction. As a consequence of these abnormalities, children and adults with this syndrome have recurrent bleeding, recurrent and significant infections with common and opportunistic organisms, autoimmune disease, and lymphoreticular malignancies. In 1994, the gene that is defective in Wiskott-Aldrich syndrome was identified and found to be a gene with limited homology to any known gene families. In the past 4 years, much has been learned about the role of this protein in cellular function and T-cell responses specifically. This article reviews some recent clinical findings relevant to Wiskott-Aldrich syndrome, the proposed cellular role of this molecule, its biochemical interactions, and genotype-phenotype considerations.
Collapse
Affiliation(s)
- K E Sullivan
- Division of Immunologic and Infectious Diseases, The Children's Hospital of Philadelphia, PA 19104, USA
| |
Collapse
|
575
|
Giliani S, Fiorini M, Mella P, Candotti F, Schumacher RF, Wengler GS, Lalatta F, Fasth A, Badolato R, Ugazio AG, Albertini A, Notarangelo LD. Prenatal molecular diagnosis of Wiskott-Aldrich syndrome by direct mutation analysis. Prenat Diagn 1999. [DOI: 10.1002/(sici)1097-0223(199901)19:1<36::aid-pd458>3.0.co;2-v] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
576
|
Machesky LM, Insall RH. Scar1 and the related Wiskott-Aldrich syndrome protein, WASP, regulate the actin cytoskeleton through the Arp2/3 complex. Curr Biol 1998; 8:1347-56. [PMID: 9889097 DOI: 10.1016/s0960-9822(98)00015-3] [Citation(s) in RCA: 717] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The actin-related proteins Arp2 and Arp3 are part of a seven-protein complex which is localized in the lamellipodia of a variety of cell types, and in actin-rich spots of unknown function. The Arp2/3 complex enhances actin nucleation and causes branching and crosslinking of actin filaments in vitro; in vivo it is thought to drive the formation of lamellipodia and to be a control center for actin-based motility. The Wiskott-Aldrich syndrome protein, WASP, is an adaptor protein implicated in the transmission of signals from tyrosine kinase receptors and small GTPases to the actin cytoskeleton. Scar1 is a member of a new family of proteins related to WASP, and it may also have a role in regulating the actin cytoskeleton. Scar1 is the human homologue of Dictyostelium Scar1, which is thought to connect G-protein-coupled receptors to the actin cytoskeleton. The mammalian Scar family contains at least four members. We have examined the relationships between WASP, Scar1, and the Arp2/3 complex. RESULTS We have identified WASP and its relative Scar1 as proteins that interact with the Arp2/3 complex. We have used deletion analysis to show that both WASP and Scar1 interact with the p21 subunit of the Arp2/3 complex through their carboxyl termini. Overexpression of carboxy-terminal fragments of Scar1 or WASP in cells caused a disruption in the localization of the Arp2/3 complex and, concomitantly, induced a complete loss of lamellipodia and actin spots. The induction of lamellipodia by platelet-derived growth factor was also suppressed by overexpression of the fragment of Scar1 that binds to the Arp2/3 complex. CONCLUSIONS We have identified a conserved sequence domain in proteins of the WASP family that binds to the Arp2/3 complex. Overexpression of this domain in cells disrupts the localization of the Arp2/3 complex and inhibits lamellipodia formation. Our data suggest that WASP-related proteins may regulate the actin cytoskeleton through the Arp2/3 complex.
Collapse
Affiliation(s)
- L M Machesky
- MRC-LMCB, Department of Molecular Medicine, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|
577
|
Miki H, Suetsugu S, Takenawa T. WAVE, a novel WASP-family protein involved in actin reorganization induced by Rac. EMBO J 1998; 17:6932-41. [PMID: 9843499 PMCID: PMC1171041 DOI: 10.1093/emboj/17.23.6932] [Citation(s) in RCA: 562] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rac is a Rho-family small GTPase that induces the formation of membrane ruffles. However, it is poorly understood how Rac-induced reorganization of the actin cytoskeleton, which is essential for ruffle formation, is regulated. Here we identify a novel Wiskott-Aldrich syndrome protein (WASP)-family protein, WASP family Verprolin-homologous protein (WAVE), as a regulator of actin reorganization downstream of Rac. Ectopically expressed WAVE induces the formation of actin filament clusters that overlap with the expressed WAVE itself. In this actin clustering, profilin, a monomeric actin-binding protein that has been suggested to be involved in actin polymerization, was shown to be essential. The expression of a dominant-active Rac mutant induces the translocation of endogenous WAVE from the cytosol to membrane ruffling areas. Furthermore, the co-expression of a deltaVPH WAVE mutant that cannot induce actin reorganization specifically suppresses the ruffle formation induced by Rac, but has no effect on Cdc42-induced actin-microspike formation, a phenomenon that is also known to be dependent on rapid actin reorganization. The deltaVPH WAVE also suppresses membrane-ruffling formation induced by platelet-derived growth factor in Swiss 3T3 cells. Taken together, we conclude that WAVE plays a critical role downstream of Rac in regulating the actin cytoskeleton required for membrane ruffling.
Collapse
Affiliation(s)
- H Miki
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108, Japan
| | | | | |
Collapse
|
578
|
Abstract
The primary immunodeficiency diseases are a relatively rare group of congenital disorders that are linked by the expression of an excessive number, duration, or severity of infections. The clinical features of most of the primary immunodeficiency diseases have been well described by astute physicians over several decades and have provided important clues to our basic understanding of human immunology. In contrast, the genetic basis and potential life-saving therapies for many of these disorders have been established only over the past few years. These recent advances have resulted in the prognosis of many of these disorders being largely dependent on their rapid recognition and treatment. Increased awareness of the differentiating epidemiologic, clinical, laboratory and genetic features of these diseases hold the promise of both furthering our understanding of basic human immunology and providing improved care for this challenging group of patients.
Collapse
Affiliation(s)
- R J Mamlock
- Division of Pediatric Allergy and Immunology, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
579
|
Thrasher AJ, Jones GE, Kinnon C, Brickell PM, Katz DR. Is Wiskott--Aldrich syndrome a cell trafficking disorder? IMMUNOLOGY TODAY 1998; 19:537-9. [PMID: 9864941 DOI: 10.1016/s0167-5699(98)01350-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- A J Thrasher
- Molecular Immunology Unit, Institute of Child Health, University College London, UK.
| | | | | | | | | |
Collapse
|
580
|
Sterzl J. Cellular and molecular basis of immunodeficiencies: their consequences for the development and induction of the immune response. Folia Microbiol (Praha) 1998; 43:535-42. [PMID: 9821321 DOI: 10.1007/bf02820815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This review lists primary immunodeficiencies which essentially involve mutations in genes coding for functionally important molecules, membrane antigens (e.g., MHC), chains of lymphokine receptors, protein kinases of the signal cascade, transcription factors, and important regulators of cellular metabolism. Mutations and subsequent immunodeficiencies occur as early as during embryogenesis (lymphopoiesis-I) as well as during induction of the immune response by antigen (ligand) binding to cell receptors, TCR and BCR (immunopoiesis-II). Immunodeficiencies are classified according the developmental stages in which they occur most markedly, even in clinical terms. Some early mutations are immediately lethal, some express themselves by blocking embryonic lymphopoiesis, while other mutations do not become demonstrable until after cell stimulation by antigens (see the Tables).
Collapse
Affiliation(s)
- J Sterzl
- Division of Immunology and Gnotobiology, Academy of Sciences of Czech Republic, Prague
| |
Collapse
|
581
|
Tsuboi S, Fukuda M. Overexpression of branched O-linked oligosaccharides on T cell surface glycoproteins impairs humoral immune responses in transgenic mice. J Biol Chem 1998; 273:30680-7. [PMID: 9804842 DOI: 10.1074/jbc.273.46.30680] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The aberrant expression of core 2 O-glycans on T cell surface glycoproteins has been associated with various immunodeficient syndromes such as Wiskott-Aldrich syndrome and AIDS. To determine the effect of this aberrant expression of core 2 O-glycans on immune responses, we previously generated transgenic mice overexpressing core 2 beta-1,6-N-acetylglucosaminyltransferase (C2GnT) in T cells, and demonstrated that T cell primary immune responses mediated through interaction between T cells and antigen-presenting cells are impaired in the transgenic mice (Tsuboi, S., and Fukuda, M. (1997) EMBO J. 16, 6364-6373). In this study, we determined whether overexpression of core 2 oligosaccharides on T cells leads to impaired humoral immune responses by B cells using the same transgenic mice. When T cells were activated, both T and B cells from the transgenic and control mice expressed an equivalent amount of CD40L and CD40, which are, respectively, the receptor and counter-receptor for the interaction between T and B cells. However, activated T cells from the transgenic mice induced B cell proliferation less efficiently than those from control mice, regardless of whether B cells were isolated from control or the transgenic mice. This suggests that overexpression of core 2 O-glycans on T cell surface glycoproteins renders T cell-B cell interaction inefficient. Moreover, in the transgenic mice both immunoglobulin isotype switching and germinal center formation were also impaired. Taken together, these results indicate that aberrant expression of core 2 O-glycans on T cell surface glycoproteins results in impaired humoral immune responses due to an impaired interaction between T and B cells.
Collapse
Affiliation(s)
- S Tsuboi
- Glycobiology Program, La Jolla Cancer Research Center, The Burnham Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
582
|
Wu Y, Dowbenko D, Lasky LA. PSTPIP 2, a second tyrosine phosphorylated, cytoskeletal-associated protein that binds a PEST-type protein-tyrosine phosphatase. J Biol Chem 1998; 273:30487-96. [PMID: 9804817 DOI: 10.1074/jbc.273.46.30487] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Although cytoskeletal regulation is critical to cell function during interphase and mitosis, the components of the cytoskeleton involved with its control are only beginning to be elucidated. Recently, we reported the identification of a cytoskeletal-associated protein, proline-serine-threonine phosphatase-interacting protein (PSTPIP), whose level of tyrosine phosphorylation was controlled by PEST-type protein-tyrosine phosphatases (PTPs) bound to a novel protein interaction site in the PSTPIP predicted coiled-coil domain. We also showed that the PSTPIP SH3 domain interacts with the Wiskott-Aldrich syndrome protein (WASP), a cytoskeletal regulatory protein, in a manner modulated by tyrosine phosphorylation. Here we describe the identification of PSTPIP 2, a widely expressed protein that is related to PSTPIP. PSTPIP 2 lacks an SH3 domain but contains a region predicted to bind to PEST-type PTPs, and structure-function analyses demonstrate that PSTPIP 2 interacts with the proline-rich C terminus of the PEST-type PTP hematopoietic stem cell factor in a manner similar to that previously demonstrated for PSTPIP. Confocal microscopy revealed that PSTPIP 2 colocalizes with PSTPIP in F actin-rich regions. PSTPIP 2 was found to be efficiently phosphorylated in v-Src-transfected or pervanadate-treated cells at two tyrosines conserved in PSTPIP, but in contrast to PSTPIP, tyrosine phosphorylated PSTPIP 2 was only weakly dephosphorylated in the presence of PTP HSCF. Finally, analysis of oligomer formation demonstrated that PSTPIP and PSTPIP 2 formed homo- but not heterodimers. These data suggest that a family of tyrosine phosphorylated, PEST PTP binding proteins may be implicated in cytoskeletal regulation.
Collapse
Affiliation(s)
- Y Wu
- Department of Molecular Oncology, Genentech, Inc., South San Francisco, California 94080, USA
| | | | | |
Collapse
|
583
|
Bubeck Wardenburg J, Pappu R, Bu JY, Mayer B, Chernoff J, Straus D, Chan AC. Regulation of PAK activation and the T cell cytoskeleton by the linker protein SLP-76. Immunity 1998; 9:607-16. [PMID: 9846482 DOI: 10.1016/s1074-7613(00)80658-5] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Tyrosine phosphorylation of linker proteins enables the T cell antigen receptor (TCR)-associated protein tyrosine kinases to phosphorylate and regulate effector molecules that generate second messengers. We demonstrate here that the SLP-76 linker protein interacts with both nck, an adaptor protein, and Vav, a guanine nucleotide exchange factor for Rho-family GTPases. The assembly of this tri-molecular complex permits the activated Rho-family GTPases to regulate target effectors that interact through nck. In turn, assembly of this complex mediates the enzymatic activation of the p21-activated protein kinase 1 and facilitates actin polymerization. Hence, phosphorylation of linker proteins not only bridges the TCR-associated PTK, ZAP-70, with downstream effector proteins, but also provides a scaffold to integrate distinct signaling complexes to regulate T cell function.
Collapse
Affiliation(s)
- J Bubeck Wardenburg
- Center for Immunology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
584
|
Abstract
Wiskott-Aldrich syndrome (WAS) is an X-linked disorder characterized by immune deficiency, eczema, and microthrombocytopenia. Biochemical evidence indicates that the Wiskott-Aldrich syndrome protein (WASp) is involved in regulating the actin cytoskeleton. Here we report that WAS dendritic cells (DC) have an immunophenotype very similar to normal DC. However, as a consequence of an intrinsically abnormal cytoarchitecture, they are unable to polarize normally and have severely reduced translocational motility in vitro. These findings indicate that WASp is an essential effector for Cdc-42-mediated polarization of primary hematopoietic cells, and suggest that a significant component of the clinical phenotype of WAS could arise from peripheral DC dysmotility and aberrant immune cell trafficking in vivo. Intrinsic dysfunction of the DC population may also have an important role in the pathogenesis of other primary immunodeficiency syndromes, while induced changes in DC cytoskeletal signaling pathways may contribute to the initiation of acquired immunological and inflammatory disorders.
Collapse
Affiliation(s)
- M Binks
- Department of Immunology, University College London Medical School, GB
| | | | | | | | | | | |
Collapse
|
585
|
Abstract
AbstractWiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia (XLT) are caused by mutations of the WAS protein (WASP) gene. All hematopoietic stem cell-derived lineages, including platelets, express WASP. Platelets from WAS patients are smaller than their normal counterparts and defects in platelet aggregation and actin polymerization have been reported. To determine if WASP is important for normal platelet function, we examined its role in signal transduction. We found that collagen but not thrombopoietin or thrombin induces a rapid and robust increase in tyrosine phosphorylation of platelet-associated WASP. Collagen-induced tyrosine phosphorylation of WASP was inhibited by cytochalasin D and wortmannin, respectively, suggesting that actin polymerization and phosphatidylinositol 3-kinase (PI3-kinase) play a role in the induction of tyrosine phosphorylation of WASP. Binding of glutathion S-transferase (GST)-Grb2 to WASP was seen in the lysate of resting platelets. The binding was reduced when lysates from collagen-stimulated platelets were incubated with GST-Grb2, suggesting that tyrosine phosphorylation of WASP may directly or indirectly modulate the adapter function of WASP. Although thrombin- and thrombopoietin-induced increase in tyrosine phosphorylation of WASP is negligible or marginal, WASP from thrombin-activated platelets became incorporated into the Triton X-100–insoluble 10,000gsedimentable residue in an aggregation-dependent manner, suggesting that it may have a regulatory role in platelet cytoskeletal processes during aggregation. Lastly, we found that WASP is cleaved in response to activation of calpain, a protease that may have a role in postaggregation signaling processes. Our data suggest that collagen specifically induces an increase in tyrosine phosphorylation of WASP and that WASP is involved in signaling during thrombin-induced aggregation by its redistribution to the cytoskeleton and its cleavage during aggregation.© 1998 by The American Society of Hematology.
Collapse
|
586
|
Abstract
Wiskott-Aldrich syndrome (WAS) and X-linked thrombocytopenia (XLT) are caused by mutations of the WAS protein (WASP) gene. All hematopoietic stem cell-derived lineages, including platelets, express WASP. Platelets from WAS patients are smaller than their normal counterparts and defects in platelet aggregation and actin polymerization have been reported. To determine if WASP is important for normal platelet function, we examined its role in signal transduction. We found that collagen but not thrombopoietin or thrombin induces a rapid and robust increase in tyrosine phosphorylation of platelet-associated WASP. Collagen-induced tyrosine phosphorylation of WASP was inhibited by cytochalasin D and wortmannin, respectively, suggesting that actin polymerization and phosphatidylinositol 3-kinase (PI3-kinase) play a role in the induction of tyrosine phosphorylation of WASP. Binding of glutathion S-transferase (GST)-Grb2 to WASP was seen in the lysate of resting platelets. The binding was reduced when lysates from collagen-stimulated platelets were incubated with GST-Grb2, suggesting that tyrosine phosphorylation of WASP may directly or indirectly modulate the adapter function of WASP. Although thrombin- and thrombopoietin-induced increase in tyrosine phosphorylation of WASP is negligible or marginal, WASP from thrombin-activated platelets became incorporated into the Triton X-100–insoluble 10,000gsedimentable residue in an aggregation-dependent manner, suggesting that it may have a regulatory role in platelet cytoskeletal processes during aggregation. Lastly, we found that WASP is cleaved in response to activation of calpain, a protease that may have a role in postaggregation signaling processes. Our data suggest that collagen specifically induces an increase in tyrosine phosphorylation of WASP and that WASP is involved in signaling during thrombin-induced aggregation by its redistribution to the cytoskeleton and its cleavage during aggregation.© 1998 by The American Society of Hematology.
Collapse
|
587
|
Bear JE, Rawls JF, Saxe CL. SCAR, a WASP-related protein, isolated as a suppressor of receptor defects in late Dictyostelium development. J Cell Biol 1998; 142:1325-35. [PMID: 9732292 PMCID: PMC2149354 DOI: 10.1083/jcb.142.5.1325] [Citation(s) in RCA: 226] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/1998] [Revised: 07/23/1998] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptors trigger the reorganization of the actin cytoskeleton in many cell types, but the steps in this signal transduction cascade are poorly understood. During Dictyostelium development, extracellular cAMP functions as a chemoattractant and morphogenetic signal that is transduced via a family of G protein-coupled receptors, the cARs. In a strain where the cAR2 receptor gene is disrupted by homologous recombination, the developmental program arrests before tip formation. In a genetic screen for suppressors of this phenotype, a gene encoding a protein related to the Wiskott-Aldrich Syndrome protein was discovered. Loss of this protein, which we call SCAR (suppressor of cAR), restores tip formation and most later development to cAR2(-) strains, and causes a multiple-tip phenotype in a cAR2(+) strain as well as leading to the production of extremely small cells in suspension culture. SCAR-cells have reduced levels of F-actin staining during vegetative growth, and abnormal cell morphology and actin distribution during chemotaxis. Uncharacterized homologues of SCAR have also been identified in humans, mouse, Caenorhabditis elegans, and Drosophila. These data suggest that SCAR may be a conserved negative regulator of G protein-coupled signaling, and that it plays an important role in regulating the actin cytoskeleton.
Collapse
Affiliation(s)
- J E Bear
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia 30322-3030, USA
| | | | | |
Collapse
|
588
|
Guinamard R, Aspenström P, Fougereau M, Chavrier P, Guillemot JC. Tyrosine phosphorylation of the Wiskott-Aldrich syndrome protein by Lyn and Btk is regulated by CDC42. FEBS Lett 1998; 434:431-6. [PMID: 9742969 DOI: 10.1016/s0014-5793(98)01016-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Wiskott-Aldrich syndrome (WAS) is a rare immunodeficiency disease affecting mainly platelets and lymphocytes. Here, we show that the WAS gene product, WASp, is tyrosine phosphorylated upon aggregation of the high affinity IgE receptor (Fc epsilonRI) at the surface of RBL-2H3 rat tumor mast cells. Lyn and the Bruton's tyrosine kinase (Btk), two protein tyrosine kinases involved in Fc epsilonRI-signaling phosphorylate WASp and interact with WASp in vivo. Interestingly, expression of a GTPase defective mutant form of CDC42, that interacts with WASp, is accompanied by a substantial increase in WASp tyrosine phosphorylation. This study suggests that activated CDC42 recruits WASp to the plasma membrane where it becomes phosphorylated by Lyn and Btk. We conclude that WASp represents a connection between protein tyrosine kinase signaling pathways and CDC42 function in cytoskeleton and cell growth regulation in hematopoietic cells.
Collapse
Affiliation(s)
- R Guinamard
- Centre d'Immunologie INSERM-CNRS de Marseille-Luminy, Marseille, France
| | | | | | | | | |
Collapse
|
589
|
Abstract
The primary immunodeficiencies are congenital disorders that affect the function of the immune system. The result is an inadequate immune response to microorganisms, self-antigens, and tumor cells, which leads to increased susceptibility to infections, autoimmunity, or malignant disease. A substantial advance has been made in the understanding of the exact molecular mechanisms leading to primary immunodeficiencies; however, for some types, a specific genetic defect has not yet been determined. The life expectancy of patients with primary immunodeficiencies has increased considerably because of bone marrow transplantation and replacement therapies. Gene therapy has already been used for a particular type of immunodeficiency and is a promising alternative for the future management of many other types of primary immunodeficiencies. A better understanding of the genetic defects that lead to primary immunodeficiencies would result in the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- R M Ten
- Division of Allergy and Outpatient Infectious Disease, Mayo Clinic Rochester, Minnesota 55905, USA
| |
Collapse
|
590
|
Abstract
Some genes that contain premature nonsense codons express alternatively-spliced mRNA that has skipped the exon containing the nonsense codon. This paradoxical association of translation signals (nonsense codons) and RNA splicing has inspired numerous explanations. The first is based on the fact that premature nonsense codons often reduce mRNA abundance. The reduction in abundance of full-length mRNA then allows more efficient amplification during PCR of normal, minor, exon-deleted products. This mechanism has been demonstrated to explain an extensive correlation between nonsense codons and exon-skipping for the hamster Hprt gene. The second explanation is that the mutation producing an in-frame nonsense codon has an effect on exon definition. This has been demonstrated for the Mup and hamster Hprt gene by virtue of the fact that missense mutations at the same sites also are associated with the same exon-deleted mRNA. The third general explanation is that a hypothetical process takes place in the nucleus that recognizes nonsense codons, termed 'nuclear scanning', which then has an effect on mRNA splicing. Definitive evidence for nuclear scanning is lacking. My analysis of both nonsense and missense mutations associated with exon skipping in a large number of genes revealed that both types of mutations frequently introduce a T into a purine-rich DNA sequence and are often within 30 base pairs of the nearest exon boundary. This is intriguing given that purine-rich splicing enhancers are known to be inhibited by the introduction of a T. Almost all mutations associated with exon skipping occur in purine-rich or A/C-rich sequences, also characteristics of splicing enhancers. I conclude that most cases of exon skipping associated with premature termination codons may be adequately explained either by a structural effect on exon definition or by nonquantitative methods to measure mRNA, rather than an effect on a putative nuclear scanning mechanism.
Collapse
Affiliation(s)
- C R Valentine
- Division of Genetic and Reproductive Toxicology, National Center for Toxicological Research, Jefferson, AR 72079-9502, USA.
| |
Collapse
|
591
|
Nonoyama S, Ochs HD. Characterization of the Wiskott-Aldrich syndrome protein and its role in the disease. Curr Opin Immunol 1998; 10:407-12. [PMID: 9722916 DOI: 10.1016/s0952-7915(98)80113-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Wiskott-Aldrich syndrome is an X-linked disorder characterized by thrombocytopenia, eczema and immunodeficiency. The Wiskott-Aldrich syndrome protein and the gene that encodes it have been identified by positional cloning and the protein has been shown to contain a pleckstrin-homology domain, a GTPase-binding domain, a proline-rich region and a verprolin/cofilin homology domain. Subsequent studies suggest that the protein is involved in signal transduction and the regulation of the cytoskeleton.
Collapse
Affiliation(s)
- S Nonoyama
- Department of Pediatrics, School of Medicine, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan.
| | | |
Collapse
|
592
|
Rudolph MG, Bayer P, Abo A, Kuhlmann J, Vetter IR, Wittinghofer A. The Cdc42/Rac interactive binding region motif of the Wiskott Aldrich syndrome protein (WASP) is necessary but not sufficient for tight binding to Cdc42 and structure formation. J Biol Chem 1998; 273:18067-76. [PMID: 9660763 DOI: 10.1074/jbc.273.29.18067] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Wiskott Aldrich syndrome is a rare hereditary disease that affects cell morphology and signal transduction in hematopoietic cells. Different size fragments of the Wiskott Aldrich syndrome protein, W4, W7 and W13, were expressed in Escherichia coli or obtained from proteolysis. All contain the GTPase binding domain (GBD), also called Cdc42/Rac interactive binding region (CRIB), found in many putative downstream effectors of Rac and Cdc42. We have developed assays to measure the binding interaction between these fragments and Cdc42 employing fluorescent N-methylanthraniloyl-guanine nucleotide analogues. The fragments bind with submicromolar affinities in a GTP-dependent manner, with the largest fragment having the highest affinity, showing that the GBD/CRIB motif is necessary but not sufficient for tight binding. Rate constants for the interaction with W13 have been determined via surface plasmon resonance, and the equilibrium dissociation constant obtained from their ratio agrees with the value obtained by fluorescence measurements. Far UV circular dichroism spectra show significant secondary structure only for W13, supported by fluorescence studies using intrinsic protein fluorescence and quenching by acrylamide. Proton and 15N NMR measurements show that the GBD/CRIB motif has no apparent secondary structure and that the region C-terminal to the GBD/CRIB region is alpha-helical. The binding of Cdc42 induces a structural rearrangement of residues in the GBD/CRIB motif, or alternatively, the Wiskott Aldrich syndrome protein fragments have an ensemble of conformations, one of which is stabilized by Cdc42 binding. Thus, in contrast to Ras effectors, which have no conserved sequence elements but a defined domain structure with ubiquitin topology, Rac/Cdc42 effectors have a highly conserved binding region but no defined domain structure in the absence of the GTP-binding protein. Deviating from common belief GBD/CRIB is neither a structural domain nor sufficient for tight binding as regions outside this motif are necessary for structure formation and tight interaction with Rho/Rac proteins.
Collapse
Affiliation(s)
- M G Rudolph
- Max-Planck Institut für Molekulare Physiologie, Rheinlanddamm 201, 44139 Dortmund, Germany
| | | | | | | | | | | |
Collapse
|
593
|
A Case of Wiskott-Aldrich Syndrome With Dual Mutations in Exon 10 of the WASP Gene: An Additional De Novo One-Base Insertion, Which Restores Frame Shift Due to an Inherent One-Base Deletion, Detected in the Major Population of the Patient's Peripheral Blood Lymphocytes. Blood 1998. [DOI: 10.1182/blood.v92.2.699] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
594
|
Badolato R, Sozzani S, Malacarne F, Bresciani S, Fiorini M, Borsatti A, Albertini A, Mantovani A, Ugazio AG, Notarangelo LD. Monocytes from Wiskott-Aldrich Patients Display Reduced Chemotaxis and Lack of Cell Polarization in Response to Monocyte Chemoattractant Protein-1 and Formyl-Methionyl-Leucyl-Phenylalanine. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.2.1026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Wiskott-Aldrich syndrome (WAS) is an X-linked disorder characterized by trombocytopenia, eczema, and progressive decline of the immune function. In addition, lymphocytes and platelets from WAS patients have morphologic abnormalities. Since chemokines may induce morphologic changes and migration of leukocytes, we investigated the monocyte response to chemoattractants in cells from WAS patients with an identified mutation in the WAS protein gene. Here, we report that monocytes derived from four patients with molecularly defined typical WAS have a severely impaired migration in response to FMLP and to the chemokines monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1α compared with normal donors. Conversely, neither MCP-1 binding to monocytes nor induction of the respiratory burst by MCP-1 and FMLP is significantly different between WAS patients and normal donors. Within a few minutes of stimulation, monocytes respond to chemokines with increased expression of adhesion molecules and with morphologic changes such as cell polarization. Although up-regulation of CD11b/CD18 expression following stimulation with FMLP or MCP-1 is preserved in WAS patients, cell polarization is dramatically decreased. Staining of F-actin by FITC-phalloidin in monocytes stimulated with chemoattractants shows F-actin to have a rounded shape in WAS patients, as opposed to the polymorphic distribution of F-actin in the polarized monocytes from healthy donors. These results suggest that WAS protein is involved in the monocyte response to the chemokines MCP-1 and macrophage inflammatory protein-1α.
Collapse
Affiliation(s)
- Raffaele Badolato
- *Clinica Pediatrica,
- §Dipartimento di Patologia e Medicina Sperimentale e Clinica, Universita’ di Udine, Udine, Italy
| | - Silvano Sozzani
- ∥Istituto Ricerche Farmacologiche “Mario Negri,” Milan, Italy
| | - Fabio Malacarne
- ¶Servizio di Immunologia Clinica, Spedali Civili, Brescia, Italy; and
| | | | | | | | | | - Alberto Mantovani
- ‡Sezione di Patologia Generale ed Immunologia, Universita’ di Brescia, Brescia, Italy
| | | | | |
Collapse
|
595
|
Kirchhausen T. Wiskott-Aldrich syndrome: a gene, a multifunctional protein and the beginnings of an explanation. MOLECULAR MEDICINE TODAY 1998; 4:300-4. [PMID: 9743991 DOI: 10.1016/s1357-4310(98)01268-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Patients with Wiskott-Aldrich syndrome show various defects in the normal function of platelets and lymphocytes. The recent identification of the gene responsible for this syndrome has led to a surge of studies aimed at solving the puzzle posed by the varied phenotype observed in this disease. It is now known that WASP, the protein product of this gene, can interact with a large number of other proteins known to be involved in the regulation of signal transduction and cytoskeletal organization. Thus, WASP appears to integrate these two basic and fundamental cellular mechanisms. Several groups are now focusing on understanding the function of WASP in detail, and translating this new knowledge into improved therapies.
Collapse
|
596
|
MacCarthy-Morrogh L, Gaspar HB, Wang YC, Katz F, Thompson L, Layton M, Jones AM, Kinnon C. Absence of expression of the Wiskott-Aldrich syndrome protein in peripheral blood cells of Wiskott-Aldrich syndrome patients. CLINICAL IMMUNOLOGY AND IMMUNOPATHOLOGY 1998; 88:22-7. [PMID: 9683546 DOI: 10.1006/clin.1998.4557] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Wiskott-Aldrich syndrome (WAS) is an X-linked primary immunodeficiency that is usually associated with thrombocytopenia and eczema. The very variable phenotype of WAS results from defects in the WAS protein (WASP), the function of which is not well understood. In many cases causative mutations have now been identified in the WAS gene. Attempts have been made to correlate the nature of the mutations with the severity of the disease. In this study we investigated mutations in 13 patients with WAS and analyzed the expression of WASP in patient blood samples by immunoblot analysis. We found that despite extensive variation in the nature of the mutations in patients with severe WAS symptoms, none express the protein. However, in 1 patient with a mild clinical phenotype WASP expression was detected. Such an analysis could be used as an initial screening procedure for the diagnosis of WAS prior to genotypic analysis.
Collapse
Affiliation(s)
- L MacCarthy-Morrogh
- Molecular Immunology Unit, The Institute of Child Health, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
597
|
Sasahara Y, Kawai S, Itano M, Kumaki S, Fujie H, Minegishi M, Tsuchiya S, Konno T. Epstein-Barr virus-associated lymphoproliferative disorder after unrelated bone marrow transplantation in a young child with Wiskott-Aldrich syndrome. Pediatr Hematol Oncol 1998; 15:347-52. [PMID: 9658436 DOI: 10.3109/08880019809014019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We report a case of a 16-month-old Wiskott-Aldrich syndrome (WAS) patient with a WASP gene mutation who received human leukocyte antigen (HLA)-matched, unrelated allogeneic bone marrow transplantation (BMT) followed by an Epstein-Barr virus-associated lymphoproliferative disorder (EB-LPD), diagnosed by clinical findings, polymerase chain reaction detection of the EB virus genome, and spontaneous lymphocyte proliferation of donor cell origin. EB-LPD is one of frequent lethal complications in HLA-mismatched or unrelated BMT in this syndrome. Adoptive immunotherapy with donor leukocyte transfusion, including appropriate numbers of CD3-positive T cells, was effective for the EB-LPD, achieving almost complete recovery 1 year later without any findings of graft-versus-host disease.
Collapse
Affiliation(s)
- Y Sasahara
- Department of Pediatric Oncology, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
598
|
Snapper SB, Rosen FS, Mizoguchi E, Cohen P, Khan W, Liu CH, Hagemann TL, Kwan SP, Ferrini R, Davidson L, Bhan AK, Alt FW. Wiskott-Aldrich syndrome protein-deficient mice reveal a role for WASP in T but not B cell activation. Immunity 1998; 9:81-91. [PMID: 9697838 DOI: 10.1016/s1074-7613(00)80590-7] [Citation(s) in RCA: 393] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Wiskott-Aldrich syndrome (WAS) is a human X-linked immunodeficiency resulting from mutations in a gene (WASP) encoding a cytoplasmic protein implicated in regulating the actin cytoskeleton. To elucidate WASP function, we disrupted the WASP gene in mice by gene-targeted mutation. WASP-deficient mice showed apparently normal lymphocyte development, normal serum immunoglobulin levels, and the capacity to respond to both T-dependent and T-independent type II antigens. However, these mice did have decreased peripheral blood lymphocyte and platelet numbers and developed chronic colitis. Moreover, purified WASP-deficient T cells showed markedly impaired proliferation and antigen receptor cap formation in response to anti-CD3epsilon stimulation. Yet, purified WASP-deficient B cells showed normal responses to anti-Ig stimulation. We discuss the implications of our findings regarding WASP function in receptor signaling and cytoskeletal reorganization in T and B cells and compare the effects of WASP deficiency in mice and humans.
Collapse
Affiliation(s)
- S B Snapper
- Howard Hughes Medical Institute, Children's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
599
|
A 5′ Regulatory Sequence Containing Two Ets Motifs Controls the Expression of the Wiskott-Aldrich Syndrome Protein (WASP) Gene in Human Hematopoietic Cells. Blood 1998. [DOI: 10.1182/blood.v91.12.4554.412k26_4554_4560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recently-identified Wiskott-Aldrich syndrome protein gene (WASP) is responsible for the Wiskott-Aldrich X-linked immunodeficiency as well as for isolated X-linked thrombocytopenia (XLT). To characterize the regulatory sequences of the WASP gene, we have isolated, sequenced and functionally analyzed a 1.6-Kb DNA fragment upstream of the WASP coding sequence. Transfection experiments showed that this fragment is capable of directing efficient expression of the reporter chloramphenicol acetyltransferase (CAT) gene in all human hematopoietic cell lines tested. Progressive 5′ deletions showed that the minimal sequence required for hematopoietic-specific expression consists of 137 bp upstream of the transcription start site. This contains potential binding sites for several hematopoietic transcription factors and, in particular, two Ets-1 consensus that proved able to specifically bind to proteins present in nuclear extracts of Jurkat cells. Overexpression of Ets-1 in HeLa resulted in transactivation of the CAT reporter gene under the control of WASP regulatory sequences. Disruption of the Ets-binding sequences by side-directed mutagenesis abolished CAT expression in Jurkat cells, indicating that transcription factors of the Ets family play a key role in the control of WASP transcription.
Collapse
|
600
|
A 5′ Regulatory Sequence Containing Two Ets Motifs Controls the Expression of the Wiskott-Aldrich Syndrome Protein (WASP) Gene in Human Hematopoietic Cells. Blood 1998. [DOI: 10.1182/blood.v91.12.4554] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe recently-identified Wiskott-Aldrich syndrome protein gene (WASP) is responsible for the Wiskott-Aldrich X-linked immunodeficiency as well as for isolated X-linked thrombocytopenia (XLT). To characterize the regulatory sequences of the WASP gene, we have isolated, sequenced and functionally analyzed a 1.6-Kb DNA fragment upstream of the WASP coding sequence. Transfection experiments showed that this fragment is capable of directing efficient expression of the reporter chloramphenicol acetyltransferase (CAT) gene in all human hematopoietic cell lines tested. Progressive 5′ deletions showed that the minimal sequence required for hematopoietic-specific expression consists of 137 bp upstream of the transcription start site. This contains potential binding sites for several hematopoietic transcription factors and, in particular, two Ets-1 consensus that proved able to specifically bind to proteins present in nuclear extracts of Jurkat cells. Overexpression of Ets-1 in HeLa resulted in transactivation of the CAT reporter gene under the control of WASP regulatory sequences. Disruption of the Ets-binding sequences by side-directed mutagenesis abolished CAT expression in Jurkat cells, indicating that transcription factors of the Ets family play a key role in the control of WASP transcription.
Collapse
|