601
|
Wang B, Jiang X, Cao M, Ge J, Bao Q, Tang L, Chen Y, Li L. Altered Fecal Microbiota Correlates with Liver Biochemistry in Nonobese Patients with Non-alcoholic Fatty Liver Disease. Sci Rep 2016; 6:32002. [PMID: 27550547 PMCID: PMC4994089 DOI: 10.1038/srep32002] [Citation(s) in RCA: 265] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 07/25/2016] [Indexed: 02/07/2023] Open
Abstract
Increasing evidence suggests a role of intestinal dysbiosis in obesity and non-alcoholic fatty liver disease (NAFLD). But it remains unknown in nonobese NAFLD. This prospective, cross-sectional study sought to characterize differences in fecal microbiota between nonobese adult individuals with and without NAFLD and their potential association with metabolic markers of disease progression. A total of 126 nonobese subjects were enrolled: 43 NAFLD and 83 healthy controls (HC). The microbial community was profiled by denaturing gradient gel electrophoresis and examined by 454 pyrosequencing of the 16S ribosomal RNA V3 region. Lower diversity and a phylum-level change in the fecal microbiome were found in NAFLD. Compared with HC, patients had 20% more phylum Bacteroidetes (p = 0.005) and 24% less Firmicutes (p = 0.002). Within Firmicutes, four families and their 8 genera, which were short-chain fatty acids-producing and 7α-dehydroxylating bacteria, were significantly decreased. Moreover, Gram-negative (G-) bacteria were prevalent in NAFLD (p = 0.008). Furthermore, a significant correlation with metabolic markers was revealed for disturbed microbiota in NAFLD. This novel study indicated that intestinal dysbiosis was associated with nonobese NAFLD and might increase the risk of NAFLD progression.
Collapse
Affiliation(s)
- Baohong Wang
- National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Xiangyang Jiang
- National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Min Cao
- National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Jianping Ge
- National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Qiongling Bao
- National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lingling Tang
- National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yu Chen
- National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lanjuan Li
- National Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| |
Collapse
|
602
|
Liu L, Zhao X, Wang Q, Sun X, Xia L, Wang Q, Yang B, Zhang Y, Montgomery S, Meng H, Geng T, Gong D. Prosteatotic and Protective Components in a Unique Model of Fatty Liver: Gut Microbiota and Suppressed Complement System. Sci Rep 2016; 6:31763. [PMID: 27550859 PMCID: PMC4994046 DOI: 10.1038/srep31763] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 07/27/2016] [Indexed: 01/07/2023] Open
Abstract
Goose can develop severe hepatic steatosis without overt injury, thus it may serve as a unique model for uncovering how steatosis-related injury is prevented. To identify the markedly prosteatotic and protective mechanisms, we performed an integrated analysis of liver transcriptomes and gut microbial metagenomes using samples collected from overfed and normally-fed geese at different time points. The results indicated that the fatty liver transcriptome, initially featuring a 'metabolism' pathway, was later joined by 'cell growth and death' and 'immune diseases' pathways. Gut microbiota played a synergistic role in the liver response as microbial and hepatic genes affected by overfeeding shared multiple pathways. Remarkably, the complement system, an inflammatory component, was comprehensively suppressed in fatty liver, which was partially due to increased blood lactic acid from enriched Lactobacillus. Data from in vitro studies suggested that lactic acid suppressed TNFα via the HNF1α/C5 pathway. In conclusion, gut microbes and their hosts respond to excess energy influx as an organic whole, severe steatosis and related tolerance of goose liver may be partially attributable to gut microbiotic products and suppressed complement system, and lactic acid from gut microbiota participates in the suppression of hepatic TNFα/inflammation through the HNF1α/C5 pathway.
Collapse
Affiliation(s)
- Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xing Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qian Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoxian Sun
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Lili Xia
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qianqian Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Biao Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yihui Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Sean Montgomery
- Department of Botany, University of British Columbia, 6270 University Boulevard, British Columbia, V6T 1Z4, Canada
| | - He Meng
- School of Agriculture and Biology, Shanghai Jiaotong University; Shanghai Key Laboratory of Veterinary Biotechnology, 800 Dongchuan Road, Shanghai 200240, China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
603
|
Sanduzzi Zamparelli M, Compare D, Coccoli P, Rocco A, Nardone OM, Marrone G, Gasbarrini A, Grieco A, Nardone G, Miele L. The Metabolic Role of Gut Microbiota in the Development of Nonalcoholic Fatty Liver Disease and Cardiovascular Disease. Int J Mol Sci 2016; 17:1225. [PMID: 27483246 PMCID: PMC5000623 DOI: 10.3390/ijms17081225] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/20/2022] Open
Abstract
The prevalence of metabolic disorders, such as type 2 diabetes (T2D), obesity, and non-alcoholic fatty liver disease (NAFLD), which are common risk factors for cardiovascular disease (CVD), has dramatically increased worldwide over the last decades. Although dietary habit is the main etiologic factor, there is an imperfect correlation between dietary habits and the development of metabolic disease. Recently, research has focused on the role of the microbiome in the development of these disorders. Indeed, gut microbiota is implicated in many metabolic functions and an altered gut microbiota is reported in metabolic disorders. Here we provide evidence linking gut microbiota and metabolic diseases, focusing on the pathogenetic mechanisms underlying this association.
Collapse
Affiliation(s)
- Marco Sanduzzi Zamparelli
- Department of Clinical Medicine and Surgery, Gastroenterology Unit, Federico II University of Naples, 80131 Napoli, Italy.
| | - Debora Compare
- Department of Clinical Medicine and Surgery, Gastroenterology Unit, Federico II University of Naples, 80131 Napoli, Italy.
| | - Pietro Coccoli
- Department of Clinical Medicine and Surgery, Gastroenterology Unit, Federico II University of Naples, 80131 Napoli, Italy.
| | - Alba Rocco
- Department of Clinical Medicine and Surgery, Gastroenterology Unit, Federico II University of Naples, 80131 Napoli, Italy.
| | - Olga Maria Nardone
- Department of Clinical Medicine and Surgery, Gastroenterology Unit, Federico II University of Naples, 80131 Napoli, Italy.
| | - Giuseppe Marrone
- Internal Medicine and Gastroenterology Area, Fondazione Policlinico Universitario A. Gemelli, Catholic University of Rome, 00168 Rome, Italy.
| | - Antonio Gasbarrini
- Internal Medicine and Gastroenterology Area, Fondazione Policlinico Universitario A. Gemelli, Catholic University of Rome, 00168 Rome, Italy.
| | - Antonio Grieco
- Internal Medicine and Gastroenterology Area, Fondazione Policlinico Universitario A. Gemelli, Catholic University of Rome, 00168 Rome, Italy.
| | - Gerardo Nardone
- Internal Medicine and Gastroenterology Area, Fondazione Policlinico Universitario A. Gemelli, Catholic University of Rome, 00168 Rome, Italy.
| | - Luca Miele
- Internal Medicine and Gastroenterology Area, Fondazione Policlinico Universitario A. Gemelli, Catholic University of Rome, 00168 Rome, Italy.
| |
Collapse
|
604
|
Wruck W, Graffmann N, Kawala MA, Adjaye J. Concise Review: Current Status and Future Directions on Research Related to Nonalcoholic Fatty Liver Disease. Stem Cells 2016; 35:89-96. [PMID: 27374784 DOI: 10.1002/stem.2454] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/27/2016] [Accepted: 06/18/2016] [Indexed: 02/06/2023]
Abstract
Considered a feature of the metabolic syndrome, nonalcoholic fatty liver disease (NAFLD), is associated with insulin resistance, type 2 diabetes, obesity and drug toxicity. Its prevalence is estimated at about 30% in western countries mainly due to sedentary life styles and high fat diets. Genome-wide association studies have identified polymorphisms in several genes, for example, PNPLA3, and TM6SF2 which confer susceptibility to NAFLD. Here, we review recent findings in the NAFLD field with a particular focus on published transcriptomics datasets which we subject to a meta-analysis. We reveal a common gene signature correlating with the progression of the disease from steatosis and steatohepatitis and reveal that lipogenic and cholesterol metabolic pathways are main actors in this signature. We propose the use of disease-in-a-dish models based on hepatocyte-like cells derived from patient-specific induced pluripotent stem cells (iPSC). These will enable investigations into the contribution of genetic background in the progression from NALFD to non-alcoholic steatohepatitis. Furthermore, an iPSC-based approach should aid in the elucidation of the function of new biomarkers, thus enabling better diagnostic tests and validation of potential drug targets. Stem Cells 2017;35:89-96.
Collapse
Affiliation(s)
- Wasco Wruck
- Medical Faculty, Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Nina Graffmann
- Medical Faculty, Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - Marie-Ann Kawala
- Medical Faculty, Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University, Düsseldorf, Germany
| | - James Adjaye
- Medical Faculty, Institute for Stem Cell Research and Regenerative Medicine, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
605
|
Lorbek G, Urlep Ž, Rozman D. Pharmacogenomic and personalized approaches to tackle nonalcoholic fatty liver disease. Pharmacogenomics 2016; 17:1273-1288. [PMID: 27377717 DOI: 10.2217/pgs-2016-0047] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a raising liver disease with increasing prevalence due to the epidemics of obesity and diabetes, with end points in cirrhosis or hepatocellular carcinoma. A multitude of genetic and metabolic perturbations, together with environmental factors, likely drive the disease. However, to date only a few genes, primarily PNPLA3 and TM6SF2, associate with NAFLD and there is no specific treatment. In this review we focus on the therapeutical aspects of NAFLD, taking into account drugs and lifestyle interventions. Sex also influences disease progression and treatment outcomes. Lastly, we discuss the present and potential future of personalized approaches to tackle NAFLD and how the known polymorphisms of NAFLD associated genes influence the choice and success of therapy.
Collapse
Affiliation(s)
- Gregor Lorbek
- Faculty of Medicine, Center for Functional Genomics & Bio-Chips, Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Žiga Urlep
- Faculty of Medicine, Center for Functional Genomics & Bio-Chips, Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| | - Damjana Rozman
- Faculty of Medicine, Center for Functional Genomics & Bio-Chips, Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
606
|
Chilloux J, Neves AL, Boulangé CL, Dumas ME. The microbial-mammalian metabolic axis: a critical symbiotic relationship. Curr Opin Clin Nutr Metab Care 2016; 19:250-256. [PMID: 27137897 PMCID: PMC4961256 DOI: 10.1097/mco.0000000000000284] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW The microbial-mammalian symbiosis plays a critical role in metabolic health. Microbial metabolites emerge as key messengers in the complex communication between the gut microbiota and their host. These chemical signals are mainly derived from nutritional precursors, which in turn are also able to modify gut microbiota population. Recent advances in the characterization of the gut microbiome and the mechanisms involved in this symbiosis allow the development of nutritional interventions. This review covers the latest findings on the microbial-mammalian metabolic axis as a critical symbiotic relationship particularly relevant to clinical nutrition. RECENT FINDINGS The modulation of host metabolism by metabolites derived from the gut microbiota highlights the importance of gut microbiota in disease prevention and causation. The composition of microbial populations in our gut ecosystem is a critical pathophysiological factor, mainly regulated by diet, but also by the host's characteristics (e.g. genetics, circadian clock, immune system, age). Tailored interventions, including dietary changes, the use of antibiotics, prebiotic and probiotic supplementation and faecal transplantation are promising strategies to manipulate microbial ecology. SUMMARY The microbiome is now considered as an easily reachable target to prevent and treat related diseases. Recent findings in both mechanisms of its interactions with host metabolism and in strategies to modify gut microbiota will allow us to develop more effective treatments especially in metabolic diseases.
Collapse
Affiliation(s)
- Julien Chilloux
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Ana Luisa Neves
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Claire L Boulangé
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Marc-Emmanuel Dumas
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| |
Collapse
|
607
|
Jiang Tang Xiao Ke Granule, a Classic Chinese Herbal Formula, Improves the Effect of Metformin on Lipid and Glucose Metabolism in Diabetic Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:1592731. [PMID: 27418937 PMCID: PMC4932160 DOI: 10.1155/2016/1592731] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 04/30/2016] [Accepted: 05/24/2016] [Indexed: 12/19/2022]
Abstract
In the present study, the hypoglycemic, hypolipidemic, and antioxidative effects of metformin (MET) combined with Jiang Tang Xiao Ke (JTXK) granule derived from the “Di Huang Tang” were evaluated in mice with type 2 diabetes mellitus (DM) induced by high-fat diet/streptozotocin. DM mice were orally treated with MET (0.19 g/kg) either alone or combined with different doses (1.75, 3.5, or 7 g/kg) of JTXK for 4 weeks. Results showed that the serum and hepatic glucose, lipids, and oxidative stress levels were elevated in DM mice, when compared with the normal mice. MET treatment decreased FBG and serum glucagon levels of DM mice. Combination treatment with MET and JTXK 3.5 g/kg increased the hypoglycemia and insulin sensitivity at 4 weeks when compared with the DM mice treated with MET alone. However, neither MET nor MET/JTXK treatment could completely reverse the hyperglycemia in DM mice. JTXK enhanced the serum triglyceride (TG) and hepatic lipid-lowering effect of MET in a dose-dependent manner in DM mice. JTXK 1.75 and 3.5 g/kg improved the hepatoprotective effect of MET in DM mice. Synergistic effect of combination treatment with MET and JTXK on antioxidant stress was also found in DM mice compared with MET alone.
Collapse
|
608
|
Bashiardes S, Shapiro H, Rozin S, Shibolet O, Elinav E. Non-alcoholic fatty liver and the gut microbiota. Mol Metab 2016; 5:782-94. [PMID: 27617201 PMCID: PMC5004228 DOI: 10.1016/j.molmet.2016.06.003] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/04/2016] [Accepted: 06/08/2016] [Indexed: 02/06/2023] Open
Abstract
Background Non-alcoholic fatty liver (NAFLD) is a common, multi-factorial, and poorly understood liver disease whose incidence is globally rising. NAFLD is generally asymptomatic and associated with other manifestations of the metabolic syndrome. Yet, up to 25% of NAFLD patients develop a progressive inflammatory liver disease termed non-alcoholic steatohepatitis (NASH) that may progress towards cirrhosis, hepatocellular carcinoma, and the need for liver transplantation. In recent years, several lines of evidence suggest that the gut microbiome represents a significant environmental factor contributing to NAFLD development and its progression into NASH. Suggested microbiome-associated mechanisms contributing to NAFLD and NASH include dysbiosis-induced deregulation of the gut endothelial barrier function, which facilitates systemic bacterial translocation, and intestinal and hepatic inflammation. Furthermore, increased microbiome-modulated metabolites such as lipopolysaccharides, short chain fatty acids (SCFAs), bile acids, and ethanol, may affect liver pathology through multiple direct and indirect mechanisms. Scope of review Herein, we discuss the associations, mechanisms, and clinical implications of the microbiome's contribution to NAFLD and NASH. Understanding these contributions to the development of fatty liver pathogenesis and its clinical course may serve as a basis for development of therapeutic microbiome-targeting approaches for treatment and prevention of NAFLD and NASH. Major conclusions Intestinal host–microbiome interactions play diverse roles in the pathogenesis and progression of NAFLD and NASH. Elucidation of the mechanisms driving these microbial effects on the pathogenesis of NAFLD and NASH may enable to identify new diagnostic and therapeutic targets of these common metabolic liver diseases. This article is part of a special issue on microbiota.
Collapse
Affiliation(s)
- Stavros Bashiardes
- Immunology Department, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Hagit Shapiro
- Immunology Department, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Shachar Rozin
- Immunology Department, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Oren Shibolet
- Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel; Department of Gastroenterology, Tel Aviv Medical Center, Tel Aviv 6423906, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, 76100 Rehovot, Israel
| |
Collapse
|
609
|
Wang J, Tang H, Wang X, Zhang X, Zhang C, Zhang M, Zhao Y, Zhao L, Shen J. The structural alteration of gut microbiota in low-birth-weight mice undergoing accelerated postnatal growth. Sci Rep 2016; 6:27780. [PMID: 27277748 PMCID: PMC4899793 DOI: 10.1038/srep27780] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/23/2016] [Indexed: 12/17/2022] Open
Abstract
The transient disruption of gut microbiota in infancy by antibiotics causes adult adiposity in mice. Accelerated postnatal growth (A) leads to a higher risk of adult metabolic syndrome in low birth-weight (LB) humans than in normal birth-weight (NB) individuals, but the underlying mechanism remains unclear. Here, we set up an experiment using LB + A mice, NB + A mice, and control mice with NB and normal postnatal growth. At 24 weeks of age (adulthood), while NB + A animals had a normal body fat content and glucose tolerance compared with controls, LB + A mice exhibited excessive adiposity and glucose intolerance. In infancy, more fecal bacteria implicated in obesity were increased in LB + A pups than in NB + A pups, including Desulfovibrionaceae, Enterorhabdus, and Barnesiella. One bacterium from the Lactobacillus genus, which has been implicated in prevention of adult adiposity, was enhanced only in NB + A pups. Besides, LB + A pups, but not NB + A pups, showed disrupted gut microbiota fermentation activity. After weaning, the fecal microbiota composition of LB + A mice, but not that of NB + A animals, became similar to that of controls by 24 weeks. In infancy, LB + A mice have a more dysbiotic gut microbiome compared to NB + A mice, which might increase their risk of adult metabolic syndrome.
Collapse
Affiliation(s)
- Jingjing Wang
- Ministry of Education Key Laboratory for Systems Biomedicine, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, PR China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Huang Tang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xiaoxin Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xu Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Chenhong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Menghui Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yufeng Zhao
- Ministry of Education Key Laboratory for Systems Biomedicine, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, PR China
| | - Liping Zhao
- Ministry of Education Key Laboratory for Systems Biomedicine, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, PR China.,State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jian Shen
- Ministry of Education Key Laboratory for Systems Biomedicine, Shanghai Centre for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
610
|
Yu J, Marsh S, Hu J, Feng W, Wu C. The Pathogenesis of Nonalcoholic Fatty Liver Disease: Interplay between Diet, Gut Microbiota, and Genetic Background. Gastroenterol Res Pract 2016; 2016:2862173. [PMID: 27247565 PMCID: PMC4876215 DOI: 10.1155/2016/2862173] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/14/2016] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the world, and it comprises a spectrum of hepatic abnormalities from simple hepatic steatosis to steatohepatitis, fibrosis, cirrhosis, and liver cancer. While the pathogenesis of NAFLD remains incompletely understood, a multihit model has been proposed that accommodates causal factors from a variety of sources, including intestinal and adipose proinflammatory stimuli acting on the liver simultaneously. Prior cellular and molecular studies of patient and animal models have characterized several common pathogenic mechanisms of NAFLD, including proinflammation cytokines, lipotoxicity, oxidative stress, and endoplasmic reticulum stress. In recent years, gut microbiota has gained much attention, and dysbiosis is recognized as a crucial factor in NAFLD. Moreover, several genetic variants have been identified through genome-wide association studies, particularly rs738409 (Ile748Met) in PNPLA3 and rs58542926 (Glu167Lys) in TM6SF2, which are critical risk alleles of the disease. Although a high-fat diet and inactive lifestyles are typical risk factors for NAFLD, the interplay between diet, gut microbiota, and genetic background is believed to be more important in the development and progression of NAFLD. This review summarizes the common pathogenic mechanisms, the gut microbiota relevant mechanisms, and the major genetic variants leading to NAFLD and its progression.
Collapse
Affiliation(s)
- Jinsheng Yu
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sharon Marsh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada T6G 2H7
| | - Junbo Hu
- Department of General Surgery, Tongji Hospital, Huazhong Science & Technology University, Wuhan, Hubei 430030, China
| | - Wenke Feng
- Department of Medicine, University of Louisville, Louisville, KY 40208, USA
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, Houston, TX 77843, USA
| |
Collapse
|
611
|
Etienne-Mesmin L, Vijay-Kumar M, Gewirtz AT, Chassaing B. Hepatocyte Toll-Like Receptor 5 Promotes Bacterial Clearance and Protects Mice Against High-Fat Diet-Induced Liver Disease. Cell Mol Gastroenterol Hepatol 2016; 2:584-604. [PMID: 28090564 PMCID: PMC5042709 DOI: 10.1016/j.jcmgh.2016.04.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/25/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Innate immune dysfunction can promote chronic inflammatory diseases of the liver. For example, mice lacking the flagellin receptor Toll-like receptor 5 (TLR5) show microbial dysbiosis and predisposition to high-fat diet (HFD)-induced hepatic steatosis. The extent to which hepatocytes play a direct role in detecting bacterial products in general, or flagellin in particular, is poorly understood. In the present study, we investigated the role of hepatocyte TLR5 in recognizing flagellin, policing bacteria, and protecting against liver disease. METHODS Mice were engineered to lack TLR5 specifically in hepatocytes (TLR5ΔHep) and analyzed relative to sibling controls (TLR5fl/fl). TLR5 messenger RNA levels, responses to exogenous flagellin, elimination of circulating motile bacteria, and susceptibility of liver injury (concanavalin A, carbon tetrachloride, methionine- and choline-deficient diet, and HFD) were measured. RESULTS TLR5ΔHep expressed similar levels of TLR5 as TLR5fl/fl in all organs examined, except in the liver, which showed a 90% reduction in TLR5 levels, indicating that hepatocytes accounted for the major portion of TLR5 expression in this organ. TLR5ΔHep showed impairment in responding to purified flagellin and clearing flagellated bacteria from the liver. Although TLR5ΔHep mice did not differ markedly from sibling controls in concanavalin A or carbon tetrachloride-induced liver injury models, they showed exacerbated disease in response to a methionine- and choline-deficient diet and HFD. Such predisposition of TLR5ΔHep to diet-induced liver pathology was associated with increased expression of proinflammatory cytokines, which was dependent on the Nod-like-receptor C4 inflammasome and rescued by microbiota ablation. CONCLUSIONS Hepatocyte TLR5 plays a critical role in protecting liver against circulating gut bacteria and against diet-induced liver disease.
Collapse
Key Words
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- CCL4, carbon tetrachloride
- CFU, colony-forming unit
- CXCL, chemokine (C-X-C motif) ligand 1
- ConA, concanavalin A
- DC, dendritic cell
- HFD, high-fat diet
- Hep, hepatocyte
- Hepatocytes
- IEC, intestinal epithelial cell
- IL, interleukin
- Inflammation
- Innate Immunity
- KO, knock-out
- LPS, lipopolysaccharide
- MCD, methionine- and choline-deficient diet
- NAFLD, nonalcoholic fatty liver disease
- NASH, nonalcoholic steatohepatitis
- NLR, nod-like receptor
- NPC, nonparenchymal cell
- PBS, phosphate-buffered saline
- RT-PCR, reverse-transcription polymerase chain reaction
- Steatosis
- TLR, Toll-like receptor
- TLR5
- WT, wild-type
- mRNA, messenger RNA
Collapse
Affiliation(s)
- Lucie Etienne-Mesmin
- Center for Inflammation Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Matam Vijay-Kumar
- Department of Nutritional Sciences and Medicine, Pennsylvania State University, University Park, Pennsylvania
| | - Andrew T. Gewirtz
- Center for Inflammation Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia
| | - Benoit Chassaing
- Center for Inflammation Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia,Correspondence Address correspondence to: Benoit Chassaing, PhD, Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30303. fax: (404) 413–3580.Center for InflammationImmunity, and InfectionInstitute for Biomedical SciencesGeorgia State UniversityAtlantaGeorgia 30303
| |
Collapse
|
612
|
Claus SP, Guillou H, Ellero-Simatos S. The gut microbiota: a major player in the toxicity of environmental pollutants? NPJ Biofilms Microbiomes 2016; 2:16003. [PMID: 28721242 PMCID: PMC5515271 DOI: 10.1038/npjbiofilms.2016.3] [Citation(s) in RCA: 416] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/03/2016] [Accepted: 03/08/2016] [Indexed: 02/08/2023] Open
Abstract
Exposure to environmental chemicals has been linked to various health disorders, including obesity, type 2 diabetes, cancer and dysregulation of the immune and reproductive systems, whereas the gastrointestinal microbiota critically contributes to a variety of host metabolic and immune functions. We aimed to evaluate the bidirectional relationship between gut bacteria and environmental pollutants and to assess the toxicological relevance of the bacteria-xenobiotic interplay for the host. We examined studies using isolated bacteria, faecal or caecal suspensions-germ-free or antibiotic-treated animals-as well as animals reassociated with a microbiota exposed to environmental chemicals. The literature indicates that gut microbes have an extensive capacity to metabolise environmental chemicals that can be classified in five core enzymatic families (azoreductases, nitroreductases, β-glucuronidases, sulfatases and β-lyases) unequivocally involved in the metabolism of >30 environmental contaminants. There is clear evidence that bacteria-dependent metabolism of pollutants modulates the toxicity for the host. Conversely, environmental contaminants from various chemical families have been shown to alter the composition and/or the metabolic activity of the gastrointestinal bacteria, which may be an important factor contributing to shape an individual's microbiotype. The physiological consequences of these alterations have not been studied in details but pollutant-induced alterations of the gut bacteria are likely to contribute to their toxicity. In conclusion, there is a body of evidence suggesting that gut microbiota are a major, yet underestimated element that must be considered to fully evaluate the toxicity of environmental contaminants.
Collapse
Affiliation(s)
- Sandrine P Claus
- Department of Food and Nutritional Sciences, The University of Reading, Reading, UK
| | - Hervé Guillou
- Toxalim, Université de Toulouse, INRA, Toulouse, France
| | | |
Collapse
|
613
|
Abdou RM, Zhu L, Baker RD, Baker SS. Gut Microbiota of Nonalcoholic Fatty Liver Disease. Dig Dis Sci 2016; 61:1268-81. [PMID: 26898658 DOI: 10.1007/s10620-016-4045-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/16/2016] [Indexed: 02/08/2023]
Abstract
The prevalence of nonalcoholic fatty liver disease has been rapidly increasing worldwide. It has become a leading cause of liver transplantation. Accumulating evidence suggests a significant role for gut microbiota in its development and progression. Here we review the effect of gut microbiota on developing hepatic fatty infiltration and its progression. Current literature supports a possible role for gut microbiota in the development of liver steatosis, inflammation and fibrosis. We also review the literature on possible interventions for NAFLD that target the gut microbiota.
Collapse
Affiliation(s)
- Reham M Abdou
- Digestive Diseases and Nutrition Center, Department of Pediatrics, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo, 219 Bryant Street, Buffalo, NY, 14222, USA.
| | - Lixin Zhu
- Digestive Diseases and Nutrition Center, Department of Pediatrics, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo, 219 Bryant Street, Buffalo, NY, 14222, USA.,, 3435 Main Street, 413 Biomedical Research Building, Buffalo, NY, 14214, USA
| | - Robert D Baker
- Digestive Diseases and Nutrition Center, Department of Pediatrics, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo, 219 Bryant Street, Buffalo, NY, 14222, USA
| | - Susan S Baker
- Digestive Diseases and Nutrition Center, Department of Pediatrics, Women and Children's Hospital of Buffalo, The State University of New York at Buffalo, 219 Bryant Street, Buffalo, NY, 14222, USA
| |
Collapse
|
614
|
Abstract
Recent progress has allowed a more comprehensive study of the gut microbiota. Gut microbiota helps in health maintenance and gut dysbiosis associates with chronic metabolic diseases. Modulation of short-chain fatty acids and choline bioavailability, lipoprotein lipase induction, alteration of bile acid profile, endogenous alcohol production, or liver inflammation secondary to endotoxemia result from gut dysbiosis. Modulation of the gut microbiota by pre/probiotics gives promising results in animal, but needs to be evaluated in human before use in clinical practice. Gut microbiota adds complexity to the pathophysiology of nonalcoholic fatty liver disease but represents an opportunity to discover new therapeutic targets.
Collapse
Affiliation(s)
- Jerome Boursier
- Hepato-Gastroenterology Department, University Hospital, 4 Larrey street, 49933 Angers Cedex 09, France; HIFIH Laboratory, UPRES 3859, SFR 4208, LUNAM University, Angers, France.
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, 595 LaSalle Street, Snyderman Building, Suite 1073, Durham, NC 27710, USA
| |
Collapse
|
615
|
Llopis M, Cassard AM, Wrzosek L, Boschat L, Bruneau A, Ferrere G, Puchois V, Martin JC, Lepage P, Le Roy T, Lefèvre L, Langelier B, Cailleux F, González-Castro AM, Rabot S, Gaudin F, Agostini H, Prévot S, Berrebi D, Ciocan D, Jousse C, Naveau S, Gérard P, Perlemuter G. Intestinal microbiota contributes to individual susceptibility to alcoholic liver disease. Gut 2016; 65:830-9. [PMID: 26642859 DOI: 10.1136/gutjnl-2015-310585] [Citation(s) in RCA: 410] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/01/2015] [Indexed: 12/17/2022]
Abstract
OBJECTIVE There is substantial inter-individual diversity in the susceptibility of alcoholics to liver injury. Alterations of intestinal microbiota (IM) have been reported in alcoholic liver disease (ALD), but the extent to which they are merely a consequence or a cause is unknown. We aimed to demonstrate that a specific dysbiosis contributes to the development of alcoholic hepatitis (AH). DESIGN We humanised germ-free and conventional mice using human IM transplant from alcoholic patients with or without AH. The consequences on alcohol-fed recipient mice were studied. RESULTS A specific dysbiosis was associated with ALD severity in patients. Mice harbouring the IM from a patient with severe AH (sAH) developed more severe liver inflammation with an increased number of liver T lymphocyte subsets and Natural Killer T (NKT) lymphocytes, higher liver necrosis, greater intestinal permeability and higher translocation of bacteria than mice harbouring the IM from an alcoholic patient without AH (noAH). Similarly, CD45+ lymphocyte subsets were increased in visceral adipose tissue, and CD4(+)T and NKT lymphocytes in mesenteric lymph nodes. The IM associated with sAH and noAH could be distinguished by differences in bacterial abundance and composition. Key deleterious species were associated with sAH while the Faecalibacterium genus was associated with noAH. Ursodeoxycholic acid was more abundant in faeces from noAH mice. Additionally, in conventional mice humanised with the IM from an sAH patient, a second subsequent transfer of IM from an noAH patient improved alcohol-induced liver lesions. CONCLUSIONS Individual susceptibility to ALD is substantially driven by IM. It may, therefore, be possible to prevent and manage ALD by IM manipulation.
Collapse
Affiliation(s)
- M Llopis
- INSERM UMR996-Inflammation, Chemokines and Immunopathology, Clamart, France Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France INRA, UMR1319 Micalis, Jouy-en-Josas, France AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - A M Cassard
- INSERM UMR996-Inflammation, Chemokines and Immunopathology, Clamart, France Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France
| | - L Wrzosek
- INSERM UMR996-Inflammation, Chemokines and Immunopathology, Clamart, France Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France
| | - L Boschat
- INRA, UMR1319 Micalis, Jouy-en-Josas, France AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - A Bruneau
- INRA, UMR1319 Micalis, Jouy-en-Josas, France AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - G Ferrere
- INSERM UMR996-Inflammation, Chemokines and Immunopathology, Clamart, France Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France
| | - V Puchois
- INSERM UMR996-Inflammation, Chemokines and Immunopathology, Clamart, France Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France
| | - J C Martin
- Faculté de Médecine, Aix-Marseille University, Marseille, France INSERM, UMR1062 NORT, Marseille, France
| | - P Lepage
- INRA, UMR1319 Micalis, Jouy-en-Josas, France AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - T Le Roy
- INRA, UMR1319 Micalis, Jouy-en-Josas, France AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - L Lefèvre
- INRA, UMR 1313, GABI-LGS Plateforme ICE, Jouy-en-Josas, France
| | - B Langelier
- INRA, UMR1319 Micalis, Jouy-en-Josas, France AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - F Cailleux
- INSERM UMR996-Inflammation, Chemokines and Immunopathology, Clamart, France Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France
| | - A M González-Castro
- Department of Gastroenterology, Digestive System Research Unit, Hospital University Vall d'Hebron and VHIR, UAB, Spain
| | - S Rabot
- INRA, UMR1319 Micalis, Jouy-en-Josas, France AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - F Gaudin
- IPSIT, IFR141, Faculté de Pharmacie, Univ Paris-Sud, Châtenay-Malabry, France
| | - H Agostini
- AP-HP, Hôpital Bicêtre, Unité de recherche clinique Paris-Sud, Kremlin-Bicêtre, France
| | - S Prévot
- Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France AP-HP, Anatomie-pathologique, Hôpital Antoine-Béclère, Clamart, France
| | - D Berrebi
- INSERM UMR996-Inflammation, Chemokines and Immunopathology, Clamart, France AP-HP, Anatomie et de Cytologie Pathologiques, Hôpital Robert Debré, Paris, France
| | - D Ciocan
- INSERM UMR996-Inflammation, Chemokines and Immunopathology, Clamart, France Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère, Clamart, France
| | - C Jousse
- Université Clermont Auvergne, Institut de Chimie de Clermont-Ferrand UMR CNRS 6296, Clermont-Ferrand, France
| | - S Naveau
- INSERM UMR996-Inflammation, Chemokines and Immunopathology, Clamart, France Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère, Clamart, France
| | - P Gérard
- INRA, UMR1319 Micalis, Jouy-en-Josas, France AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - G Perlemuter
- INSERM UMR996-Inflammation, Chemokines and Immunopathology, Clamart, France Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère, Clamart, France
| |
Collapse
|
616
|
Machado MV. A Bugs Battle on Behalf of the Liver. GE PORTUGUESE JOURNAL OF GASTROENTEROLOGY 2016; 23:126-129. [PMID: 28868447 PMCID: PMC5580106 DOI: 10.1016/j.jpge.2016.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
617
|
Mantovani A, Ballestri S, Lonardo A, Targher G. Cardiovascular Disease and Myocardial Abnormalities in Nonalcoholic Fatty Liver Disease. Dig Dis Sci 2016; 61:1246-1267. [PMID: 26809873 DOI: 10.1007/s10620-016-4040-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/11/2016] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in many developed countries, affecting an estimated 30 % of the adult population. In this updated clinical review, we summarize the current knowledge regarding the strong association between NAFLD and the risk of coronary heart disease (CHD) and other functional, structural, and arrhythmic cardiac complications (e.g., left ventricular dysfunction, heart valve diseases and atrial fibrillation). We also briefly discuss the putative biological mechanisms linking NAFLD with these important extra-hepatic complications. To date, a large body of evidence has suggested that NAFLD is not simply a marker of CHD and other functional, structural, and arrhythmic cardiac complications, but also may play a part in the development and progression of these cardiac complications. The clinical implication of these findings is that patients with NAFLD may benefit from more intensive surveillance and early treatment interventions aimed at decreasing the risk of CHD and other cardiac and arrhythmic complications.
Collapse
Affiliation(s)
- Alessandro Mantovani
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata, Piazzale Stefani, 1, 37126, Verona, Italy
| | - Stefano Ballestri
- Division of Internal Medicine, Pavullo Hospital, Azienda USL of Modena, Pavullo, Italy
| | - Amedeo Lonardo
- Outpatient Liver Clinic and Division of Internal Medicine, Department of Biomedical, Metabolic and Neural Sciences, NOCSAE, Baggiovara, Azienda USL, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Targher
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata, Piazzale Stefani, 1, 37126, Verona, Italy.
| |
Collapse
|
618
|
Mahana D, Trent CM, Kurtz ZD, Bokulich NA, Battaglia T, Chung J, Müller CL, Li H, Bonneau RA, Blaser MJ. Antibiotic perturbation of the murine gut microbiome enhances the adiposity, insulin resistance, and liver disease associated with high-fat diet. Genome Med 2016; 8:48. [PMID: 27124954 PMCID: PMC4847194 DOI: 10.1186/s13073-016-0297-9] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Obesity, type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD) are serious health concerns, especially in Western populations. Antibiotic exposure and high-fat diet (HFD) are important and modifiable factors that may contribute to these diseases. Methods To investigate the relationship of antibiotic exposure with microbiome perturbations in a murine model of growth promotion, C57BL/6 mice received lifelong sub-therapeutic antibiotic treatment (STAT), or not (control), and were fed HFD starting at 13 weeks. To characterize microbiota changes caused by STAT, the V4 region of the 16S rRNA gene was examined from collected fecal samples and analyzed. Results In this model, which included HFD, STAT mice developed increased weight and fat mass compared to controls. Although results in males and females were not identical, insulin resistance and NAFLD were more severe in the STAT mice. Fecal microbiota from STAT mice were distinct from controls. Compared with controls, STAT exposure led to early conserved diet-independent microbiota changes indicative of an immature microbial community. Key taxa were identified as STAT-specific and several were found to be predictive of disease. Inferred network models showed topological shifts concurrent with growth promotion and suggest the presence of keystone species. Conclusions These studies form the basis for new models of type 2 diabetes and NAFLD that involve microbiome perturbation. Electronic supplementary material The online version of this article (doi:10.1186/s13073-016-0297-9) contains supplementary material, which is available to authorized users.
Collapse
|
619
|
Chen J, Xie P, Lin J, He J, Zeng C, Chen J. Effects of microcystin-LR on gut microflora in different gut regions of mice. J Toxicol Sci 2016; 40:485-94. [PMID: 26165645 DOI: 10.2131/jts.40.485] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To reveal the toxicological effects of the hepatotoxic microcystin-leucine arginine (MC-LR) on gut microbial community composition in different gut regions, we conducted a subchronic exposure of BALB/c mice to MC-LR via intragastric administration. Denaturing gradient gel electrophoresis (DGGE) was employed to profile the shifts of microbes after MC-LR treatment in the jejuno-ileum, caecum and colon. DGGE profiles analysis showed that MC-LR increased the microbial species richness (number of microbial bands) in the caecum and colon as well as microbial diversity (Shannon-Wiener index) in the caecum. The cluster analysis of DGGE profiles indicated that the microbial structures in the caecum and colon shifted significantly after MC-LR treatment, while that in the jejuno-ileum did not. All the relatively decreased gut microbes belonged to Clostridia in the Firmicutes phylum, and most of them were Lachnospiraceae. The increased ones derived from a variety of microbes including species from Porphyromonadaceae and Prevotellaceae in the Bacteroidetes phylum, as well as Lachnospiraceae and Ruminococcaceae in the Firmicutes phylum, and among which, the increase of Barnesiella in Porphyromonadaceae was most remarkable. In conclusion, subchronic exposure to MC-LR could disturb the balance of gut microbes in mice, and its toxicological effects varied between the jejuno-ileum and the other two gut regions.
Collapse
Affiliation(s)
- Jing Chen
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, China
| | | | | | | | | | | |
Collapse
|
620
|
Xie G, Wang X, Liu P, Wei R, Chen W, Rajani C, Hernandez BY, Alegado R, Dong B, Li D, Jia W. Distinctly altered gut microbiota in the progression of liver disease. Oncotarget 2016; 7:19355-19366. [PMID: 27036035 PMCID: PMC4991388 DOI: 10.18632/oncotarget.8466] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/23/2016] [Indexed: 02/07/2023] Open
Abstract
Recent studies underscore important roles of intestinal microbiota and the bacterial lipopolysaccharides (LPS) production in the pathogenesis of liver disease. However, how gut microbiota alters in response to the development of steatosis and subsequent progression to nonalcoholic steatohepatitis (NASH) and hepatocellular carcinoma (HCC) remains unclear. We aimed to study the gut microbial changes over liver disease progression using a streptozotocin-high fat diet (STZ-HFD) induced NASH-HCC C57BL/6J mouse model that is highly relevant to human liver disease. The fecal microbiota at various liver pathological stages was analyzed by 16S rDNA gene pyrosequencing. Both UniFrac analysis and partial least squares-discriminant analysis showed significant structural alterations in gut microbiota during the development of liver disease. Co-abundance network analysis highlighted relationships between genera. Spearman correlation analysis revealed that the bacterial species, Atopobium spp., Bacteroides spp., Bacteroides vulgatus, Bacteroides acidifaciens, Bacteroides uniformis, Clostridium cocleatum, Clostridium xylanolyticum and Desulfovibrio spp., markedly increased in model mice, were positively correlated with LPS levels and pathophysiological features. Taken together, the results showed that the gut microbiota was altered significantly in the progression of liver disease. The connection between the gut microbial ecology and the liver pathology may represent potential targets for the prevention and treatment of chronic liver disease and HCC.
Collapse
Affiliation(s)
- Guoxiang Xie
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Xiaoning Wang
- E-institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Liu
- E-institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Runmin Wei
- University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Wenlian Chen
- University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Cynthia Rajani
- University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | | | - Rosanna Alegado
- Department of Oceanography, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Bing Dong
- National Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Defa Li
- National Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Wei Jia
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
- University of Hawaii Cancer Center, Honolulu, Hawaii, USA
- E-institute of Shanghai Municipal Education Committee, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
621
|
Machado MV, Cortez-Pinto H. Diet, Microbiota, Obesity, and NAFLD: A Dangerous Quartet. Int J Mol Sci 2016; 17:481. [PMID: 27043550 PMCID: PMC4848937 DOI: 10.3390/ijms17040481] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/21/2016] [Accepted: 03/28/2016] [Indexed: 02/07/2023] Open
Abstract
Recently, the importance of the gut-liver-adipose tissue axis has become evident. Nonalcoholic fatty liver disease (NAFLD) is the hepatic disease of a systemic metabolic disorder that radiates from energy-surplus induced adiposopathy. The gut microbiota has tremendous influences in our whole-body metabolism, and is crucial for our well-being and health. Microorganisms precede humans in more than 400 million years and our guest flora evolved with us in order to help us face aggressor microorganisms, to help us maximize the energy that can be extracted from nutrients, and to produce essential nutrients/vitamins that we are not equipped to produce. However, our gut microbiota can be disturbed, dysbiota, and become itself a source of stress and injury. Dysbiota may adversely impact metabolism and immune responses favoring obesity and obesity-related disorders such as insulin resistance/diabetes mellitus and NAFLD. In this review, we will summarize the latest evidence of the role of microbiota/dysbiota in diet-induced obesity and NAFLD, as well as the potential therapeutic role of targeting the microbiota in this set.
Collapse
Affiliation(s)
- Mariana Verdelho Machado
- Departamento de Gastrenterologia, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte (CHLN), 1649-035 Lisbon, Portugal.
- Laboratório de Nutrição, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Alameda da Universidade, 1649-004 Lisboa, Portugal.
| | - Helena Cortez-Pinto
- Departamento de Gastrenterologia, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte (CHLN), 1649-035 Lisbon, Portugal.
- Laboratório de Nutrição, Faculdade de Medicina de Lisboa, Universidade de Lisboa, Alameda da Universidade, 1649-004 Lisboa, Portugal.
| |
Collapse
|
622
|
Cortez-Pinto H, Borralho P, Machado J, Lopes MT, Gato IV, Santos AM, Guerreiro AS. Microbiota Modulation With Synbiotic Decreases Liver Fibrosis in a High Fat Choline Deficient Diet Mice Model of Non-Alcoholic Steatohepatitis (NASH). GE-PORTUGUESE JOURNAL OF GASTROENTEROLOGY 2016; 23:132-141. [PMID: 28868449 PMCID: PMC5580012 DOI: 10.1016/j.jpge.2016.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/18/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND Gut microbiota may play a role in non-alcoholic steatohepatitis (NASH). Previous studies showed that prebiotics and probiotics might halt the progression of steatohepatitis. AIM To clarify the potential effect of Synbiotic 2000®Forte (Synb) in preventing or ameliorating diet induced steatohepatitis, particularly in fibrosis progression and how this intervention correlates with gut microbiota composition and endotoxinemia. METHODS Twenty-seven C57BL/6 mice were divided into three groups: chow diet (CD, n = 7); high-fat choline deficient diet (HFCD, n = 10) and HFCD diet supplemented with Synbiotic 2000®Forte (four probiotic strains and four prebiotics mixture) (HFCD + Synb, n = 10). At 6 and 18 weeks, blood samples (lipopolysaccharides assay - LPS), cecal feaces (gut microbiota) and liver tissue (histology) were collected for analysis. RESULTS Both HCFD diet mice developed steatohepatitis with ballooning at 6 and 18 weeks, opposite to CD. Comparison of histological scores in HFCD and HFCD + Synb, at 6 and 18 weeks showed no significant difference regarding steatosis, inflammation, or ballooning. Evaluating fibrosis with Sirius Red, and degree of smooth-muscle cell activation, HFCD mice had significantly more fibrosis; addition of Synb significantly reduced fibrosis at 6 weeks and 18 weeks. Serum endotoxin levels were similarly increased in HFCD and HFCD + Synb at week 6; however at week 18 HFCD + Synb had significantly lower endotoxin levels than HFCD. Gut microbiota of HFCD vs CD, showed no significant differences regarding the phyla Firmicutes and Bacteroidetes, either at 6 or 18 weeks; Proteobacteria increased at 6 week (3.3) and 18 week (7.5), while the addition of Synb resulted in a decrease at week 18 (-3.90). Fusobacteria markedly increase at week 18 (10.0), but less so with the addition of Synb (5.2). CONCLUSION Synbiotic 2000®Forte is able to modulate the mouse gut microbiota reducing the degree of fibrosis while simultaneously decreasing endotoxemia.
Collapse
Affiliation(s)
- Helena Cortez-Pinto
- Gastroenterology and Hepatology Department, Centro Hospitalar Lisboa Norte, Lisbon, Portugal.,Nutrition Laboratory, Faculdade de Medicina de Lisboa, Lisbon, Portugal
| | - Paula Borralho
- Pathology Institut, Faculdade de Medicina de Lisboa, Lisbon, Portugal
| | - Jorge Machado
- Infectious Diseases Department, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon, Portugal
| | - Maria T Lopes
- CEDOC - Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas de Lisboa, Lisbon, Portugal
| | - Inês V Gato
- Infectious Diseases Department, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon, Portugal
| | - António M Santos
- CEDOC - Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas de Lisboa, Lisbon, Portugal
| | - António S Guerreiro
- CEDOC - Chronic Diseases Research Center, NOVA Medical School, Faculdade de Ciências Médicas de Lisboa, Lisbon, Portugal
| |
Collapse
|
623
|
Gut Microbiota and Lifestyle Interventions in NAFLD. Int J Mol Sci 2016; 17:447. [PMID: 27023533 PMCID: PMC4848903 DOI: 10.3390/ijms17040447] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 02/07/2023] Open
Abstract
The human digestive system harbors a diverse and complex community of microorganisms that work in a symbiotic fashion with the host, contributing to metabolism, immune response and intestinal architecture. However, disruption of a stable and diverse community, termed "dysbiosis", has been shown to have a profound impact upon health and disease. Emerging data demonstrate dysbiosis of the gut microbiota to be linked with non-alcoholic fatty liver disease (NAFLD). Although the exact mechanism(s) remain unknown, inflammation, damage to the intestinal membrane, and translocation of bacteria have all been suggested. Lifestyle intervention is undoubtedly effective at improving NAFLD, however, not all patients respond to these in the same manner. Furthermore, studies investigating the effects of lifestyle interventions on the gut microbiota in NAFLD patients are lacking. A deeper understanding of how different aspects of lifestyle (diet/nutrition/exercise) affect the host-microbiome interaction may allow for a more tailored approach to lifestyle intervention. With gut microbiota representing a key element of personalized medicine and nutrition, we review the effects of lifestyle interventions (diet and physical activity/exercise) on gut microbiota and how this impacts upon NAFLD prognosis.
Collapse
|
624
|
Kim B, Park KY, Ji Y, Park S, Holzapfel W, Hyun CK. Protective effects of Lactobacillus rhamnosus GG against dyslipidemia in high-fat diet-induced obese mice. Biochem Biophys Res Commun 2016; 473:530-6. [PMID: 27018382 DOI: 10.1016/j.bbrc.2016.03.107] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 12/20/2022]
Abstract
Recent reports suggest that gut microbiota can be a major determinant of dyslipidemia and non-alcoholic fatty liver disease (NAFLD) and its modulation by treating probiotics is a valid strategy to exert a protective effect. In this study, high-fat diet (HFD)-fed mice were orally administrated with Lactobacillus rhamnosus GG (LGG) for 13 weeks. Significant reductions in the weights of the liver, mesenteric and subcutaneous adipose tissues were observed in LGG-treated HFD-fed mice compared to LGG-non-treated controls. The serum levels of triglyceride and cholesterol were also significantly reduced in LGG-treated mice. Gut microbial composition analysis showed that shifts in the diversity of dominant gut bacteria were caused by HFD and restored by LGG treatment. A remarkable decrease of hepatic fat content was also observed in LGG-treated mice, accompanied by downregulated expressions of lipogenic and pro-inflammatory genes in the liver. LGG-treated mice had lower expression levels of genes involved in cholesterol synthesis, but conversely, higher expression levels of cholesterol efflux-related genes compared to LGG-non-treated controls. The cholesterol-lowering effect of LGG was also found to be mediated by suppression of FXR and FGF15 signaling, resulting in the upregulation of hepatic CYP7A1. Our findings confirm a therapeutic potential of probiotics for ameliorating dyslipidemia and NAFLD.
Collapse
Affiliation(s)
- Bobae Kim
- School of Life Science, Handong Global University, Pohang, Gyungbuk 791-708, Republic of Korea
| | - Kun-Young Park
- School of Life Science, Handong Global University, Pohang, Gyungbuk 791-708, Republic of Korea
| | - Yosep Ji
- School of Life Science, Handong Global University, Pohang, Gyungbuk 791-708, Republic of Korea
| | - Soyoung Park
- School of Life Science, Handong Global University, Pohang, Gyungbuk 791-708, Republic of Korea
| | - Wilhelm Holzapfel
- School of Life Science, Handong Global University, Pohang, Gyungbuk 791-708, Republic of Korea
| | - Chang-Kee Hyun
- School of Life Science, Handong Global University, Pohang, Gyungbuk 791-708, Republic of Korea.
| |
Collapse
|
625
|
Bigorgne AE, John B, Ebrahimkhani MR, Shimizu-Albergine M, Campbell JS, Crispe IN. TLR4-Dependent Secretion by Hepatic Stellate Cells of the Neutrophil-Chemoattractant CXCL1 Mediates Liver Response to Gut Microbiota. PLoS One 2016; 11:e0151063. [PMID: 27002851 PMCID: PMC4803332 DOI: 10.1371/journal.pone.0151063] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/22/2016] [Indexed: 02/07/2023] Open
Abstract
Background & Aims The gut microbiota significantly influences hepatic immunity. Little is known on the precise mechanism by which liver cells mediate recognition of gut microbes at steady state. Here we tested the hypothesis that a specific liver cell population was the sensor and we aimed at deciphering the mechanism by which the activation of TLR4 pathway would mediate liver response to gut microbiota. Methods Using microarrays, we compared total liver gene expression in WT versus TLR4 deficient mice. We performed in situ localization of the major candidate protein, CXCL1. With an innovative technique based on cell sorting, we harvested enriched fractions of KCs, LSECs and HSCs from the same liver. The cytokine secretion profile was quantified in response to low levels of LPS (1ng/mL). Chemotactic activity of stellate cell-derived CXCL1 was assayed in vitro on neutrophils upon TLR4 activation. Results TLR4 deficient liver had reduced levels of one unique chemokine, CXCL1 and subsequent decreased of neutrophil counts. Depletion of gut microbiota mimicked TLR4 deficient phenotype, i.e., decreased neutrophils counts in the liver. All liver cells were responsive to low levels of LPS, but hepatic stellate cells were the major source of chemotactic levels of CXCL1. Neutrophil migration towards secretory hepatic stellate cells required the TLR4 dependent secretion of CXCL1. Conclusions Showing the specific activation of TLR4 and the secretion of one major functional chemokine—CXCL1, the homolog of human IL-8-, we elucidate a new mechanism in which Hepatic Stellate Cells play a central role in the recognition of gut microbes by the liver at steady state.
Collapse
Affiliation(s)
- Amélie E. Bigorgne
- Seattle Biomedical Research Institute, 307 North Westlake Avenue, Seattle, Washington, 98109–5219, United States of America
- * E-mail:
| | - Beena John
- Seattle Biomedical Research Institute, 307 North Westlake Avenue, Seattle, Washington, 98109–5219, United States of America
| | - Mohammad R. Ebrahimkhani
- Seattle Biomedical Research Institute, 307 North Westlake Avenue, Seattle, Washington, 98109–5219, United States of America
| | - Masami Shimizu-Albergine
- Department of Pathology, University of Washington, Seattle, Washington, 98195–7470, United States of America
| | - Jean S. Campbell
- Department of Pathology, University of Washington, Seattle, Washington, 98195–7470, United States of America
| | - Ian N. Crispe
- Seattle Biomedical Research Institute, 307 North Westlake Avenue, Seattle, Washington, 98109–5219, United States of America
- Department of Pathology, University of Washington, Seattle, Washington, 98195–7470, United States of America
| |
Collapse
|
626
|
He X, Ji G, Jia W, Li H. Gut Microbiota and Nonalcoholic Fatty Liver Disease: Insights on Mechanism and Application of Metabolomics. Int J Mol Sci 2016; 17:300. [PMID: 26999104 PMCID: PMC4813164 DOI: 10.3390/ijms17030300] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/14/2016] [Accepted: 02/17/2016] [Indexed: 02/07/2023] Open
Abstract
Gut microbiota are intricately involved in the development of obesity-related metabolic diseases such as nonalcoholic fatty liver disease (NAFLD), type 2 diabetes, and insulin resistance. In the current review, we discuss the role of gut microbiota in the development of NAFLD by focusing on the mechanisms of gut microbiota-mediated host energy metabolism, insulin resistance, regulation of bile acids and choline metabolism, as well as gut microbiota-targeted therapy. We also discuss the application of a metabolomic approach to characterize gut microbial metabotypes in NAFLD.
Collapse
Affiliation(s)
- Xuyun He
- Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Wei Jia
- Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
- Center for Translational Medicine, and Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Houkai Li
- Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
627
|
Ballestri S, Nascimbeni F, Romagnoli D, Baldelli E, Targher G, Lonardo A. Type 2 Diabetes in Non-Alcoholic Fatty Liver Disease and Hepatitis C Virus Infection--Liver: The "Musketeer" in the Spotlight. Int J Mol Sci 2016; 17:355. [PMID: 27005620 PMCID: PMC4813216 DOI: 10.3390/ijms17030355] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 02/29/2016] [Accepted: 03/02/2016] [Indexed: 02/07/2023] Open
Abstract
The pathogenesis of type 2 diabetes (T2D) involves chronic hyperinsulinemia due to systemic and hepatic insulin resistance (IR), which if uncorrected, will lead to progressive pancreatic beta cell failure in predisposed individuals. Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of fatty (simple steatosis and steatohepatitis) and non-fatty liver changes (NASH-cirrhosis with or without hepatocellular carcinoma (HCC)) that are commonly observed among individuals with multiple metabolic derangements, notably including visceral obesity, IR and T2D. Hepatitis C virus (HCV) infection is also often associated with both hepatic steatosis and features of a specific HCV-associated dysmetabolic syndrome. In recent years, the key role of the steatotic liver in the development of IR and T2D has been increasingly recognized. Thus, in this comprehensive review we summarize the rapidly expanding body of evidence that links T2D with NAFLD and HCV infection. For each of these two liver diseases with systemic manifestations, we discuss the epidemiological burden, the pathophysiologic mechanisms and the clinical implications. To date, substantial evidence suggests that NAFLD and HCV play a key role in T2D development and that the interaction of T2D with liver disease may result in a "vicious circle", eventually leading to an increased risk of all-cause mortality and liver-related and cardiovascular complications. Preliminary evidence also suggests that improvement of NAFLD is associated with a decreased incidence of T2D. Similarly, the prevention of T2D following HCV eradication in the era of direct-acting antiviral agents is a biologically plausible result. However, additional studies are required for further clarification of mechanisms involved.
Collapse
Affiliation(s)
- Stefano Ballestri
- Operating Unit Internal Medicine, Pavullo General Hospital, Azienda USL Modena, ViaSuore di San Giuseppe Benedetto Cottolengo, 5, Pavullo, 41026 Modena, Italy.
| | - Fabio Nascimbeni
- Outpatient Liver Clinic and Operating Unit Internal Medicine, NOCSAE, Azienda USL Modena, Via P. Giardini, 1355, 41126 Modena, Italy.
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini, 1355, 41126 Modena, Italy.
| | - Dante Romagnoli
- Outpatient Liver Clinic and Operating Unit Internal Medicine, NOCSAE, Azienda USL Modena, Via P. Giardini, 1355, 41126 Modena, Italy.
| | - Enrica Baldelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini, 1355, 41126 Modena, Italy.
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Piazzale Stefani, 1, 37126 Verona, Italy.
| | - Amedeo Lonardo
- Outpatient Liver Clinic and Operating Unit Internal Medicine, NOCSAE, Azienda USL Modena, Via P. Giardini, 1355, 41126 Modena, Italy.
| |
Collapse
|
628
|
Boursier J, Mueller O, Barret M, Machado M, Fizanne L, Araujo-Perez F, Guy CD, Seed PC, Rawls JF, David LA, Hunault G, Oberti F, Calès P, Diehl AM. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 2016; 63:764-75. [PMID: 4975935 PMCID: PMC4975935 DOI: 10.1002/hep.28356] [Citation(s) in RCA: 1012] [Impact Index Per Article: 112.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 11/20/2015] [Indexed: 12/12/2022]
Abstract
UNLABELLED Several animal studies have emphasized the role of gut microbiota in nonalcoholic fatty liver disease (NAFLD). However, data about gut dysbiosis in human NAFLD remain scarce in the literature, especially studies including the whole spectrum of NAFLD lesions. We aimed to evaluate the association between gut dysbiosis and severe NAFLD lesions, that is, nonalcoholic steatohepatitis (NASH) and fibrosis, in a well-characterized population of adult NAFLD. Fifty-seven patients with biopsy-proven NAFLD were enrolled. Taxonomic composition of gut microbiota was determined using 16S ribosomal RNA gene sequencing of stool samples. Thirty patients had F0/F1 fibrosis stage at liver biopsy (10 with NASH), and 27 patients had significant F≥2 fibrosis (25 with NASH). Bacteroides abundance was significantly increased in NASH and F≥2 patients, whereas Prevotella abundance was decreased. Ruminococcus abundance was significantly higher in F≥2 patients. By multivariate analysis, Bacteroides abundance was independently associated with NASH and Ruminococcus with F≥2 fibrosis. Stratification according to the abundance of these two bacteria generated three patient subgroups with increasing severity of NAFLD lesions. Based on imputed metagenomic profiles, Kyoto Encyclopedia of Genes and Genomes pathways significantly related to NASH and fibrosis F≥2 were mostly related to carbohydrate, lipid, and amino acid metabolism. CONCLUSION NAFLD severity associates with gut dysbiosis and a shift in metabolic function of the gut microbiota. We identified Bacteroides as independently associated with NASH and Ruminococcus with significant fibrosis. Thus, gut microbiota analysis adds information to classical predictors of NAFLD severity and suggests novel metabolic targets for pre-/probiotics therapies.
Collapse
Affiliation(s)
- Jérôme Boursier
- Hepato-Gastroenterology Department, University Hospital, Angers, France, HIFIH Laboratory, UPRES 3859, SFR 4208, LUNAM University, Angers, France
| | - Olaf Mueller
- Center for Genomics of Microbial Systems, Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Matthieu Barret
- INRA, UMR1345 Institut de Recherches en Horticulture et Semences, SFR4207 QUASAV, F-49071, Beaucouzé, France
| | - Mariana Machado
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Lionel Fizanne
- HIFIH Laboratory, UPRES 3859, SFR 4208, LUNAM University, Angers, France
| | - Felix Araujo-Perez
- Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Cynthia D. Guy
- Department of Pathology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Patrick C. Seed
- Center for Genomics of Microbial Systems, Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America, INRA, UMR1345 Institut de Recherches en Horticulture et Semences, SFR4207 QUASAV, F-49071, Beaucouzé, France, Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America, Department of Pediatrics, Duke University Medical Center, Durham, North Carolina, United States of America
| | - John F. Rawls
- Center for Genomics of Microbial Systems, Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Lawrence A. David
- Center for Genomics of Microbial Systems, Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Gilles Hunault
- HIFIH Laboratory, UPRES 3859, SFR 4208, LUNAM University, Angers, France
| | - Frédéric Oberti
- Hepato-Gastroenterology Department, University Hospital, Angers, France, HIFIH Laboratory, UPRES 3859, SFR 4208, LUNAM University, Angers, France
| | - Paul Calès
- Hepato-Gastroenterology Department, University Hospital, Angers, France, HIFIH Laboratory, UPRES 3859, SFR 4208, LUNAM University, Angers, France
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
629
|
Hu Y, Zhang H, Li J, Cong X, Chen Y, He G, Chi Y, Liu Y. Gut-derived lymphocyte recruitment to liver and induce liver injury in non-alcoholic fatty liver disease mouse model. J Gastroenterol Hepatol 2016; 31:676-84. [PMID: 26430807 DOI: 10.1111/jgh.13183] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 08/12/2015] [Accepted: 08/31/2015] [Indexed: 01/01/2023]
Abstract
BACKGROUND AND AIM Most studies focus on gut-derived factors like microbiota and its products and how they contribute to non-alcoholic fatty liver disease (NAFLD) progression. This study investigated whether the gut-derived lymphocytes could migrate to the liver and induce liver injury in NAFLD. METHODS A high-fat diet induced an NAFLD mouse model, and lymphocytes were labeled with 1,1-dioctadecyl-3,3,3,3 tetramethylindotricarbocyanine iodide and carboxy-fluorescein succinimidyl ester, respectively, and intravenously injected to mice to monitor lymphocyte migration. RESULTS Adoptive transfer model results indicated that compared with lymphocytes from the spleen, bone marrow and thymus of NAFLD donor mice, mesenteric lymph nodes (MLN) cells from NAFLD donor mice predominately accumulated in the livers of NAFLD recipient mice. The frequencies of central memory CD4(+) T and CD8(+) T cells in livers of NAFLD mice were significantly increased; however, the activated T cells were not significantly altered. After adoptively transferred MLN cells, the frequencies of the activated CD4(+) T and CD8(+) T cells increased in livers of NAFLD recipient mice. By contrast, the frequencies of central memory and naïve CD4(+) T and CD8(+) T cells decreased. MLN cells also induced liver injury in NAFLD recipient mice, as reflected by elevated serum alanine aminotransferase and glutamic oxaloacetic transaminase serums. Moreover, the chemotaxis assay showed that CCL5 mediated the MLN cell migration to the liver. Also, blocking the CCL5 inhibited MLN cell migration to the liver in vitro. CONCLUSIONS Gut-derived lymphocytes from NAFLD mice could migrate to the liver and induce liver injury and hepatic CD4(+) T and CD8(+) T cells activation. The migration was associated with the upregulation of CCL5 in the liver.
Collapse
Affiliation(s)
- Ying Hu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Henghui Zhang
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People's Hospital, Beijing, China
| | - Jing Li
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| | - Xu Cong
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People's Hospital, Beijing, China
| | - Yanhui Chen
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People's Hospital, Beijing, China
| | - Gaixia He
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People's Hospital, Beijing, China
| | - Yujing Chi
- Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
630
|
Boursier J, Mueller O, Barret M, Machado M, Fizanne L, Araujo-Perez F, Guy CD, Seed PC, Rawls JF, David LA, Hunault G, Oberti F, Calès P, Diehl AM. The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 2016. [PMID: 26600078 DOI: 10.1002/hep.28356 doi: 10.1002/hep.28356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
UNLABELLED Several animal studies have emphasized the role of gut microbiota in nonalcoholic fatty liver disease (NAFLD). However, data about gut dysbiosis in human NAFLD remain scarce in the literature, especially studies including the whole spectrum of NAFLD lesions. We aimed to evaluate the association between gut dysbiosis and severe NAFLD lesions, that is, nonalcoholic steatohepatitis (NASH) and fibrosis, in a well-characterized population of adult NAFLD. Fifty-seven patients with biopsy-proven NAFLD were enrolled. Taxonomic composition of gut microbiota was determined using 16S ribosomal RNA gene sequencing of stool samples. Thirty patients had F0/F1 fibrosis stage at liver biopsy (10 with NASH), and 27 patients had significant F≥2 fibrosis (25 with NASH). Bacteroides abundance was significantly increased in NASH and F≥2 patients, whereas Prevotella abundance was decreased. Ruminococcus abundance was significantly higher in F≥2 patients. By multivariate analysis, Bacteroides abundance was independently associated with NASH and Ruminococcus with F≥2 fibrosis. Stratification according to the abundance of these two bacteria generated three patient subgroups with increasing severity of NAFLD lesions. Based on imputed metagenomic profiles, Kyoto Encyclopedia of Genes and Genomes pathways significantly related to NASH and fibrosis F≥2 were mostly related to carbohydrate, lipid, and amino acid metabolism. CONCLUSION NAFLD severity associates with gut dysbiosis and a shift in metabolic function of the gut microbiota. We identified Bacteroides as independently associated with NASH and Ruminococcus with significant fibrosis. Thus, gut microbiota analysis adds information to classical predictors of NAFLD severity and suggests novel metabolic targets for pre-/probiotics therapies.
Collapse
Affiliation(s)
- Jérôme Boursier
- Hepato-Gastroenterology Department, University Hospital, Angers, France.,HIFIH Laboratory, UPRES 3859, SFR 4208, LUNAM University, Angers, France
| | - Olaf Mueller
- Center for Genomics of Microbial Systems, Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC
| | - Matthieu Barret
- INRA, UMR1345 Institut de Recherches en Horticulture et Semences, SFR4207 QUASAV, Beaucouzé, France
| | - Mariana Machado
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Lionel Fizanne
- HIFIH Laboratory, UPRES 3859, SFR 4208, LUNAM University, Angers, France
| | | | - Cynthia D Guy
- Department of Pathology, Duke University Medical Center, Durham, NC
| | - Patrick C Seed
- Center for Genomics of Microbial Systems, Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC.,Department of Pediatrics, Duke University Medical Center, Durham, NC
| | - John F Rawls
- Center for Genomics of Microbial Systems, Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC
| | - Lawrence A David
- Center for Genomics of Microbial Systems, Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC
| | - Gilles Hunault
- HIFIH Laboratory, UPRES 3859, SFR 4208, LUNAM University, Angers, France
| | - Frédéric Oberti
- Hepato-Gastroenterology Department, University Hospital, Angers, France.,HIFIH Laboratory, UPRES 3859, SFR 4208, LUNAM University, Angers, France
| | - Paul Calès
- Hepato-Gastroenterology Department, University Hospital, Angers, France.,HIFIH Laboratory, UPRES 3859, SFR 4208, LUNAM University, Angers, France
| | - Anna Mae Diehl
- Division of Gastroenterology, Department of Medicine, Duke University Medical Center, Durham, NC
| |
Collapse
|
631
|
Baeg MK, Yoon SK, Ko SH, Noh YS, Lee IS, Choi MG. Helicobacter pylori infection is not associated with nonalcoholic fatty liver disease. World J Gastroenterol 2016; 22:2592-2600. [PMID: 26937147 PMCID: PMC4768205 DOI: 10.3748/wjg.v22.i8.2592] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/22/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine whether Helicobacter pylori (H. pylori) infection confers a higher risk of Nonalcoholic fatty liver disease (NAFLD).
METHODS: Healthy people who underwent health screening were analyzed retrospectively. Inclusion criteria were age ≥ 20 years, history of H. pylori infection, and recorded insulin level. Participants were classified as H. pylori positive or negative according to 13C urea breath tests. NAFLD was defined using the hepatic steatosis index (HSI) and NAFLD liver fat score (NAFLD-LFS). Those with an HSI > 36 or NAFLD-LFS > -0.640 were considered to have NAFLD. Multivariable logistic regression was performed to identify risk factors for NAFLD.
RESULTS: Three thousand six hundred and sixty-three people were analyzed and 1636 (44.7%) were H. pylori positive. H. pylori infection was associated with older age, male gender, hypertension, higher body mass index, and a dyslipidemic profile. HSI differed significantly between H. pylori positive and negative subjects (median 33.2, interquartile range (IQR) 30.0-36.2 for H. pylori-positive vs median 32.6, IQR 29.8-36.0 for negative participants, P = 0.005), but NAFLD-LSF did not [median -1.7, IQR -2.4 - -0.7 vs median -1.8, IQR -2.4-(-0.7), respectively, P = 0.122]. The percentage of people with NAFLD did not differ between infected and uninfected groups: HIS, 26.9% vs 27.1%, P = 0.173; NAFLD-LFS, 23.5% vs 23.1%, P = 0.778. H. pylori infection was not a risk factor, but C-reactive protein concentration and smoking were significant risk factors for NAFLD.
CONCLUSION: H. pylori infection is not a risk factor for NAFLD as indicated by HSI or NAFLD-LFS. Prospective, large-scale studies involving liver biopsies should be considered.
Collapse
|
632
|
Hepatic circadian clock oscillators and nuclear receptors integrate microbiome-derived signals. Sci Rep 2016; 6:20127. [PMID: 26879573 PMCID: PMC4754633 DOI: 10.1038/srep20127] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/21/2015] [Indexed: 12/12/2022] Open
Abstract
The liver is a key organ of metabolic homeostasis with functions that oscillate in response to food intake. Although liver and gut microbiome crosstalk has been reported, microbiome-mediated effects on peripheral circadian clocks and their output genes are less well known. Here, we report that germ-free (GF) mice display altered daily oscillation of clock gene expression with a concomitant change in the expression of clock output regulators. Mice exposed to microbes typically exhibit characterized activities of nuclear receptors, some of which (PPARα, LXRβ) regulate specific liver gene expression networks, but these activities are profoundly changed in GF mice. These alterations in microbiome-sensitive gene expression patterns are associated with daily alterations in lipid, glucose, and xenobiotic metabolism, protein turnover, and redox balance, as revealed by hepatic metabolome analyses. Moreover, at the systemic level, daily changes in the abundance of biomarkers such as HDL cholesterol, free fatty acids, FGF21, bilirubin, and lactate depend on the microbiome. Altogether, our results indicate that the microbiome is required for integration of liver clock oscillations that tune output activators and their effectors, thereby regulating metabolic gene expression for optimal liver function.
Collapse
|
633
|
Dysbiosis in gastrointestinal disorders. Best Pract Res Clin Gastroenterol 2016; 30:3-15. [PMID: 27048892 DOI: 10.1016/j.bpg.2016.02.001] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/07/2016] [Accepted: 02/02/2016] [Indexed: 02/08/2023]
Abstract
The recent development of advanced sequencing techniques has revealed the complexity and diverse functions of the gut microbiota. Furthermore, alterations in the composition or balance of the intestinal microbiota, or dysbiosis, are associated with many gastrointestinal diseases. The looming question is whether dysbiosis is a cause or effect of these diseases. In this review, we will evaluate the contribution of intestinal microbiota in obesity, fatty liver, inflammatory bowel disease, and irritable bowel syndrome. Promising results from microbiota or metabolite transfer experiments in animals suggest the microbiota may be sufficient to reproduce disease features in the appropriate host in certain disorders. Less compelling causal associations may reflect complex, multi-factorial disease pathogenesis, in which dysbiosis is a necessary condition. Understanding the contributions of the microbiota in GI diseases should offer novel insight into disease pathophysiology and deliver new treatment strategies such as therapeutic manipulation of the microbiota.
Collapse
|
634
|
Abstract
The gut microbiome is composed of a vast number of microbes in the gastrointestinal tract, which benefit host metabolism, aid in digestion, and contribute to normal immune function. Alterations in microbial composition can result in intestinal dysbiosis, which has been implicated in several diseases including obesity, inflammatory bowel disease, and liver diseases. Over the past several years, significant interactions between the intestinal microbiota and liver have been discovered, with possible mechanisms for the development as well as progression of liver disease and promising therapeutic targets to either prevent or halt the progression of liver disease. In this review the authors examine mechanisms of dysbiosis-induced liver disease; highlight current knowledge regarding the role of dysbiosis in nonalcoholic liver disease, alcoholic liver disease, and cirrhosis; and discuss potential therapeutic targets.
Collapse
Affiliation(s)
- Gobind Anand
- Division of Gastroenterology, Department of Medicine, University of California at San Diego, La Jolla, California
| | - Amir Zarrinpar
- Division of Gastroenterology, Department of Medicine, University of California at San Diego, La Jolla, California
| | - Rohit Loomba
- Division of Gastroenterology, Department of Medicine, University of California at San Diego, La Jolla, California,NAFLD Translational Research Unit, Department of Medicine, University of California at San Diego, La Jolla, California
| |
Collapse
|
635
|
Marchesi JR, Adams DH, Fava F, Hermes GDA, Hirschfield GM, Hold G, Quraishi MN, Kinross J, Smidt H, Tuohy KM, Thomas LV, Zoetendal EG, Hart A. The gut microbiota and host health: a new clinical frontier. Gut 2016; 65:330-9. [PMID: 26338727 PMCID: PMC4752653 DOI: 10.1136/gutjnl-2015-309990] [Citation(s) in RCA: 1513] [Impact Index Per Article: 168.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 07/16/2015] [Indexed: 12/15/2022]
Abstract
Over the last 10-15 years, our understanding of the composition and functions of the human gut microbiota has increased exponentially. To a large extent, this has been due to new 'omic' technologies that have facilitated large-scale analysis of the genetic and metabolic profile of this microbial community, revealing it to be comparable in influence to a new organ in the body and offering the possibility of a new route for therapeutic intervention. Moreover, it might be more accurate to think of it like an immune system: a collection of cells that work in unison with the host and that can promote health but sometimes initiate disease. This review gives an update on the current knowledge in the area of gut disorders, in particular metabolic syndrome and obesity-related disease, liver disease, IBD and colorectal cancer. The potential of manipulating the gut microbiota in these disorders is assessed, with an examination of the latest and most relevant evidence relating to antibiotics, probiotics, prebiotics, polyphenols and faecal microbiota transplantation.
Collapse
Affiliation(s)
- Julian R Marchesi
- School of Biosciences, Museum Avenue, Cardiff University, Cardiff, UK,Centre for Digestive and Gut Health, Imperial College London, London, UK
| | - David H Adams
- NIHR Biomedical Research Unit, Centre for Liver Research, University of Birmingham, Birmingham, UK
| | - Francesca Fava
- Nutrition and Nutrigenomics Group, Department of Food Quality and Nutrition, Research and Innovation Centre, Trento, Italy
| | - Gerben D A Hermes
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands,Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
| | - Gideon M Hirschfield
- NIHR Biomedical Research Unit, Centre for Liver Research, University of Birmingham, Birmingham, UK
| | - Georgina Hold
- Division of Applied Medicine, School of Medicine and Dentistry, University of Aberdeen, Institute of Medical Sciences, Aberdeen, UK
| | - Mohammed Nabil Quraishi
- NIHR Biomedical Research Unit, Centre for Liver Research, University of Birmingham, Birmingham, UK
| | - James Kinross
- Section of Computational and Systems Medicine, Faculty of Medicine, Imperial College London, London, UK
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Kieran M Tuohy
- Nutrition and Nutrigenomics Group, Department of Food Quality and Nutrition, Research and Innovation Centre, Trento, Italy
| | | | - Erwin G Zoetendal
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands,Top Institute Food and Nutrition (TIFN), Wageningen, The Netherlands
| | - Ailsa Hart
- IBD Unit, St Mark's Hospital and Imperial College London, London, UK
| |
Collapse
|
636
|
Haque TR, Barritt AS. Intestinal microbiota in liver disease. Best Pract Res Clin Gastroenterol 2016; 30:133-42. [PMID: 27048904 DOI: 10.1016/j.bpg.2016.02.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/05/2016] [Accepted: 02/02/2016] [Indexed: 02/07/2023]
Abstract
The intestinal microbiota have emerged as a topic of intense interest in gastroenterology and hepatology. The liver is on the front line as the first filter of nutrients, toxins and bacterial metabolites from the intestines and we are becoming increasingly aware of interactions among the gut, liver and immune system as important mediators of liver health and disease. Manipulating the microbiota with therapeutic intent is a rapidly expanding field. In this review, we will describe what is known about the contribution of intestinal microbiota to liver homeostasis; the role of dysbiosis in the pathogenesis of liver disease including alcoholic and non-alcoholic fatty liver disease, cirrhosis and hepatocellular carcinoma; and the therapeutic manifestations of altering intestinal microbiota via antibiotics, prebiotics, probiotics and fecal microbiota transplantation.
Collapse
Affiliation(s)
- Tanvir R Haque
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA.
| | - A Sidney Barritt
- Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
637
|
Sakai H, Shirakami Y, Shimizu M. Chemoprevention of obesity-related liver carcinogenesis by using pharmaceutical and nutraceutical agents. World J Gastroenterol 2016; 22:394-406. [PMID: 26755885 PMCID: PMC4698502 DOI: 10.3748/wjg.v22.i1.394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 10/14/2015] [Accepted: 11/24/2015] [Indexed: 02/06/2023] Open
Abstract
Obesity and its related metabolic disorders are serious health problems worldwide, and lead to various health-related complications, including cancer. Among human cancers, hepatocellular carcinoma (HCC) is one of the most common malignancies affected by obesity. Therefore, obesity and its related disorders might be a key target for the prevention of HCC. Recently, new research indicates that the molecular abnormalities associated with obesity, including insulin resistance/hyperinsulinemia, chronic inflammation, adipokine imbalance, and oxidative stress, are possible molecular mechanisms underlying the pathogenesis of obesity-related hepatocarcinogenesis. Green tea catechins and branched-chain amino acids, both of which are classified as nutraceutical agents, have been reported to prevent obesity-related HCC development by improving metabolic abnormalities. The administration of acyclic retinoid, a pharmaceutical agent, reduced the incidence of HCC in obese and diabetic mice, and was also associated with improvements in insulin resistance and chronic inflammation. In this article, we review the detailed molecular mechanisms that link obesity to the development of HCC in obese individuals. We also summarize recent evidence from experimental and clinical studies using either nutraceutical or pharmaceutical agents, and suggest that nutraceutical and pharmaceutical approaches targeting metabolic abnormalities might be a promising strategy to prevent the development of obesity-related HCC.
Collapse
|
638
|
Ferrere G, Leroux A, Wrzosek L, Puchois V, Gaudin F, Ciocan D, Renoud ML, Naveau S, Perlemuter G, Cassard AM. Activation of Kupffer Cells Is Associated with a Specific Dysbiosis Induced by Fructose or High Fat Diet in Mice. PLoS One 2016; 11:e0146177. [PMID: 26731543 PMCID: PMC4701447 DOI: 10.1371/journal.pone.0146177] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 12/13/2015] [Indexed: 12/29/2022] Open
Abstract
The increase consumption of fructose in diet is associated with liver inflammation. As a specific fructan substrate, fructose may modify the gut microbiota which is involved in obesity-induced liver disease. Here, we aimed to assess whether fructose-induced liver damage was associated with a specific dysbiosis, especially in mice fed a high fat diet (HFD). To this end, four groups of mice were fed with normal and HFD added or not with fructose. Body weight and glucose sensitivity, liver inflammation, dysbiosis and the phenotype of Kupffer cells were determined after 16 weeks of diet. Food intake was increased in the two groups of mice fed with the HFD. Mice fed with HFD and fructose showed a higher infiltration of lymphocytes into the liver and a lower inflammatory profile of Kupffer cells than mice fed with the HFD without fructose. The dysbiosis associated with diets showed that fructose specifically prevented the decrease of Mouse intestinal bacteria in HFD fed mice and increased Erysipelotrichi in mice fed with fructose, independently of the amount of fat. In conclusion, fructose, used as a sweetener, induced a dysbiosis which is different in presence of fat in the diet. Consequently, the activation of Kupffer cells involved in mice model of HFD-induced liver inflammation was not observed in an HFD/fructose combined diet. These data highlight that the complexity of diet composition could highly impact the development of liver lesions during obesity. Specific dysbiosis associated with the diet could explain that the progressions of liver damage are different.
Collapse
Affiliation(s)
- Gladys Ferrere
- UMR996 - Inflammation, Chemokines and Immunopathology -, Inserm, Univ Paris-Sud, Université Paris-Saclay, 92140, Clamart, France
- Univ Paris-Sud, DHU Hepatinov, Labex LERMIT, Clamart, 92140, France
| | - Anne Leroux
- UMR996 - Inflammation, Chemokines and Immunopathology -, Inserm, Univ Paris-Sud, Université Paris-Saclay, 92140, Clamart, France
- Univ Paris-Sud, DHU Hepatinov, Labex LERMIT, Clamart, 92140, France
| | - Laura Wrzosek
- UMR996 - Inflammation, Chemokines and Immunopathology -, Inserm, Univ Paris-Sud, Université Paris-Saclay, 92140, Clamart, France
- Univ Paris-Sud, DHU Hepatinov, Labex LERMIT, Clamart, 92140, France
| | - Virginie Puchois
- UMR996 - Inflammation, Chemokines and Immunopathology -, Inserm, Univ Paris-Sud, Université Paris-Saclay, 92140, Clamart, France
- Univ Paris-Sud, DHU Hepatinov, Labex LERMIT, Clamart, 92140, France
| | - Françoise Gaudin
- UMR996 - Inflammation, Chemokines and Immunopathology -, Inserm, Univ Paris-Sud, Université Paris-Saclay, 92140, Clamart, France
- IPSIT, IFR141, Clamart, 92140, France
| | - Dragos Ciocan
- UMR996 - Inflammation, Chemokines and Immunopathology -, Inserm, Univ Paris-Sud, Université Paris-Saclay, 92140, Clamart, France
- Univ Paris-Sud, DHU Hepatinov, Labex LERMIT, Clamart, 92140, France
- AP-HP, Hôpital Antoine Béclère, Service d’hépato-gastroentérologie, Clamart, 92140, France
| | - Marie-Laure Renoud
- UMR996 - Inflammation, Chemokines and Immunopathology -, Inserm, Univ Paris-Sud, Université Paris-Saclay, 92140, Clamart, France
- Univ Paris-Sud, DHU Hepatinov, Labex LERMIT, Clamart, 92140, France
| | - Sylvie Naveau
- UMR996 - Inflammation, Chemokines and Immunopathology -, Inserm, Univ Paris-Sud, Université Paris-Saclay, 92140, Clamart, France
- Univ Paris-Sud, DHU Hepatinov, Labex LERMIT, Clamart, 92140, France
- AP-HP, Hôpital Antoine Béclère, Service d’hépato-gastroentérologie, Clamart, 92140, France
| | - Gabriel Perlemuter
- UMR996 - Inflammation, Chemokines and Immunopathology -, Inserm, Univ Paris-Sud, Université Paris-Saclay, 92140, Clamart, France
- Univ Paris-Sud, DHU Hepatinov, Labex LERMIT, Clamart, 92140, France
- AP-HP, Hôpital Antoine Béclère, Service d’hépato-gastroentérologie, Clamart, 92140, France
| | - Anne-Marie Cassard
- UMR996 - Inflammation, Chemokines and Immunopathology -, Inserm, Univ Paris-Sud, Université Paris-Saclay, 92140, Clamart, France
- Univ Paris-Sud, DHU Hepatinov, Labex LERMIT, Clamart, 92140, France
- * E-mail:
| |
Collapse
|
639
|
Obesity, Cardiometabolic Risk, and Chronic Kidney Disease. Obesity (Silver Spring) 2016. [DOI: 10.1007/978-3-319-19821-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
640
|
Lee SH, Kim KN, Kim KM, Joo NS. Irritable Bowel Syndrome May Be Associated with Elevated Alanine Aminotransferase and Metabolic Syndrome. Yonsei Med J 2016; 57:146-52. [PMID: 26632395 PMCID: PMC4696946 DOI: 10.3349/ymj.2016.57.1.146] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 02/13/2015] [Accepted: 02/27/2015] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Recent studies have revealed close relationships between hepatic injury, metabolic pathways, and gut microbiota. The microorganisms in the intestine also cause irritable bowel syndrome (IBS). The aim of this study was to examine whether IBS was associated with elevated hepatic enzyme [alanine aminotransferase (ALT) and aspartate aminotransferase (AST)], gamma-glutamyl transferase (γ-GT) levels, and metabolic syndrome (MS). MATERIALS AND METHODS This was a retrospective, cross-sectional, case-control study. The case and control groups comprised subjects who visited our health promotion center for general check-ups from June 2010 to December 2010. Of the 1127 initially screened subjects, 83 had IBS according to the Rome III criteria. The control group consisted of 260 age- and sex-matched subjects without IBS who visited our health promotion center during the same period. RESULTS Compared to control subjects, patients with IBS showed significantly higher values of anthropometric parameters (body mass index, waist circumference), liver enzymes, γ-GT, and lipid levels. The prevalences of elevated ALT (16.9% vs. 7.7%; p=0.015) and γ-GT (24.1% vs. 11.5%; p=0.037) levels were significantly higher in patients with IBS than in control subjects. A statistically significant difference was observed in the prevalence of MS between controls and IBS patients (12.7% vs. 32.5%; p<0.001). The relationships between elevated ALT levels, MS, and IBS remained statistically significant after controlling for potential confounding factors. CONCLUSION On the basis of our study results, IBS may be an important condition in certain patients with elevated ALT levels and MS.
Collapse
Affiliation(s)
- Seung Hwa Lee
- Department of Family Medicine, Seo-Hae Hospital, Seocheon, Korea
| | - Kyu Nam Kim
- Department of Family Practice and Community Health, Ajou University School of Medicine, Suwon, Korea.
| | - Kwang Min Kim
- Department of Family Practice and Community Health, Ajou University School of Medicine, Suwon, Korea
| | - Nam Seok Joo
- Department of Family Practice and Community Health, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
641
|
Gérard P. Gut microbiota and obesity. Cell Mol Life Sci 2016; 73:147-62. [PMID: 26459447 PMCID: PMC11108539 DOI: 10.1007/s00018-015-2061-5] [Citation(s) in RCA: 331] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/29/2015] [Accepted: 10/05/2015] [Indexed: 12/14/2022]
Abstract
The human intestine harbors a complex bacterial community called the gut microbiota. This microbiota is specific to each individual despite the existence of several bacterial species shared by the majority of adults. The influence of the gut microbiota in human health and disease has been revealed in the recent years. Particularly, the use of germ-free animals and microbiota transplant showed that the gut microbiota may play a causal role in the development of obesity and associated metabolic disorders, and lead to identification of several mechanisms. In humans, differences in microbiota composition, functional genes and metabolic activities are observed between obese and lean individuals suggesting a contribution of the gut microbiota to these phenotypes. Finally, the evidence linking gut bacteria to host metabolism could allow the development of new therapeutic strategies based on gut microbiota modulation to treat or prevent obesity.
Collapse
Affiliation(s)
- Philippe Gérard
- INRA, UMR1319 MICALIS, Equipe AMIPEM, Building 442, Domaine de Vilvert, 78350, Jouy-en-Josas, France.
- AgroParisTech, UMR MICALIS, 78350, Jouy-en-Josas, France.
| |
Collapse
|
642
|
Martins IJ. Overnutrition Determines LPS Regulation of Mycotoxin Induced Neurotoxicity in Neurodegenerative Diseases. Int J Mol Sci 2015; 16:29554-73. [PMID: 26690419 PMCID: PMC4691133 DOI: 10.3390/ijms161226190] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/19/2015] [Accepted: 12/01/2015] [Indexed: 12/11/2022] Open
Abstract
Chronic neurodegenerative diseases are now associated with obesity and diabetes and linked to the developing and developed world. Interests in healthy diets have escalated that may prevent neurodegenerative diseases such as Parkinson's and Alzheimer's disease. The global metabolic syndrome involves lipoprotein abnormalities and insulin resistance and is the major disorder for induction of neurological disease. The effects of bacterial lipopolysaccharides (LPS) on dyslipidemia and NAFLD indicate that the clearance and metabolism of fungal mycotoxins are linked to hypercholesterolemia and amyloid beta oligomers. LPS and mycotoxins are associated with membrane lipid disturbances with effects on cholesterol interacting proteins, lipoprotein metabolism, and membrane apo E/amyloid beta interactions relevant to hypercholesterolemia with close connections to neurological diseases. The influence of diet on mycotoxin metabolism has accelerated with the close association between mycotoxin contamination from agricultural products such as apple juice, grains, alcohol, and coffee. Cholesterol efflux in lipoproteins and membrane cholesterol are determined by LPS with involvement of mycotoxin on amyloid beta metabolism. Nutritional interventions such as diets low in fat/carbohydrate/cholesterol have become of interest with relevance to low absorption of lipophilic LPS and mycotoxin into lipoproteins with rapid metabolism of mycotoxin to the liver with the prevention of neurodegeneration.
Collapse
Affiliation(s)
- Ian James Martins
- Centre of Excellence in Alzheimer's Disease Research and Care, School of Medical Sciences, Edith Cowan University, 270 Joondalup Drive, Joondalup 6027, Australia.
- School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Nedlands 6009, Australia.
- McCusker Alzheimer's Research Foundation, Hollywood Medical Centre, 85 Monash Avenue, Suite 22, Nedlands 6009, Australia.
| |
Collapse
|
643
|
Abstract
Alcoholic liver disease (ALD) and, increasingly, non-alcoholic fatty liver disease (NAFLD) are common causes of advanced liver disease in many developed countries including the UK. Both diseases share parallel natural histories, progressing from steatosis, to steatohepatitis and fibrosis/cirrhosis; and are characterised by substantial interindividual variation in disease outcome. This article will provide an overview of disease mechanisms, genetic modifiers and management, focusing principally on NAFLD, while drawing parallels between the two conditions where appropriate.
Collapse
Affiliation(s)
- Rachel J Rowell
- Institute of Cellular Medicine, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| | - Quentin M Anstee
- Institute of Cellular Medicine, The Medical School, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
644
|
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a common disorder with poorly understood pathogenesis. Beyond environmental and genetic factors, cumulative data support the causative role of gut microbiota in disease development and progression. DATA SOURCE We performed a PubMed literature search with the following key words: "non-alcoholic fatty liver disease", "non-alcoholic steatohepatitis", "fatty liver", "gut microbiota" and "microbiome", to review the data implicating gut microbiota in NAFLD development and progression. RESULTS Recent metagenomic studies revealed differences in the phylum and genus levels between patients with fatty liver and healthy controls. While bacteroidetes and firmicutes remain the dominant phyla among NAFLD patients, their proportional abundance and genera detection vary among different studies. New techniques indicate a correlation between the methanogenic archaeon (methanobrevibacter smithii) and obesity, while the bacterium akkermanshia municiphila protects against metabolic syndrome. Among NAFLD patients, small intestinal bacterial overgrowth detected by breath tests might induce gut microbiota and host interactions, facilitating disease development. CONCLUSIONS There is evidence that gut microbiota participates in NAFLD development through, among others, obesity induction, endogenous ethanol production, inflammatory response triggering and alterations in choline metabolism. Further studies with emerging techniques are needed to further elucidate the microbiome and host crosstalk in NAFLD pathogenesis.
Collapse
Affiliation(s)
- Paraskevas Gkolfakis
- Hepatogastroenterology Unit, Second Department of Internal Medicine and Research Institute, Attikon University General Hospital, Medical School, Athens University, 124 62 Athens, Greece.
| | | | | |
Collapse
|
645
|
Abstract
NAFLD is the most common chronic liver disease in children and adults, with its prevalence closely associated with obesity and other features of the metabolic syndrome. As young adults with NAFLD transition from the paediatric care environment to adult services, establishing a coordinated model of transition to ensure ongoing and appropriate care is critical. Enabling a smooth transfer begins with an understanding of the key differences between paediatric and adult NAFLD as well as the psychosocial factors that affect older adolescents. This Review summarizes the literature on paediatric NAFLD from the past two decades with a focus on the differences in epidemiology, pathology, pathophysiology and treatment that are relevant to clinicians who transition paediatric patients to adult care. An integrated model, which employs a team of adult and paediatric providers who can address the psychosocial, cognitive and logistical challenges of transition, provides the best opportunity for a seamless and coordinated transfer to adult care.
Collapse
|
646
|
Wieland A, Frank DN, Harnke B, Bambha K. Systematic review: microbial dysbiosis and nonalcoholic fatty liver disease. Aliment Pharmacol Ther 2015; 42:1051-63. [PMID: 26304302 DOI: 10.1111/apt.13376] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/11/2015] [Accepted: 07/29/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND The human intestinal microbiota is a key regulator of host metabolic and immune functions and alterations in the microbiome ('dysbiosis') have been implicated in several human diseases. Because of the anatomical links between the intestines and the liver, dysbiosis may also disrupt hepatic function and thereby contribute to the pathogenesis of nonalcoholic fatty liver disease (NAFLD). AIM To perform a comprehensive review of the medical literature investigating associations between intestinal dysbiosis and NAFLD, with a particular emphasis on studies that characterise the microbiome in NAFLD. METHODS We conducted a search of PubMed, Embase, and Web of Science using multiple search terms including: 'NAFLD, NASH, fatty liver, steatohepatitis' combined with 'metagenome, microbiom*, microbiota*, fecal flora, intestinal flora, gut bacteria'. Results were manually reviewed and studies selected based on relevance to intestinal microbiota and NAFLD. We also included studies that addressed potential mechanistic models of pathways linking the dysbiosis to NAFLD. RESULTS Nine studies (five human and four animal models) were identified in our search that assessed associations between specific intestinal microbiota composition and NAFLD. We reviewed and summarised the results of additional investigations that more broadly addressed the mechanisms by which the microbiome may impact NAFLD pathogenesis. CONCLUSIONS Investigations in humans and animals demonstrate associations between intestinal dysbiosis and NAFLD; however, causality has not been proven and mechanistic links require further delineation. As the field of microbiome research matures in techniques and study design, more detailed insights into NAFLD pathogenesis and its associations with the intestinal microbiota will be elucidated.
Collapse
Affiliation(s)
- A Wieland
- Division of Gastroenterology and Hepatology, University of Colorado Denver, Aurora, CO, USA
| | - D N Frank
- Division of Infectious Diseases and Microbiome Research Consortium, University of Colorado Denver, Aurora, CO, USA
| | - B Harnke
- University of Colorado Health Science Library, Aurora, CO, USA
| | - K Bambha
- Division of Gastroenterology and Hepatology, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
647
|
Abstract
Respice, Adspice, Prospice, look to the past, look to the present, look to the future, is one of life's valuable axioms; for it is only if one knows where one has been can one intelligently prepare for the future. I have used this approach here to review fecal microbiota transplant (FMT). First used in fourth-century China to treat an assortment of gastrointestinal (GI) symptoms, today FMT is primarily used for recurrent Clostridium difficile infection (RCDI). In the future, however, it is likely that microbiotic therapy will be extended beyond treatment of RCDI. Early on, fresh feces from patient-identified donors was used and administered by several routes. FMT cure rates for RCDI remain approximately 82% and 91% when fresh stool is given by the upper GI and lower GI routes, respectively, but now we are moving in the direction of using carefully vetted volunteers whose stool is processed into a variety of formulations including lyophilized material and even capsules. It is very likely that an array of products derived from feces or based on specific microbiotic profiles and commercially prepared in a controlled environment will be available to restore eubiosis to a dysbiotic intestinal microbial community, and thereby correct a variety of GI and non-GI disorders. We are witnessing a paradigm shift in therapeutics. Previously, bacteria were thought of only as potential pathogens, whereas now we appreciate that a diverse community of bacteria is crucial to the health of the host. We are now learning that to restore such diversity once it has been interrupted can result in miraculous cure. The future of microbiotic therapy is bright.
Collapse
|
648
|
Delarue J, Lallès JP. Nonalcoholic fatty liver disease: Roles of the gut and the liver and metabolic modulation by some dietary factors and especially long-chain n-3 PUFA. Mol Nutr Food Res 2015; 60:147-59. [DOI: 10.1002/mnfr.201500346] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 06/25/2015] [Accepted: 07/24/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Jacques Delarue
- Department of Nutritional Sciences; University Hospital and University of Brest; Brest France
- Breton Federation of Food and Human Nutrition (FED4216); University of Brest; Brest France
| | - Jean-Paul Lallès
- Breton Federation of Food and Human Nutrition (FED4216); University of Brest; Brest France
- Institut National de la Recherche Agronomique; UR1341; Alimentation et Adaptations Digestives; Nerveuses et Comportementales (ADNC); Saint-Gilles France
- Centre de Recherche en Nutrition Humaine-Ouest; Nantes Cedex 1 France
| |
Collapse
|
649
|
Clinical and pathophysiological consequences of alterations in the microbiome in cirrhosis. Am J Gastroenterol 2015; 110:1399-410; quiz 1411. [PMID: 26416191 DOI: 10.1038/ajg.2015.313] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 08/04/2015] [Indexed: 02/06/2023]
Abstract
Cirrhosis is a major cause of mortality worldwide. Exponential rises in prevalence have been observed secondary to increases in obesity and alcohol consumption. Multiple lines of evidence implicate gut-derived bacteria and bacterial ligands as a central driver of pathogenesis. Recent developments in culture-independent techniques have facilitated a more accurate description of microbiome composition in cirrhosis and led to the description of measures of dysbiosis shown to be associated with disease. More importantly, metagenomic studies are adding to an understanding of the functional contribution of the microbiota and may prove to be a more clinically relevant biomarker than phylogenetic studies. Much like other dysbiotic states such as inflammatory bowel disease, the microbiota in cirrhosis is characterized by a low microbial and genetic diversity. Therapeutic strategies to diminish this process are currently limited to selective intestinal decontamination with antibiotics. This review summarizes the available data and develops a framework for the use of current and future treatment strategies to diminish the consequences of dysbiosis in cirrhosis. Interventional strategies to bind bacterial products in the gut lumen and blood, and modulate the magnitude of host sensing mechanisms remain an unmet clinical need. A greater understanding of the host-microbiota interaction in cirrhosis is of key importance to inform future interventional strategies to diminish the currently escalating burden of the disease.
Collapse
|
650
|
Affiliation(s)
- Irina A. Kirpich
- Division of Gastroenterology, Hepatology, and Nutrition, Department of MedicineUniversity of Louisville School of MedicineLouisvilleKY,Department of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKY
| | - Dipendra Parajuli
- Division of Gastroenterology, Hepatology, and Nutrition, Department of MedicineUniversity of Louisville School of MedicineLouisvilleKY,Robley Rex Veterans Medical CenterLouisvilleKY
| | - Craig J. McClain
- Division of Gastroenterology, Hepatology, and Nutrition, Department of MedicineUniversity of Louisville School of MedicineLouisvilleKY,Department of Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleKY,Robley Rex Veterans Medical CenterLouisvilleKY
| |
Collapse
|