701
|
Two distal downstream enhancers direct expression of the human apolipoprotein E gene to astrocytes in the brain. J Neurosci 2001. [PMID: 11157067 DOI: 10.1523/jneurosci.21-03-00812.2001] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Two distal downstream enhancers controlling astrocyte expression of the human apolipoprotein E (apoE) gene in the brain were identified by analysis of transgenic mice generated with various constructs of the apoE/C-I/C-IV/C-II gene cluster. In wild-type mice, the highest overall levels of apoE mRNA were found in astrocytes in the glomerular layer of olfactory bulbs and in Bergmann glia in the cerebellum. This pattern of expression was reproduced in transgenic mice expressing the entire human apoE gene cluster and also in transgenic mice expressing specific enhancer segments within the cluster. Expression of the human apoE transgene at these sites was specified by two enhancer domains: one enhancer is located 3.3 kb downstream of the apoE gene, and a duplication of this sequence is located 15 kb downstream of the apoE gene. Astrocyte enhancer activity was contained within 620 and 619 bp segments of these domains that show subtle differences in regional expression. In the absence of these distal enhancers, the apoE gene was not expressed in astrocytes. The relatively high levels of apoE expression at specific sites in the olfactory bulb and cerebellum suggest the presence of unique regulatory signals at these locations that may reflect common cellular properties and apoE gene functions. The localization of the two astrocytic enhancers reveals an unexpected complexity in the control of apoE production that is essential to understanding apoE function in the brain.
Collapse
|
702
|
Tysnes BB, Mahesparan R. Biological mechanisms of glioma invasion and potential therapeutic targets. J Neurooncol 2001; 53:129-47. [PMID: 11716066 DOI: 10.1023/a:1012249216117] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The current understanding of glioma biology reveals targets for anti-invasive therapy which include manipulations of extracellular matrix and receptors, growth factors and cytokines, proteases, cytoskeletal components, oncogenes and tumor suppressor genes. A better understanding of the complex regulation and the signalling molecules involved in glioma invasion is still needed in order to design new and effective treatment modalities towards invasive tumor cells. Representative and valid in vitro experimental systems and animal models of gliomas are necessary for the characterization of the invasive phenotype and further development of anti-invasive therapy. In the future, it will probably be important to move from comparative genomic modelling through protein characterization based on advanced proteomic techniques to analyse tissue samples, where the aim for gliomas should be to compare invaded and non-invaded tissue. This will hopefully render promising new therapeutic targets for gliomas.
Collapse
Affiliation(s)
- B B Tysnes
- Department of Anatomy and Cell Biology, University of Bergen, Norway.
| | | |
Collapse
|
703
|
Rah JC, Kim HS, Kim SS, Bach JH, Kim YS, Park CH, Seo JH, Jeong SJ, Suh YH. Effects of carboxyl-terminal fragment of Alzheimer's amyloid precursor protein and amyloid beta-peptide on the production of cytokines and nitric oxide in glial cells. FASEB J 2001; 15:1463-5. [PMID: 11387258 DOI: 10.1096/fj.00-0724fje] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- J C Rah
- Department of Pharmacology, College of Medicine, National Creative Research Initiative Centre for Alzheimer's Dementia and Neuroscience Research Institute, Medical Research Centre, Seoul National University, Seoul 110-799, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
704
|
Neary JT, Lenz G, Kang Y, Rodnight R, Avruch J. Role of mitogen-activated protein kinase cascades in P2Y receptor-mediated trophic activation of astroglial cells. Drug Dev Res 2001. [DOI: 10.1002/ddr.1183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
705
|
Rühl A, Franzke S, Collins SM, Stremmel W. Interleukin-6 expression and regulation in rat enteric glial cells. Am J Physiol Gastrointest Liver Physiol 2001; 280:G1163-71. [PMID: 11352809 DOI: 10.1152/ajpgi.2001.280.6.g1163] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
As yet, little is known about the function of the glia of the enteric nervous system (ENS), particularly in an immune-stimulated environment. This prompted us to study the potential of cultured enteroglial cells for cytokine synthesis and secretion. Jejunal myenteric plexus preparations from adult rats were enzymatically dissociated, and enteroglial cells were purified by complement-mediated cytolysis and grown in tissue culture. Cultured cells were stimulated with recombinant rat interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF)-alpha, and IL-6 mRNA expression and secretion were assessed using RT-PCR and a bioassay, respectively. Stimulation with TNF-alpha did not affect IL-6 mRNA expression, whereas IL-1beta stimulated IL-6 mRNA and protein synthesis in a time- and concentration-dependent fashion. In contrast, IL-6 significantly and dose-dependently suppressed IL-6 mRNA expression. In summary, we have presented evidence that enteric glial cells are a potential source of IL-6 in the myenteric plexus and that cytokine production by enteric glial cells can be regulated by cytokines. These findings strongly support the contention that enteric glial cells act as immunomodulatory cells in the enteric nervous system.
Collapse
Affiliation(s)
- A Rühl
- Department of Gastroenterology, University of Heidelberg, Bergheimer Str. 58, D-69115 Heidelberg, Germany.
| | | | | | | |
Collapse
|
706
|
Ciccarelli R, Ballerini P, Sabatino G, Rathbone MP, D'Onofrio M, Caciagli F, Di Iorio P. Involvement of astrocytes in purine‐mediated reparative processes in the brain. Int J Dev Neurosci 2001; 19:395-414. [PMID: 11378300 DOI: 10.1016/s0736-5748(00)00084-8] [Citation(s) in RCA: 178] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Astrocytes are involved in multiple brain functions in physiological conditions, participating in neuronal development, synaptic activity and homeostatic control of the extracellular environment. They also actively participate in the processes triggered by brain injuries, aimed at limiting and repairing brain damages. Purines may play a significant role in the pathophysiology of numerous acute and chronic disorders of the central nervous system (CNS). Astrocytes are the main source of cerebral purines. They release either adenine-based purines, e.g. adenosine and adenosine triphosphate, or guanine-based purines, e.g. guanosine and guanosine triphosphate, in physiological conditions and release even more of these purines in pathological conditions. Astrocytes express several receptor subtypes of P1 and P2 types for adenine-based purines. Receptors for guanine-based purines are being characterised. Specific ecto-enzymes such as nucleotidases, adenosine deaminase and, likely, purine nucleoside phosphorylase, metabolise both adenine- and guanine-based purines after release from astrocytes. This regulates the effects of nucleotides and nucleosides by reducing their interaction with specific membrane binding sites. Adenine-based nucleotides stimulate astrocyte proliferation by a P2-mediated increase in intracellular [Ca2+] and isoprenylated proteins. Adenosine also, via A2 receptors, may stimulate astrocyte proliferation, but mostly, via A1 and/or A3 receptors, inhibits astrocyte proliferation, thus controlling the excessive reactive astrogliosis triggered by P2 receptors. The activation of A1 receptors also stimulates astrocytes to produce trophic factors, such as nerve growth factor, S100beta protein and transforming growth factor beta, which contribute to protect neurons against injuries. Guanosine stimulates the output of adenine-based purines from astrocytes and in addition it directly triggers these cells to proliferate and to produce large amount of neuroprotective factors. These data indicate that adenine- and guanine-based purines released in large amounts from injured or dying cells of CNS may act as signals to initiate brain repair mechanisms widely involving astrocytes.
Collapse
Affiliation(s)
- R Ciccarelli
- Department of Biomedical Sciences, Section of Pharmacology, Via del Vestini Pal. B, 66013, Chieti, Italy.
| | | | | | | | | | | | | |
Collapse
|
707
|
Penkowa M, Molinero A, Carrasco J, Hidalgo J. Interleukin-6 deficiency reduces the brain inflammatory response and increases oxidative stress and neurodegeneration after kainic acid-induced seizures. Neuroscience 2001; 102:805-18. [PMID: 11182244 DOI: 10.1016/s0306-4522(00)00515-7] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of interleukin-6 in hippocampal tissue damage after injection with kainic acid, a rigid glutamate analogue inducing epileptic seizures, has been studied by means of interleukin-6 null mice. At 35mg/kg, kainic acid induced convulsions in both control (75%) and interleukin-6 null (100%) mice, and caused a significant mortality (62%) only in the latter mice, indicating that interleukin-6 deficiency increased the susceptibility to kainic acid-induced brain damage. To compare the histopathological damage caused to the brain, control and interleukin-6 null mice were administered 8.75mg/kg kainic acid and were killed six days later. Morphological damage to the hippocampal field CA1-CA3 was seen after kainic acid treatment. Reactive astrogliosis and microgliosis were prominent in kainic acid-injected normal mice hippocampus, and clear signs of increased oxidative stress were evident. Thus, the immunoreactivity for inducible nitric oxide synthase, peroxynitrite-induced nitration of proteins and byproducts of fatty acid peroxidation were dramatically increased, as was that for metallothionein I+II, Mn-superoxide dismutase and Cu/Zn-superoxide dismutase. In accordance, a significant neuronal apoptosis was caused by kainic acid, as revealed by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling and interleukin-1beta converting enzyme/Caspase-1 stainings. In kainic acid-injected interleukin-6 null mice, reactive astrogliosis and microgliosis were reduced, while morphological hippocampal damage, oxidative stress and apoptotic neuronal death were increased. Since metallothionein-I+II levels were lower, and those of inducible nitric oxide synthase higher, these concomitant changes are likely to contribute to the observed increased oxidative stress and neuronal death in the interleukin-6 null mice. The present results demonstrate that interleukin-6 deficiency increases neuronal injury and impairs the inflammatory response after kainic acid-induced seizures.
Collapse
Affiliation(s)
- M Penkowa
- Department of Medical Anatomy, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
708
|
Widenfalk J, Lundströmer K, Jubran M, Brene S, Olson L. Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid. J Neurosci 2001; 21:3457-75. [PMID: 11331375 PMCID: PMC6762497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Delivery of neurotrophic factors to the injured spinal cord has been shown to stimulate neuronal survival and regeneration. This indicates that a lack of sufficient trophic support is one factor contributing to the absence of spontaneous regeneration in the mammalian spinal cord. Regulation of the expression of neurotrophic factors and receptors after spinal cord injury has not been studied in detail. We investigated levels of mRNA-encoding neurotrophins, glial cell line-derived neurotrophic factor (GDNF) family members and related receptors, ciliary neurotrophic factor (CNTF), and c-fos in normal and injured spinal cord. Injuries in adult rats included weight-drop, transection, and excitotoxic kainic acid delivery; in newborn rats, partial transection was performed. The regulation of expression patterns in the adult spinal cord was compared with that in the PNS and the neonate spinal cord. After mechanical injury of the adult rat spinal cord, upregulations of NGF and GDNF mRNA occurred in meningeal cells adjacent to the lesion. BDNF and p75 mRNA increased in neurons, GDNF mRNA increased in astrocytes close to the lesion, and GFRalpha-1 and truncated TrkB mRNA increased in astrocytes of degenerating white matter. The relatively limited upregulation of neurotrophic factors in the spinal cord contrasted with the response of affected nerve roots, in which marked increases of NGF and GDNF mRNA levels were observed in Schwann cells. The difference between the ability of the PNS and CNS to provide trophic support correlates with their different abilities to regenerate. Kainic acid delivery led to only weak upregulations of BDNF and CNTF mRNA. Compared with several brain regions, the overall response of the spinal cord tissue to kainic acid was weak. The relative sparseness of upregulations of endogenous neurotrophic factors after injury strengthens the hypothesis that lack of regeneration in the spinal cord is attributable at least partly to lack of trophic support.
Collapse
Affiliation(s)
- J Widenfalk
- Department of Neuroscience, Karolinska Institute, S-171 77 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
709
|
Leon Chavez BA, Guevara J, Galindo S, Luna J, Ugarte A, Villegas O, Mena R, Eguibar JR, Martinez-Fong D. Regional and temporal progression of reactive astrocytosis in the brain of the myelin mutant taiep rat. Brain Res 2001; 900:152-5. [PMID: 11325359 DOI: 10.1016/s0006-8993(01)02284-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Reactive astrocytosis in taiep rats was shown by glial fibrillary acidic protein (GFAP) immunoreactivity measured by means of enzyme-linked immunosorbent assay and indirect immunofluorescence. Increased GFAP immunoreactivity was first observed in the brainstem of 15-day-old taiep rats and was widespread throughout all brain regions at 6 months of age. Characteristically, astrocytes were hypertrophic and displayed strong GFAP fluorescence. The pattern of these reactive cells may correlate with the process of dysmyelination in the taiep rat.
Collapse
Affiliation(s)
- B A Leon Chavez
- Departamento de Fisiología, Biofísica y Neurociencias, CINVESTAV-IPN, Apartado postal 14-740, 07000 D.F., México, Mexico
| | | | | | | | | | | | | | | | | |
Collapse
|
710
|
Tezel G, Hernandez MR, Wax MB. In vitro evaluation of reactive astrocyte migration, a component of tissue remodeling in glaucomatous optic nerve head. Glia 2001; 34:178-89. [PMID: 11329180 DOI: 10.1002/glia.1052] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In order to improve understanding of remodeling events in the glaucomatous optic nerve head, the migration of optic nerve head astrocytes was studied in vitro. Since elevated intraocular pressure is an important stress factor identified in glaucomatous eyes, optic nerve head astrocytes were incubated under physical stress created by elevated hydrostatic pressure. In addition, they were incubated in the presence of a chemical stimulus, lipolysaccharide (LPS). Migration of reactivated astrocytes in the presence of these stressors was examined using chambers in which cell migration through extracellular matrix-coated pores is only possible following proteolytic digestion of the matrix. We observed that the migratory ability of optic nerve head astrocytes was approximately 4-6 times greater following exposure to elevated hydrostatic pressure or LPS for up to 48 h. Phosphoinositide 3-kinase, protein kinase C, and tyrosine kinase were found to be involved in the signal transduction for activated migration of optic nerve head astrocytes in response to elevated hydrostatic pressure or LPS. In addition, we observed that the stress-induced migration of optic nerve head astrocytes, which is accompanied by proteolytic degradation, resulted in the formation of culture cavities containing mucopolysaccharides. These in vitro findings provide a clearer understanding of the pathophysiologic mechanisms of characteristic tissue remodeling events that occur, in vivo, in the glaucomatous optic nerve head.
Collapse
Affiliation(s)
- G Tezel
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri, 63110, USA.
| | | | | |
Collapse
|
711
|
Laxton AW, Sun MC, Shen H, Murphy TH, Honey CR. The antioxidant enzyme quinone reductase is up-regulated in vivo following cerebral ischemia. Neuroreport 2001; 12:1045-8. [PMID: 11303743 DOI: 10.1097/00001756-200104170-00036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
An astrocyte antioxidant enzyme, quinone reductase (QR), was studied in vivo to assess whether its activity was up-regulated following cerebral ischemia. Rats were given a unilateral focal cerebral infarct and regions of interest within the ischemic penumbra compared to the non-ischemic side for QR activity. At 7 days post-ischemia, QR activity was significantly up-regulated within cells of astrocyte morphology in the cortex (p = 0.007) and subcortical (p = 0.005) areas adjacent to the infarct. This enzyme activity peaked at 7 days but was still significantly up-regulated at 14 days. Up-regulation of QR activity occurs within the ischemic penumbra of a stroke in this animal model and may contribute to factors that limit ischemic damage to neurons in this area.
Collapse
Affiliation(s)
- A W Laxton
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
712
|
Gabryel B, Trzeciak HI. Role of astrocytes in pathogenesis of ischemic brain injury. Neurotox Res 2001; 3:205-21. [PMID: 14715474 DOI: 10.1007/bf03033192] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Astrocytes play an important role in the homeostasis of the CNS both in normal conditions and after ischemic injury. The swelling of astrocytes is observed during and several seconds after brain ischemia. Then ischemia stimulates sequential morphological and biochemical changes in glia and induces its proliferation. Reactive astrocytes demonstrate stellate morphology, increased glial fibrillary acidic protein (GFAP) immunoreactivity, increased number of mitochondria as well as elevated enzymatic and non-enzymatic antioxidant activities. Astrocytes can re-uptake and metabolize glutamate and in this way they control its extracellular concentration. The ability of astrocytes to protect neurons against the toxic action of free radicals depends on their specific energy metabolism, high glutathione level, increased antioxidant enzyme activity (catalase, superoxide dismutase, glutathione peroxidase) and overexpression of antiapoptotic bcl-2 gene. Astrocytes produce cytokines (TNF-alpha, IL-1, IL-6) involved in the initiation and maintaining of immunological response in the CNS. In astrocytes, like in neurones, ischemia induces the expression of immediate early genes: c-fos, c-jun, fos B, jun B, jun D, Krox-24, NGFI-B and others. The protein products of these genes modulate the expression of different proteins, both destructive ones and those involved in the neuroprotective processes.
Collapse
Affiliation(s)
- B Gabryel
- Department of Pharmacology, Silesian Medical University, Medyków 18 St., 40-752 Katowice, Poland.
| | | |
Collapse
|
713
|
Pennypacker KR, Yang X, Gordon MN, Benkovic S, Miller D, O'Callaghan JP. Long-term induction of Fos-related antigen-2 after methamphetamine-, methylenedioxymethamphetamine-, 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine- and trimethyltin-induced brain injury. Neuroscience 2001; 101:913-9. [PMID: 11113340 DOI: 10.1016/s0306-4522(00)00381-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A long-term induction of Fos-related antigens has been shown in neurons after brain injury, suggesting that Fos-related antigens are involved in enhancing the transcription of genes related to the process of regeneration and repair. In the present study, we report that levels of Fos-related antigen-2 are elevated in several models of chemically induced brain injury. Trimethyltin, which causes degeneration of neurons primarily in the hippocampus and other limbic regions, results in a five-fold induction of Fos-related antigen-2 immunoreactivity in neurons in the pyramidal and dentate layers of the hippocampus starting at seven days post-treatment and persisting for 60days. Methamphetamine and methylenedioxymethamphetamine, agents which cause degeneration of dopaminergic nerve terminals in the striatum of the mouse, cause an increase in Fos-related antigen-2 immunoreactivity which begins at three days post-treatment and returns to basal levels by days 5 and 15, respectively. Treatment with 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine elevated levels of Fos-related antigen-2 in the mouse striatum at three days post-treatment. This abbreviated time-course of Fos-related antigen-2 induction is consistent with less severe insult (terminal damage) relative to trimethyltin (cell death), but induction occurs during the period of regeneration and repair in both models. Dexfenfluramine, a non-neurotoxic amphetamine, does not induce Fos-related antigen-2 expression. Decreasing core temperature of the mouse, which blocks amphetamine-induced neurotoxicity, also blocks Fos-related antigen-2 induction. In summary, Fos-related antigen-2 is induced in models of both cell death and terminal degeneration, suggesting that this transcription factor may serve as a universal signal transduction molecule involved in the regulation of genes related to regeneration and repair in the CNS.
Collapse
Affiliation(s)
- K R Pennypacker
- University of South Florida, College of Medicine, Department of Pharmacology and Therapeutics, Tampa, FL 33612, USA.
| | | | | | | | | | | |
Collapse
|
714
|
Koyama Y, Yoshioka Y, Hashimoto H, Matsuda T, Baba A. Endothelins increase tyrosine phosphorylation of astrocytic focal adhesion kinase and paxillin accompanied by their association with cytoskeletal components. Neuroscience 2001; 101:219-27. [PMID: 11068150 DOI: 10.1016/s0306-4522(00)00330-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Astrocytic endothelin receptors are involved in the appearance of activated astrocytes upon injury of the brain [Ishikawa N. et al. (1997) Eur. J. Neurosci. 9, 895-901; Koyama Y. et al. (1999) Glia 26, 268-271]. To clarify signal transduction triggered by endothelin receptors, we examined the effects of endothelins on protein tyrosine phosphorylation in cultured rat astrocytes. Endothelin-1 (1 nM) increased tyrosine phosphorylation of focal adhesion kinase and paxillin. The tyrosine phosphorylation was also induced by endothelin-1 (1 nM) and Ala(1,3,11,15)-endothelin-1 (10nM), an endothelin-B receptor agonist. BQ788 (100 nM), an endothelin-B receptor antagonist, inhibited the effects of endothelin-3. Orthovanadate (VO(4)(3-)), a tyrosine phosphatase inhibitor, but not bradykinin (1 microM), angiotensin II (100 nM), A23187 (5 microM) and phorbol 12-myristate 13-acetate (100 nM), increased tyrosine phosphorylation of focal adhesion kinase and paxillin. The tyrosine phosphorylation by endothelin-3 was not prevented by pertussis toxin, Ca(2+) chelation, protein kinase C inhibitors (calphostin C and staurosporine) or wortmannin. Immunocytochemical staining showed that endothelin-3 and VO(4)(3-) induced redistribution of focal adhesion kinase and paxillin to focal adhesions concomitant with stress fiber formation in dibutyryl cyclic-AMP-treated astrocytes. Treatment with endothelin-3 and VO(4)(3-) increased focal adhesion kinase and paxillin associated with astrocytic cytoskeletal fraction. In the presence of cytochalasin B, an actin disrupting agent, endothelin-3 and VO(4)(3-) did not phosphorylate focal adhesion kinase and paxillin. Application of cytochalasin B after treatment with endothelin-3 and VO(4)(3-) stimulated dephosphorylation of focal adhesion kinase and paxillin. These results suggest that the associations of focal adhesion kinase and paxillin with cytoskeletal components are required in the endothelin-induced tyrosine phosphorylation of the astrocytic proteins.
Collapse
Affiliation(s)
- Y Koyama
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-Oka 1-6, Suita 565-0871, Japan
| | | | | | | | | |
Collapse
|
715
|
Nomura H, Furuta A, Suzuki SO, Iwaki T. Dorsal horn lesion resulting from spinal root avulsion leads to the accumulation of stress-responsive proteins. Brain Res 2001; 893:84-94. [PMID: 11222996 DOI: 10.1016/s0006-8993(00)03291-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The aim of this study was to demonstrate acute to subacute molecular episodes in the dorsal horn following root avulsion using immunohistochemical methods with the markers for synapses, astrocytes and such stress-responsive molecules as heat shock proteins (Hsps) and p38 MAP kinase (p38). Among them, Hsp27 was accumulated selectively in the injured substantia gelatinosa 24 h after avulsion injury. The localization of Hsp27 in astrocytes within the substantia gelatinosa was confirmed by the double immunofluorescence method using anti-Hsp27 antibody and either anti-synaptophysin antibody or anti-glutamine synthetase antibody and by immunoelectron microscopy for Hsp27. The pattern of Hsp27 expression subsequently changed from glial pattern to punctate pattern by 7 days. Immunoelectron microscopy revealed that the punctate pattern in the subacute stage corresponded to distal parts of the astrocytic processes. Hsp27 immunoreaction was decreased 21 days after root avulsion. In the distal axotomy model, Hsp27 was accumulated later in the ipsilateral dorsal horn in a punctate pattern from 7 days after the axotomy. Phosphorylation of p38 was detected in microglia in the dorsal horn following both avulsion and axotomy. Substance P was slightly decreased in the injured substantia gelatinosa in both the avulsion and axotomy models around 14-21 days. We conclude that Hsp27 is a useful marker for demonstrating dorsal horn lesions following avulsion injury and that avulsion injury may induce Hsp27 in the dorsal horn more rapidly than distal axotomy.
Collapse
Affiliation(s)
- H Nomura
- Department of Neuropathology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | | | | | | |
Collapse
|
716
|
Persidsky Y, Limoges J, Rasmussen J, Zheng J, Gearing A, Gendelman HE. Reduction in glial immunity and neuropathology by a PAF antagonist and an MMP and TNFalpha inhibitor in SCID mice with HIV-1 encephalitis. J Neuroimmunol 2001; 114:57-68. [PMID: 11240016 DOI: 10.1016/s0165-5728(00)00454-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The effects of anti-inflammatory drugs on glial immunity and neuropathology were determined in a severe combined immune deficiency (SCID) mouse model of HIV-1 encephalitis. HIV-1-infected human monocyte-derived macrophages (MDM) are stereotactically inoculated into basal ganglia resulting in a multinucleated giant cell encephalitis. A platelet activating factor antagonist and a matrix metalloproteinase inhibitor, which also inhibits tumor necrosis factor alpha release, were administered to animals at the time of the MDM inoculation. The drugs administered in combination markedly reduced brain inflammation, astrogliosis and microglia activation. These findings demonstrate that reduction of brain inflammatory responses, independent of viral replication, can affect HIVE pathology in an animal model system of disease.
Collapse
Affiliation(s)
- Y Persidsky
- The Center for Neurovirology and Neurodegenerative Disorders, University of Nebraska Medical Center, 985215 Nebraska Medical Center, Omaha, NE 68198-5215, USA.
| | | | | | | | | | | |
Collapse
|
717
|
GluR3 autoantibodies destroy neural cells in a complement-dependent manner modulated by complement regulatory proteins. J Neurosci 2001. [PMID: 11007888 DOI: 10.1523/jneurosci.20-19-07307.2000] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
GluR3 autoantibodies have been implicated in the development of Rasmussen's encephalitis, a rare neurodegenerative disease of humans characterized by epilepsy and degeneration of a single cerebral hemisphere. GluR3 autoantibodies are found in some Rasmussen's encephalitis patients, and GluR3 antibodies raised in rabbits destroy cultured cortical cells in a complement-dependent manner. In this study, the cellular targets of anti-GluR3 antisera-mediated cytotoxicity were examined in mixed primary neuronal-glial cultures of rat cortex. Unexpectedly, astrocytes were the principal target of the cytotoxic effects as assessed by immunohistochemistry and lactate dehydrogenase activity; neurons were destroyed to a lesser extent. Astrocyte vulnerability was rescued by transfection with complement regulatory proteins, and neuronal resistance was defeated by impairing complement regulatory protein function. Astrocyte death may occur in Rasmussen's encephalitis, and destruction of this cell type may play a critical role in the progression of this disorder. The present findings suggest complement regulatory protein expression may in part determine the nature and severity of Rasmussen's encephalitis and other complement-dependent nervous system diseases and thus underscore the need for a systematic investigation of the expression of all known complement regulatory proteins in healthy and diseased nervous system tissues.
Collapse
|
718
|
Rühl A, Trotter J, Stremmel W. Isolation of enteric glia and establishment of transformed enteroglial cell lines from the myenteric plexus of adult rat. Neurogastroenterol Motil 2001; 13:95-106. [PMID: 11169131 DOI: 10.1046/j.1365-2982.2001.00246.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Although enteroglial cells (EGCs) may play a key role in the inflammatory response of the enteric nervous system, little is known about their immunophysiological properties. To facilitate further characterization of enteric glia, we have developed a novel method to isolate and purify EGCs from the myenteric plexus. Myenteric plexus preparations were enzymatically dissociated and EGCs purified by complement-mediated cytolysis of contaminating cells and transformed by retroviral gene transfer. Primary and transformed cells were characterized immunohistochemically and by dot-blot analysis. Functionally, c-fos mRNA expression was assessed in primary and transformed enteroglial cells. All cells displayed robust glial fibrillary acidic protein, S-100 and vimentin immunoreactivities, but no Thy-1.1, desmin, smooth muscle alpha-actin or C3 complement receptor immunoreactivity. This confirmed their enteroglial lineage and excluded contamination with other cell types. Both primary and transformed EGCs displayed little constitutive c-fos mRNA expression. This, however, could be upregulated by various stimuli, including proinflammatory cytokines. In summary, we present a novel method to purify EGCs from rat myenteric plexus for tissue culture and to establish transformed EGC lines that retain their glial nature and functional properties. Such cell lines are now available for physiological studies of the functional properties of enteric glia in vitro.
Collapse
Affiliation(s)
- A Rühl
- Department of Gastroenterology, Ruprecht-Karls-University, Heidelberg, Germany.
| | | | | |
Collapse
|
719
|
Abstract
Although the neuropathological changes caused by severe or repeated seizures have been well characterized, many questions about the molecular mechanisms involved remain unanswered. Neuronal cell death, reactive gliosis, enhanced neurogenesis, and axonal sprouting are four of the best-studied sequelae of seizures. In vitro, each of these pathological processes can be substantially influenced by soluble protein factors, including neurotrophins, cytokines, and growth factors. Furthermore, many of these proteins and their receptors are expressed in the adult brain and are up-regulated in response to neuronal activity and injury. We review the evidence that these intercellular signaling proteins regulate seizure activity as well as subsequent pathology in vivo. As nerve growth factor and brain derived neurotrophic factor are the best-studied proteins of this class, we begin by discussing the evidence linking these neurotrophins to epilepsy and seizure. More than a dozen additional cytokines, growth factors, and neurotrophins that have been examined in the context of epilepsy models are then considered. We discuss the effect of seizure on expression of cytokines and growth factors, and explore the regulation of seizure development and aftermath by exogenous application or antagonist perturbation of these proteins. The experimental evidence supports a role for these factors in each aspect of seizure and pathology, and suggests potential targets for future therapeutics.
Collapse
Affiliation(s)
- J L Jankowsky
- Biology Division, California Institute of Technology, 216-76 Caltech, Pasadena, CA 91125, USA
| | | |
Collapse
|
720
|
Grehan S, Tse E, Taylor JM. Two distal downstream enhancers direct expression of the human apolipoprotein E gene to astrocytes in the brain. J Neurosci 2001; 21:812-22. [PMID: 11157067 PMCID: PMC6762321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Two distal downstream enhancers controlling astrocyte expression of the human apolipoprotein E (apoE) gene in the brain were identified by analysis of transgenic mice generated with various constructs of the apoE/C-I/C-IV/C-II gene cluster. In wild-type mice, the highest overall levels of apoE mRNA were found in astrocytes in the glomerular layer of olfactory bulbs and in Bergmann glia in the cerebellum. This pattern of expression was reproduced in transgenic mice expressing the entire human apoE gene cluster and also in transgenic mice expressing specific enhancer segments within the cluster. Expression of the human apoE transgene at these sites was specified by two enhancer domains: one enhancer is located 3.3 kb downstream of the apoE gene, and a duplication of this sequence is located 15 kb downstream of the apoE gene. Astrocyte enhancer activity was contained within 620 and 619 bp segments of these domains that show subtle differences in regional expression. In the absence of these distal enhancers, the apoE gene was not expressed in astrocytes. The relatively high levels of apoE expression at specific sites in the olfactory bulb and cerebellum suggest the presence of unique regulatory signals at these locations that may reflect common cellular properties and apoE gene functions. The localization of the two astrocytic enhancers reveals an unexpected complexity in the control of apoE production that is essential to understanding apoE function in the brain.
Collapse
Affiliation(s)
- S Grehan
- Gladstone Institute of Cardiovascular Disease, San Francisco, California 94141-9100, USA
| | | | | |
Collapse
|
721
|
Yamamoto M, Fan L, Wakayama T, Amano O, Iseki S. Constitutive expression of the 27-kDa heat-shock protein in neurons and satellite cells in the peripheral nervous system of the rat. THE ANATOMICAL RECORD 2001; 262:213-20. [PMID: 11169916 DOI: 10.1002/1097-0185(20010201)262:2<213::aid-ar1031>3.0.co;2-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
By use of reverse transcriptase-polymerase chain reaction, abundant expression of the mRNA of 27 kDa heat shock protein (Hsp27) was revealed in the sympathetic and parasympathetic ganglia as well as in the sensory ganglia of unstressed adult rats. In situ hybridization and immunohistochemistry further localized Hsp27 mRNA and protein to both neurons and satellite cells in all types of ganglia examined. Schwann cells in the ganglia and peripheral nerve fibers were devoid of Hsp27 signal. These results suggested that Hsp27 is constitutively expressed in neurons and satellite cells in the entire peripheral nervous system of the rat.
Collapse
Affiliation(s)
- M Yamamoto
- Department of Anatomy, School of Medicine, Kanazawa University, Kanazawa, Japan.
| | | | | | | | | |
Collapse
|
722
|
Abstract
Inflammatory bowel disease is typically accompanied by functional and structural changes of the enteric nervous system. In pathological studies, cellular loss and axonal degeneration have been described in the myenteric plexus. However, more recent studies suggest that the proliferation rate of myenteric glial cells is enhanced in animal models of intestinal inflammation. Therefore, we have investigated the effect of different cytokines on the proliferative response of enteric glial cells (EGCs), comparing transformed enteric glial cell lines, primary astrocyte cultures and transformed oligodendrocytes. Cells were incubated in serum-free chemically defined medium in the presence or absence of either interleukin (IL)-1beta or IL-10 at concentrations ranging between 0.1 and 100 ng mL(-1) for 48 h. Subsequently, [3H]thymidine was added to each culture dish for an additional 6 h, and the amount of incorporated [3H] was assessed. IL-1beta significantly and dose-dependently suppressed [3H]-uptake by EGCs. In contrast, IL-10 induced a biphasic response; IL-10 at low concentrations (0.1 ng mL(-1)) caused a significant suppression of [3H]-uptake, whereas high concentrations (5-100 ng mL(-1)) significantly enhanced [3H] uptake. These results indicate that EGC proliferation can be modulated by cytokines. The differential effects of IL-1beta and IL-10 suggest that during intestinal inflammation there may be a regulatory interplay between different classes of cytokines modulating EGC proliferation.
Collapse
Affiliation(s)
- A Rühl
- Department of Gastroenterology, Ruprecht-Karls-University, Heidelberg, Germany.
| | | | | |
Collapse
|
723
|
Smith C, Berry M, Clarke WE, Logan A. Differential expression of fibroblast growth factor-2 and fibroblast growth factor receptor 1 in a scarring and nonscarring model of CNS injury in the rat. Eur J Neurosci 2001; 13:443-56. [PMID: 11168551 DOI: 10.1046/j.1460-9568.2001.01400.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Injury to the adult brain results in abortive axon regeneration and the deposition of a dense fibrous glial scar. Therapeutic strategies to promote postinjury axon regeneration are likely to require antiscarring strategies. In neonatal brain wounds, scar material is not laid down and axons grow across the lesion site, either by de novo growth or regeneration. To achieve the therapeutic goal of recapitulating the nonscarring neonatal response in the injured adult, an understanding of how ontogenic differences in scarring reflect developmental diversities in the trophic response to injury is required. Fibrobast growth factor-2 (FGF-2) expression is developmentally regulated and has been implicated as a regulator of the wounding response of the adult rat central nervous system. We have investigated the expression of FGF-2 and fibroblast growth factor receptor 1 (FGFR1) after penetrating lesions to the cerebral cortex of 5 days post partum (dpp) (nonscarring) and 16 dpp and adult (scarring) rats. In situ hybridization, immunohistochemistry and Western blotting showed robust and sustained increases in FGF-2 and FGFR1 mRNA and protein in reactive astrocytes around the lesion in scarring rats, a response that was attenuated substantially in the nonscarring neonate. These results demonstrate that changes in astrocyte FGF-2 and FGFR1 expression are coincident with the establishment of a mature pattern of glial scarring after injury in the maturing central nervous system, but it is premature to infer a causal relationship without further experiments.
Collapse
Affiliation(s)
- C Smith
- Department of Medicine, University of Birmingham, Birmingham B15 2TT, UK
| | | | | | | |
Collapse
|
724
|
Horvat A, Schwaiger F, Hager G, Brocker F, Streif R, Knyazev P, Ullrich A, Kreutzberg GW. A novel role for protein tyrosine phosphatase shp1 in controlling glial activation in the normal and injured nervous system. J Neurosci 2001; 21:865-74. [PMID: 11157073 PMCID: PMC6762306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Tyrosine phosphorylation regulated by protein tyrosine kinases and phosphatases plays an important role in the activation of glial cells. Here we examined the expression of intracellular protein tyrosine phosphatase SHP1 in the normal and injured adult rat and mouse CNS. Our study showed that in the intact CNS, SHP1 was expressed in astrocytes as well as in pyramidal cells in hippocampus and cortex. Axotomy of peripheral nerves and direct cortical lesion led to a massive upregulation of SHP1 in activated microglia and astrocytes, whereas the neuronal expression of SHP1 was not affected. In vitro experiments revealed that in astrocytes, SHP1 associates with epidermal growth factor (EGF)-receptor, whereas in microglia, SHP1 associates with colony-stimulating factor (CSF)-1-receptor. In postnatal and adult moth-eaten viable (me(v)/me(v)) mice, which are characterized by reduced SHP1 activity, a strong increase in reactive astrocytes, defined by GFAP immunoreactivity, was observed throughout the intact CNS, whereas neither the morphology nor the number of microglial cells appeared modified. Absence of (3)[H]-thymidine-labeled nuclei indicated that astrocytic proliferation does not occur. In response to injury, cell number as well as proliferation of microglia were reduced in me(v)/me(v) mice, whereas the posttraumatic astrocytic reaction did not differ from wild-type littermates. The majority of activated microglia in mutant mice showed rounded and ameboid morphology. However, the regeneration rate after facial nerve injury in me(v)/me(v) mice was similar to that in wild-type littermates. These results emphasize that SHP1 as a part of different signaling pathways plays an important role in the global regulation of astrocytic and microglial activation in the normal and injured CNS.
Collapse
MESH Headings
- Animals
- Astrocytes/metabolism
- Astrocytes/pathology
- Axotomy
- Cells, Cultured
- Cerebral Cortex/metabolism
- Cerebral Cortex/pathology
- Disease Models, Animal
- Glial Fibrillary Acidic Protein/metabolism
- Head Injuries, Penetrating/enzymology
- Head Injuries, Penetrating/pathology
- Immunohistochemistry
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Mutant Strains
- Nerve Crush
- Nerve Regeneration
- Neuroglia/enzymology
- Neuroglia/pathology
- Peripheral Nerves/metabolism
- Peripheral Nerves/pathology
- Pyramidal Cells/metabolism
- Pyramidal Cells/pathology
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Trauma, Nervous System/enzymology
- Trauma, Nervous System/pathology
Collapse
Affiliation(s)
- A Horvat
- Department of Neuromorphology, Max-Planck-Institute of Neurobiology, D-82152 Martinsried, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
725
|
Abstract
Traumatic injury to the adult central nervous system (CNS) results in a rapid response from resident astrocytes, a process often referred to as reactive astrogliosis or glial scarring. The robust formation of the glial scar and its associated extracellular matrix (ECM) molecules have been suggested to interfere with any subsequent neural repair or CNS axonal regeneration. A series of recent in vivo experiments has demonstrated a distinct inhibitory influence of the glial scar on axonal regeneration. Here we review several experimental strategies designed to elucidate the roles of astrocytes and their associated ECM molecules after CNS damage, including astrocyte ablation techniques, transgenic approaches, and alterations in the deposition of the ECM. In the short term, mediators that modulate the inflammatory mechanisms responsible for eliciting astrogliotic scarring hold strong potential for establishing a favorable environment for neuronal repair. In the future, the conditional (inducible) genetic manipulation of astrocytes holds promise for further increasing our understanding of the functional biology of astrocytes as well as opening new therapeutic windows. Nevertheless, it is most likely that, to obtain long distance axonal regeneration within the injured adult CNS, a combinatorial approach involving different repair strategies, including but not limited to astrogliosis modulation, will be required.
Collapse
Affiliation(s)
- J McGraw
- Collaboration on Repair Discoveries (CORD), University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada
| | | | | |
Collapse
|
726
|
Nolte C, Matyash M, Pivneva T, Schipke CG, Ohlemeyer C, Hanisch UK, Kirchhoff F, Kettenmann H. GFAP promoter-controlled EGFP-expressing transgenic mice: A tool to visualize astrocytes and astrogliosis in living brain tissue. Glia 2001. [DOI: 10.1002/1098-1136(20010101)33:1<72::aid-glia1007>3.0.co;2-a] [Citation(s) in RCA: 365] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
727
|
Mandell JW, Gocan NC, Vandenberg SR. Mechanical trauma induces rapid astroglial activation of ERK/MAP kinase: Evidence for a paracrine signal. Glia 2001; 34:283-95. [PMID: 11360301 DOI: 10.1002/glia.1062] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Astrogliosis is a prominent and ubiquitous reaction of astrocytes to many forms of CNS injury, often implicated in the poor regenerative capacity of the adult mammalian CNS. Transmembrane signals that rapidly trigger and maintain astroglial responses to injury are largely undefined. Several candidate inducers of astrogliosis, including growth factors and neuropeptides, act via the extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) pathway. We previously observed chronically activated ERK/MAPK in human reactive astrocytes. To investigate mechanisms of pathway activation in a defined in vitro model, primary cultured astroglial monolayers were subjected to focal mechanical injury. Within 2-10 min, ERK/MAPK was activated, but only in cells near the wound edge. By 30 min, the entire monolayer showed activation, which persisted for 4 to 8 h. ERK/MAPK activation was specifically blocked by application of the MEK inhibitors, PD98059 and U0126. Cell-cell contact was not necessary for intercellular spread of ERK/MAPK activation, and ERK/MAPK-stimulating activity was found in the injury-conditioned medium. The activating factor was shown to have a native size of 50-100 kD and did not signal through the classical EGF receptor. Injury-induced signaling to ERK/MAPK required Ras, as demonstrated by specific blockade after transient transfection with a dominant negative Ha-RasN17 construct. Finally, we demonstrated that focal lesioning of adult rat cortex induces a rapid activation and spreading of astroglial ERK/MAPK, suggesting that similar mechanisms may operate in astroglial activation following acute brain injury.
Collapse
Affiliation(s)
- J W Mandell
- Department of Pathology (Neuropathology), University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA.
| | | | | |
Collapse
|
728
|
Pathogenic Immunity in Theiler’s Virus-Induced Demyelinating Disease: A Viral Model for Multiple Sclerosis. Autoimmunity 2001. [DOI: 10.1007/978-94-010-0981-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
729
|
Sharkey KA, Kroese AB. Consequences of intestinal inflammation on the enteric nervous system: neuronal activation induced by inflammatory mediators. THE ANATOMICAL RECORD 2001; 262:79-90. [PMID: 11146431 DOI: 10.1002/1097-0185(20010101)262:1<79::aid-ar1013>3.0.co;2-k] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The ENS is responsible for the regulation and control of all gastrointestinal functions. Because of this critical role, and probably as a consequence of its remarkable plasticity, the ENS is often relatively well preserved in conditions where the architecture of the intestine is seriously disrupted, such as in IBD. There are structural and functional changes in the enteric innervation in animal models of experimental intestinal inflammation and in IBD. These include both up and down regulation of transmitter expression and the induction of new genes in enteric neurons. Using Fos expression as a surrogate marker of neuronal activation it is now well established that enteric neurons (and also enteric glia) respond to inflammation. Whether this "activation" is limited to a short-term functional response, such as increased neuronal excitability, or reflects a long-term change in some aspect of the neuronal phenotype (or both) has yet to be firmly established, but it appears that enteric neurons are highly plastic in their response to inflammation.
Collapse
Affiliation(s)
- K A Sharkey
- Neuroscience and Gastrointestinal Research Groups, Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta, Canada T2N 4N1.
| | | |
Collapse
|
730
|
Matarredona ER, Santiago M, Venero JL, Cano J, Machado A. Group II metabotropic glutamate receptor activation protects striatal dopaminergic nerve terminals against MPP+-induced neurotoxicity along with brain-derived neurotrophic factor induction. J Neurochem 2001; 76:351-60. [PMID: 11208898 DOI: 10.1046/j.1471-4159.2001.00056.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have studied the in vivo effect of the selective agonist for group II metabotropic glutamate receptors (2S, 2'R, 3'R)-2-(2'3'-dicarboxycyclopropyl)glycine (DCG-IV) against MPP+-induced toxicity on rat striatal dopaminergic nerve terminals by using both microdialysis and immunohistochemical techniques. Perfusion of 1 mM DCG-IV during 1 h protected dopaminergic nerve terminals against the degeneration induced by a 15-minute perfusion of 1 mM MPP+. In addition, the microglial cell population was markedly activated 24 h after DCG-IV perfusion. The astroglial cell population was only markedly activated around the microdialysis probe. This protective effect seems to be dependent on protein synthesis since 1 mM cycloheximide, an inhibitor of protein synthesis, abolished the neuroprotective effect of 1 mM DCG-IV against MPP+ toxicity. Perfusion of DCG-IV induced an upregulation of striatal brain-derived neurotrophic factor (BDNF) mRNA expressing cells which were confined precisely around the microdialysis probe. Taken together, our results suggest that the induction and release of brain-derived neurotrophic factor (BDNF) by activated glial cells induced by DCG-IV perfusion may account for its protective action against MPP+-induced dopaminergic terminal degeneration.
Collapse
Affiliation(s)
- E R Matarredona
- Departamento de Bioquímica, Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, Spain
| | | | | | | | | |
Collapse
|
731
|
Kim HJ, Lee WH, Yoon CH, Jeong JC, Nam KS, Kim HM, Choo YK, Lee MC, Kim CH. Bombycis corpus extract prevents amyloid-beta-induced cytotoxicity and protects superoxide dismutase activity in cultured rat astrocytes. Pharmacol Res 2001; 43:11-6. [PMID: 11207060 DOI: 10.1006/phrs.2000.0746] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bombycis corpus(BC) or Bombyx Batryticatus, a batryticated silkworm and white-stiff silkworm, is a drug consisting of the dried larva of silkworm, Mobyz mori L., dead and stiffened due to the infection of Beauveria (Bals.) Vuill. In the present study, we have examined the protective effect of the water extracts against Amyloid- beta(A beta) 25-35 peptide-induced cytotoxicity by microscopic observation and LDH assay, and its action on antioxidative enzymes using cultured astrocyte cells. A beta 25-35-induced cell death was protected by the application of water extract of BC in a dose-dependent manner, and concentrations of 10(-6)to 10(-7)g ml(-1)showed a significant effect compared to exposure of A beta 25-35 alone. When antioxidative enzyme activities such as catalase, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and glutathione-S transferase (GST) were assayed after A beta 25-35 treatment, most enzyme activities were decreased in a similar fashion. BC treatment of A beta 25-35-treated astrocytes did not affect the enzyme activities of catalase, GSH-Px and GST. However, only SOD activity was enhanced by BC treatment and this may result from the potentiation of the antioxidative ability of BC. The protective effect of BC against cytotoxicity induced by Abeta 25-35 strongly indicates that BC could be a protective agent for free radical generating compounds, and that Abeta 25-35 is not only a potent lipid peroxide inducer, but can also cause changes in antioxidative enzymes. From the results, it was concluded that BC has a protective effect against Abeta -induced cytotoxicity in cultured astrocyte cells through the inhibition of lipid peroxidation and protection of antioxidative enzymes.
Collapse
Affiliation(s)
- H J Kim
- Department of Biochemistry & Molecular Biology, and Internal Medicine, Dongguk University, Kyungju City, Kyungpook 780-714, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
732
|
Clarke WE, Berry M, Smith C, Kent A, Logan A. Coordination of fibroblast growth factor receptor 1 (FGFR1) and fibroblast growth factor-2 (FGF-2) trafficking to nuclei of reactive astrocytes around cerebral lesions in adult rats. Mol Cell Neurosci 2001; 17:17-30. [PMID: 11161466 DOI: 10.1006/mcne.2000.0920] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Traumatic injury to the adult central nervous system initiates a cascade of cellular and trophic events, culminating in the formation of a reactive gliotic scar through which transected axons fail to regenerate. Levels of fibroblast growth factor-2 (FGF-2), a potent gliogenic and neurotrophic factor, together with its full-length receptor, FGF receptor 1 (FGFR1) are coordinately and significantly increased postinjury in both nuclear and cytoplasmic fractions of extracted cerebral cortex biopsies after a penetrant injury. FGFR1 is colocalized with FGF-2 in the nuclei of reactive astrocytes, and here FGF-2 is associated with nuclear euchromatin. This study unequivocally demonstrates coordinate up-regulation and trafficking of FGF-2 and full-length FGFR1 to the nucleus of reactive astrocytes in an in vivo model of brain injury, thereby implicating a role in nuclear activity for these molecules. However, the precise contribution of nuclear FGF-2/FGFR1 to the pathophysiological response of astrocytes after injury is undetermined.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/physiology
- Animals
- Astrocytes/metabolism
- Astrocytes/pathology
- Blotting, Western
- Brain/metabolism
- Brain/pathology
- Cell Nucleus/metabolism
- Cell Nucleus/ultrastructure
- Disease Models, Animal
- Euchromatin/metabolism
- Euchromatin/ultrastructure
- Female
- Fibroblast Growth Factor 2/metabolism
- Gliosis/etiology
- Gliosis/metabolism
- Gliosis/pathology
- Head Injuries, Penetrating/complications
- Head Injuries, Penetrating/metabolism
- Head Injuries, Penetrating/pathology
- Immunohistochemistry
- Protein Isoforms/metabolism
- Rats
- Rats, Wistar
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1
- Receptors, Fibroblast Growth Factor/metabolism
- Subcellular Fractions/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- W E Clarke
- Department of Medicine, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | | | | | | | | |
Collapse
|
733
|
Bolego C, Centemeri C, Abbracchio MP, Ceruti S, Cattabeni F, Jacobson KA, Puglisi L, Rovati GE, Burnstock G, Nicosia S. Two Distinct P2Y Receptors Are Involved in Purine- and Pyrimidine-Evoked Ca 2+ Elevation in Mammalian Brain Astrocytic Cultures. Drug Dev Res 2001; 52:122-132. [PMID: 38239931 PMCID: PMC10794909 DOI: 10.1002/ddr.1106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
ATP and 2-methyl-thio-ATP (2-Me-SATP) increase cytosolic calcium concentrations ([Ca2+]i) in rat striatal astrocytes (Centemeri et al. [1997] Br J Pharmacol 121:1700-1706). The aim of the present study was to: (1) characterize pyrimidine-induced [Ca2+]i increases in the same experimental system, and (2) try to identify the multiple P2Y receptor subtypes mediating Ca2+ mobilization. UDP and UTP triggered a concentration-dependent [Ca2+]i elevation (EC50s = 0.58 μM ± 0.4 and 31 μM ± 6, respectively).Pyrimidine-evoked [Ca2+]i elevation was solely due to mobilization from intracellular stores, because: (1) removing calcium from extracellular medium or (2) blocking its influx with Ni2+ did not modify UTP responses; (3) the store-depleting agent thapsigargin completely abolished UTP-evoked [Ca2+]i increments. Guanosine-5'-O-(2-thiodiphosphate) partially inhibited the UTP response, whereas pertussis toxin (PTx) had no effect. The phospholipase C inhibitor U-73122 significantly reduced the UTP-evoked [Ca2+]i rise. Computer-assisted analysis indicated that the UTP and UDP responses are mediated by a single receptor, while ATP and 2-Me-SATP interact with two distinct receptors. The selective P2Y1 receptor antagonist MRS2179 abolished the ATP higher potency component. Sequential challenges with the same nucleotides resulted in almost complete homologous desensitization. Pre-exposure to UTP lowered the subsequent responses to either ATP or 2-Me-SATP. Maximally active concentrations of UTP and ATP were not additive. In conclusion, [Ca2+]i elevation in astrocytes by purines and pyrimidines is mediated by two distinct P2Y receptors, likely the P2Y1 and P2Y6 subtypes.
Collapse
Affiliation(s)
- Chiara Bolego
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | - Carlo Centemeri
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | | | - Stefania Ceruti
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | - Flaminio Cattabeni
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, NIH, Bethesda, Maryland
| | - Lina Puglisi
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | - Gian Enrico Rovati
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| | - Geoffrey Burnstock
- Autonomic Neuroscience Institute, Royal Free Hospital, School of Medicine, London, United Kingdom
| | - Simonetta Nicosia
- Department of Pharmacological Sciences, University of Milan, Milan, Italy
| |
Collapse
|
734
|
Cui W, Allen ND, Skynner M, Gusterson B, Clark AJ. Inducible ablation of astrocytes shows that these cells are required for neuronal survival in the adult brain. Glia 2001; 34:272-82. [PMID: 11360300 DOI: 10.1002/glia.1061] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To study the function of astrocytes in the adult brain, we have targeted the expression of E. coli nitroreductase (NTR) to the astrocytes of transgenic mice under the control of the GFAP promoter. The astrocytes expressing NTR were selectively ablated after administration of the prodrug CB1954, resulting in motor discoordination. Histological examination showed that the region most affected in the brain was the cerebellum, in which the Bergmann glia were eliminated and the granular neurons had degenerated. Specific effects were also noted on the dendrites of the Purkinje cells, and the junction between these neurons and granular layer was disrupted. Astrocyte ablation was associated with a dramatic decrease in the expression of glutamate transporters, which may account for the degeneration of granular neurons since the excitotoxic effects of glutamate result in a similar phenotype. These results provide the first evidence that astrocytes are important for the survival of neurons in the adult brain in vivo.
Collapse
Affiliation(s)
- W Cui
- Division of Gene Expression and Development, Roslin Institute, Roslin, Midlothian, UK
| | | | | | | | | |
Collapse
|
735
|
Kimura M, Soeda S, Oda M, Ochiai T, Kihara T, Ono N, Shimeno H. Release of plasminogen activator inhibitor-1 from human astrocytes is regulated by intracellular ceramide. J Neurosci Res 2000; 62:781-8. [PMID: 11107162 DOI: 10.1002/1097-4547(20001215)62:6<781::aid-jnr4>3.0.co;2-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The present study underscores a regulatory role of intracellular ceramide in astrocytes for the release of an extracellular serine protease, tissue-type plasminogen activator (t-PA), and its inhibitor, plasminogen activator inhibitor-1 (PAI-1). Treatment of cultured human astrocytes with N-acetylsphingosine, a cell-permeable short-chain ceramide analogue or daunorubicin that could increase intracellular ceramide via activation of ceramide synthase or sphingomyelin hydrolysis increased the release of t-PA and conversely decreased the PAI-1 release. Interestingly, treatment of the astrocytes with tumor necrosis factor (TNF)-alpha also increased the intracellular ceramide levels but caused the elevation of PAI-1 release without altering the t-PA release. These data suggest that the generation of ceramide in astrocytes is linked at least with the regulation of PAI-1 release. We also demonstrate that the suppression of PAI-1 release with daunorubicin accelerates the cell death of neuronally differentiated PC12 cells and suggest an antiapoptotic role of PAI-1 in the nervous system.
Collapse
Affiliation(s)
- M Kimura
- Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
736
|
Jafferali S, Dumont Y, Sotty F, Robitaille Y, Quirion R, Kar S. Insulin-like growth factor-I and its receptor in the frontal cortex, hippocampus, and cerebellum of normal human and alzheimer disease brains. Synapse 2000; 38:450-9. [PMID: 11044892 DOI: 10.1002/1098-2396(20001215)38:4<450::aid-syn10>3.0.co;2-j] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Assimilated evidence indicates that the neurotoxic potential of amyloid beta (Abeta) peptide and an alteration in the level of growth factor(s) may possibly be involved in the loss of neurons observed in the brain of patients suffering from Alzheimer disease (AD), the prevalent cause of dementia in the elderly. In the present study, using receptor binding assays and immunocytochemistry, we evaluated the pharmacological profile of insulin-like growth factor-I (IGF-I) receptors and the distribution of IGF-I immunoreactivity in the frontal cortex, hippocampus, and cerebellum of AD and age-matched control brains. In control brains, [(125)I]IGF-I binding was inhibited more potently by IGF-I than by Des(1-3)IGF-I, IGF-II or insulin. The IC(50) values for IGF-I in the frontal cortex, hippocampus, and cerebellum of the normal brain did not differ significantly from the corresponding regions of the AD brain. Additionally, neither K(D) nor B(max) values were found to differ in the hippocampus of AD brains from the controls. At the regional levels, [(125)I]IGF-I binding sites in the AD brain also remained unaltered compared to the controls. As for the peptide itself, IGF-I immunoreactivity, in normal control brains, was evident primarily in a subpopulation of astrocytes in the frontal cortex and hippocampus, and in certain Purkinje cells of the cerebellum. In AD brains, a subset of Abeta-containing neuritic plaques, apart from astrocytes, exhibit IGF-I immunoreactivity. These results, taken together, suggest a role for IGF-I in compensatory plasticity and/or survival of the susceptible neurons in AD brains.
Collapse
Affiliation(s)
- S Jafferali
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
737
|
Won JS, Suh HW. The differential molecular mechanisms underlying proenkephalin mRNA expression induced by forskolin and phorbol-12-myristic-13-acetate in primary cultured astrocytes. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 84:41-51. [PMID: 11113530 DOI: 10.1016/s0169-328x(00)00207-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In rat astrocytes, forskolin (FSK; 5 microM) and phorbol-12-myristic-13-acetate (PMA; 2.5 microM) increase the proenkephalin (proENK) mRNA level via different pathways. FSK-induced proENK mRNA expression is independent of protein de novo synthesis, and well correlated with CREB phosphorylation. This is in contrast to PMA-induced proENK mRNA expression that is dependent on protein de novo synthesis and is well correlated with the increase of AP-1 DNA binding activity rather than CREB phosphorylation. Differential regulation of AP-1 proteins by PMA and FSK was also observed. While c-Fos, Fra-2 and JunB were increased in response to either stimuli, only Fra-1, c-Jun and JunD were increased by PMA. The combined treatment with FSK and PMA additively increased the proENK mRNA level, which was correlated with AP-1 or ENKCRE-2 DNA binding activity, and CREB phosphorylation. Dexamethasone (DEX; 1 microM) further enhanced FSK- or PMA-induced proENK mRNA expression, which was not correlated with the activation of AP-1 expression and CREB phosphorylation, suggesting that synergistic interaction of glucocorticoid with PKA or PKC pathway for the regulation of proENK mRNA expression appears to be mediated by other pathways rather than CREB and AP-1 families.
Collapse
Affiliation(s)
- J S Won
- Department of Pharmacology, College of Medicine, Hallym University, 1 Okchun-Dong, Chunchon, Kangwon-Do, 200-702, South Korea
| | | |
Collapse
|
738
|
Abstract
We examined the expression and roles of neuroprotective metallothionein-I+II (MT-I+II) in the rat CNS in experimental autoimmune encephalomyelitis (EAE), an animal model for the human autoimmune disease, multiple sclerosis (MS). EAE caused significant macrophage activation, T-lymphocyte infiltration, and astrogliosis in spinal cord, brain stem, and cerebellum, which peaked 14-18 days after immunization. The remission of symptoms and histopathological changes began at days 19-21 and were completed by days 30-40. MT-I+II expression was increased significantly in EAE infiltrates. In order to study the effects of increased MT levels, we administered Zn-MT-II intraperitoneally (i.p.) to rats during EAE. Clinically, Zn-MT-II treatment reduced the severity of EAE symptoms and mortality in a time- and dose-dependent manner. Histopathologically, Zn-MT-II increased reactive astrogliosis and decreased macrophages and T lymphocytes significantly in the CNS. In spleen sections, the number of macrophages both in control and EAE-sensitized rats was reduced by Zn-MT-II, while the number of lymphocytes remained unaltered by Zn-MT-II. Therefore, we suggest that MT-II has peripheral mechanisms of action on macrophages, while T lymphocytes are affected locally in the CNS. During EAE, oxidative stress was decreased by Zn-MT-II, which could contribute to the diminished clinical scores observed. None of the effects caused by Zn-MT-II could be attributable to the zinc content. These results suggest MT-I+II as potentially useful factors for the treatment of EAE/MS.
Collapse
Affiliation(s)
- M Penkowa
- Department of Medical Anatomy, Panum Institute, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
739
|
Abstract
Transforming growth factor alpha (TGFalpha) is a member of the epidermal growth factor (EGF) family with which it shares the same receptor, the EGF receptor (EGFR or erbB1). Identified since 1985 in the central nervous system (CNS), its functions in this organ have started to be determined during the past decade although numerous questions remain unanswered. TGFalpha is widely distributed in the nervous system, both glial and neuronal cells contributing to its synthesis. Although astrocytes appear as its main targets, mediating in part TGFalpha effects on different neuronal populations, results from different studies have raised the possibility for a direct action of this growth factor on neurons. A large array of experimental data have thus pointed to TGFalpha as a multifunctional factor in the CNS. This review is an attempt to present, in a comprehensive manner, the very diverse works performed in vitro and in vivo which have provided evidences for (i) an intervention of TGFalpha in the control of developmental events such as neural progenitors proliferation/cell fate choice, neuronal survival/differentiation, and neuronal control of female puberty onset, (ii) its role as a potent regulator of astroglial metabolism including astrocytic reactivity, (iii) its neuroprotective potential, and (iv) its participation to neuropathological processes as exemplified by astroglial neoplasia. In addition, informations regarding the complex modes of TGFalpha action at the molecular level are provided, and its place within the large EGF family is precised with regard to the potential interactions and substitutions which may take place between TGFalpha and its kindred.
Collapse
Affiliation(s)
- M P Junier
- INSERM U421, Faculté de Médecine, 8, rue du Général Sarrail, 94010, Créteil, France.
| |
Collapse
|
740
|
Reuss B, Unsicker K. Survival and differentiation of dopaminergic mesencephalic neurons are promoted by dopamine-mediated induction of FGF-2 in striatal astroglial cells. Mol Cell Neurosci 2000; 16:781-92. [PMID: 11124897 DOI: 10.1006/mcne.2000.0906] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Survival of dopaminergic (DAergic) midbrain neurons during development and after lesioning depends, in part, on the presence of astroglia-derived growth factors, as, e.g., fibroblast growth factor (FGF)-2. Astrocytes express DA receptors in a brain-region-specific manner. We show here that DA (10(-3) to 10(-6) mol/liter) applied continuously for 12 h or as a 10-min pulse significantly upregulates FGF-2 immunoreactivity quantified by Western blot and densitometry in astrocytes cultured from two target areas of DAergic neurons, striatum and cortex, but not in mesencephalic astroglia. Semiquantitative competitive RT-PCR confirmed the increase in FGF-2 on the mRNA level. The effects were specific in that glutamate, which can also activate receptors on astroglial cells, did not influence FGF-2 synthesis. In addition to the DA-mediated increase in FGF-2 synthesis the capability of conditioned medium (CM) from DA-stimulated striatal and cortical astrocytes to promote survival and process formation of cultured rat DAergic neurons was significantly enhanced. These effects could be fully blocked by preincubation of the CM with an FGF-2-specific polyclonal antiserum. Our results suggest that DA released from DAergic axon terminals in target regions of DAergic neurons and astroglial FGF-2 production are interdependent in that DA triggers synthesis of FGF-2, which, in turn enhances survival and differentiation of DAergic neurons.
Collapse
Affiliation(s)
- B Reuss
- Neuroanatomy and Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, Im Neuenheimer Feld 307, Heidelberg, D-69120, Germany.
| | | |
Collapse
|
741
|
Böttner M, Krieglstein K, Unsicker K. The transforming growth factor-betas: structure, signaling, and roles in nervous system development and functions. J Neurochem 2000; 75:2227-40. [PMID: 11080174 DOI: 10.1046/j.1471-4159.2000.0752227.x] [Citation(s) in RCA: 221] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transforming growth factor-betas (TGF-betas) are among the most widespread and versatile cytokines. Here, we first provide a brief overview of their molecular biology, biochemistry, and signaling. We then review distribution and functions of the three mammalian TGF-beta isoforms, beta1, beta2, and beta3, and their receptors in the developing and adult nervous system. Roles of TGF-betas in the regulation of radial glia, astroglia, oligodendroglia, and microglia are addressed. Finally, we review the current state of knowledge concerning the roles of TGF-betas in controlling neuronal performances, including the regulation of proliferation of neuronal precursors, survival/death decisions, and neuronal differentiation.
Collapse
Affiliation(s)
- M Böttner
- Neuroanatomy and Center for Neuroscience, University of Heidelberg, Heidelberg, Germany
| | | | | |
Collapse
|
742
|
Le Y, Hu J, Gong W, Shen W, Li B, Dunlop NM, Halverson DO, Blair DG, Wang JM. Expression of functional formyl peptide receptors by human astrocytoma cell lines. J Neuroimmunol 2000; 111:102-8. [PMID: 11063827 DOI: 10.1016/s0165-5728(00)00373-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Activation of astrocytes is important in the pathogenesis of a variety of diseases in the central nervous system, such as infection and neurodegeneration. We found that the bacterial chemotactic peptide, N-formyl-methionyl-leucyl-phenylalanine (fMLF) induced potent migration and Ca(2+) mobilization in human astrocytoma cell lines. The effect of fMLF was pertussis toxin-sensitive, suggesting the involvement of seven transmembrane, G protein-coupled receptor(s) for fMLF. Scatchard analyses revealed that astrocytoma cell lines express both high- and low-affinity binding sites for [3H]fMLF. RT-PCR confirmed the expression of transcripts of fMLF receptors, the high-affinity FPR and the low-affinity FPRL1 by these cells. Both fMLF and F peptide, a synthetic peptide domain of HIV-1 envelope protein which specifically activates FPRL1, increased secretion of IL-6 by astrocytoma cells. Our study demonstrates for the first time that FPR and FPRL1 expressed by astrocytoma cell lines are functional, and suggests a molecular basis for the involvement of these receptors in host defense in the brain.
Collapse
Affiliation(s)
- Y Le
- Laboratory of Molecular Immunoregulation, Division of Basic Sciences, National Cancer Institute, Frederick Cancer Research and Development Center, 21702-1201, Frederick, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
743
|
Szymocha R, Akaoka H, Brisson C, Beurton-Marduel P, Chalon A, Bernard A, Didier-Bazes M, Belin MF, Giraudon P. Astrocytic alterations induced by HTLV type 1-infected T lymphocytes: a role for Tax-1 and tumor necrosis factor alpha. AIDS Res Hum Retroviruses 2000; 16:1723-9. [PMID: 11080817 DOI: 10.1089/08892220050193218] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In the neurological disease associated with HTLV-1 infected T lymphocytes infiltrated within the CNS are suspected of playing a prominent role in pathogenesis via inflammatory cytokines and the viral protein Tax-1. We hypothesized that T lymphocytes initiate functional perturbation in astrocytes, resulting in neuronal alteration as glial cells have a crucial role in CNS homeostasis. In particular, astrocytes manage the steady state level of glutamate and continuously provide metabolite precursors to neurons and oligodendrocytes. Using a model system of HTLV-1-infected T cells-astrocytes interaction, we show that after contact with T cells, astrocyte acquire a phenotype typical of gliosis: secretion of proinflammatory cytokines (TNF-alpha, IL-1alpha, IL-6) and matrix metalloproteinases (MMP-9, MMP-3). The concomitant increase in the expression of MMPs and of their endogenous inhibitors (TIMP-1 and TIMP-3) suggests a perturbation in MMP/TIMP balance. This may alter the extracellular matrix and, in turn, the cell environment. At a functional level, glutamate transport and catabolism are impaired in astrocytes. A decrease in glutamate uptake is associated with downregulated expression of glutamate transporters GLAST and GLT1. The expression of astrocytic enzyme of glutamate metabolism is modified with up-regulation of glutamine synthetase and down-regulation of glutamate dehydrogenase. The involvement of Tax-1 in these alterations, directly or indirectly via TNF-alpha, is shown. Altered glutamate uptake and catabolism associated with impairment in cell connectivity via MMP/TIMP imbalance could compromise the functional integrity of the CNS in general and that of neurons and oligodendrocytes in particular.
Collapse
Affiliation(s)
- R Szymocha
- U433 INSERM, Faculté de Médecine R. Laënnec, 69372 Lyon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
744
|
Pentreath VW, Slamon ND. Astrocyte phenotype and prevention against oxidative damage in neurotoxicity. Hum Exp Toxicol 2000; 19:641-9. [PMID: 11211243 DOI: 10.1191/096032700676221595] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Astrocytes possess a potent array of protective systems. These are chiefly targeted against oxidised products and radicals, which are frequently present in increased amounts following exposure of nervous tissue to a range of toxic insults. Following exposure to the toxic chemicals astrocytes commonly respond by alteration in phenotype with upregulation of a large number of molecules, including those controlling the protective systems. This article summarizes evidence, largely obtained from in vitro studies, which supports the concept that some of the changes in astrocyte phenotype are associated with increased protection against the cytotoxicity caused by the oxidative damage that results from exposure to range of neurotoxicants.
Collapse
Affiliation(s)
- V W Pentreath
- Department of Biological Sciences, University of Salford, Manchester, UK
| | | |
Collapse
|
745
|
Schallert T, Leasure JL, Kolb B. Experience-associated structural events, subependymal cellular proliferative activity, and functional recovery after injury to the central nervous system. J Cereb Blood Flow Metab 2000; 20:1513-28. [PMID: 11083226 DOI: 10.1097/00004647-200011000-00001] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Considerable structural plasticity is possible in the damaged neocortex and connected brain areas, and the potential for significant functional recovery remains even during the chronic phases of the recovery process. In this article, the authors review the literature on use-dependent morphologic events, focusing on the direct interaction of behavioral experience and structural changes associated with plasticity and degeneration. Experience-associated neural changes have the potential to either hinder or enhance functional recovery; therefore, issues concerning the nature, timing, and intensity of behavior-based intervention strategies are addressed.
Collapse
Affiliation(s)
- T Schallert
- Department of Psychology and Center for Human Growth and Development, University of Michigan, Ann Arbor 48109-0406, USA
| | | | | |
Collapse
|
746
|
Billaud JN, Ly C, Phillips TR, de la Torre JC. Borna disease virus persistence causes inhibition of glutamate uptake by feline primary cortical astrocytes. J Virol 2000; 74:10438-46. [PMID: 11044088 PMCID: PMC110918 DOI: 10.1128/jvi.74.22.10438-10446.2000] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2000] [Accepted: 08/23/2000] [Indexed: 11/20/2022] Open
Abstract
Borna disease virus (BDV), a nonsegmented, negative-stranded (NNS) RNA virus, causes central nervous system (CNS) disease in a broad range of vertebrate species, including felines. Both viral and host factors contribute to very diverse clinical and pathological manifestations associated with BDV infection. BDV persistence in the CNS can cause neurobehavioral and neurodevelopmental abnormalities in the absence of encephalitis. These BDV-induced CNS disturbances are associated with altered cytokine and neurotrophin expression, as well as cell damage that is very restricted to specific brain regions and neuronal subpopulations. BDV also targets astrocytes, resulting in the development of prominent astrocytosis. Astrocytes play essential roles in maintaining CNS homeostasis, and disruption of their normal activities can contribute to altered brain function. Therefore, we have examined the effect of BDV infection on the astrocyte's physiology. We present here evidence that BDV can establish a nonlytic chronic infection in primary cortical feline astrocytes that is associated with a severe impairment in the astrocytes' ability to uptake glutamate. In contrast, the astrocytes' ability to uptake glucose, as well as their protein synthesis, viability, and rate of proliferation, was not affected by BDV infection. These findings suggest that, in vivo, BDV could also affect an important astrocyte function required to prevent neuronal excitotoxicity. This, in turn, might contribute to the neuropathogenesis of BDV.
Collapse
Affiliation(s)
- J N Billaud
- Vaccine Research Institute of San Diego, San Diego, California 92121, USA
| | | | | | | |
Collapse
|
747
|
Lambert KG, Gerecke KM, Quadros PS, Doudera E, Jasnow AM, Kinsley CH. Activity-stress increases density of GFAP-immunoreactive astrocytes in the rat hippocampus. Stress 2000; 3:275-84. [PMID: 11342393 DOI: 10.3109/10253890009001133] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although past research has indicated that stress and the accompanying increase in glucocorticoids compromises hippocampal neurons, little is known about the effect of stress on hippocampal glial cells. In the current study, male rats were exposed to activity-stress (A-S) for six days; this comprised housing with an activity wheel and restricted access (1h/day) to food. Physiological data (e.g., relative adrenal and thymus weights, gastric ulceration) suggested that the A-S rats experienced more stress than pair-fed (no wheel) and control (fed ad libitum, no wheel) rats. Whereas stress did not influence the quantitative morphology of glial fibrillary acidic protein (GFAP)-immunoreactive cells, a semi-quantitative analysis revealed that the A-S rats had significantly more (30%) GFAP-immunoreactive cells in the hippocampal CA3 region than the control rats. Based on the present findings, it appears that the hippocampal astrocytic response to chronic stress may be similar to the response found in endangered, or challenged hippocampal environments, such as in ischemia.
Collapse
Affiliation(s)
- K G Lambert
- Department of Psychology, Randolph-Macon College, Ashland, VA 23005, USA.
| | | | | | | | | | | |
Collapse
|
748
|
Speth C, Stöckl G, Fuchs D, Wirleitner B, Widner B, Würzner R, Mohsenipour I, Lass-Flörl C, Dierich MP. Inflammation marker 7,8-dihydroneopterin induces apoptosis of neurons and glial cells: a potential contribution to neurodegenerative processes. Immunobiology 2000; 202:460-76. [PMID: 11205375 DOI: 10.1016/s0171-2985(00)80104-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Since neopterin is elevated in the cerebrospinal fluid of patients with inflammatory neurological disorders we investigated the source of neopterin in the brain and a possible contribution of biological active pteridines to the development of brain lesions. Astrocytic, neuronal and microglial cell lines were shown to be negative for neopterin production even after stimulation with interferon-gamma (IFN-gamma) indicating that infiltrating monocytes/macrophages might be responsible for neopterin level in CNS. Whereas neopterin did not affect viability of brain cells, its derivative 7,8-dihydroneopterin (7,8-DHN) induced dose-dependently cellular apoptosis in astrocytes and neurons probably via enhancement of nitric oxide synthase (iNOS) expression. This mechanism might represent a possible link between inflammation in the brain and neurodegeneration.
Collapse
Affiliation(s)
- C Speth
- Institute of Hygiene and Social Medicine, University of Innsbruck, Austria.
| | | | | | | | | | | | | | | | | |
Collapse
|
749
|
Hinks GL, Franklin RJ. Delayed changes in growth factor gene expression during slow remyelination in the CNS of aged rats. Mol Cell Neurosci 2000; 16:542-56. [PMID: 11083917 DOI: 10.1006/mcne.2000.0897] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study we have examined whether the slower rate of CNS remyelination that occurs with age is associated with a change in growth factor expression patterns, an association that would provide further support for a causal relationship between growth factors and remyelination. Using quantitative in situ hybridization we have shown that there are differences in IGF-I, TGF-beta 1, and PDGF-A mRNA expression during remyelination of lysolecithin-induced demyelination in the spinal cord of young adult and old adult rats. IGF-I and TGF-beta1 mRNA expression in old rats had a delayed and lower peak expression compared to young rats. The initial increase in PDGF-A mRNA expression was delayed in old rats compared to young rats, but after 5 days both age groups had similar patterns of expression, as was the expression pattern of FGF-2 mRNA at all survival times. In neither age group were increases in CNTF, NT-3, or GGF-2 mRNA expression detected. An analysis of the macrophage response using oligonucleotide probes for scavenger receptor-B mRNA indicated that differences in the macrophage response in young and old animals was the likely cause of the age related change in IGF-I and TGF-beta 1 mRNA expression patterns. On the basis of these data we suggest a model of remyelination in which PDGF is involved in the initial phase of oligodendrocyte progenitor recruitment, while IGF-I and TGF-beta 1 trigger the differentiation of the recruited cells into myelinating oligodendrocytes.
Collapse
Affiliation(s)
- G L Hinks
- Department of Clinical Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, United Kingdom
| | | |
Collapse
|
750
|
Mathis C, Hindelang C, LeMeur M, Borrelli E. A transgenic mouse model for inducible and reversible dysmyelination. J Neurosci 2000; 20:7698-705. [PMID: 11027231 PMCID: PMC6772884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Oligodendrocytes are glial cells devoted to the production of myelin sheaths. Myelination of the CNS occurs essentially after birth. To delineate both the times of oligodendrocyte proliferation and myelination, as well as to study the consequence of dysmyelination in vivo, a model of inducible dysmyelination was developed. To achieve oligodendrocyte ablation, transgenic animals were generated that express the herpes virus 1 thymidine kinase (HSV1-TK) gene under the control of the myelin basic protein (MBP) gene promoter. The expression of the MBP-TK transgene in oligodendrocytes is not toxic on its own; however, toxicity can be selectively induced by the systemic injection of animals with nucleoside analogs, such as FIAU [1-(2-deoxy-2-fluoro-beta-delta-arabinofuranosyl)-5-iodouracil]. This system allows us to control the precise duration of the toxic insult and the degree of ablation of oligodendrocytes in vivo. We show that chronic treatment of MBP-TK mice with FIAU during the first 3 postnatal weeks triggers almost a total depletion of oligodendrocytes in the CNS. These effects are accompanied by a behavioral phenotype characterized by tremors, seizures, retarded growth, and premature animal death. We identify the period of highest oligodendrocytes division in the first 9 postnatal days. Delaying the beginning of FIAU treatments results in different degrees of dysmyelination. Dysmyelination in MBP-TK mice is always accompanied by astrocytosis. Thus, this transgenic line provides a model to study the events occurring during dysmyelination of various intensities. It also represents an invaluable tool to investigate remyelination in vivo.
Collapse
Affiliation(s)
- C Mathis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, National de la Recherche Scientifique/Université Louis Pasteur, 67404 Illkirch Cedex, France
| | | | | | | |
Collapse
|