551
|
Herum KM, Choppe J, Kumar A, Engler AJ, McCulloch AD. Mechanical regulation of cardiac fibroblast profibrotic phenotypes. Mol Biol Cell 2017; 28:1871-1882. [PMID: 28468977 PMCID: PMC5541838 DOI: 10.1091/mbc.e17-01-0014] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/25/2017] [Accepted: 04/27/2017] [Indexed: 12/15/2022] Open
Abstract
Cardiac fibroblasts are essential for beneficial myocardial healing but also cause detrimental adverse remodeling following myocardial infarction. The mechanical properties of the infarcted myocardium and border regions display temporal and spatial characteristics that regulate different aspects of the profibrotic cardiac fibroblast phenotypes. Cardiac fibrosis is a serious condition currently lacking effective treatments. It occurs as a result of cardiac fibroblast (CFB) activation and differentiation into myofibroblasts, characterized by proliferation, extracellular matrix (ECM) production and stiffening, and contraction due to the expression of smooth muscle α-actin. The mechanical properties of myocardium change regionally and over time after myocardial infarction (MI). Although mechanical cues are known to activate CFBs, it is unclear which specific mechanical stimuli regulate which specific phenotypic trait; thus we investigated these relationships using three in vitro models of CFB mechanical activation and found that 1) paracrine signaling from stretched cardiomyocytes induces CFB proliferation under mechanical conditions similar to those of the infarct border region; 2) direct stretch of CFBs mimicking the mechanical environment of the infarct region induces a synthetic phenotype with elevated ECM production; and 3) progressive matrix stiffening, modeling the mechanical effects of infarct scar maturation, causes smooth muscle α-actin fiber formation, up-regulation of collagen I, and down-regulation of collagen III. These findings suggest that myocyte stretch, fibroblast stretch, and matrix stiffening following MI may separately regulate different profibrotic traits of activated CFBs.
Collapse
Affiliation(s)
- Kate M Herum
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093 .,Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, 0450 Oslo, Norway
| | - Jonas Choppe
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093
| | - Aditya Kumar
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093
| | - Adam J Engler
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093.,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92093
| | - Andrew D McCulloch
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093.,Department of Medicine, University of California San Diego, La Jolla, CA 92093
| |
Collapse
|
552
|
Abstract
Fibrotic diseases are not well-understood. They represent a number of different diseases that are characterized by the development of severe organ fibrosis without any obvious cause, such as the devastating diseases idiopathic pulmonary fibrosis (IPF) and scleroderma. These diseases have a poor prognosis comparable with endstage cancer and are uncurable. Given the phenotypic differences, it was assumed that the different fibrotic diseases also have different pathomechanisms. Here, we demonstrate that many endstage fibrotic diseases, including IPF; scleroderma; myelofibrosis; kidney-, pancreas-, and heart-fibrosis; and nonalcoholic steatohepatosis converge in the activation of the AP1 transcription factor c-JUN in the pathologic fibroblasts. Expression of the related AP1 transcription factor FRA2 was restricted to pulmonary artery hypertension. Induction of c-Jun in mice was sufficient to induce severe fibrosis in multiple organs and steatohepatosis, which was dependent on sustained c-Jun expression. Single cell mass cytometry revealed that c-Jun activates multiple signaling pathways in mice, including pAkt and CD47, which were also induced in human disease. αCD47 antibody treatment and VEGF or PI3K inhibition reversed various organ c-Jun-mediated fibroses in vivo. These data suggest that c-JUN is a central molecular mediator of most fibrotic conditions.
Collapse
|
553
|
Ge M, Liu H, Zhang Y, Li N, Zhao S, Zhao W, Zhen Y, Yu J, He H, Shao RG. The anti-hepatic fibrosis effects of dihydrotanshinone I are mediated by disrupting the yes-associated protein and transcriptional enhancer factor D2 complex and stimulating autophagy. Br J Pharmacol 2017; 174:1147-1160. [PMID: 28257144 DOI: 10.1111/bph.13766] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND AND PURPOSE Dihydrotanshinone I (DHI), a lipophilic component of traditional Chinese medicine Salvia miltiorrhiza Bunge, has various therapeutic effects. We investigated the anti-fibrotic effect of DHI and its underlying mechanisms in vitro and in vivo. EXPERIMENTAL APPROACH Rats subjected to bile duct ligation (BDL) were treated with DHI (25 mg·kg-1 ·day-1 , i.p.) for 14 days. Serum biochemical and liver tissue morphological analyses were performed. The human hepatic stellate cell line LX-2 served as a liver fibrosis model in vitro. Liver fibrogenic genes, yes-associated protein (YAP) downstream genes and autophagy markers were examined using western blot and real-time PCR analyses. Similar analyses were done in rat primary hepatic stellate cells (pHSCs). Autophagy flux was assessed by immunofluorescence. KEY RESULTS In BDL rats, DHI administration attenuated liver necrosis, bile duct proliferation and collagen accumulation and reduced the expression of genes associated with fibrogenesis, including Tgfb1, Mmp-2, Acta2 and Col1a1. DHI (1, 5, 10 μmol·L-1 ) time- and dose-dependently suppressed the protein level of COL1A1, TGFβ1 and α-SMA in LX-2 cells and rat pHSCs. Furthermore, DHI blocked the nuclear translocation of YAP, which inhibited the YAP/TEAD2 interaction and its downstream fibrogenic genes, connective tissue growth factor, SOX4 and survivin. This stimulated autophagic flux and accelerated the degradation of liver collagen. CONCLUSIONS AND IMPLICATIONS DHI exerts anti-fibrotic effects in BDL rats, LX-2 cells and rat pHSCs by inhibiting the YAP and TEAD2 complex and stimulating autophagy. These findings indicate that DHI may be a potential therapeutic for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Maoxu Ge
- Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Liu
- Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yixuan Zhang
- Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Naren Li
- Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuangshuang Zhao
- Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wuli Zhao
- Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongzhan Zhen
- Hebei Key Laboratory for Chronic Diseases, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, China
| | - Jianzhong Yu
- Department of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, 66506, USA
| | - Hongwei He
- Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rong-Guang Shao
- Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
554
|
Stricker S, Knaus P, Simon HG. Putting Cells into Context. Front Cell Dev Biol 2017; 5:32. [PMID: 28424772 PMCID: PMC5380720 DOI: 10.3389/fcell.2017.00032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/21/2017] [Indexed: 01/05/2023] Open
Affiliation(s)
- Sigmar Stricker
- Musculoskeletal Development and Regeneration Group, Institute for Chemistry and Biochemistry, Freie Universität BerlinBerlin, Germany
| | - Petra Knaus
- Cell Signaling and Regeneration Group, Institute for Chemistry and Biochemistry, Freie Universität BerlinBerlin, Germany
| | - Hans-Georg Simon
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University and Stanley Manne Children's Research InstituteChicago, IL, USA
| |
Collapse
|
555
|
Li CX, Talele NP, Boo S, Koehler A, Knee-Walden E, Balestrini JL, Speight P, Kapus A, Hinz B. MicroRNA-21 preserves the fibrotic mechanical memory of mesenchymal stem cells. NATURE MATERIALS 2017; 16:379-389. [PMID: 27798620 DOI: 10.1038/nmat4780] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 09/22/2016] [Indexed: 05/20/2023]
Abstract
Expansion on stiff culture substrates activates pro-fibrotic cell programs that are retained by mechanical memory. Here, we show that priming on physiologically soft silicone substrates suppresses fibrogenesis and desensitizes mesenchymal stem cells (MSCs) against subsequent mechanical activation in vitro and in vivo, and identify the microRNA miR-21 as a long-term memory keeper of the fibrogenic program in MSCs. During stiff priming, miR-21 levels were gradually increased by continued regulation through the acutely mechanosensitive myocardin-related transcription factor-A (MRTF-A/MLK-1) and remained high over 2 weeks after removal of the mechanical stimulus. Knocking down miR-21 once by the end of the stiff-priming period was sufficient to erase the mechanical memory and sensitize MSCs to subsequent exposure to soft substrates. Soft priming and erasing mechanical memory following cell culture expansion protects MSCs from fibrogenesis in the host wound environment and increases the chances for success of MSC therapy in tissue-repair applications.
Collapse
Affiliation(s)
- Chen Xi Li
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Nilesh P Talele
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Stellar Boo
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Anne Koehler
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Ericka Knee-Walden
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | | | - Pam Speight
- Keenan Research Centre in the Li Ka Shing Knowledge Institute in the St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Andras Kapus
- Keenan Research Centre in the Li Ka Shing Knowledge Institute in the St. Michael's Hospital, and Department of Surgery, University of Toronto, Toronto, Ontario M5B 1W8, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| |
Collapse
|
556
|
Guo HF, Cho EJ, Devkota AK, Chen Y, Russell W, Phillips GN, Yamauchi M, Dalby KN, Kurie JM. A scalable lysyl hydroxylase 2 expression system and luciferase-based enzymatic activity assay. Arch Biochem Biophys 2017; 618:45-51. [PMID: 28216326 DOI: 10.1016/j.abb.2017.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 11/24/2022]
Abstract
Hydroxylysine aldehyde-derived collagen cross-links (HLCCs) accumulate in fibrotic tissues and certain types of cancer and are thought to drive the progression of these diseases. HLCC formation is initiated by lysyl hydroxylase 2 (LH2), an Fe(II) and α-ketoglutarate (αKG)-dependent oxygenase that hydroxylates telopeptidyl lysine residues on collagen. Development of LH2 antagonists for the treatment of these diseases will require a reliable source of recombinant LH2 protein and a non-radioactive LH2 enzymatic activity assay that is amenable to high throughput screens of small molecule libraries. However, LH2 protein generated using E coli- or insect-based expression systems is either insoluble or enzymatically unstable, and the LH2 enzymatic activity assays that are currently available measure radioactive CO2 released from 14C-labeled αKG during its conversion to succinate. To address these deficiencies, we have developed a scalable process to purify human LH2 protein from Chinese hamster ovary cell-derived conditioned media samples and a luciferase-based assay that quantifies LH2-dependent conversion of αKG to succinate. These methodologies may be applicable to other Fe(II) and αKG-dependent oxygenase systems.
Collapse
Affiliation(s)
- Hou-Fu Guo
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Eun Jeong Cho
- Division of Medicinal Chemistry, Targeted Therapeutic Drug Discovery and Development Program, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - Ashwini K Devkota
- Division of Medicinal Chemistry, Targeted Therapeutic Drug Discovery and Development Program, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - Yulong Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - William Russell
- Departments of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - George N Phillips
- Department of Biosciences and Chemistry, Rice University, Houston, TX, United States
| | - Mitsuo Yamauchi
- Oral and Craniofacial Health Sciences, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kevin N Dalby
- Division of Medicinal Chemistry, Targeted Therapeutic Drug Discovery and Development Program, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States; Division of Chemical Biology & Medicinal Chemistry, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States.
| | - Jonathan M Kurie
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
557
|
Noguchi S, Saito A, Mikami Y, Urushiyama H, Horie M, Matsuzaki H, Takeshima H, Makita K, Miyashita N, Mitani A, Jo T, Yamauchi Y, Terasaki Y, Nagase T. TAZ contributes to pulmonary fibrosis by activating profibrotic functions of lung fibroblasts. Sci Rep 2017; 7:42595. [PMID: 28195168 PMCID: PMC5307361 DOI: 10.1038/srep42595] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 01/11/2017] [Indexed: 11/21/2022] Open
Abstract
Transcriptional coactivator with PDZ-binding motif (TAZ) regulates a variety of biological processes. Nuclear translocation and activation of TAZ are regulated by multiple mechanisms, including actin cytoskeleton and mechanical forces. TAZ is involved in lung alveolarization during lung development and Taz-heterozygous mice are resistant to bleomycin-induced lung fibrosis. In this study, we explored the roles of TAZ in the pathogenesis of idiopathic pulmonary fibrosis (IPF) through histological analyses of human lung tissues and cell culture experiments. TAZ was highly expressed in the fibroblastic foci of lungs from patients with IPF. TAZ controlled myofibroblast marker expression, proliferation, migration, and matrix contraction in cultured lung fibroblasts. Importantly, actin stress fibers and nuclear accumulation of TAZ were more evident when cultured on a stiff matrix, suggesting a feedback mechanism to accelerate fibrotic responses. Gene expression profiling revealed TAZ-mediated regulation of connective tissue growth factor (CTGF) and type I collagen. Clinical relevance of TAZ-regulated gene signature was further assessed using publicly available transcriptome data. These findings suggest that TAZ is involved in the pathogenesis of IPF through multifaceted effects on lung fibroblasts.
Collapse
Affiliation(s)
- Satoshi Noguchi
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Division for Health Service Promotion, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yu Mikami
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Department of Clinical Laboratory, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Hirokazu Urushiyama
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Department of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Masafumi Horie
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Division for Health Service Promotion, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hirotaka Matsuzaki
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hideyuki Takeshima
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kosuke Makita
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naoya Miyashita
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akihisa Mitani
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Taisuke Jo
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.,Division for Health Service Promotion, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuhiro Yamauchi
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuhiro Terasaki
- Department of Analytic Human Pathology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
558
|
Dimethyl Fumarate ameliorates pulmonary arterial hypertension and lung fibrosis by targeting multiple pathways. Sci Rep 2017; 7:41605. [PMID: 28150703 PMCID: PMC5288696 DOI: 10.1038/srep41605] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 12/21/2016] [Indexed: 12/28/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a fatal condition for which there is no cure. Dimethyl Fumarate (DMF) is an FDA approved anti-oxidative and anti-inflammatory agent with a favorable safety record. The goal of this study was to assess the effectiveness of DMF as a therapy for PAH using patient-derived cells and murine models. We show that DMF treatment is effective in reversing hemodynamic changes, reducing inflammation, oxidative damage, and fibrosis in the experimental models of PAH and lung fibrosis. Our findings indicate that effects of DMF are facilitated by inhibiting pro-inflammatory NFκB, STAT3 and cJUN signaling, as well as βTRCP-dependent degradation of the pro-fibrogenic mediators Sp1, TAZ and β-catenin. These results provide a novel insight into the mechanism of its action. Collectively, preclinical results demonstrate beneficial effects of DMF on key molecular pathways contributing to PAH, and support its testing in PAH treatment in patients.
Collapse
|
559
|
Yang Y, Wang K, Gu X, Leong KW. Biophysical Regulation of Cell Behavior-Cross Talk between Substrate Stiffness and Nanotopography. ENGINEERING (BEIJING, CHINA) 2017; 3:36-54. [PMID: 29071164 PMCID: PMC5653318 DOI: 10.1016/j.eng.2017.01.014] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The stiffness and nanotopographical characteristics of the extracellular matrix (ECM) influence numerous developmental, physiological, and pathological processes in vivo. These biophysical cues have therefore been applied to modulate almost all aspects of cell behavior, from cell adhesion and spreading to proliferation and differentiation. Delineation of the biophysical modulation of cell behavior is critical to the rational design of new biomaterials, implants, and medical devices. The effects of stiffness and topographical cues on cell behavior have previously been reviewed, respectively; however, the interwoven effects of stiffness and nanotopographical cues on cell behavior have not been well described, despite similarities in phenotypic manifestations. Herein, we first review the effects of substrate stiffness and nanotopography on cell behavior, and then focus on intracellular transmission of the biophysical signals from integrins to nucleus. Attempts are made to connect extracellular regulation of cell behavior with the biophysical cues. We then discuss the challenges in dissecting the biophysical regulation of cell behavior and in translating the mechanistic understanding of these cues to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Yong Yang
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Kai Wang
- Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Kam W. Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| |
Collapse
|
560
|
Piersma B, Bank RA. Keeping fibroblasts in suspense: TAZ-mediated signaling activates a context-dependent profibrotic phenotype. Focus on "TAZ activation drives fibroblast spheroid growth, expression of profibrotic paracrine signals, and context-dependent ECM gene expression". Am J Physiol Cell Physiol 2017; 312:C274-C276. [PMID: 28052865 DOI: 10.1152/ajpcell.00362.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Bram Piersma
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ruud A Bank
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
561
|
Knudsen L, Ruppert C, Ochs M. Tissue remodelling in pulmonary fibrosis. Cell Tissue Res 2016; 367:607-626. [PMID: 27981380 DOI: 10.1007/s00441-016-2543-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/19/2016] [Indexed: 12/16/2022]
Abstract
Many lung diseases result in fibrotic remodelling. Fibrotic lung disorders can be divided into diseases with known and unknown aetiology. Among those with unknown aetiology, idiopathic pulmonary fibrosis (IPF) is a common diagnosis. Because of its progressive character leading to a rapid decline in lung function, it is a fatal disease with poor prognosis and limited therapeutic options. Thus, IPF has motivated many studies in the last few decades in order to increase our mechanistic understanding of the pathogenesis of the disease. The current concept suggests an ongoing injury of the alveolar epithelium, an impaired regeneration capacity, alveolar collapse and, finally, a fibroproliferative response. The origin of lung injury remains elusive but a diversity of factors, which will be discussed in this article, has been shown to be associated with IPF. Alveolar epithelial type II (AE2) cells play a key role in lung fibrosis and their crucial role for epithelial regeneration, stabilisation of alveoli and interaction with fibroblasts, all known to be responsible for collagen deposition, will be illustrated. Whereas mechanisms of collagen deposition and fibroproliferation are the focus of many studies in the field, the awareness of other mechanisms in this disease is currently limited to biochemical and imaging studies including quantitative assessments of lung structure in IPF and animal models assigning alveolar collapse and collapse induration crucial roles for the degradation of the lung resulting in de-aeration and loss of surface area. Dysfunctional AE2 cells, instable alveoli and mechanical stress trigger remodelling that consists of collapsed alveoli absorbed by fibrotic tissue (i.e., collapse induration).
Collapse
Affiliation(s)
- Lars Knudsen
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg Strasse 1, 30625, Hannover, Germany. .,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany. .,REBIRTH, Cluster of Excellence, Hannover Medical School, Hannover, Germany.
| | - Clemens Ruppert
- Department of Internal Medicine, Justus-Liebig-University Giessen, Giessen, Germany.,Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg, Giessen, Germany
| | - Matthias Ochs
- Institute of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg Strasse 1, 30625, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany.,REBIRTH, Cluster of Excellence, Hannover Medical School, Hannover, Germany
| |
Collapse
|
562
|
Hepatocyte TAZ/WWTR1 Promotes Inflammation and Fibrosis in Nonalcoholic Steatohepatitis. Cell Metab 2016; 24:848-862. [PMID: 28068223 PMCID: PMC5226184 DOI: 10.1016/j.cmet.2016.09.016] [Citation(s) in RCA: 311] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 08/06/2016] [Accepted: 09/24/2016] [Indexed: 12/22/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is a leading cause of liver disease worldwide. However, the molecular basis of how benign steatosis progresses to NASH is incompletely understood, which has limited the identification of therapeutic targets. Here we show that the transcription regulator TAZ (WWTR1) is markedly higher in hepatocytes in human and murine NASH liver than in normal or steatotic liver. Most importantly, silencing of hepatocyte TAZ in murine models of NASH prevented or reversed hepatic inflammation, hepatocyte death, and fibrosis, but not steatosis. Moreover, hepatocyte-targeted expression of TAZ in a model of steatosis promoted NASH features, including fibrosis. In vitro and in vivo mechanistic studies revealed that a key mechanism linking hepatocyte TAZ to NASH fibrosis is TAZ/TEA domain (TEAD)-mediated induction of Indian hedgehog (Ihh), a secretory factor that activates fibrogenic genes in hepatic stellate cells. In summary, TAZ represents a previously unrecognized factor that contributes to the critical process of steatosis-to-NASH progression.
Collapse
|
563
|
Finch-Edmondson M, Sudol M. Framework to function: mechanosensitive regulators of gene transcription. Cell Mol Biol Lett 2016; 21:28. [PMID: 28536630 PMCID: PMC5415767 DOI: 10.1186/s11658-016-0028-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/16/2016] [Indexed: 01/06/2023] Open
Abstract
Mechanobiology has shifted our understanding of fundamental cellular and physiological functions. Changes to the stiffness of the extracellular matrix, cell rigidity, or shape of the cell environment were considered in the past to be a consequence of aging or pathological processes. We now understand that these factors can actually be causative biological mediators of cell growth to control organ size. Mechanical cues are known to trigger a relatively fast translocation of specific transcriptional co-factors such as MRTFs, YAP and TAZ from the cytoplasm to the cell nucleus to initiate discrete transcriptional programs. The focus of this review is the molecular mechanisms by which biophysical stimuli that induce changes in cytoplasmic actin dynamics are communicated within cells to elicit gene-specific transcription via nuclear localisation or activation of specialized transcription factors, namely MRTFs and the Hippo pathway effectors YAP and TAZ. We propose here that MRTFs, YAP and TAZ closely collaborate as mechano-effectors.
Collapse
Affiliation(s)
- Megan Finch-Edmondson
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411 Singapore, Singapore.,Department of Physiology, National University of Singapore, Yong Loo Lin School of Medicine, 2 Medical Drive, 117597 Singapore, Singapore
| | - Marius Sudol
- Mechanobiology Institute, National University of Singapore, 5A Engineering Drive 1, 117411 Singapore, Singapore.,Department of Physiology, National University of Singapore, Yong Loo Lin School of Medicine, 2 Medical Drive, 117597 Singapore, Singapore
| |
Collapse
|
564
|
Zhubanchaliyev A, Temirbekuly A, Kongrtay K, Wanshura LC, Kunz J. Targeting Mechanotransduction at the Transcriptional Level: YAP and BRD4 Are Novel Therapeutic Targets for the Reversal of Liver Fibrosis. Front Pharmacol 2016; 7:462. [PMID: 27990121 PMCID: PMC5131002 DOI: 10.3389/fphar.2016.00462] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/16/2016] [Indexed: 12/14/2022] Open
Abstract
Liver fibrosis is the result of a deregulated wound healing process characterized by the excessive deposition of extracellular matrix. Hepatic stellate cells (HSCs), which are activated in response to liver injury, are the major source of extracellular matrix and drive the wound healing process. However, chronic liver damage leads to perpetual HSC activation, progressive formation of pathological scar tissue and ultimately, cirrhosis and organ failure. HSC activation is triggered largely in response to mechanosignaling from the microenvironment, which induces a profibrotic nuclear transcription program that promotes HSC proliferation and extracellular matrix secretion thereby setting up a positive feedback loop leading to matrix stiffening and self-sustained, pathological, HSC activation. Despite the significant progress in our understanding of liver fibrosis, the molecular mechanisms through which the extracellular matrix promotes HSC activation are not well understood and no effective therapies have been approved to date that can target this early, reversible, stage in liver fibrosis. Several new lines of investigation now provide important insight into this area of study and identify two nuclear targets whose inhibition has the potential of reversing liver fibrosis by interfering with HSC activation: Yes-associated protein (YAP), a transcriptional co-activator and effector of the mechanosensitive Hippo pathway, and bromodomain-containing protein 4 (BRD4), an epigenetic regulator of gene expression. YAP and BRD4 activity is induced in response to mechanical stimulation of HSCs and each protein independently controls waves of early gene expression necessary for HSC activation. Significantly, inhibition of either protein can revert the chronic activation of HSCs and impede pathological progression of liver fibrosis in clinically relevant model systems. In this review we will discuss the roles of these nuclear co-activators in HSC activation, their mechanism of action in the fibrotic process in the liver and other organs, and the potential of targeting their activity with small molecule drugs for fibrosis reversal.
Collapse
Affiliation(s)
- Altynbek Zhubanchaliyev
- Department of Biology, School of Science and Technology, Nazarbayev UniversityAstana, Kazakhstan; Department of Biotechnology and Microbiology, Faculty of Natural Sciences, L.N.Gumilyov Eurasian National UniversityAstana, Kazakhstan
| | - Aibar Temirbekuly
- Department of Biology, School of Science and Technology, Nazarbayev University Astana, Kazakhstan
| | - Kuralay Kongrtay
- Department of Biology, School of Science and Technology, Nazarbayev University Astana, Kazakhstan
| | | | - Jeannette Kunz
- Department of Biology, School of Science and Technology, Nazarbayev University Astana, Kazakhstan
| |
Collapse
|
565
|
Jorgenson AJ, Choi KM, Sicard D, Smith KMJ, Hiemer SE, Varelas X, Tschumperlin DJ. TAZ activation drives fibroblast spheroid growth, expression of profibrotic paracrine signals, and context-dependent ECM gene expression. Am J Physiol Cell Physiol 2016; 312:C277-C285. [PMID: 27881410 DOI: 10.1152/ajpcell.00205.2016] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/14/2016] [Accepted: 11/18/2016] [Indexed: 11/22/2022]
Abstract
Recent studies have implicated the Hippo pathway and its transcriptional effectors YAP and TAZ as necessary for fibroblast activation and tissue fibrosis. To test the specific and sufficient roles for TAZ in driving autonomous fibroblast activation, we cultured NIH3T3 fibroblasts expressing a doxycycline-inducible nuclear-localized mutant of TAZ (TAZ4SA) in scaffold-free 3D hanging drop spheroids, or on matrices of specified mechanical rigidity. Control NIH3T3 fibroblasts formed spheroids in hanging drop culture that remained stable and neither increased nor decreased in size significantly over 15 days. In contrast, TAZ4SA-transduced fibroblasts grew robustly in spheroid culture, and expressed enhanced levels of genes encoding profibrotic soluble factors connective tissue growth factor (CTGF), endothelin-1 (Et-1), and plasminogen activator inhibitor 1 (PAI-1). However, TAZ4SA expression was unable to enhance expression of extracellular matrix (ECM)-encoding genes Col1a1, Col1a2, Col3a1, or Fn1 in spheroid culture. Micromechanical testing indicated that spheroids composed of either control or TAZ4SA-expressing cells were highly compliant and indistinguishable in mechanical properties. In fibroblasts cultured on 2D matrices of compliance similar to spheroids, TAZ4SA expression was able to enhance contractile force generation, but was unable to enhance ECM gene expression. In contrast, culture on stiff hydrogels potentiated TAZ4SA enhancement of ECM expression. TAZ4SA enhancement of Col1a1 expression on soft matrices was potentiated by TGF-β1, while on stiff matrices it was abrogated by inhibition of myocardin-related transcription factor, demonstrating context-dependent crosstalk of TAZ with these pathways. These findings demonstrate sufficiency of TAZ activation for driving fibroblast proliferation, contraction, and soluble profibrotic factor expression, and mechanical context-dependent crosstalk of TAZ with other pathways in regulating Col1a1 expression.
Collapse
Affiliation(s)
- Amy J Jorgenson
- Department of Physiology and Biomedical Engineering, College of Medicine, Mayo Clinic, Rochester, Minnesota; and
| | - Kyoung Moo Choi
- Department of Physiology and Biomedical Engineering, College of Medicine, Mayo Clinic, Rochester, Minnesota; and
| | - Delphine Sicard
- Department of Physiology and Biomedical Engineering, College of Medicine, Mayo Clinic, Rochester, Minnesota; and
| | - Karry M J Smith
- Department of Physiology and Biomedical Engineering, College of Medicine, Mayo Clinic, Rochester, Minnesota; and
| | - Samantha E Hiemer
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, College of Medicine, Mayo Clinic, Rochester, Minnesota; and
| |
Collapse
|
566
|
Shinde AV, Humeres C, Frangogiannis NG. The role of α-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochim Biophys Acta Mol Basis Dis 2016; 1863:298-309. [PMID: 27825850 DOI: 10.1016/j.bbadis.2016.11.006] [Citation(s) in RCA: 383] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 10/09/2016] [Accepted: 11/02/2016] [Indexed: 02/06/2023]
Abstract
Cardiac myofibroblasts play an important role in myocardial remodeling. Although α-smooth muscle actin (α-SMA) expression is the hallmark of mature myofibroblasts, its role in regulating fibroblast function remains poorly understood. We explore the effects of the matrix environment in modulating cardiac fibroblast phenotype, and we investigate the role of α-SMA in fibroblast function using loss- and gain-of-function approaches. In murine myocardial infarction, infiltration of the infarct border zone with abundant α-SMA-positive myofibroblasts was associated with scar contraction. Isolated cardiac fibroblasts cultured in plates showed high α-SMA expression localized in stress fibers, exhibited activation of focal adhesion kinase (FAK), and synthesized large amounts of extracellular matrix proteins. In contrast, when these cells were cultured in collagen lattices, they exhibited marked reduction of α-SMA expression, negligible FAK activation, attenuated collagen synthesis, and increased transcription of genes associated with matrix metabolism. Transforming Growth Factor-β1-mediated contraction of fibroblast-populated collagen pads was associated with accentuated α-SMA synthesis. In contrast, serum- and basic Fibroblast Growth Factor-induced collagen pad contraction was associated with reduced α-SMA expression. α-SMA siRNA knockdown attenuated contraction of collagen pads populated with serum-stimulated cells. Surprisingly, α-SMA overexpression also reduced collagen pad contraction, suggesting that α-SMA is not sufficient to promote contraction of the matrix. Reduced contraction by α-SMA-overexpressing cells was associated with attenuated proliferative activity, in the absence of any effects on apoptosis. α-SMA may be implicated in contraction and remodeling of the extracellular matrix, but is not sufficient to induce contraction. α-SMA expression may modulate cellular functions, beyond its effects on contractility.
Collapse
Affiliation(s)
- Arti V Shinde
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States
| | - Claudio Humeres
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States
| | - Nikolaos G Frangogiannis
- The Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
567
|
Abstract
The normal pulmonary circulation is a low-pressure, high-compliance system. Pulmonary arterial compliance decreases in the presence of pulmonary hypertension because of increased extracellular matrix/collagen deposition in the pulmonary arteries. Loss of pulmonary arterial compliance has been consistently shown to be a predictor of increased mortality in patients with pulmonary hypertension, even more so than pulmonary vascular resistance in some studies. Decreased pulmonary arterial compliance causes premature reflection of waves from the distal pulmonary vasculature, leading to increased pulsatile right ventricular afterload and eventually right ventricular failure. Evidence suggests that decreased pulmonary arterial compliance is a cause rather than a consequence of distal small vessel proliferative vasculopathy. Pulmonary arterial compliance decreases early in the disease process even when pulmonary artery pressure and pulmonary vascular resistance are normal, potentially enabling early diagnosis of pulmonary vascular disease, especially in high-risk populations. With the recognition of the prognostic importance of pulmonary arterial compliance, its impact on right ventricular function, and its contributory role in the development and progression of distal small-vessel proliferative vasculopathy, pulmonary arterial compliance is an attractive target for the treatment of pulmonary hypertension.
Collapse
|
568
|
Tan Q, Choi KM, Sicard D, Tschumperlin DJ. Human airway organoid engineering as a step toward lung regeneration and disease modeling. Biomaterials 2016; 113:118-132. [PMID: 27815996 DOI: 10.1016/j.biomaterials.2016.10.046] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/14/2016] [Accepted: 10/27/2016] [Indexed: 12/12/2022]
Abstract
Organoids represent both a potentially powerful tool for the study cell-cell interactions within tissue-like environments, and a platform for tissue regenerative approaches. The development of lung tissue-like organoids from human adult-derived cells has not previously been reported. Here we combined human adult primary bronchial epithelial cells, lung fibroblasts, and lung microvascular endothelial cells in supportive 3D culture conditions to generate airway organoids. We demonstrate that randomly-seeded mixed cell populations undergo rapid condensation and self-organization into discrete epithelial and endothelial structures that are mechanically robust and stable during long term culture. After condensation airway organoids generate invasive multicellular tubular structures that recapitulate limited aspects of branching morphogenesis, and require actomyosin-mediated force generation and YAP/TAZ activation. Despite the proximal source of primary epithelium used in the airway organoids, discrete areas of both proximal and distal epithelial markers were observed over time in culture, demonstrating remarkable epithelial plasticity within the context of organoid cultures. Airway organoids also exhibited complex multicellular responses to a prototypical fibrogenic stimulus (TGF-β1) in culture, and limited capacity to undergo continued maturation and engraftment after ectopic implantation under the murine kidney capsule. These results demonstrate that the airway organoid system developed here represents a novel tool for the study of disease-relevant cell-cell interactions, and establishes this platform as a first step toward cell-based therapy for chronic lung diseases based on de novo engineering of implantable airway tissues.
Collapse
Affiliation(s)
- Qi Tan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Kyoung Moo Choi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Delphine Sicard
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
569
|
Burgess JK, Mauad T, Tjin G, Karlsson JC, Westergren-Thorsson G. The extracellular matrix - the under-recognized element in lung disease? J Pathol 2016; 240:397-409. [PMID: 27623753 PMCID: PMC5129494 DOI: 10.1002/path.4808] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 08/17/2016] [Accepted: 09/05/2016] [Indexed: 12/11/2022]
Abstract
The lung is composed of airways and lung parenchyma, and the extracellular matrix (ECM) contains the main building blocks of both components. The ECM provides physical support and stability to the lung, and as such it has in the past been regarded as an inert structure. More recent research has provided novel insights revealing that the ECM is also a bioactive environment that orchestrates the cellular responses in its environs. Changes in the ECM in the airway or parenchymal tissues are now recognized in the pathological profiles of many respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). Only recently have we begun to investigate whether these ECM changes result from the disease process, or whether they constitute a driving factor that orchestrates the pathological outcomes. This review summarizes our current knowledge of the alterations in the ECM in asthma, COPD, and IPF, and the contributions of these alterations to the pathologies. Emerging data suggest that alterations in the composition, folding or rigidity of ECM proteins may alter the functional responses of cells within their environs, and in so doing change the pathological outcomes. These characteristics highlight potential avenues for targeting lung pathologies in the future. This may ultimately contribute to a better understanding of chronic lung diseases, and novel approaches for finding therapeutic solutions. © 2016 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Janette K Burgess
- University of Groningen, University Medical Centre Groningen, GRIAC Research Institute, Department of Pathology and Medical Biology, Groningen, The Netherlands.,Respiratory Cellular and Molecular Biology Group, Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW, Australia.,Discipline of Pharmacology, The University of Sydney, NSW, Australia.,Central Clinical School, The University of Sydney, NSW, Australia
| | - Thais Mauad
- Department of Pathology, São Paulo University Medical School, São Paulo, Brazil
| | - Gavin Tjin
- Respiratory Cellular and Molecular Biology Group, Woolcock Institute of Medical Research, The University of Sydney, Glebe, NSW, Australia.,Central Clinical School, The University of Sydney, NSW, Australia
| | - Jenny C Karlsson
- Lung Biology, Department of Experimental Medical Sciences, Medical Faculty, Lund University, Lund, Sweden
| | | |
Collapse
|
570
|
Prakash YS. Emerging concepts in smooth muscle contributions to airway structure and function: implications for health and disease. Am J Physiol Lung Cell Mol Physiol 2016; 311:L1113-L1140. [PMID: 27742732 DOI: 10.1152/ajplung.00370.2016] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/06/2016] [Indexed: 12/15/2022] Open
Abstract
Airway structure and function are key aspects of normal lung development, growth, and aging, as well as of lung responses to the environment and the pathophysiology of important diseases such as asthma, chronic obstructive pulmonary disease, and fibrosis. In this regard, the contributions of airway smooth muscle (ASM) are both functional, in the context of airway contractility and relaxation, as well as synthetic, involving production and modulation of extracellular components, modulation of the local immune environment, cellular contribution to airway structure, and, finally, interactions with other airway cell types such as epithelium, fibroblasts, and nerves. These ASM contributions are now found to be critical in airway hyperresponsiveness and remodeling that occur in lung diseases. This review emphasizes established and recent discoveries that underline the central role of ASM and sets the stage for future research toward understanding how ASM plays a central role by being both upstream and downstream in the many interactive processes that determine airway structure and function in health and disease.
Collapse
Affiliation(s)
- Y S Prakash
- Departments of Anesthesiology, and Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
571
|
Role of the Rho GTPase/Rho kinase signaling pathway in pathogenesis and treatment of glaucoma: Bench to bedside research. Exp Eye Res 2016; 158:23-32. [PMID: 27593914 DOI: 10.1016/j.exer.2016.08.023] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/25/2016] [Accepted: 08/31/2016] [Indexed: 12/14/2022]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. Elevated intraocular pressure (IOP) is considered to be a predominant risk factor for primary open angle glaucoma, the most prevalent form of glaucoma. Although the etiological mechanisms responsible for increased IOP are not completely clear, impairment in aqueous humor (AH) drainage through the conventional or trabecular pathway is recognized to be a primary cause in glaucoma patients. Importantly, lowering of IOP has been demonstrated to reduce progression of vision loss and is a mainstay of treatment for all types of glaucoma. Currently however, there are limited therapeutic options available for lowering IOP especially as it relates to enhancement of AH outflow through the trabecular pathway. Towards addressing this challenge, bench and bedside research conducted over the course of the last decade and a half has identified the significance of inhibiting Rho kinase for lowering IOP. Rho kinase is a downstream effector of Rho GTPase signaling that regulates actomyosin dynamics in numerous cell types. Studies from several laboratories have demonstrated that inhibition of Rho kinase lowers IOP via relaxation of the trabecular meshwork which enhances AH outflow. By contrast, activation of Rho GTPase/Rho kinase signaling in the trabecular outflow pathway increases IOP by altering the contractile, cell adhesive and permeability barrier characteristics of the trabecular meshwork and Schlemm's canal tissues, and by influencing extracellular matrix production and fibrotic activity. This article, written in honor of the late David Epstein, MD, summarizes findings from both basic and clinical studies that have been instrumental for recognition of the importance of the Rho/Rho kinase signaling pathway in regulation of AH outflow, and in the development of Rho kinase inhibitors as promising IOP- lowering agents for glaucoma treatment.
Collapse
|
572
|
Khavari A, Nydén M, Weitz DA, Ehrlicher AJ. Composite alginate gels for tunable cellular microenvironment mechanics. Sci Rep 2016; 6:30854. [PMID: 27484403 PMCID: PMC4971458 DOI: 10.1038/srep30854] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/08/2016] [Indexed: 01/06/2023] Open
Abstract
The mechanics of the cellular microenvironment can be as critical as biochemistry in directing cell behavior. Many commonly utilized materials derived from extra-cellular-matrix create excellent scaffolds for cell growth, however, evaluating the relative mechanical and biochemical effects independently in 3D environments has been difficult in frequently used biopolymer matrices. Here we present 3D sodium alginate hydrogel microenvironments over a physiological range of stiffness (E = 1.85 to 5.29 kPa), with and without RGD binding sites or collagen fibers. We use confocal microscopy to measure the growth of multi-cellular aggregates (MCAs), of increasing metastatic potential in different elastic moduli of hydrogels, with and without binding factors. We find that the hydrogel stiffness regulates the growth and morphology of these cell clusters; MCAs grow larger and faster in the more rigid environments similar to cancerous breast tissue (E = 4–12 kPa) as compared to healthy tissue (E = 0.4–2 kpa). Adding binding factors from collagen and RGD peptides increases growth rates, and change maximum MCA sizes. These findings demonstrate the utility of these independently tunable mechanical/biochemistry gels, and that mechanical confinement in stiffer microenvironments may increase cell proliferation.
Collapse
Affiliation(s)
- Adele Khavari
- Applied Chemistry, Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.,SUMO Biomaterials VINN Excellence Center, Chalmers University of Technology, SE-412 96 Göteborg, Sweden
| | - Magnus Nydén
- Applied Chemistry, Chemical and Biological Engineering, Chalmers University of Technology, SE-412 96 Göteborg, Sweden.,UCL Australia, 220 Victoria Square, Adelaide, SA 5000 Australia
| | - David A Weitz
- Department of Bioengineering, McGill University, Montreal Canada H3A 0C3
| | - Allen J Ehrlicher
- Department of Bioengineering, McGill University, Montreal Canada H3A 0C3.,School of Engineering and Applied Sciences, Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.,Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, United States.,Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
573
|
Stempien-Otero A, Kim DH, Davis J. Molecular networks underlying myofibroblast fate and fibrosis. J Mol Cell Cardiol 2016; 97:153-61. [PMID: 27167848 PMCID: PMC5482716 DOI: 10.1016/j.yjmcc.2016.05.002] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/02/2016] [Accepted: 05/05/2016] [Indexed: 01/06/2023]
Abstract
Fibrotic remodeling is a hallmark of most forms of cardiovascular disease and a strong prognostic indicator of the advancement towards heart failure. Myofibroblasts, which are a heterogeneous cell-type specialized for extracellular matrix (ECM) secretion and tissue contraction, are the primary effectors of the heart's fibrotic response. This review is focused on defining myofibroblast physiology, its progenitor cell populations, and the core signaling network that orchestrates myofibroblast differentiation as a way of understanding the basic determinants of fibrotic disease in the heart and other tissues.
Collapse
Affiliation(s)
- April Stempien-Otero
- Division of Cardiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jennifer Davis
- Department of Pathology, University of Washington School of Medicine, Seattle, WA, USA; Department of Bioengineering, University of Washington, Seattle, WA, USA.
| |
Collapse
|
574
|
ω-3 PUFAs ameliorate liver fibrosis and inhibit hepatic stellate cells proliferation and activation by promoting YAP/TAZ degradation. Sci Rep 2016; 6:30029. [PMID: 27435808 PMCID: PMC4951777 DOI: 10.1038/srep30029] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 06/28/2016] [Indexed: 12/15/2022] Open
Abstract
Elevated levels of the transcriptional regulators Yes-associated protein (YAP) and transcriptional coactivators with PDZ-binding motif (TAZ), key effectors of the Hippo pathway, have been shown to play essential roles in controlling liver cell fate and the activation of hepatic stellate cells (HSCs). The dietary intake of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) has been positively associated with a number of health benefits including prevention and reduction of cardiovascular diseases, inflammation and cancers. However, little is known about the impact of ω-3 PUFAs on liver fibrosis. In this study, we used CCl4-induced liver fibrosis mouse model and found that YAP/TAZ is over-expressed in the fibrotic liver and activated HSCs. Fish oil administration to the model mouse attenuates CCl4-induced liver fibrosis. Further study revealed that ω-3 PUFAs down-regulate the expression of pro-fibrogenic genes in activated HSCs and fibrotic liver, and the down-regulation is mediated via YAP, thus identifying YAP as a target of ω-3 PUFAs. Moreover, ω-3 PUFAs promote YAP/TAZ degradation in a proteasome-dependent manner. Our data have identified a mechanism of ω-3 PUFAs in ameliorating liver fibrosis.
Collapse
|
575
|
Caliari SR, Vega SL, Kwon M, Soulas EM, Burdick JA. Dimensionality and spreading influence MSC YAP/TAZ signaling in hydrogel environments. Biomaterials 2016; 103:314-323. [PMID: 27429252 DOI: 10.1016/j.biomaterials.2016.06.061] [Citation(s) in RCA: 231] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/26/2016] [Accepted: 06/27/2016] [Indexed: 01/12/2023]
Abstract
Improved fundamental understanding of how cells interpret microenvironmental signals is integral to designing better biomaterial therapies. YAP/TAZ are key mediators of mechanosensitive signaling; however, it is not clear how they are regulated by the complex interplay of microenvironmental factors (e.g., stiffness and degradability) and culture dimensionality. Using covalently crosslinked norbornene-functionalized hyaluronic acid (HA) hydrogels with controlled stiffness (via crosslink density) and degradability (via susceptibility of crosslinks to proteolysis), we found that human mesenchymal stem cells (MSCs) displayed increased spreading and YAP/TAZ nuclear localization when cultured atop stiffer hydrogels; however, the opposite trend was observed when MSCs were encapsulated within degradable hydrogels. When stiffness-matched hydrogels of reduced degradability were used, YAP/TAZ nuclear translocation was greater in cells that were able to spread, which was confirmed through pharmacological inhibition of YAP/TAZ and actin polymerization. Together, these data illustrate that YAP/TAZ signaling is responsive to hydrogel stiffness and degradability, but the outcome is dependent on the dimensionality of cell-biomaterial interactions.
Collapse
Affiliation(s)
- Steven R Caliari
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sebastián L Vega
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michelle Kwon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth M Soulas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
576
|
Pulmonary Arterial Stiffness: Toward a New Paradigm in Pulmonary Arterial Hypertension Pathophysiology and Assessment. Curr Hypertens Rep 2016; 18:4. [PMID: 26733189 DOI: 10.1007/s11906-015-0609-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Stiffening of the pulmonary arterial bed with the subsequent increased load on the right ventricle is a paramount feature of pulmonary hypertension (PH). The pathophysiology of vascular stiffening is a complex and self-reinforcing function of extracellular matrix remodeling, driven by recruitment of circulating inflammatory cells and their interactions with resident vascular cells, and mechanotransduction of altered hemodynamic forces throughout the ventricular-vascular axis. New approaches to understanding the cell and molecular determinants of the pathophysiology combine novel biopolymer substrates, controlled flow conditions, and defined cell types to recapitulate the biomechanical environment in vitro. Simultaneously, advances are occurring to assess novel parameters of stiffness in vivo. In this comprehensive state-of-art review, we describe clinical hemodynamic markers, together with the newest translational echocardiographic and cardiac magnetic resonance imaging methods, to assess vascular stiffness and ventricular-vascular coupling. Finally, fluid-tissue interactions appear to offer a novel route of investigating the mechanotransduction processes and disease progression.
Collapse
|
577
|
Liu F, Haeger CM, Dieffenbach PB, Sicard D, Chrobak I, Coronata AMF, Suárez Velandia MM, Vitali S, Colas RA, Norris PC, Marinković A, Liu X, Ma J, Rose CD, Lee SJ, Comhair SAA, Erzurum SC, McDonald JD, Serhan CN, Walsh SR, Tschumperlin DJ, Fredenburgh LE. Distal vessel stiffening is an early and pivotal mechanobiological regulator of vascular remodeling and pulmonary hypertension. JCI Insight 2016; 1. [PMID: 27347562 DOI: 10.1172/jci.insight.86987] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pulmonary arterial (PA) stiffness is associated with increased mortality in patients with pulmonary hypertension (PH); however, the role of PA stiffening in the pathogenesis of PH remains elusive. Here, we show that distal vascular matrix stiffening is an early mechanobiological regulator of experimental PH. We identify cyclooxygenase-2 (COX-2) suppression and corresponding reduction in prostaglandin production as pivotal regulators of stiffness-dependent vascular cell activation. Atomic force microscopy microindentation demonstrated early PA stiffening in experimental PH and human lung tissue. Pulmonary artery smooth muscle cells (PASMC) grown on substrates with the stiffness of remodeled PAs showed increased proliferation, decreased apoptosis, exaggerated contraction, enhanced matrix deposition, and reduced COX-2-derived prostanoid production compared with cells grown on substrates approximating normal PA stiffness. Treatment with a prostaglandin I2 analog abrogated monocrotaline-induced PA stiffening and attenuated stiffness-dependent increases in proliferation, matrix deposition, and contraction in PASMC. Our results suggest a pivotal role for early PA stiffening in PH and demonstrate the therapeutic potential of interrupting mechanobiological feedback amplification of vascular remodeling in experimental PH.
Collapse
Affiliation(s)
- Fei Liu
- Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Christina Mallarino Haeger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Paul B Dieffenbach
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Delphine Sicard
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Izabela Chrobak
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Anna Maria F Coronata
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Margarita M Suárez Velandia
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Sally Vitali
- Department of Anesthesia, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Romain A Colas
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Paul C Norris
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Aleksandar Marinković
- Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Xiaoli Liu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Jun Ma
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Chase D Rose
- Department of Anesthesia, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Seon-Jin Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA; Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea
| | - Suzy A A Comhair
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Serpil C Erzurum
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jacob D McDonald
- Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Stephen R Walsh
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Daniel J Tschumperlin
- Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard School of Public Health, Boston, Massachusetts, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Laura E Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
578
|
Speight P, Kofler M, Szászi K, Kapus A. Context-dependent switch in chemo/mechanotransduction via multilevel crosstalk among cytoskeleton-regulated MRTF and TAZ and TGFβ-regulated Smad3. Nat Commun 2016; 7:11642. [PMID: 27189435 PMCID: PMC4873981 DOI: 10.1038/ncomms11642] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 04/15/2016] [Indexed: 01/12/2023] Open
Abstract
Myocardin-related transcription factor (MRTF) and TAZ are major mechanosensitive transcriptional co-activators that link cytoskeleton organization to gene expression. Despite many similarities in their regulation, their physical and/or functional interactions are unknown. Here we show that MRTF and TAZ associate partly through a WW domain-dependent mechanism, and exhibit multilevel crosstalk affecting each other's expression, transport and transcriptional activity. Specifically, MRTF is essential for TAZ expression; TAZ and MRTF inhibit each other's cytosolic mobility and stimulus-induced nuclear accumulation; they antagonize each other's stimulatory effect on the α-smooth muscle actin (SMA) promoter, which harbours nearby cis-elements for both, but synergize on isolated TEAD-elements. Importantly, TAZ confers Smad3 sensitivity to the SMA promoter. Thus, TAZ is a context-dependent switch during mechanical versus mechano/chemical signalling, which inhibits stretch-induced but is indispensable for stretch+TGFβ-induced SMA expression. Crosstalk between these cytoskeleton-regulated factors seems critical for fine-tuning mechanical and mechanochemical transcriptional programmes underlying myofibroblast transition, wound healing and fibrogenesis.
Collapse
Affiliation(s)
- Pam Speight
- Keenan Research Centre for Biomedical Science of St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada M5B 1T8
| | - Michael Kofler
- Keenan Research Centre for Biomedical Science of St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada M5B 1T8
| | - Katalin Szászi
- Keenan Research Centre for Biomedical Science of St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada M5B 1T8.,Department Surgery, University of Toronto, Toronto, Ontario, Canada M5P 1T5
| | - András Kapus
- Keenan Research Centre for Biomedical Science of St Michael's Hospital, University of Toronto, Toronto, Ontario, Canada M5B 1T8.,Department Surgery, University of Toronto, Toronto, Ontario, Canada M5P 1T5.,Department Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
579
|
Caliari SR, Perepelyuk M, Soulas EM, Lee GY, Wells RG, Burdick JA. Gradually softening hydrogels for modeling hepatic stellate cell behavior during fibrosis regression. Integr Biol (Camb) 2016; 8:720-8. [PMID: 27162057 DOI: 10.1039/c6ib00027d] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The extracellular matrix (ECM) presents an evolving set of mechanical cues to resident cells. We developed methacrylated hyaluronic acid (MeHA) hydrogels containing both stable and hydrolytically degradable crosslinks to provide cells with a gradually softening (but not fully degradable) milieu, mimicking physiological events such as fibrosis regression. To demonstrate the utility of this cell culture system, we studied the phenotype of rat hepatic stellate cells, the major liver precursors of fibrogenic myofibroblasts, within this softening environment. Stellate cells that were mechanically primed on tissue culture plastic attained a myofibroblast phenotype, which persisted when seeded onto stiff (∼20 kPa) hydrogels. However, mechanically primed stellate cells on stiff-to-soft (∼20 to ∼3 kPa) hydrogels showed reversion of the myofibroblast phenotype over 14 days, with reductions in cell area, expression of the myofibroblast marker alpha-smooth muscle actin (α-SMA), and Yes-associated protein/Transcriptional coactivator with PDZ-binding motif (YAP/TAZ) nuclear localization when compared to stellate cells on stiff hydrogels. Cells on stiff-to-soft hydrogels did not fully revert, however. They displayed reduced expression of glial fibrillary acidic protein (GFAP), and underwent abnormally rapid re-activation to myofibroblasts in response to re-stiffening of the hydrogels through introduction of additional crosslinks. These features are typical of stellate cells with an intermediate phenotype, reported to occur in vivo with fibrosis regression and re-injury. Together, these data suggest that mechanics play an important role in fibrosis regression and that integrating dynamic mechanical cues into model systems helps capture cell behaviors observed in vivo.
Collapse
Affiliation(s)
- Steven R Caliari
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
580
|
Bochaton-Piallat ML, Gabbiani G, Hinz B. The myofibroblast in wound healing and fibrosis: answered and unanswered questions. F1000Res 2016; 5. [PMID: 27158462 PMCID: PMC4847562 DOI: 10.12688/f1000research.8190.1] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2016] [Indexed: 12/23/2022] Open
Abstract
The discovery of the myofibroblast has allowed definition of the cell responsible for wound contraction and for the development of fibrotic changes. This review summarizes the main features of the myofibroblast and the mechanisms of myofibroblast generation. Myofibroblasts originate from a variety of cells according to the organ and the type of lesion. The mechanisms of myofibroblast contraction, which appear clearly different to those of smooth muscle cell contraction, are described. Finally, we summarize the possible strategies in order to reduce myofibroblast activities and thus influence several pathologies, such as hypertrophic scars and organ fibrosis.
Collapse
Affiliation(s)
| | - Giulio Gabbiani
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Canada
| |
Collapse
|
581
|
Froidure A, Joannes A, Mailleux AA, Crestani B. New targets in idiopathic pulmonary fibrosis: from inflammation and immunity to remodeling and repair. Expert Opin Orphan Drugs 2016. [DOI: 10.1517/21678707.2016.1171140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
582
|
Ugolini GS, Rasponi M, Pavesi A, Santoro R, Kamm R, Fiore GB, Pesce M, Soncini M. On-chip assessment of human primary cardiac fibroblasts proliferative responses to uniaxial cyclic mechanical strain. Biotechnol Bioeng 2016; 113:859-869. [PMID: 26444553 DOI: 10.1002/bit.25847] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/29/2015] [Accepted: 09/29/2015] [Indexed: 01/05/2025]
Abstract
Cardiac cell function is substantially influenced by the nature and intensity of the mechanical loads the cells experience. Cardiac fibroblasts (CFs) are primarily involved in myocardial tissue remodeling: at the onset of specific pathological conditions, CFs activate, proliferate, differentiate, and critically alter the amount of myocardial extra-cellular matrix with important consequences for myocardial functioning. While cyclic mechanical strain has been shown to increase matrix synthesis of CFs in vitro, the role of mechanical cues in CFs proliferation is unclear. We here developed a multi-chamber cell straining microdevice for cell cultures under uniform, uniaxial cyclic strain. After careful characterization of the strain field, we extracted human heart-derived CFs and performed cyclic strain experiments. We subjected cells to 2% or 8% cyclic strain for 24 h or 72 h, using immunofluorescence to investigate markers of cell morphology, cell proliferation (Ki67, EdU, phospho-Histone-H3) and subcellular localization of the mechanotransduction-associated transcription factor YAP. Cell morphology was affected by cyclic strain in terms of cell area, cell and nuclear shape and cellular alignment. We additionally observed a strain intensity-dependent control of cell growth: a significant proliferation increase occurred at 2% cyclic strain, while time-dependent effects took place upon 8% cyclic strain. The YAP-dependent mechano-transduction pathway was similarly activated in both strain conditions. These results demonstrate a differential effect of cyclic strain intensity on human CFs proliferation control and provide insights into the YAP-dependent mechano-sensing machinery of human CFs.
Collapse
Affiliation(s)
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| | - Andrea Pavesi
- BioSyM IRG, Singapore-MIT Alliance for Research and Technology, Singapore
| | - Rosaria Santoro
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Roger Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | - Monica Soncini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy
| |
Collapse
|
583
|
Szeto SG, Narimatsu M, Lu M, He X, Sidiqi AM, Tolosa MF, Chan L, De Freitas K, Bialik JF, Majumder S, Boo S, Hinz B, Dan Q, Advani A, John R, Wrana JL, Kapus A, Yuen DA. YAP/TAZ Are Mechanoregulators of TGF- β-Smad Signaling and Renal Fibrogenesis. J Am Soc Nephrol 2016; 27:3117-3128. [PMID: 26961347 DOI: 10.1681/asn.2015050499] [Citation(s) in RCA: 334] [Impact Index Per Article: 37.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 02/02/2016] [Indexed: 11/03/2022] Open
Abstract
Like many organs, the kidney stiffens after injury, a process that is increasingly recognized as an important driver of fibrogenesis. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are related mechanosensory proteins that bind to Smad transcription factors, the canonical mediators of profibrotic TGF-β responses. Here, we investigated the role of YAP/TAZ in the matrix stiffness dependence of fibroblast responses to TGF-β In contrast to growth on a stiff surface, fibroblast growth on a soft matrix led to YAP/TAZ sequestration in the cytosol and impaired TGF-β-induced Smad2/3 nuclear accumulation and transcriptional activity. YAP knockdown or treatment with verteporfin, a drug that was recently identified as a potent YAP inhibitor, elicited similar changes. Furthermore, verteporfin reduced YAP/TAZ levels and decreased the total cellular levels of Smad2/3 after TGF-β stimulation. Verteporfin treatment of mice subjected to unilateral ureteral obstruction similarly reduced YAP/TAZ levels and nuclear Smad accumulation in the kidney, and attenuated renal fibrosis. Our data suggest that organ stiffening cooperates with TGF-β to induce fibrosis in a YAP/TAZ- and Smad2/3-dependent manner. Interference with this YAP/TAZ and TGF-β/Smad crosstalk likely underlies the antifibrotic activity of verteporfin. Finally, through repurposing of a clinically used drug, we illustrate the therapeutic potential of a novel mechanointerference strategy that blocks TGF-β signaling and renal fibrogenesis.
Collapse
Affiliation(s)
- Stephen G Szeto
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; and.,Institute of Medical Science and
| | - Masahiro Narimatsu
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital and Department of Molecular Genetics
| | - Mingliang Lu
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; and
| | - Xiaolin He
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; and
| | - Ahmad M Sidiqi
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; and.,Institute of Medical Science and
| | - Monica F Tolosa
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; and.,Department of Laboratory Medicine and Pathobiology, School of Graduate Studies
| | - Lauren Chan
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; and
| | - Krystale De Freitas
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; and
| | - Janne Folke Bialik
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; and
| | - Syamantak Majumder
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; and
| | - Stellar Boo
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, and
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, and
| | - Qinghong Dan
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; and
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; and.,Institute of Medical Science and
| | - Rohan John
- Department of Laboratory Medicine and Pathobiology, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey L Wrana
- Center for Systems Biology, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital and Department of Molecular Genetics
| | - Andras Kapus
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; and.,Institute of Medical Science and
| | - Darren A Yuen
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada; and .,Institute of Medical Science and.,Department of Laboratory Medicine and Pathobiology, School of Graduate Studies
| |
Collapse
|
584
|
Stiffening hydrogels for investigating the dynamics of hepatic stellate cell mechanotransduction during myofibroblast activation. Sci Rep 2016; 6:21387. [PMID: 26906177 PMCID: PMC4764908 DOI: 10.1038/srep21387] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/22/2016] [Indexed: 12/15/2022] Open
Abstract
Tissue fibrosis contributes to nearly half of all deaths in the developed world and is characterized by progressive matrix stiffening. Despite this, nearly all in vitro disease models are mechanically static. Here, we used visible light-mediated stiffening hydrogels to investigate cell mechanotransduction in a disease-relevant system. Primary hepatic stellate cell-seeded hydrogels stiffened in situ at later time points (following a recovery phase post-isolation) displayed accelerated signaling kinetics of both early (Yes-associated protein/Transcriptional coactivator with PDZ-binding motif, YAP/TAZ) and late (alpha-smooth muscle actin, α-SMA) markers of myofibroblast differentiation, resulting in a time course similar to observed in vivo activation dynamics. We further validated this system by showing that α-SMA inhibition following substrate stiffening resulted in attenuated stellate cell activation, with reduced YAP/TAZ nuclear shuttling and traction force generation. Together, these data suggest that stiffening hydrogels may be more faithful models for studying myofibroblast activation than static substrates and could inform the development of disease therapeutics.
Collapse
|
585
|
La J, Reed EB, Koltsova S, Akimova O, Hamanaka RB, Mutlu GM, Orlov SN, Dulin NO. Regulation of myofibroblast differentiation by cardiac glycosides. Am J Physiol Lung Cell Mol Physiol 2016; 310:L815-23. [PMID: 26851261 DOI: 10.1152/ajplung.00322.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 02/02/2016] [Indexed: 11/22/2022] Open
Abstract
Myofibroblast differentiation is a key process in pathogenesis of fibrotic diseases. Cardiac glycosides (ouabain, digoxin) inhibit Na(+)-K(+)-ATPase, resulting in increased intracellular [Na(+)]-to-[K(+)] ratio in cells. Microarray analysis suggested that increased intracellular [Na(+)]/[K(+)] ratio may promote the expression of cyclooxygenase-2 (COX-2), a critical enzyme in the synthesis of prostaglandins. Given antifibrotic effects of prostaglandins through activation of protein kinase A (PKA), we examined if cardiac glycosides stimulate COX-2 expression in human lung fibroblasts and how they affect myofibroblast differentiation. Ouabain stimulated a profound COX-2 expression and a sustained PKA activation, which was blocked by COX-2 inhibitor or by COX-2 knockdown. Ouabain-induced COX-2 expression and PKA activation were abolished by the inhibitor of the Na(+)/Ca(2+) exchanger, KB-R4943. Ouabain inhibited transforming growth factor-β (TGF-β)-induced Rho activation, stress fiber formation, serum response factor activation, and the expression of smooth muscle α-actin, collagen-1, and fibronectin. These effects were recapitulated by an increase in intracellular [Na(+)]/[K(+)] ratio through the treatment of cells with K(+)-free medium or with digoxin. Although inhibition of COX-2 or of the Na(+)/Ca(2+) exchanger blocked ouabain-induced PKA activation, this failed to reverse the inhibition of TGF-β-induced Rho activation or myofibroblast differentiation by ouabain. Together, these data demonstrate that ouabain, through the increase in intracellular [Na(+)]/[K(+)] ratio, drives the induction of COX-2 expression and PKA activation, which is accompanied by a decreased Rho activation and myofibroblast differentiation in response to TGF-β. However, COX-2 expression and PKA activation are not sufficient for inhibition of the fibrotic effects of TGF-β by ouabain, suggesting that additional mechanisms must exist.
Collapse
Affiliation(s)
- Jennifer La
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, the University of Chicago, Chicago, Illinois
| | - Eleanor B Reed
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, the University of Chicago, Chicago, Illinois
| | - Svetlana Koltsova
- Laboratory of Biomembranes, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation; and
| | - Olga Akimova
- Laboratory of Biomembranes, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation; and
| | - Robert B Hamanaka
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, the University of Chicago, Chicago, Illinois
| | - Gökhan M Mutlu
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, the University of Chicago, Chicago, Illinois
| | - Sergei N Orlov
- Laboratory of Biomembranes, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation; and Siberian State Medical University, Tomsk, Russian Federation
| | - Nickolai O Dulin
- Section of Pulmonary and Critical Care Medicine, Department of Medicine, the University of Chicago, Chicago, Illinois;
| |
Collapse
|
586
|
Bertero T, Cottrill KA, Annis S, Bhat B, Gochuico BR, Osorio JC, Rosas I, Haley KJ, Corey KE, Chung RT, Nelson Chau B, Chan SY. A YAP/TAZ-miR-130/301 molecular circuit exerts systems-level control of fibrosis in a network of human diseases and physiologic conditions. Sci Rep 2015; 5:18277. [PMID: 26667495 PMCID: PMC4678880 DOI: 10.1038/srep18277] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 10/08/2015] [Indexed: 01/18/2023] Open
Abstract
The molecular origins of fibrosis affecting multiple tissue beds remain incompletely defined. Previously, we delineated the critical role of the control of extracellular matrix (ECM) stiffening by the mechanosensitive microRNA-130/301 family, as activated by the YAP/TAZ co-transcription factors, in promoting pulmonary hypertension (PH). We hypothesized that similar mechanisms may dictate fibrosis in other tissue beds beyond the pulmonary vasculature. Employing an in silico combination of microRNA target prediction, transcriptomic analysis of 137 human diseases and physiologic states, and advanced gene network modeling, we predicted the microRNA-130/301 family as a master regulator of fibrotic pathways across a cohort of seemingly disparate diseases and conditions. In two such diseases (pulmonary fibrosis and liver fibrosis), inhibition of microRNA-130/301 prevented the induction of ECM modification, YAP/TAZ, and downstream tissue fibrosis. Thus, mechanical forces act through a central feedback circuit between microRNA-130/301 and YAP/TAZ to sustain a common fibrotic phenotype across a network of human physiologic and pathophysiologic states. Such re-conceptualization of interconnections based on shared systems of disease and non-disease gene networks may have broad implications for future convergent diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Thomas Bertero
- Divisions of Cardiovascular and Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Katherine A. Cottrill
- Divisions of Cardiovascular and Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | - Sofia Annis
- Divisions of Cardiovascular and Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| | | | | | - Juan C. Osorio
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Ivan Rosas
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Kathleen J. Haley
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Kathleen E. Corey
- Liver Center and Gastrointestinal Division, Massachusetts General Hospital, Boston, MA, USA
| | - Raymond T. Chung
- Liver Center and Gastrointestinal Division, Massachusetts General Hospital, Boston, MA, USA
| | | | - Stephen Y. Chan
- Divisions of Cardiovascular and Network Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA USA
| |
Collapse
|
587
|
van Putten S, Shafieyan Y, Hinz B. Mechanical control of cardiac myofibroblasts. J Mol Cell Cardiol 2015; 93:133-42. [PMID: 26620422 DOI: 10.1016/j.yjmcc.2015.11.025] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 11/20/2015] [Accepted: 11/23/2015] [Indexed: 12/17/2022]
Abstract
Fibroblasts produce and turn over collagenous extracellular matrix as part of the normal adaptive response to increased mechanical load in the heart, e.g. during prolonged exercise. However, chronic overload as a consequence of hypertension or myocardial injury trigger a repair program that culminates in the formation of myofibroblasts. Myofibroblasts are opportunistically activated from various precursor cells that all acquire a phenotype promoting excessive collagen secretion and contraction of the neo-matrix into stiff scar tissue. Stiff fibrotic tissue reduces heart distensibility, impedes pumping and valve function, contributes to diastolic and systolic dysfunction, and affects myocardial electrical transmission, potentially leading to arrhythmia and heart failure. Here, we discuss how mechanical factors, such as matrix stiffness and strain, are feeding back and cooperate with cytokine signals to drive myofibroblast activation. We elaborate on the importance of considering the mechanical boundary conditions in the heart to generate better cell culture models for mechanistic studies of cardiac fibroblast function. Elements of the force transmission and mechanoperception apparatus acting in myofibroblasts are presented as potential therapeutic targets to treat fibrosis.
Collapse
Affiliation(s)
- Sander van Putten
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Yousef Shafieyan
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 3E2, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, ON M5S 3E2, Canada.
| |
Collapse
|
588
|
Rozycki M, Bialik JF, Speight P, Dan Q, Knudsen TET, Szeto SG, Yuen DA, Szászi K, Pedersen SF, Kapus A. Myocardin-related Transcription Factor Regulates Nox4 Protein Expression: LINKING CYTOSKELETAL ORGANIZATION TO REDOX STATE. J Biol Chem 2015; 291:227-43. [PMID: 26555261 DOI: 10.1074/jbc.m115.674606] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Indexed: 01/06/2023] Open
Abstract
TGFβ-induced expression of the NADPH oxidase Nox4 is essential for fibroblast-myofibroblast transition. Rho has been implicated in Nox4 regulation, but the underlying mechanisms are largely unknown. Myocardin-related transcription factor (MRTF), a Rho/actin polymerization-controlled coactivator of serum response factor, drives myofibroblast transition from various precursors. We have shown that TGFβ is necessary but insufficient for epithelial-myofibroblast transition in intact epithelia; the other prerequisite is the uncoupling of intercellular contacts, which induces Rho-dependent nuclear translocation of MRTF. Because the Nox4 promoter harbors a serum response factor/MRTF cis-element (CC(A/T)6GG box), we asked if MRTF (and thus cytoskeleton organization) could regulate Nox4 expression. We show that Nox4 protein is robustly induced in kidney tubular cells exclusively by combined application of contact uncoupling and TGFβ. Nox4 knockdown abrogates epithelial-myofibroblast transition-associated reactive oxygen species production. Laser capture microdissection reveals increased Nox4 expression in the tubular epithelium also during obstructive nephropathy. MRTF down-regulation/inhibition suppresses TGFβ/contact disruption-provoked Nox4 protein and mRNA expression, Nox4 promoter activation, and reactive oxygen species production. Mutation of the CC(A/T)6GG box eliminates the synergistic activation of the Nox4 promoter. Jasplakinolide-induced actin polymerization synergizes with TGFβ to facilitate MRTF-dependent Nox4 mRNA expression/promoter activation. Moreover, MRTF inhibition prevents Nox4 expression during TGFβ-induced fibroblast-myofibroblast transition as well. Although necessary, MRTF is insufficient; Nox4 expression also requires TGFβ-activated Smad3 and TAZ/YAP, two contact- and cytoskeleton-regulated Smad3-interacting coactivators. Down-regulation/inhibition of TAZ/YAP mitigates injury-induced epithelial Nox4 expression in vitro and in vivo. These findings uncover new MRTF- and TAZ/YAP-dependent mechanisms, which link cytoskeleton remodeling and redox state and impact epithelial plasticity and myofibroblast transition.
Collapse
Affiliation(s)
- Matthew Rozycki
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital
| | - Janne Folke Bialik
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, the Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Pam Speight
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital
| | - Qinghong Dan
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital
| | - Teresa E T Knudsen
- the Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Stephen G Szeto
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital
| | - Darren A Yuen
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital
| | - Katalin Szászi
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Departments of Surgery and
| | - Stine F Pedersen
- the Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - András Kapus
- From the Keenan Research Centre for Biomedical Science of the St. Michael's Hospital, Departments of Surgery and Biochemistry, University of Toronto, Toronto, Ontario M5B 1T8, Canada and
| |
Collapse
|
589
|
Bertero T, Cottrill KA, Lu Y, Haeger CM, Dieffenbach P, Annis S, Hale A, Bhat B, Kaimal V, Zhang YY, Graham BB, Kumar R, Saggar R, Saggar R, Wallace WD, Ross DJ, Black SM, Fratz S, Fineman JR, Vargas SO, Haley KJ, Waxman AB, Chau BN, Fredenburgh LE, Chan SY. Matrix Remodeling Promotes Pulmonary Hypertension through Feedback Mechanoactivation of the YAP/TAZ-miR-130/301 Circuit. Cell Rep 2015; 13:1016-32. [PMID: 26565914 PMCID: PMC4644508 DOI: 10.1016/j.celrep.2015.09.049] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 08/07/2015] [Accepted: 09/17/2015] [Indexed: 12/21/2022] Open
Abstract
Pulmonary hypertension (PH) is a deadly vascular disease with enigmatic molecular origins. We found that vascular extracellular matrix (ECM) remodeling and stiffening are early and pervasive processes that promote PH. In multiple pulmonary vascular cell types, such ECM stiffening induced the microRNA-130/301 family via activation of the co-transcription factors YAP and TAZ. MicroRNA-130/301 controlled a PPAR?-APOE-LRP8 axis, promoting collagen deposition and LOX-dependent remodeling and further upregulating YAP/TAZ via a mechanoactive feedback loop. In turn, ECM remodeling controlled pulmonary vascular cell crosstalk via such mechanotransduction, modulation of secreted vasoactive effectors, and regulation of associated microRNA pathways. In vivo, pharmacologic inhibition of microRNA-130/301, APOE, or LOX activity ameliorated ECM remodeling and PH. Thus, ECM remodeling, as controlled by the YAP/TAZ-miR-130/301 feedback circuit, is an early PH trigger and offers combinatorial therapeutic targets for this devastating disease.
Collapse
Affiliation(s)
- Thomas Bertero
- Divisions of Cardiovascular and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine A Cottrill
- Divisions of Cardiovascular and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yu Lu
- Divisions of Cardiovascular and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christina M Haeger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Paul Dieffenbach
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sofia Annis
- Divisions of Cardiovascular and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew Hale
- Divisions of Cardiovascular and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Ying-Yi Zhang
- Divisions of Cardiovascular and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Brian B Graham
- Program in Translational Lung Research, University of Colorado, Denver, Aurora, CO 80045, USA
| | - Rahul Kumar
- Program in Translational Lung Research, University of Colorado, Denver, Aurora, CO 80045, USA
| | - Rajan Saggar
- Departments of Medicine and Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rajeev Saggar
- Department of Medicine, University of Arizona, Phoenix, AZ 85006, USA
| | - W Dean Wallace
- Departments of Medicine and Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - David J Ross
- Departments of Medicine and Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Stephen M Black
- Department of Medicine, University of Arizona, Tuscon, AZ 85724, USA
| | - Sohrab Fratz
- Department of Pediatric Cardiology and Congenital Heart Disease, DeutschesHerzzentrum München, Klinik an der Technischen Universität München, 80636 Munich, Germany
| | - Jeffrey R Fineman
- Department of Pediatrics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94131, USA
| | - Sara O Vargas
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kathleen J Haley
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron B Waxman
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Laura E Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stephen Y Chan
- Divisions of Cardiovascular and Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
590
|
Piersma B, de Rond S, Werker PMN, Boo S, Hinz B, van Beuge MM, Bank RA. YAP1 Is a Driver of Myofibroblast Differentiation in Normal and Diseased Fibroblasts. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:3326-37. [PMID: 26458763 DOI: 10.1016/j.ajpath.2015.08.011] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 07/30/2015] [Accepted: 08/14/2015] [Indexed: 01/06/2023]
Abstract
Dupuytren disease is a fibrotic disorder characterized by contraction of myofibroblast-rich cords and nodules in the hands. The Hippo member Yes-associated protein 1 (YAP1) is activated by tissue stiffness and the profibrotic transforming growth factor-β1, but its role in cell fibrogenesis is yet unclear. We hypothesized that YAP1 regulates the differentiation of dermal fibroblasts into highly contractile myofibroblasts and that YAP1 governs the maintenance of a myofibroblast phenotype in primary Dupuytren cells. Knockdown of YAP1 in transforming growth factor-β1-stimulated dermal fibroblasts decreased the formation of contractile smooth muscle α-actin stress fibers and the deposition of collagen type I, which are hallmark features of myofibroblasts. Translating our findings to a clinically relevant model, we found that YAP1 deficiency in Dupuytren disease myofibroblasts resulted in decreased expression of ACTA2, COL1A1, and CCN2 mRNA, but this did not result in decreased protein levels. YAP1-deficient Dupuytren myofibroblasts showed decreased contraction of a collagen hydrogel. Finally, we showed that YAP1 levels and nuclear localization were elevated in affected Dupuytren disease tissue compared with matched control tissue and partly co-localized with smooth muscle α-actin-positive cells. In conclusion, our data show that YAP1 is a regulator of myofibroblast differentiation and contributes to the maintenance of a synthetic and contractile phenotype, in both transforming growth factor-β1-induced myofibroblast differentiation and primary Dupuytren myofibroblasts.
Collapse
Affiliation(s)
- Bram Piersma
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Matrix Research Group, Groningen, The Netherlands
| | - Saskia de Rond
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Matrix Research Group, Groningen, The Netherlands
| | - Paul M N Werker
- Department of Plastic Surgery, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stellar Boo
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Marike M van Beuge
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Matrix Research Group, Groningen, The Netherlands
| | - Ruud A Bank
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Matrix Research Group, Groningen, The Netherlands.
| |
Collapse
|
591
|
Piersma B, Bank RA, Boersema M. Signaling in Fibrosis: TGF-β, WNT, and YAP/TAZ Converge. Front Med (Lausanne) 2015. [PMID: 26389119 DOI: 10.3389/fmed.2015.00059.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Chronic organ injury leads to fibrosis and eventually organ failure. Fibrosis is characterized by excessive synthesis, remodeling, and contraction of extracellular matrix produced by myofibroblasts. Myofibroblasts are the key cells in the pathophysiology of fibrotic disorders and their differentiation can be triggered by multiple stimuli. To develop anti-fibrotic therapies, it is of paramount importance to understand the molecular basis of the signaling pathways contributing to the activation and maintenance of myofibroblasts. Several signal transduction pathways, such as transforming growth factor (TGF)-β, Wingless/Int (WNT), and more recently yes-associated protein 1 (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) signaling, have been linked to the pathophysiology of fibrosis. Activation of the TGF-β1-induced SMAD complex results in the upregulation of genes important for myofibroblast function. Similarly, WNT-stabilized β-catenin translocates to the nucleus and initiates transcription of its target genes. YAP and TAZ are two transcriptional co-activators from the Hippo signaling pathway that also rely on nuclear translocation for their functioning. These three signal transduction pathways have little molecular similarity but do share one principle: the cytosolic/nuclear regulation of its transcriptional activators. Past research on these pathways often focused on the isolated cascades without taking other signaling pathways into account. Recent developments show that parts of these pathways converge into an intricate network that governs the activation and maintenance of the myofibroblast phenotype. In this review, we discuss the current understanding on the signal integration between the TGF-β, WNT, and YAP/TAZ pathways in the development of organ fibrosis. Taking a network-wide view on signal transduction will provide a better understanding on the complex and versatile processes that underlie the pathophysiology of fibrotic disorders.
Collapse
Affiliation(s)
- Bram Piersma
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Ruud A Bank
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Miriam Boersema
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| |
Collapse
|
592
|
Piersma B, Bank RA, Boersema M. Signaling in Fibrosis: TGF-β, WNT, and YAP/TAZ Converge. Front Med (Lausanne) 2015; 2:59. [PMID: 26389119 PMCID: PMC4558529 DOI: 10.3389/fmed.2015.00059] [Citation(s) in RCA: 332] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/13/2015] [Indexed: 12/20/2022] Open
Abstract
Chronic organ injury leads to fibrosis and eventually organ failure. Fibrosis is characterized by excessive synthesis, remodeling, and contraction of extracellular matrix produced by myofibroblasts. Myofibroblasts are the key cells in the pathophysiology of fibrotic disorders and their differentiation can be triggered by multiple stimuli. To develop anti-fibrotic therapies, it is of paramount importance to understand the molecular basis of the signaling pathways contributing to the activation and maintenance of myofibroblasts. Several signal transduction pathways, such as transforming growth factor (TGF)-β, Wingless/Int (WNT), and more recently yes-associated protein 1 (YAP)/transcriptional coactivator with PDZ-binding motif (TAZ) signaling, have been linked to the pathophysiology of fibrosis. Activation of the TGF-β1-induced SMAD complex results in the upregulation of genes important for myofibroblast function. Similarly, WNT-stabilized β-catenin translocates to the nucleus and initiates transcription of its target genes. YAP and TAZ are two transcriptional co-activators from the Hippo signaling pathway that also rely on nuclear translocation for their functioning. These three signal transduction pathways have little molecular similarity but do share one principle: the cytosolic/nuclear regulation of its transcriptional activators. Past research on these pathways often focused on the isolated cascades without taking other signaling pathways into account. Recent developments show that parts of these pathways converge into an intricate network that governs the activation and maintenance of the myofibroblast phenotype. In this review, we discuss the current understanding on the signal integration between the TGF-β, WNT, and YAP/TAZ pathways in the development of organ fibrosis. Taking a network-wide view on signal transduction will provide a better understanding on the complex and versatile processes that underlie the pathophysiology of fibrotic disorders.
Collapse
Affiliation(s)
- Bram Piersma
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Ruud A Bank
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| | - Miriam Boersema
- Matrix Research Group, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen , Groningen , Netherlands
| |
Collapse
|
593
|
Mannaerts I, Leite SB, Verhulst S, Claerhout S, Eysackers N, Thoen LFR, Hoorens A, Reynaert H, Halder G, van Grunsven LA. The Hippo pathway effector YAP controls mouse hepatic stellate cell activation. J Hepatol 2015; 63:679-88. [PMID: 25908270 DOI: 10.1016/j.jhep.2015.04.011] [Citation(s) in RCA: 297] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 03/31/2015] [Accepted: 04/02/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Hepatic stellate cell activation is a wound-healing response to liver injury. However, continued activation of stellate cells during chronic liver damage causes excessive matrix deposition and the formation of pathological scar tissue leading to fibrosis and ultimately cirrhosis. The importance of sustained stellate cell activation for this pathological process is well recognized, and several signalling pathways that can promote stellate cell activation have been identified, such as the TGFβ-, PDGF-, and LPS-dependent pathways. However, the mechanisms that trigger and drive the early steps in activation are not well understood. METHODS AND RESULTS We identified the Hippo pathway and its effector YAP as a key pathway that controls stellate cell activation. YAP is a transcriptional co-activator and we found that it drives the earliest changes in gene expression during stellate cell activation. Activation of stellate cells in vivo by CCl4 administration to mice or activation in vitro caused rapid activation of YAP as revealed by its nuclear translocation and by the induction of YAP target genes. YAP was also activated in stellate cells of human fibrotic livers as evidenced by its nuclear localization. Importantly, knockdown of YAP expression or pharmacological inhibition of YAP prevented hepatic stellate cell activation in vitro and pharmacological inhibition of YAP impeded fibrogenesis in mice. CONCLUSIONS YAP activation is a critical driver of hepatic stellate cell activation and inhibition of YAP presents a novel approach for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Inge Mannaerts
- Liver Cell Biology Lab, Vrije Universiteit Brussel, 1090 Brussel, Belgium
| | | | - Stefaan Verhulst
- Liver Cell Biology Lab, Vrije Universiteit Brussel, 1090 Brussel, Belgium
| | - Sofie Claerhout
- VIB Center for the Biology of Disease, and KU Leuven Center for Human Genetics, University of Leuven, 3000 Leuven, Belgium
| | - Nathalie Eysackers
- Liver Cell Biology Lab, Vrije Universiteit Brussel, 1090 Brussel, Belgium
| | - Lien F R Thoen
- Liver Cell Biology Lab, Vrije Universiteit Brussel, 1090 Brussel, Belgium
| | - Anne Hoorens
- Department of Pathology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Hendrik Reynaert
- Liver Cell Biology Lab, Vrije Universiteit Brussel, 1090 Brussel, Belgium
| | - Georg Halder
- VIB Center for the Biology of Disease, and KU Leuven Center for Human Genetics, University of Leuven, 3000 Leuven, Belgium
| | - Leo A van Grunsven
- Liver Cell Biology Lab, Vrije Universiteit Brussel, 1090 Brussel, Belgium.
| |
Collapse
|
594
|
Saito A, Nagase T. Hippo and TGF-β interplay in the lung field. Am J Physiol Lung Cell Mol Physiol 2015; 309:L756-67. [PMID: 26320155 DOI: 10.1152/ajplung.00238.2015] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 08/27/2015] [Indexed: 12/14/2022] Open
Abstract
The Hippo pathway is comprised of a kinase cascade that involves mammalian Ste20-like serine/threonine kinases (MST1/2) and large tumor suppressor kinases (LATS1/2) and leads to inactivation of transcriptional coactivator with PDZ-binding motif (TAZ) and yes-associated protein (YAP). Protein stability and subcellular localization of TAZ/YAP determine its ability to regulate a diverse array of biological processes, including proliferation, apoptosis, differentiation, stem/progenitor cell properties, organ size control, and tumorigenesis. These actions are enabled by interactions with various transcription factors or through cross talk with other signaling pathways. Interestingly, mechanical stress has been shown to be an upstream regulator of TAZ/YAP activity, and this finding provides a novel clue for understanding how mechanical forces influence a broad spectrum of biological processes, which involve cytoskeletal structure, cell adhesion, and extracellular matrix (ECM) organization. Transforming growth factor-β (TGF-β) pathway is a critical component of lung development and the progression of lung diseases including emphysema, fibrosis, and cancer. In addition, TGF-β is a key regulator of ECM remodeling and cell differentiation processes such as epithelial-mesenchymal transition. In this review, we summarize the current knowledge of the Hippo pathway regarding lung development and diseases, with an emphasis on its interplay with TGF-β signaling.
Collapse
Affiliation(s)
- Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan; and Division for Health Service Promotion, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan; and
| |
Collapse
|
595
|
Prakash YS, Tschumperlin DJ, Stenmark KR. Coming to terms with tissue engineering and regenerative medicine in the lung. Am J Physiol Lung Cell Mol Physiol 2015; 309:L625-38. [PMID: 26254424 DOI: 10.1152/ajplung.00204.2015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 08/04/2015] [Indexed: 01/10/2023] Open
Abstract
Lung diseases such as emphysema, interstitial fibrosis, and pulmonary vascular diseases cause significant morbidity and mortality, but despite substantial mechanistic understanding, clinical management options for them are limited, with lung transplantation being implemented at end stages. However, limited donor lung availability, graft rejection, and long-term problems after transplantation are major hurdles to lung transplantation being a panacea. Bioengineering the lung is an exciting and emerging solution that has the ultimate aim of generating lung tissues and organs for transplantation. In this article we capture and review the current state of the art in lung bioengineering, from the multimodal approaches, to creating anatomically appropriate lung scaffolds that can be recellularized to eventually yield functioning, transplant-ready lungs. Strategies for decellularizing mammalian lungs to create scaffolds with native extracellular matrix components vs. de novo generation of scaffolds using biocompatible materials are discussed. Strengths vs. limitations of recellularization using different cell types of various pluripotency such as embryonic, mesenchymal, and induced pluripotent stem cells are highlighted. Current hurdles to guide future research toward achieving the clinical goal of transplantation of a bioengineered lung are discussed.
Collapse
Affiliation(s)
- Y S Prakash
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota;
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota; Division of Pulmonary Medicine, Mayo Clinic, Rochester, Minnesota; and
| | - Kurt R Stenmark
- Department of Pediatrics, University of Colorado, Aurora, Colorado
| |
Collapse
|
596
|
Abstract
Myofibroblasts are activated in response to tissue injury with the primary task to repair lost or damaged extracellular matrix. Enhanced collagen secretion and subsequent contraction - scarring - are part of the normal wound healing response and crucial to restore tissue integrity. Due to myofibroblasts ability to repair but not regenerate, accumulation of scar tissue is always associated with reduced organ performance. This is a fair price to pay by the body for not falling apart. Whereas myofibroblasts typically vanish after successful repair, dysregulation of the normal repair process can lead to persistent myofibroblast activation, for instance by chronic inflammation or mechanical stress in the tissue. Excessive repair leads to the accumulation of stiff collagenous ECM contractures - fibrosis - with dramatic consequences for organ function. The clinical need to terminate detrimental myofibroblast activities has stimulated researchers to answer a number of essential questions: where do myofibroblasts come from, what are the factors leading to their activation, how do we discriminate myofibroblasts from other cells, what is the molecular basis for their contractile activity, and how can we stop or at least control them? This article reviews the current state of the myofibroblast literature by emphasizing their role in ocular repair and fibrosis. It appears that although the eye is quite an extraordinary organ, ocular myofibroblasts behave or misbehave just like their siblings in other organs.
Collapse
Affiliation(s)
- Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, 150 College Street, FitzGerald Building, Room 234, Toronto, M5S 3E2 Ontario, Canada.
| |
Collapse
|
597
|
Expression of α-Smooth Muscle Actin Determines the Fate of Mesenchymal Stromal Cells. Stem Cell Reports 2015; 4:1016-30. [PMID: 26028530 PMCID: PMC4471834 DOI: 10.1016/j.stemcr.2015.05.004] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 05/04/2015] [Accepted: 05/04/2015] [Indexed: 02/07/2023] Open
Abstract
Pro-fibrotic microenvironments of scars and tumors characterized by increased stiffness stimulate mesenchymal stromal cells (MSCs) to express α-smooth muscle actin (α-SMA). We investigated whether incorporation of α-SMA into contractile stress fibers regulates human MSC fate. Sorted α-SMA-positive MSCs exhibited high contractile activity, low clonogenicity, and differentiation potential limited to osteogenesis. Knockdown of α-SMA was sufficient to restore clonogenicity and adipogenesis in MSCs. Conversely, α-SMA overexpression induced YAP translocation to the nucleus and reduced the high clonogenicity and adipogenic potential of α-SMA-negative MSCs. Inhibition of YAP rescued the decreased adipogenic differentiation potential induced by α-SMA, establishing a mechanistic link between matrix stiffness, α-SMA, YAP, and MSC differentiation. Consistent with in vitro findings, nuclear localization of YAP was positively correlated in α-SMA expressing stromal cells of adiposarcoma and osteosarcoma. We propose that α-SMA mediated contraction plays a critical role in mechanically regulating MSC fate by controlling YAP/TAZ activation. The α-SMA-positive myofibroblast fraction of human MSCs exhibits low clonogenicity Formation of α-SMA stress fibers enhances nuclear translocation of YAP/TAZ in MSCs α-SMA knockdown favors adipogenesis, while overexpression promotes osteogenesis α-SMA-mediated lineage choice of MSCs is YAP dependent
Collapse
|
598
|
Hinz B. The extracellular matrix and transforming growth factor-β1: Tale of a strained relationship. Matrix Biol 2015; 47:54-65. [PMID: 25960420 DOI: 10.1016/j.matbio.2015.05.006] [Citation(s) in RCA: 436] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 01/06/2023]
Abstract
Physiological tissue repair aims at restoring the mechano-protective properties of the extracellular matrix. Consequently, redundant regulatory mechanisms are in place ensuring that tissue remodeling terminates once matrix homeostasis is re-established. If these mechanisms fail, stromal cells become continuously activated, accumulate excessive amounts of stiff matrix, and fibrosis develops. In this mini-review, I develop the hypothesis that the mechanical state of the extracellular matrix and the pro-fibrotic transforming growth factor (TGF)-β1 cooperate to regulate the remodeling activities of stromal cells. TGF-β1 is stored in the matrix as part of a large latent complex and can be activated by cell contractile force that is transmitted by integrins. Matrix straining and stiffening lower the threshold for TGF-β1 activation by increasing the mechanical resistance to cell pulling. Different elements of this mechanism can be pharmacologically targeted to interrupt the mechanical positive feedback loop of fibrosis, including specific integrins and matrix protein interactions.
Collapse
Affiliation(s)
- Boris Hinz
- Laboratory of Tissue Repair and Regeneration, Matrix Dynamics Group, Faculty of Dentistry, University of Toronto, 150 College Street, FitzGerald Building, Room 234, Toronto, Ontario M5S 3E2, Canada.
| |
Collapse
|
599
|
Narimatsu M, Samavarchi-Tehrani P, Varelas X, Wrana J. Distinct Polarity Cues Direct Taz/Yap and TGFβ Receptor Localization to Differentially Control TGFβ-Induced Smad Signaling. Dev Cell 2015; 32:652-6. [DOI: 10.1016/j.devcel.2015.02.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2015] [Indexed: 10/23/2022]
|
600
|
Another dimension to the importance of the extracellular matrix in fibrosis. J Cell Commun Signal 2015; 9:99-100. [PMID: 25698664 DOI: 10.1007/s12079-015-0282-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 01/21/2015] [Indexed: 02/06/2023] Open
Abstract
The importance of the extracellular matrix (ECM) in fibrosis has been recognized for a long time, not only because ECM's increased stiffness hampers tissue function, but also because the ECM provides the mechanical tension that maintains resident cells' synthetic phenotype. A study by Parker and colleagues (Journal of Clinical Investigation 124, 1622-1635, 2014) compared the transcriptome of fibroblasts cultured on decellularized ECM from healthy vs idiopathic pulmonary fibrosis (IPF) human lungs, and revealed that the IPF matrix exerts a positive feedback loop that increases the translation of ECM genes that are enriched in the IPF ECM proteome. This study suggests that the ECM composition, in addition to ECM stiffness or the phenotype of its resident cells, might be an important factor in maintaining a fibrotic state. Targeting this feedback loop might be an efficient therapeutic strategy for IPF.
Collapse
|