651
|
Fagman H, Amendola E, Parrillo L, Zoppoli P, Marotta P, Scarfò M, De Luca P, de Carvalho DP, Ceccarelli M, De Felice M, Di Lauro R. Gene expression profiling at early organogenesis reveals both common and diverse mechanisms in foregut patterning. Dev Biol 2011; 359:163-75. [PMID: 21924257 PMCID: PMC3206993 DOI: 10.1016/j.ydbio.2011.08.015] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 08/24/2011] [Indexed: 11/30/2022]
Abstract
The thyroid and lungs originate as neighboring bud shaped outgrowths from the midline of the embryonic foregut. When and how organ specific programs regulate development into structures of distinct shapes, positions and functions is incompletely understood. To characterize, at least in part, the genetic basis of these events, we have employed laser capture microdissection and microarray analysis to define gene expression in the mouse thyroid and lung primordia at E10.5. By comparing the transcriptome of each bud to that of the whole embryo as well as to each other, we broadly describe the genes that are preferentially expressed in each developing organ as well as those with an enriched expression common to both. The results thus obtained provide a valuable resource for further analysis of genes previously unrecognized to participate in thyroid and lung morphogenesis and to discover organ specific as well as common developmental mechanisms. As an initial step in this direction we describe a regulatory pathway involving the anti-apoptotic gene Bcl2 that controls cell survival in early thyroid development.
Collapse
Affiliation(s)
| | - Elena Amendola
- IRGS, Biogem, Ariano Irpino (AV), Italy
- Stazione Zoologica Anton Dohrn, Naples, Italy
| | | | | | | | | | | | | | - Michele Ceccarelli
- IRGS, Biogem, Ariano Irpino (AV), Italy
- Dipartimento di Scienze Biologiche ed Ambientali, Università del Sannio, Benevento, Italy
| | - Mario De Felice
- IRGS, Biogem, Ariano Irpino (AV), Italy
- Dipartimento di Biologia e Patologia, Università di Napoli Federico II, Naples, Italy
| | - Roberto Di Lauro
- IRGS, Biogem, Ariano Irpino (AV), Italy
- Dipartimento di Biologia e Patologia, Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
652
|
Becker PM, Tran TS, Delannoy MJ, He C, Shannon JM, McGrath-Morrow S. Semaphorin 3A contributes to distal pulmonary epithelial cell differentiation and lung morphogenesis. PLoS One 2011; 6:e27449. [PMID: 22096573 PMCID: PMC3214054 DOI: 10.1371/journal.pone.0027449] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 10/17/2011] [Indexed: 11/30/2022] Open
Abstract
Rationale Semaphorin 3A (Sema3A) is a neural guidance cue that also mediates cell migration, proliferation and apoptosis, and inhibits branching morphogenesis. Because we have shown that genetic deletion of neuropilin-1, which encodes an obligatory Sema3A co-receptor, influences airspace remodeling in the smoke-exposed adult lung, we sought to determine whether genetic deletion of Sema3A altered distal lung structure. Methods To determine whether loss of Sema3A signaling influenced distal lung morphology, we compared pulmonary histology, distal epithelial cell morphology and maturation, and the balance between lung cell proliferation and death, in lungs from mice with a targeted genetic deletion of Sema3A (Sema3A-/-) and wild-type (Sema3A+/+) littermate controls. Results Genetic deletion of Sema3A resulted in significant perinatal lethality. At E17.5, lungs from Sema3A-/- mice had thickened septae and reduced airspace size. Distal lung epithelial cells had increased intracellular glycogen pools and small multivesicular and lamellar bodies with atypical ultrastructure, as well as reduced expression of type I alveolar epithelial cell markers. Alveolarization was markedly attenuated in lungs from the rare Sema3A-/- mice that survived the immediate perinatal period. Furthermore, Sema3A deletion was linked with enhanced postnatal alveolar septal cell death. Conclusions These data suggest that Sema3A modulates distal pulmonary epithelial cell development and alveolar septation. Defining how Sema3A influences structural plasticity of the developing lung is a critical first step for determining if this pathway can be exploited to develop innovative strategies for repair after acute or chronic lung injury.
Collapse
Affiliation(s)
- Patrice M Becker
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America.
| | | | | | | | | | | |
Collapse
|
653
|
Besnard V, Wert SE, Ikegami M, Xu Y, Heffner C, Murray SA, Donahue LR, Whitsett JA. Maternal synchronization of gestational length and lung maturation. PLoS One 2011; 6:e26682. [PMID: 22096492 PMCID: PMC3212521 DOI: 10.1371/journal.pone.0026682] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 10/02/2011] [Indexed: 12/20/2022] Open
Abstract
Among all mammals, fetal growth and organ maturation must be precisely synchronized with gestational length to optimize survival at birth. Lack of pulmonary maturation is the major cause of infant mortality in preterm birth. Whether fetal or maternal genotypes influence the close relationship between the length of gestation and lung function at birth is unknown. Structural and biochemical indicators of pulmonary maturity were measured in two mouse strains whose gestational length differed by one day. Shorter gestation in C57BL/6J mice was associated with advanced morphological and biochemical pulmonary development and better perinatal survival when compared to A/J pups born prematurely. After ovarian transplantation, A/J pups were born early in C57BL/6J dams and survived after birth, consistent with maternal control gestational length. Expression of genes critical for perinatal lung function was assessed in A/J pups born after ovarian transfer. A subset of mRNAs important for perinatal respiratory adaptation was selectively induced in the A/J pups born after ovarian transfer. mRNAs precociously induced after ovarian transfer indicated an important role for the transcription factors C/EBPα and CREB in maternally induced lung maturation. We conclude that fetal lung maturation is determined by both fetal and maternal genotypes. Ovarian transfer experiments demonstrated that maternal genotype determines the timing of birth and can influence fetal lung growth and maturation to ensure perinatal survival.
Collapse
Affiliation(s)
- Valérie Besnard
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, the Department of Pediatrics and The University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Susan E. Wert
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, the Department of Pediatrics and The University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Machiko Ikegami
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, the Department of Pediatrics and The University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Yan Xu
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, the Department of Pediatrics and The University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Caleb Heffner
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Leah Rae Donahue
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Jeffrey A. Whitsett
- The Perinatal Institute and Section of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, the Department of Pediatrics and The University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
654
|
Hayes M, Curley GF, Laffey JG. Lung stem cells--from an evolving understanding to a paradigm shift? Stem Cell Res Ther 2011; 2:41. [PMID: 22017959 PMCID: PMC3308038 DOI: 10.1186/scrt82] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The ideal cell type to regenerate an acutely injured or chronically diseased lung would be a stem cell population from the patient's own lung. Consequently, extensive research efforts have focused on identifying and characterizing endogenous lung stem cells. Advances in techniques to facilitate cell isolation, labelling and tracking in vivo to determine their fate have led to the identification of several putative stem cell niches. Recently, convincing evidence has emerged for a novel stem/progenitor cell population in the submucous glands of the cartilaginous airways. These findings support the concept that there is no classical stem cell 'hierarchy' but that different progenitor populations within spatially distinct lung regions regenerate the lung epithelium adjacent to its niche. Intriguingly, recent findings challenge this concept; it was reported that the human lung may contain a primitive stem cell capable of differentiating into multiple cells of both endodermal and mesodermal lineage and of regenerating the injured lung. This suggests that a classical stem cell hierarchy may, in fact, exist in the lung. Although caution is needed in interpreting these emerging findings, the implications for our current concepts regarding lung stem cells, the insights into lung repair and regeneration, and the potential therapeutic implications are considerable.
Collapse
Affiliation(s)
- Mairéad Hayes
- Lung Biology Group, Regenerative Medicine Institute, National Centre for Biomedical Engineering Science, National University of Ireland, University Road, Galway, Ireland
| | | | | |
Collapse
|
655
|
Yamamoto Y, Baldwin HS, Prince LS. Endothelial differentiation by multipotent fetal mouse lung mesenchymal cells. Stem Cells Dev 2011; 21:1455-65. [PMID: 22008017 DOI: 10.1089/scd.2011.0219] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
During fetal lung development, cells within the mesenchyme differentiate into vascular endothelia. This process of vasculogenesis gives rise to the cells that will eventually form the alveolar capillary bed. The cellular mechanisms regulating lung vasculogenesis are poorly understood, partly due to the lack of experimental systems that model this process. Here, we have developed and characterized a novel fetal mouse lung cell model of mesenchymal to endothelial differentiation. Using mesenchymal cells from the lungs of embryonal day 15 Immortomice, we show that endothelial growth media containing fibroblast growth factor-2 and vascular endothelial growth factor can stimulate formation of vascular endothelial cells in culture. These newly formed endothelial cells retain plasticity, as removing endothelial growth media causes loss of vascular markers and renewed formation of α-smooth muscle actin positive stress fibers. Cells with the highest Flk-1 expression differentiated into endothelia more efficiently. Individual mesenchymal cell clones had varied ability to acquire an endothelial phenotype. These fetal lung mesenchymal cells were multipotent, capable of differentiating into not only vascular endothelia, but also osteogenic and chondrongenic cell lineages. Our data establish a cell culture model for mesenchymal to endothelial differentiation that could prove useful for future mechanistic studies in the process of vasculogenesis both during normal development and in the pathogenesis of pulmonary vascular disease.
Collapse
Affiliation(s)
- Yasutoshi Yamamoto
- Division of Neonatology, Department of Pediatrics, Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232, USA
| | | | | |
Collapse
|
656
|
Pei L, Leblanc M, Barish G, Atkins A, Nofsinger R, Whyte J, Gold D, He M, Kawamura K, Li HR, Downes M, Yu RT, Powell H, Lingrel JB, Evans RM. Thyroid hormone receptor repression is linked to type I pneumocyte-associated respiratory distress syndrome. Nat Med 2011; 17:1466-72. [PMID: 22001906 PMCID: PMC3210920 DOI: 10.1038/nm.2450] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 07/21/2011] [Indexed: 12/15/2022]
Abstract
Although the lung is a defining feature of air-breathing animals, the pathway controlling the formation of type I pneumocytes, the cells that mediate gas exchange, is poorly understood. In contrast, the glucocorticoid receptor and its cognate ligand have long been known to promote type II pneumocyte maturation; prenatal administration of glucocorticoids is commonly used to attenuate the severity of infant respiratory distress syndrome (RDS). Here we show that knock-in mutations of the nuclear co-repressor SMRT (silencing mediator of retinoid and thyroid hormone receptors) in C57BL/6 mice (SMRTmRID) produces a previously unidentified respiratory distress syndrome caused by prematurity of the type I pneumocyte. Though unresponsive to glucocorticoids, treatment with anti-thyroid hormone drugs (propylthiouracil or methimazole) completely rescues SMRT-induced RDS, suggesting an unrecognized and essential role for the thyroid hormone receptor (TR) in lung development. We show that TR and SMRT control type I pneumocyte differentiation through Klf2, which, in turn, seems to directly activate the type I pneumocyte gene program. Conversely, mice without lung Klf2 lack mature type I pneumocytes and die shortly after birth, closely recapitulating the SMRTmRID phenotype. These results identify TR as a second nuclear receptor involved in lung development, specifically type I pneumocyte differentiation, and suggest a possible new type of therapeutic option in the treatment of RDS that is unresponsive to glucocorticoids.
Collapse
Affiliation(s)
- Liming Pei
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mathias Leblanc
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Grant Barish
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Annette Atkins
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Russell Nofsinger
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jamie Whyte
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - David Gold
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Mingxiao He
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Kazuko Kawamura
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Hai-Ri Li
- VA San Diego Healthcare System and Department of Pathology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Michael Downes
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ruth T. Yu
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Harry Powell
- VA San Diego Healthcare System and Department of Pathology, University of California, San Diego, La Jolla, CA 92037, USA
| | - Jerry B. Lingrel
- Department of Molecular Genetics, Biochemistry and Microbiology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | - Ronald M. Evans
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
657
|
Yin Y, Wang F, Ornitz DM. Mesothelial- and epithelial-derived FGF9 have distinct functions in the regulation of lung development. Development 2011; 138:3169-77. [PMID: 21750028 DOI: 10.1242/dev.065110] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fibroblast growth factor (FGF) 9 is a secreted signaling molecule that is expressed in lung mesothelium and epithelium and is required for lung development. Embryos lacking FGF9 show mesenchymal hypoplasia, decreased epithelial branching and, by the end of gestation, hypoplastic lungs that cannot support life. Mesenchymal FGF signaling interacts with β-catenin-mediated WNT signaling in a feed-forward loop that functions to sustain mesenchymal FGF responsiveness and mesenchymal WNT/β-catenin signaling. During pseudoglandular stages of lung development, Wnt2a and Wnt7b are the canonical WNT ligands that activate mesenchymal WNT/β-catenin signaling, whereas FGF9 is the only known ligand that signals to mesenchymal FGF receptors (FGFRs). Here, we demonstrate that mesothelial- and epithelial-derived FGF9, mesenchymal Wnt2a and epithelial Wnt7b have unique functions in lung development in mouse. Mesothelial FGF9 and mesenchymal WNT2A are principally responsible for maintaining mesenchymal FGF-WNT/β-catenin signaling, whereas epithelial FGF9 primarily affects epithelial branching. We show that FGF signaling is primarily responsible for regulating mesenchymal proliferation, whereas β-catenin signaling is a required permissive factor for mesenchymal FGF signaling.
Collapse
Affiliation(s)
- Yongjun Yin
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
658
|
Harunaga J, Hsu J, Yamada K. Dynamics of salivary gland morphogenesis. J Dent Res 2011; 90:1070-7. [PMID: 21487116 PMCID: PMC3318079 DOI: 10.1177/0022034511405330] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/05/2011] [Accepted: 03/08/2011] [Indexed: 01/16/2023] Open
Abstract
Salivary glands form during embryonic development by a complex process that creates compact, highly organized secretory organs with functions essential for oral health. The architecture of these glands is generated by branching morphogenesis, revealed by recent research to involve unexpectedly dynamic cell motility and novel regulatory pathways. Numerous growth factors, extracellular matrix molecules, gene regulatory pathways, and mechanical forces contribute to salivary gland morphogenesis, but local gene regulation and morphological changes appear to play particularly notable roles. Here we review these recent advances and their potential application to salivary gland tissue engineering.
Collapse
Affiliation(s)
- J. Harunaga
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bldg. 30, Room 426, 30 Convent Drive, MSC 4370, Bethesda, MD 20892-4370, USA
| | - J.C. Hsu
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bldg. 30, Room 426, 30 Convent Drive, MSC 4370, Bethesda, MD 20892-4370, USA
| | - K.M. Yamada
- Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bldg. 30, Room 426, 30 Convent Drive, MSC 4370, Bethesda, MD 20892-4370, USA
| |
Collapse
|
659
|
Maeda Y, Chen G, Xu Y, Haitchi HM, Du L, Keiser AR, Howarth PH, Davies DE, Holgate ST, Whitsett JA. Airway epithelial transcription factor NK2 homeobox 1 inhibits mucous cell metaplasia and Th2 inflammation. Am J Respir Crit Care Med 2011; 184:421-9. [PMID: 21562130 PMCID: PMC3175541 DOI: 10.1164/rccm.201101-0106oc] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 05/05/2011] [Indexed: 12/19/2022] Open
Abstract
RATIONALE Airway mucous cell metaplasia and chronic inflammation are pathophysiological features that influence morbidity and mortality associated with asthma and other chronic pulmonary disorders. Elucidation of the molecular mechanisms regulating mucous metaplasia and hypersecretion provides the scientific basis for diagnostic and therapeutic opportunities to improve the care of chronic pulmonary diseases. OBJECTIVES To determine the role of the airway epithelial–specific transcription factor NK2 homeobox 1 (NKX2-1, also known as thyroid transcription factor-1 [TTF-1]) in mucous cell metaplasia and lung inflammation. METHODS Expression of NKX2-1 in airway epithelial cells from patients with asthma was analyzed. NKX2-1 +/-gene targeted or transgenic mice expressing NKX2-1 in conducting airway epithelial cells were sensitized to the aeroallergen ovalbumin. In vitro studies were used to identify mechanisms by which NKX2-1 regulates mucous cell metaplasia and inflammation. MEASUREMENTS AND MAIN RESULTS NKX2-1 was suppressed in airway epithelial cells from patients with asthma. Reduced expression of NKX2-1 in heterozygous NKX2-1 +/- gene targeted mice increased mucous metaplasia in the small airways after pulmonary sensitization to ovalbumin. Conversely, mucous cell metaplasia induced by aeroallergen was inhibited by expression of NKX2-1 in the respiratory epithelium in vivo. Genome-wide mRNA analysis of lung tissue from ovalbumin-treated mice demonstrated that NKX2-1 inhibited mRNAs associated with mucous metaplasia and Th2-regulated inflammation,including Spdef, Ccl17, and Il13. In vitro, NKX2-1 inhibited SPDEF, a critical regulator of airway mucous cell metaplasia,and the Th2 chemokine CCL26. CONCLUSIONS The present data demonstrate a novel function for NKX2-1 in a gene network regulating mucous cell metaplasia and allergic inflammation in the respiratory epithelium.
Collapse
Affiliation(s)
- Yutaka Maeda
- Perinatal Institute, Division of Neonatology, Perinatal, and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Gang Chen
- Perinatal Institute, Division of Neonatology, Perinatal, and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Yan Xu
- Perinatal Institute, Division of Neonatology, Perinatal, and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Hans Michael Haitchi
- Perinatal Institute, Division of Neonatology, Perinatal, and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio; and
- Division of Infection, Inflammation and Immunity, School of Medicine, University of Southampton and Wellcome Trust Clinical Research Facility and Respiratory Biomedical Research Unit, Southampton University Hospital Trust, Southampton, United Kingdom
| | - Lingling Du
- Perinatal Institute, Division of Neonatology, Perinatal, and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Angela R. Keiser
- Perinatal Institute, Division of Neonatology, Perinatal, and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| | - Peter H. Howarth
- Division of Infection, Inflammation and Immunity, School of Medicine, University of Southampton and Wellcome Trust Clinical Research Facility and Respiratory Biomedical Research Unit, Southampton University Hospital Trust, Southampton, United Kingdom
| | - Donna E. Davies
- Division of Infection, Inflammation and Immunity, School of Medicine, University of Southampton and Wellcome Trust Clinical Research Facility and Respiratory Biomedical Research Unit, Southampton University Hospital Trust, Southampton, United Kingdom
| | - Stephen T. Holgate
- Division of Infection, Inflammation and Immunity, School of Medicine, University of Southampton and Wellcome Trust Clinical Research Facility and Respiratory Biomedical Research Unit, Southampton University Hospital Trust, Southampton, United Kingdom
| | - Jeffrey A. Whitsett
- Perinatal Institute, Division of Neonatology, Perinatal, and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, Ohio; and
| |
Collapse
|
660
|
Goss AM, Tian Y, Cheng L, Yang J, Zhou D, Cohen ED, Morrisey EE. Wnt2 signaling is necessary and sufficient to activate the airway smooth muscle program in the lung by regulating myocardin/Mrtf-B and Fgf10 expression. Dev Biol 2011; 356:541-52. [PMID: 21704027 PMCID: PMC3319016 DOI: 10.1016/j.ydbio.2011.06.011] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 06/07/2011] [Accepted: 06/08/2011] [Indexed: 02/08/2023]
Abstract
Smooth muscle in the lung is thought to derive from the developing lung mesenchyme. Smooth muscle formation relies upon coordination of both autocrine and paracrine signaling between the budding epithelium and adjacent mesenchyme to govern its proliferation and differentiation. However, the pathways initiating the earliest aspects of smooth muscle specification and differentiation in the lung are poorly understood. Here, we identify the Wnt2 ligand as a critical regulator of the earliest aspects of lung airway smooth muscle development. Using Wnt2 loss and gain of function models, we show that Wnt2 signaling is necessary and sufficient for activation of a transcriptional and signaling network critical for smooth muscle specification and differentiation including myocardin/Mrtf-B and the signaling factor Fgf10. These studies place Wnt2 high in a hierarchy of signaling molecules that promote the earliest aspects of lung airway smooth muscle development.
Collapse
Affiliation(s)
- Ashley M. Goss
- Department of Medicine University of Pennsylvania Philadelphia, PA 19104
| | - Ying Tian
- Department of Medicine University of Pennsylvania Philadelphia, PA 19104
| | - Lan Cheng
- Department of Medicine University of Pennsylvania Philadelphia, PA 19104
| | | | - Diane Zhou
- Department of Medicine University of Pennsylvania Philadelphia, PA 19104
| | - Ethan David Cohen
- Department of Medicine University of Pennsylvania Philadelphia, PA 19104
| | - Edward E. Morrisey
- Department of Medicine University of Pennsylvania Philadelphia, PA 19104
- Department of Cell and Developmental Biology University of Pennsylvania Philadelphia, PA 19104
- Cardiovascular Institute University of Pennsylvania Philadelphia, PA 19104
- Institute for Regenerative Medicine University of Pennsylvania Philadelphia, PA 19104
| |
Collapse
|
661
|
Whitsett JA, Haitchi HM, Maeda Y. Intersections between pulmonary development and disease. Am J Respir Crit Care Med 2011; 184:401-6. [PMID: 21642246 PMCID: PMC3175542 DOI: 10.1164/rccm.201103-0495pp] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 03/31/2011] [Indexed: 11/16/2022] Open
Abstract
Recent advances in cellular, molecular, and developmental biology have revolutionized our concepts regarding the process of organogenesis that have important implications for our understanding of both lung formation and pulmonary disease pathogenesis. Pulmonary investigators have long debated whether developmental processes are recapitulated during normal repair of the lung or in the setting of chronic pulmonary diseases. Although the cellular events involved in lung morphogenesis and those causing pulmonary disease are likely to include processes that are distinct, there is increasing evidence that the pathogenesis of many lung disorders involves the same genetic machinery that regulates cell growth,specification, and differentiation during normal lung development.
Collapse
Affiliation(s)
- Jeffrey A Whitsett
- Perinatal Institute, Divisions of Neonatology, Perinatal, and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA.
| | | | | |
Collapse
|
662
|
Tsao PN, Wei SC, Wu MF, Huang MT, Lin HY, Lee MC, Lin KMC, Wang IJ, Kaartinen V, Yang LT, Cardoso WV. Notch signaling prevents mucous metaplasia in mouse conducting airways during postnatal development. Development 2011; 138:3533-43. [PMID: 21791528 PMCID: PMC3148592 DOI: 10.1242/dev.063727] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2011] [Indexed: 01/03/2023]
Abstract
Goblet cell metaplasia and mucus overproduction contribute to the pathogenesis of chronic lung diseases, including asthma and chronic obstructive pulmonary disease (COPD). Notch signaling regulates cell fate decisions and is crucial in controlling goblet cell differentiation in the gut epithelium. Little is known, however, about how endogenous Notch signaling influences the goblet cell differentiation program that takes place in the postnatal lung. Using a combination of genetic and in vitro approaches here we provide evidence of a novel role for Notch in restricting goblet cell differentiation in the airway epithelium during the postnatal period. Conditional inactivation of the essential Notch pathway component Pofut1 (protein O-fucosyltransferase1) in Tgfb3-Cre-expressing mice resulted in an aberrant postnatal airway phenotype characterized by marked goblet cell metaplasia, decreased Clara cell number and increase in ciliated cells. The presence of the same phenotype in mice in which the Notch transcriptional effector Rbpjk was deleted indicated the involvement of the canonical Notch pathway. Lineage study in vivo suggested that goblet cells originated from a subpopulation of Clara cells largely present in proximal airways in which Notch was disrupted. The phenotype was confirmed by a panel of goblet cell markers, showed no changes in cell proliferation or altered expression of proinflammatory cytokines and was associated with significant downregulation of the bHLH transcriptional repressor Hes5. Luciferase reporter analysis suggested that Notch directly repressed MUC5AC transcription in lung epithelial cells. The data suggested that during postnatal life Notch is required to prevent Clara cells from differentiating into goblet cells.
Collapse
Affiliation(s)
- Po-Nien Tsao
- Department of Pediatrics, National Taiwan University Hospital, Taipei 100, Taiwan
- The Research Center of Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei 10048, Taiwan
| | - Shu-Chen Wei
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Ming-Fang Wu
- Animal Medical Center, College of Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Miao-Tzu Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei 10002, Taiwan
| | - Hsien-Yi Lin
- Institute of Cellular and Systems Medicine, National Health Research Institutes, Zhunan Town, Miaoli County 35053, Taiwan
| | - Ming-Cheng Lee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Kurt Ming-Chao Lin
- Division of Medical Engineering, National Health Research Institutes, Zhunan Town, Miaoli County 35053, Taiwan
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI 48109-1078, USA
| | - Liang-Tung Yang
- Institute of Cellular and Systems Medicine, National Health Research Institutes, Zhunan Town, Miaoli County 35053, Taiwan
| | | |
Collapse
|
663
|
Vega-Hernández M, Kovacs A, De Langhe S, Ornitz DM. FGF10/FGFR2b signaling is essential for cardiac fibroblast development and growth of the myocardium. Development 2011; 138:3331-40. [PMID: 21750042 PMCID: PMC3133922 DOI: 10.1242/dev.064410] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2011] [Indexed: 11/20/2022]
Abstract
The epicardium serves as a source of growth factors that regulate myocardial proliferation and as a source of epicardial-derived cells (EPDC), which give rise to interstitial cardiac fibroblasts and perivascular cells. These progenitors populate the compact myocardium to become part of the mature coronary vasculature and fibrous skeleton of the heart. Little is known about the mechanisms that regulate EPDC migration into the myocardium or the functions carried out by these cells once they enter the myocardium. However, it has been proposed that cardiac fibroblasts are important for growth of the heart during late gestation and are a source of homeostatic factors in the adult. Here, we identify a myocardial to epicardial fibroblast growth factor (FGF) signal, mediated by FGF10 and FGFR2b, that is essential for movement of cardiac fibroblasts into the compact myocardium. Inactivation of this signaling pathway results in fewer epicardial derived cells within the compact myocardium, decreased myocardial proliferation and a resulting smaller thin-walled heart.
Collapse
Affiliation(s)
- Mónica Vega-Hernández
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Attila Kovacs
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Stijn De Langhe
- Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | - David M. Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
664
|
Tang N, Marshall WF, McMahon M, Metzger RJ, Martin GR. Control of mitotic spindle angle by the RAS-regulated ERK1/2 pathway determines lung tube shape. Science 2011; 333:342-345. [PMID: 21764747 DOI: 10.1126/science.1204831] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During early lung development, airway tubes change shape. Tube length increases more than circumference as a large proportion of lung epithelial cells divide parallel to the airway longitudinal axis. We show that this bias is lost in mutants with increased extracellular signal-regulated kinase 1 (ERK1) and ERK2 activity, revealing a link between the ERK1/2 signaling pathway and the control of mitotic spindle orientation. Using a mathematical model, we demonstrate that change in airway shape can occur as a function of spindle angle distribution determined by ERK1/2 signaling, independent of effects on cell proliferation or cell size and shape. We identify sprouty genes, which encode negative regulators of fibroblast growth factor 10 (FGF10)-mediated RAS-regulated ERK1/2 signaling, as essential for controlling airway shape change during development through an effect on mitotic spindle orientation.
Collapse
Affiliation(s)
- Nan Tang
- Department of Anatomy, University of California, San Francisco, CA 94158, USA
| | - Wallace F Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | - Martin McMahon
- Cancer Research Institute and Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - Ross J Metzger
- Department of Anatomy, University of California, San Francisco, CA 94158, USA
| | - Gail R Martin
- Department of Anatomy, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
665
|
Barx1-mediated inhibition of Wnt signaling in the mouse thoracic foregut controls tracheo-esophageal septation and epithelial differentiation. PLoS One 2011; 6:e22493. [PMID: 21799872 PMCID: PMC3142160 DOI: 10.1371/journal.pone.0022493] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 06/24/2011] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal cells underlying the definitive endoderm in vertebrate animals play a vital role in digestive and respiratory organogenesis. Although several signaling pathways are implicated in foregut patterning and morphogenesis, and despite the clinical importance of congenital tracheal and esophageal malformations in humans, understanding of molecular mechanisms that allow a single tube to separate correctly into the trachea and esophagus is incomplete. The homoebox gene Barx1 is highly expressed in prospective stomach mesenchyme and required to specify this organ. We observed lower Barx1 expression extending contiguously from the proximal stomach domain, along the dorsal anterior foregut mesenchyme and in mesenchymal cells between the nascent esophagus and trachea. This expression pattern exactly mirrors the decline in Wnt signaling activity in late development of the adjacent dorsal foregut endoderm and medial mainstem bronchi. The hypopharynx in Barx1(-/-) mouse embryos is abnormally elongated and the point of esophago-tracheal separation shows marked caudal displacement, resulting in a common foregut tube that is similar to human congenital tracheo-esophageal fistula and explains neonatal lethality. Moreover, the Barx1(-/-) esophagus displays molecular and cytologic features of respiratory endoderm, phenocopying abnormalities observed in mouse embryos with activated ß-catenin. The zone of canonical Wnt signaling is abnormally prolonged and expanded in the proximal Barx1(-/-) foregut. Thus, as in the developing stomach, but distinct from the spleen, Barx1 control of thoracic foregut specification and tracheo-esophageal septation is tightly associated with down-regulation of adjacent Wnt pathway activity.
Collapse
|
666
|
|
667
|
Yates LL, Dean CH. Planar polarity: A new player in both lung development and disease. Organogenesis 2011; 7:209-16. [PMID: 22030785 DOI: 10.4161/org.7.3.18462] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The clinical burden of both adult and neonatal lung disease worldwide is substantial; in the UK alone, respiratory disease kills one in four people. It is increasingly recognized that genes and pathways that regulate lung development, may be aberrantly activated in disease and/or reactivated as part of the lungs' intrinsic repair mechanisms. Investigating the genes and signaling pathways that regulate lung growth has led to significant insights into the pathogenesis of congenital and adult lung disease. Recently, the planar cell polarity (PCP) pathway has been shown to be required for normal lung development, and data suggests that this signaling pathway is also involved in the pathogenesis of some lung diseases. In this review, we summarize current evidence indicating that the PCP pathway is required for both lung development and disease.
Collapse
Affiliation(s)
- Laura L Yates
- Peter MacCallum Cancer Institute, Melbourne, Australia
| | | |
Collapse
|
668
|
Whitsett JA, Kalinichenko VV. Integrin α6β4 defines a novel lung epithelial progenitor cell: a step forward for cell-based therapies for pulmonary disease. J Clin Invest 2011; 121:2543-5. [PMID: 21701072 DOI: 10.1172/jci58704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The many challenges associated with lung transplantation provide a strong rationale for the development of cell- and tissue-based therapies for patients with respiratory failure caused by the loss of lung tissue that is associated with chronic pulmonary disease, injury, or resection. In this issue of the JCI, Chapman et al. take an important step forward in the development of regenerative medicine for the treatment of lung disease by identifying a novel integrin α6β4-expressing alveolar epithelial cell that serves as a multipotent progenitor during repair of the severely injured lung.
Collapse
Affiliation(s)
- Jeffrey A Whitsett
- Perinatal Institute, Division of Neonatology, Perinatal, and Pulmonary Biology, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.
| | | |
Collapse
|
669
|
Hsu YC, Osinski J, Campbell CE, Litwack ED, Wang D, Liu S, Bachurski CJ, Gronostajski RM. Mesenchymal nuclear factor I B regulates cell proliferation and epithelial differentiation during lung maturation. Dev Biol 2011; 354:242-52. [PMID: 21513708 PMCID: PMC3098902 DOI: 10.1016/j.ydbio.2011.04.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 04/04/2011] [Accepted: 04/06/2011] [Indexed: 01/01/2023]
Abstract
The Nuclear factor I (NFI) transcription factor family consists of four genes (Nfia, Nfib, Nfic and Nfix) that regulate the development of multiple organ systems in mice and humans. Nfib is expressed in both lung mesenchyme and epithelium and mice lacking Nfib have severe lung maturation defects and die at birth. Here we continue our analysis of the phenotype of Nfib⁻/⁻ lungs and show that Nfib specifically in lung mesenchyme controls late epithelial and mesenchymal cell proliferation and differentiation. There are more PCNA, BrdU, PHH3 and Ki67 positive cells in Nfib⁻/⁻ lungs than in wild type lungs at E18.5 and this increase in proliferation marker expression is seen in both epithelial and mesenchymal cells. The loss of Nfib in all lung cells decreases the expression of markers for alveolar epithelial cells (Aqp5 and Sftpc), Clara cells (Scgb1a1) and ciliated cells (Foxj1) in E18.5 lungs. To test for a specific role of Nfib in lung mesenchyme we generated and analyzed Nfib(flox/flox), Dermo1-Cre mice. Loss of Nfib only in mesenchyme results in decreased Aqp5, Sftpc and Foxj1 expression, increased cell proliferation, and a defect in sacculation similar to that seen in Nfib⁻/⁻ mice. In contrast, mesenchyme specific loss of Nfib had no effect on the expression of Scgb1a1 in the airway. Microarray and QPCR analyses indicate that the loss of Nfib in lung mesenchyme affects the expression of genes associated with extracellular matrix, cell adhesion and FGF signaling which could affect distal lung maturation. Our data indicate that mesenchymal Nfib regulates both mesenchymal and epithelial cell proliferation through multiple pathways and that mesenchymal NFI-B-mediated signals are essential for the maturation of distal lung epithelium.
Collapse
Affiliation(s)
- Yu-Chih Hsu
- Department of Biochemistry, Developmental Genomics Group, Center of Excellence in Bioinformatics and Life Science, State University of New York at Buffalo, 701 Ellicott St. Buffalo, NY 14203, USA
| | - Jason Osinski
- Department of Biochemistry, Developmental Genomics Group, Center of Excellence in Bioinformatics and Life Science, State University of New York at Buffalo, 701 Ellicott St. Buffalo, NY 14203, USA
| | - Christine E. Campbell
- Department of Biochemistry, Developmental Genomics Group, Center of Excellence in Bioinformatics and Life Science, State University of New York at Buffalo, 701 Ellicott St. Buffalo, NY 14203, USA
| | - E. David Litwack
- Dept. of Anatomy and Neurobiology and the Program in Neuroscience, University of Maryland, Baltimore, School of Medicine, HSF II, S251, 20 Penn St., Baltimore, MD 21201, USA
| | - Dan Wang
- Department of Biostatistics, Center of Excellence in Bioinformatics and Life Science, State University of New York at Buffalo, 701 Ellicott St. Buffalo, NY 14203, USA and Department of Biostatistics, Roswell Park Cancer Institute, Buffalo, NY 14203, USA
| | - Song Liu
- Department of Biostatistics, Center of Excellence in Bioinformatics and Life Science, State University of New York at Buffalo, 701 Ellicott St. Buffalo, NY 14203, USA and Department of Biostatistics, Roswell Park Cancer Institute, Buffalo, NY 14203, USA
| | - Cindy J. Bachurski
- Division of Pulmonary Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Richard M. Gronostajski
- Department of Biochemistry, Developmental Genomics Group, Center of Excellence in Bioinformatics and Life Science, State University of New York at Buffalo, 701 Ellicott St. Buffalo, NY 14203, USA
| |
Collapse
|
670
|
Teisanu RM, Chen H, Matsumoto K, McQualter JL, Potts E, Foster WM, Bertoncello I, Stripp BR. Functional analysis of two distinct bronchiolar progenitors during lung injury and repair. Am J Respir Cell Mol Biol 2011; 44:794-803. [PMID: 20656948 PMCID: PMC3135841 DOI: 10.1165/rcmb.2010-0098oc] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 05/28/2010] [Indexed: 02/05/2023] Open
Abstract
Air spaces of the mammalian lung are lined by a specialized epithelium that is maintained by endogenous progenitor cells. Within bronchioles, the abundance and distribution of progenitor cells that contribute to epithelial homeostasis change as a function of maintenance versus repair. It is unclear whether functionally distinct progenitor pools or a single progenitor cell type maintain the epithelium and how the behavior is regulated in normal or disease states. To address these questions, we applied fractionation methods for the enrichment of distal airway progenitors. We show that bronchiolar progenitor cells can be subdivided into two functionally distinct populations that differ in their susceptibility to injury and contribution to repair. The proliferative capacity of these progenitors is confirmed in a novel in vitro assay. We show that both populations give rise to colonies with a similar dependence on stromal cell interactions and regulation by TGF-β. These findings provide additional insights into mechanisms of epithelial remodeling in the setting of chronic lung disease and offer hope that pharmacologic interventions may be developed to mitigate tissue remodeling.
Collapse
Affiliation(s)
- Roxana M. Teisanu
- Division of Pulmonary, Allergy and Critical Care, Duke University Medical Center, Durham, North Carolina; The Australian Stem Cell Centre, Clayton, Victoria, Australia; and Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Huaiyong Chen
- Division of Pulmonary, Allergy and Critical Care, Duke University Medical Center, Durham, North Carolina; The Australian Stem Cell Centre, Clayton, Victoria, Australia; and Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Keitaro Matsumoto
- Division of Pulmonary, Allergy and Critical Care, Duke University Medical Center, Durham, North Carolina; The Australian Stem Cell Centre, Clayton, Victoria, Australia; and Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Jonathan L. McQualter
- Division of Pulmonary, Allergy and Critical Care, Duke University Medical Center, Durham, North Carolina; The Australian Stem Cell Centre, Clayton, Victoria, Australia; and Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Erin Potts
- Division of Pulmonary, Allergy and Critical Care, Duke University Medical Center, Durham, North Carolina; The Australian Stem Cell Centre, Clayton, Victoria, Australia; and Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | | | - Ivan Bertoncello
- Division of Pulmonary, Allergy and Critical Care, Duke University Medical Center, Durham, North Carolina; The Australian Stem Cell Centre, Clayton, Victoria, Australia; and Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Barry R. Stripp
- Division of Pulmonary, Allergy and Critical Care, Duke University Medical Center, Durham, North Carolina; The Australian Stem Cell Centre, Clayton, Victoria, Australia; and Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
671
|
Beers MF, Morrisey EE. The three R's of lung health and disease: repair, remodeling, and regeneration. J Clin Invest 2011; 121:2065-73. [PMID: 21633173 PMCID: PMC3104764 DOI: 10.1172/jci45961] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
All tissues and organs can be classified according to their ability to repair and regenerate during adult homeostasis and after injury. Some exhibit a high rate of constant cell turnover, while others, such as the lung, exhibit only low-level cell regeneration during normal adult homeostasis but have the ability to rapidly regenerate new cells after injury. Lung regeneration likely involves both activation of progenitor cells as well as cell replacement through proliferation of remaining undamaged cells. The pathways and factors that control this process and its role in disease are only now being explored. In this Review, we will discuss the connection between pathways required for lung development and how the lung responds to injury and disease, with a particular emphasis on recent studies describing the role for the epithelium in repair and regeneration.
Collapse
Affiliation(s)
- Michael F. Beers
- Department of Medicine,
Institute for Regenerative Medicine,
Cardiovascular Institute, and
Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Edward E. Morrisey
- Department of Medicine,
Institute for Regenerative Medicine,
Cardiovascular Institute, and
Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
672
|
Rock JR, Hogan BLM. Epithelial progenitor cells in lung development, maintenance, repair, and disease. Annu Rev Cell Dev Biol 2011; 27:493-512. [PMID: 21639799 DOI: 10.1146/annurev-cellbio-100109-104040] [Citation(s) in RCA: 303] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The vertebrate lung is elegantly patterned to carry out gas exchange and host defense. Similar to other organ systems, endogenous stem and progenitor cells fuel the organogenesis of the lung and maintain homeostasis in the face of normal wear and tear. In the context of acute injury, these progenitor populations are capable of effecting efficient repair. However, chronic injury, inflammation, and immune rejection frequently result in pathological airway remodeling and serious impairment of lung function. Here, we review the development, maintenance, and repair of the vertebrate respiratory system with an emphasis on the roles of epithelial stem and progenitor cells. We discuss what is currently known about their identities, lineage relationships, and the mechanisms that regulate their differentiation along various lineages. A deeper understanding of these progenitor populations will undoubtedly accelerate the discovery of improved cellular, genetic, molecular, and bioengineered therapies for lung disease.
Collapse
Affiliation(s)
- Jason R Rock
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
673
|
El-Hashash AHK, Alam DA, Turcatel G, Rogers O, Li S, Bellusci S, Warburton D. Six1 transcription factor is critical for coordination of epithelial, mesenchymal and vascular morphogenesis in the mammalian lung. Dev Biol 2011; 353:242-58. [PMID: 21385574 PMCID: PMC3114882 DOI: 10.1016/j.ydbio.2011.02.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 02/23/2011] [Accepted: 02/28/2011] [Indexed: 01/12/2023]
Abstract
Six1 is a member of the six-homeodomain family of transcription factors. Six1 is expressed in multiple embryonic cell types and plays important roles in proliferation, differentiation and survival of precursor cells of different organs, yet its function during lung development was hitherto unknown. Herein we show that Six1(-/-) lungs are severely hypoplastic with greatly reduced epithelial branching and increased mesenchymal cellularity. Six1 is expressed at the distal epithelial tips of branching tubules as well as in the surrounding distal mesenchyme. Six1(-/-) lung epithelial cells show increased expression of differentiation markers, but loss of progenitor cell markers. Six1 overexpression in MLE15 lung epithelial cells in vitro inhibited cell differentiation, but increases the expression of progenitor cell markers. In addition, Six1(-/-) embryos and newborn mice exhibit mesenchymal overproliferation, decreased Fgf10 expression and severe defects in the smooth muscle component of the bronchi and major pulmonary vessels. These defects lead to rupture of major vessels in mutant lungs after birth. Treatment of Six1(-/-) epithelial explants in culture with recombinant Fgf10 protein restores epithelial branching. As Shh expression is abnormally increased in Six1(-/-) lungs, we also treated mutant mesenchymal explants with recombinant Shh protein and found that these explants were competent to respond to Shh and continued to grow in culture. Furthermore, inhibition of Shh signaling with cyclopamine stimulated Six1(-/-) lungs to grow and branch in culture. This study provides the first evidence for the requirement of Six1 in coordinating Shh-Fgf10 signaling in embryonic lung to ensure proper levels of proliferation and differentiation along the proximodistal axis of epithelial, mesenchymal and endothelial cells. These findings uncover novel and essential functions for Six1 as a critical coordinator of Shh-Fgf10 signaling during embryonic lung development. We propose that Six1 is hence critical for coordination of proper lung epithelial, mesenchymal and vascular development.
Collapse
Affiliation(s)
- Ahmed HK El-Hashash
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine of University of Southern California, 4650 Sunset Boulevard MS35, Los Angeles, CA 90027, USA
| | - Denise Al Alam
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine of University of Southern California, 4650 Sunset Boulevard MS35, Los Angeles, CA 90027, USA
| | - Gianluca Turcatel
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine of University of Southern California, 4650 Sunset Boulevard MS35, Los Angeles, CA 90027, USA
| | - Orquidea Rogers
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine of University of Southern California, 4650 Sunset Boulevard MS35, Los Angeles, CA 90027, USA
| | - Sean Li
- Children’s Hospital Boston, Harvard Medical School, USA
| | - Saverio Bellusci
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine of University of Southern California, 4650 Sunset Boulevard MS35, Los Angeles, CA 90027, USA
| | - David Warburton
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine of University of Southern California, 4650 Sunset Boulevard MS35, Los Angeles, CA 90027, USA
| |
Collapse
|
674
|
Kajstura J, Rota M, Hall SR, Hosoda T, D'Amario D, Sanada F, Zheng H, Ogórek B, Rondon-Clavo C, Ferreira-Martins J, Matsuda A, Arranto C, Goichberg P, Giordano G, Haley KJ, Bardelli S, Rayatzadeh H, Liu X, Quaini F, Liao R, Leri A, Perrella MA, Loscalzo J, Anversa P. Evidence for human lung stem cells. N Engl J Med 2011; 364:1795-806. [PMID: 21561345 PMCID: PMC3197695 DOI: 10.1056/nejmoa1101324] [Citation(s) in RCA: 271] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Although progenitor cells have been described in distinct anatomical regions of the lung, description of resident stem cells has remained elusive. METHODS Surgical lung-tissue specimens were studied in situ to identify and characterize human lung stem cells. We defined their phenotype and functional properties in vitro and in vivo. RESULTS Human lungs contain undifferentiated human lung stem cells nested in niches in the distal airways. These cells are self-renewing, clonogenic, and multipotent in vitro. After injection into damaged mouse lung in vivo, human lung stem cells form human bronchioles, alveoli, and pulmonary vessels integrated structurally and functionally with the damaged organ. The formation of a chimeric lung was confirmed by detection of human transcripts for epithelial and vascular genes. In addition, the self-renewal and long-term proliferation of human lung stem cells was shown in serial-transplantation assays. CONCLUSIONS Human lungs contain identifiable stem cells. In animal models, these cells participate in tissue homeostasis and regeneration. They have the undemonstrated potential to promote tissue restoration in patients with lung disease. (Funded by the National Institutes of Health.).
Collapse
Affiliation(s)
- Jan Kajstura
- Department of Anesthesia, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
675
|
Delacourt C. [Lung development abnormalities should not be restricted to respiratory paediatricians]. Rev Mal Respir 2011; 28:402-3. [PMID: 21549894 DOI: 10.1016/j.rmr.2011.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 03/09/2011] [Indexed: 11/19/2022]
|
676
|
Wansleeben C, van Gurp L, Feitsma H, Kroon C, Rieter E, Verberne M, Guryev V, Cuppen E, Meijlink F. An ENU-mutagenesis screen in the mouse: identification of novel developmental gene functions. PLoS One 2011; 6:e19357. [PMID: 21559415 PMCID: PMC3084836 DOI: 10.1371/journal.pone.0019357] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 03/31/2011] [Indexed: 01/16/2023] Open
Abstract
Background Mutagenesis screens in the mouse have been proven useful for the identification of novel gene functions and generation of interesting mutant alleles. Here we describe a phenotype-based screen for recessive mutations affecting embryonic development. Methodology/Principal Findings Mice were mutagenized with N-ethyl-N-nitrosurea (ENU) and following incrossing the offspring, embryos were analyzed at embryonic day 10.5. Mutant phenotypes that arose in our screen include cardiac and nuchal edema, neural tube defects, situs inversus of the heart, posterior truncation and the absence of limbs and lungs. We isolated amongst others novel mutant alleles for Dll1, Ptprb, Plexin-B2, Fgf10, Wnt3a, Ncx1, Scrib(Scrib, Scribbled homolog [Drosophila]) and Sec24b. We found both nonsense alleles leading to severe protein truncations and mutants with single-amino acid substitutions that are informative at a molecular level. Novel findings include an ectopic neural tube in our Dll1 mutant and lung defects in the planar cell polarity mutants for Sec24b and Scrib. Conclusions/Significance Using a forward genetics approach, we have generated a number of novel mutant alleles that are linked to disturbed morphogenesis during development.
Collapse
Affiliation(s)
- Carolien Wansleeben
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Léon van Gurp
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Harma Feitsma
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Carla Kroon
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ester Rieter
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Marlies Verberne
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Victor Guryev
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Edwin Cuppen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Frits Meijlink
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Centre Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
677
|
Follistatin-like 1 (Fstl1) is a bone morphogenetic protein (BMP) 4 signaling antagonist in controlling mouse lung development. Proc Natl Acad Sci U S A 2011; 108:7058-63. [PMID: 21482757 DOI: 10.1073/pnas.1007293108] [Citation(s) in RCA: 172] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lung morphogenesis is a well orchestrated, tightly regulated process through several molecular pathways, including TGF-β/bone morphogenetic protein (BMP) signaling. Alteration of these signaling pathways leads to lung malformation. We investigated the role of Follistatin-like 1 (Fstl1), a secreted follistatin-module-containing glycoprotein, in lung development. Deletion of Fstl1 in mice led to postnatal lethality as a result of respiratory failure. Analysis of the mutant phenotype showed that Fstl1 is essential for tracheal cartilage formation and alveolar maturation. Deletion of the Fstl1 gene resulted in malformed tracheal rings manifested as discontinued rings and reduced ring number. Fstl1-deficient mice displayed septal hypercellularity and end-expiratory atelectasis, which were associated with impaired differentiation of distal alveolar epithelial cells and insufficient production of mature surfactant proteins. Mechanistically, Fstl1 interacted directly with BMP4, negatively regulated BMP4/Smad1/5/8 signaling, and inhibited BMP4-induced surfactant gene expression. Reducing BMP signaling activity by Noggin rescued pulmonary atelectasis of Fstl1-deficient mice. Therefore, we provide in vivo and in vitro evidence to demonstrate that Fstl1 modulates lung development and alveolar maturation, in part, through BMP4 signaling.
Collapse
|
678
|
Domyan ET, Ferretti E, Throckmorton K, Mishina Y, Nicolis SK, Sun X. Signaling through BMP receptors promotes respiratory identity in the foregut via repression of Sox2. Development 2011; 138:971-81. [PMID: 21303850 DOI: 10.1242/dev.053694] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mammalian foregut gives rise to the dorsally located esophagus and stomach and the ventrally located trachea and lung. Proper patterning and morphogenesis of the common foregut tube and its derived organs is essential for viability of the organism at birth. Here, we show that conditional inactivation of BMP type I receptor genes Bmpr1a and Bmpr1b (Bmpr1a;b) in the ventral endoderm leads to tracheal agenesis and ectopic primary bronchi. Molecular analyses of these mutants reveal a reduction of ventral endoderm marker NKX2-1 and an expansion of dorsal markers SOX2 and P63 into the prospective trachea and primary bronchi. Subsequent genetic experiments show that activation of canonical WNT signaling, previously shown to induce ectopic respiratory fate in otherwise wild-type mice, is incapable of promoting respiratory fate in the absence of Bmpr1a;b. Furthermore, we find that inactivation of Sox2 in Bmpr1a;b mutants does not suppress ectopic lung budding but does rescue trachea formation and NKX2-1 expression. Together, our data suggest that signaling through BMPR1A;B performs at least two roles in early respiratory development: first, it promotes tracheal formation through repression of Sox2; and second, it restricts the site of lung bud initiation.
Collapse
Affiliation(s)
- Eric T Domyan
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
679
|
Tian Y, Zhang Y, Hurd L, Hannenhalli S, Liu F, Lu MM, Morrisey EE. Regulation of lung endoderm progenitor cell behavior by miR302/367. Development 2011; 138:1235-45. [PMID: 21350014 PMCID: PMC3050657 DOI: 10.1242/dev.061762] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2011] [Indexed: 11/20/2022]
Abstract
The temporal and spatial control of organ-specific endoderm progenitor development is poorly understood. miRNAs affect cell function by regulating programmatic changes in protein expression levels. We show that the miR302/367 cluster is a target of the transcription factor Gata6 in mouse lung endoderm and regulates multiple aspects of early lung endoderm progenitor development. miR302/367 is expressed at early stages of lung development, but its levels decline rapidly as development proceeds. Gain- and loss-of-function studies show that altering miR302/367 expression disrupts the balance of lung endoderm progenitor proliferation and differentiation, as well as apical-basal polarity. Increased miR302/367 expression results in the formation of an undifferentiated multi-layered lung endoderm, whereas loss of miR302/367 activity results in decreased proliferation and enhanced lung endoderm differentiation. miR302/367 coordinates the balance between proliferation and differentiation, in part, through direct regulation of Rbl2 and Cdkn1a, whereas apical-basal polarity is controlled by regulation of Tiam1 and Lis1. Thus, miR302/367 directs lung endoderm development by coordinating multiple aspects of progenitor cell behavior, including proliferation, differentiation and apical-basal polarity.
Collapse
Affiliation(s)
- Ying Tian
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuzhen Zhang
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura Hurd
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sridhar Hannenhalli
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Feiyan Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Min Min Lu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E. Morrisey
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
680
|
Moura RS, Coutinho-Borges JP, Pacheco AP, Damota PO, Correia-Pinto J. FGF signaling pathway in the developing chick lung: expression and inhibition studies. PLoS One 2011; 6:e17660. [PMID: 21412430 PMCID: PMC3055888 DOI: 10.1371/journal.pone.0017660] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 02/07/2011] [Indexed: 12/02/2022] Open
Abstract
Background Fibroblast growth factors (FGF) are essential key players during embryonic development. Through their specific cognate receptors (FGFR) they activate intracellular cascades, finely regulated by modulators such as Sprouty. Several FGF ligands (FGF1, 2, 7, 9, 10 and 18) signaling through the four known FGFRs, have been implicated in lung morphogenesis. Although much is known about mammalian lung, so far, the avian model has not been explored for lung studies. Methodology/Principal Findings In this study we provide the first description of fgf10, fgfr1-4 and spry2 expression patterns in early stages of chick lung development by in situ hybridization and observe that they are expressed similarly to their mammalian counterparts. Furthermore, aiming to determine a role for FGF signaling in chick lung development, in vitro FGFR inhibition studies were performed. Lung explants treated with an FGF receptor antagonist (SU5402) presented an impairment of secondary branch formation after 48 h of culture; moreover, abnormal lung growth with a cystic appearance of secondary bronchi and reduction of the mesenchymal tissue was observed. Branching and morphometric analysis of lung explants confirmed that FGFR inhibition impaired branching morphogenesis and induced a significant reduction of the mesenchyme. Conclusions/Significance This work demonstrates that FGFRs are essential for the epithelial-mesenchymal interactions that determine epithelial branching and mesenchymal growth and validate the avian embryo as a good model for pulmonary studies, namely to explore the FGF pathway as a therapeutic target.
Collapse
Affiliation(s)
- Rute S Moura
- School of Health Sciences, Life and Health Sciences Research Institute (ICVS), University of Minho, Braga, Portugal.
| | | | | | | | | |
Collapse
|
681
|
Abstract
Progress has recently been made in identifying progenitor cell populations in the embryonic lung. Some progenitor cell types have been definitively identified by lineage-tracing studies. However, others are not as well characterized and their existence is inferred on the basis of lung morphology, or mutant phenotypes. Here, I focus on lung development after the specification of the initial lung primordium. The evidence for various lung embryonic progenitor cell types is discussed and future experiments are suggested. The regulation of progenitor proliferation in the embryonic lung, and its coordinate control with morphogenesis, is also discussed. In addition, the relationship between embryonic and adult lung progenitors is considered.
Collapse
Affiliation(s)
- Emma L Rawlins
- Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
682
|
Bolasco G, Tracey-White DC, Tolmachova T, Thorley AJ, Tetley TD, Seabra MC, Hume AN. Loss of Rab27 function results in abnormal lung epithelium structure in mice. Am J Physiol Cell Physiol 2011; 300:C466-76. [PMID: 21160031 PMCID: PMC3063958 DOI: 10.1152/ajpcell.00446.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 12/13/2010] [Indexed: 12/12/2022]
Abstract
Rab27 small GTPases regulate secretion and movement of lysosome-related organelles such as T cell cytolytic granules and platelet-dense granules. Previous studies indicated that Rab27a and Rab27b are expressed in the murine lung suggesting that they regulate secretory processes in the lung. Consistent with those studies, we found that Rab27a and Rab27b are expressed in cell types that contain secretory granules: alveolar epithelial type II (AEII) and Clara cells. We then used Rab27a/Rab27b double knockout (DKO) mice to examine the functional consequence of loss of Rab27 proteins in the murine lung. Light and electron microscopy revealed a number of morphological changes in lungs from DKO mice when compared with those in control animals. In aged DKO mice we observed atrophy of the bronchiolar and alveolar epithelium with reduction of cells numbers, thinning of the bronchiolar epithelium and alveolar walls, and enlargement of alveolar airspaces. In these samples we also observed increased numbers of activated foamy alveolar macrophages and granulocyte containing infiltrates together with reduction in the numbers of Clara cells and AEII cells compared with control. At the ultrastructural level we observed accumulation of cytoplasmic membranes and vesicles in Clara cells. Meanwhile, AEII cells in DKO accumulated large mature lamellar bodies and lacked immature/precursor lamellar bodies. We hypothesize that the morphological changes observed at the ultrastructural level in DKO samples result from secretory defects in AEII and Clara cells and that over time these defects lead to atrophy of the epithelium.
Collapse
Affiliation(s)
- Giulia Bolasco
- Molecular Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
683
|
Abstract
The mammalian respiratory lineage, consisting of the trachea and lung, originates from the ventral foregut in an early embryo. Reciprocal signaling interactions between the foregut epithelium and its associated mesenchyme guide development of the respiratory endoderm, from a naive sheet of cells to multiple cell types that line a functional organ. This review synthesizes current understanding of the early events in respiratory system development, focusing on three main topics: (1) specification of the respiratory system as a distinct organ of the endoderm, (2) patterning and differentiation of the nascent respiratory epithelium along its proximal-distal axis, and (3) plasticity of the respiratory cells during the process of development. This review also highlights areas in need of further study, including determining how early endoderm cells rapidly switch their responses to the same signaling cues during development, and how the general proximal-distal pattern of the lung is converted to fine-scale organization of multiple cell types along this axis.
Collapse
Affiliation(s)
- Eric T. Domyan
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| | - Xin Sun
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
684
|
Green MD, Chen A, Nostro MC, d'Souza SL, Schaniel C, Lemischka IR, Gouon-Evans V, Keller G, Snoeck HW. Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat Biotechnol 2011; 29:267-72. [PMID: 21358635 DOI: 10.1038/nbt.1788] [Citation(s) in RCA: 286] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 01/25/2011] [Indexed: 01/08/2023]
Abstract
Directed differentiation of human embryonic stem (hES) cells and human induced pluripotent stem (hiPS) cells captures in vivo developmental pathways for specifying lineages in vitro, thus avoiding perturbation of the genome with exogenous genetic material. Thus far, derivation of endodermal lineages has focused predominantly on hepatocytes, pancreatic endocrine cells and intestinal cells. The ability to differentiate pluripotent cells into anterior foregut endoderm (AFE) derivatives would expand their utility for cell therapy and basic research to tissues important for immune function, such as the thymus; for metabolism, such as thyroid and parathyroid; and for respiratory function, such as trachea and lung. We find that dual inhibition of transforming growth factor (TGF)-β and bone morphogenic protein (BMP) signaling after specification of definitive endoderm from pluripotent cells results in a highly enriched AFE population that is competent to be patterned along dorsoventral and anteroposterior axes. These findings provide an approach for the generation of AFE derivatives.
Collapse
Affiliation(s)
- Michael D Green
- Department of Gene and Cell Medicine and Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
685
|
El-Hashash AHK, Alam DA, Turcatel G, Bellusci S, Warburton D. Eyes absent 1 (Eya1) is a critical coordinator of epithelial, mesenchymal and vascular morphogenesis in the mammalian lung. Dev Biol 2011; 350:112-26. [PMID: 21129374 PMCID: PMC3022116 DOI: 10.1016/j.ydbio.2010.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 11/10/2010] [Accepted: 11/19/2010] [Indexed: 01/12/2023]
Abstract
The proper level of proliferation and differentiation along the proximodistal axis is crucial for lung organogenesis. Elucidation of the factors that control these processes will therefore provide important insights into embryonic lung development and regeneration. Eya1 is a transcription factor/protein phosphatase that regulates cell lineage specification and proliferation. Yet its functions during lung development are unknown. In this paper we show that Eya1(-/-) lungs are severely hypoplastic with reduced epithelial branching and increased mesenchymal cellularity. Eya1 is expressed at the distal epithelial tips of branching tubules as well as in the surrounding distal mesenchyme. Eya1(-/-) lung epithelial cells show loss of progenitor cell markers with increased expression of differentiation markers and cell cycle exit. In addition, Eya1(-/-) embryos and newborn mice exhibit severe defects in the smooth muscle component of the bronchi and major pulmonary vessels with decreased Fgf10 expression. These defects lead to rupture of the major vessels and hemorrhage into the lungs after birth. Treatment of Eya1(-/-) epithelial explants in culture with recombinant Fgf10 stimulates epithelial branching. Since Shh expression and activity are abnormally increased in Eya1(-/-) lungs, we tested whether genetically lowering Shh activity could rescue the Eya1(-/-) lung phenotype. Indeed, genetic reduction of Shh partially rescues Eya1(-/-) lung defects while restoring Fgf10 expression. This study provides the first evidence that Eya1 regulates Shh signaling in embryonic lung, thus ensuring the proper level of proliferation and differentiation along the proximodistal axis of epithelial, mesenchymal and endothelial cells. These findings uncover novel functions for Eya1 as a critical upstream coordinator of Shh-Fgf10 signaling during embryonic lung development. We conclude, therefore, that Eya1 function is critical for proper coordination of lung epithelial, mesenchymal and vascular development.
Collapse
Affiliation(s)
- Ahmed HK El-Hashash
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine of University of Southern California, 4650 Sunset Boulevard MS35, Los Angeles, CA 90027, USA
| | - Denise Al Alam
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine of University of Southern California, 4650 Sunset Boulevard MS35, Los Angeles, CA 90027, USA
| | - Gianluca Turcatel
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine of University of Southern California, 4650 Sunset Boulevard MS35, Los Angeles, CA 90027, USA
| | - Saverio Bellusci
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine of University of Southern California, 4650 Sunset Boulevard MS35, Los Angeles, CA 90027, USA
| | - David Warburton
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine of University of Southern California, 4650 Sunset Boulevard MS35, Los Angeles, CA 90027, USA
| |
Collapse
|
686
|
Rennie MY, Detmar J, Whiteley KJ, Yang J, Jurisicova A, Adamson SL, Sled JG. Vessel tortuousity and reduced vascularization in the fetoplacental arterial tree after maternal exposure to polycyclic aromatic hydrocarbons. Am J Physiol Heart Circ Physiol 2011; 300:H675-84. [DOI: 10.1152/ajpheart.00510.2010] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants and the main toxicants found in cigarettes. Women are often exposed to PAHs before pregnancy, typically via prepregnancy smoking. To determine how prepregnancy exposure affects the fetoplacental vasculature of the placenta, we exposed female mice to PAHs before conception, perfused the fetoplacental arterial trees with X-ray contrast agent, and imaged the vasculature ex vivo by microcomputed tomography (micro-CT) at embryonic day 15.5. Automated vascular segmentation and flow calculations revealed that in control trees, <40 chorionic plate vessels (diameter >180 μm) gave rise to ∼1,300 intraplacental arteries (50–180 μm), predicting an arterial vascular resistance of 0.37 ± 0.04 mmHg·s·μl−1. PAH exposure increased vessel curvature of chorionic plate vessels and significantly increased the tortuousity ratio of the tree. Intraplacental arteries were reduced by 17%, primarily due to a 27% decrease in the number of arteriole-sized (50–100 μm) vessels. There were no changes in the number of chorionic vessels, the depth or span of the tree, the diameter scaling coefficient, or the segment length-to-diameter ratio. PAH exposure resulted in a tree with a similar size and dichotomous branching structure, but one that was comparatively sparse so that arterial vascular resistance was increased by 30%. Assuming the same pressure gradient, blood flow would be 19% lower. Low flow may contribute to the 23% reduction observed in fetal weight. New insights into the specific effects of PAH exposure on a developing arterial tree were achieved using micro-CT imaging and automated vascular segmentation analysis.
Collapse
Affiliation(s)
- Monique Y. Rennie
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario
- Department of Medical Biophysics,
- Department of Obstetrics and Gynecology,
| | - Jacqui Detmar
- Department of Obstetrics and Gynecology,
- Institute of Medical Studies and
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Kathie J. Whiteley
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Jian Yang
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario
| | - Andrea Jurisicova
- Department of Obstetrics and Gynecology,
- Department of Physiology, University of Toronto, Toronto, Ontario; and
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - S. Lee Adamson
- Department of Obstetrics and Gynecology,
- Department of Physiology, University of Toronto, Toronto, Ontario; and
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - John G. Sled
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, Ontario
- Department of Medical Biophysics,
| |
Collapse
|
687
|
Hanna JM, Onaitis MW. Human lung stem cells: has the future arrived? Semin Thorac Cardiovasc Surg 2011; 23:259-60. [PMID: 22443640 DOI: 10.1053/j.semtcvs.2011.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2011] [Indexed: 11/11/2022]
Abstract
An intriguing paper was recently published that describes c-kit-positive human lung stem cells that self-renew and differentiate into multiple lineages. While these findings are potentially therapeutically exciting, several questions remain to be answered. We review the paper and the issues that have arisen.
Collapse
|
688
|
Abstract
The bronchial, arterial, and venous trees of the lung are complex interwoven structures. Their geometries are created during fetal development through common processes of branching morphogenesis. Insights from fractal geometry suggest that these extensively arborizing trees may be created through simple recursive rules. Mathematical models of Turing have demonstrated how only a few proteins could interact to direct this branching morphogenesis. Development of the airway and vascular trees could, therefore, be considered an example of emergent behavior as complex structures are created from the interaction of only a few processes. However, unlike inanimate emergent structures, the geometries of the airway and vascular trees are highly stereotyped. This review will integrate the concepts of emergence, fractals, and evolution to demonstrate how the complex branching geometries of the airway and vascular trees are ideally suited for gas exchange in the lung. The review will also speculate on how the heterogeneity of blood flow and ventilation created by the vascular and airway trees is overcome through their coordinated construction during fetal development.
Collapse
Affiliation(s)
- Robb W Glenny
- Departments of Medicine and of Physiology and Biophysics, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
689
|
Franzdóttir SR, Axelsson IT, Arason AJ, Baldursson O, Gudjonsson T, Magnusson MK. Airway branching morphogenesis in three dimensional culture. Respir Res 2010; 11:162. [PMID: 21108827 PMCID: PMC3002372 DOI: 10.1186/1465-9921-11-162] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 11/25/2010] [Indexed: 11/26/2022] Open
Abstract
Background Lungs develop from the fetal digestive tract where epithelium invades the vascular rich stroma in a process called branching morphogenesis. In organogenesis, endothelial cells have been shown to be important for morphogenesis and the maintenance of organ structure. The aim of this study was to recapitulate human lung morphogenesis in vitro by establishing a three dimensional (3D) co-culture model where lung epithelial cells were cultured in endothelial-rich stroma. Methods We used a human bronchial epithelial cell line (VA10) recently developed in our laboratory. This cell line cell line maintains a predominant basal cell phenotype, expressing p63 and other basal markers such as cytokeratin-5 and -14. Here, we cultured VA10 with human umbilical vein endothelial cells (HUVECs), to mimic the close interaction between these cell types during lung development. Morphogenesis and differentiation was monitored by phase contrast microscopy, immunostainings and confocal imaging. Results We found that in co-culture with endothelial cells, the VA10 cells generated bronchioalveolar like structures, suggesting that lung epithelial branching is facilitated by the presence of endothelial cells. The VA10 derived epithelial structures display various complex patterns of branching and show partial alveolar type-II differentiation with pro-Surfactant-C expression. The epithelial origin of the branching VA10 colonies was confirmed by immunostaining. These bronchioalveolar-like structures were polarized with respect to integrin expression at the cell-matrix interface. The endothelial-induced branching was mediated by soluble factors. Furthermore, fibroblast growth factor receptor-2 (FGFR-2) and sprouty-2 were expressed at the growing tips of the branching structures and the branching was inhibited by the FGFR-small molecule inhibitor SU5402. Discussion In this study we show that a human lung epithelial cell line can be induced by endothelial cells to form branching bronchioalveolar-like structures in 3-D culture. This novel model of human airway morphogenesis can be used to study critical events in human lung development and suggests a supportive role for the endothelium in promoting branching of airway epithelium.
Collapse
Affiliation(s)
- Sigrídur R Franzdóttir
- Stem Cell Research Unit, Biomedical Center, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | | | | | | | | | | |
Collapse
|
690
|
Rodriguez P, Da Silva S, Oxburgh L, Wang F, Hogan BLM, Que J. BMP signaling in the development of the mouse esophagus and forestomach. Development 2010; 137:4171-6. [PMID: 21068065 DOI: 10.1242/dev.056077] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The stratification and differentiation of the epidermis are known to involve the precise control of multiple signaling pathways. By contrast, little is known about the development of the mouse esophagus and forestomach, which are composed of a stratified squamous epithelium. Based on prior work in the skin, we hypothesized that bone morphogenetic protein (BMP) signaling is a central player. To test this hypothesis, we first used a BMP reporter mouse line harboring a BRE-lacZ allele, along with in situ hybridization to localize transcripts for BMP signaling components, including various antagonists. We then exploited a Shh-Cre allele that drives recombination in the embryonic foregut epithelium to generate gain- or loss-of-function models for the Bmpr1a (Alk3) receptor. In gain-of-function (Shh-Cre;Rosa26(CAG-loxpstoploxp-caBmprIa)) embryos, high levels of ectopic BMP signaling stall the transition from simple columnar to multilayered undifferentiated epithelium in the esophagus and forestomach. In loss-of-function experiments, conditional deletion of the BMP receptor in Shh-Cre;Bmpr1a(flox/flox) embryos allows the formation of a multilayered squamous epithelium but this fails to differentiate, as shown by the absence of expression of the suprabasal markers loricrin and involucrin. Together, these findings suggest multiple roles for BMP signaling in the developing esophagus and forestomach.
Collapse
Affiliation(s)
- Pavel Rodriguez
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
691
|
Jurado S, Smyth I, van Denderen B, Tenis N, Hammet A, Hewitt K, Ng JL, McNees CJ, Kozlov SV, Oka H, Kobayashi M, Conlan LA, Cole TJ, Yamamoto KI, Taniguchi Y, Takeda S, Lavin MF, Heierhorst J. Dual functions of ASCIZ in the DNA base damage response and pulmonary organogenesis. PLoS Genet 2010; 6:e1001170. [PMID: 20975950 PMCID: PMC2958817 DOI: 10.1371/journal.pgen.1001170] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 09/21/2010] [Indexed: 12/15/2022] Open
Abstract
Zn2+-finger proteins comprise one of the largest protein superfamilies with diverse biological functions. The ATM substrate Chk2-interacting Zn2+-finger protein (ASCIZ; also known as ATMIN and ZNF822) was originally linked to functions in the DNA base damage response and has also been proposed to be an essential cofactor of the ATM kinase. Here we show that absence of ASCIZ leads to p53-independent late-embryonic lethality in mice. Asciz-deficient primary fibroblasts exhibit increased sensitivity to DNA base damaging agents MMS and H2O2, but Asciz deletion or knock-down does not affect ATM levels and activation in mouse, chicken, or human cells. Unexpectedly, Asciz-deficient embryos also exhibit severe respiratory tract defects with complete pulmonary agenesis and severe tracheal atresia. Nkx2.1-expressing respiratory precursors are still specified in the absence of ASCIZ, but fail to segregate properly within the ventral foregut, and as a consequence lung buds never form and separation of the trachea from the oesophagus stalls early. Comparison of phenotypes suggests that ASCIZ functions between Wnt2-2b/ß-catenin and FGF10/FGF-receptor 2b signaling pathways in the mesodermal/endodermal crosstalk regulating early respiratory development. We also find that ASCIZ can activate expression of reporter genes via its SQ/TQ-cluster domain in vitro, suggesting that it may exert its developmental functions as a transcription factor. Altogether, the data indicate that, in addition to its role in the DNA base damage response, ASCIZ has separate developmental functions as an essential regulator of respiratory organogenesis. ASCIZ is a DNA damage response protein that has been proposed to be a regulator and stabilizing co-factor of the ATM kinase, mutations of which lead to a syndrome involving neurological and immune dysfunctions, tumour predisposition, and X-ray hypersensitivity. To study Asciz function in vivo, we have generated a knockout mouse model lacking this gene. Here we show that ASCIZ has a specific role in mediating cell survival in response to DNA base damage, but it is not required for stabilization and regulation of ATM. Strikingly, Asciz knockout mice fail to survive to birth and have tissue-specific defects in embryonic development. In particular, Asciz null embryos fail to develop lungs and undergo an early arrest in tracheal development. The precursor cells that normally form the lung are present in our embryos, but they fail to segregate from the foregut. These observations indicate that ASCIZ plays an important and previously unrecognized developmental role that is most likely unrelated to its function in mediating responses to DNA damage. Our study delineates the function of ASCIZ in DNA damage survival and highlights an exciting new function of the protein in controlling the early stages of lung development.
Collapse
Affiliation(s)
- Sabine Jurado
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Australia
| | - Ian Smyth
- Department of Biochemistry and Molecular Biology and Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | - Bryce van Denderen
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Australia
| | - Nora Tenis
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Andrew Hammet
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Kimberly Hewitt
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Jane-Lee Ng
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
| | | | | | - Hayato Oka
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | - Timothy J. Cole
- Department of Biochemistry and Molecular Biology and Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia
| | | | - Yoshihito Taniguchi
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Martin F. Lavin
- Queensland Institute of Medical Research, Herston, Australia
- Central Clinical Division, University of Queensland, Royal Brisbane Hospital, Herston, Australia
| | - Jörg Heierhorst
- St. Vincent's Institute of Medical Research, Fitzroy, Australia
- Department of Medicine, St. Vincent's Hospital, The University of Melbourne, Fitzroy, Australia
- * E-mail:
| |
Collapse
|
692
|
Sanders CJ, Doherty PC, Thomas PG. Respiratory epithelial cells in innate immunity to influenza virus infection. Cell Tissue Res 2010; 343:13-21. [PMID: 20848130 DOI: 10.1007/s00441-010-1043-z] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 08/14/2010] [Indexed: 11/24/2022]
Abstract
Infection by influenza virus leads to respiratory failure characterized by acute lung injury associated with alveolar edema, necrotizing bronchiolitis, and excessive bleeding. Severe reactions to infection that lead to hospitalizations and/or death are frequently attributed to an exuberant host response, with excessive inflammation and damage to the epithelial cells that mediate respiratory gas exchange. The respiratory mucosa serves as a physical and chemical barrier to infection, producing mucus and surfactants, anti-viral mediators, and inflammatory cytokines. The airway epithelial cell layer also serves as the first and overwhelmingly primary target for virus infection and growth. This review details immune events during influenza infection from the viewpoint of the epithelial cells, secretory host defense mechanisms, cell death, and recovery.
Collapse
Affiliation(s)
- Catherine J Sanders
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | | |
Collapse
|
693
|
Yates LL, Schnatwinkel C, Murdoch JN, Bogani D, Formstone CJ, Townsend S, Greenfield A, Niswander LA, Dean CH. The PCP genes Celsr1 and Vangl2 are required for normal lung branching morphogenesis. Hum Mol Genet 2010; 19:2251-67. [PMID: 20223754 PMCID: PMC2865378 DOI: 10.1093/hmg/ddq104] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 03/08/2010] [Indexed: 12/24/2022] Open
Abstract
The lungs are generated by branching morphogenesis as a result of reciprocal signalling interactions between the epithelium and mesenchyme during development. Mutations that disrupt formation of either the correct number or shape of epithelial branches affect lung function. This, in turn, can lead to congenital abnormalities such as cystadenomatoid malformations, pulmonary hypertension or lung hypoplasia. Defects in lung architecture are also associated with adult lung disease, particularly in cases of idiopathic lung fibrosis. Identifying the signalling pathways which drive epithelial tube formation will likely shed light on both congenital and adult lung disease. Here we show that mutations in the planar cell polarity (PCP) genes Celsr1 and Vangl2 lead to disrupted lung development and defects in lung architecture. Lungs from Celsr1(Crsh) and Vangl2(Lp) mouse mutants are small and misshapen with fewer branches, and by late gestation exhibit thickened interstitial mesenchyme and defective saccular formation. We observe a recapitulation of these branching defects following inhibition of Rho kinase, an important downstream effector of the PCP signalling pathway. Moreover, epithelial integrity is disrupted, cytoskeletal remodelling perturbed and mutant endoderm does not branch normally in response to the chemoattractant FGF10. We further show that Celsr1 and Vangl2 proteins are present in restricted spatial domains within lung epithelium. Our data show that the PCP genes Celsr1 and Vangl2 are required for foetal lung development thereby revealing a novel signalling pathway critical for this process that will enhance our understanding of congenital and adult lung diseases and may in future lead to novel therapeutic strategies.
Collapse
Affiliation(s)
- Laura L. Yates
- Medical Research Council, Harwell, Oxfordshire OX11 0RD, UK
| | - Carsten Schnatwinkel
- Howard Hughes Medical Institute, Department of Pediatrics, Section of Developmental Biology, University of Colorado Denver School of Medicine, Aurora, CO, USA and
| | | | - Debora Bogani
- Medical Research Council, Harwell, Oxfordshire OX11 0RD, UK
| | - Caroline J. Formstone
- MRC Centre for Developmental Neurobiology, Kings College London, New Hunts House, London SE1 1UL, UK
| | | | | | - Lee A. Niswander
- Howard Hughes Medical Institute, Department of Pediatrics, Section of Developmental Biology, University of Colorado Denver School of Medicine, Aurora, CO, USA and
| | | |
Collapse
|
694
|
Abstract
The pancreas has been the subject of intense research due to the debilitating diseases that result from its dysfunction. In this review, we summarize current understanding of the critical tissue interactions and intracellular regulatory events that take place during formation of the pancreas from a small cluster of cells in the foregut domain of the mouse embryo. Importantly, an understanding of principles that govern the development of this organ has equipped us with the means to manipulate both embryonic and differentiated adult cells in the context of regenerative medicine. The emerging area of lineage modulation within the adult pancreas is of particular interest, and this review summarizes recent findings that exemplify how lessons learned from development are being applied to reveal the potential of fully differentiated cells to change fate.
Collapse
Affiliation(s)
- Sapna Puri
- Diabetes Center, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|
695
|
Whitsett JA. Review: The intersection of surfactant homeostasis and innate host defense of the lung: lessons from newborn infants. Innate Immun 2010; 16:138-42. [DOI: 10.1177/1753425910366879] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The study of pulmonary surfactant, directed towards prevention and treatment of respiratory distress syndrome in preterm infants, led to the identification of novel proteins/genes that determine the synthesis, packaging, secretion, function, and catabolism of alveolar surfactant. The surfactant proteins, SP-A, SP-B, SP-C, and SP-D, and the surfactant lipid associated transporter, ABCA3, play critical roles in surfactant homeostasis. The study of their structure and function provided insight into a system that integrates the biophysical need to reduce surface tension in the alveoli and the innate host defenses required to maintain pulmonary structure and function after birth. Alveolar homeostasis depends on the intrinsic, multifunctional structures of the surfactant-associated proteins and the shared transcriptional regulatory modules that determine both the expression of genes involved in surfactant production as well as those critical for host defense. Identification of the surfactant proteins and the elucidation of the genetic networks regulating alveolar homeostasis have provided the basis for understanding and diagnosing rare and common pulmonary disorders, including respiratory distress syndrome, inherited disorders of surfactant homeostasis, and pulmonary alveolar proteinosis.
Collapse
Affiliation(s)
- Jeffrey A. Whitsett
- Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati, Ohio, USA,
| |
Collapse
|