701
|
High SLC4A11 expression is an independent predictor for poor overall survival in grade 3/4 serous ovarian cancer. PLoS One 2017; 12:e0187385. [PMID: 29091960 PMCID: PMC5665559 DOI: 10.1371/journal.pone.0187385] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/18/2017] [Indexed: 12/15/2022] Open
Abstract
In this study, we aimed to examine the expression of SLC4A11 in ovarian cancer and in normal ovarian tissues, its prognostic value and the possible mechanism of its dysregulation. Bioinformatic analysis was performed by using data from the GEO datasets, the Cancer Genome Atlas-Ovarian Cancer (TCGA-OV) and the Human Protein Atlas (HPA). Results showed that SLC4A11 was upregulated in ovarian cancer compared with normal ovarian epithelial tissues. In patients with primary serous ovarian cancer in TCGA-OV, the cases with lymphatic invasion (N = 133) had significantly higher SLC4A11 expression than those without lymphatic invasion (N = 77) (p = 0.0069). High SLC4A11 expression was consistently associated with worse overall survival (OS). Univariate and multivariate analysis confirmed that high SLC4A11 expression was an independent prognostic factor for poor OS in grade 3/4 (G3/G4) tumors (HR = 1.416, 95%CI: 1.098–1.824, p = 0.007). 320 out of 578 (55.4%) ovarian cancer cases had SLC4A11 amplification. High methylation group had a significantly lower level of SLC4A11 expression. Based on these findings, we infer that high SLC4A11 expression is an independent predictor for poor OS in grade 3/4 serous ovarian cancer. Both DNA amplification and hypomethylation contribute to its upregulation in ovarian cancer.
Collapse
|
702
|
Metabolic cooperation between co-cultured lung cancer cells and lung fibroblasts. J Transl Med 2017; 97:1321-1331. [PMID: 28846077 DOI: 10.1038/labinvest.2017.79] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/17/2017] [Accepted: 06/19/2017] [Indexed: 01/15/2023] Open
Abstract
Cooperation of cancer cells with stromal cells, such as cancer-associated fibroblasts (CAFs), has been revealed as a mechanism sustaining cancer cell survival and growth. In the current study, we focus on the metabolic interactions of MRC5 lung fibroblasts with lung cancer cells (A549 and H1299) using co-culture experiments and studying changes of the metabolic protein expression profile and of their growth and migration abilities. Using western blotting, confocal microscopy and RT-PCR, we observed that in co-cultures MRC5 respond by upregulating pyruvate dehydrogenase (PDH) and the monocarboxylate transporter MCT1. In contrast, cancer cells increase the expression of glucose transporters (GLUT1), LDH5, PDH kinase and the levels of phosphorylated/inactivated pPDH. H1299 cells growing in the same culture medium with fibroblasts exhibit a 'metastasis-like' phenomenon by forming nests within the fibroblast area. LDH5 and pPDH were drastically upregulated in these nests. The growth rate of both MRC5 and cancer cells increased in co-cultures. Suppression of LDHA or PDK1 in cancer cells abrogates the stimulatory signal from cancer cells to fibroblasts. Incubation of MRC5 fibroblasts with lactate resulted in an increase of LDHB and of PDH expression. Silencing of PDH gene in fibroblasts, or silencing of PDK1 or LDHA gene in tumor cells, impedes cancer cell's migration ability. Overall, a metabolic cooperation between lung cancer cells and fibroblasts has been confirmed in the context of direct Warburg effect, thus the fibroblasts reinforce aerobic metabolism to support the intensified anaerobic glycolytic pathways exploited by cancer cells.
Collapse
|
703
|
Dual roles of tumour cells-derived matrix metalloproteinase 2 on brain tumour growth and invasion. Br J Cancer 2017; 117:1828-1836. [PMID: 29065106 PMCID: PMC5729475 DOI: 10.1038/bjc.2017.362] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 01/10/2023] Open
Abstract
Background: A previous study on a murine astrocytoma cell-line ALTS1C1 showed a highly invasive pattern similar to clinical anaplastic astrocytoma in vivo. This cell-line also expressed a high level of matrix metalloproteinase 2 (MMP2). This study aimed to verify the role of MMP2 in brain tumour progression. Methods: ALTS1C1 and MMP2 knockdown (MMP2kd) cells were inoculated intracranially, and tumour microenvironment was assessed by immunohistochemistry staining. Results: MMP2 expression was co-localised with CD31-positive cells at invading the tumour front and correlated with an invasive marker GLUT-1. The suppression of MMP2 expression prolonged the survival of tumour-bearing mice associated with tumours having smoother tumour margins, decreased Ki67-proliferating index, and down-regulated GLUT-1 antigen. Although the reduction of MMP2 expression did not alter the vessel density in comparison to parental ALTS1C1 tumours, vessels in MMP2kd tumours were less functional, as evidenced by the low ratio of pericyte coverage and reduction in Hoechst33342 dye perfusion. Conclusions: This study illustrated that tumour-derived MMP2 has at least two roles in tumour malignancy; to enhance tumour invasiveness by degrading the extracellular matrix and to enhance tumour growth by promoting vessel maturation and function.
Collapse
|
704
|
Zhu C, Martinez AF, Martin HL, Li M, Crouch BT, Carlson DA, Haystead TAJ, Ramanujam N. Near-simultaneous intravital microscopy of glucose uptake and mitochondrial membrane potential, key endpoints that reflect major metabolic axes in cancer. Sci Rep 2017; 7:13772. [PMID: 29062013 PMCID: PMC5653871 DOI: 10.1038/s41598-017-14226-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 10/06/2017] [Indexed: 12/19/2022] Open
Abstract
While the demand for metabolic imaging has increased in recent years, simultaneous in vivo measurement of multiple metabolic endpoints remains challenging. Here we report on a novel technique that provides in vivo high-resolution simultaneous imaging of glucose uptake and mitochondrial metabolism within a dynamic tissue microenvironment. Two indicators were leveraged; 2-[N-(7-nitrobenz-2-oxa-1, 3-diazol-4-yl) amino]-2-deoxy-D-glucose (2-NBDG) reports on glucose uptake and Tetramethylrhodamine ethyl ester (TMRE) reports on mitochondrial membrane potential. Although we demonstrated that there was neither optical nor chemical crosstalk between 2-NBDG and TMRE, TMRE uptake was significantly inhibited by simultaneous injection with 2-NBDG in vivo. A staggered delivery scheme of the two agents (TMRE injection was followed by 2-NBDG injection after a 10-minute delay) permitted near-simultaneous in vivo microscopy of 2-NBDG and TMRE at the same tissue site by mitigating the interference of 2-NBDG with normal glucose usage. The staggered delivery strategy was evaluated under both normoxic and hypoxic conditions in normal tissues as well as in a murine breast cancer model. The results were consistent with those expected for independent imaging of 2-NBDG and TMRE. This optical imaging technique allows for monitoring of key metabolic endpoints with the unique benefit of repeated, non-destructive imaging within an intact microenvironment.
Collapse
Affiliation(s)
- Caigang Zhu
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Amy F Martinez
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Hannah L Martin
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Martin Li
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - Brian T Crouch
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA
| | - David A Carlson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Timothy A J Haystead
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Nimmi Ramanujam
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
705
|
Functional profiling of microtumors to identify cancer associated fibroblast-derived drug targets. Oncotarget 2017; 8:99913-99930. [PMID: 29245949 PMCID: PMC5725140 DOI: 10.18632/oncotarget.21915] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 09/29/2017] [Indexed: 12/27/2022] Open
Abstract
Recent advances in chemotherapeutics highlight the importance of molecularly-targeted perturbagens. Although these therapies typically address dysregulated cancer cell proteins, there are increasing therapeutic modalities that take into consideration cancer cell-extrinsic factors. Targeting components of tumor stroma such as vascular or immune cells has been shown to represent an efficacious approach in cancer treatment. Cancer-associated fibroblasts (CAFs) exemplify an important stromal component that can be exploited in targeted therapeutics, though their employment in drug discovery campaigns has been relatively minimal due to technical logistics in assaying for CAF-tumor interactions. Here we report a 3-dimensional multi-culture tumor:CAF spheroid phenotypic screening platform that can be applied to high-content drug discovery initiatives. Using a functional genomics approach we systematically profiled 1,024 candidate genes for CAF-intrinsic anti-spheroid activity; identifying several CAF genes important for development and maintenance of tumor:CAF co-culture spheroids. Along with previously reported genes such as WNT, we identify CAF-derived targets such as ARAF and COL3A1 upon which the tumor compartment depends for spheroid development. Specifically, we highlight the G-protein-coupled receptor OGR1 as a unique CAF-specific protein that may represent an attractive drug target for treating colorectal cancer. In vivo, murine colon tumor implants in OGR1 knockout mice displayed delayed tumor growth compared to tumors implanted in wild type littermate controls. These findings demonstrate a robust microphysiological screening approach for identifying new CAF targets that may be applied to drug discovery efforts.
Collapse
|
706
|
Zhu Y, Zhang J, Meng F, Deng C, Cheng R, Feijen J, Zhong Z. cRGD/TAT Dual-Ligand Reversibly Cross-Linked Micelles Loaded with Docetaxel Penetrate Deeply into Tumor Tissue and Show High Antitumor Efficacy in Vivo. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35651-35663. [PMID: 28952305 DOI: 10.1021/acsami.7b12439] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The application of cell-penetrating peptides like TAT for in vivo targeted delivery is limited because the penetration behavior is not cell-specific. Herein, we designed cRGD and TAT comodified cross-linkable micelles (cRGD/TAT CMs), in which the TAT peptide was shielded by relatively long poly(ethylene glycol) (PEG) chains. Docetaxel (DTX)-loaded cRGD/TAT CMs were very stable with minimal drug leakage under physiological conditions, whereas rapid DTX release took place in a reductive environment. Flow cytometry showed that the cRGD/TAT CMs with molar ratios of 20% cRGD and 10% TAT (cRGD20/TAT10 CMs) were selectively and efficiently taken up by ανβ3-overexpressing U87MG glioma cells, with 8.3-fold and 18.3-fold higher uptake than cRGD20 CMs and PEG CMs, respectively. DTX-loaded cRGD20/TAT10 CMs exhibited a high cytotoxicity in U87MG cells, leading to rapid apoptosis of the tumor cells. Uptake mechanism studies revealed that cRGD20/TAT10 CMs mainly employed the caveolae-mediated endocytotic pathway and efficiently escaped from the lysosomes. Notably, cRGD20/TAT10 CMs had a long circulating time of 6.25 h in vivo, due to cross-linking of the micelles and shielding of the TAT peptide. Moreover, DTX-loaded cRGD20/TAT10 CMs exhibited a significantly higher accumulation and deeper penetration in subcutaneous U87MG glioma tissue compared to cRGD20 CMs and PEG CMs, leading to superior antitumor efficacy in vivo. Therefore, this dual-ligand strategy provides an effective way to realize tumor-specific penetration and inhibition.
Collapse
Affiliation(s)
- Yaqin Zhu
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
- Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Jian Zhang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| | - Chao Deng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| | - Ru Cheng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| | - Jan Feijen
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
- Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| |
Collapse
|
707
|
Kim SE, Kim HJ, Rhee JK, Park K. Versatile Chemical Derivatizations to Design Glycol Chitosan-Based Drug Carriers. Molecules 2017; 22:molecules22101662. [PMID: 28981451 PMCID: PMC6151466 DOI: 10.3390/molecules22101662] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/26/2017] [Accepted: 10/02/2017] [Indexed: 12/17/2022] Open
Abstract
Glycol chitosan (GC) and its derivatives have been extensively investigated as safe and effective drug delivery carriers because of their unique physiochemical and biological properties. The reactive functional groups such as the amine and hydroxyl groups on the GC backbone allow for easy chemical modification with various chemical compounds (e.g., hydrophobic molecules, crosslinkers, and acid-sensitive and labile molecules), and the versatility in chemical modifications enables production of a wide range of GC-based drug carriers. This review summarizes the versatile chemical modification methods that can be used to design GC-based drug carriers and describes their recent applications in disease therapy.
Collapse
Affiliation(s)
- Sung Eun Kim
- Department of Orthopedic Surgery and Rare Diseases Institute, Korea University Medical College, Guro Hospital, Seoul 08308, Korea.
| | - Hak-Jun Kim
- Department of Orthopedic Surgery and Rare Diseases Institute, Korea University Medical College, Guro Hospital, Seoul 08308, Korea.
| | - Jin-Kyu Rhee
- Department of Food Science and Engineering, Ewha Womans University, Seoul 03760, Korea.
| | - Kyeongsoon Park
- Department of Systems Biotechnology, College of Biotechnology and Natural Resources, Chung-Ang University, Gyeonggi-do 17546, Korea.
| |
Collapse
|
708
|
Abstract
The high metabolic demand of cancer cells leads to an accumulation of H+ ions in the tumour microenvironment. The disorganized tumour vasculature prevents an efficient wash-out of H+ ions released into the extracellular medium but also favours the development of tumour hypoxic regions associated with a shift towards glycolytic metabolism. Under hypoxia, the final balance of glycolysis, including breakdown of generated ATP, is the production of lactate and a stoichiometric amount of H+ ions. Another major source of H+ ions results from hydration of CO2 produced in the more oxidative tumour areas. All of these events occur at high rates in tumours to fulfil bioenergetic and biosynthetic needs. This Review summarizes the current understanding of how H+-generating metabolic processes segregate within tumours according to the distance from blood vessels and inversely how ambient acidosis influences tumour metabolism, reducing glycolysis while promoting mitochondrial activity. The Review also presents novel insights supporting the participation of acidosis in cancer progression via stimulation of autophagy and immunosuppression. Finally, recent advances in the different therapeutic modalities aiming to either block pH-regulatory systems or exploit acidosis will be discussed.
Collapse
Affiliation(s)
- Cyril Corbet
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 53 Avenue Mounier B1.53.09, B-1200 Brussels, Belgium
| | - Olivier Feron
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 53 Avenue Mounier B1.53.09, B-1200 Brussels, Belgium
| |
Collapse
|
709
|
Xia MC, Cai L, Zhang S, Zhang X. A cell-penetrating ratiometric probe for simultaneous measurement of lysosomal and cytosolic pH change. Talanta 2017; 178:355-361. [PMID: 29136833 DOI: 10.1016/j.talanta.2017.09.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/07/2017] [Accepted: 09/16/2017] [Indexed: 12/15/2022]
Abstract
A new ratiometric fluorescent probe based on cell-penetrating peptides (CPPs) was constructed for whole-cell pH mapping and simultaneous measurement of pH changes in the cytoplasm and lysosomes. The arginine-rich CPP, R12K worked as linker, carrier and part of the fluorophore. Benefiting from R12K, the fluorescent probe is completely water soluble, membrane permeable and well biocompatible. It shows high selectivity, sensitivity and reversibility to pH fluctuations. The ratio of fluorescence intensities F519/F582 increased from 0.2 to 9.2 over the pH range from 3.3 to 8.1. Intracellular pH mapping was successfully realized owing to the wide distribution of the probe in live cells (even in nucleus). Moreover, cytosolic and lysosomal pH change caused by the stimuli can be simultaneously detected. Compared to other ratiometric pH probes, RhB-R12K-FITC can provide more precise information about H+ redistribution between different cellular compartments.
Collapse
Affiliation(s)
- Meng-Chan Xia
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, PR China
| | - Lesi Cai
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, PR China
| | - Sichun Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, PR China.
| | - Xinrong Zhang
- Department of Chemistry, Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
710
|
Englund E, Canesin G, Papadakos KS, Vishnu N, Persson E, Reitsma B, Anand A, Jacobsson L, Helczynski L, Mulder H, Bjartell A, Blom AM. Cartilage oligomeric matrix protein promotes prostate cancer progression by enhancing invasion and disrupting intracellular calcium homeostasis. Oncotarget 2017; 8:98298-98311. [PMID: 29228690 PMCID: PMC5716730 DOI: 10.18632/oncotarget.21176] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 08/27/2017] [Indexed: 12/30/2022] Open
Abstract
Cartilage oligomeric matrix protein (COMP) was recently implicated in the progression of breast cancer. Immunostaining of 342 prostate cancer specimens in tissue microarrays showed that COMP expression is not breast cancer-specific but also occurs in prostate cancer. The expression of COMP in prostate cancer cells correlated with a more aggressive disease with faster recurrence. Subcutaneous xenografts in immunodeficient mice showed that the prostate cancer cell line DU145 overexpressing COMP formed larger tumors in vivo as compared to mock-transfected cells. Purified COMP bound to and enhanced the invasion of DU145 cells in vitro in an integrin-dependent manner. In addition, intracellular COMP expression interfered with cellular metabolism by causing a decreased level of oxidative phosphorylation with a concurrent upregulation of lactate production (Warburg effect). Further, expression of COMP protected cells from induction of apoptosis via several pathways. The effect of COMP on metabolism and apoptosis induction was dependent on the ability of COMP to disrupt intracellular Ca2+ signalling by preventing Ca2+ release from the endoplasmic reticulum. In conclusion, COMP is a potent driver of the progression of prostate cancer, acting in an anti-apoptotic fashion by interfering with the Ca2+ homeostasis of cancer cells.
Collapse
Affiliation(s)
- Emelie Englund
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Giacomo Canesin
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Malmö, Sweden
| | - Konstantinos S Papadakos
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Neelanjan Vishnu
- Department of Clinical Sciences Malmö, Unit of Molecular Metabolism, Lund University, Malmö, Sweden
| | - Emma Persson
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Bart Reitsma
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Aseem Anand
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Malmö, Sweden
| | - Laila Jacobsson
- Department of Clinical Sciences Malmö, Unit of Molecular Metabolism, Lund University, Malmö, Sweden
| | - Leszek Helczynski
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Malmö, Sweden
| | - Hindrik Mulder
- Department of Clinical Sciences Malmö, Unit of Molecular Metabolism, Lund University, Malmö, Sweden
| | - Anders Bjartell
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Malmö, Sweden
| | - Anna M Blom
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| |
Collapse
|
711
|
Zhou ZH, Song JW, Li W, Liu X, Cao L, Wan LM, Tan YX, Ji SP, Liang YM, Gong F. The acid-sensing ion channel, ASIC2, promotes invasion and metastasis of colorectal cancer under acidosis by activating the calcineurin/NFAT1 axis. J Exp Clin Cancer Res 2017; 36:130. [PMID: 28927426 PMCID: PMC5606037 DOI: 10.1186/s13046-017-0599-9] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/12/2017] [Indexed: 11/15/2022] Open
Abstract
Background The tumor acidic microenvironment, a common biochemical event in solid tumors, offers evolutional advantage for tumors cells and even enhances their aggressive phenotype. However, little is known about the molecular mechanism underlying the acidic microenvironment-induced invasion and metastasis. Methods We examined the expression of the acid-sending ion channel (ASIC) family members after acidic exposure using RT-PCR and immunofluoresence. Gene manipulation was applied to reveal the potential of ASIC2 on invasion, proliferation, colony formation of colorectal cancer (CRC). We assessed the in vivo tumor growth by subcutaneous transplantation and metastasis by spleen xenografts. Chromatin immunoprecipitation-sequencing was used to uncover the binding sites of NFAT1. Finally, we examined the expression of ASIC2 in CRC tissues using immunohistochemistry. Results Acidic exposure led to up-regulation of the acid-sensing ion channel, ASIC2, in colorectal cancer (CRC) cells. ASIC2 overexpression in CRC cell lines, SW480 and HCT116, significantly enhanced cell proliferation in vitro and in vivo, while ASIC2 knockdown had the reverse effect. Importantly, ASIC2 promoted CRC cell invasion under acidosis in vitro and liver metastasis in vivo. Mechanistically, ASIC2 activated the calcineurin/NFAT1 signaling pathway under acidosis. Inhibition of the calcineurin/NFAT pathway by cyclosporine A (CsA) profoundly attenuated ASIC2-induced invasion under acidosis. ChIP-seq assay revealed that the nuclear factor, NFAT1, binds to genes clustered in pathways involved in Rho GTPase signaling and calcium signaling. Furthermore, immunohistochemistry showed that ASIC2 expression is increased in CRC samples compared to that in adjacent tissues, and ASIC2 expression correlates with T-stage, distant metastasis, recurrence, and poor prognosis. Conclusion ASIC2 promotes metastasis of CRC cells by activating the calcineurin/NFAT1 pathway under acidosis and high expression of ASIC2 predicts poor outcomes of patients with CRC. Electronic supplementary material The online version of this article (10.1186/s13046-017-0599-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhi-Hang Zhou
- Department of Pathology, the 309th hospital of PLA, Beijing, China
| | - Jin-Wen Song
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Wen Li
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Xue Liu
- Department of Pathology, Basic Science School, Jining Medical University, Jining, Shandong, China
| | - Liu Cao
- Department of Surgery, the 15th hospital of PLA, Xinjiang, China
| | - Lu-Ming Wan
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Ying-Xia Tan
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Shou-Ping Ji
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China
| | - Yu-Mei Liang
- Department of Pathology, the 309th hospital of PLA, Beijing, China.
| | - Feng Gong
- Department of Tissue Engineering, Beijing Institute of Transfusion Medicine, Beijing, China.
| |
Collapse
|
712
|
Influence of regioisomerism on stability, formation kinetics and ascorbate oxidation preventive properties of Schiff bases derived from pyridinecarboxylic acids hydrazides and pyridoxal 5′-phosphate. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.07.106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
713
|
Cuninghame S, Jackson R, Lees SJ, Zehbe I. Two common variants of human papillomavirus type 16 E6 differentially deregulate sugar metabolism and hypoxia signalling in permissive human keratinocytes. J Gen Virol 2017; 98:2310-2319. [PMID: 28857035 DOI: 10.1099/jgv.0.000905] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Human papillomavirus type 16 (HPV16) is responsible for most cancers attributable to HPV infection and naturally occurring variants of the HPV16 E6 oncoprotein predispose individuals to varying risk for developing cancer. Population studies by us and others have demonstrated that the common Asian-American E6 (AAE6) variant is a higher risk factor for cervical cancer than the E6 of another common variant, the European prototype (EPE6). However, a complete understanding of the molecular processes fundamental to these epidemiological findings is still lacking. Our previously published functional studies of these two E6 variants showed that AAE6 had a higher immortalization and transformation potential than EPE6. Proteomic analysis revealed markedly different protein patterns between these variants, especially with respect to key cellular metabolic enzymes. Here, we tested the Warburg effect and hypoxia signalling (hallmarks of cancer development) as plausible mechanisms underlying these observations. Lactate and glucose production were enhanced in AAE6-transduced keratinocytes, likely due to raised levels of metabolic enzymes, but independent of hypoxia-inducible factor 1 alpha (HIF-1α) activity. The HIF-1α protein level and activity were elevated by AAE6 in hypoxic conditions, leading to a hypoxia-tolerant phenotype with enhanced migratory potential. The deregulation of HIF-1α was caused by the AAE6 variant's ability to augment mitogen-activated protein kinase/extracellular related kinase signalling. The present study reveals prominent underlying mechanisms of the AAE6's enhanced oncogenic potential.
Collapse
Affiliation(s)
- Sean Cuninghame
- Probe Development and Biomarker Exploration, Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada
| | - Robert Jackson
- Probe Development and Biomarker Exploration, Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada.,Biotechnology Program, Lakehead University, Thunder Bay, Ontario, Canada
| | - Simon J Lees
- Medical Sciences Division, Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada.,Biology Department, Lakehead University, Thunder Bay, Ontario, Canada
| | - Ingeborg Zehbe
- Biology Department, Lakehead University, Thunder Bay, Ontario, Canada.,Probe Development and Biomarker Exploration, Thunder Bay Regional Health Research Institute, Thunder Bay, Ontario, Canada.,Medical Sciences Division, Northern Ontario School of Medicine, Thunder Bay, Ontario, Canada
| |
Collapse
|
714
|
Shin JM, Oh SJ, Kwon S, Deepagan VG, Lee M, Song SH, Lee HJ, Kim S, Song KH, Kim TW, Park JH. A PEGylated hyaluronic acid conjugate for targeted cancer immunotherapy. J Control Release 2017; 267:181-190. [PMID: 28844759 DOI: 10.1016/j.jconrel.2017.08.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/14/2017] [Accepted: 08/23/2017] [Indexed: 12/22/2022]
Abstract
The cell-free approach to foreignizing tumor cells with non-self antigens has received increasing attention as a method to induce cytotoxic T lymphocyte (CTL)-mediated immunological rejection of tumors, because the clinical translation of the conventional CTL-based cancer immunotherapies has been limited by a complicated manufacturing process and autotransplantation. In this study, we prepared matrix metalloproteinase 9 (MMP9)-responsive polymeric conjugates consisting of PEGylated hyaluronic acid (HA) as the targeting moiety and ovalbumin (OVA) as the model foreign antigen. The MMP9-cleavable linker was introduced between PEG and the HA backbone to facilitate the detachment of the PEG corona from the conjugate at the tumor site. From the in vitro cellular uptake study, it was revealed that the conjugate was effectively taken up by the CD44-expressing TC-1 cancer cells in the presence of MMP9 via receptor-mediated endocytosis. When the conjugate was systemically administered into the tumor-bearing mice with endogenous OVA-specific CTLs, the tumor growth was markedly inhibited, which was attributed to the significant antigen presentation on the tumor cells. Overall, the MMP9-responsive conjugates bearing foreign antigens might have the potential as an alternative to CTL-based cancer immunotherapeutics.
Collapse
Affiliation(s)
- Jung Min Shin
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Se Jin Oh
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul 02841, Republic of Korea; Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Republic of Korea; Department of Biomedical Science, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Seunglee Kwon
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - V G Deepagan
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Minchang Lee
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seok Ho Song
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyo-Jung Lee
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul 02841, Republic of Korea; Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Republic of Korea; Department of Biomedical Science, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Suyeon Kim
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul 02841, Republic of Korea; Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Republic of Korea; Department of Biomedical Science, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Kwon-Ho Song
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul 02841, Republic of Korea; Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Republic of Korea; Department of Biomedical Science, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Tae Woo Kim
- Laboratory of Tumor Immunology, Department of Biomedical Sciences, Graduate School of Medicine, Korea University, Seoul 02841, Republic of Korea; Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Republic of Korea; Department of Biomedical Science, College of Medicine, Korea University, Seoul 02841, Republic of Korea; Translational Research Institute for Incurable Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea.
| | - Jae Hyung Park
- School of Chemical Engineering, College of Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
715
|
Lanning NJ, Castle JP, Singh SJ, Leon AN, Tovar EA, Sanghera A, MacKeigan JP, Filipp FV, Graveel CR. Metabolic profiling of triple-negative breast cancer cells reveals metabolic vulnerabilities. Cancer Metab 2017; 5:6. [PMID: 28852500 PMCID: PMC5568171 DOI: 10.1186/s40170-017-0168-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 08/07/2017] [Indexed: 12/31/2022] Open
Abstract
Background Among breast cancers, the triple-negative breast cancer (TNBC) subtype has the worst prognosis with no approved targeted therapies and only standard chemotherapy as the backbone of systemic therapy. Unique metabolic changes in cancer progression provide innovative therapeutic opportunities. The receptor tyrosine kinases (RTKs) epidermal growth factor receptor (EGFR), and MET receptor are highly expressed in TNBC, making both promising therapeutic targets. RTK signaling profoundly alters cellular metabolism by increasing glucose consumption and subsequently diverting glucose carbon sources into metabolic pathways necessary to support the tumorigenesis. Therefore, detailed metabolic profiles of TNBC subtypes and their response to tyrosine kinase inhibitors may identify therapeutic sensitivities. Methods We quantified the metabolic profiles of TNBC cell lines representing multiple TNBC subtypes using gas chromatography mass spectrometry. In addition, we subjected MDA-MB-231, MDA-MB-468, Hs578T, and HCC70 cell lines to metabolic flux analysis of basal and maximal glycolytic and mitochondrial oxidative rates. Metabolic pool size and flux measurements were performed in the presence and absence of the MET inhibitor, INC280/capmatinib, and the EGFR inhibitor, erlotinib. Further, the sensitivities of these cells to modulators of core metabolic pathways were determined. In addition, we annotated a rate-limiting metabolic enzymes library and performed a siRNA screen in combination with MET or EGFR inhibitors to validate synergistic effects. Results TNBC cell line models displayed significant metabolic heterogeneity with respect to basal and maximal metabolic rates and responses to RTK and metabolic pathway inhibitors. Comprehensive systems biology analysis of metabolic perturbations, combined siRNA and tyrosine kinase inhibitor screens identified a core set of TCA cycle and fatty acid pathways whose perturbation sensitizes TNBC cells to small molecule targeting of receptor tyrosine kinases. Conclusions Similar to the genomic heterogeneity observed in TNBC, our results reveal metabolic heterogeneity among TNBC subtypes and demonstrate that understanding metabolic profiles and drug responses may prove valuable in targeting TNBC subtypes and identifying therapeutic susceptibilities in TNBC patients. Perturbation of metabolic pathways sensitizes TNBC to inhibition of receptor tyrosine kinases. Such metabolic vulnerabilities offer promise for effective therapeutic targeting for TNBC patients. Electronic supplementary material The online version of this article (doi:10.1186/s40170-017-0168-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nathan J Lanning
- California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032 USA
| | - Joshua P Castle
- Van Andel Research Institute, 333 Bostwick Ave, NE, Grand Rapids, MI 49503 USA
| | - Simar J Singh
- Systems Biology and Cancer Metabolism, Program for Quantitative Systems Biology, University of California Merced, 2500 North Lake Road, Merced, CA 95343 USA
| | - Andre N Leon
- California State University, Los Angeles, 5151 State University Drive, Los Angeles, CA 90032 USA
| | - Elizabeth A Tovar
- Van Andel Research Institute, 333 Bostwick Ave, NE, Grand Rapids, MI 49503 USA
| | - Amandeep Sanghera
- Systems Biology and Cancer Metabolism, Program for Quantitative Systems Biology, University of California Merced, 2500 North Lake Road, Merced, CA 95343 USA
| | - Jeffrey P MacKeigan
- Van Andel Research Institute, 333 Bostwick Ave, NE, Grand Rapids, MI 49503 USA.,College of Human Medicine, Michigan State University, 15 Michigan St. NE, Grand Rapids, MI 49503 USA
| | - Fabian V Filipp
- Systems Biology and Cancer Metabolism, Program for Quantitative Systems Biology, University of California Merced, 2500 North Lake Road, Merced, CA 95343 USA
| | - Carrie R Graveel
- Van Andel Research Institute, 333 Bostwick Ave, NE, Grand Rapids, MI 49503 USA
| |
Collapse
|
716
|
Affiliation(s)
- KowsalyaDevi Pavuluri
- Russell H. Morgan Department of Radiology and Radiological Science; Johns Hopkins University School of Medicine; Baltimore, Maryland 21205 United States
| | - Michael T. McMahon
- Russell H. Morgan Department of Radiology and Radiological Science; Johns Hopkins University School of Medicine; Baltimore, Maryland 21205 United States
- F. M. Kirby Research Center for Functional Brain Imaging; Kennedy Krieger Research Institute; Baltimore, Maryland 21205 United States
| |
Collapse
|
717
|
Gao YE, Ma X, Hou M, Bai S, Xue P, Kang Y, Xu Z. Highly cell-penetrating and ultra-pH-responsive nanoplatform for controlled drug release and enhanced tumor therapy. Colloids Surf B Biointerfaces 2017; 159:484-492. [PMID: 28841498 DOI: 10.1016/j.colsurfb.2017.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/04/2017] [Accepted: 08/10/2017] [Indexed: 01/03/2023]
Abstract
A stimuli-triggered drug release strategy could considerably reduce side effects while improving the bioavailability of chemotherapeutics. Here, we report that a series of ultra-pH-responsive copolymers are highly efficient drug delivery systems for near-infrared (NIR) imaging and controlled drug release. These polymers self-assemble into nano-sized micelles due to their amphipathic structure and deliver hydrophobic drugs (maximum drug loading rate ∼10wt%) into tumor cells via a controlled and pH-triggered modality. By altering the proportion of hydrophilic and hydrophobic chains, the drug loading rate and the in vitro drug release efficiency can be regulated. Moreover, the drug-loaded micelles with optimized compositions exhibited excellent antitumor efficacy in HeLa and MCF-7 cells, while the blank micelles had minimal cytotoxicity. Cellular uptake experiments further indicated that the ultra-pH-responsive micelles could be rapidly internalized in the tumor cells. This study demonstrated the strong potential of the ultra-pH-responsive platform as a universal carrier for the delivery of anticancer drugs to maximize their therapeutic effect.
Collapse
Affiliation(s)
- Yong-E Gao
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China; Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing 400715, China
| | - Xiaoqian Ma
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China; Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing 400715, China
| | - Meili Hou
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China; Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing 400715, China
| | - Shuang Bai
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China; Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing 400715, China
| | - Peng Xue
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China; Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing 400715, China
| | - Yuejun Kang
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China; Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing 400715, China.
| | - Zhigang Xu
- Institute for Clean Energy and Advanced Materials, Faculty of Materials and Energy, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Chongqing 400715, China; Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Chongqing 400715, China.
| |
Collapse
|
718
|
Temozolomide arrests glioma growth and normalizes intratumoral extracellular pH. Sci Rep 2017; 7:7865. [PMID: 28801587 PMCID: PMC5554228 DOI: 10.1038/s41598-017-07609-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/16/2017] [Indexed: 12/24/2022] Open
Abstract
Gliomas maintain an acidic extracellular pH (pHe), which promotes tumor growth and builds resistance to therapy. Given evidence that acidic pHe beyond the tumor core indicates infiltration, we hypothesized that imaging the intratumoral pHe in relation to the peritumoral pHe can provide a novel readout of therapeutic influence on the tumor microenvironment. We used Biosensor Imaging of Redundant Deviation in Shifts (BIRDS), which utilizes chemical shifts of non-exchangeable protons from macrocyclic chelates (e.g., DOTP8−) complexed with paramagnetic thulium (Tm3+), to generate pHe maps in rat brains bearing U251 tumors. Following TmDOTP5− infusion, T2-weighted MRI provided delineation of the tumor boundary and BIRDS was used to image the pHe gradient between intratumoral and peritumoral regions (ΔpHe) in both untreated and temozolomide treated (40 mg/kg) rats bearing U251 tumors. Treated rats had reduced tumor volume (p < 0.01), reduced proliferation (Ki-67 staining; p < 0.03) and apoptosis induction (cleaved Caspase-3 staining; p < 0.001) when compared to untreated rats. The ΔpHe was significantly higher in untreated compared to treated rats (p < 0.002), suggesting that temozolomide, which induces apoptosis and hinders proliferation, also normalizes intratumoral pHe. Thus, BIRDS can be used to map the ΔpHe in gliomas and provide a physiological readout of the therapeutic response on the tumor microenvironment.
Collapse
|
719
|
Longo DL, Stefania R, Aime S, Oraevsky A. Melanin-Based Contrast Agents for Biomedical Optoacoustic Imaging and Theranostic Applications. Int J Mol Sci 2017; 18:ijms18081719. [PMID: 28783106 PMCID: PMC5578109 DOI: 10.3390/ijms18081719] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 02/06/2023] Open
Abstract
Optoacoustic imaging emerged in early 1990s as a new biomedical imaging technology that generates images by illuminating tissues with short laser pulses and detecting resulting ultrasound waves. This technique takes advantage of the spectroscopic approach to molecular imaging, and delivers high-resolution images in the depth of tissue. Resolution of the optoacoustic imaging is scalable, so that biomedical systems from cellular organelles to large organs can be visualized and, more importantly, characterized based on their optical absorption coefficient, which is proportional to the concentration of absorbing chromophores. Optoacoustic imaging was shown to be useful in both preclinical research using small animal models and in clinical applications. Applications in the field of molecular imaging offer abundant opportunities for the development of highly specific and effective contrast agents for quantitative optoacoustic imaging. Recent efforts are being made in the direction of nontoxic biodegradable contrast agents (such as nanoparticles made of melanin) that are potentially applicable in clinical optoacoustic imaging. In order to increase the efficiency and specificity of contrast agents and probes, they need to be made smart and capable of controlled accumulation in the target cells. This review was written in recognition of the potential breakthroughs in medical optoacoustic imaging that can be enabled by efficient and nontoxic melanin-based optoacoustic contrast agents.
Collapse
Affiliation(s)
- Dario Livio Longo
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Biostrutture e Bioimmagini, Torino 10126, Italy.
| | - Rachele Stefania
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università degli Studi di Torino, Torino 10126, Italy.
| | - Silvio Aime
- Dipartimento di Biotecnologie Molecolari e Scienze per la Salute, Università degli Studi di Torino, Torino 10126, Italy.
| | | |
Collapse
|
720
|
Xu H, Zeng Y, Liu L, Gao Q, Jin S, Lan Q, Lai W, Luo X, Wu H, Huang Y, Chu Z. PRL-3 improves colorectal cancer cell proliferation and invasion through IL-8 mediated glycolysis metabolism. Int J Oncol 2017; 51:1271-1279. [DOI: 10.3892/ijo.2017.4090] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 07/19/2017] [Indexed: 11/06/2022] Open
|
721
|
Gamov GA, Aleksandriiskii VV, Zavalishin MN, Khokhlova AY, Sharnin VA. The Schiff bases of pyridoxal-5-phosphate and hydrazides of certain pyrazoles: Stability, kinetics of formation, and synthesis. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363217060093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
722
|
Zhou S, Yao D, Guo L, Teng L. Curcumin suppresses gastric cancer by inhibiting gastrin-mediated acid secretion. FEBS Open Bio 2017; 7:1078-1084. [PMID: 28781948 PMCID: PMC5537064 DOI: 10.1002/2211-5463.12237] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/15/2017] [Accepted: 04/18/2017] [Indexed: 12/31/2022] Open
Abstract
Hyperacidity in the stomach is known to promote the progression of gastric cancer. The plant-derived chemotherapeutic curcumin is used to treat gastric cancer. The objective of this study was to investigate whether curcumin regulates gastrin-mediated acid secretion in suppressing gastric cancer. Gastric cancer cells were treated with 25 μm curcumin, followed by Annexin V/propidium iodide double-staining assay to evaluate cell apoptosis. Western blot analysis was used to analyze caspase-3 expression in response to curcumin treatment. Gastrin levels in culture medium were also monitored. Mice bearing gastric cancers were treated with curcumin, followed by analysis of tumor caspase-3 expression, gastric acid pH, and gastric secretion in serum. Curcumin prominently inhibited gastric cancer cell proliferation and promoted cell apoptosis. Caspase-3 was upregulated by curcumin treatment. Curcumin also reduced gastrin secretion. Curcumin dramatically inhibited tumor growth, increased gastric pH, and reduced gastric secretion. In gastric cancer, curcumin suppresses gastrin-mediated acid secretion, which inhibits gastric cancer progression.
Collapse
Affiliation(s)
- Shufen Zhou
- Department of Gerontology, Affiliated Second HospitalMudanjiang Medical UniversityChina
| | - Dongjie Yao
- Department of Quality Control, Affiliated Second HospitalMudanjiang Medical UniversityChina
| | - Ling Guo
- Department of Pathology, Affiliated Second HospitalMudanjiang Medical UniversityChina
| | - Ling Teng
- Department of Gerontology, Affiliated Second HospitalMudanjiang Medical UniversityChina
| |
Collapse
|
723
|
Ping J, Blum JE, Vishnubhotla R, Vrudhula A, Naylor CH, Gao Z, Saven JG, Johnson ATC. pH Sensing Properties of Flexible, Bias-Free Graphene Microelectrodes in Complex Fluids: From Phosphate Buffer Solution to Human Serum. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:10.1002/smll.201700564. [PMID: 28612484 PMCID: PMC5683177 DOI: 10.1002/smll.201700564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/16/2017] [Indexed: 05/22/2023]
Abstract
Advances in techniques for monitoring pH in complex fluids can have a significant impact on analytical and biomedical applications. This study develops flexible graphene microelectrodes (GEs) for rapid (<5 s), very-low-power (femtowatt) detection of the pH of complex biofluids by measuring real-time Faradaic charge transfer between the GE and a solution at zero electrical bias. For an idealized sample of phosphate buffer solution (PBS), the Faradaic current is varied monotonically and systematically with the pH, with a resolution of ≈0.2 pH unit. The current-pH dependence is well described by a hybrid analytical-computational model, where the electric double layer derives from an intrinsic, pH-independent (positive) charge associated with the graphene-water interface and ionizable (negative) charged groups. For ferritin solution, the relative Faradaic current, defined as the difference between the measured current response and a baseline response due to PBS, shows a strong signal associated with ferritin disassembly and the release of ferric ions at pH ≈2.0. For samples of human serum, the Faradaic current shows a reproducible rapid (<20 s) response to pH. By combining the Faradaic current and real-time current variation, the methodology is potentially suitable for use to detect tumor-induced changes in extracellular pH.
Collapse
Affiliation(s)
- Jinglei Ping
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jacquelyn E Blum
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ramya Vishnubhotla
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Amey Vrudhula
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Carl H Naylor
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Zhaoli Gao
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jeffery G Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alan T Charlie Johnson
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
724
|
Swayampakula M, McDonald PC, Vallejo M, Coyaud E, Chafe SC, Westerback A, Venkateswaran G, Shankar J, Gao G, Laurent EMN, Lou Y, Bennewith KL, Supuran CT, Nabi IR, Raught B, Dedhar S. The interactome of metabolic enzyme carbonic anhydrase IX reveals novel roles in tumor cell migration and invadopodia/MMP14-mediated invasion. Oncogene 2017; 36:6244-6261. [PMID: 28692057 PMCID: PMC5684442 DOI: 10.1038/onc.2017.219] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/05/2017] [Accepted: 05/30/2017] [Indexed: 12/15/2022]
Abstract
Carbonic anhydrase IX (CAIX) is a hypoxia inducible factor 1-induced, cell surface pH regulating enzyme with an established role in tumor progression and clinical outcome. However, the molecular basis of CAIX-mediated tumor progression remains unclear. Here, we have utilized proximity dependent biotinylation (BioID) to map the CAIX ‘interactome’ in breast cancer cells in order to identify physiologically relevant CAIX-associating proteins with potential roles in tumor progression. High confidence proteins identified include metabolic transporters, β1 integrins, integrin-associated protein CD98hc and matrix metalloprotease 14 (MMP14). Biochemical studies validate the association of CAIX with α2β1 integrin, CD98hc and MMP14, and immunofluorescence microscopy demonstrates colocalization of CAIX with α2β1 integrin and MMP14 in F-actin/cofilin-positive lamellipodia/pseudopodia, and with MMP14 to cortactin/Tks5-positive invadopodia. Modulation of CAIX expression and activity results in significant changes in cell migration, collagen degradation and invasion. Mechanistically, we demonstrate that CAIX associates with MMP14 through potential phosphorylation residues within its intracellular domain, and that CAIX enhances MMP14-mediated collagen degradation by directly contributing hydrogen ions required for MMP14 catalytic activity. These findings establish hypoxia-induced CAIX as a novel metabolic component of cellular migration and invasion structures, and provide new mechanistic insights into its role in tumor cell biology.
Collapse
Affiliation(s)
- M Swayampakula
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - P C McDonald
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - M Vallejo
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - E Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - S C Chafe
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - A Westerback
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - G Venkateswaran
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - J Shankar
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - G Gao
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - E M N Laurent
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Y Lou
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - K L Bennewith
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada
| | - C T Supuran
- Laboratorio di Chimica Bioinorganica, Universita degli Studi di Firenze, Sesto Fiorentino, Florence, Italy
| | - I R Nabi
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - B Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - S Dedhar
- Department of Integrative Oncology, BC Cancer Research Centre, Vancouver, British Columbia, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
725
|
Matsumoto A, Stephenson-Brown AJ, Khan T, Miyazawa T, Cabral H, Kataoka K, Miyahara Y. Heterocyclic boronic acids display sialic acid selective binding in a hypoxic tumor relevant acidic environment. Chem Sci 2017; 8:6165-6170. [PMID: 28989647 PMCID: PMC5627601 DOI: 10.1039/c7sc01905j] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 06/19/2017] [Indexed: 01/02/2023] Open
Abstract
A group of heterocyclic boronic acids demonstrating unusually high affinity and selectivity for sialic acids are described, with strong interactions under the weakly acidic pH conditions associated with a hypoxic tumoral microenvironment.
Boronic acids are well known for their ability to reversibly interact with the diol groups found in sugars and glycoproteins. However, they are generally indiscriminate in their binding. Herein we describe the discovery of a group of heterocyclic boronic acids demonstrating unusually high affinity and selectivity for sialic acids (SAs or N-acetylneuraminic acid), which are sugar residues that are intimately linked with tumor growth and cancer progression. Remarkably, these interactions strengthen under the weakly acidic pH conditions associated with a hypoxic tumoral microenvironment. In vitro competitive binding assays uncovered a significantly higher ability of 5-boronopicolinic acid, one of the derivatives identified in this work as a strong SA-binder, to interact with cell surface SA in comparison to a gold-standard structure, 3-propionamidophenylboronic acid, which has proven to be an efficient SA-binder in numerous reports. This structure also proved to be suitable for further chemical conjugation with a well-preserved SA-binding capability. These findings suggest an attractive alternative to other ongoing boronic acid based chemistry techniques aiming to achieve tumor-specific chemotherapies and diagnoses.
Collapse
Affiliation(s)
- A Matsumoto
- Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai, Chiyoda-ku , Tokyo 101-0062 , Japan .
| | - A J Stephenson-Brown
- School of Chemical Engineering , University of Birmingham , Edgbaston , Birmingham , B15 2TT , UK
| | - T Khan
- Department of Bioengineering , Graduate School of Engineering , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan
| | - T Miyazawa
- Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai, Chiyoda-ku , Tokyo 101-0062 , Japan .
| | - H Cabral
- Department of Bioengineering , Graduate School of Engineering , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan
| | - K Kataoka
- School of Chemical Engineering , University of Birmingham , Edgbaston , Birmingham , B15 2TT , UK.,Department of Materials Engineering , Graduate School of Engineering , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-8656 , Japan
| | - Y Miyahara
- Institute of Biomaterials and Bioengineering , Tokyo Medical and Dental University , 2-3-10 Kanda-Surugadai, Chiyoda-ku , Tokyo 101-0062 , Japan .
| |
Collapse
|
726
|
Lallana E, Rios de la Rosa JM, Tirella A, Pelliccia M, Gennari A, Stratford IJ, Puri S, Ashford M, Tirelli N. Chitosan/Hyaluronic Acid Nanoparticles: Rational Design Revisited for RNA Delivery. Mol Pharm 2017; 14:2422-2436. [PMID: 28597662 DOI: 10.1021/acs.molpharmaceut.7b00320] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Chitosan/hyaluronic acid (HA) nanoparticles can be used to deliver an RNA/DNA cargo to cells overexpressing HA receptors such as CD44. For these systems, unequivocal links have not been established yet between chitosan macromolecular (molecular weight; degree of deacetylation, i.e., charge density) and nanoparticle variables (complexation strength, i.e., stability; nucleic acid protection; internalization rate) on one hand, and transfection efficiency on the other hand. Here, we have focused on the role of avidity on transfection efficiency in the CD44-expressing HCT-116 as a cellular model; we have employed two differently sized payloads (a large luciferase-encoding mRNA and a much smaller anti-Luc siRNA), and a small library of chitosans (variable molecular weight and degree of deactylation). The RNA avidity for chitosan showed-as expected-an inverse relationship: higher avidity-higher polyplex stability-lower transfection efficiency. The avidity of chitosan for RNA appears to lead to opposite effects: higher avidity-higher polyplex stability but also higher transfection efficiency. Surprisingly, the best transfecting particles were those with the lowest propensity for RNA release, although this might be a misleading relationship: for example, the same macromolecular parameters that increase avidity can also boost chitosan's endosomolytic activity, with a strong enhancement in transfection. The performance of these nonviral vectors appears therefore difficult to predict simply on the basis of carrier- or payload-related variables, and a more holistic consideration of the journey of the nanoparticle, from cell uptake to cytosolic bioavailability of payload, is needed. It is also noteworthy that the nanoparticles used in this study showed optimal performance under slightly acidic conditions (pH 6.4), which is promising for applications in a tumoral extracellular environment. It is also worth pointing out that under these conditions we have for the first time successfully delivered mRNA with chitosan/HA nanoparticles.
Collapse
Affiliation(s)
- Enrique Lallana
- NorthWest Centre of Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester , Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Julio M Rios de la Rosa
- NorthWest Centre of Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester , Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Annalisa Tirella
- NorthWest Centre of Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester , Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Maria Pelliccia
- NorthWest Centre of Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester , Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Arianna Gennari
- NorthWest Centre of Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester , Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Ian J Stratford
- NorthWest Centre of Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester , Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Sanyogitta Puri
- Innovative Medicines-Pharmaceutical Sciences, AstraZeneca , Silk Road Business Park, Macclesfield, SK10 2NA, United Kingdom
| | - Marianne Ashford
- Innovative Medicines-Pharmaceutical Sciences, AstraZeneca , Silk Road Business Park, Macclesfield, SK10 2NA, United Kingdom
| | - Nicola Tirelli
- NorthWest Centre of Advanced Drug Delivery (NoWCADD), School of Health Sciences, University of Manchester , Oxford Road, Manchester, M13 9PT, United Kingdom
| |
Collapse
|
727
|
Lloyd MC, Johnson JO, Kasprzak A, Bui MM. Image Analysis of the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 936:1-10. [PMID: 27739040 DOI: 10.1007/978-3-319-42023-3_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the field of pathology it is clear that molecular genomics and digital imaging represent two promising future directions, and both are as relevant to the tumor microenvironment as they are to the tumor itself (Beck AH et al. Sci Transl Med 3(108):108ra113-08ra113, 2011). Digital imaging, or whole slide imaging (WSI), of glass histology slides facilitates a number of value-added competencies which were not previously possible with the traditional analog review of these slides under a microscope by a pathologist. As an important tool for investigational research, digital pathology can leverage the quantification and reproducibility offered by image analysis to add value to the pathology field. This chapter will focus on the application of image analysis to investigate the tumor microenvironment and how quantitative investigation can provide deeper insight into our understanding of the tumor to tumor microenvironment relationship.
Collapse
Affiliation(s)
- Mark C Lloyd
- Analytic Microscopy Core, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL, 33612, USA.
- Department of Biological Sciences, University of Chicago Illinois, 845 W. Taylor St., Chicago, IL 60607, USA.
| | - Joseph O Johnson
- Analytic Microscopy Core, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL, 33612, USA
| | - Agnieszka Kasprzak
- Analytic Microscopy Core, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL, 33612, USA
| | - Marilyn M Bui
- Analytic Microscopy Core, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL, 33612, USA
- Analytic Microscopy Core, Department of Anatomic Pathology, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Dr., Tampa, FL, 33612, USA
| |
Collapse
|
728
|
Zhu Z, Su M. Polydopamine Nanoparticles for Combined Chemo- and Photothermal Cancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E160. [PMID: 28661423 PMCID: PMC5535226 DOI: 10.3390/nano7070160] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/22/2017] [Accepted: 06/26/2017] [Indexed: 11/17/2022]
Abstract
Cancer therapy with two different modalities can enhance treatment efficacy and reduce side effects. This paper describes a new method for combined chemo- and photothermal therapy of cancer using poly dopamine nanoparticles (PDA-NPs), where PDA-NPs serve not only as a photothermal agent with strong near infrared absorbance and high energy conversion efficiency, but also as a carrier to deliver cisplatin via interaction between cisplatin and catechol groups on PDA-NPs. Polyethylene glycol (PEG) was introduced through Michael addition reaction to improve the stability of PDA-NPs in physiological condition. A remarkable synergistic therapeutic effect has been achieved compared with respective single treatments. This work suggests that the PDA-based nanoplatform can be a universal scaffold for combined chemo- and photothermal therapy of cancer.
Collapse
Affiliation(s)
- Zhijun Zhu
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| | - Ming Su
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
- Wenzhou Institute of Biomaterials and Engineering, Wenzhou Medical University, Chinese Academy of Science, Wenzhou 325001, China.
| |
Collapse
|
729
|
Paterson EK, Courtneidge SA. Invadosomes are coming: new insights into function and disease relevance. FEBS J 2017; 285:8-27. [PMID: 28548369 DOI: 10.1111/febs.14123] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 05/09/2017] [Accepted: 05/24/2017] [Indexed: 12/21/2022]
Abstract
Invadopodia and podosomes are discrete, actin-based molecular protrusions that form in cancer cells and normal cells, respectively, in response to diverse signaling pathways and extracellular matrix cues. Although they participate in a host of different cellular processes, they share a common functional theme of controlling pericellular proteolytic activity, which sets them apart from other structures that function in migration and adhesion, including focal adhesions, lamellipodia, and filopodia. In this review, we highlight research that explores the function of these complex structures, including roles for podosomes in embryonic and postnatal development, in angiogenesis and remodeling of the vasculature, in maturation of the postsynaptic membrane, in antigen sampling and recognition, and in cell-cell fusion mechanisms, as well as the involvement of invadopodia at multiple steps of the metastatic cascade, and how all of this may apply in the treatment of human disease states. Finally, we explore recent research that implicates a novel role for exosomes and microvesicles in invadopodia-dependent and invadopodia-independent mechanisms of invasion, respectively.
Collapse
Affiliation(s)
- Elyse K Paterson
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Sara A Courtneidge
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA.,Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.,Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
730
|
Wu Y, Gao B, Xiong QJ, Wang YC, Huang DK, Wu WN. Acid-sensing ion channels contribute to the effect of extracellular acidosis on proliferation and migration of A549 cells. Tumour Biol 2017; 39:1010428317705750. [PMID: 28618956 DOI: 10.1177/1010428317705750] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Acid-sensing ion channels, a proton-gated cation channel, can be activated by low extracellular pH and involved in pathogenesis of some tumors such as glioma and breast cancer. However, the role of acid-sensing ion channels in the growth of lung cancer cell is unclear. In this study, we investigated the expression of acid-sensing ion channels in human lung cancer cell line A549 and their possible role in proliferation and migration of A549 cells. The results show that acid-sensing ion channel 1, acid-sensing ion channel 2, and acid-sensing ion channel 3 are expressed in A549 cells at the messenger RNA and protein levels, and acid-sensing ion channel-like currents were elicited by extracellular acid stimuli. Moreover, we found that acidic extracellular medium or overexpressing acid-sensing ion channel 1a promotes proliferation and migration of A549 cells. In addition psalmotoxin 1, a specific acid-sensing ion channel 1a inhibitor, or acid-sensing ion channel 1a knockdown can abolish the effect of acid stimuli on A549 cells. In addition, acid-sensing ion channels mediate increase of [Ca2+]i induced by low extracellular pH in A549 cells. All these results indicate that acid-sensing ion channel-calcium signal mediate lung cancer cell proliferation and migration induced by extracellular acidosis, and acid-sensing ion channels may serve as a prognostic marker and a therapeutic target for lung cancer.
Collapse
Affiliation(s)
- Yu Wu
- 1 Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, P.R. China
| | - Bo Gao
- 1 Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, P.R. China
| | - Qiu-Ju Xiong
- 2 Department of Pain Management, Wuhan Pu'ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yu-Chan Wang
- 1 Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, P.R. China
| | - Da-Ke Huang
- 3 Synthetic Laboratory, School of Basic Medical Sciences, Anhui Medical University, Hefei, P.R. China
| | - Wen-Ning Wu
- 1 Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, P.R. China.,4 Key Laboratory of Anti-inflammatory and Immunopharmacology, Anhui Medical University, Hefei, P.R. China
| |
Collapse
|
731
|
Chang YC, Chan YC, Chang WM, Lin YF, Yang CJ, Su CY, Huang MS, Wu ATH, Hsiao M. Feedback regulation of ALDOA activates the HIF-1α/MMP9 axis to promote lung cancer progression. Cancer Lett 2017; 403:28-36. [PMID: 28610954 DOI: 10.1016/j.canlet.2017.06.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/21/2017] [Accepted: 06/03/2017] [Indexed: 12/30/2022]
Abstract
Distant metastasis and recurrence are the greatest challenges in the clinical management of lung cancer. Despite advances in targeted therapies, high mortality rates persist. Therefore, alternative therapeutic interventions are urgently required. Accumulating evidence indicates that normalizing tumor metabolism may be a way to increase therapeutic efficacy and to reduce tumor malignancy. Here, we analyzed integrated transcriptomics data and an shRNA library against glycolytic enzymes and found that elevated Aldolase A expression is highly correlated with metastatic potential and a poor prognosis in patients with non-small cell lung cancer (NSCLC). We validated our in silico findings with an immunohistochemical analysis of clinical samples. Aldolase A silencing significantly suppressed metastatic potential both in vitro and in vivo, whereas the ectopic overexpression of Aldolase A resulted in the opposite phenotype. Furthermore, our microarray and Ingenuity Pathway Analyses (IPA) revealed that Aldolase A-driven lung cancer metastasis was closely linked to hypoxia inducible factor 1 alpha (HIF-1α)-downstream signaling. Importantly, Aldolase A overexpression may promote the release of lactate to block PHD activities and further induce HIF-1α stabilization. Aldolase A and nuclear HIF-1α overexpression levels were positively correlated and were significantly associated with a poorer survival rate in lung cancer patients (P = 0.008 for Overall Survival, P = 0.021 for Disease-free Survival). Furthermore, MMP9, a downstream target of HIF-1α, was significantly upregulated after ALDOA overexpression. A MMP9 inhibitor significantly inhibited cell invasion and migration in ALDOA-HIF-1α axis-induced lung cancer. In summary, our results reveal the molecular mechanism of Aldolase A in promoting lung cancer metastasis via PHD-mediated stabilization of HIF-1α and the subsequent activation of MMP9. The ALDOA-HIF-1α axis may provide a new therapeutic target for metastatic lung cancer treatment.
Collapse
Affiliation(s)
- Yu-Chan Chang
- Graduate Institute of Life Sciences, National Defense Medical Center, Taiwan; Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | | | - Wei-Ming Chang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Yuan-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chih-Jen Yang
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Yi Su
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Shyan Huang
- Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Alexander T H Wu
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei, Taiwan; Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
732
|
Alpha-particle radiotherapy: For large solid tumors diffusion trumps targeting. Biomaterials 2017; 130:67-75. [DOI: 10.1016/j.biomaterials.2017.03.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/20/2017] [Accepted: 03/23/2017] [Indexed: 12/29/2022]
|
733
|
Preparation and characterization of metformin surface modified cellulose nanofiber gel and evaluation of its anti-metastatic potentials. Carbohydr Polym 2017; 165:322-333. [DOI: 10.1016/j.carbpol.2017.02.067] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/19/2017] [Accepted: 02/16/2017] [Indexed: 11/17/2022]
|
734
|
Abstract
One of the differences between normal and cancer cells is lower pH of the extracellular space in tumors. Low pH in the extracellular space activates proteases and stimulates tumor invasion and metastasis. Tumor cells display higher level of the HIF1α transcription factor that promotes cell switch from mitochondrial respiration to glycolysis. The terminal product of glycolysis is lactate. Lactate formation from pyruvate is catalyzed by the specific HIF1α-dependent isoform of lactate dehydrogenase A. Because lactate accumulation is deleterious for the cell, it is actively exported by monocarboxylate transporters. Lactate is cotransported with proton, which acidifies the extracellular space. Another protein that contributes to proton concentration increase in the extracellular space is tumor-specific HIF1α-dependent carbonic anhydrase IX, which generates a proton in the reaction between carbon dioxide and water. The activity of Na+/H+ exchanger (another protein pump) is stimulated by stress factors (e.g. osmotic shock) and proliferation stimuli. This review describes the mechanisms of proton pump activation and reviews results of studies on effects of various proton pump inhibitors on tumor functioning and growth in cell culture and in vivo. The prospects of combined application of proton pump inhibitors and cytostatics in cancer therapy are discussed.
Collapse
Affiliation(s)
- V A Kobliakov
- Blokhin Russian Cancer Research Center, Russian Ministry of Health, Moscow, 115478, Russia.
| |
Collapse
|
735
|
Sistigu A, Di Modugno F, Manic G, Nisticò P. Deciphering the loop of epithelial-mesenchymal transition, inflammatory cytokines and cancer immunoediting. Cytokine Growth Factor Rev 2017; 36:67-77. [PMID: 28595838 DOI: 10.1016/j.cytogfr.2017.05.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 05/15/2017] [Indexed: 12/14/2022]
Abstract
Tumorigenesis and tumor progression relies on the dialectics between tumor cells, the extracellular matrix and its remodelling enzymes, neighbouring cells and soluble cues. The host immune response is crucial in eliminating or promoting tumor growth and the reciprocal coevolution of tumor and immune cells, during disease progression and in response to therapy, shapes tumor fate by activating innate and adaptive mechanisms. The phenotypic plasticity is a common feature of epithelial and immune cells and epithelial-mesenchymal transition (EMT) is a dynamic process, governed by microenvironmental stimuli, critical in tumor cell shaping, increased tumor cell heterogeneity and stemness. In this review we will outline how the dysregulation of microenvironmental signaling is crucial in determining tumor plasticity and EMT, arguing how therapy resistance hinges on these dynamics.
Collapse
Affiliation(s)
- Antonella Sistigu
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy; Department of General Pathology and Physiopathology, Università Cattolica del Sacro Cuore, largo Francesco Vito 1, 00168, Rome, Italy.
| | - Francesca Di Modugno
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy
| | - Gwenola Manic
- Department of Biology, University of Rome "Tor Vergata", via della Ricerca Scientifica 1, 00173, Rome, Italy
| | - Paola Nisticò
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144, Rome, Italy.
| |
Collapse
|
736
|
Ibrahim-Hashim A, Abrahams D, Enriquez-Navas PM, Luddy K, Gatenby RA, Gillies RJ. Tris-base buffer: a promising new inhibitor for cancer progression and metastasis. Cancer Med 2017; 6:1720-1729. [PMID: 28556628 PMCID: PMC5504318 DOI: 10.1002/cam4.1032] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 01/11/2023] Open
Abstract
Neutralizing tumor external acidity with oral buffers has proven effective for the prevention and inhibition of metastasis in several cancer mouse models. Solid tumors are highly acidic as a result of high glycolysis combined with an inadequate blood supply. Our prior work has shown that sodium bicarbonate, imidazole, and free‐base (but not protonated) lysine are effective in reducing tumor progression and metastasis. However, a concern in translating these results to clinic has been the presence of counter ions and their potential undesirable side effects (e.g., hypernatremia). In this work, we investigate tris(hydroxymethyl)aminomethane, (THAM or Tris), a primary amine with no counter ion, for its effects on metastasis and progression in prostate and pancreatic cancer in vivo models using MRI and bioluminescence imaging. At an ad lib concentration of 200 mmol/L, Tris effectively inhibited metastasis in both models and furthermore led to a decrease in the expression of the major glucose transporter, GLUT‐1. Our results also showed that Tris–base buffer (pH 8.4) had no overt toxicity to C3H mice even at higher doses (400 mmol/L). In conclusion, we have developed a novel therapeutic approach to manipulate tumor extracellular pH (pHe) that could be readily adapted to a clinical trial.
Collapse
Affiliation(s)
- Arig Ibrahim-Hashim
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Dominique Abrahams
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Pedro M Enriquez-Navas
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Kim Luddy
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Robert A Gatenby
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida.,Department of Radiology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Robert J Gillies
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center, Tampa, Florida.,Department of Radiology, H. Lee Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
737
|
Zhu S, Zhou HY, Deng SC, Deng SJ, He C, Li X, Chen JY, Jin Y, Hu ZL, Wang F, Wang CY, Zhao G. ASIC1 and ASIC3 contribute to acidity-induced EMT of pancreatic cancer through activating Ca 2+/RhoA pathway. Cell Death Dis 2017; 8:e2806. [PMID: 28518134 PMCID: PMC5520710 DOI: 10.1038/cddis.2017.189] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 03/02/2017] [Accepted: 03/14/2017] [Indexed: 02/07/2023]
Abstract
Extracellular acid can have important effects on cancer cells. Acid-sensing ion channels (ASICs), which emerged as key receptors for extracellular acidic pH, are differently expressed during various diseases and have been implicated in underlying pathogenesis. This study reports that ASIC1 and ASIC3 are mainly expressed on membrane of pancreatic cancer cells and upregulated in pancreatic cancer tissues. ASIC1 and ASIC3 are responsible for an acidity-induced inward current, which is required for elevation of intracellular Ca2+ concentration ([Ca2+]i). Inhibition of ASIC1 and ASIC3 with siRNA or pharmacological inhibitor significantly decreased [Ca2+]i and its downstream RhoA during acidity and, thus, suppressed acidity-induced epithelial–mesenchymal transition (EMT) of pancreatic cancer cells. Meanwhile, downregulating [Ca2+]i with calcium chelating agent BAPTA-AM or knockdown of RhoA with siRNA also significantly repressed acidity-induced EMT of pancreatic cancer cells. Significantly, although without obvious effect on proliferation, knockdown of ASIC1 and ASIC3 in pancreatic cancer cells significantly suppresses liver and lung metastasis in xenograft model. In addition, ASIC1 and ASIC3 are positively correlated with expression of mesenchymal marker vimentin, but inversely correlated with epithelial marker E-cadherin in pancreatic cancer cells. In conclusion, this study indicates that ASICs are master regulator of acidity-induced EMT. In addition, the data demonstrate a functional link between ASICs and [Ca2+]i/RhoA pathway, which contributes to the acidity-induced EMT.
Collapse
Affiliation(s)
- Shuai Zhu
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai-Yun Zhou
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi-Chang Deng
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Gastrointestinal Surgery, Union Hospital West Campus, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shi-Jiang Deng
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chi He
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Li
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Yuan Chen
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Jin
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuang-Li Hu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-You Wang
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Zhao
- Department of Pancreatic Surgery, Pancreatic Disease Institute, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
738
|
Structural basis for cancer immunotherapy by the first-in-class checkpoint inhibitor ipilimumab. Proc Natl Acad Sci U S A 2017; 114:E4223-E4232. [PMID: 28484017 DOI: 10.1073/pnas.1617941114] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Rational modulation of the immune response with biologics represents one of the most promising and active areas for the realization of new therapeutic strategies. In particular, the use of function blocking monoclonal antibodies targeting checkpoint inhibitors such as CTLA-4 and PD-1 have proven to be highly effective for the systemic activation of the human immune system to treat a wide range of cancers. Ipilimumab is a fully human antibody targeting CTLA-4 that received FDA approval for the treatment of metastatic melanoma in 2011. Ipilimumab is the first-in-class immunotherapeutic for blockade of CTLA-4 and significantly benefits overall survival of patients with metastatic melanoma. Understanding the chemical and physical determinants recognized by these mAbs provides direct insight into the mechanisms of pathway blockade, the organization of the antigen-antibody complexes at the cell surface, and opportunities to further engineer affinity and selectivity. Here, we report the 3.0 Å resolution X-ray crystal structure of the complex formed by ipilimumab with its human CTLA-4 target. This structure reveals that ipilimumab contacts the front β-sheet of CTLA-4 and intersects with the CTLA-4:Β7 recognition surface, indicating that direct steric overlap between ipilimumab and the B7 ligands is a major mechanistic contributor to ipilimumab function. The crystallographically observed binding interface was confirmed by a comprehensive cell-based binding assay against a library of CTLA-4 mutants and by direct biochemical approaches. This structure also highlights determinants responsible for the selectivity exhibited by ipilimumab toward CTLA-4 relative to the homologous and functionally related CD28.
Collapse
|
739
|
Teymouri M, Pirro M, Johnston TP, Sahebkar A. Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: A review of chemistry, cellular, molecular, and preclinical features. Biofactors 2017; 43:331-346. [PMID: 27896883 DOI: 10.1002/biof.1344] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/03/2016] [Accepted: 10/05/2016] [Indexed: 12/25/2022]
Abstract
Curcumin, the bioactive polyphenolic ingredient of turmeric, has been extensively studied for its effects on human papilloma virus (HPV) infection as well as primary and malignant squamous cervical cancers. HPV infections, especially those related to HPV 16 and 18 types, have been established as the leading cause of cervical cancer; however, there are also additional contributory factors involved in the etiopathogenesis of cervical cancers. Curcumin has emerged as having promising chemopreventive and anticancer effects against both HPV-related and nonrelated cervical cancers. In this review, we first discuss the biological relevance of curcumin and both its pharmacological effects and pharmaceutical considerations from a chemical point of view. Next, the signaling pathways that are modulated by curcumin and are relevant to the elimination of HPV infection and treatment of cervical cancer are discussed. We also present counter arguments regarding the effects of curcumin on signaling pathways and molecular markers dysregulated by benzo(a)pyrene (Bap), a carcinogen found in pathological cervical lesions of women who smoke frequently, and estradiol, as two important risk factors involved in persistent HPV-infection and cervical cancer. Finally, various strategies to enhance the pharmacological activity and pharmacokinetic characteristics of curcumin are discussed with examples of studies in experimental models of cervical cancer. © 2016 BioFactors, 43(3):331-346, 2017.
Collapse
Affiliation(s)
- Manouchehr Teymouri
- Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, 91775-1365, Iran
| | - Matteo Pirro
- Unit of Internal Medicine, Angiology and Arteriosclerosis Diseases, Department of Medicine, University of Perugia, Italy
| | - Thomas P Johnston
- Division of Pharmaceutical Sciences School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhosein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
740
|
Zeng H, Li X, Sun M, Wu S, Chen H. Synthesis of Europium-Doped Fluorapatite Nanorods and Their Biomedical Applications in Drug Delivery. Molecules 2017; 22:E753. [PMID: 28481233 PMCID: PMC6154470 DOI: 10.3390/molecules22050753] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 04/23/2017] [Accepted: 05/04/2017] [Indexed: 02/05/2023] Open
Abstract
Europium (Eu)-doped fluorapatite (FA) nanorods have a biocompatibility similar to that of hydroxyapatite (HA) for use as cell imaging biomaterials due to their luminescent property. Here, we discuss the new application of europium-doped fluorapatite (Eu-FA) nanorods as an anticancer drug carrier. The Eu-FA nanorods were prepared by using a hydrothermal method. The morphology, crystal structure, fluorescence, and composition were investigated. The specific crystal structure enables the effective loading of drug molecules. Doxorubicin (DOX), which was used as a model anticancer drug, effectively loaded onto the surface of the nanorods. The DOX release was pH-dependent and occurred more rapidly at pH 5.5 than at pH 7.4. The intracellular penetration of the DOX-loaded Eu-FA nanorods (Eu-FA/DOX) can be imaged in situ due to the self-fluorescence property. Treatment of melanoma A375 cells with Eu-FA/DOX elicited a more effective apoptosis rate than direct DOX treatment. Overall, Eu-FA exhibits potential for tracking and treating tumors and may be potentially useful as a multifunctional carrier system to effectively load and sustainably deliver drugs.
Collapse
Affiliation(s)
- Haifeng Zeng
- Department of Plastic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.
| | - Xiyu Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Muyang Sun
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.
| | - Sufan Wu
- Department of Plastic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, China.
| | - Haifeng Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
741
|
Curcio M, Diaz-Gomez L, Cirillo G, Concheiro A, Iemma F, Alvarez-Lorenzo C. pH/redox dual-sensitive dextran nanogels for enhanced intracellular drug delivery. Eur J Pharm Biopharm 2017; 117:324-332. [PMID: 28478161 DOI: 10.1016/j.ejpb.2017.05.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 05/02/2017] [Accepted: 05/02/2017] [Indexed: 10/19/2022]
Abstract
pH/redox dual-responsive nanogels (DEX-SS) were prepared by precipitation polymerization of methacrylated dextran (DEXMA), 2-aminoethylmethacrylate (AEMA) and N,N'-bis(acryloyl)cystamine (BAC), and then loaded with methotrexate (MTX). Nanogels were spherical and exhibited homogeneous size distribution (460nm, PDI<0.30) as observed using dynamic light scattering (DLS) and scanning electron microscopy (SEM). DEX-SS were sensitive to the variations of pH and redox environment. Nanogels incubated in buffer pH 5.0 containing 10mM glutathione (GSH) synergistically increased the mean diameter and the PDI to 750nm and 0.42, respectively. In vitro release experiments were performed at pH 7.4 and 5.0 with and without GSH. The cumulative release of MTX in pH 5.0 medium with 10mMGSH was 5-fold higher than that recorded at pH 7.4 without GSH. Fibroblasts and tumor cells were used to tests the effects of blank DEX-SS and MTX@DEX-SS nanogels on cell viability. Remarkable influence of pH on nanogels internalization into HeLa cells was evidenced by means of confocal microscopy and flow cytometry.
Collapse
Affiliation(s)
- Manuela Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy.
| | - Luis Diaz-Gomez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | - Giuseppe Cirillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| | - Francesca Iemma
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, R+DPharma Group (GI-1645), Facultad de Farmacia, and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782-Santiago de Compostela, Spain
| |
Collapse
|
742
|
Korenchan DE, Taglang C, von Morze C, Blecha J, Gordon J, Sriram R, Larson PEZ, Vigneron D, VanBrocklin H, Kurhanewicz J, Wilson DM, Flavell RR. Dicarboxylic acids as pH sensors for hyperpolarized 13C magnetic resonance spectroscopic imaging. Analyst 2017; 142:1429-1433. [PMID: 28322385 PMCID: PMC5462110 DOI: 10.1039/c7an00076f] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Imaging tumoral pH may help to characterize aggressiveness, metastasis, and therapeutic response. We report the development of hyperpolarized [2-13C,D10]diethylmalonic acid, which exhibits a large pH-dependent 13C chemical shift over the physiological range. We demonstrate that co-polarization with [1-13C,D9]tert-butanol accurately measures pH via13C NMR and magnetic resonance spectroscopic imaging in phantoms.
Collapse
Affiliation(s)
- D. E. Korenchan
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - C. Taglang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - C. von Morze
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - J. Blecha
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - J. Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - R. Sriram
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - P. E. Z. Larson
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - D. Vigneron
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - H. VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - J. Kurhanewicz
- UC Berkeley-UCSF Graduate Program in Bioengineering, University of California, Berkeley and University of California, San Francisco, California, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - D. M. Wilson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | - R. R. Flavell
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| |
Collapse
|
743
|
Ibrahim-Hashim A, Robertson-Tessi M, Enriquez-Navas PM, Damaghi M, Balagurunathan Y, Wojtkowiak JW, Russell S, Yoonseok K, Lloyd MC, Bui MM, Brown JS, Anderson ARA, Gillies RJ, Gatenby RA. Defining Cancer Subpopulations by Adaptive Strategies Rather Than Molecular Properties Provides Novel Insights into Intratumoral Evolution. Cancer Res 2017; 77:2242-2254. [PMID: 28249898 PMCID: PMC6005351 DOI: 10.1158/0008-5472.can-16-2844] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/12/2016] [Accepted: 02/22/2017] [Indexed: 01/19/2023]
Abstract
Ongoing intratumoral evolution is apparent in molecular variations among cancer cells from different regions of the same tumor, but genetic data alone provide little insight into environmental selection forces and cellular phenotypic adaptations that govern the underlying Darwinian dynamics. In three spontaneous murine cancers (prostate cancers in TRAMP and PTEN mice, pancreatic cancer in KPC mice), we identified two subpopulations with distinct niche construction adaptive strategies that remained stable in culture: (i) invasive cells that produce an acidic environment via upregulated aerobic glycolysis; and (ii) noninvasive cells that were angiogenic and metabolically near-normal. Darwinian interactions of these subpopulations were investigated in TRAMP prostate cancers. Computer simulations demonstrated invasive, acid-producing (C2) cells maintain a fitness advantage over noninvasive, angiogenic (C3) cells by promoting invasion and reducing efficacy of immune response. Immunohistochemical analysis of untreated tumors confirmed that C2 cells were invariably more abundant than C3 cells. However, the C2 adaptive strategy phenotype incurred a significant cost due to inefficient energy production (i.e., aerobic glycolysis) and depletion of resources for adaptations to an acidic environment. Mathematical model simulations predicted that small perturbations of the microenvironmental extracellular pH (pHe) could invert the cost/benefit ratio of the C2 strategy and select for C3 cells. In vivo, 200 mmol/L NaHCO3 added to the drinking water of 4-week-old TRAMP mice increased the intraprostatic pHe by 0.2 units and promoted proliferation of noninvasive C3 cells, which remained confined within the ducts so that primary cancer did not develop. A 0.2 pHe increase in established tumors increased the fraction of C3 cells and signficantly diminished growth of primary and metastatic tumors. In an experimental tumor construct, MCF7 and MDA-MB-231 breast cancer cells were coinjected into the mammary fat pad of SCID mice. C2-like MDA-MB-231 cells dominated in untreated animals, but C3-like MCF7 cells were selected and tumor growth slowed when intratumoral pHe was increased. Overall, our data support the use of mathematical modeling of intratumoral Darwinian interactions of environmental selection forces and cancer cell adaptive strategies. These models allow the tumor to be steered into a less invasive pathway through the application of small but selective biological force. Cancer Res; 77(9); 2242-54. ©2017 AACR.
Collapse
Affiliation(s)
- Arig Ibrahim-Hashim
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Mark Robertson-Tessi
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Pedro M Enriquez-Navas
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Mehdi Damaghi
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center, Tampa, Florida
| | | | - Jonathan W Wojtkowiak
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Shonagh Russell
- Department of Cancer Biology Ph.D. Program, University of South Florida, Tampa, Florida
| | - Kam Yoonseok
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Mark C Lloyd
- Analytic Microscopy Core, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Marilyn M Bui
- Analytic Microscopy Core, H. Lee Moffitt Cancer Center, Tampa, Florida
- Department of Pathology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Joel S Brown
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
- Department of Evolutionary Biology, University of Illinois at Chicago, Chicago, Illinois
| | - Alexander R A Anderson
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Robert J Gillies
- Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center, Tampa, Florida
- Department of Radiology, H. Lee Moffitt Cancer Center, Tampa, Florida
| | - Robert A Gatenby
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center, Tampa, Florida.
- Department of Radiology, H. Lee Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
744
|
Design and evaluation of surface functionalized superparamagneto-plasmonic nanoparticles for cancer therapeutics. Int J Pharm 2017; 524:16-29. [DOI: 10.1016/j.ijpharm.2017.03.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/18/2017] [Accepted: 03/26/2017] [Indexed: 01/19/2023]
|
745
|
Gamov GA, Zavalishin MN, Usacheva TR, Sharnin VA. Effect of medium acidity on the thermodynamics and kinetics of the reaction of pyridoxal 5′-phosphate with isoniazid in an aqueous solution. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2017. [DOI: 10.1134/s0036024417050107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
746
|
Applications of pHLIP Technology for Cancer Imaging and Therapy. Trends Biotechnol 2017; 35:653-664. [PMID: 28438340 DOI: 10.1016/j.tibtech.2017.03.014] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/24/2017] [Accepted: 03/29/2017] [Indexed: 12/14/2022]
Abstract
Acidity is a biomarker of cancer that is not subject to the blunting clonal selection effects that reduce the efficacy of other biomarker technologies, such as antibody targeting. The pH (low) insertion peptides (pHLIP®s) provide new opportunities for targeting acidic tissues. Through the physical mechanism of membrane-associated folding, pHLIPs are triggered by the acidic microenvironment to insert and span the membranes of tumor cells. The pHLIP platform can be applied to imaging acidic tissues, delivering cell-permeable and impermeable molecules to the cytoplasm, and promoting the cellular uptake of nanoparticles. Since acidosis is a hallmark of tumor development, progression, and aggressiveness, the pHLIP technology may prove useful in targeting cancer cells and metastases for tumor diagnosis, imaging, and therapy.
Collapse
|
747
|
Chen HY, Larson PEZ, Bok RA, von Morze C, Sriram R, Delos Santos R, Delos Santos J, Gordon JW, Bahrami N, Ferrone M, Kurhanewicz J, Vigneron DB. Assessing Prostate Cancer Aggressiveness with Hyperpolarized Dual-Agent 3D Dynamic Imaging of Metabolism and Perfusion. Cancer Res 2017; 77:3207-3216. [PMID: 28428273 DOI: 10.1158/0008-5472.can-16-2083] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/19/2016] [Accepted: 04/13/2017] [Indexed: 01/15/2023]
Abstract
New magnetic resonance (MR) molecular imaging techniques offer the potential for noninvasive, simultaneous quantification of metabolic and perfusion parameters in tumors. This study applied a three-dimensional dynamic dual-agent hyperpolarized 13C magnetic resonance spectroscopic imaging approach with 13C-pyruvate and 13C-urea to investigate differences in perfusion and metabolism between low- and high-grade tumors in the transgenic adenocarcinoma of mouse prostate (TRAMP) transgenic mouse model of prostate cancer. Dynamic MR data were corrected for T1 relaxation and RF excitation and modeled to provide quantitative measures of pyruvate to lactate flux (kPL ) and urea perfusion (urea AUC) that correlated with TRAMP tumor histologic grade. kPL values were relatively higher for high-grade TRAMP tumors. The increase in kPL flux correlated significantly with higher lactate dehydrogenase activity and mRNA expression of Ldha, Mct1, and Mct4 as well as with more proliferative disease. There was a significant reduction in perfusion in high-grade tumors that associated with increased hypoxia and mRNA expression of Hif1α and Vegf and increased ktrans , attributed to increased blood vessel permeability. In 90% of the high-grade TRAMP tumors, a mismatch in perfusion and metabolism measurements was observed, with low perfusion being associated with increased kPL This perfusion-metabolism mismatch was also associated with metastasis. The molecular imaging approach we developed could be translated to investigate these imaging biomarkers for their diagnostic and prognostic power in future prostate cancer clinical trials. Cancer Res; 77(12); 3207-16. ©2017 AACR.
Collapse
Affiliation(s)
- Hsin-Yu Chen
- Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, California.,Graduate Program in Bioengineering, University of California, Berkeley, Berkeley California.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Peder E Z Larson
- Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, California.,Graduate Program in Bioengineering, University of California, Berkeley, Berkeley California.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Robert A Bok
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Cornelius von Morze
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Renuka Sriram
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Justin Delos Santos
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Jeremy W Gordon
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Naeim Bahrami
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California.,Masters of Science in Biomedical Imaging Program, University of California, San Francisco, San Francisco, California
| | - Marcus Ferrone
- Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, California
| | - John Kurhanewicz
- Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, California.,Graduate Program in Bioengineering, University of California, Berkeley, Berkeley California.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| | - Daniel B Vigneron
- Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, California. .,Graduate Program in Bioengineering, University of California, Berkeley, Berkeley California.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California
| |
Collapse
|
748
|
Deán-Ben XL, Gottschalk S, Mc Larney B, Shoham S, Razansky D. Advanced optoacoustic methods for multiscale imaging of in vivo dynamics. Chem Soc Rev 2017; 46:2158-2198. [PMID: 28276544 PMCID: PMC5460636 DOI: 10.1039/c6cs00765a] [Citation(s) in RCA: 195] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Visualization of dynamic functional and molecular events in an unperturbed in vivo environment is essential for understanding the complex biology of living organisms and of disease state and progression. To this end, optoacoustic (photoacoustic) sensing and imaging have demonstrated the exclusive capacity to maintain excellent optical contrast and high resolution in deep-tissue observations, far beyond the penetration limits of modern microscopy. Yet, the time domain is paramount for the observation and study of complex biological interactions that may be invisible in single snapshots of living systems. This review focuses on the recent advances in optoacoustic imaging assisted by smart molecular labeling and dynamic contrast enhancement approaches that enable new types of multiscale dynamic observations not attainable with other bio-imaging modalities. A wealth of investigated new research topics and clinical applications is further discussed, including imaging of large-scale brain activity patterns, volumetric visualization of moving organs and contrast agent kinetics, molecular imaging using targeted and genetically expressed labels, as well as three-dimensional handheld diagnostics of human subjects.
Collapse
Affiliation(s)
- X L Deán-Ben
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - S Gottschalk
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany.
| | - B Mc Larney
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany. and Faculty of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| | - S Shoham
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - D Razansky
- Institute for Biological and Medical Imaging (IBMI), Helmholtz Center Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany. and Faculty of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
749
|
Allen E, Missiaen R, Bergers G. Trimming the Vascular Tree in Tumors: Metabolic and Immune Adaptations. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2017; 81:21-29. [PMID: 28396525 PMCID: PMC8335596 DOI: 10.1101/sqb.2016.81.030940] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Angiogenesis, the formation of new blood vessels, has become a well-established hallmark of cancer. Its functional importance for the manifestation and progression of tumors has been further validated by the beneficial therapeutic effects of angiogenesis inhibitors, most notably ones targeting the vascular endothelial growth factor (VEGF) signaling pathways. However, with the transient and short-lived nature of the patient response, it has become evident that tumors have the ability to adapt to the pressures of vascular growth restriction. Several escape mechanisms have been described that adapt tumors to therapy-induced low-oxygen tension by either reinstating tumor growth by vascular rebound or by altering tumor behavior without the necessity to reinitiate revascularization. We review here two bypass mechanisms that either instigate angiogenic and immune-suppressive polarization of intratumoral innate immune cells to facilitate VEGF-independent angiogenesis or enable metabolic adaptation and reprogramming of endothelial cells and tumor cells to adapt to low-oxygen tension.
Collapse
Affiliation(s)
- Elizabeth Allen
- KU-Leuven and VIB-Center for Cancer Biology, 3000 Leuven, Belgium
| | - Rindert Missiaen
- KU-Leuven and VIB-Center for Cancer Biology, 3000 Leuven, Belgium
| | - Gabriele Bergers
- KU-Leuven and VIB-Center for Cancer Biology, 3000 Leuven, Belgium
| |
Collapse
|
750
|
Hua Y, Liang C, Zhu J, Miao C, Yu Y, Xu A, Zhang J, Li P, Li S, Bao M, Yang J, Qin C, Wang Z. Expression of lactate dehydrogenase C correlates with poor prognosis in renal cell carcinoma. Tumour Biol 2017; 39:1010428317695968. [PMID: 28351304 DOI: 10.1177/1010428317695968] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Lactate dehydrogenase C is an isoenzyme of lactate dehydrogenase and a member of the cancer-testis antigens family. In this study, we aimed to investigate the expression and functional role of lactate dehydrogenase C and its basic mechanisms in renal cell carcinoma. First, a total of 133 cases of renal cell carcinoma samples were analysed in a tissue microarray, and Kaplan-Meier survival curve analyses were performed to investigate the correlation between lactate dehydrogenase C expression and renal cell carcinoma progression. Lactate dehydrogenase C protein levels and messenger RNA levels were significantly upregulated in renal cell carcinoma tissues, and the patients with positive lactate dehydrogenase C expression had a shorter progression-free survival, indicating the oncogenic role of lactate dehydrogenase C in renal cell carcinoma. In addition, further cytological experiments demonstrated that lactate dehydrogenase C could prompt renal cell carcinoma cells to produce lactate, and increase metastatic and invasive potential of renal cell carcinoma cells. Furthermore, lactate dehydrogenase C could induce the epithelial-mesenchymal transition process and matrix metalloproteinase-9 expression. In summary, these findings showed lactate dehydrogenase C was associated with poor prognosis in renal cell carcinoma and played a pivotal role in the migration and invasion of renal cell carcinoma cells. Lactate dehydrogenase C may act as a novel biomarker for renal cell carcinoma progression and a potential therapeutic target for the treatment of renal cell carcinoma.
Collapse
Affiliation(s)
- Yibo Hua
- 1 Department of Urology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Chao Liang
- 1 Department of Urology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jundong Zhu
- 1 Department of Urology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Chenkui Miao
- 1 Department of Urology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yajie Yu
- 1 Department of Urology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Aimin Xu
- 1 Department of Urology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jianzhong Zhang
- 1 Department of Urology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Pu Li
- 1 Department of Urology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Shuang Li
- 1 Department of Urology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Meiling Bao
- 2 Department of Pathology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jie Yang
- 1 Department of Urology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Chao Qin
- 1 Department of Urology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zengjun Wang
- 1 Department of Urology, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|