601
|
Auvinen M, Kuula J, Grönholm T, Sühring M, Hellsten A. High-resolution large-eddy simulation of indoor turbulence and its effect on airborne transmission of respiratory pathogens-Model validation and infection probability analysis. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2022; 34:015124. [PMID: 35340682 PMCID: PMC8939551 DOI: 10.1063/5.0076495] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/10/2021] [Indexed: 05/18/2023]
Abstract
High-resolution large-eddy simulation (LES) is exploited to study indoor air turbulence and its effect on the dispersion of respiratory virus-laden aerosols and subsequent transmission risks. The LES modeling is carried out with unprecedented accuracy and subsequent analysis with novel mathematical robustness. To substantiate the physical relevance of the LES model under realistic ventilation conditions, a set of experimental aerosol concentration measurements are carried out, and their results are used to successfully validate the LES model results. The obtained LES dispersion results are subjected to pathogen exposure and infection probability analysis in accordance with the Wells-Riley model, which is here mathematically extended to rely on LES-based space- and time-dependent concentration fields. The methodology is applied to assess two dissimilar approaches to reduce transmission risks: a strategy to augment the indoor ventilation capacity with portable air purifiers and a strategy to utilize partitioning by exploiting portable space dividers. The LES results show that use of air purifiers leads to greater reduction in absolute risks compared to the analytical Wells-Riley model, which fails to predict the original risk level. However, the two models do agree on the relative risk reduction. The spatial partitioning strategy is demonstrated to have an undesirable effect when employed without other measures, but may yield desirable outcomes with targeted air purifier units. The study highlights the importance of employing accurate indoor turbulence modeling when evaluating different risk-reduction strategies.
Collapse
Affiliation(s)
- Mikko Auvinen
- Finnish Meteorological Institute, Erik Palmenin aukio 1, 00560 Helsinki, Finland
- Author to whom correspondence should be addressed:
| | - Joel Kuula
- Finnish Meteorological Institute, Erik Palmenin aukio 1, 00560 Helsinki, Finland
| | - Tiia Grönholm
- Finnish Meteorological Institute, Erik Palmenin aukio 1, 00560 Helsinki, Finland
| | - Matthias Sühring
- Institute of Meteorology and Climatology, Leibniz University Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Antti Hellsten
- Finnish Meteorological Institute, Erik Palmenin aukio 1, 00560 Helsinki, Finland
| |
Collapse
|
602
|
Wang J, Dalla Barba F, Roccon A, Sardina G, Soldati A, Picano F. Modelling the direct virus exposure risk associated with respiratory events. J R Soc Interface 2022; 19:20210819. [PMID: 35016556 PMCID: PMC8753145 DOI: 10.1098/rsif.2021.0819] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/13/2021] [Indexed: 12/14/2022] Open
Abstract
The outbreak of the COVID-19 pandemic highlighted the importance of accurately modelling the pathogen transmission via droplets and aerosols emitted while speaking, coughing and sneezing. In this work, we present an effective model for assessing the direct contagion risk associated with these pathogen-laden droplets. In particular, using the most recent studies on multi-phase flow physics, we develop an effective yet simple framework capable of predicting the infection risk associated with different respiratory activities in different ambient conditions. We start by describing the mathematical framework and benchmarking the model predictions against well-assessed literature results. Then, we provide a systematic assessment of the effects of physical distancing and face coverings on the direct infection risk. The present results indicate that the risk of infection is vastly impacted by the ambient conditions and the type of respiratory activity, suggesting the non-existence of a universal safe distance. Meanwhile, wearing face masks provides excellent protection, effectively limiting the transmission of pathogens even at short physical distances, i.e. 1 m.
Collapse
Affiliation(s)
- Jietuo Wang
- Centro di Ateneo di Studi e Attività Spaziali - CISAS, University of Padova, Padova 35131, Italy
| | | | - Alessio Roccon
- Institute of Fluid Mechanics and Heat Transfer, TU Wien, Vienna 1060, Austria
- Polytechnic Department, University of Udine, 33100 Udine, Italy
| | - Gaetano Sardina
- Department of Mechanics and Maritime Sciences, Chalmers University of Technology, 41296 Gothenburg, Sweden
| | - Alfredo Soldati
- Institute of Fluid Mechanics and Heat Transfer, TU Wien, Vienna 1060, Austria
- Polytechnic Department, University of Udine, 33100 Udine, Italy
| | - Francesco Picano
- Centro di Ateneo di Studi e Attività Spaziali - CISAS, University of Padova, Padova 35131, Italy
- Department of Industrial Engineering, University of Padova, Padova 35131, Italy
| |
Collapse
|
603
|
Das SK, Alam JE, Plumari S, Greco V. Airborne virus transmission under different weather conditions. AIP ADVANCES 2022; 12:015019. [PMID: 35070489 PMCID: PMC8759630 DOI: 10.1063/5.0082017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 12/22/2021] [Indexed: 05/07/2023]
Abstract
The COVID19 infection is known to disseminate through droplets ejected by infected individuals during coughing, sneezing, speaking, and breathing. The spread of the infection and hence its menace depend on how the virus-loaded droplets evolve in space and time with changing environmental conditions. In view of this, we investigate the evolution of the droplets within the purview of the Brownian motion of the evaporating droplets in the air with varying weather conditions under the action of gravity. We track the movement of the droplets until either they gravitationally settle on the ground or evaporate to aerosols of size 2 μm or less. Droplets with radii 2 μm or less may continue to diffuse and remain suspended in the air for a long time. The effects of relative humidity and temperature on the evaporation are found to be significant. We note that under strong flowing conditions, droplets travel large distances. It is found that the bigger droplets fall on the ground due to the dominance of gravity over the diffusive force despite the loss of mass due to evaporation. The smaller evaporating droplets may not settle on the ground but remain suspended in the air due to the dominance of the diffusive force. The fate of the intermediate size droplets depends on the weather conditions and plays crucial roles in the spread of the infection. These environment dependent effects indicate that the maintenance of physical separation to evade the virus is not corroborated, making the use of face masks indispensable.
Collapse
Affiliation(s)
- Santosh K. Das
- School of Physical Sciences, Indian Institute of Technology Goa, Ponda 403401, Goa, India
| | | | | | | |
Collapse
|
604
|
Assadi I, Guesmi A, Baaloudj O, Zeghioud H, Elfalleh W, Benhammadi N, Khezami L, Assadi AA. Review on inactivation of airborne viruses using non-thermal plasma technologies: from MS2 to coronavirus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:4880-4892. [PMID: 34796437 PMCID: PMC8601095 DOI: 10.1007/s11356-021-17486-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/08/2021] [Indexed: 04/12/2023]
Abstract
Although several non-thermal plasmas (NTPs) technologies have been widely investigated in air treatment, very few studies have focused on the inactivation mechanism of viruses by NTPs. Due to its efficiency and environmental compatibility, non-thermal plasma could be considered a promising virus-inactivation technology. Plasma is a partly or fully ionized gas including some species (i.e., electrons, free radicals, ions, and neutral molecules) to oxidize pollutants or inactivate harmful organisms. Non-thermal plasmas are made using less energy and have an active electron at a much higher temperature than bulk gas molecules. This review describes NTPs for virus inactivation in indoor air. The different application processes of plasma for microorganism inactivation at both laboratory and pilot-scale was also reviewed This paper reports on recent advances in this exciting area of viral inactivation identifying applications and mechanisms of inactivation, and summarizing the results of the latest experiments in the literature. Moreover, special attention was paid to the mechanism of virus inactivation. Finally, the paper suggests research directions in the field of airborne virus inactivation using non-thermal plasma.
Collapse
Affiliation(s)
- Imen Assadi
- Laboratoire Energie, Eau, Environnement Et Procèdes, ENIG, Université de Gabès, LR18ES356072, Gabès, Tunisia
| | - Ahlem Guesmi
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, 11432, Riyadh, Saudi Arabia
| | - Oussama Baaloudj
- Laboratory of Reaction Engineering, USTHB, BP 32, 16111, Algiers, Algeria
| | - Hichem Zeghioud
- Department of Process Engineering, Badji Mokhtar University, P.O. Box 12, 23000, Annaba, Algeria
| | - Walid Elfalleh
- Laboratoire Energie, Eau, Environnement Et Procèdes, ENIG, Université de Gabès, LR18ES356072, Gabès, Tunisia
| | - Naoufel Benhammadi
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, 11432, Riyadh, Saudi Arabia
| | - Lotfi Khezami
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, 11432, Riyadh, Saudi Arabia
| | | |
Collapse
|
605
|
Ohya T, Nakagawa K, Arai Y, Kato H. Visualization of droplets produced by dental air turbines that require infection control measured during coronavirus 2019 outbreaks. J Hosp Infect 2022; 119:196-198. [PMID: 34637853 PMCID: PMC8501514 DOI: 10.1016/j.jhin.2021.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022]
Affiliation(s)
- T. Ohya
- Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, Yokohama, Japan,Corresponding author. Address: Department of Oral and Maxillofacial Surgery, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan. Tel.: +81-45-787-2659
| | - K. Nakagawa
- Department of Bioengineering, Department of Precision Engineering, The University of Tokyo, Tokyo, Japan
| | - Y. Arai
- Department of Otolaryngology, Head and Neck Surgery, Yokohama City University School of Medicine, Yokohama, Japan
| | - H. Kato
- Infection Prevention and Control Department, Yokohama City University Hospital, Yokohama, Japan
| |
Collapse
|
606
|
Nazaroff WW. Indoor aerosol science aspects of SARS-CoV-2 transmission. INDOOR AIR 2022; 32:e12970. [PMID: 34873752 DOI: 10.1111/ina.12970] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 11/17/2021] [Accepted: 11/26/2021] [Indexed: 05/04/2023]
Abstract
Knowledge about person-to-person transmission of SARS-CoV-2 is reviewed, emphasizing three components: emission of virus-containing particles and drops from infectious persons; transport and fate of such emissions indoors; and inhalation of viral particles by susceptible persons. Emissions are usefully clustered into three groups: small particles (diameter 0.1-5 µm), large particles (5-100 µm), and ballistic drops (>100 µm). Speaking generates particles and drops across the size spectrum. Small particles are removed from indoor air at room scale by ventilation, filtration, and deposition; large particles mainly deposit onto indoor surfaces. Proximate exposure enhancements are associated with large particles with contributions from ballistic drops. Masking and social distancing are effective in mitigating transmission from proximate exposures. At room scale, masking, ventilation, and filtration can contribute to limit exposures. Important information gaps prevent a quantitative reconciliation of the high overall global spread of COVID-19 with known transmission pathways. Available information supports several findings with moderate-to-high confidence: transmission occurs predominantly indoors; inhalation of airborne particles (up to 50 µm in diameter) contributes substantially to viral spread; transmission occurs in near proximity and at room scale; speaking is a major source of airborne SARS-CoV-2 virus; and emissions can occur without strong illness symptoms.
Collapse
Affiliation(s)
- William W Nazaroff
- Department of Civil and Environmental Engineering, University of California, Berkeley, California, USA
| |
Collapse
|
607
|
Cavallieri F, Sellner J, Zedde M, Moro E. Neurologic complications of coronavirus and other respiratory viral infections. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:331-358. [PMID: 36031313 PMCID: PMC9418023 DOI: 10.1016/b978-0-323-91532-8.00004-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In humans, several respiratory viruses can have neurologic implications affecting both central and peripheral nervous system. Neurologic manifestations can be linked to viral neurotropism and/or indirect effects of the infection due to endothelitis with vascular damage and ischemia, hypercoagulation state with thrombosis and hemorrhages, systemic inflammatory response, autoimmune reactions, and other damages. Among these respiratory viruses, recent and huge attention has been given to the coronaviruses, especially the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic started in 2020. Besides the common respiratory symptoms and the lung tropism of SARS-CoV-2 (COVID-19), neurologic manifestations are not rare and often present in the severe forms of the infection. The most common acute and subacute symptoms and signs include headache, fatigue, myalgia, anosmia, ageusia, sleep disturbances, whereas clinical syndromes include mainly encephalopathy, ischemic stroke, seizures, and autoimmune peripheral neuropathies. Although the pathogenetic mechanisms of COVID-19 in the various acute neurologic manifestations are partially understood, little is known about long-term consequences of the infection. These consequences concern both the so-called long-COVID (characterized by the persistence of neurological manifestations after the resolution of the acute viral phase), and the onset of new neurological symptoms that may be linked to the previous infection.
Collapse
Affiliation(s)
- Francesco Cavallieri
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy,Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Johann Sellner
- Department of Neurology, Landesklinikum Mistelbach-Gänserndorf, Mistelbach, Austria,Department of Neurology, Christian Doppler Medical Center, Paracelsus Medical University, Salzburg, Austria
| | - Marialuisa Zedde
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Elena Moro
- Division of Neurology, CHU of Grenoble, Grenoble Alpes University, Grenoble Institute of Neurosciences, Grenoble, France,Correspondence to: Elena Moro, Service de neurologie, CHU de Grenoble (Hôpital Nord), Boulevard de la Chantourne, 38043 La Tronche, France. Tel: + 33-4-76-76-94-52, Fax: +33-4-76-76-56-31
| |
Collapse
|
608
|
Xu C, Liu W, Luo X, Huang X, Nielsen PV. Prediction and control of aerosol transmission of SARS-CoV-2 in ventilated context: from source to receptor. SUSTAINABLE CITIES AND SOCIETY 2022; 76:103416. [PMID: 34611508 PMCID: PMC8484231 DOI: 10.1016/j.scs.2021.103416] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 05/24/2023]
Abstract
Global spread of COVID-19 has seriously threatened human life and health. The aerosol transmission route of SARS-CoV-2 is observed often associated with infection clusters under poorly ventilated environment. In the context of COVID-19 pandemic, significant transformation and optimization of traditional ventilation systems are needed. This paper is aimed to offer better understanding and insights into effective ventilation design to maximize its ability in airborne risk control, for particularly the COVID-19. Comprehensive reviews of each phase of aerosol transmission of SARS-CoV-2 from source to receptor are conducted, so as to provide a theoretical basis for risk prediction and control. Infection risk models and their key parameters for risk assessment of SARS-CoV-2 are analyzed. Special focus is given on the efficacy of different ventilation strategies in mitigating airborne transmission. Ventilation interventions are found mainly impacting on the dispersion and inhalation phases of aerosol transmission. The airflow patterns become a key factor in controlling the aerosol diffusion and distribution. Novel and personalized ventilation design, effective integration with other environmental control techniques and resilient HVAC system design to adapt both common and epidemic conditions are still remaining challenging, which need to be solved with the aid of multidisciplinary research and intelligent technologies.
Collapse
Affiliation(s)
- Chunwen Xu
- College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, China
| | - Wenbing Liu
- College of Pipeline and Civil Engineering, China University of Petroleum, Qingdao 266580, China
| | - Xilian Luo
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xingyu Huang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Peter V Nielsen
- Division of Sustainability, Energy and Indoor Environment, Aalborg University, Aalborg 9000, Denmark
| |
Collapse
|
609
|
Klompas M, Rhee C. OUP accepted manuscript. J Infect Dis 2022; 226:191-194. [PMID: 35535586 PMCID: PMC9384050 DOI: 10.1093/infdis/jiac197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Michael Klompas
- Correspondence: Michael Klompas, MD, MPH, Department of Population Medicine, 401 Park Drive, Suite 401 E, Boston, MA 02215, USA ()
| | - Chanu Rhee
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| |
Collapse
|
610
|
Sznitman J. Revisiting Airflow and Aerosol Transport Phenomena in the Deep Lungs with Microfluidics. Chem Rev 2021; 122:7182-7204. [PMID: 34964615 DOI: 10.1021/acs.chemrev.1c00621] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The dynamics of respiratory airflows and the associated transport mechanisms of inhaled aerosols characteristic of the deep regions of the lungs are of broad interest in assessing both respiratory health risks and inhalation therapy outcomes. In the present review, we present a comprehensive discussion of our current understanding of airflow and aerosol transport phenomena that take place within the unique and complex anatomical environment of the deep lungs, characterized by submillimeter 3D alveolated airspaces and nominally slow resident airflows, known as low-Reynolds-number flows. We exemplify the advances brought forward by experimental efforts, in conjunction with numerical simulations, to revisit past mechanistic theories of respiratory airflow and particle transport in the distal acinar regions. Most significantly, we highlight how microfluidic-based platforms spanning the past decade have accelerated opportunities to deliver anatomically inspired in vitro solutions that capture with sufficient realism and accuracy the leading mechanisms governing both respiratory airflow and aerosol transport at true scale. Despite ongoing challenges and limitations with microfabrication techniques, the efforts witnessed in recent years have provided previously unattainable in vitro quantifications on the local transport properties in the deep pulmonary acinar airways. These may ultimately provide new opportunities to explore improved strategies of inhaled drug delivery to the deep acinar regions by investigating further the mechanistic interactions between airborne particulate carriers and respiratory airflows at the pulmonary microscales.
Collapse
Affiliation(s)
- Josué Sznitman
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
611
|
Coyle JP, Derk RC, Lindsley WG, Blachere FM, Boots T, Lemons AR, Martin SB, Mead KR, Fotta SA, Reynolds JS, McKinney WG, Sinsel EW, Beezhold DH, Noti JD. Efficacy of Ventilation, HEPA Air Cleaners, Universal Masking, and Physical Distancing for Reducing Exposure to Simulated Exhaled Aerosols in a Meeting Room. Viruses 2021; 13:2536. [PMID: 34960804 PMCID: PMC8707272 DOI: 10.3390/v13122536] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
There is strong evidence associating the indoor environment with transmission of SARS-CoV-2, the virus that causes COVID-19. SARS-CoV-2 can spread by exposure to droplets and very fine aerosol particles from respiratory fluids that are released by infected persons. Layered mitigation strategies, including but not limited to maintaining physical distancing, adequate ventilation, universal masking, avoiding overcrowding, and vaccination, have shown to be effective in reducing the spread of SARS-CoV-2 within the indoor environment. Here, we examine the effect of mitigation strategies on reducing the risk of exposure to simulated respiratory aerosol particles within a classroom-style meeting room. To quantify exposure of uninfected individuals (Recipients), surrogate respiratory aerosol particles were generated by a breathing simulator with a headform (Source) that mimicked breath exhalations. Recipients, represented by three breathing simulators with manikin headforms, were placed in a meeting room and affixed with optical particle counters to measure 0.3-3 µm aerosol particles. Universal masking of all breathing simulators with a 3-ply cotton mask reduced aerosol exposure by 50% or more compared to scenarios with simulators unmasked. While evaluating the effect of Source placement, Recipients had the highest exposure at 0.9 m in a face-to-face orientation. Ventilation reduced exposure by approximately 5% per unit increase in air change per hour (ACH), irrespective of whether increases in ACH were by the HVAC system or portable HEPA air cleaners. The results demonstrate that mitigation strategies, such as universal masking and increasing ventilation, reduce personal exposure to respiratory aerosols within a meeting room. While universal masking remains a key component of a layered mitigation strategy of exposure reduction, increasing ventilation via system HVAC or portable HEPA air cleaners further reduces exposure.
Collapse
Affiliation(s)
- Jayme P. Coyle
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| | - Raymond C. Derk
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| | - William G. Lindsley
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| | - Francoise M. Blachere
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| | - Theresa Boots
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| | - Angela R. Lemons
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| | - Stephen B. Martin
- Respiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA;
| | - Kenneth R. Mead
- Division of Field Studies and Engineering, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Cincinnati, OH 45226, USA;
| | - Steven A. Fotta
- Facilities Management Office, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA;
| | - Jeffrey S. Reynolds
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| | - Walter G. McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| | - Erik W. Sinsel
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| | - Donald H. Beezhold
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| | - John D. Noti
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV 26505, USA; (J.P.C.); (R.C.D.); (F.M.B.); (T.B.); (A.R.L.); (J.S.R.); (W.G.M.); (E.W.S.); (D.H.B.); (J.D.N.)
| |
Collapse
|
612
|
Nelson SA, Sant AJ. Potentiating Lung Mucosal Immunity Through Intranasal Vaccination. Front Immunol 2021; 12:808527. [PMID: 34970279 PMCID: PMC8712562 DOI: 10.3389/fimmu.2021.808527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/24/2021] [Indexed: 01/28/2023] Open
Abstract
Yearly administration of influenza vaccines is our best available tool for controlling influenza virus spread. However, both practical and immunological factors sometimes result in sub-optimal vaccine efficacy. The call for improved, or even universal, influenza vaccines within the field has led to development of pre-clinical and clinical vaccine candidates that aim to address limitations of current influenza vaccine approaches. Here, we consider the route of immunization as a critical factor in eliciting tissue resident memory (Trm) populations that are not a target of current licensed intramuscular vaccines. Intranasal vaccination has the potential to boost tissue resident B and T cell populations that reside within specific niches of the upper and lower respiratory tract. Within these niches, Trm cells are poised to respond rapidly to pathogen re-encounter by nature of their anatomic localization and their ability to rapidly deliver anti-pathogen effector functions. Unique features of mucosal immunity in the upper and lower respiratory tracts suggest that antigen localized to these regions is required for the elicitation of protective B and T cell immunity at these sites and will need to be considered as an important attribute of a rationally designed intranasal vaccine. Finally, we discuss outstanding questions and areas of future inquiry in the field of lung mucosal immunity.
Collapse
Affiliation(s)
| | - Andrea J. Sant
- David H. Smith Center for Vaccine Biology and Immunology, Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
613
|
Esquivel-Chirino C, Valero-Princet Y, Gaitán-Cepeda LA, Hernández-Hernández C, Hernández AM, Laparra-Escareño H, Ventura-Gallegos JL, Montes-Sánchez D, Lopéz-Macay A, Hernández-Sánchez F, de Oliveira WA, Morales-González JA, Carmona-Ruiz D, Rosen-Esquivel K, Zentella-Dehesa A. The Effects of COVID-19 on Healthcare Workers and Non-Healthcare Workers in Mexico: 14 Months into the Pandemic. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:1353. [PMID: 34946297 PMCID: PMC8706611 DOI: 10.3390/medicina57121353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 02/07/2023]
Abstract
Background and Objectives: Healthcare workers (HCWs) play important roles in mitigating the COVID-19 pandemic and are more likely to become infected with COVID-19. Mexico, among other countries, had a high incidence and prevalence of cases and deaths from this disease. Material and Methods: This retrospective study evaluated the clinical characteristics as well as the geographical distribution of cases, deaths, and active cases of COVID-19 in HCWs and non-HCWs using official information from the Ministry of Health of Mexico. Results: A total of 235,343 cases of COVID-19 were reported in healthcare workers, and 2,094,191 cases were reported in non-healthcare workers. A total of 76.0% of cases in healthcare workers occurred in those who were between 25 and 50 years of age, and 71.4% of deaths occurred in those who were 50 to 69 years of age. Among healthcare workers, the most frequent comorbidities were obesity (15.2%), hypertension (10.9%), and diabetes (6.8%). Nurses were the group with the most cases (39.7%), followed by other healthcare workers (30.6%), physicians (26%), and dentists (1.6%). Physicians were the group with the most deaths (46%), followed by other professionals (30%), nurses (19%), and dentists (3%). Conclusion: These findings are likely the result of healthcare workers in Mexico being at a greater risk of exposure to SARS-CoV-2.
Collapse
Affiliation(s)
- César Esquivel-Chirino
- Área de Básicas Médicas, División de Estudios Profesionales, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Yolanda Valero-Princet
- División de Ciencias de la Salud, Facultad de Odontología, Universidad Intercontinental, Ciudad de México 14420, Mexico;
| | - Luis Alberto Gaitán-Cepeda
- Departamento de Medicina y Patología Oral Clínica, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Carlos Hernández-Hernández
- Servicio de Estomatología, Instituto de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico;
| | - Alejandro Macías Hernández
- Área de Microbiología y Enfermedades Infecciosas, Departamento de Medicina y Nutrición, Facultad de Medicina, Universidad de Guanajuato, León 37670, Mexico;
| | - Hugo Laparra-Escareño
- Departamento de Cirugía, Sección de Cirugía Vascular y Terapia, Instituto de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico;
| | - José Luis Ventura-Gallegos
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Ciudad de México 04510, Mexico; (J.L.V.-G.); (A.Z.-D.)
| | - Delina Montes-Sánchez
- Investigación Biomédica Básica, Licenciatura en Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla 75770, Mexico;
| | - Ambar Lopéz-Macay
- Laboratorio de Enfermedades Neuromusculares, 2do Piso de la Torre de Investigación, Instituto Nacional de Rehabilitación, Ciudad de México 14389, Mexico;
| | - Fernando Hernández-Sánchez
- Departamento de Virología y Micología, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Ciudad de México 04502, Mexico;
| | - William Alves de Oliveira
- Investigación de la División de Ciencias de la Salud, Universidad Intercontinental, Ciudad de México 14420, Mexico;
- División de Ciencias de la Salud, Facultad de Psicología, Universidad Intercontinental, Ciudad de México 14420, Mexico
| | - José Antonio Morales-González
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico;
| | - Daniela Carmona-Ruiz
- Área de Ortodoncia, División de Estudios Profesionales, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Karol Rosen-Esquivel
- Instituto de Ingeniería, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
| | - Alejandro Zentella-Dehesa
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, UNAM, Ciudad de México 04510, Mexico; (J.L.V.-G.); (A.Z.-D.)
- Unidad de Bioquímica, Instituto de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico
| |
Collapse
|
614
|
Park J, Kim G. Risk of COVID-19 Infection in Public Transportation: The Development of a Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12790. [PMID: 34886516 PMCID: PMC8657409 DOI: 10.3390/ijerph182312790] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022]
Abstract
South Korea's social distancing policies on public transportation only involve mandatory wearing of masks and prohibition of food intake, similar to policies on other indoor spaces. This is not because public transportation is safe from coronavirus disease 2019 (COVID-19), but because no suitable policies based on accurate data have been implemented. To relieve fears regarding contracting COVID-19 infection through public transportation, the government should provide accurate information and take appropriate measures to lower the risk of COVID-19. This study aimed to develop a model for determining the risk of COVID-19 infection on public transportation considering exposure time, mask efficiency, ventilation rate, and distance. The risk of COVID-19 infection on public transportation was estimated, and the effectiveness of measures to reduce the risk was assessed. The correlation between the risk of infection and various factors was identified through sensitivity analysis of major factors. The analysis shows that, in addition to the general indoor space social distancing policy, ventilation system installation, passenger number reduction in a vehicle, and seat distribution strategies were effective. Based on these results, the government should provide accurate guidelines and implement appropriate policies.
Collapse
Affiliation(s)
- Junsik Park
- The Korea Transport Institute, Sejong-si 30147, Korea;
| | | |
Collapse
|
615
|
Farthing TS, Lanzas C. Assessing the efficacy of interventions to control indoor SARS-Cov-2 transmission: An agent-based modeling approach. Epidemics 2021; 37:100524. [PMID: 34798545 PMCID: PMC8588587 DOI: 10.1016/j.epidem.2021.100524] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 10/05/2021] [Accepted: 11/11/2021] [Indexed: 11/24/2022] Open
Abstract
Nonpharmaceutical interventions for minimizing indoor SARS-CoV-2 transmission continue to be critical tools for protecting susceptible individuals from infection, even as effective vaccines are produced and distributed globally. We developed a spatially-explicit agent-based model for simulating indoor respiratory pathogen transmission during discrete events taking place in a single room within a sub-day time frame, and used it to compare effects of four interventions on reducing secondary SARS-CoV-2 attack rates during a superspreading event by simulating a well-known case study. We found that preventing people from moving within the simulated room and efficacious mask usage appear to have the greatest effects on reducing infection risk, but multiple concurrent interventions are required to minimize the proportion of susceptible individuals infected. Social distancing had little effect on reducing transmission if individuals were randomly relocated within the room to simulate activity-related movements during the gathering. Furthermore, our results suggest that there is potential for ventilation airflow to expose susceptible people to aerosolized pathogens even if they are relatively far from infectious individuals. Maximizing the vertical aerosol removal rate is paramount to successful transmission-risk reduction when using ventilation systems as intervention tools.
Collapse
|
616
|
Palmore TN, Henderson DK. Preventing Transmission of Respiratory Viruses in the Health Care Setting. Ann Intern Med 2021; 174:1759-1760. [PMID: 34748381 DOI: 10.7326/m21-4026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Tara N Palmore
- Division of Infectious Diseases, Department of Medicine, George Washington University School of Medicine and The George Washington University Hospital, Washington, DC
| | - David K Henderson
- Hospital Epidemiology Service, Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
617
|
Samaranayake L, Fakhruddin KS. Pandemics past, present, and future: Their impact on oral health care. J Am Dent Assoc 2021; 152:972-980. [PMID: 34749921 PMCID: PMC8570943 DOI: 10.1016/j.adaj.2021.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Pandemics have significantly modified our societal behaviour over the millennia, and the COVID-19 pandemic is no exception. TYPES OF ARTICLES REVIEWED In this article, the authors review the history of pandemics, the probable reasons for their emergence, and the COVID-19 pandemic due to the severe acute respiratory syndrome virus 2 (SARS-CoV-2) and its variants, as well as its possible impact on dentistry during the postpandemic period. RESULTS There are multiple reasons why catastrophic pandemics occur due to new infectious organisms that cross the species barrier from animals to humans. These include, population explosion, mass migration, and prolonged survival of debilitated and susceptible cohorts on various immunosuppressants. Coupled with global warming and the resultant loss of habitats, such vicissitudes of humans and nature lead to microbes evolving and mutating at an exponential pace, paving the way for pandemics. The contemporary epidemics and pandemics beginning with the HIV pandemic have modulated dentistry beyond recognition, now with assiduous and robust infection control measures in place. CONCLUSIONS AND PRACTICAL IMPLICATIONS Because COVID-19 may become an endemic disease, particularly due to emerging SARS-CoV-2 variants the dental community should adopt modified infection control measures, teledentistry, and point-of-care diagnostics, among other measures. It is likely, that clinical ecosystems in future would be rendered even safer by predicting how pathogens evolve and priming the human immune system for the next wave of microbial combatants through vaccines produced using deep mutational scanning in which artificial intelligence and machine learning can predict the next variants even before their arrival.
Collapse
|
618
|
Asthma Diagnosis without Aerosol-Generating Procedures (Spirometry): Evidence for and Beyond the COVID-19 Pandemic. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY: IN PRACTICE 2021; 9:4252-4253. [PMID: 34893187 PMCID: PMC8649113 DOI: 10.1016/j.jaip.2021.09.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 11/24/2022]
|
619
|
Wang Q, Liu L. On the Critical Role of Human Feces and Public Toilets in the Transmission of COVID-19: Evidence from China. SUSTAINABLE CITIES AND SOCIETY 2021; 75:103350. [PMID: 34540563 PMCID: PMC8433098 DOI: 10.1016/j.scs.2021.103350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/08/2021] [Accepted: 09/08/2021] [Indexed: 05/05/2023]
Abstract
The surprising spread speed of the COVID-19 pandemic creates an urgent need for investigating the transmission chain or transmission pattern of COVID-19 beyond the traditional respiratory channels. This study therefore examines whether human feces and public toilets play a critical role in the transmission of COVID-19. First, it develops a theoretical model that simulates the transmission chain of COVID-19 through public restrooms. Second, it uses stabilized epidemic data from China to empirically examine this theory, conducting an empirical estimation using a two-stage least squares (2SLS) model with appropriate instrumental variables (IVs). This study confirms that the wastewater directly promotes the transmission of COVID-19 within a city. However, the role of garbage in this transmission chain is more indirect in the sense that garbage has a complex relationship with public toilets, and it promotes the transmission of COVID-19 within a city through interaction with public toilets and, hence, human feces. These findings have very strong policy implications in the sense that if we can somehow use the ratio of public toilets as a policy instrument, then we can find a way to minimize the total number of infections in a region. As shown in this study, pushing the ratio of public toilets (against open defecation) to the local population in a city to its optimal level would help to reduce the total infection in a region.
Collapse
Affiliation(s)
- Qiuyun Wang
- School of Economics, Southwestern University of Finance and Economics, P.R China
| | - Lu Liu
- School of Economics, Southwestern University of Finance and Economics, P.R China
| |
Collapse
|
620
|
Danilenko V, Devyatkin A, Marsova M, Shibilova M, Ilyasov R, Shmyrev V. Common Inflammatory Mechanisms in COVID-19 and Parkinson's Diseases: The Role of Microbiome, Pharmabiotics and Postbiotics in Their Prevention. J Inflamm Res 2021; 14:6349-6381. [PMID: 34876830 PMCID: PMC8643201 DOI: 10.2147/jir.s333887] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
In the last decade, metagenomic studies have shown the key role of the gut microbiome in maintaining immune and neuroendocrine systems. Malfunction of the gut microbiome can induce inflammatory processes, oxidative stress, and cytokine storm. Dysfunction of the gut microbiome can be caused by short-term (virus infection and other infectious diseases) or long-term (environment, nutrition, and stress) factors. Here, we reviewed the inflammation and oxidative stress in neurodegenerative diseases and coronavirus infection (COVID-19). Here, we reviewed the renin-angiotensin-aldosterone system (RAAS) involved in the processes of formation of oxidative stress and inflammation in viral and neurodegenerative diseases. Moreover, the coronavirus uses ACE2 receptors of the RAAS to penetrate human cells. The coronavirus infection can be the trigger for neurodegenerative diseases by dysfunction of the RAAS. Pharmabiotics, postbiotics, and next-generation probiotics, are considered as a means to prevent oxidative stress, inflammatory processes, neurodegenerative and viral diseases through gut microbiome regulation.
Collapse
Affiliation(s)
- Valery Danilenko
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Devyatkin
- Central Clinical Hospital with a Polyclinic CMP RF, Moscow, Russia
| | - Mariya Marsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | - Rustem Ilyasov
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | |
Collapse
|
621
|
Abstract
Alveolar macrophages (AMs) are lung-resident myeloid cells that sit at the interface of the airway and lung tissue. Under homeostatic conditions, their primary function is to clear debris, dead cells and excess surfactant from the airways. They also serve as innate pulmonary sentinels for respiratory pathogens and environmental airborne particles and as regulators of pulmonary inflammation. However, they have not typically been viewed as primary therapeutic targets for respiratory diseases. Here, we discuss the role of AMs in various lung diseases, explore the potential therapeutic strategies to target these innate cells and weigh the potential risks and challenges of such therapies. Additionally, in the context of the COVID-19 pandemic, we examine the role AMs play in severe disease and the therapeutic strategies that have been harnessed to modulate their function and protect against severe lung damage. There are many novel approaches in development to target AMs, such as inhaled antibiotics, liposomal and microparticle delivery systems, and host-directed therapies, which have the potential to provide critical treatment to patients suffering from severe respiratory diseases, yet there is still much work to be done to fully understand the possible benefits and risks of such approaches.
Collapse
|
622
|
Dommer A, Casalino L, Kearns F, Rosenfeld M, Wauer N, Ahn SH, Russo J, Oliveira S, Morris C, Bogetti A, Trifan A, Brace A, Sztain T, Clyde A, Ma H, Chennubhotla C, Lee H, Turilli M, Khalid S, Tamayo-Mendoza T, Welborn M, Christensen A, Smith DGA, Qiao Z, Sirumalla SK, O'Connor M, Manby F, Anandkumar A, Hardy D, Phillips J, Stern A, Romero J, Clark D, Dorrell M, Maiden T, Huang L, McCalpin J, Woods C, Gray A, Williams M, Barker B, Rajapaksha H, Pitts R, Gibbs T, Stone J, Zuckerman D, Mulholland A, Miller T, Jha S, Ramanathan A, Chong L, Amaro R. #COVIDisAirborne: AI-Enabled Multiscale Computational Microscopy of Delta SARS-CoV-2 in a Respiratory Aerosol. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.11.12.468428. [PMID: 34816263 PMCID: PMC8609898 DOI: 10.1101/2021.11.12.468428] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
We seek to completely revise current models of airborne transmission of respiratory viruses by providing never-before-seen atomic-level views of the SARS-CoV-2 virus within a respiratory aerosol. Our work dramatically extends the capabilities of multiscale computational microscopy to address the significant gaps that exist in current experimental methods, which are limited in their ability to interrogate aerosols at the atomic/molecular level and thus ob-scure our understanding of airborne transmission. We demonstrate how our integrated data-driven platform provides a new way of exploring the composition, structure, and dynamics of aerosols and aerosolized viruses, while driving simulation method development along several important axes. We present a series of initial scientific discoveries for the SARS-CoV-2 Delta variant, noting that the full scientific impact of this work has yet to be realized. ACM REFERENCE FORMAT Abigail Dommer 1† , Lorenzo Casalino 1† , Fiona Kearns 1† , Mia Rosenfeld 1 , Nicholas Wauer 1 , Surl-Hee Ahn 1 , John Russo, 2 Sofia Oliveira 3 , Clare Morris 1 , AnthonyBogetti 4 , AndaTrifan 5,6 , Alexander Brace 5,7 , TerraSztain 1,8 , Austin Clyde 5,7 , Heng Ma 5 , Chakra Chennubhotla 4 , Hyungro Lee 9 , Matteo Turilli 9 , Syma Khalid 10 , Teresa Tamayo-Mendoza 11 , Matthew Welborn 11 , Anders Christensen 11 , Daniel G. A. Smith 11 , Zhuoran Qiao 12 , Sai Krishna Sirumalla 11 , Michael O'Connor 11 , Frederick Manby 11 , Anima Anandkumar 12,13 , David Hardy 6 , James Phillips 6 , Abraham Stern 13 , Josh Romero 13 , David Clark 13 , Mitchell Dorrell 14 , Tom Maiden 14 , Lei Huang 15 , John McCalpin 15 , Christo- pherWoods 3 , Alan Gray 13 , MattWilliams 3 , Bryan Barker 16 , HarindaRajapaksha 16 , Richard Pitts 16 , Tom Gibbs 13 , John Stone 6 , Daniel Zuckerman 2 *, Adrian Mulholland 3 *, Thomas MillerIII 11,12 *, ShantenuJha 9 *, Arvind Ramanathan 5 *, Lillian Chong 4 *, Rommie Amaro 1 *. 2021. #COVIDisAirborne: AI-Enabled Multiscale Computational Microscopy ofDeltaSARS-CoV-2 in a Respiratory Aerosol. In Supercomputing '21: International Conference for High Perfor-mance Computing, Networking, Storage, and Analysis . ACM, New York, NY, USA, 14 pages. https://doi.org/finalDOI.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Anda Trifan
- Argonne National Laboratory
- University of Illinois at Urbana-Champaign
| | | | | | - Austin Clyde
- Argonne National Laboratory
- University of Chicago
| | | | | | - Hyungro Lee
- Brookhaven National Lab & Rutgers University
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - John Stone
- University of Illinois at Urbana-Champaign
| | | | | | | | | | | | | | | |
Collapse
|
623
|
Lehr CM, Yeo L, Sznitman J. Editorial: Innovative In Vitro Models for Pulmonary Physiology and Drug Delivery in Health and Disease. Front Bioeng Biotechnol 2021; 9:788682. [PMID: 34746115 PMCID: PMC8569608 DOI: 10.3389/fbioe.2021.788682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Claus-Michael Lehr
- Helmholtz Center for Infection Research (HZI), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | - Leslie Yeo
- School of Engineering, Royal Melbourne Institute of Technology, Melbourne, VIC, Australia
| | - Josué Sznitman
- Departments of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
624
|
Birmili W, Selinka HC, Moriske HJ, Daniels A, Straff W. [Ventilation concepts in schools for the prevention of transmission of highly infectious viruses (SARS-CoV-2) by aerosols in indoor air]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2021; 64:1570-1580. [PMID: 34739549 PMCID: PMC8569287 DOI: 10.1007/s00103-021-03452-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/19/2021] [Indexed: 01/12/2023]
Abstract
Exhaled aerosol particles play an important role in the transmission of SARS-CoV‑2, particularly when many people gather indoors. This article summarises the knowledge on virus transmission in schools and practical measures to reduce aerosol-driven infections. A central preventive measure is to enhance room and building ventilation, i.e. the exchange of possibly contaminated indoor air with ambient air. Besides the concentrations of possibly infectious particles, ventilation reduces carbon dioxide concentrations, humidity and other chemical substances in indoor air as well. Irrespective of ventilation, face masks (surgical or FFP2) represent a vital part of hygiene measures. Fixed or mobile air purifiers can support these measures particularly when rooms providing only poor ventilation must be utilized. The article reflects the state of knowledge in October 2021 of the various techniques that have been shown as useful for the prevention of indirect infections. New variants of SARS-CoV‑2, the progress of the vaccination campaign in children and adolescents, and the increase in general immunity might require a re-evaluation of the prevention strategies described. The COVID-19 pandemic has revealed common deficits in room and building ventilation, not least in schools. Apart from short-term measures for the prevention of airborne infectious diseases, a long-term strategy seems advisable to alleviate the deficits encountered in schools with respect to room and building ventilation. In view of a permanent improvement of indoor air and prevention against airborne infections the fitting of schools with fixed ventilation systems - preferably including heat and moisture recovery - appears to be a sustainable social investment.
Collapse
Affiliation(s)
- Wolfram Birmili
- Umweltbundesamt, Abteilung II 1 "Umwelthygiene", Corrensplatz 1, 14195, Berlin, Deutschland.
| | - Hans-Christoph Selinka
- Umweltbundesamt, Abteilung II 1 "Umwelthygiene", Corrensplatz 1, 14195, Berlin, Deutschland
| | - Heinz-Jörn Moriske
- Umweltbundesamt, Beratungsstelle Umwelthygiene II BU, Wörlitzer Platz 1, 06844, Dessau, Deutschland
| | - Anja Daniels
- Umweltbundesamt, Abteilung II 1 "Umwelthygiene", Corrensplatz 1, 14195, Berlin, Deutschland
| | - Wolfgang Straff
- Umweltbundesamt, Abteilung II 1 "Umwelthygiene", Corrensplatz 1, 14195, Berlin, Deutschland
| |
Collapse
|
625
|
Kumar B, Chatterjee S, Agrawal A, Bhardwaj R. Evaluating a transparent coating on a face shield for repelling airborne respiratory droplets. PHYSICS OF FLUIDS (WOODBURY, N.Y. : 1994) 2021; 33:111705. [PMID: 34803361 PMCID: PMC8597715 DOI: 10.1063/5.0073724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 10/26/2021] [Indexed: 05/05/2023]
Abstract
A face shield is an important personal protective equipment to avoid the airborne transmission of COVID-19. We assess a transparent coating on a face shield that repels airborne respiratory droplets to mitigate the spread of COVID-19. The surface of the available face shield is hydrophilic and exhibits high contact angle hysteresis. The impacting droplets stick on it, resulting in an enhanced risk of fomite transmission of the disease. Further, it may get wetted in the rain, and moisture may condense on it in the presence of large humidity, which may blur the user's vision. Therefore, the present study aims to improve the effectiveness of a face shield. Our measurements demonstrate that the face shield, coated by silica nanoparticles solution, becomes superhydrophobic and results in a nominal hysteresis to the underlying surface. We employ high-speed visualization to record the impact dynamics of microliter droplets with a varying impact velocity and angle of attack on coated and non-coated surfaces. While the droplet on non-coated surface sticks to it, in the coated surface the droplets bounce off and roll down the surface, for a wide range of Weber number. We develop an analytical model and present a regime map of the bouncing and non-bouncing events, parametrized with respect to the wettability, hysteresis of the surface, and the Weber number. The present measurements provide the fundamental insights of the bouncing droplet impact dynamics and show that the coated face shield is potentially more effective in suppressing the airborne and fomite transmission.
Collapse
Affiliation(s)
- Bibek Kumar
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Sanghamitro Chatterjee
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Amit Agrawal
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Rajneesh Bhardwaj
- Department of Mechanical Engineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
626
|
Hawks SA, Prussin AJ, Kuchinsky SC, Pan J, Marr LC, Duggal NK. Infectious SARS-CoV-2 Is Emitted in Aerosol Particles. mBio 2021; 12:e0252721. [PMID: 34663099 PMCID: PMC8524342 DOI: 10.1128/mbio.02527-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 09/23/2021] [Indexed: 01/10/2023] Open
Abstract
Respiratory viruses such as SARS-CoV-2 are transmitted in respiratory droplets and aerosol particles, which are released during talking, breathing, coughing, and sneezing. Noncontact transmission of SARS-CoV-2 has been demonstrated, suggesting transmission via virus carried through the air. Here, we demonstrate that golden Syrian hamsters produce infectious SARS-CoV-2 in aerosol particles prior to and concurrent with the onset of mild clinical signs of disease. The average emission rate in this study was 25 infectious virions/hour on days 1 and 2 postinoculation, with average viral RNA levels 200-fold higher than infectious virus in aerosol particles. The majority of virus was contained within particles <5 μm in size. Thus, we provide direct evidence that, in hamsters, SARS-CoV-2 is an airborne virus. IMPORTANCE SARS-CoV-2 is a respiratory virus and has been isolated from the air near COVID-19 patients. Here, using a hamster model of infection, we demonstrate that SARS-CoV-2 is emitted in aerosol particles prior to and concurrent with the onset of mild disease. Virus is contained primarily within aerosol particles <5 μm in size, which can remain airborne and be inhaled. These findings indicate that SARS-CoV-2 is an airborne virus and support the use of ventilation to reduce SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Seth A. Hawks
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Aaron J. Prussin
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Sarah C. Kuchinsky
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Jin Pan
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Linsey C. Marr
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Nisha K. Duggal
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| |
Collapse
|
627
|
Gagne M, Corbett KS, Flynn BJ, Foulds KE, Wagner DA, Andrew SF, Todd JPM, Honeycutt CC, McCormick L, Nurmukhambetova ST, Davis-Gardner ME, Pessaint L, Bock KW, Nagata BM, Minai M, Werner AP, Moliva JI, Tucker C, Lorang CG, Zhao B, McCarthy E, Cook A, Dodson A, Mudvari P, Roberts-Torres J, Laboune F, Wang L, Goode A, Kar S, Boyoglu-Barnum S, Yang ES, Shi W, Ploquin A, Doria-Rose N, Carfi A, Mascola JR, Boritz EA, Edwards DK, Andersen H, Lewis MG, Suthar MS, Graham BS, Roederer M, Moore IN, Nason MC, Sullivan NJ, Douek DC, Seder RA. Protection from SARS-CoV-2 Delta one year after mRNA-1273 vaccination in nonhuman primates is coincident with an anamnestic antibody response in the lower airway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 34729558 DOI: 10.1101/2021.10.23.465542] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
mRNA-1273 vaccine efficacy against SARS-CoV-2 Delta wanes over time; however, there are limited data on the impact of durability of immune responses on protection. We immunized rhesus macaques at weeks 0 and 4 and assessed immune responses over one year in blood, upper and lower airways. Serum neutralizing titers to Delta were 280 and 34 reciprocal ID 50 at weeks 6 (peak) and 48 (challenge), respectively. Antibody binding titers also decreased in bronchoalveolar lavage (BAL). Four days after challenge, virus was unculturable in BAL and subgenomic RNA declined ∼3-log 10 compared to control animals. In nasal swabs, sgRNA declined 1-log 10 and virus remained culturable. Anamnestic antibody responses (590-fold increase) but not T cell responses were detected in BAL by day 4 post-challenge. mRNA-1273-mediated protection in the lungs is durable but delayed and potentially dependent on anamnestic antibody responses. Rapid and sustained protection in upper and lower airways may eventually require a boost.
Collapse
|
628
|
Song J, Zhao Q, Meng C, Meng J, Chen Z, Li J. Hierarchical Porous Recycled PET Nanofibers for High-Efficiency Aerosols and Virus Capturing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:49380-49389. [PMID: 34613694 DOI: 10.1021/acsami.1c17157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Plastic crisis, especially for poly(ethylene terephthalate) (PET) bottles, has been one of the greatest challenges for the earth and human beings. Processing recycled PET (rPET) into functional materials has the dual significance of both sustainable development and economy. Providing more possibilities for the engineered application of rPET, porous PET fibers can further enhance the high specific surface area of electrospun membranes. Here, we use a two-step strategy of electrospinning and postprocessing to successfully control the surface morphology of rPET fibers. Through a series of optical and thermal characterizations, the porous morphology formation mechanism and crystallinity induced by solvents of rPET fibers were discussed. Then, this work further investigated both PM2.5 air pollutants and protein filtration performance of rPET fibrous membrane. The high capture capability of rPET membrane demonstrated its potential application as an integrated high-efficiency aerosol filtering solution.
Collapse
Affiliation(s)
- Jun Song
- Department of Materials, The University of Manchester, Manchester M13 9PL, U.K
| | - Qi Zhao
- Department of Materials, The University of Manchester, Manchester M13 9PL, U.K
| | - Chen Meng
- Department of Materials, The University of Manchester, Manchester M13 9PL, U.K
| | - Jinmin Meng
- Department of Materials, The University of Manchester, Manchester M13 9PL, U.K
| | - Zhongda Chen
- Department of Materials, The University of Manchester, Manchester M13 9PL, U.K
| | - Jiashen Li
- Department of Materials, The University of Manchester, Manchester M13 9PL, U.K
| |
Collapse
|
629
|
Greenhalgh T, Katzourakis A, Wyatt TD, Griffin S. Rapid evidence review to inform safe return to campus in the context of coronavirus disease 2019 (COVID-19). Wellcome Open Res 2021; 6:282. [PMID: 34796281 PMCID: PMC8567688 DOI: 10.12688/wellcomeopenres.17270.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is transmitted predominantly through the air in crowded and unventilated indoor spaces among unvaccinated people. Universities and colleges are potential settings for its spread. Methods: An interdisciplinary team from public health, virology, and biology used narrative methods to summarise and synthesise evidence on key control measures, taking account of mode of transmission. Results: Evidence from a wide range of primary studies supports six measures. Vaccinate (aim for > 90% coverage and make it easy to get a jab). Require masks indoors, especially in crowded settings. If everyone wears well-fitting cloth masks, source control will be high, but for maximum self-protection, respirator masks should be worn. Masks should not be removed for speaking or singing. Space people out by physical distancing (but there is no "safe" distance because transmission risk varies with factors such as ventilation, activity levels and crowding), reducing class size (including offering blended learning), and cohorting (students remain in small groups with no cross-mixing). Clean indoor air using engineering controls-ventilation (while monitoring CO 2 levels), inbuilt filtration systems, or portable air cleaners fitted with high efficiency particulate air [HEPA] filters). Test asymptomatic staff and students using lateral flow tests, with tracing and isolating infectious cases when incidence of coronavirus disease 2019 (COVID-19) is high. Support clinically vulnerable people to work remotely. There is no direct evidence to support hand sanitising, fomite controls or temperature-taking. There is evidence that freestanding plastic screens, face visors and electronic air-cleaning systems are ineffective. Conclusions: The above six evidence-based measures should be combined into a multi-faceted strategy to maximise both student safety and the continuation of in-person and online education provision. Staff and students seeking to negotiate a safe working and learning environment should collect data (e.g. CO 2 levels, room occupancy) to inform conversations.
Collapse
Affiliation(s)
- Trisha Greenhalgh
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, OXFORDSHIRE, OX2 6GG, UK
| | - Aris Katzourakis
- Department of Zoology, University of Oxford, Oxford, OXFORDSHIRE, OX1 3SY, UK
| | - Tristram D. Wyatt
- Department of Zoology, University of Oxford, Oxford, OXFORDSHIRE, OX1 3SY, UK
| | - Stephen Griffin
- Leeds Institute of Medical Research, University of Leeds, Leeds, YORKSHIRE, LS9 7TF, UK
| |
Collapse
|
630
|
Keith L, Iroz-Elardo N, Austof E, Sami I, Arora M. Response to correspondence on "Extreme heat at outdoor COVID-19 vaccination sites". THE JOURNAL OF CLIMATE CHANGE AND HEALTH 2021; 4:100073. [PMID: 34664041 PMCID: PMC8514327 DOI: 10.1016/j.joclim.2021.100073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Ladd Keith
- College of Architecture, Planning, and Landscape Architecture, The University of Arizona, 1040 North Olive Road, Tucson, AZ 85719, United States
| | - Nicole Iroz-Elardo
- College of Architecture, Planning, and Landscape Architecture, The University of Arizona, 1040 North Olive Road, Tucson, AZ 85719, United States
| | - Erika Austof
- Mel and Enid Zuckerman College of Public Health, The University of Arizona, 1295 North Martin Avenue, Tucson, AZ 85724. United States
| | - Ida Sami
- College of Architecture, Planning, and Landscape Architecture, The University of Arizona, 1040 North Olive Road, Tucson, AZ 85719, United States
| | - Mona Arora
- Mel and Enid Zuckerman College of Public Health, The University of Arizona, 1295 North Martin Avenue, Tucson, AZ 85724. United States
| |
Collapse
|
631
|
Partridge DG, Sori A, Green DJ, Simpson R, Poller B, Raza M, Kaur H, Jessop H, Colton B, Nield A, Evans CM, Lee A. Universal use of surgical masks is tolerated and prevents respiratory viral infection in stem cell transplant recipients. J Hosp Infect 2021; 119:182-186. [PMID: 34543704 PMCID: PMC8447542 DOI: 10.1016/j.jhin.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022]
Abstract
Prevention of respiratory viral infection in stem cell transplant patients is important due to its high risk of adverse outcome. This single-centre, mixed methods study, conducted before the severe acute respiratory syndrome coronavirus-2 pandemic, explored the barriers and facilitators to a policy of universal mask use by visitors and healthcare workers, and examined the impact of the first year of introduction of the policy on respiratory viral infection rates compared with preceding years, adjusted for overall incidence. Education around universal mask use was highlighted as being particularly important in policy implementation. A significant decrease in respiratory viral infection was observed following introduction.
Collapse
Affiliation(s)
- D G Partridge
- Department of Microbiology, Sheffield Teaching Hospitals Foundation NHS Trust, Sheffield, UK; Florey Institute for Host-Pathogen Interaction, University of Sheffield, Sheffield, UK.
| | - A Sori
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - D J Green
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - R Simpson
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - B Poller
- Department of Laboratory Medicine, NHS Lothian, Edinburgh, UK
| | - M Raza
- Department of Virology, Sheffield Teaching Hospitals Foundation NHS Trust, Sheffield, UK
| | - H Kaur
- Department of Haematology, Sheffield Teaching Hospitals Foundation NHS Trust, Sheffield, UK
| | - H Jessop
- Department of Haematology, Sheffield Teaching Hospitals Foundation NHS Trust, Sheffield, UK
| | - B Colton
- Department of Haematology, Sheffield Teaching Hospitals Foundation NHS Trust, Sheffield, UK
| | - A Nield
- Department of Haematology, Sheffield Teaching Hospitals Foundation NHS Trust, Sheffield, UK
| | - C M Evans
- Florey Institute for Host-Pathogen Interaction, University of Sheffield, Sheffield, UK; Department of Virology, Sheffield Teaching Hospitals Foundation NHS Trust, Sheffield, UK
| | - A Lee
- School of Health and Related Research, University of Sheffield, Sheffield, UK
| |
Collapse
|
632
|
[Infection prevention and control for COVID-19 in healthcare settings]. Uirusu 2021; 71:151-162. [PMID: 37245977 DOI: 10.2222/jsv.71.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In healthcare facilities, the initial response to emerging and reemerging infectious diseases, including COVID-19, requires systematic management. The first step is to establish an initial risk assessment and subsequent response flow, using a combination of triage and clinical examination for patients. Screening tests are performed for the early diagnosis of asymptomatic patients who are judged to be at low risk in the initial assessment. However, regardless of the test results, subsequent patient care should be taken cautiously to avoid inadequate initial evaluation at the time of admission, follow-up of symptoms and infection control measures after admission. The basic principle is standard precautions, with particular emphasis on compliance with hand hygiene. Universal masking for preventing transmission from asymptomatic/pre-symptomatic patients and reducing droplet emission and inhalation become the new essential precaution. For suspected/confirmed patients with COVID-19, surgical mask or N95 mask, gloves, gown, eye protection, and cap are basically used. The policy for personal protective equipment is made based on the medical environment of each facility. A negative pressure room is not always required but should be considered in high-risk environments, if possible. While the risk of transmission from the surface environment in a standard healthcare delivery system is limited, a continuous review of the facility environment is expected, considering the importance of ventilation.
Collapse
|