651
|
Ichikawa T, Sugiura H, Koarai A, Yanagisawa S, Kanda M, Hayata A, Furukawa K, Akamatsu K, Hirano T, Nakanishi M, Matsunaga K, Minakata Y, Ichinose M. Peroxynitrite augments fibroblast-mediated tissue remodeling via myofibroblast differentiation. Am J Physiol Lung Cell Mol Physiol 2008; 295:L800-8. [PMID: 18790992 DOI: 10.1152/ajplung.90264.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Irreversible airflow limitation in asthma is associated with airway remodeling in which the differentiation of fibroblasts to myofibroblasts plays a pivotal role. In asthmatic airways, excessive production of reactive nitrogen species (RNS) has been observed. The aim of this study is to evaluate whether peroxynitrite, one of the RNS, can affect the differentiation of fibroblasts to myofibroblasts. Human fetal lung fibroblasts were treated with various concentrations of authentic peroxynitrite or a peroxynitrite donor 3-morpholinosydnonimine hydrochloride (SIN-1), and the expressions of alpha-smooth muscle actin (alpha-SMA) and desmin, markers of myofibroblast differentiation, were evaluated. The releases of transforming growth factor-beta(1) (TGF-beta(1)) and ECM proteins including fibronectin and collagen I were assessed. To clarify the mechanism in this differentiation, the effect of anti-TGF-beta antibody or NF-kappaB inhibitors on the alpha-SMA expression and ECM production was assessed. Peroxynitrite and SIN-1 significantly augmented the alpha-SMA expression compared with control in a concentration-dependent manner (P < 0.01 and P < 0.05, respectively). Peroxynitrite significantly increased desmin and TGF-beta(1) production (P < 0.01). Peroxynitrite enhanced the translocation of NF-kappaB into the nucleus confirmed by immunocytostaining and immunoblotting. Peroxynitrite-augmented alpha-SMA expression was blocked by NF-kappaB inhibitors, MG132 and caffeic acid phenethyl ester (CAPE), and anti-TGF-beta antibody. CAPE completely inhibited the peroxynitrite-augmented TGF-beta(1) release. The production of fibronectin and collagen I was significantly increased by peroxynitrite (P < 0.01) and inhibited by anti-TGF-beta antibody. These results suggest that RNS can affect the differentiation to myofibroblasts and excessive ECM production via a NF-kappaB-TGF-beta(1)-dependent pathway.
Collapse
Affiliation(s)
- Tomohiro Ichikawa
- Third Department of Internal Medicine, Wakayama Medical University, School of Medicine, 811-1 Kimiidera, Wakayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
652
|
Henderson NC, Forbes SJ. Hepatic fibrogenesis: from within and outwith. Toxicology 2008; 254:130-5. [PMID: 18824072 DOI: 10.1016/j.tox.2008.08.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 08/21/2008] [Accepted: 08/23/2008] [Indexed: 01/11/2023]
Abstract
Liver disease is now the fifth commonest cause of death in the United Kingdom and the incidence is increasing. Chronic injury to the liver typically due to toxic insult, viral infection, immunological or metabolic diseases usually results in a stereotypical response with both parenchymal regeneration and wound healing. Chronic hepatic injury results in liver fibrosis with eventual progression to cirrhosis and end stage liver disease. At this point the majority of the clinical complications arise such as portal hypertension and the development of liver cancer. If the causative disease can be effectively treated the liver can regenerate and at the least partial resolution of liver fibrosis may occur. Unfortunately, unless the primary disease can be eradicated there are no specific anti-fibrotic treatments in routine clinical use. This highlights the urgent need to both increase our understanding of the mechanisms of hepatic fibrogenesis and to develop novel therapies to arrest or reverse the fibrotic process. This article initially outlines the main cellular pathway of fibrogenesis within the liver-the activation of the quiescent hepatic stellate cell into an activated myofibroblast phenotype, resulting in the production of fibrillar collagen. We will then discuss newly emerging sources of scar forming cells during hepatic injury together with the role of hepatic macrophages which have a regulatory function in both the formation and resolution of liver fibrosis.
Collapse
Affiliation(s)
- Neil C Henderson
- The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK.
| | | |
Collapse
|
653
|
Luteinized Thecomas (Thecomatosis) of the Type Typically Associated With Sclerosing Peritonitis. Am J Surg Pathol 2008; 32:1273-90. [PMID: 18636018 DOI: 10.1097/pas.0b013e3181666a5f] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
654
|
Bossé Y, Paré PD, Seow CY. Airway wall remodeling in asthma: from the epithelial layer to the adventitia. Curr Allergy Asthma Rep 2008; 8:357-66. [PMID: 18606090 DOI: 10.1007/s11882-008-0056-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Asthma is an episodic respiratory syndrome caused by several pathogenic processes. This recurrent syndrome is associated with an accelerated decline in lung function and increase in airway obstruction over time. The reduced lung function is a consequence of tissue restructuring of all the components of the airway wall: 1) epithelium metaplasia; 2) altered quantity, composition, and distribution of extracellular matrix components; 3) microvascular remodeling; and 4) increase of airway smooth muscle mass. How these structural changes affect lung functions is not entirely clear. Deeper understandings of the altered structure and related functional impairment are important for gaining insights into the mechanisms underlying asthma. This review describes the tissue remodeling observed in different compartments of the asthmatic airway wall, from the airway lumen to adventitia. The underlying mechanisms driving the remodeling processes are also briefly reviewed.
Collapse
Affiliation(s)
- Ynuk Bossé
- James Hogg iCAPTURE Centre/St. Paul's Hospital, Room 166, 1081 Burrard Street, Vancouver, BC, V6Z 1Y6, Canada.
| | | | | |
Collapse
|
655
|
Arima Y, Inoue Y, Shibata T, Hayashi H, Nagano O, Saya H, Taya Y. Rb depletion results in deregulation of E-cadherin and induction of cellular phenotypic changes that are characteristic of the epithelial-to-mesenchymal transition. Cancer Res 2008; 68:5104-12. [PMID: 18593909 DOI: 10.1158/0008-5472.can-07-5680] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The retinoblastoma tumor suppressor protein (Rb) is mutated or expressed at very low levels in several tumor types, including retinoblastoma and osteosarcoma, as well as small cell lung, colon, prostate, bladder, and breast carcinomas. Loss or reduction of Rb expression is seen most commonly in high-grade breast adenocarcinomas, suggesting that a relationship may exist between loss of Rb function and a less-differentiated state, increased proliferation, and high metastatic potential. In this study, we found that knockdown of Rb by small interfering RNA in MCF7 breast cancer cells disrupts cell-cell adhesion and induces a mesenchymal-like phenotype. The epithelial-to-mesenchymal transition (EMT), a key event in embryonic morphogenesis, is implicated in the metastasis of primary tumors. Additionally, Rb is decreased during growth factor- and cytokine-induced EMT and overexpression of Rb inhibits the EMT in MCF10A human mammary epithelial cells. Ectopic expression and knockdown of Rb resulted in increased or reduced expression of E-cadherin, which is specifically involved in epithelial cell-cell adhesion. Other EMT-related transcriptional factors, including Slug and Zeb-1, are also induced by Rb depletion. Furthermore, we confirmed that Rb binds to an E-cadherin promoter sequence in association with the transcription factor activator protein-2alpha. Finally, in breast cancer specimens, we observed a concurrent down-regulation of Rb and E-cadherin expression in mesenchymal-like invasive cancers. These findings suggest that Rb inactivation contributes to tumor progression due to not only loss of cell proliferation control but also conversion to an invasive phenotype and that the inhibition of EMT is a novel tumor suppressor function of Rb.
Collapse
Affiliation(s)
- Yoshimi Arima
- Radiobiology Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
656
|
Calabrese F, Giacometti C, Lunardi F, Valente M. Morphological and molecular markers in idiopathic pulmonary fibrosis. Expert Rev Respir Med 2008; 2:505-20. [PMID: 20477214 DOI: 10.1586/17476348.2.4.505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Idiopathic pulmonary fibrosis is a progressive, lethal, interstitial lung disease with no proven effective therapy other than lung transplantation. A definitive diagnosis of the disease requires surgical lung biopsy to show a histological appearance of usual interstitial pneumonia. The main histological features include temporal and spatial heterogeneity, fibroblastic foci, extracellular matrix deposition with vessel remodeling and honeycomb changes. There are some morphological aspects that have recently been taken into account as possible prognostic markers for disease progression. Although the cellular and molecular pathways driving disease pathogenesis are complex and not fully delineated, increasing evidence suggests that a key event is ongoing alveolar epithelial injury in association with an abnormal host repair response. Inflammation seems to play a less important role and remains largely debated while increased attention has been on the role of noninflammatory structural cells, such as fibroblasts, epithelial cells and endothelial cells. The modifications and interactions among these cells are complex and regulated by various molecular factors. This article reviews the morphology of the disease, focusing on some new facets and on the principal molecular factors involved in the different aspects of parenchymal remodeling.
Collapse
Affiliation(s)
- Fiorella Calabrese
- Department of Diagnostic Medical Sciences and Special Therapies, University of Padua Medical School, Via Gabelli, 61 Padua, Italy.
| | | | | | | |
Collapse
|
657
|
Chhina M, Shlobin OA, Grant G, Nathan SD. Potential of imatinib mesylate as a novel treatment for pulmonary fibrosis. Expert Rev Respir Med 2008; 2:419-31. [PMID: 20477206 DOI: 10.1586/17476348.2.4.419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Pulmonary fibrosis is a disease characterized by progressive scarring of the lungs, with idiopathic pulmonary fibrosis (IPF) being the most aggressive form. The diagnosis of IPF is made after other conditions are excluded and is based on a characteristic clinical presentation, radiographic features and, sometimes, pathologic specimen. Existing IPF drug regimens, including corticosteroids and cytotoxic medications, are generally ineffective. To date, only lung transplantation has been shown to improve mortality in carefully selected patients. Multiple therapeutic agents have been investigated but none have proven to be successful. Novel drugs are constantly being sought in an attempt to find a therapy that halts or reverses this disease. Imatinib mesylate is used for chronic myelogenous leukemia and gastrointestinal stromal tumors. It also has antifibrotic properties, as demonstrated in several studies using mouse models of pulmonary fibrosis. Currently, trials are underway to investigate its efficacy in human subjects with IPF.
Collapse
Affiliation(s)
- Mantej Chhina
- Center for Biomedical Genomics, George Mason University, 10900 University Boulevard 109, Manassas, VA 20110, USA.
| | | | | | | |
Collapse
|
658
|
Xia H, Diebold D, Nho R, Perlman D, Kleidon J, Kahm J, Avdulov S, Peterson M, Nerva J, Bitterman P, Henke C. Pathological integrin signaling enhances proliferation of primary lung fibroblasts from patients with idiopathic pulmonary fibrosis. ACTA ACUST UNITED AC 2008; 205:1659-72. [PMID: 18541712 PMCID: PMC2442643 DOI: 10.1084/jem.20080001] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a relentlessly progressive lung disease in which fibroblasts accumulate in the alveolar wall within a type I collagen–rich matrix. Although lung fibroblasts derived from patients with IPF display durable pathological alterations in proliferative function, the molecular mechanisms differentiating IPF fibroblasts from their normal counterparts remain unknown. Polymerized type I collagen normally inhibits fibroblast proliferation, providing a physiological mechanism to limit fibroproliferation after tissue injury. We demonstrate that β1 integrin interaction with polymerized collagen inhibits normal fibroblast proliferation by suppression of the phosphoinositide 3-kinase (PI3K)–Akt–S6K1 signal pathway due to maintenance of high phosphatase activity of the tumor suppressor phosphatase and tensin homologue (PTEN). In contrast, IPF fibroblasts eluded this restraint, displaying a pathological pattern of β1 integrin signaling in response to polymerized collagen that leads to aberrant activation of the PI3K–Akt–S6K1 signal pathway caused by inappropriately low PTEN activity. Mice deficient in PTEN showed a prolonged fibroproliferative response after tissue injury, and immunohistochemical analysis of IPF lung tissue demonstrates activation of Akt in cells within fibrotic foci. These results provide direct evidence for defective negative regulation of the proliferative pathway in IPF fibroblasts and support the theory that the pathogenesis of IPF involves an intrinsic fibroblast defect.
Collapse
Affiliation(s)
- Hong Xia
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
659
|
van Deventer HW, Wu QP, Bergstralh DT, Davis BK, O'Connor BP, Ting JPY, Serody JS. C-C chemokine receptor 5 on pulmonary fibrocytes facilitates migration and promotes metastasis via matrix metalloproteinase 9. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 173:253-64. [PMID: 18535183 DOI: 10.2353/ajpath.2008.070732] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Previously, our group has used a B16-F10 melanoma model to show that C-C chemokine receptor 5 (CCR5) knockout (CCR5(-/-)) mice form fewer pulmonary metastases than wild-type mice. This advantage can be eliminated by injecting CCR5(-/-) mice with wild-type pulmonary mesenchymal cells before tumor injection. In this article, we present the mechanisms underlying this finding. First, we demonstrate that wild-type mesenchymal cells migrate to CCL4 more efficiently in vitro than CCR5(-/-) cells. Wild-type mesenchymal cells were also 3.6 (1.85 to 5.85) times more efficient than CCR5(-/-) cells at migrating into the lung after intravenous injection (P < 0.01). The injection of wild-type but not CCR5(-/-) mesenchymal cells led to a 7.0 +/- 1.6 (P < 0.05)-fold induction of matrix metalloproteinase 9 (MMP9) in the host lung. Neither wild-type nor CCR5(-/-) cells caused significant increases in MMP2, MMP3, or MMP8. Inhibition of the gelatinase activity of MMP9 decreased the number of metastases and restored the advantage that CCR5(-/-) mice have over wild-type mice. Further analysis showed that the CCR5(+) mesenchymal cells expressed CD45(+) and CD13(+) but did not express alpha-smooth muscle actin. This phenotype is characteristic of a subset of mesenchymal cells called fibrocytes. Together, these data suggest a novel role for CCR5 in the migration of pulmonary fibrocytes and the promotion of metastasis.
Collapse
Affiliation(s)
- Hendrik W van Deventer
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7305, USA.
| | | | | | | | | | | | | |
Collapse
|
660
|
Martin U. Methods for studying stem cells: adult stem cells for lung repair. Methods 2008; 45:121-32. [PMID: 18554523 PMCID: PMC7128960 DOI: 10.1016/j.ymeth.2008.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2008] [Accepted: 05/23/2008] [Indexed: 11/21/2022] Open
Abstract
Recent progress in lung biology includes the description of a series of pulmonary stem and progenitor cells involved in homeostasis and regeneration of the respiratory system. Moreover, the contribution of extrapulmonary stem cells to healthy and pathological lung tissue has been observed and the developmental biology of such processes should provide important hints for understanding maintenance and repair of adult lung structure and function. Despite such remarkable advances, the phenotypic and especially the functional characterization of these stem and progenitor cells, and their derivatives, along with an understanding of the molecular cues and pathways underlying differentiation into specific respiratory lineages is still in its infancy. Accordingly, the role of endogenous and extrapulmonary stem cells in normal tissue repair and pathogenesis is still largely mysterious and added basic knowledge is required in order to explore their potential for novel regenerative therapies. This review provides an overview of the current state of the art in adult lung stem cell biology including technical aspects of isolation, characterization and differentiation, and a discussion of perspectives for future regenerative therapies.
Collapse
Affiliation(s)
- Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Hannover Medical School, Carl Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
661
|
Swigris JJ, Brown KK. Evaluation of bosentan for idiopathic pulmonary fibrosis. Expert Rev Respir Med 2008; 2:315-21. [PMID: 20477195 DOI: 10.1586/17476348.2.3.315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a quality-of-life-altering and life-shortening lung disease manifested by physiologic restriction, hypoxemia and progressive shortness of breath. Despite nearly 30 years of investigation, the median survival for patients with this disease remains dismal at approximately 3 years from the time of diagnosis. Recent investigations have identified a number of potential molecular therapeutic targets for IPF that include endothelin-1 and other fibrogenic cytokines. Bosentan, a nonselective endothelin receptor antagonist approved in the USA and Europe for the treatment of patients with pulmonary arterial hypertension, is currently undergoing evaluation as a potential therapy for IPF. A recently completed multinational, placebo-controlled trial failed to show a beneficial impact of bosentan on the primary end point, but results from a hypothesis-generating, post hoc analysis of data from this trial have prompted an assessment of the drug for efficacy in a selected subgroup of IPF patients - those with biopsy-proven IPF and little radiographic honeycombing. Results from this trial are anticipated in 2009.
Collapse
Affiliation(s)
- Jeffrey J Swigris
- Interstitial Lung Disease Program, National Jewish Medical and Research Center, 1400 Jackson Street, Denver, CO, USA.
| | | |
Collapse
|
662
|
Shan B, Yao TP, Nguyen HT, Zhuo Y, Levy DR, Klingsberg RC, Tao H, Palmer ML, Holder KN, Lasky JA. Requirement of HDAC6 for transforming growth factor-beta1-induced epithelial-mesenchymal transition. J Biol Chem 2008; 283:21065-73. [PMID: 18499657 DOI: 10.1074/jbc.m802786200] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The aberrant expression of transforming growth factor (TGF)-beta1 in the tumor microenvironment and fibrotic lesions plays a critical role in tumor progression and tissue fibrosis by inducing epithelial-mesenchymal transition (EMT). EMT promotes tumor cell motility and invasiveness. How EMT affects motility and invasion is not well understood. Here we report that HDAC6 is a novel modulator of TGF-beta1-induced EMT. HDAC6 is a microtubule-associated deacetylase that predominantly deacetylates nonhistone proteins, including alpha-tubulin, and regulates cell motility. We showed that TGF-beta1-induced EMT is accompanied by HDAC6-dependent deacetylation of alpha-tubulin. Importantly, inhibition of HDAC6 by small interfering RNA or the small molecule inhibitor tubacin attenuated the TGF-beta1-induced EMT markers, such as the aberrant expression of epithelial and mesenchymal peptides, as well as the formation of stress fibers. Reduced expression of HDAC6 also impaired the activation of SMAD3 in response to TGF-beta1. Conversely, inhibition of SMAD3 activation substantially impaired HDAC6-dependent deacetylation of alpha-tubulin as well as the expression of EMT markers. These findings reveal a novel function of HDAC6 in EMT by intercepting the TGF-beta-SMAD3 signaling cascade. Our results identify HDAC6 as a critical regulator of EMT and a potential therapeutic target against pathological EMT, a key event for tumor progression and fibrogenesis.
Collapse
Affiliation(s)
- Bin Shan
- Department of Medicine and Tulane Cancer Center, Tulane University Health Sciences Center, 1430 Tulane Avenue, New Orleans, LA 70112, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
663
|
Kinnula VL, Myllärniemi M. Oxidant-antioxidant imbalance as a potential contributor to the progression of human pulmonary fibrosis. Antioxid Redox Signal 2008; 10:727-38. [PMID: 18177235 DOI: 10.1089/ars.2007.1942] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common idiopathic interstitial pneumonia. IPF is a disease with poor prognosis and an aggressive nature, and poses major challenges to clinicians. Thus, a large part of research in the area has focused on the pathogenesis on IPF. Characteristic features in IPF include fibrotic lesions devoid of inflammatory cell infiltrates. There are experimental models of lung fibrosis (e.g., bleomycin-induced fibrosis), but they typically contain a prominent inflammatory pattern in the lung, which leads to relatively diffuse lung fibrosis. Nonetheless, experimental models have provided important information about the progression and pathways contributing to the lung fibrosis, including activation of transforming growth factor beta (TGF-beta). Both patient material and experimental models of lung fibrosis have displayed marked elevation of several markers of oxidant burden and signs for disturbed antioxidant/oxidant balance. Several studies also suggest that reactive oxygen species can cause activation of growth-regulatory cytokines, including TGF-beta. In addition, there are indications that endogenous and exogenous antioxidants/redox modulators can influence fibrogenesis, protect the lung against fibrosis, and prevent its progression. Factors that restore the antioxidant capacity and prevent sustained activation of growth-regulatory cytokines may have a therapeutic role in IPF.
Collapse
Affiliation(s)
- Vuokko L Kinnula
- Department of Medicine, Division of Pulmonary Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | | |
Collapse
|
664
|
Meltzer EB, Noble PW. Idiopathic pulmonary fibrosis. Orphanet J Rare Dis 2008; 3:8. [PMID: 18366757 PMCID: PMC2330030 DOI: 10.1186/1750-1172-3-8] [Citation(s) in RCA: 287] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Accepted: 03/26/2008] [Indexed: 12/23/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a non-neoplastic pulmonary disease that is characterized by the formation of scar tissue within the lungs in the absence of any known provocation. IPF is a rare disease which affects approximately 5 million persons worldwide. The prevalence is estimated to be slightly greater in men (20.2/100,000) than in women (13.2/100,000). The mean age at presentation is 66 years. IPF initially manifests with symptoms of exercise-induced breathless and dry coughing. Auscultation of the lungs reveals early inspiratory crackles, predominantly located in the lower posterior lung zones upon physical exam. Clubbing is found in approximately 50% of IPF patients. Cor pulmonale develops in association with end-stage disease. In that case, classic signs of right heart failure may be present. Etiology remains incompletely understood. Some environmental factors may be associated with IPF (cigarette smoking, exposure to silica and livestock). IPF is recognized on high-resolution computed tomography by peripheral, subpleural lower lobe reticular opacities in association with subpleural honeycomb changes. IPF is associated with a pathological lesion known as usual interstitial pneumonia (UIP). The UIP pattern consists of normal lung alternating with patches of dense fibrosis, taking the form of collagen sheets. The diagnosis of IPF requires correlation of the clinical setting with radiographic images and a lung biopsy. In the absence of lung biopsy, the diagnosis of IPF can be made by defined clinical criteria that were published in guidelines endorsed by several professional societies. Differential diagnosis includes other idiopathic interstitial pneumonia, connective tissue diseases (systemic sclerosis, polymyositis, rheumatoid arthritis), forme fruste of autoimmune disorders, chronic hypersensitivity pneumonitis and other environmental (sometimes occupational) exposures. IPF is typically progressive and leads to significant disability. The median survival is 2 to 5 years from the time of diagnosis. Medical therapy is ineffective in the treatment of IPF. New molecular therapeutic targets have been identified and several clinical trials are investigating the efficacy of novel medication. Meanwhile, pulmonary transplantation remains a viable option for patients with IPF. It is expected that, during the next decade, considerable progress will be made toward the understanding and treatment of this devastating illness.
Collapse
Affiliation(s)
- Eric B Meltzer
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
665
|
Fibrocytes are a potential source of lung fibroblasts in idiopathic pulmonary fibrosis. Int J Biochem Cell Biol 2008; 40:2129-40. [PMID: 18374622 DOI: 10.1016/j.biocel.2008.02.012] [Citation(s) in RCA: 267] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2007] [Revised: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 12/11/2022]
Abstract
Idiopathic pulmonary fibrosis is characterized by the accumulation of fibroblasts/myofibroblasts and aberrant remodeling of the lung parenchyma. However, the sources of fibroblasts in IPF lungs are unclear. Fibrocytes are circulating progenitors of fibroblasts implicated in wound healing and fibrosis. In this study we evaluated evidence for the presence of fibrocytes in the lung of patients with idiopathic pulmonary fibrosis by immunofluorescence and confocal microscopy. Fibrocytes were identified in tissues in 8 out of 9 fibrotic lungs. Combinations including CXCR4 and a mesenchymal marker stained significantly more fibrocytes/mm(2) of tissue compared with combinations using CD34 or CD45RO with mesenchymal markers: CXCR4/procollagen-I (10.3+/-2.9fibrocytes/mm(2)) and CXCR4/prolyl-4-hydroxylase (4.1+/-3.1), versus CD34/procollagen-I (2.8+/-3.0), CD34/alphaSMA (2.2+/-1.6) and CD45RO/prolyl-4-hydroxylase (1.3+/-1.6); p<0.003. There was a positive correlation between the abundance of fibroblastic foci and the amount of lung fibrocytes (r=0.79; p<0.02). No fibrocytes were identified in normal lungs. The fibrocyte attractant chemokine CXCL12 increased in plasma [median: 2707.5pg/ml (648.1-4884.7) versus 1751.5pg/ml (192.9-2686.0) from healthy controls; p<0.003)] and was detectable in the bronchoalveolar lavage fluid of 40% of the patients but not in controls. In the lung CXCL12 was strongly expressed by alveolar epithelial cells. A negative correlation between plasma levels of CXCL12 with lung diffusing capacity for carbon monoxide (DLCO) (r=-0.56; p<0.03) and oxygen saturation on exercise was found (r=-0.41; p<0.04). These findings indicate that circulating fibrocytes, likely recruited through the CXCR4/CXCL12 axis, may contribute to the expansion of the fibroblast/myofibroblast population in idiopathic pulmonary fibrosis.
Collapse
|
666
|
Alcorn JF, Guala AS, van der Velden J, McElhinney B, Irvin CG, Davis RJ, Janssen-Heininger YMW. Jun N-terminal kinase 1 regulates epithelial-to-mesenchymal transition induced by TGF-beta1. J Cell Sci 2008; 121:1036-45. [PMID: 18334556 DOI: 10.1242/jcs.019455] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor beta1 (TGF-beta1) is a cardinal cytokine in the pathogenesis of airway remodeling, and promotes epithelial-to-mesenchymal transition (EMT). As a molecular interaction between TGF-beta1 and Jun N-terminal kinase (JNK) has been demonstrated, the goal of this study was to elucidate whether JNK plays a role in TGF-beta1-induced EMT. Primary cultures of mouse tracheal epithelial cells (MTEC) from wild-type, JNK1-/- or JNK2-/- mice were comparatively evaluated for their ability to undergo EMT in response to TGF-beta1. Wild-type MTEC exposed to TGF-beta1 demonstrated a prominent induction of mesenchymal mediators and a loss of epithelial markers, in conjunction with a loss of trans-epithelial resistance (TER). Significantly, TGF-beta1-mediated EMT was markedly blunted in epithelial cells lacking JNK1, while JNK2-/- MTEC underwent EMT in response to TGF-beta1 in a similar way to wild-type cells. Although Smad2/3 phosphorylation and nuclear localization of Smad4 were similar in JNK1-/- MTEC in response to TGF-beta1, Smad DNA-binding activity was diminished. Gene expression profiling demonstrated a global suppression of TGF-beta1-modulated genes, including regulators of EMT in JNK1-/- MTEC, in comparison with wild-type cells. In aggregate, these results illuminate the novel role of airway epithelial-dependent JNK1 activation in EMT.
Collapse
Affiliation(s)
- John F Alcorn
- Department of Pathology, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | | | |
Collapse
|
667
|
Abstract
The authors discuss evidence suggesting that embryonic signaling pathways involved in epithelium/mesenchymal communication and epithelial cell plasticity may be aberrantly switched on in idiopathic pulmonary fibrosis.
Collapse
|
668
|
Abstract
Asthma is an inflammatory disorder principally involving the conducting airways and characterised by infiltration of the airway wall with a range of inflammatory cells driven in large part by activation of Th2-type lymphocytes, mast cells and eosinophils. However a key component of asthma is the structural change that involves all of the elements of the airway wall. Here evidence is presented to suggest that the airway epithelium in asthma is fundamentally abnormal with increased susceptibility to environmental injury and impaired repair associated with activation of the epithelial-mesenchymal trophic unit (EMTU). In addition to adopting an activated phenotype, the barrier function of the epithelium is impaired through defective tight junction formation thereby facilitating penetration of potentially toxic or damaging environmental insults. Activated and repairing epithelial cells generate a range of growth factors that are involved in the early life origins of this disease as well as its progression in the form of mucous metaplasia and airway wall remodeling. By placing the epithelium at the forefront of asthma pathogenesis, different approaches to treatment can be devised focused more on protecting vulnerable airways against environmental injury rather than focusing on suppressing airway inflammation or manipulating the immune response.
Collapse
|
669
|
Enhanced expression of 70-kilodalton heat shock protein limits cell division in a sepsis-induced model of acute respiratory distress syndrome. Crit Care Med 2008; 36:246-55. [PMID: 17989570 DOI: 10.1097/01.ccm.0000295473.56522.ef] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Fibrotic changes are initiated early in acute respiratory distress syndrome. This may involve overproliferation of alveolar type II cells. In an animal model of acute respiratory distress syndrome, we have shown that the administration of an adenoviral vector overexpressing the 70-kd heat shock protein (AdHSP) limited pathophysiological changes. We hypothesized that this improvement may be modulated, in part, by an early AdHSP-induced attenuation of alveolar type II cell proliferation. DESIGN Laboratory investigation. SETTING Hadassah-Hebrew University and University of Pennsylvania animal laboratories. SUBJECTS Sprague-Dawley Rats (250 g). INTERVENTIONS Lung injury was induced in male Sprague-Dawley rats via cecal ligation and double puncture. At the time of cecal ligation and double puncture, we injected phosphate-buffered saline, AdHSP, or AdGFP (an adenoviral vector expressing the marker green fluorescent protein) into the trachea. Rats then received subcutaneous bromodeoxyuridine. In separate experiments, A549 cells were incubated with medium, AdHSP, or AdGFP. Some cells were also stimulated with tumor necrosis factor-alpha. After 48 hrs, cytosolic and nuclear proteins from rat lungs or cell cultures were isolated. These were subjected to immunoblotting, immunoprecipitation, electrophoretic mobility shift assay, fluorescent immunohistochemistry, and Northern blot analysis. MEASUREMENTS AND MAIN RESULTS Alveolar type I cells were lost within 48 hrs of inducing acute respiratory distress syndrome. This was accompanied by alveolar type II cell proliferation. Treatment with AdHSP preserved alveolar type I cells and limited alveolar type II cell proliferation. Heat shock protein 70 prevented overexuberant cell division, in part, by inhibiting hyperphosphorylation of the regulatory retinoblastoma protein. This prevented retinoblastoma protein ubiquitination and degradation and, thus, stabilized the interaction of retinoblastoma protein with E2F1, a key cell division transcription factor. CONCLUSIONS : Heat shock protein 70-induced attenuation of cell proliferation may be a useful strategy for limiting lung injury when treating acute respiratory distress syndrome if consistent in later time points.
Collapse
|
670
|
Buckley S, Shi W, Barsky L, Warburton D. TGF-beta signaling promotes survival and repair in rat alveolar epithelial type 2 cells during recovery after hyperoxic injury. Am J Physiol Lung Cell Mol Physiol 2008; 294:L739-48. [PMID: 18245268 DOI: 10.1152/ajplung.00294.2007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hyperoxic rats treated with inosine during oxygen exposure have increased levels of active transforming growth factor (TGF)-beta in the bronchoalveolar lavage (BAL), yet alveolar epithelial type 2 cells (AEC2) isolated from these animals demonstrate less hyperoxia-induced DNA damage and increased expression of active Smad2. To determine whether TGF-beta1 signaling per se protected AEC2 against hyperoxic damage, freshly isolated AEC2 from hyperoxic rats were incubated with TGF-beta1 for 24 h and assayed for DNA damage by fluorescein-activated cell sorter analysis of TdT-mediated dUTP nick end labeling. TGF-beta1 was protective over a concentration range similar to that in BAL of inosine-treated hyperoxic animals (50-5,000 pg/ml). TGF-beta1 also augmented hyperoxia-induced DNA repair activity and cell migration, stimulated autocrine secretion of fibronectin, accelerated closure of a monolayer scratch wound, and restored hyperoxia-depleted VEGF secretion by AEC2 to normoxic levels. The TGF-beta receptor type I activin-like kinase-4, -5, and -7 inhibitor peptide SB-505124 abolished the protective effect of TGF-beta on hyperoxic DNA damage and increased TdT-mediated dUTP nick end labeling in normoxic cells. These data suggest that endogenous TGF-beta-mediated Smad signaling is required for AEC2 homeostasis in vitro, while exogenous TGF-beta1 treatment of hyperoxia-damaged AEC2 results in a cell that is equipped to survive, repair, migrate, secrete matrix, and induce new blood vessel formation more efficiently than AEC2 primed by hyperoxia alone.
Collapse
Affiliation(s)
- S Buckley
- Developmental Biology and Regenerative Medicine and Surgery Program, Saban Research Institute of Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | | | | | | |
Collapse
|
671
|
Bringardner BD, Baran CP, Eubank TD, Marsh CB. The role of inflammation in the pathogenesis of idiopathic pulmonary fibrosis. Antioxid Redox Signal 2008; 10:287-301. [PMID: 17961066 PMCID: PMC2737712 DOI: 10.1089/ars.2007.1897] [Citation(s) in RCA: 234] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The role of inflammation in idiopathic pulmonary fibrosis (IPF) is controversial. If inflammation were critical to the disease process, lung pathology would demonstrate an influx of inflammatory cells, and that the disease would respond to immunosuppression. Neither is true. The classic pathology does not display substantial inflammation, and no modulation of the immune system is effective as treatment. Recent data suggest that the pathophysiology of the disease is more a product of fibroblast dysfunction than of dysregulated inflammation. The role of inflammation in disease pathogenesis comes from pathology from atypical patients, biologic samples procured during exacerbations of the disease, and careful examination of biologic specimens from patients with stable disease. We suggest that inflammation is indeed a critical factor in IPF and propose five potential nontraditional mechanisms for the role of inflammation in the pathogenesis of IPF: the direct inflammatory hypothesis, the matrix hypothesis, the growth factor-receptor hypothesis, the plasticity hypothesis, and the vascular hypothesis. To address these, we review the literature exploring the differences in pathology, prognosis, and clinical course, as well as the role of cytokines, growth factors, and other mediators of inflammation, and last, the role of matrix and vascular supply in patients with IPF.
Collapse
Affiliation(s)
- Benjamin D Bringardner
- Department of Internal Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
672
|
Yu H, Königshoff M, Jayachandran A, Handley D, Seeger W, Kaminski N, Eickelberg O. Transgelin is a direct target of TGF-beta/Smad3-dependent epithelial cell migration in lung fibrosis. FASEB J 2008; 22:1778-89. [PMID: 18245174 DOI: 10.1096/fj.07-083857] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Enhanced transforming growth factor (TGF) -beta signaling contributes to idiopathic pulmonary fibrosis (IPF), a progressive and fatal disease characterized by alveolar epithelial type II (ATII) cell hyperplasia, (myo)fibroblast accumulation, and excessive extracellular matrix deposition. TGF-beta is a potent inducer of lung fibrosis, and it regulates the ATII cell phenotype; however, direct TGF-beta target genes controlling the ATII cell phenotype remain elusive. Here, we identified the transgelin (tagln) gene as a novel immediate target of TGF-beta/Smad3-dependent gene expression in ATII cells using a Smad3 chromatin immunoprecipitation (ChIP) screen. Direct ChIP confirmed the rapid and specific binding of Smad3 to the tagln promoter. Luciferase assays demonstrated transactivation of the tagln promoter by activin-like kinase (Alk) 5-mediated TGF-beta signaling. TGF-beta treatment resulted in rapid up-regulation of tagln, but not tagln2, mRNA and protein expression, assessed by reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and immunofluorescence. In vivo, tagln expression was significantly increased in ATII cells of mice during bleomycin-induced lung fibrosis, as well as in lung specimen obtained from IPF patients, as assessed by RT-PCR and immunohistochemistry. Knockdown of tagln using siRNA inhibited TGF-beta-induced migration of lung epithelial A549 cells, as well as primary ATII cells. We thus identified tagln as a novel target of TGF-beta/Smad3-dependent gene expression in ATII cells. Increased ATII cell expression of tagln in experimental and idiopathic pulmonary fibrosis may contribute to TGF-beta-dependent ATII cell injury, repair, and migration in lung fibrosis.
Collapse
Affiliation(s)
- Haiying Yu
- University of Giessen Lung Center, Department of Medicine II, Justus Liebig University Giessen, D-35392 Giessen, Germany
| | | | | | | | | | | | | |
Collapse
|
673
|
Dual-immunohistochemistry provides little evidence for epithelial–mesenchymal transition in pulmonary fibrosis. Histochem Cell Biol 2008; 129:453-62. [DOI: 10.1007/s00418-008-0388-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2008] [Indexed: 12/21/2022]
|
674
|
|
675
|
Fibrogenesis. MOLECULAR PATHOLOGY LIBRARY 2008. [PMCID: PMC7147443 DOI: 10.1007/978-0-387-72430-0_46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Pulmonary fibrosis can be idiopathic or secondary to inflammatory states or injuries (Table 46.1). The tempo ranges from insidious to rapid, and the location of the fibrous tissue can be centered around or in the airways (bronchiolitis obliterans) or in the alveolar compartment (idiopathic pulmonary fibrosis [IPF]). In this chapter, we focus on IPF, the paradigmatic fibrosing lung disorder.
Disorders associated with pulmonary fibrosis. ![]()
Collapse
|
676
|
Díaz R, Kim JW, Hui JJ, Li Z, Swain GP, Fong KSK, Csiszar K, Russo PA, Rand EB, Furth EE, Wells RG. Evidence for the epithelial to mesenchymal transition in biliary atresia fibrosis. Hum Pathol 2008; 39:102-15. [PMID: 17900655 DOI: 10.1016/j.humpath.2007.05.021] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 05/11/2007] [Accepted: 05/16/2007] [Indexed: 12/11/2022]
Abstract
The epithelial to mesenchymal transition has recently been implicated as a source of fibrogenic myofibroblasts in organ fibrosis, particularly in the kidney. There is as yet minimal evidence for the epithelial to mesenchymal transition in the liver. We hypothesized that this process in biliary epithelial cells plays an important role in biliary fibrosis and might be found in patients with especially rapid forms, such as is seen in biliary atresia. We therefore obtained liver tissue from patients with biliary atresia as well as a variety of other pediatric and adult liver diseases. Tissues were immunostained with antibodies against the biliary epithelial cell marker CK19 as well as with antibodies against proteins characteristically expressed by cells undergoing the epithelial to mesenchymal transition, including fibroblast-specific protein 1, the collagen chaperone heat shock protein 47, the intermediate filament protein vimentin, and the transcription factor Snail. The degree of colocalization was quantified using a multispectral imaging system. We observed significant colocalization between CK19 and other markers of the epithelial to mesenchymal transition in biliary atresia as well as other liver diseases associated with significant bile ductular proliferation, including primary biliary cirrhosis. There was minimal colocalization seen in healthy adult and pediatric livers, or in livers not also demonstrating bile ductular proliferation. Multispectral imaging confirmed significant colocalization of the different markers in biliary atresia. In conclusion, we present significant histologic evidence suggesting that the epithelial to mesenchymal transition occurs in human liver fibrosis, particularly in diseases such as biliary atresia and primary biliary cirrhosis with prominent bile ductular proliferation.
Collapse
Affiliation(s)
- Rosalyn Díaz
- Department of Medicine (Gastroenterology), University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
677
|
Myllärniemi M, Vuorinen K, Pulkkinen V, Kankaanranta H, Aine T, Salmenkivi K, Keski-Oja J, Koli K, Kinnula VL. Gremlin localization and expression levels partially differentiate idiopathic interstitial pneumonia severity and subtype. J Pathol 2007; 214:456-63. [DOI: 10.1002/path.2300] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
678
|
Decologne N, Kolb M, Margetts PJ, Menetrier F, Artur Y, Garrido C, Gauldie J, Camus P, Bonniaud P. TGF-beta1 induces progressive pleural scarring and subpleural fibrosis. THE JOURNAL OF IMMUNOLOGY 2007; 179:6043-51. [PMID: 17947678 DOI: 10.4049/jimmunol.179.9.6043] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pleural fibrosis is a misunderstood disorder which can cause severe restrictive lung disease with high morbidity and even mortality. The condition can develop in response to a large variety of diseases and tissue injury, among them infectious disease, asbestos, drugs, and radiation therapy. There is no efficient treatment to reverse established pleural fibrosis. TGF-beta1 is suspected, even if not proven, as a key cytokine in this process. In this study, we used adenoviral gene transfer of TGF-beta1 to the pleural mesothelium in rats. We show that local and transient TGF-beta1 overexpression induces homogenous, prolonged, and progressive pleural fibrosis without pleurodesis, associated with severe impairment of pulmonary function. We further demonstrate that pleural fibrosis can expand into the lung parenchyma from the visceral layer, but not into the muscle from the parietal layer. We provide evidence that matrix accumulation and fibrosis within the parenchyma evolved through a process involving "mesothelial-fibroblastoid transformation" and suggest that the pleural mesothelial cell may be an important player involved in the development of the subpleural distribution pattern known to be a hallmark of pulmonary fibrosis. This new model of pleural fibrosis will allow us to better understand the mechanisms of progressive fibrogenesis, and to explore novel antifibrotic therapies in the pleural cavity.
Collapse
Affiliation(s)
- Nathalie Decologne
- Faculty of Medicine and Pharmacy, Institut National de la Santé et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR) 866, Dijon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
679
|
Shifren A, Woods JC, Rosenbluth DB, Officer S, Cooper JD, Pierce RA. Upregulation of elastin expression in constrictive bronchiolitis obliterans. Int J Chron Obstruct Pulmon Dis 2007; 2:593-8. [PMID: 18268933 PMCID: PMC2699961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Constrictive bronchiolitis obliterans is a fibrotic disease of small airways characterized by progressive obliteration of the airway lumen, with resulting obstructive pulmonary physiology. While previous work has demonstrated the collagenous nature of the constrictive fibrotic lesions, elastin expression in the disease has been poorly characterized. Elastin is a critical component of the pulmonary extracellular matrix, and is responsible for the reversible deformability characteristic of the alveoli, pulmonary blood vessels, and airways. Elastin is a long-lived protein with virtually no active protein production occurring after lung development is completed during early childhood. We report a novel case of cryptogenic bronchiolitis obliterans in which elastin gene expression is actively upregulated in affected airways, and accompanied by myofibroblast hyperplasia and disorganized elastic fiber deposition. In addition, deposition of new elastic fibers by myofibroblasts is noted in the alveoli surrounding the affected bronchioles.
Collapse
Affiliation(s)
- Adrian Shifren
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, USA,Correspondence: Adrian Shifren, Division of Pulmonary and Critical Care, Medicine, Washington University School of Medicine, Box 8052, 660 S. Euclid Ave, St. Louis, MO 63110, USA, Tel +1 314 362 2211, Fax +1 314 362 2252, Email
| | - Jason C Woods
- Department of Physics, Washington University, Saint Louis, MO, USA
| | - Daniel B Rosenbluth
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Susan Officer
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Joel D Cooper
- Department of Surgery, University of Pennsylvania Health System, Philadelphia, PA, USA
| | - Richard A Pierce
- Department of Internal Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| |
Collapse
|
680
|
Sato Y, Harada K, Ozaki S, Furubo S, Kizawa K, Sanzen T, Yasoshima M, Ikeda H, Sasaki M, Nakanuma Y. Cholangiocytes with mesenchymal features contribute to progressive hepatic fibrosis of the polycystic kidney rat. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1859-71. [PMID: 18055542 DOI: 10.2353/ajpath.2007.070337] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The polycystic kidney (PCK) rat is an animal model of Caroli's disease with congenital hepatic fibrosis, in which the mechanism of progressive hepatic fibrosis remains unknown. This study aimed to clarify the mechanism of hepatic fibrosis of the PCK rat from the viewpoint of the contribution of pathological cholangiocytes. In liver sections of the PCK rats, intrahepatic bile ducts were constituted by two different phenotypes: bile ducts lined by cuboidal-shaped and flat-shaped cholangiocytes. The flat-shaped cholangiocytes showed reduced immunohistochemical expression of the biliary epithelial marker cytokeratin 19 and positive immunoreactivity for vimentin and fibronectin. When cultured cholangiocytes of the PCK rat were treated with transforming growth factor (TGF)-beta1, a potent inducer of epithelial-mesenchymal transition, induction of vimentin, fibronectin, and collagen expression occurred in the PCK cholangiocytes. Although the TGF-beta1 treatment reduced cytokeratin 19 expression, the epithelial cell features characterized by the expression of E-cadherin and zonula occludens-1 was maintained, and alpha-smooth muscle actin expression was not induced in the cholangiocytes. Cholangiocytes of the PCK rat may acquire mesenchymal features in response to TGF-beta1 and participate in progressive hepatic fibrosis by producing extracellular matrix molecules, which seems to be a different event from epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Yasunori Sato
- Department of Human Pathology, Kanazawa University, Graduate School of Medicine, Kanazawa 920-8640, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
681
|
Hagood JS, Olman MA. Muscle fatigue: MK2 signaling and myofibroblast differentiation. Am J Respir Cell Mol Biol 2007; 37:503-6. [PMID: 17940320 DOI: 10.1165/rcmb.2007-0005ed] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
682
|
Mossel EC, Wang J, Jeffers S, Edeen KE, Wang S, Cosgrove GP, Funk CJ, Manzer R, Miura TA, Pearson LD, Holmes KV, Mason RJ. SARS-CoV replicates in primary human alveolar type II cell cultures but not in type I-like cells. Virology 2007; 372:127-35. [PMID: 18022664 PMCID: PMC2312501 DOI: 10.1016/j.virol.2007.09.045] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2007] [Revised: 08/03/2007] [Accepted: 09/28/2007] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome (SARS) is a disease characterized by diffuse alveolar damage. We isolated human alveolar type II cells and maintained them in a highly differentiated state. Type II cell cultures supported SARS-CoV replication as evidenced by RT-PCR detection of viral subgenomic RNA and an increase in virus titer. Virus titers were maximal by 24 h and peaked at approximately 105 pfu/mL. Two cell types within the cultures were infected. One cell type was type II cells, which were positive for SP-A, SP-C, cytokeratin, a type II cell-specific monoclonal antibody, and Ep-CAM. The other cell type was composed of spindle-shaped cells that were positive for vimentin and collagen III and likely fibroblasts. Viral replication was not detected in type I-like cells or macrophages. Hence, differentiated adult human alveolar type II cells were infectible but alveolar type I-like cells and alveolar macrophages did not support productive infection.
Collapse
Affiliation(s)
- Eric C Mossel
- Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
683
|
Kum YS, Kim KH, Park TI, Suh IS, Oh HK, Cho CH, Park JB, Chang YC, Park JH, Lee KG, Park KK. Antifibrotic effect via the regulation of transcription factor Sp1 in lung fibrosis. Biochem Biophys Res Commun 2007; 363:368-374. [PMID: 17869213 DOI: 10.1016/j.bbrc.2007.08.176] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Accepted: 08/28/2007] [Indexed: 10/22/2022]
Abstract
The aim of this study is to evaluate the antifibrotic effect of ring-type Sp1 decoy oligonucleotides (ODNs) through blocking the transcription of transforming growth factor (TGF)-beta1 and its downstream target genes. In this experiment, the expression of TGF-beta1, metalloproteinase (MMP)-13, and fibronectin was decreased in the group with the treatment of the ring-type Sp1 decoy ODNs. Also, alpha-smooth muscle actin positive bronchial lining cells and alveolar epithelial cells were observed, especially around the lesions of extracellular matrix (ECM) deposition. These findings provide evidences for the finding of pulmonary epithelial-mesenchymal transition (EMT) and the effectiveness of Sp1 transcription factor as a target for the gene therapy on lung fibrosis.
Collapse
Affiliation(s)
- Yoon-Seup Kum
- Department of Pathology, Catholic University of Daegu, College of Medicine, 3056-6, Daemyung 4-Dong, Nam-Gu, Daegu 705-718, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
684
|
Gharaee-Kermani M, Hu B, Thannickal VJ, Phan SH, Gyetko MR. Current and emerging drugs for idiopathic pulmonary fibrosis. Expert Opin Emerg Drugs 2007; 12:627-46. [DOI: 10.1517/14728214.12.4.627] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
685
|
He M, Kubo H, Ishizawa K, Hegab AE, Yamamoto Y, Yamamoto H, Yamaya M. The role of the receptor for advanced glycation end-products in lung fibrosis. Am J Physiol Lung Cell Mol Physiol 2007; 293:L1427-36. [PMID: 17951314 DOI: 10.1152/ajplung.00075.2007] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The pathogenesis of pulmonary fibrosis remains unclear. The receptor for advanced glycation end-products (RAGE) is a multi-ligand receptor known to be involved in the process of fibrotic change in several organs, such as peritoneal fibrosis and kidney fibrosis. The aim of this study was to examine the contribution of RAGE during the acute inflammation and chronic fibrotic phases of lung injury induced by intratracheal instillation of bleomycin in mice. Bleomycin-induced lung fibrosis was evaluated in wild-type and RAGE-deficient (RAGE-/-) mice. Bleomycin administration to wild-type mice caused an initial pneumonitis that evolved into fibrosis. While RAGE-/- mice developed a similar early inflammatory response, the mice were largely protected from the late fibrotic effects of bleomycin. The protection afforded by RAGE deficiency was accompanied by reduced pulmonary levels of the potent RAGE-inducible profibrotic cytokines transforming growth factor (TGF)-beta and PDGF. In addition, bleomycin administration induced high mobility group box 1 (HMGB-1) production, one of the ligands of RAGE, from inflammatory cells that accumulated within the air space. Coculture with HMGB-1 induced epithelial-mesenchymal transition (EMT) in alveolar type II epithelial cells from wild-type mice. However, alveolar type II epithelial cells derived from RAGE-/- mice did not respond to HMGB-1 treatment, such that the RAGE/HMGB-1 axis may play an important role in EMT. Also, bleomycin administration induced profibrotic cytokines TGF-beta and PDGF only in wild-type mouse lungs. Our results suggested that RAGE contributes to bleomycin-induced lung fibrosis through EMT and profibrotic cytokine production. Thus, RAGE may be a new therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- Mei He
- Department of Geriatric and Respiratory Medicine, Tohoku University School of Medicine, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
686
|
|
687
|
Kim JH, Jang YS, Eom KS, Hwang YI, Kang HR, Jang SH, Kim CH, Park YB, Lee MG, Hyun IG, Jung KS, Kim DG. Transforming growth factor beta1 induces epithelial-to-mesenchymal transition of A549 cells. J Korean Med Sci 2007; 22:898-904. [PMID: 17982242 PMCID: PMC2693860 DOI: 10.3346/jkms.2007.22.5.898] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) comprises an aggregate of mesenchymal cells. However, the cellular origin of these mesenchymal phenotypes remains unclear. Transforming growth factor beta1 (TGF-beta1) has been known as the main cytokine involved in the pathogenesis of IPF. We examined whether the potent fibrogenic cytokine TGF-beta1 could induce the epithelial-to-mesenchymal transition (EMT) in the human alveolar epithelial cell line, A549, and determined whether snail expression is associated with the phenotypic changes observed in the A549 cells. EMT was investigated with cells morphology changes under phase-contrast microscopy, western blotting, and indirect immunofluorescence stains. E-cadherin and transcription factor, snail, were also evaluated by measuring mRNA levels using reverse transcriptase-polymerase chain reaction (RT-PCR) analysis. The data showed that TGF-beta1 induced A549 cells with epithelial cell characteristics to undergo EMT in a concentration-dependent manner. Following TGF-beta1 treatment, A549 cells induced EMT characterized by cells morphological changes, loss of epithelial markers Ecaherin and cytokeratin, increased stress fiber reorganization by F-actin, and cytokeratin replacement by vimentin. Although IL-1beta failed to induce A549 cells to undergo EMT, the combination of TGF-beta1 and IL-1beta showed synergy effects in cells morphology changes and the expression of mesenchymal markers. The snail expression study using RT-PCR analysis provided that loss of E-cadherin expression was associated with snail expression. Stimulation of A54 cells with TGF-beta1 plus IL-1beta revealed a higher level of snail expression. Our data showed that EMT of A549 cells might be closely associated with snail expression.
Collapse
Affiliation(s)
- Ju Hee Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, Korea
| | - Young Sook Jang
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, Korea
| | - Kwang-Seok Eom
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, Korea
| | - Young Il Hwang
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, Korea
| | - Hae Raen Kang
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, Korea
| | - Seung Hun Jang
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, Korea
| | - Cheol Hong Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, Korea
| | - Young Bum Park
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, Korea
| | - Myung Goo Lee
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, Korea
| | - In Gyu Hyun
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, Korea
| | - Ki-Suck Jung
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, Korea
| | - Dong-Gyu Kim
- Department of Internal Medicine, Hallym University Sacred Heart Hospital, College of Medicine, Hallym University, Anyang, Korea
| |
Collapse
|
688
|
Haider Y, Malizia AP, Keating DT, Birch M, Tomlinson A, Martin G, Ferguson MWJ, Doran PP, Egan JJ. Host predisposition by endogenous Transforming Growth Factor-beta1 overexpression promotes pulmonary fibrosis following bleomycin injury. JOURNAL OF INFLAMMATION-LONDON 2007; 4:18. [PMID: 17883846 PMCID: PMC2169220 DOI: 10.1186/1476-9255-4-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Accepted: 09/20/2007] [Indexed: 12/02/2022]
Abstract
Background Idiopathic Pulmonary Fibrosis (IPF) is a progressive diffuse disease involving the lung parenchyma. Despite recent advances, the molecular mechanisms of the initiation and progression of this disease remain elusive. Previous studies have demonstrated TGFβ1 as a key effector cytokine in the development of lung fibrosis. Methods In this study we have used a transgenic mouse based strategy to identify the effect of overexpression of this key effector mediator on the development of pulmonary fibrosis in response to exogenous injury. We bred two lines (line 25 and 18) of transgenic mice (Tr+) that overexpressed active TGFβ1. Three-month old transgenic and wild type mice were subsequently wounded with intraperitoneal bleomycin. Mice were sacrificed at 6 weeks post-bleomycin and their lungs analysed histologically and biochemically. Results The severity of lung fibrosis was significantly greater in the Tr+ mice compared to the wild type mice. Using an oligonucleotide microarray based strategy we identified discrete patterns of gene expression contributing to TGFβ1 associated pulmonary fibrosis. Conclusion This data emphasises the importance of a host predisposition in the form of endogenous TGFβ1, in the development of pulmonary fibrosis in response to an exogenous injury.
Collapse
Affiliation(s)
- Yussef Haider
- School of Biological Sciences, University of Manchester, Manchester, UK
| | - Andrea P Malizia
- National Heart and Lung Transplant Program, Mater Misericordiae University Hospital, University College Dublin, Dublin
| | - Dominic T Keating
- National Heart and Lung Transplant Program, Mater Misericordiae University Hospital, University College Dublin, Dublin
| | - Mary Birch
- School of Biological Sciences, University of Manchester, Manchester, UK
| | - Annette Tomlinson
- School of Biological Sciences, University of Manchester, Manchester, UK
| | - Gail Martin
- School of Biological Sciences, University of Manchester, Manchester, UK
| | - Mark WJ Ferguson
- School of Biological Sciences, University of Manchester, Manchester, UK
| | - Peter P Doran
- Genome Resource Unit, Dublin Molecular Medicine Centre, Mater Misericordiae University Hospital, University College Dublin, Dublin, Ireland
| | - Jim J Egan
- National Heart and Lung Transplant Program, Mater Misericordiae University Hospital, University College Dublin, Dublin
- Advanced Lung Disease Programme, Mater Misericordiae University Hospital, University College Dublin, 44 Eccles Street, Dublin 7, Ireland
| |
Collapse
|
689
|
Radisky DC, Kenny PA, Bissell MJ. Fibrosis and cancer: do myofibroblasts come also from epithelial cells via EMT? J Cell Biochem 2007; 101:830-9. [PMID: 17211838 PMCID: PMC2838476 DOI: 10.1002/jcb.21186] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Myofibroblasts produce and modify the extracellular matrix (ECM), secrete angiogenic and pro-inflammatory factors, and stimulate epithelial cell proliferation and invasion. Myofibroblasts are normally induced transiently during wound healing, but inappropriate induction of myofibroblasts causes organ fibrosis, which greatly enhances the risk of subsequent cancer development. As myofibroblasts are also found in the reactive tumor stroma, the processes involved in their development and activation are an area of active investigation. Emerging evidence suggests that a major source of fibrosis- and tumor-associated myofibroblasts is through transdifferentiation from non-malignant epithelial or epithelial-derived carcinoma cells through epithelial-mesenchymal transition (EMT). This review will focus on the role of EMT in fibrosis, considered in the context of recent studies showing that exposure of epithelial cells to matrix metalloproteinases (MMPs) can lead to increased levels of cellular reactive oxygen species (ROS) that stimulate transdifferentiation to myofibroblast-like cells. As deregulated MMP expression and increased cellular ROS are characteristic of both fibrosis and malignancy, these studies suggest that increased MMP expression may stimulate fibrosis, tumorigenesis, and tumor progression by inducing a specialized EMT in which epithelial cells transdifferentiate into activated myofibroblasts. This connection provides a new perspective on the development of the fibrosis and tumor microenvironments.
Collapse
Affiliation(s)
- Derek C. Radisky
- Department of Cancer Biology, Mayo Clinic Cancer Center, Jacksonville, Florida
- Correspondence to: Derek C. Radisky, Mayo Clinic Cancer Center, 4500 San Pablo Road, Jacksonville, FL 32224. ; **Correspondence to: Mina J. Bissell, Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 977-225A, Berkeley, CA 94720.
| | - Paraic A. Kenny
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Mina J. Bissell
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California
- Correspondence to: Derek C. Radisky, Mayo Clinic Cancer Center, 4500 San Pablo Road, Jacksonville, FL 32224. ; **Correspondence to: Mina J. Bissell, Life Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 977-225A, Berkeley, CA 94720.
| |
Collapse
|
690
|
Derynck R, Akhurst RJ. Differentiation plasticity regulated by TGF-β family proteins in development and disease. Nat Cell Biol 2007; 9:1000-4. [PMID: 17762890 DOI: 10.1038/ncb434] [Citation(s) in RCA: 307] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During development, stem and progenitor cells gradually commit to differentiation pathways. Cell fate decisions are regulated by differentiation factors, which activate transcription programmes that specify lineage and differentiation status. Among these factors, the transforming growth factor (TGF)-beta family is important in both lineage selection and progression of differentiation of most, if not all, cell and tissue types. There is now increasing evidence that TGF-beta family proteins have the ability to redirect the differentiation of cells that either have fully differentiated or have engaged in differentiation along a particular lineage, and can thereby elicit 'transdifferentiation'. This capacity for cellular plasticity is critical for normal embryonic development, but when recapitulated in the adult it can give rise to, or contribute to, a variety of diseases. This is illustrated by the ability of TGF-beta family members to redirect epithelial cells into mesenchymal differentiation and to cause switching of mesenchymal cells from one lineage to another. Hence, various pathologies in adults may be considered diseases of abnormal development and differentiation.
Collapse
Affiliation(s)
- Rik Derynck
- Department of Cell and Tissue Biology, Program in Cell Biology, University of California - San Francisco, San Francisco, CA 94143-0512, USA.
| | | |
Collapse
|
691
|
Abstract
Chronic progressive kidney diseases typically are characterized by loss of differentiated epithelial cells and activation of mesenchymal cell populations leading to renal fibrosis in response to a broad range of diverse renal injuries. Recent evidence has indicated that epithelial microinjury leads to unbalanced epithelial-mesenchymal communication to initiate the fibrotic response. Transforming growth factors beta constitute a large family of cytokines that control key cellular responses in development and tissue repair. Activation of autocrine and paracrine transforming growth factor-beta signaling cascades in the context of epithelial microinjuries initiate a variety of cell type-dependent signaling and activity profiles, including epithelial apoptosis and epithelial-to-mesenchymal transition, that trigger fibrogenic foci and initiate progressive fibrogenesis in chronic renal injury.
Collapse
Affiliation(s)
- Erwin P Böttinger
- Department of Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
692
|
Kokkinos MI, Wafai R, Wong MK, Newgreen DF, Thompson EW, Waltham M. Vimentin and epithelial-mesenchymal transition in human breast cancer--observations in vitro and in vivo. Cells Tissues Organs 2007; 185:191-203. [PMID: 17587825 DOI: 10.1159/000101320] [Citation(s) in RCA: 281] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Breast cancer is a highly prevalent disease among women worldwide. While the expression of certain proteins within these tumours is used for prognosis and selection of therapies, there is a continuing need for additional markers to be identified. A considerable amount of current literature, based predominantly on cell culture systems, suggests that a major mechanism responsible for the progression of breast cancer is due to tumour cells losing their epithelial features and gaining mesenchymal properties. These events are proposed to be very similar to the epithelial-mesenchymal transition (EMT) process that has been well characterised in embryonic development. For the developmental and putative cancer EMT, the cell intermediate filament status changes from a keratin-rich network which connects to adherens junctions and hemidesmosomes, to a vimentin-rich network connecting to focal adhesions. This review summarises observations of vimentin expression in breast cancer model systems, and discusses the potential role of EMT in human breast cancer progression, and the prognostic usefulness of vimentin expression.
Collapse
Affiliation(s)
- Maria I Kokkinos
- Department of Surgery, St. Vincent's Hospital, University of Melbourne, Melbourne, Australia.
| | | | | | | | | | | |
Collapse
|
693
|
Abraham DJ, Eckes B, Rajkumar V, Krieg T. New developments in fibroblast and myofibroblast biology: implications for fibrosis and scleroderma. Curr Rheumatol Rep 2007; 9:136-43. [PMID: 17502044 DOI: 10.1007/s11926-007-0008-z] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The concept of mesenchymal fibroblasts has evolved over the past two decades from a relatively inert structural cell type to a dynamic, pluripotent cell lineage controlling normal connective tissue formation, homeostasis, and repair and as principle players in pathogenic scarring and fibrosis. In wound healing and tissue repair, fibroblasts provide proinflammatory signals and synthesize interstitial collagens, fibronectins, and other matrix components to repair the damaged tissue. Fibroblasts can differentiate into the myofibroblast, a specialized contractile cell type responsible for wound closure, tissue contraction, and scarring. This article reviews our current understanding of the origins of mesenchymal cells and their role in excessive scarring and fibrogenesis and in the systemic fibrotic disease scleroderma.
Collapse
Affiliation(s)
- David J Abraham
- Department of Medicine, Royal Free and University College Medical School, University College London (Hampstead Campus), Rowland Hill Street, London NW3 2PF, United Kingdom.
| | | | | | | |
Collapse
|
694
|
Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G. The myofibroblast: one function, multiple origins. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 170:1807-16. [PMID: 17525249 PMCID: PMC1899462 DOI: 10.2353/ajpath.2007.070112] [Citation(s) in RCA: 1597] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The crucial role played by the myofibroblast in wound healing and pathological organ remodeling is well established; the general mechanisms of extracellular matrix synthesis and of tension production by this cell have been amply clarified. This review discusses the pattern of myofibroblast accumulation and fibrosis evolution during lung and liver fibrosis as well as during atheromatous plaque formation. Special attention is paid to the specific features characterizing each of these processes, including the spectrum of different myofibroblast precursors and the distinct pathways involved in the formation of differentiated myofibroblasts in each lesion. Thus, whereas in lung fibrosis it seems that most myofibroblasts derive from resident fibroblasts, hepatic stellate cells are the main contributor for liver fibrosis and media smooth muscle cells are the main contributor for the atheromatous plaque. A better knowledge of the molecular mechanisms conducive to the appearance of differentiated myofibroblasts in each pathological situation will be useful for the understanding of fibrosis development in different organs and for the planning of strategies aiming at their prevention and therapy.
Collapse
Affiliation(s)
- Boris Hinz
- Laboratory of Cell Biophysics, Ecole Polytechnique Fédérale de Lausanne (EPFL), Bâtiment SG-AA-B143, Station 15, CH-1015 Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
695
|
Yan X, Liu Y, Han Q, Jia M, Liao L, Qi M, Zhao RC. Injured microenvironment directly guides the differentiation of engrafted Flk-1(+) mesenchymal stem cell in lung. Exp Hematol 2007; 35:1466-75. [PMID: 17637496 DOI: 10.1016/j.exphem.2007.05.012] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 04/20/2007] [Accepted: 05/22/2007] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Time window is a key factor in the treatment of lung injury by mesenchymal stem cells (MSC) transplantation. This study was aimed to analyze the engraftment and differentiation behavior of MSC transplanted at different time points after lung irradiation, and the possible mechanisms were discussed. MATERIALS AND METHODS The thorax of C57BL/6 mice was exposed to 1400 cGy, then Flk-1(+)MSCs from enhanced green fluorescent protein C57BL/6 mice were systemically injected into C57BL/6 mice at 4 hours, 60 days, and 120 days post thoracic exposure, respectively. The engraftment and differentiation of Flk-1(+)MSC transplanted at different time points were evaluated. Lung tissue was collected and analyzed for fibrosis. Expression of transforming growth factor (TGF)-beta1 in the lung was qualified by semi-quantitative real-time reverse transcription polymerase chain reaction. In vitro, Flk-1(+)MSCs were cultured in epithelium induction media, together with damaged primary lung cells, supernatants of radiation-injured lung cells, or TGF-beta1 to find the possible factors that might effect Flk-1(+)MSC differentiation. RESULTS Cells injected immediately after injury were shown to differentiate into functional lung cells, such as epithelial and endothelial cells. Cells injected 2 months later were mostly located in the interstitial area and appeared as myofibrocyte. The in vivo lung microenvironments at different time points after injury were different from each other, especially TGF-beta1 expression. We demonstrated that cytokines secreted by irradiated lung cells could inhibit differentiation of Flk-1(+)MSCs into epithelial cells in vitro. CONCLUSIONS Flk-1(+)MSCs injected into the lung immediately after irradiation could differentiate into functional lung cells, while those injected at later stage after irradiation would be involved in fibrosis development. Thus our in vivo and in vitro studies demonstrated that differentiation of Flk-1(+)MSCs is controlled by the microenvironment.
Collapse
Affiliation(s)
- Xi Yan
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Center of Excellence in Tissue Engineering, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
696
|
Willis BC, Borok Z. TGF-beta-induced EMT: mechanisms and implications for fibrotic lung disease. Am J Physiol Lung Cell Mol Physiol 2007; 293:L525-34. [PMID: 17631612 DOI: 10.1152/ajplung.00163.2007] [Citation(s) in RCA: 804] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT), a process whereby fully differentiated epithelial cells undergo transition to a mesenchymal phenotype giving rise to fibroblasts and myofibroblasts, is increasingly recognized as playing an important role in repair and scar formation following epithelial injury. The extent to which this process contributes to fibrosis following injury in the lung is a subject of active investigation. Recently, it was demonstrated that transforming growth factor (TGF)-beta induces EMT in alveolar epithelial cells (AEC) in vitro and in vivo, and epithelial and mesenchymal markers have been colocalized to hyperplastic type II (AT2) cells in lung tissue from patients with idiopathic pulmonary fibrosis (IPF), suggesting that AEC may exhibit extreme plasticity and serve as a source of fibroblasts and/or myofibroblasts in lung fibrosis. In this review, we describe the characteristic features of EMT and its mechanistic underpinnings. We further describe the contribution of EMT to fibrosis in adult tissues following injury, focusing especially on the critical role of TGF-beta and its downstream mediators in this process. Finally, we highlight recent descriptions of EMT in the lung and the potential implications of this process for the treatment of fibrotic lung disease. Treatment for fibrosis of the lung in diseases such as IPF has heretofore focused largely on amelioration of potential inciting processes such as inflammation. It is hoped that this review will stimulate further consideration of the cellular mechanisms of fibrogenesis in the lung and especially the role of the epithelium in this process, potentially leading to innovative avenues of investigation and treatment.
Collapse
Affiliation(s)
- Brigham C Willis
- Heart and Lung Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona, USA
| | | |
Collapse
|
697
|
Arciniegas E, Frid MG, Douglas IS, Stenmark KR. Perspectives on endothelial-to-mesenchymal transition: potential contribution to vascular remodeling in chronic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2007; 293:L1-8. [PMID: 17384082 DOI: 10.1152/ajplung.00378.2006] [Citation(s) in RCA: 256] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
All forms of pulmonary hypertension are characterized by structural changes in pulmonary arteries. Increased numbers of cells expressing α-smooth muscle (α-SM) actin is a nearly universal finding in the remodeled artery. Traditionally, it was assumed that resident smooth muscle cells were the exclusive source of these newly appearing α-SM actin-expressing cells. However, rapidly emerging experimental evidence suggests other, alternative cellular sources of these cells. One possibility is that endothelial cells can transition into mesenchymal cells expressing α-SM actin and that this process contributes to the accumulation of SM-like cells in vascular pathologies. We review the evidence that endothelial-mesenchymal transition is an important contributor to cardiac and vascular development as well as to pathophysiological vascular remodeling. Recent work has provided evidence for the role of transforming growth factor-β, Wnt, and Notch signaling in this process. The potential roles of matrix metalloproteinases and serine proteases are also discussed. Importantly, endothelial-mesenchymal transition may be reversible. Thus insights into the mechanisms controlling endothelial-mesenchymal transition are relevant to vascular remodeling and are important as we consider new therapies aimed at reversing pulmonary vascular remodeling.
Collapse
Affiliation(s)
- Enrique Arciniegas
- Laboratorio de Microscopia Electrónica, Servicio Autónomo Instituto de Biomedicina, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
| | | | | | | |
Collapse
|
698
|
Vyas-Read S, Shaul PW, Yuhanna IS, Willis BC. Nitric oxide attenuates epithelial-mesenchymal transition in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2007; 293:L212-21. [PMID: 17496059 DOI: 10.1152/ajplung.00475.2006] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Patients with interstitial lung diseases, such as idiopathic pulmonary fibrosis (IPF) and bronchopulmonary dysplasia (BPD), suffer from lung fibrosis secondary to myofibroblast-mediated excessive ECM deposition and destruction of lung architecture. Transforming growth factor (TGF)-β1 induces epithelial-mesenchymal transition (EMT) of alveolar epithelial cells (AEC) to myofibroblasts both in vitro and in vivo. Inhaled nitric oxide (NO) attenuates ECM accumulation, enhances lung growth, and decreases alveolar myofibroblast number in experimental models. We therefore hypothesized that NO attenuates TGF-β1-induced EMT in cultured AEC. Studies of the capacity for endogenous NO production in AEC revealed that endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) are expressed and active in AEC. Total NOS activity was 1.3 pmol·mg protein−1·min−1 with 67% derived from eNOS. TGF-β1 (50 pM) suppressed eNOS expression by more than 60% and activity by 83% but did not affect iNOS expression or activity. Inhibition of endogenous NOS with l-NAME led to spontaneous EMT, manifested by increased α-smooth muscle actin (α-SMA) expression and a fibroblast-like morphology. Provision of exogenous NO to TGF-β1-treated AEC decreased stress fiber-associated α-SMA expression and decreased collagen I expression by 80%. NO-treated AEC also retained an epithelial morphology and expressed increased lamellar protein, E-cadherin, and pro-surfactant protein B compared with those treated with TGF-β alone. These findings indicate that NO serves a critical role in preserving an epithelial phenotype and in attenuating EMT in AEC. NO-mediated regulation of AEC fate may have important implications in the pathophysiology and treatment of diseases such as IPF and BPD.
Collapse
Affiliation(s)
- Shilpa Vyas-Read
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9063, USA
| | | | | | | |
Collapse
|
699
|
Kim KK, Chapman HA. Endothelin-1 as Initiator of Epithelial–Mesenchymal Transition. Am J Respir Cell Mol Biol 2007; 37:1-2. [PMID: 17575081 DOI: 10.1165/rcmb.2007-0001ed] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
700
|
Dans la fibrose pulmonaire, les cellules épithéliales alvéolaires sont capables de se transformer en cellules mésenchymateuses agressives. Rev Mal Respir 2007. [DOI: 10.1016/s0761-8425(07)91632-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|