751
|
Wright AK, Norrie L, Ingham CA, Hutton EA, Arbuthnott GW. Double anterograde tracing of outputs from adjacent "barrel columns" of rat somatosensory cortex. Neostriatal projection patterns and terminal ultrastructure. Neuroscience 1999; 88:119-33. [PMID: 10051194 DOI: 10.1016/s0306-4522(98)00186-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The sensory input to the neostriatum from groups of cortical cells related to individual facial vibrissae has been investigated at both light- and electron-microscopic resolution. The purpose of the study was to establish the extent to which corticostriatal input maintains the anatomical coding of spatial information that is present in cortex. A double anterograde tracing method was used to identify the output projections from groups of adjacent neurons in different barrel columns, so that the anatomical relationships between two groups could be studied throughout their length. Adjacent whiskers are represented in adjoining cortical barrels and an examination of corticostriatal projections from these reveals two patterns of projection. In one, the anatomical topography is partially preserved; the barrels are represented in adjoining, discrete, areas of the somatosensory neostriatum. In the second projection pattern, the neostriatal innervation is diffuse and adjacent barrels are represented in overlapping regions of the neostriatum. Moreover, the fibres are thinner, have smaller boutons, and are present in both the ipsilateral and contralateral neostriatum. The two systems also enter the neostriatal neuropile separately. The discrete topographic system enters the adjacent neostriatum as collaterals which leave the descending corticofugal fibres at right angles, while the diffuse system enters directly from the corpus callosum at an acute angle. Examination of the neostriatal terminal fields by correlated light and electron microscopy, shows that characteristic axospinous terminals on spiny neurons are made by both groups of cortical fibres, although they differ in their size and morphology. It is concluded that at least two corticostriatal pathways arise from the barrel cortex. One connection maintains some of the anatomical code implicit in the barrel pattern of primary somatosensory cortex, but another, more diffuse, system is overlaid upon it which may carry different information from this complex area of cortex.
Collapse
Affiliation(s)
- A K Wright
- University of Edinburgh Centre for Neuroscience, Department of Preclinical Veterinary Sciences, Summerhall, UK
| | | | | | | | | |
Collapse
|
752
|
Canales JJ, Iversen SD. Behavioural topography in the striatum: differential effects of quinpirole and D-amphetamine microinjections. Eur J Pharmacol 1998; 362:111-9. [PMID: 9874160 DOI: 10.1016/s0014-2999(98)00752-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Behavioural evidence has accumulated that supports the hypothesis that specific territories of the striatum contribute differentially to the control of motor behaviours. The present experiments compare the behavioural effects of microinjections of amphetamine (20 microg/0.5 microl) with those elicited by the D2-class dopamine receptor agonist quinpirole (3 microg/0.5 microl) following direct microinjection into three anatomically distinct sectors of the striatum: the nucleus accumbens, the ventrolateral striatum and the anterodorsal striatum. Our findings demonstrate that site-specific behavioural responses are induced by microinjections of amphetamine, but not of quinpirole, into the striatum. Our results suggest that widespread areas of the striatum are implicated in the induction of a syndrome of sedation, yawning and motor inhibition, observed readily following microinjections of quinpirole into the striatum. This evidence supports both homogeneity and segregation of function in the striatum at the behavioural level. Further, the results suggest that the elicitation of site-specific action sequences at the level of the striatum seems to require cooperative interactions between D1-class and D2-class dopamine receptors.
Collapse
Affiliation(s)
- J J Canales
- Department of Experimental Psychology, University of Oxford, UK.
| | | |
Collapse
|
753
|
Salamone JD, Mayorga AJ, Trevitt JT, Cousins MS, Conlan A, Nawab A. Tremulous jaw movements in rats: a model of parkinsonian tremor. Prog Neurobiol 1998; 56:591-611. [PMID: 9871939 DOI: 10.1016/s0301-0082(98)00053-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Several pharmacological and neurochemical conditions in rats induce 'vacuous' or 'tremulous' jaw movements. Although the clinical significance of these movements has been a subject of some debate, considerable evidence indicates that the non-directed, chewing-like movements induced by cholinomimetics, dopamine antagonists and dopamine depletions have many of the characteristics of parkinsonian tremor. These movements occur within the 3-7 Hz peak frequency range that is characteristic of parkinsonian tremor. Tremulous jaw movements are induced by many of the conditions that are associated with parkinsonism, and suppressed by several different antiparkinsonian drugs, including scopolamine, benztropine, L-DOPA, apomorphine, bromocriptine, amantadine and clozapine. Striatal cholinergic and dopaminergic mechanisms are involved in the generation of tremulous jaw movements, and substantia nigra pars reticulata appears to be a major basal ganglia output region through which the jaw movements are regulated. Future research on the neurochemical and anatomical characteristics of tremulous jaw movements could yield important insights into the brain mechanisms that generate tremulous movements.
Collapse
Affiliation(s)
- J D Salamone
- Department of Psychology, University of Connecticut, Storrs 06269-1020, USA
| | | | | | | | | | | |
Collapse
|
754
|
Kokaia Z, Andsberg G, Yan Q, Lindvall O. Rapid alterations of BDNF protein levels in the rat brain after focal ischemia: evidence for increased synthesis and anterograde axonal transport. Exp Neurol 1998; 154:289-301. [PMID: 9878168 DOI: 10.1006/exnr.1998.6888] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cellular localization and tissue levels of BDNF protein were studied using immunocytochemistry and enzyme immunoassay, respectively, in the cortex and striatum at different reperfusion times (0-24 h) after 2 h of unilateral middle cerebral artery occlusion (MCAO) in rats. The distribution of neuronal injury was analyzed in NeuN-, cresyl violet-, and Fluoro-Jade-stained sections. At 2 h postischemia, but not at later time points, there was a several-fold increase of the number of BDNF-immunoreactive (-ir) cells in the ipsilateral cingulate and frontal cortices outside the damaged area. Animals with cortical injury showed loss of BDNF-ir fibers in the striatum at 2-24 h, whereas rats with cell damage confined to the striatum exhibited no such change. At 2-16 h, strongly BDNF-ir fibers were observed along the myelinated fascicles medially in the striatum, in the anterior commissure, and in the corpus callosum ipsilateral to the MCAO. BDNF protein levels were increased (by 133-213%) at 2 h in the cingulate and frontal cortices and decreased (by 40%) at 24 h in the striatum. These findings show that the increased expression of BDNF mRNA in cortical neurons previously demonstrated after transient focal ischemia is accompanied by elevated levels of BDNF protein. The rapid decline of BDNF protein levels suggests a pronounced release or anterograde axonal transport in the postischemic phase. The reduction of BDNF protein in the striatum of animals with cortical damage provides further evidence for anterograde transport, which is also supported by the accumulation of BDNF protein in several preterminal fiber systems. The changes of BDNF protein after focal ischemia could play a role for survival and plasticity of cortical and striatal neurons.
Collapse
Affiliation(s)
- Z Kokaia
- Section of Restorative Neurology, Wallenberg Neuroscience Center, University Hospital, Lund, S-221 85, Sweden
| | | | | | | |
Collapse
|
755
|
Reiner A, Medina L, Veenman CL. Structural and functional evolution of the basal ganglia in vertebrates. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 28:235-85. [PMID: 9858740 DOI: 10.1016/s0165-0173(98)00016-2] [Citation(s) in RCA: 261] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
While a basal ganglia with striatal and pallidal subdivisions is 1 clearly present in many extant anamniote species, this basal ganglia is cell sparse and receives only a relatively modest tegmental dopaminergic input and little if any cortical input. The major basal ganglia influence on motor functions in anamniotes appears to be exerted via output circuits to the tectum. In contrast, in modern mammals, birds, and reptiles (i.e., modern amniotes), the striatal and pallidal parts of the basal ganglia are very neuron-rich, both consist of the same basic populations of neurons in all amniotes, and the striatum receives abundant tegmental dopaminergic and cortical input. The functional circuitry of the basal ganglia also seems very similar in all amniotes, since the major basal ganglia influences on motor functions appear to be exerted via output circuits to both cerebral cortex and tectum in sauropsids (i.e., birds and reptiles) and mammals. The basal ganglia, output circuits to the cortex, however, appear to be considerably more developed in mammals than in birds and reptiles. The basal ganglia, thus, appears to have undergone a major elaboration during the evolutionary transition from amphibians to reptiles. This elaboration may have enabled amniotes to learn and/or execute a more sophisticated repertoire of behaviors and movements, and this ability may have been an important element of the successful adaptation of amniotes to a fully terrestrial habitat. The mammalian lineage appears, however, to have diverged somewhat from the sauropsid lineage with respect to the emergence of the cerebral cortex as the major target of the basal ganglia circuitry devoted to executing the basal ganglia-mediated control of movement.
Collapse
Affiliation(s)
- A Reiner
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee-Memphis, 855 Monroe Avenue, Memphis, TN 38163,
| | | | | |
Collapse
|
756
|
Anesthetics eliminate somatosensory-evoked discharges of neurons in the somatotopically organized sensorimotor striatum of the rat. J Neurosci 1998. [PMID: 9787009 DOI: 10.1523/jneurosci.18-21-09055.1998] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The somatotopic organization of the lateral striatum has been demonstrated by anatomical studies of corticostriatal projections from somatosensory and motor cortices and by single-cell recordings in awake animals. The functional organization in the rat, characterized thus far in the freely moving rat preparation, could be mapped more precisely if a stereotaxic, and possibly an anesthetized, preparation could be used. Because striatal discharges evoked by innocuous somatosensory stimulation are used in mapping, this study tested whether such discharges can be observed during anesthesia, encouraged by responsiveness during anesthesia in somatosensory cortical layers projecting to the striatum. Electrode tracks through lateral striatum of anesthetized rats (pentobarbital or ketamine) revealed spontaneously discharging neurons but no discharges evoked by somatosensory examination (passive manipulation and cutaneous stimulation of 14 body parts). Similar tracks in chronically implanted rats showed evoked firing at numerous sites during wakefulness but not during anesthesia (pentobarbital or urethane). Comparisons of the activity of individual neurons between wakefulness and anesthesia showed that pentobarbital, ketamine, chloral hydrate, urethane, or metofane eliminated evoked firing and suppressed spontaneous firing. Recovery time was greater for neural than for behavioral measures. Thus, mapping as proposed is ruled out, and more importantly, the data show that somatotopically organized lateral striatal neurons stop discharging in response to natural stimulation during anesthesia. Available data indicate they do not reach threshold in response to depolarizations produced by glutamatergic corticostriatal synaptic transmission projected from the somatosensory cortex. These data and demonstrations of anesthetic-induced imbalances in most striatal neurotransmitters emphasize that many results regarding striatal physiology and pharmacology during anesthesia cannot be extrapolated to behavioral conditions, thus indicating the need for more empirical testing in conscious animals.
Collapse
|
757
|
Ni JW, Takahashi M, Yatsugi S, Shimizu-Sasamata M, Yamaguchi T. Effects of YM872 on atrophy of substantia nigra reticulata after focal ischemia in rats. Neuroreport 1998; 9:3719-24. [PMID: 9858385 DOI: 10.1097/00001756-199811160-00027] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Middle cerebral artery (MCA) occlusion causes atrophy in the ipsilateral substantia nigra reticulata (SNR). The effects of glutamate AMPA receptor antagonism on SNR atrophy, which is supposed to inhibit excitatory inputs from the subthalamic nucleus to the SNR, was investigated in rats with permanent MCA occlusions. Histological examination revealed marked atrophy two weeks after MCA occlusion in the saline-treated control group. However, constant i.v. infusion of YM872, a selective AMPA receptor antagonist, for 2 weeks significantly reduced SNR atrophy; neurological deficits also decreased. These results suggest that the AMPA receptor may be involved in the pathogenesis of SNR atrophy during the subacute phase of focal cerebral ischemia.
Collapse
Affiliation(s)
- J W Ni
- Neuroscience Research, Pharmacology Laboratories, Institute for Drug Discovery Research, Yamanouchi Pharmaceutical Co. Ltd., Tsukuba, Ibaraki, Japan
| | | | | | | | | |
Collapse
|
758
|
Zahm DS, Williams ES, Krause JE, Welch MA, Grosu DS. Distinct and interactive effects of d-amphetamine and haloperidol on levels of neurotensin and its mRNA in subterritories in the dorsal and ventral striatum of the rat. J Comp Neurol 1998; 400:487-503. [PMID: 9786410 DOI: 10.1002/(sici)1096-9861(19981102)400:4<487::aid-cne4>3.0.co;2-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Striatal tissue concentrations of neurotensin, expression of neurotensin/neuromedin N (NT/N) mRNA, and numbers of neurotensin-immunoreactive neurons are increased by d-amphetamine (amph), which stimulates dopamine release in the striatum, and haloperidol (hal), a dopamine receptor antagonist with high affinity for D2-like receptors. The possibility that the effects of these drugs involve distinct subpopulations of striatal neurons was addressed in this study, in which the relative numbers and distributions of striatal neuron profiles containing neurotensin immunoreactivity and/or NT/N mRNA were compared following administrations of hal, amph, hal and amph co-administered, and vehicle. Fourteen striatal subterritories in caudate-putamen, nucleus accumbens, and olfactory tubercle were evaluated. Amph produced increases in the expression of neurotensin preferentially in the ventromedial and caudodorsal subterritories of the caudate-putamen, the rostrobasal cell cluster and lateral shell of the nucleus accumbens, and the olfactory tubercle. Haloperidol produced increased neurotensin expression in much of dorsal and ventral striatum, most prominently in the rostral, dorsomedial and ventrolateral quadrants of the caudate-putamen, and in the rostrobasal cell cluster, rostral pole, medial and lateral shell of the nucleus accumbens and the olfactory tubercle. The numbers of neurons responding to amph and hal in all subterritories following co-administration of the two drugs were significantly less than the summed numbers responding individually to amph and hal. Furthermore, in the subterritories where immunohistochemically detectable responses elicited by amph exceeded those produced by hal, co-administration of the two drugs resulted in responses comparable to those elicited by hal given alone. It is suggested that some of the reported anti-dopaminergic behavioral effects of basal ganglia neurotensin may be attenuated in conditions of reduced dopamine neurotransmission.
Collapse
Affiliation(s)
- D S Zahm
- Department of Anatomy and Neurobiology, St. Louis University School of Medicine, Missouri 63104, USA.
| | | | | | | | | |
Collapse
|
759
|
Hashimoto T, Kajii Y, Nishikawa T. Psychotomimetic-induction of tissue plasminogen activator mRNA in corticostriatal neurons in rat brain. Eur J Neurosci 1998; 10:3387-99. [PMID: 9824452 DOI: 10.1046/j.1460-9568.1998.00343.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have studied in the rat the effects of acute subcutaneous injection of psychotomimetics including methamphetamine (MAP), cocaine and phencyclidine (PCP) on the expression of a brain plasticity-related molecule, tissue plasminogen activator (tPA) mRNA, using non-radioactive in situ hybridization histochemistry. In addition to the constitutive expression of tPA mRNA in cerebellar Purkinje cells, ventricular ependymal cells and meningeal blood vessel-associated cells, MAP (1-4 mg/kg), cocaine (30 mg/kg) and PCP (1.25-5 mg/kg) caused a transient and dose-dependent induction of the transcript with its peak at 3 h postinjection in a group of neurons of the medial and insular prefrontal cortices, and the piriform cortex. Another indirect dopamine agonist nomifensine (20-40 mg/kg) mimicked the tPA mRNA induction in the prefrontal cortical areas. Moreover, MAP induction of tPA mRNA was markedly inhibited by pretreatment with a D1 (R(+)-SCH23390: R(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetra-hydro-1H-3-be nza zepine hydrochloride) or a D2 (haloperidol) dopamine receptor-preferring antagonist. Intramedial striatum, but not intrathalamic, application of a fluorescent tracer, fluorogold, retrogradely labelled the cortical cells expressing tPA mRNA. The present results suggest that acute injections of the above psychotomimetic drugs may induce tPA mRNA in a group of the prefrontal cortical neurons that project to the medial striatum. This tPA mRNA expression may be due to the activation of the dopamine neurotransmission. Because it is well documented that single or repeated administration of methamphetamine, cocaine and PCP produces enduring changes in responses to these drugs in humans and experimental animals (e.g. behavioural sensitization), the psychotomimetic-induction of tPA mRNA could be implicated in an initial step in the plastic rearrangements in the neuronal circuits underlying long-lasting changes in behavioural expression.
Collapse
Affiliation(s)
- T Hashimoto
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | | | | |
Collapse
|
760
|
Bianchi L, Colivicchi MA, Bolam JP, Della Corte L. The release of amino acids from rat neostriatum and substantia nigra in vivo: a dual microdialysis probe analysis. Neuroscience 1998; 87:171-80. [PMID: 9722150 DOI: 10.1016/s0306-4522(98)00090-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It has previously been demonstrated, in dual probe microdialysis studies, that stimulation of the neostriatum with kainic acid causes the release of GABA both locally within the neostriatum and distally in the substantia nigra, observations that are consistent with the known anatomy of the basal ganglia. The object of the present study was to further examine the characteristics of GABA release and to determine whether taurine, which has been proposed to be present in striatonigral neurons, has similar characteristics of release, and to examine the release of excitatory amino acids under the same conditions. To this end, dual probe microdialysis studies were carried out on freely-moving rats. The application of kainic acid to neostriatum enhanced the release of GABA, taurine, aspartate and glutamate locally in the neostriatum and distally in the substantia nigra. The distal release of each amino acid in the substantia nigra was sensitive to the administration of 6,7-dinitroquinoxaline-2,3-dione and tetrodotoxin to the neostriatum. Similarly the local release of GABA, aspartate and glutamate but not taurine was sensitive to the intrastriatal application of 6,7-dinitroquinoxaline-2,3-dione or tetrodotoxin. It is concluded that the release of taurine from the substantia nigra has similar characteristics to that of GABA and may be released from the terminals of striatonigral neurons following the stimulation of their cell bodies in the neostriatum. The release of taurine in the neostriatum however, is likely to be mediated mainly by different mechanisms and not related to neuronal activity. The release of excitatory amino acids is likely to involve indirect effects in the neostriatum and polysynaptic pathways in the substantia nigra.
Collapse
Affiliation(s)
- L Bianchi
- Dipartimento di Farmacologia Preclinica e Clinica M. Aiazzi Mancini, Università degli Studi di Firenze, Italy
| | | | | | | |
Collapse
|
761
|
Colombo PJ, Gallagher M. Individual differences in spatial memory and striatal ChAT activity among young and aged rats. Neurobiol Learn Mem 1998; 70:314-27. [PMID: 9774524 DOI: 10.1006/nlme.1998.3857] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Individual differences in spatial memory among young and aged rats were assessed using memory tasks related to integrity of the hippocampus and the neostriatum. Relationships were then examined between measures of spatial memory and regional choline acetyltransferase (ChAT) activity, a marker for cholinergic integrity. Twenty-four-month-old Long-Evans rats were impaired in comparisons with 6-month-old rats on measures of place learning, working memory, reference memory, and perseveration in water-maze tasks. Aged rats that were impaired on one measure of memory, however, were not necessarily impaired on other measures. ChAT activity in the ventromedial and dorsolateral neostriatum of aged rats was significantly reduced in comparisons with young rats whereas no difference was found in the hippocampus. Aged rats with the most ChAT activity in the anterior ventromedial neostriatum performed best on the place-learning and reference memory tasks but also made the most perseverative errors on the working memory task. In addition, young and aged rats with the most ChAT activity in the anterior dorsolateral neostriatum were those with the least accurate working memory. No relationships were found between ChAT activity in the hippocampus and spatial memory. Thus age-related memory impairment has components that can be segregated by measuring relationships between cholinergic integrity in subregions of the anterior neostriatum and memory tasks with different strategic requirements.
Collapse
Affiliation(s)
- P J Colombo
- Department of Psychology, Johns Hopkins University, Baltimore, Maryland, 21218, USA.
| | | |
Collapse
|
762
|
Ozaki HS, Wahlsten D. Timing and origin of the first cortical axons to project through the corpus callosum and the subsequent emergence of callosal projection cells in mouse. J Comp Neurol 1998; 400:197-206. [PMID: 9766399 DOI: 10.1002/(sici)1096-9861(19981019)400:2<197::aid-cne3>3.0.co;2-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A precise knowledge of the timing and origin of the first cortical axons to project through the corpus callosum (CC) and of the subsequent emergence of callosal projection cells is essential for understanding the early ontogeny of this commissure. By using a series of mouse embryos and fetuses of the hybrid cross B6D2F2/J weighing from 0.36 g to 1.0 g (embryonic day E15.75-E17.25), we examined the spatial and temporal distribution of callosal projection cells by inserting crystals of the lipophilic dye (DiI: 1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate) into the contralateral white matter just lateral to the midsagittal plane. Around 0.4 g or E15.8, retrogradely labeled cells were found restricted to a discrete cluster continuously distributed from the most ventral part of presumptive cingulate cortex to the hippocampus. During subsequent development, however, the tangential distribution of these labeled cells in ventromedial cortex did not extend further dorsally, and in fetuses where the CC became distinct from the hippocampal commissure (HC), labeled axons of cells in the ventral cingulate cortex were observed to intersect the callosal pathway and merge with labeled axons of the HC derived from cells in the hippocampus. The first cortical axons through the CC crossed the midline at about 0.64 g or E16.4, and these axons originated from a scattered neuronal population in the dorsal to lateral part of the presumptive frontal cortex. The earliest callosal cells were consistently located in the cortical plate and showed an immature bipolar appearance, displaying an ovoid- or pearl-shaped perikaryon with an apical dendrite coursing in a zig-zagging manner toward the pial surface and a slender axon directed toward the underlying white matter. Callosal projection cells spread progressively with development across the tangential extent of the cerebral cortex in both lateral-to-medial and rostral-to-caudal directions. In any cortical region, the first labeled cells appeared in the cortical plate and their number in the subplate was insignificant compared to that in the cortical plate. Thus, these results clarify that the CC is pioneered by frontal cortical plate cells, and the subsequent ontogeny of callosal projection cells proceeds according to the gradient of cortical maturation.
Collapse
Affiliation(s)
- H S Ozaki
- Division of Biology, Faculty of Medicine, Toyama Medical and Pharmaceutical University, Japan.
| | | |
Collapse
|
763
|
Abstract
Cortical, thalamic, and amygdaloid projections of the rat anterior and posterior insular cortices were examined using the anterograde transport of biocytin. Granular and dysgranular posterior insular areas between bregma and 2 mm anterior to bregma projected to the gustatory thalamic nucleus. Granular cortex projected to the subjacent dysgranular cortex which in turn projected to the agranular (all layers) and granular cortices (layers I and VI). Both granular and dysgranular posterior areas projected heavily to the dysgranular anterior insular cortex. Agranular posterior insular cortex projected to medial mediodorsal nucleus, agranular anterior insular and infralimbic cortices as well as granular and dysgranular posterior insula. No projections to the amygdala were observed from posterior granular cortex, although dysgranular cortex projected to the lateral central nucleus, dorsolateral lateral nucleus, and posterior basolateral nucleus. Agranular projections were similar, although they included medial and lateral central nucleus and the ventral lateral nucleus. Dysgranular anterior insular cortex projected to lateral agranular frontal cortex and granular and dysgranular posterior insular regions. Agranular anterior insular cortex projected to the dysgranular anterior and prelimbic cortices. Anterior insuloamygdaloid projections targeted the rostral lateral and anterior basolateral nuclei with sparse projections to the rostral central nucleus. The data suggest that the anterior insula is an interface between the posterior insular cortex and motor cortex and is connected with motor-related amygdala regions. Amygdaloid projections from the posterior insular cortex appear to be organized in a feedforward parallel fashion targeting all levels of the intraamygdaloid connections linking the lateral, basolateral, and central nuclei.
Collapse
Affiliation(s)
- C J Shi
- Department of Anatomy and Cell Biology, University of Iowa, Iowa City 52242, USA
| | | |
Collapse
|
764
|
Tarazi FI, Campbell A, Yeghiayan SK, Baldessarini RJ. Localization of ionotropic glutamate receptors in caudate-putamen and nucleus accumbens septi of rat brain: comparison of NMDA, AMPA, and kainate receptors. Synapse 1998; 30:227-35. [PMID: 9723793 DOI: 10.1002/(sici)1098-2396(199810)30:2<227::aid-syn13>3.0.co;2-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Changes in binding of selective radioligands at NMDA ([3H]MK-801), AMPA ([3H]CNQX), and kainate ([3H]kainic acid) glutamate (GLU) ionotropic receptors in rat caudate-putamen (CPu) and nucleus accumbens (NAc) were examined by quantitative autoradiography following: 1) unilateral surgical ablation of frontal cerebral cortex to remove descending corticostriatal GLU projections, 2) unilateral injection of kainic acid (KA) into CPu or NAc to degenerate local intrinsic neurons, or 3) unilateral injections of 6-hydroxydopamine (6-OH-DA) into substantia nigra to degenerate ascending nigrostriatal dopamine (DA) projections. Cortical ablation significantly decreased NMDA receptor binding in ipsilateral medial CPu (20%), and NAc (16%), similar to previously reported losses of DA D4 receptors. KA lesions produced large losses of NMDA receptor labeling in CPu and NAc (both by 52%), AMPA (41% and 45%, respectively), and kainate receptors (40% and 45%, respectively) that were similar to the loss of D2 receptors in CPu and NAc after KA injections. Nigral 6-OH-DA lesions yielded smaller but significant losses in NMDA (17%), AMPA (12%), and kainate (11%) receptor binding in CPu. The results indicate that most NMDA, AMPA, and kainate receptors in rat CPu and NAc occur on intrinsic postsynaptic neurons. Also, some NMDA, but not AMPA or kainate, receptors are also found on corticostriatal projections in association with D4 receptors; these may, respectively, represent excitatory presynaptic NMDA autoreceptors and inhibitory D4 heteroceptors that regulate GLU release from corticostriatal axons in medial CPu and NAc. Conversely, the loss of all three GLU receptor subtypes after lesioning DA neurons supports their role as excitatory heteroceptors promoting DA release from nigrostriatal neurons.
Collapse
Affiliation(s)
- F I Tarazi
- Mailman Research Center, McLean Division of Massachusetts General Hospital, Belmont 02178, USA.
| | | | | | | |
Collapse
|
765
|
Hashimoto M, Amano N. Stimulation of the neostriatum induces jaw-opener muscle activity, but not jaw-closer muscle activity: an electromyographic study in the rat. Neurosci Lett 1998; 253:79-82. [PMID: 9774154 DOI: 10.1016/s0304-3940(98)00597-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Microstimulation was carried out at 36 sites in the dorsal striatum in lightly anesthetized rats. Only at two sites, microstimulation of 40 microA induced a considerable EMG activity in the jaw-opener (anterior digastric muscle). No activity was evoked in the jaw-closers (masseter and temporalis muscles). The effective sites were confirmed to be localized in a small central region of the striatum at a level corresponding to the caudal end of the anterior commissure. The effect was ascribed to excitation of a small cluster of striatal neurons, rather than to antidromic activation of cerebral cortical neurons through their axons within the striatum. (1) The effect was abolished after destruction of neurons in the striatal region by injecting kainic acid. (2) The effect was not influenced by ablation of the neocortex. (3) Microinjection of kainic acid into the striatal region also induced the similar muscle activity in the jaw-opener, but not in the jaw-closers.
Collapse
Affiliation(s)
- M Hashimoto
- Department of Oral Neuroscience, Kyushu Dental College, Kitakyushu, Japan
| | | |
Collapse
|
766
|
Baker DA, Specio SE, Tran-Nguyen LT, Neisewander JL. Amphetamine infused into the ventrolateral striatum produces oral stereotypies and conditioned place preference. Pharmacol Biochem Behav 1998; 61:107-11. [PMID: 9715812 DOI: 10.1016/s0091-3057(98)00070-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The effects of amphetamine infused into the ventrolateral striatum (VLS) on locomotion, stereotypies, and conditioned place preference (CPP) were investigated. Five 2-day conditioning trials were conducted over 10 consecutive days. On 1 day of each trial, animals received an infusion of amphetamine (0, 2.5, 5, 10, or 20 mg/0.5 ml/side) and were placed into a distinct compartment for 30 min. On the other day, animals received sham intracranial infusions and were placed into a different compartment for 30 min. Locomotion and stereotypies were assessed following the first and last amphetamine infusions. CPP was assessed the day following the last conditioning trial. Intra-VLS infusions of amphetamine did not alter sniffing or locomotion. Acute administration of amphetamine into the VLS dose dependently produced oral stereotypies, however, tolerance developed to this effect following repeated administrations. Also, intra-VLS infusions of amphetamine dose dependently produced CPP. These results suggest that the VLS is involved in amphetamine-induced oral stereotypies and reward.
Collapse
Affiliation(s)
- D A Baker
- Department of Psychology, Arizona State University, Tempe 85287-1104, USA
| | | | | | | |
Collapse
|
767
|
Zin-Ka-Ieu S, Roger M, Arnault P. Neonatal lesion of the rat's frontal cortex and subsequent transplantation of embryonic frontal cortex: evidence of appropriate synaptic integration of the graft neurons within the host thalamo-fronto-striate circuit. Neurosci Res 1998; 31:325-36. [PMID: 9809591 DOI: 10.1016/s0168-0102(98)00063-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Previous observations in intact rats have indicated that axons from the ventrolateral thalamic nucleus (VL) establish direct axo-somatic or axo-dendritic contacts onto frontal cortical neurons projecting to the striatum. The embryonic frontal cortex was grafted into the damaged frontal cortex of newborn rats to study the capacity of homotopic transplants to restore the thalamo-fronto-striate pathway. Several months later, grafted neurons projecting to the striatum were identified by injecting a retrograde neurotracer (subunit b of the cholera toxin) into the ipsilateral caudate putamen. In the same animal, axons and terminations from the VL were labeled within the transplant with an anterograde neurotracer (Phaseolus vulgaris leuco-agglutinin) injected into the ipsilateral VL. The findings show that VL axons establish direct synaptic contacts onto grafted neurons projecting to the striatum. Although the synaptic contacts were scarce in the transplants, their organization was similar to that observed in intact rats. The contacts were axo-somatic or axo-dendritic. Our observations for the first time indicate that synaptic contacts are formed in cortical grafts and that fetal frontal cortex is susceptible to develop appropriate synaptic integration within the host thalamo-fronto-striate system.
Collapse
Affiliation(s)
- S Zin-Ka-Ieu
- CNRS UMR 6558, Département des Neurosciences, Université de Poitiers, France
| | | | | |
Collapse
|
768
|
Stroemer RP, Rothwell NJ. Exacerbation of ischemic brain damage by localized striatal injection of interleukin-1beta in the rat. J Cereb Blood Flow Metab 1998; 18:833-9. [PMID: 9701344 DOI: 10.1097/00004647-199808000-00003] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Interleukin-1beta (IL-1beta) has been implicated in ischemic brain damage. The site of action of IL-1beta in such damage is not known, but we have demonstrated previously that injection of the interleukin-1 receptor antagonist (IL-1ra) in the striatum but not the cortex of rats inhibits damage caused by permanent middle cerebral artery occlusion. The present study investigated the site of action of IL-1beta on ischemic damage by examining the effects of intracerebroventricular, striatal, or cortical injection of recombinant IL-1beta at the onset of permanent middle cerebral artery occlusion in the rat. Intracerebroventricular injection of IL-1beta (2.5 ng) significantly increased infarct volume in the striatum (35%, P < 0.0001) and in the cortex (44%, P < 0.0001) compared with vehicle treatment. Direct injection of IL-1beta into the striatum also increased infarct volume in both the striatum (36%, P < 0.0001) and the cortex (38%, P < 0.0001), whereas injection of IL-1beta into the cortex failed to affect infarct volume in either the striatum or the cortex. Cortical injection of a higher dose of IL-1beta (20 ng) also failed to affect ischemic damage in either the striatum or the cortex. Injection of IL-1beta into the striatum contralateral to the infarction had no effect on striatal damage in the ischemic hemisphere, but did increase cortical damage by 18% (P < 0.0001). In separate groups of animals, IL-1beta (2.5 ng) was injected into either the striatum or the cortex, and body temperature was recorded continuously in conscious free-moving animals by remote telemetry. Injection of IL-1beta at either site failed to influence body temperature, suggesting that exacerbation of brain damage by striatal injection of IL-1beta is not caused by effects on body temperature. These results imply that IL-1beta exacerbates ischemic damage by specific actions in the striatum where it can influence damage at distant sites in the cortex.
Collapse
Affiliation(s)
- R P Stroemer
- School of Biological Sciences, University of Manchester, United Kingdom
| | | |
Collapse
|
769
|
Svenningsson P, Nergårdh R, Fredholm BB. Regional differences in the ability of caffeine to affect haloperidol-induced striatal c-fos mRNA expression in the rat. Neuropharmacology 1998; 37:331-7. [PMID: 9681931 DOI: 10.1016/s0028-3908(98)00045-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
By using in situ hybridisation we examined the acute effects of caffeine on haloperidol-induced c-fos mRNA in rat striatum. A homogeneous induction of striatal c-fos mRNA was found 30 min after injection of haloperidol (1 mg kg(-1)). At this timepoint caffeine (40 mg kg(-1)) did not affect c-fos mRNA in striatum but caused a significant increase of this gene in the somatosensory cortex. When caffeine was injected together with haloperidol c-fos mRNA was reduced in the medial part of the striatum, but enhanced in the caudal part. Similar region-specific effects of caffeine were observed on c-fos mRNA induced by the selective dopamine D2 antagonist raclopride (0.5 mg kg(-1)). Both haloperidol and raclopride counteracted caffeine-induced c-fos mRNA expression in somatosensory cortex. By contrast no significant interactions between caffeine and the dopamine D1 antagonist SCH 23390 (0.5 mg kg(-1)) on striatal c-fos mRNA expression were observed. The present data show that caffeine modulates c-fos mRNA induced by dopamine D2 receptor antagonism differentially in sensorimotor and limbic-related areas of striatum. It is suggested that this could depend upon a different action of caffeine on the cortical inputs to these two parts of the striatum.
Collapse
Affiliation(s)
- P Svenningsson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
770
|
Sebens JB, Koch T, Ter Horst GJ, Korf J. Olanzapine-induced Fos expression in the rat forebrain; cross-tolerance with haloperidol and clozapine. Eur J Pharmacol 1998; 353:13-21. [PMID: 9721035 DOI: 10.1016/s0014-2999(98)00391-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Acute administration of the atypical antipsychotic drug olanzapine (5 mg kg(-1 i.p.) increased the number of Fos-positive cells moderately in the prefrontal cortex and the striatum; more pronounced were the effects in the nucleus accumbens, the lateral septum, the hypothalamic paraventricular nucleus and the amygdala. The acutely-induced Fos responses of olanzapine were significantly reduced in all brain areas investigated after a 3-week treatment period, indicating the development of tolerance. Through evaluation of cross-tolerance we investigated whether the effects of olanzapine, haloperidol and clozapine on Fos expression and on plasma corticosterone are mediated by the same or by different mechanisms. Cross-tolerance between olanzapine and either haloperidol or clozapine was assessed by the administration of a challenge dose of olanzapine to rats, that were pretreated for 3 weeks with either the same drug, with saline (1 ml kg(-1) day(-1), haloperidol (1 mg kg(-1) day(-1) or clozapine (20 mg kg(-1) day(-1). A competitive dose of olanzapine in long-term haloperidol-treated rats showed cross-tolerance in the rostral part of the cingulate cortex, the dorsomedial and the dorsolateral striatum, the nucleus accumbens and the lateral septum. Cross-tolerance between olanzapine and clozapine, however, was limited to limbic nuclei, including the prefrontal cortex, the lateral septum, the hypothalamic paraventricular nucleus and the amygdala, with minor effects in the mid- and caudal parts of the cingulate cortex. Interesting are the common effects in the lateral septum, possibly an important target for antipsychotic efficacy. Olanzapine administration induced elevated levels of plasma corticosterone and cross-tolerance was seen in haloperidol- and clozapine-pretreated rats.
Collapse
Affiliation(s)
- J B Sebens
- Department of Biological Psychiatry, University of Groningen, Netherlands
| | | | | | | |
Collapse
|
771
|
Kachidian P, Vuillet J, Bartoli M, Castets F, Nieoullon A, Kerkerian-Le Goff L. Relationships between striatin-containing neurons and cortical or thalamic afferent fibres in the rat striatum. An ultrastructural study by dual labelling. Neuroscience 1998; 85:111-22. [PMID: 9607707 DOI: 10.1016/s0306-4522(97)00593-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Striatin, a recently isolated rat brain calmodulin-binding protein belonging to the WD-repeat protein family, is thought to be part of a calcium signal transduction pathway presumably specific to excitatory synapses, at least in the striatum. This study was aimed to specify the cellular and subcellular localization of striatin, and to determine the possible synaptic relationships between the two main excitatory afferent pathways, arising from the cerebral cortex and the thalamus, and the striatin-containing elements, in the rat striatum. Anterograde tract-tracing by means of biotinylated dextran amine injection in the frontoparietal cerebral cortex or the parafascicular nucleus of the thalamus was combined with immunogold detection of striatin. Striatin-immunoreactivity was confined to the neuronal somatodendritic compartment, including spines. Whereas 90-95% of the striatal neurons were striatin-positive, only about 50% of the sections of dendritic spines engaged in asymmetrical synaptic contacts exhibited striatin labelling. Among the sections of striatin-immunopositive dendritic spines, the number of immunogold particles ranged from one to more than seven, indicating an heterogeneity of the spine labelling. Moreover, within each class of spines presenting at least two silver-gold particles, the distribution of the particles varied from a clear-cut alignment under the postsynaptic densities (24-33% of spines) to a location distant from the synaptic area. In the cell bodies and dendrites, striatin labelling was usually not associated with the cytoplasmic membrane nor with the postsynaptic densities. In the striatum ipsilateral to the tracer injections, only 34.8% of the synaptic contacts formed by corticostriatal afferents involved striatin-positive elements (slightly labelled dendritic spines), whereas 56.7% of the synaptic contacts formed by thalamostriatal boutons were made on striatin-positive targets (mostly dendrites). In both cases, striatin labelling was usually not associated with the postsynaptic density. Most of the immunoreactive dendritic spines were in contact with unidentified afferents. These data reveal that striatin is expressed in the vast majority of the cell bodies of striatal spiny neurons, but is heterogeneously distributed among the dendritic spines of those neurons. Data also indicate a preferential relationship between striatin-containing structures and afferents from the parafascicular thalamic nucleus with respect to the frontoparietal cerebral cortex. But, at the dendritic spine level, striatin may be involved in signal transduction mechanisms involving as yet unidentified excitatory afferents to striatal neurons.
Collapse
Affiliation(s)
- P Kachidian
- Laboratoire de Neurobiologie Cellulaire et Fonctionnelle, UPR 9013, CNRS, Marseille, France
| | | | | | | | | | | |
Collapse
|
772
|
Saul'skaya NB, Gorbachevskaya AI. Conditioned reflex release of dopamine in the nucleus accumbens after disruption of the hippocampal formation in rats. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 1998; 28:380-5. [PMID: 9762708 DOI: 10.1007/bf02464791] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vital intracerebral microdialysis combined with HPLC with electrochemical detection was used to study changes in dopamine release in the nucleus accumbens during the development and realization of an emotional conditioned response in hooded rats with lesions to the hippocampal formation. These studies showed that one month after bilateral administration of ibotenic acid into the hippocampal formation, rats had weakened emotional responses to contextual stimuli. The process of development of the conditioned reflex was accompanied by higher-level and longer-lasting release of dopamine in the nucleus accumbens than in sham-operated rats. Dopamine release levels in the nucleus accumbens during realization of the conditioned reflex to contextual stimuli in rats with hippocampal lesions and sham-operated rats were identical.
Collapse
Affiliation(s)
- N B Saul'skaya
- Laboratory for the Physiology of Higher Nervous Activity, I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, St. Petersburg, Russia
| | | |
Collapse
|
773
|
Wang H, Pickel VM. Dendritic spines containing ?-opioid receptors in rat striatal patches receive asymmetric synapses from prefrontal corticostriatal afferents. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980629)396:2<223::aid-cne7>3.0.co;2-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
774
|
Baca SM, Lipska BK, Egan MF, Bachus SE, Ferguson JN, Hyde TM. Effects of prefrontal cortical lesions on neuropeptide and dopamine receptor gene expression in the striatum-accumbens complex. Brain Res 1998; 797:55-64. [PMID: 9630515 DOI: 10.1016/s0006-8993(98)00343-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the rat, neurochemical, behavioral, and anatomical investigations suggest that medial prefrontal cortical input modulates the activity of the basal ganglia. To understand how prefrontal dysfunction might alter striatal-accumbens function, in situ hybridization histochemistry with S35-labeled oligonucleotide probes was used to assess changes in striatal-accumbens gene expression following bilateral excitotoxic ibotenic acid (IA) lesions of the rat medial prefrontal cortex. Quantitative densitometry was used to measure changes in mRNA levels for preproenkephalin A (ENK), D1 dopamine receptor, protachykinin (SubP), glutamic acid decarboxylase (GAD65), and D2 dopamine receptor. No differences were found between sham and lesion groups for ENK, D1, SubP, or GAD65 mRNA levels in the striatum or nucleus accumbens (NAC). D2 receptor mRNA levels were, however, significantly higher in the dorsomedial striatum and in the core area of the NAC of the lesioned rats. Although the functional significance of increased D2 mRNA is unclear, these findings demonstrate that glutamate mPFC projections modulate gene expression in relatively regionally-localized subcortical neuronal populations.
Collapse
Affiliation(s)
- S M Baca
- Clinical Brain Disorders Branch, Intramural Research Program, National Institute of Mental Health, Neuroscience Center, St. Elizabeths Hospital, Washington, DC 20032, USA
| | | | | | | | | | | |
Collapse
|
775
|
Pesini P, Detheux M, Parmentier M, Hökfelt T. Distribution of a glucocorticoid-induced orphan receptor (JP05) mRNA in the central nervous system of the mouse. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 57:281-300. [PMID: 9675427 DOI: 10.1016/s0169-328x(98)00099-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
JP05 (originally referred to as glucocorticoid-induced receptor gene or cDNA clone 4.2) designates a gene originally isolated from murine thymoma WEHI-7TG cells after being treated with glucocorticoids and forskolin. This gene is also induced by dexamethasone (a potent glucocorticoid receptor agonist) in isolated normal murine thymocytes. The predicted amino acid sequence was found to share significant similarity to the family of G-protein-coupled receptors, in particular to the tachykinin receptors NK-1, NK-2 and NK-3, with which it has an overall identity of 32%, 31% and 33%, respectively. The results of the present in situ hybridization analysis reveal that JP05 mRNA containing cells are extensively distributed throughout the rostrocaudal extension of the brain and spinal cord. However, the vast majority of the areas with high to moderate levels of JP05 mRNA were localized in the forebrain, primarily within limbic system structures, the dorsal and ventral striatum and in some hypothalamic nuclei. These results are discussed in relation to the central nervous system distribution of glucocorticoid receptor-containing cells and to the tachykinin system.
Collapse
Affiliation(s)
- P Pesini
- Department of Neuroscience/Histology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
776
|
Jolkkonen J, Jenner P, Marsden CD. Glutamatergic regulation of striatal peptide gene expression in rats. JOURNAL OF NEURAL TRANSMISSION. PARKINSON'S DISEASE AND DEMENTIA SECTION 1998; 10:187-98. [PMID: 9620062 DOI: 10.1007/bf02251230] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The mRNA levels encoding enkephalin and substance P were measured in the rat striatum following cortical ablation, blockade of N-methyl-D-aspartate (NMDA) receptors or inhibition of glutamate release by lamotrigine. Unilateral ablation of the cerebral cortex resulted in a decrease of substance P mRNA levels particularly in the rostral dorsolateral and dorsomedial striatum ipsilateral to the lesion. There was a similar trend for a reduction in levels of enkephalin mRNA. Continuous, intrastriatal infusion of the competitive NMDA receptor antagonist, 3-((+/-)-2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid, (CPP, 0.12 and 1.2microg/day) decreased both enkephalin mRNA and substance P mRNA in dose-dependent manner evenly throughout the striatum adjacent to the infusion site. Following subchronic administration of the presumed glutamate release inhibitor, lamotrigine (5 and 20mg/kg IP) there was no significant alterations in either enkephalin mRNA or substance P mRNA levels in the striatum. Both enkephalin mRNA and substance P mRNA expression in the rat striatum appear tonically stimulated through postsynaptic NMDA receptor mediated mechanisms. This contrasts with differential dopaminergic modulation of peptides in striatal output neurons.
Collapse
Affiliation(s)
- J Jolkkonen
- Neurodegenerative Diseases Research Centre, Biomedical Sciences Division, King's College, London
| | | | | |
Collapse
|
777
|
Abstract
Dopamine neurons in the substantia nigra heavily innervate the striatum, making it the nucleus with the highest levels of dopamine in the adult brain. The present study analyzes the time course and the density of striatal innervation by nigral dopamine neurons and characterizes the role of the neurotransmitter glutamate during the development of the nigrostriatal pathway. For this purpose, organotypic cultures containing the cortex, the striatum, and the substantia nigra (triple cultures) were prepared from rat brains at postnatal day (PND) 0-2 and were cultured for up to 60 d in vitro (DIV). Dopamine fibers and neurons were labeled using tyrosine hydroxylase (TH) immunohistochemistry. Striatal TH-ir fiber density was quantitatively analyzed using confocal laser scanning microscopy (CLSM). In long-term triple cultures (44 +/- 3 DIV), the striatal dopamine fiber density was high and was weakly correlated with the number of nigral dopamine neurons. The high striatal dopamine fiber density mainly resulted from an enhanced ingrowth and ramification of dopamine fibers from nigral neurons during 8-17 DIV. The metabotropic glutamate receptor (mGluR) antagonist L(+)-2-amino-3-phosphonopropionic acid (L-AP-3) selectively inhibited this dopaminergic innervation of the striatum, whereas ionotropic GluR antagonists had no effect. The L-AP-3-mediated inhibition was prevented by the mGluR agonist 1S, 3R-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD). The inhibition of the striatal dopaminergic innervation by L-AP-3 was further confirmed by anterograde tracing of the nigrostriatal projection with Phaseolus vulgaris leucoagglutinin. These results indicate that glutamate, by acting on group I mGluRs, plays an important "trophic" role for the development of the nigrostriatal dopamine pathway.
Collapse
|
778
|
Abstract
A diverse array of chemical agents have been self administered by humans to alter the psychological state. Such drugs of abuse include both stimulants and depressants of the central nervous system. However, some commonalties must underlie the neurobiological actions of these drugs, since the desire to take the drugs often crosses from one drug to another. Studies have emphasized a role of the ventral striatum, especially the nucleus accumbens, in the actions of all drugs of abuse, although more recent studies have implicated larger regions of the forebrain. Induction of immediate-early genes has been studied extensively as a marker for activation of neurons in the central nervous system. In this review, we survey the literature reporting activation of immediate-early gene expression in the forebrain, in response to administration of drugs of abuse. All drugs of abuse activate immediate-early gene expression in the striatum, although each drug induces a particular neuroanatomical signature of activation. Most drugs of abuse activate immediate-early gene expression in several additional forebrain regions, including portions of the extended amygdala, cerebral cortex, lateral septum, and midline/intralaminar thalamic nuclei, although regional variations are found depending on the particular drug administered. Common neuropharmacological mechanisms responsible for activation of immediate-early gene expression in the forebrain involve dopaminergic and glutamatergic systems. Speculations on the biological significance and clinical relevance of immediate-early gene expression in response to drugs of abuse are presented.
Collapse
Affiliation(s)
- R E Harlan
- Department of Anatomy, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | |
Collapse
|
779
|
Matthews MA, Carey ME, Soblosky JS, Davidson JF, Tabor SL. Focal brain injury and its effects on cerebral mantle, neurons, and fiber tracks. Brain Res 1998; 794:1-18. [PMID: 9630470 DOI: 10.1016/s0006-8993(98)00107-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Following a mild cortical impact injury delivered by a piston to the right sensorimotor cortex of the anesthetized rat, we evaluated mantle loss, neuronal changes, and fiber track degeneration by deOlmos silver stains up to 8 weeks after injury. Darkened neurons indicating damage (chromatolysis) occurred widely throughout both hemispheres and were seen from 1 h to 8 weeks after injury. This effect might have occurred from pressure wave damage from piston impact, brain displacement or deafferentation. Cerebral mantle loss was variable but fiber track degeneration related to projection and corticofugal descending tracks associated with the right sensorimotor system was rather constant. Unexpectedly, considerable fiber track degeneration occurred within the cerebellum, especially the inferior vermis. Cells directly under the piston face were surprisingly well-preserved but axon degeneration studies showed that these apparently intact neuronal cell bodies were surrounded by a dense network of degenerating fiber tracks. The intact cells, therefore, may have been functionally cut off from the rest of the brain owing to interruption of their efferents and afferents. The increased susceptibility of axons compared to cell bodies seen with this focal injury is similar to that observed with diffuse brain injury. The early appearing, severe and widespread axon damage we observed suggests that amelioration of focal traumatic brain injury will have to be directed promptly to the preservation of axons as well as cell bodies.
Collapse
Affiliation(s)
- M A Matthews
- Department of Anatomy, Louisiana State University Medical Center, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
780
|
Maguire EA, Burgess N, Donnett JG, Frackowiak RS, Frith CD, O'Keefe J. Knowing where and getting there: a human navigation network. Science 1998; 280:921-4. [PMID: 9572740 DOI: 10.1126/science.280.5365.921] [Citation(s) in RCA: 859] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The neural basis of navigation by humans was investigated with functional neuroimaging of brain activity during navigation in a familiar, yet complex virtual reality town. Activation of the right hippocampus was strongly associated with knowing accurately where places were located and navigating accurately between them. Getting to those places quickly was strongly associated with activation of the right caudate nucleus. These two right-side brain structures function in the context of associated activity in right inferior parietal and bilateral medial parietal regions that support egocentric movement through the virtual town, and activity in other left-side regions (hippocampus, frontal cortex) probably involved in nonspatial aspects of navigation. These findings outline a network of brain areas that support navigation in humans and link the functions of these regions to physiological observations in other mammals.
Collapse
Affiliation(s)
- E A Maguire
- Wellcome Department of Cognitive Neurology, Institute of Neurology, University College London, 12 Queen Square, London WC1N 3BG, UK.
| | | | | | | | | | | |
Collapse
|
781
|
Kötter R, Wickens J. Striatal mechanisms in Parkinson's disease: new insights from computer modeling. Artif Intell Med 1998; 13:37-55. [PMID: 9654378 DOI: 10.1016/s0933-3657(98)00003-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We review data and hypotheses concerning the functional anatomy of the striatum and the role of its corticostriatal and nigrostriatal afferents in Parkinson's disease (PD). Starting from molecular mechanisms of glutamatergic and dopaminergic actions in the striatum we have developed a compartmental model of striatal principal neurons that displays a significant degree of biological realism. Simulations of a network of striatal projection neurons under conditions likely to be found in healthy subjects as well as untreated and therapeutic situations of advanced PD provide clues concerning the dynamics of neuronal interactions and their possible effects on downstream motor structures in the generation of positive and negative motor symptoms. We present tentative biological explanations of the symptoms of rigidity and akinesia in PD leading to predictions concerning the origin of abnormal movements and the beneficial effects of dopaminergic treatment. Although these attempts are not yet sufficient to account for the complexity of clinical symptoms found in PD they can guide further empirical research and foster fruitful interactions between experimentalists, theoreticians, and clinicians in unraveling the functional anatomy of the basal ganglia.
Collapse
Affiliation(s)
- R Kötter
- Centre for Anatomy and Brain Research, Heinrich Heine University Düsseldorf, Germany.
| | | |
Collapse
|
782
|
Fox SH, Moser B, Brotchie JM. Behavioral effects of 5-HT2C receptor antagonism in the substantia nigra zona reticulata of the 6-hydroxydopamine-lesioned rat model of Parkinson's disease. Exp Neurol 1998; 151:35-49. [PMID: 9582253 DOI: 10.1006/exnr.1998.6792] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Overactivity of the substantia nigra zona reticulata and the medial segment of the globus pallidus are responsible for the generation of symptoms in Parkinson's disease. Reducing the activity of these regions has been shown to be a viable alternative to dopamine replacement in the symptomatic treatment of Parkinson's disease. 5-HT2C receptors in the substantia nigra zona reticulata are excitatory. In this study we have shown that intracerebral infusion of the selective 5-HT2C receptor antagonist SB 206553 (50 nmol) into the substantia nigra zona reticulata has an antiparkinsonian action in the 6-hydroxydopamine-lesioned rat model of Parkinson's disease. SB 206553 did not affect locomotion when injected into the nonparkinsonian substantia nigra. Furthermore, we have demonstrated that systemic administration of selective 5-HT2C receptor antagonists SB 200646A (20 mg/kg) and SB 206553 (20 mg/kg) can potentiate the antiparkinsonian action of the dopamine D2 receptor agonist quinpirole in the 6-hydroxydopamine-lesioned rat. Hence, 5-HT2C receptor antagonists may be useful adjuncts to dopamine agonists in the treatment of Parkinson's disease.
Collapse
Affiliation(s)
- S H Fox
- 1.124 Division of Neuroscience, School of Biological Sciences, University of Manchester, Oxford Road, Manchester, M13 9PT, United Kingdom
| | | | | |
Collapse
|
783
|
Danober L, Deransart C, Depaulis A, Vergnes M, Marescaux C. Pathophysiological mechanisms of genetic absence epilepsy in the rat. Prog Neurobiol 1998; 55:27-57. [PMID: 9602499 DOI: 10.1016/s0301-0082(97)00091-9] [Citation(s) in RCA: 403] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Generalized non-convulsive absence seizures are characterized by the occurrence of synchronous and bilateral spike and wave discharges (SWDs) on the electroencephalogram, that are concomitant with a behavioral arrest. Many similarities between rodent and human absence seizures support the use of genetic rodent models, in which spontaneous SWDs occur. This review summarizes data obtained on the neurophysiological and neurochemical mechanisms of absence seizures with special emphasis on the Genetic Absence Epilepsy Rats from Strasbourg (GAERS). EEG recordings from various brain regions and lesion experiments showed that the cortex, the reticular nucleus and the relay nuclei of the thalamus play a predominant role in the development of SWDs. Neither the cortex, nor the thalamus alone can sustain SWDs, indicating that both structures are intimely involved in the genesis of SWDs. Pharmacological data confirmed that both inhibitory and excitatory neurotransmissions are involved in the genesis and control of absence seizures. Whether the generation of SWDs is the result of an excessive cortical excitability, due to an unbalance between inhibition and excitation, or excessive thalamic oscillations, due to abnormal intrinsic neuronal properties under the control of inhibitory GABAergic mechanisms, remains controversial. The thalamo-cortical activity is regulated by several monoaminergic and cholinergic projections. An alteration of the activity of these different ascending inputs may induce a temporary inadequation of the functional state between the cortex and the thalamus and thus promote SWDs. The experimental data are discussed in view of these possible pathophysiological mechanisms.
Collapse
Affiliation(s)
- L Danober
- INSERM U 398, Neurobiologie et Neuropharmacologie des épilepsies généralisées, Faculté de Médecine, Strasbourg, France.
| | | | | | | | | |
Collapse
|
784
|
Mitchell IJ, Cooper AJ, Griffiths MR, Barber DJ. Phencyclidine and corticosteroids induce apoptosis of a subpopulation of striatal neurons: a neural substrate for psychosis? Neuroscience 1998; 84:489-501. [PMID: 9539219 DOI: 10.1016/s0306-4522(97)00534-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Phencyclidine, a non-competitive N-methyl-D-aspartate receptor antagonist and indirect dopamine agonist, has neuroprotective properties. Phencyclidine, however, can also exert toxic effects and causes degeneration of neurons in the retrosplenial cortex. In this paper we demonstrate that acute administration of a high dose of phencyclidine to rats, (80 mg/kg), also causes death of a subpopulation of striatal neurons. The dying cells exhibited many of the morphological and biochemical features of cells undergoing apoptosis as revealed by a silver methenamine stain, propidium iodide fluorescence histochemistry and a TUNEL procedure. The majority of the dying cells tended to be clustered within the dorsomedial aspect of the striatum. The type of striatal cell undergoing apoptosis was determined by stereotaxically injecting a colloidal gold retrograde anatomical tracer into the major areas of striatal termination prior to the administration of phencyclidine. This procedure demonstrated that phencyclidine induced striatal apoptosis is almost exclusively limited to striatopallidal neurons. A similar series of experiments was conducted to determine whether the synthetic corticosteroid, dexamethasone, also induces apoptosis of striatal neurons. Corticosteroids are known to be toxic to hippocampal neurons and interact with striatal dopamine transmission. Acute administration of dexamethasone, (20 mg/kg), induced apoptosis of a subpopulation of striatal cells. As was the case with phencyclidine, most of the dexamethasone-induced apoptotic striatal cells were striatopallidal neurons located within the dorsomedial striatum. The pathology during the early stages of Huntington's disease is restricted to an equivalent subpopulation of striatal neurons. Many Huntington's patients are extremely psychotic during this stage in the progression of the disease. Psychosis is also associated with the acute administration of both phencyclidine and dexamethasone to humans. We accordingly speculate that the selective loss of striatopallidal neurons in the dorsomedial striatum may represent the neural substrate of many forms of psychosis.
Collapse
Affiliation(s)
- I J Mitchell
- School of Psychology, University of Birmingham, UK
| | | | | | | |
Collapse
|
785
|
Loopuijt LD, Hovda DA, Ebrahim A, Villablanca JR, Chugani HT. Differences in D2 dopamine receptor binding in the neostriatum between cats hemidecorticated neonatally or in adulthood. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 107:113-22. [PMID: 9602087 DOI: 10.1016/s0165-3806(98)00004-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In order to study differences in response to neocortical injury sustained at different ages at the neurotransmitter level, we examined the density in D2 dopamine receptors in the neostriatum of cats hemidecorticated neonatally (N = 4) or in adulthood (N = 4), as well as in intact brains (N = 6). Receptor densities were measured using quantitative autoradiography and [3H]-spiperone binding in 12 regions of the neostriatum and nucleus accumbens septi. We found that the anterior lateral caudate nucleus on both sides of the brain contained a higher D2 receptor density in neonatal-lesioned as compared to adult-lesioned brains. Ipsilateral to the lesion, the increase was 101% (P < 0.05) and contralaterally it amounted to 77% (P < 0.05). Moreover, this region of the ipsilateral caudate nucleus of neonatal-lesioned cats tended to be more densely labeled than that of intact brain by 58% (P < 0.1). D2 receptor densities in adult-lesioned cats did not differ from that of intact controls. Comparison of these data with those of a former morphological study using the same animals suggested that this bilateral elevation of D2 receptor density in neonatally lesioned brains represents a higher mean density of binding sites per neuron. The elevation in the neonatal-lesioned cats might be a response of the striatum to neuroplastic changes in the striatal neuropil, including the corticostriatal afferents, since such changes are different in neonatal- as compared to adult-lesioned cats.
Collapse
Affiliation(s)
- L D Loopuijt
- Department of Psychiatry and Biobehavioral Sciences, UCLA School of Medicine, USA.
| | | | | | | | | |
Collapse
|
786
|
Smith Y, Shink E, Sidibe M. Neuronal Circuitry and Synaptic Connectivity of the Basal Ganglia. Neurosurg Clin N Am 1998. [DOI: 10.1016/s1042-3680(18)30260-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
787
|
Mittleman G, Bratt AM, Chase R. Heterogeneity of the hippocampus: effects of subfield lesions on locomotion elicited by dopaminergic agonists. Behav Brain Res 1998; 92:31-45. [PMID: 9588683 DOI: 10.1016/s0166-4328(97)00124-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Structural abnormalities in the hippocampal formation and overactive dopamine neurotransmission in the ventral striatum are thought to be key pathologies in schizophrenia. This experiment examined the functional contribution of different hippocampal subfields to locomotion elicited by D-amphetamine (0.32-3.2 mg/kg) and the direct agonists quinpirole (0.025-0.5 mg/kg) and SKF 38393 (2.5-15.0 mg/kg). Male rats served as unoperated controls or received one of six different lesions (hippocampal formation, fimbria-fornix, subiculum, CA3-4, entorhinal cortex or dentate gyrus (DG)). The main results indicated that extensive ibotenic acid-induced lesions of the hippocampal formation, or colchicine-induced lesions of the DG enhanced locomotion elicited by the D2 agonist quinpirole. Electrolytic lesions of the fimbria-fornix, in comparison, had much larger effects and resulted in increases in the locomotor response to amphetamine and quinpirole. These results extend previous demonstrations of hippocampal modulation of the ventral striatum by showing that this modulatory influence is dependent on both the location and total extent of cell loss within the hippocampal formation. The results are discussed in relation to the causes of and neurophysiological mechanisms involved in enhanced drug-induced locomotion and in terms of their implications for mental diseases including schizophrenia.
Collapse
|
788
|
Nicola SM, Malenka RC. Modulation of synaptic transmission by dopamine and norepinephrine in ventral but not dorsal striatum. J Neurophysiol 1998; 79:1768-76. [PMID: 9535946 DOI: 10.1152/jn.1998.79.4.1768] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Although the ventral striatum (nucleus accumbens; NAc) and dorsal striatum are associated with different behaviors, these structures are anatomically and physiologically similar. In particular, dopaminergic afferents from the midbrain appear to be essential for the normal functioning of both nuclei. Although a number of studies have examined the effects of dopamine on the physiology of NAc or striatal cells, results have varied, and few studies have compared directly the actions of dopamine on both of these nuclei. Here we use slice preparations of the NAc and dorsal striatum to compare how synaptic transmission in these nuclei is modulated by catecholamines. As previously reported, dopamine depressed excitatory postsynaptic potentials (EPSPs) and inhibitory postsynaptic potentials (IPSPs) in the NAc. Surprisingly, however, neither EPSPs nor IPSPs in the dorsal striatum were affected by dopamine. Similarly, norepinephrine depressed excitatory synaptic transmission in the NAc by an alpha-adrenergic receptor-dependent mechanism but was without effect on excitatory transmission in the dorsal striatum. Inhibitory synaptic transmission was not affected by norepinephrine in either structure. These results suggest that the functional roles of dopamine and norepinephrine are not the same in the dorsal striatum and the NAc.
Collapse
Affiliation(s)
- S M Nicola
- Department of Psychiatry, University of California, San Francisco, California, 94143-0984, USA
| | | |
Collapse
|
789
|
McMenamin MM, Byrnes AP, Charlton HM, Coffin RS, Latchman DS, Wood MJ. A gamma34.5 mutant of herpes simplex 1 causes severe inflammation in the brain. Neuroscience 1998; 83:1225-37. [PMID: 9502260 DOI: 10.1016/s0306-4522(97)00513-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A number of viral vectors are currently being evaluated as potential gene therapy vectors for gene delivery to the brain. As well as evaluating their ability to express a transgene for extended periods of time it is also essential to examine any cytotoxic immune response to such vectors as this may not only limit transgene expression but also cause irreparable harm. This work describes the effect of inoculating a gamma34.5 mutant of herpes simplex type 1 (1716lacZ) into the brain of different strains of rats and mice. Animals were monitored for weight loss and signs of illness, and their brains were evaluated for inflammation, beta-galactosidase expression and recoverable infectious virus. We report that there is (i) a powerful immune response consisting of an early non-specific phase and a later presumably T-cell-mediated phase; (ii) significant weight loss in some animals strains accompanied by severe signs of clinical illness and (iii) transient reporter gene expression in all animal strains examined. To be useful for gene therapy we suggest this virus requires further modification, it should be tested in several animal strains and the dose of virus used may be critical in order to limit damage.
Collapse
Affiliation(s)
- M M McMenamin
- Department of Human Anatomy, University of Oxford, UK
| | | | | | | | | | | |
Collapse
|
790
|
Brown LL, Smith DM, Goldbloom LM. Organizing principles of cortical integration in the rat neostriatum: Corticostriate map of the body surface is an ordered lattice of curved laminae and radial points. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980323)392:4<468::aid-cne5>3.0.co;2-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
791
|
Lawrence CB, Allan SM, Rothwell NJ. Interleukin-1beta and the interleukin-1 receptor antagonist act in the striatum to modify excitotoxic brain damage in the rat. Eur J Neurosci 1998; 10:1188-95. [PMID: 9753187 DOI: 10.1046/j.1460-9568.1998.00136.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cytokine interleukin-1 (IL-1) has been implicated in ischaemic, traumatic and excitotoxic brain damage. The results presented here reveal novel actions of IL-1 in the striatum which markedly exacerbate cortical neuronal damage elicited by local excitotoxins in the striatum or cortex. Intrastriatal infusion of IL-1 receptor antagonist, IL-1ra, markedly inhibited striatal neuronal damage caused by N-methyl-D-aspartate (NMDA) or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor activation in the rat. In contrast, intracortical infusion of IL-1ra failed to inhibit NMDA or AMPA receptor-induced damage in the cortex. Intrastriatal co-infusion of IL-1 with the NMDA or AMPA receptor agonist did not affect local striatal damage induced by activation of either glutamate receptor subtype, but caused extensive cortical damage when administered into the striatum with AMPA. This secondary damage was significantly reduced by pretreatment with the NMDA receptor antagonist (MK-801), which did not affect local (striatal) damage caused by AMPA. Infusion of IL-1beta into the striatum (but not the cortex) markedly enhanced cortical damage caused by infusion of an NMDA or AMPA receptor agonist into the cortex. These data reveal selective actions of IL-1 and IL-1ra in the striatum, which influence cortical neuronal loss and suggest that IL-1 selectively enhances damage caused by AMPA receptor activation.
Collapse
Affiliation(s)
- C B Lawrence
- School of Biological Sciences, University of Manchester, UK
| | | | | |
Collapse
|
792
|
Wang JQ, McGinty JF. Metabotropic glutamate receptor agonist increases neuropeptide mRNA expression in rat striatum. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 54:262-9. [PMID: 9555048 DOI: 10.1016/s0169-328x(97)00341-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metabotropic glutamate receptors (mGluR) are coupled to multiple intracellular second messenger systems through G-proteins and densely expressed by medium spiny projection neurons in the rat striatum. Unlike ionotropic glutamate receptors which mediate rapid synaptic transmission, mGluRs are important for relatively long-lasting modulation of neuronal metabotropic activity, possibly including gene expression, in response to cellular stimulation. In this study, the effects of acute injection of the selective mGluR agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (ACPD) on behavior and striatal neuropeptide mRNA expression were evaluated in chronically-cannulated rats. Unilateral injection of ACPD into the dorsal striatum at doses of 0.8, 4, 20, 100, 500 and 1000 nmol had no significant effect on spontaneous behavioral activity. However, intrastriatal ACPD (0.8, 4, 20 and 100 nmol) dose-dependently elevated preprodynorphin (PPD), substance P (SP) and preproenkephalin (PPE) mRNA expression in the dorsal striatum as revealed by quantitative in situ hybridization. PPD/SP mRNAs showed a biphasic response to a single injection of ACPD as the expression of these two mRNAs was increased at 3 and 6 h, decreased at 11 h, and returned to normal 24 h after ACPD administration. PPE induction in the dorsal striatum was significantly elevated as early as 2 h and remained even 24 h after ACPD was injected. In addition, the PPD and PPE mRNA induction by ACPD was blocked by intrastriatal pretreatment with the selective mGluR antagonist, (+)-alpha-methyl-4-carboxyphenyl-glycine. These data demonstrate a facilitatory regulation of constitutive expression of striatonigral PPD/SP, and striatopallidal PPE, mRNAs by local mGluR-mediated glutamatergic transmission.
Collapse
Affiliation(s)
- J Q Wang
- Department of Pharmacology, Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA.
| | | |
Collapse
|
793
|
Escames G, Acuña-Castroviejo D, León J, Vives F. Melatonin interaction with magnesium and zinc in the response of the striatum to sensorimotor cortical stimulation in the rat. J Pineal Res 1998; 24:123-9. [PMID: 9580111 DOI: 10.1111/j.1600-079x.1998.tb00377.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The sensorimotor cortex (SMCx) sends numerous projections to the striatum. These projections are excitatory and glutamate mediated. Glutamatergic receptors, specifically those of NMDA type-receptors, are closely related to excitotoxicity. Thus, in some circumstances, an excess of Ca2+ influx through NMDA channels alters neuronal metabolism and may become lethal for the cell. Two other divalent cations, Mg2+ and Zn2+, have inhibitory effects on NMDA receptors. Magnesium ions exert a voltage-dependent block of the NMDA calcium channel, whereas zinc ions exert a voltage-independent NMDA block. In the present work, the effects of iontophoresis of Mg2+ and Zn2+ on the striatal response to SMCx stimulation were studied. Moreover melatonin, an indoleamine with anticonvulsant properties and inhibitory effects on the NMDA receptor, was also iontophorized alone or in combination with Mg2+ and Zn2+. Single pulse electrical stimulation of SMCx produced an excitatory response in the striatum. Iontophoresis of melatonin, Mg2+ and Zn2+ produced a potent attenuation of the excitatory response of the striatum to SMCx stimulation, although the latency of the effect of melatonin was longer than those of Mg2+ and Zn2+. When these cations were simultaneously ejected with melatonin, additive inhibitory effects were recorded. These observations suggest that the inhibitory effects produced by Mg2+ and Zn2+ and melatonin are produced via different processes, and thus the inhibitory role of melatonin on the NMDA receptor activity is exclusive of a direct action on the NMDA calcium channel.
Collapse
Affiliation(s)
- G Escames
- Instituto de Biotecnología, Universidad de Granada, Spain
| | | | | | | |
Collapse
|
794
|
Abstract
Synaptic replacement in rat striatum following a unilateral cortical lesion was investigated using electron microscopy and the anterograde tracer, biotinylated dextrin amine (BDA). In the deafferented striatum evidence of axon sprouting and synapse replacement was seen at 20 days after the lesion and most newly-formed axon terminals were labeled with BDA injected previously into the contralateral cortex. In addition, BDA-labeled fibers from the contralateral cortex formed multiple asymmetric axospinous synapses with deafferented striatal neurons, a morphological feature rarely seen in unlesioned rats. These data suggest that in response to a unilateral cortex lesion axons from the contralateral cortex sprout and reinnervated the deafferented striatal neurons and that reinnervation by 'like' afferents maybe crucial for the establishment of functional recovery after the unilateral cortex lesion.
Collapse
Affiliation(s)
- H W Cheng
- Division of Neurogerontology, Andrus Gerontology Center, University of Southern California, Los Angeles 90089-0191, USA
| | | | | |
Collapse
|
795
|
Anagnostakis Y, Kastellakis A, Spyraki C. Dizocilpine (MK-801) and tetrodotoxin influence accumbal dopamine release evoked by intrapallidal morphine. Eur Neuropsychopharmacol 1998; 8:47-53. [PMID: 9452940 DOI: 10.1016/s0924-977x(97)00044-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
It has been hypothesized that the intrapallidal morphine-induced dopamine release in the nucleus accumbens may be mediated by thalamocorticostriatal or mesolimbic pathways. In order to challenge the above hypothesis, we examined whether changes in accumbal dopamine and its metabolites produced by intrapallidal morphine a) are associated with local excitatory amino acid neurotransmission b) are determined by impulse propagation in dopamine neurons and c) are observed both ipsi- and contralateral to the morphine administration site. In vivo microdialysis was used to assess dopamine release and metabolism in the right and the left nucleus accumbens separately of awake, unrestrained rats. Vehicle or morphine hydrochloride (10 microliters/26.0 mM) was applied unilaterally into the pallidum alone or in combination with ipsilateral application of the N-methyl-D-aspartate (NMDA) receptor antagonist dizocilpine (MK-801) into the nucleus accumbens or the sodium channel blocker tetrodotoxin into the medial forebrain bundle. Drugs' application was performed via reverse dialysis. Concentrations of dopamine, 3,4-dihydroxyphenyl acetic acid (DOPAC) and homovanillic acid (HVA) in the collected dialysate were measured by high performance liquid chromatography with electrochemical detection. Morphine administration resulted in elevated levels of dopamine in the ipsilateral and of DOPAC and HVA in both the ipsi- and contralateral nucleus accumbens. Dizocilpine (MK-801) (0.3 mM) did not influence the basal levels of dopamine, DOPAC or HVA in the nucleus accumbens. Ipsilaterally, dizocilpine (MK-801) inhibited the effect of morphine on dopamine release, whereas it increased significantly the effect of the drug on DOPAC and HVA. Tetrodotoxin (3 microM) reversed the effect of intrapallidal morphine on dopamine, DOPAC or HVA in the ipsilateral nucleus accumbens. The results show that the intrapallidal morphine-induced dopaminergic activation in the ipsilateral nucleus accumbens is dependent upon both phasic and tonic activation of dopaminergic neurons. They suggest that both the thalamocorticostriatal and the mesolimbic dopamine pathways may mediate the investigated effect of morphine.
Collapse
Affiliation(s)
- Y Anagnostakis
- Department of Basic Sciences, School of Medicine, University of Crete, Heraklion, Greece
| | | | | |
Collapse
|
796
|
Butler AK, Uryu K, Morehouse V, Rougon G, Chesselet MF. Regulation of the polysialylated form of the neural cell adhesion molecule in the developing striatum: effects of cortical lesions. J Comp Neurol 1997; 389:289-308. [PMID: 9416923 DOI: 10.1002/(sici)1096-9861(19971215)389:2<289::aid-cne8>3.0.co;2-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Early in development, the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) is expressed by growth cones, neuronal processes, and neuronal cell bodies. In rat striatum, PSA-NCAM expression becomes progressively restricted to pre- and postsynaptic membranes and is undetectable by postnatal day 25 (P25), i.e., after corticostriatal synaptogenesis. This study examined the effects of cortical lesions performed on P14, when the corticostriatal projection is already primarily unilateral and cortical inputs have not yet formed asymmetric synapses on striatal neurons. Rats were killed on P25, and PSA-NCAM expression was examined by immunoblotting and immunohistochemistry with light and electron microscopy. In contrast to the case in controls, PSA-NCAM expression was maintained in the striatum of lesioned pups. Ultrastructural studies showed that PSA-NCAM was present 1) in growth cone-like structures and neuronal processes and 2) in striatal neurons. Together with the presence of growth cones, the observation that the number of asymmetric synapses was unchanged in the denervated striatum suggests that axonal sprouting occurred in response to the lesion. This was confirmed by axonal labeling in the denervated striatum after injection of Fluoro-Ruby in the contralateral cortex. The data indicate that P14 cortical lesions affect PSA-NCAM expression in the developing striatum 1) by inducing a robust axonal plasticity resulting in the presence of immature presynaptic elements that contain PSA-NCAM and 2) by delaying the loss of PSA-NCAM expression in striatal neurons, suggesting that the lesion affects the time course of striatal maturation.
Collapse
Affiliation(s)
- A K Butler
- Institute of Neurological Sciences, University of Pennsylvania, Philadelphia 19104, USA
| | | | | | | | | |
Collapse
|
797
|
Medina L, Reiner A. The efferent projections of the dorsal and ventral pallidal parts of the pigeon basal ganglia, studied with biotinylated dextran amine. Neuroscience 1997; 81:773-802. [PMID: 9316028 DOI: 10.1016/s0306-4522(97)00204-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the present study we have investigated the efferent projections of both the dorsal and the ventral pallidum of the pigeon basal ganglia, using the sensitive anterograde tracer biotinylated dextran amine [Veenman C. L. et al. (1992) J. Neurosci. Meth. 41, 239-254]. Injections of biotinylated dextran amine in the pigeon dorsal pallidum produced numerous fibers and terminals in specific nuclei of the thalamus, hypothalamus, pretectum and midbrain tegmentum. In the thalamus, labeled fibers and terminals were observed in the avian thalamic reticular nucleus, the proposed motor part of the avian ventral tier (ventrointermediate area), the avian parafascicular nucleus (nucleus dorsointermedius posterior), as well as in the avian nucleus subrotundus (which may be comparable to the posterior intralaminar nuclei of mammals). Labeled fibers and terminals were also observed in the avian subthalamic nucleus (anterior nucleus of the ansa lenticularis), in the pretectum (nucleus spiriformis lateralis) and in the avian substantia nigra pars reticulata. Injections of biotinylated dextran amine in the pigeon ventral pallidum produced fibers and terminals in specific centers of the telencephalon, hypothalamus, thalamus, epithalamus, and midbrain and isthmic tegmentum. Labeled fibers and terminals were also observed in the avian subthalamic nucleus and the inmediately adjacent lateral hypothalamus, the avian thalamic reticular nucleus, the avian medidorsal nucleusaand posterior intralaminar nuclei, and the lateral habenula. Finally, labeled fibers and terminals were found in the ventral tegmental area, the avian substantia nigra pars compacta and the midbrain/isthmic tegmentum, which includes the pedunculopontine tegmental nucleus. Our results indicate that both the dorsal and ventral pallida of birds have unique and specific projection patterns, which are very similar to those of their counterparts in mammals. Our study suggests that these avian basal ganglia regions may be related mainly to somatomotor and limbic functions, respectively.
Collapse
Affiliation(s)
- L Medina
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee, Memphis 38163, USA
| | | |
Collapse
|
798
|
Sgambato V, Abo V, Rogard M, Besson MJ, Deniau JM. Effect of electrical stimulation of the cerebral cortex on the expression of the Fos protein in the basal ganglia. Neuroscience 1997; 81:93-112. [PMID: 9300404 DOI: 10.1016/s0306-4522(97)00179-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The protein Fos is a transcription factor which is quickly induced in response to a variety of extracellular signals. Since this protein is expressed in a variety of neuronal systems in response to activation of synaptic afferents, it has been suggested that it might contribute to activity-dependent plasticity in neural networks. The present study investigated the effect of cortical electrical stimulation on the expression of Fos in the basal ganglia in the rat, a group of structures that participate in sensorimotor learning. Results show that the repetitive application of electrical shocks in restricted areas of the cerebral cortex induces an expression of Fos mostly confined to the striatum and the subthalamic nucleus. The induction which can be elicited from different cortical areas (sensorimotor, auditory and limbic areas) does not require particular temporal patterns of stimulation but rather depends on the total number of shocks delivered during a given period of time. Moreover, it appears to be rather independent of the number of spikes discharged by the activated cells. In the striatum, the distribution of immunoreactive neurons is precisely delineated and conforms to the known topographical organization of stimulated corticostriatal projections. As demonstrated using a variety of double labelling techniques (combination of the immunocytochemical detection of Fos with the autoradiography of mu opioid receptors, calbindin immunocytochemistry, in situ hybridization of preproenkephalin and preprotachykinin A messenger RNAs), striatal neurons which express Fos are mostly localized in the matrix compartment and concern equally enkephaline and substance P containing efferent neurons. In the subthalamic nucleus, Fos expression evoked by cortical stimulation is also confined to discrete regions of the nucleus, the localizations corresponding to the primary projection site of the stimulated cortical cells. These results indicate that in addition to its phasic synaptic influence on the basal ganglia, the cerebral cortex could exert a long-term effect on the functional state of this system via a genomic control. Since the basal ganglia are involved in sensorimotor learning and motor habit formation, it is tempting to speculate that the activity-dependent Fos induction at corticostriatal and subthalamic synapses may contribute to consolidate the functionality of the neuronal networks activated during the completion of given motor tasks.
Collapse
Affiliation(s)
- V Sgambato
- Université Pierre et Marie Curie, Department de Neurochimie-Anatomie, U.R.A. 1488, Paris, France
| | | | | | | | | |
Collapse
|
799
|
Altar CA, Cai N, Bliven T, Juhasz M, Conner JM, Acheson AL, Lindsay RM, Wiegand SJ. Anterograde transport of brain-derived neurotrophic factor and its role in the brain. Nature 1997; 389:856-60. [PMID: 9349818 DOI: 10.1038/39885] [Citation(s) in RCA: 692] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The role of neurotrophins as target-derived proteins that promote neuron survival following their retrograde transport from the terminals to the cell bodies of neurons has been firmly established in the developing peripheral nervous system. However, neurotrophins appear to have more diverse functions, particularly in the adult central nervous system. Brain-derived neurotrophic factor (BDNF), for example, produces a variety of neuromodulatory effects in the brain that are more consistent with local actions than with long-distance retrograde signalling. Here we show that BDNF is widely distributed in nerve terminals, even in brain areas such as the striatum that lack BDNF messenger RNA, and that inhibition of axonal transport or deafferentation depletes BDNF. The number of striatal neurons that contain the calcium-binding protein parvalbumin was decreased in BDNF+/- and BDNF-/- mice in direct proportion to the loss of BDNF protein, which is consistent with anterogradely supplied BDNF having a functional role in development or maintenance. Thus the anterograde transport of BDNF from neuron cell bodies to their terminals may be important for the trafficking of BDNF in the brain.
Collapse
Affiliation(s)
- C A Altar
- Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, USA
| | | | | | | | | | | | | | | |
Collapse
|
800
|
Risold PY, Thompson RH, Swanson LW. The structural organization of connections between hypothalamus and cerebral cortex. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1997; 24:197-254. [PMID: 9385455 DOI: 10.1016/s0165-0173(97)00007-6] [Citation(s) in RCA: 249] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Motivated behavior requires coordinated somatic, autonomic, and endocrine responses, and may be divided into initiation, procurement, and consummatory phases (Swanson, L.W. and Mogenson, G.J., Neural mechanisms for the functional coupling of autonomic, endocrine and somatomotor responses in adaptative behavior, Brain Res. Rev., 3 (1981) 1-34). Obviously, such behavior may involve the entire central nervous system, although it is important to identify circuitry or systems that mediate the behavior directed toward specific goal objects. This problem has recently been clarified by the identification of hypothalamic subsystems important for the execution of instinctive behaviors related to ingestion, reproduction, and defense. These subsystems are modulated by sensory (reflex), central control (e.g., circadian), and voluntary (cortical) inputs. The latter are dominated by inputs from the ventral temporal lobe and medial prefrontal region, which are both direct and via associated parts of the basal nuclei (ganglia). Hypothalamic output is characterized by descending projections to brainstem and spinal motor systems, and by projections back to the cerebral cortex, which are both direct and via a continuous rostromedial part of the dorsal thalamus. This thalamic region includes the anterior, medial, and midline groups, which in turn innervate a continuous ring of cortex that includes the hippocampal formation and the cingulate, prefrontal, and insular regions. Parts of this thalamic region also innervate the ventral striatum, which receives a massive input from the cortical rings as well.
Collapse
Affiliation(s)
- P Y Risold
- Program for Neural, Informational and Behavioral Sciences, University of Southern California, Los Angeles 90089-2520, USA
| | | | | |
Collapse
|